RARE-26. WHOLE GENOME SEQUENCING OF AN OSSSEOUS METASTASIS DURING CHECKPOINT-CONTROLLED INTRACRANIAL GILOBLASTOMA REVEALS NEW INSIGHTS INTO POTENTIAL MECHANISMS OF IMMUNE ESCAPE
Malte Mohring1, Cecile Maitre1, Simon Schlichtke1, Simon Jooose1, Malik Alawi1, Katrin Lamszus2, and Manfred Westphal2; 1University Medical Center Hamburg-Eppendorf, Hamburg, Germany, and 2Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, and 3Department of Neurosurgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany

Glioblastoma (GBM) has a devastating prognosis and recent advances in the treatment of a variety of cancer entities, e.g. through checkpoint inhibition, could so far not be translated into improved outcome in newly diagnosed GBM. Characterizing rare cases of peripheral metastases which succeeded in overcoming immune control, can help to understand the mechanisms of immune escape. Here we describe the first reported case of a detailed genetic and immunogenotyping analysis of peripheral metastasis from a GBM which was controlled intracranially by anti-PD1 checkpoint inhibition. We performed whole genome sequencing (WGS) of the primary- and recurrent tumor, as well as the bone metastasis. Genomic DNA analysis revealed copy number alterations and mutations in their respective repertoire. In addition, immune monitoring with flow cytometric phenotyping and next-generation sequencing of the peripheral T-cell repertoire was used. A 70-year-old patient developed multiple osseous metastases in the spine, while his IDH1wt GBM recurrence was immunologically controlled with checkpoint inhibition. Biopsy confirmed peripheral GBM metastases. Immunophenotyping reflected the effective activation of the peripheral T-cell response, with, however, simultaneous upregulation of regulatory T-cells, which negatively impact disease progression. WGS sequencing demonstrated a distinct molecular profile of the GBM metastasis, with amplifications in chromosome 3 and 9, as well as genomic loss on chromosomes 4, 10 and 11. The peripheral metastasis was distinguished by mutations in mismatch repair genes, such as MSH3 and MLH1, associated with a hypermutated phenotype. Among the mutated genes we found potential candidates involved in immune escape of circulating tumor cells. This case represents a unique opportunity to analyze potential mechanisms of GBM-mediated immune escape during immune activation with anti-PD1 checkpoint therapy. It highlights the fact, that although an effective, disinhibited immune response can control the cranial GBM disease, hypermutated tumor clones can evade the tumor-specific T-cell response and disseminate to distant organs.

RARE-27. UNUSUAL CASE OF TEENAGER WITH PRIMARY SPINAL GERMINOMA WITH INTRACRANIAL RELAPSE POST-THERAPY
Maria Kosken, Scott Wang, Carolina Fasola, Chad Jacobson, and David Gass; Atrium Health Levine Children’s, Charlotte, NC, USA

We present a case of a 14-year-old male who presented with back pain and difficulty walking and was found to have an intradural intramedullary germinoma in the thoracolumbar spine. After debulking, he was treated with four cycles of carboplatin and etoposide and then received local spinal radiotherapy (RT) to the initial area of disease with margin to 30 Gy in 17 fractions. Six months following completion of therapy, he was found to have an intracranial relapse. CLINICAL IMPORTANCE: Our patient is the second ever Hispanic and twelfth pediatric patient reported with primary spinal germinoma. We reviewed 54 total cases published in literature over last 35 years. Twenty-one patients (39%) were treated with surgery followed by local spinal RT (ns12) or CSI (ns9). Twenty-eight patients (52%) were treated with chemotherapy in addition to surgery and radiation. The remaining 5 patients (9%) either had surgery alone or details of their treatment plan were not reported. Six of the 54 patients experienced disease recurrence. None of the patients treated with CSI experienced disease recurrence after CSI. Ninety-six percent of patients were alive at last follow up. CLINICAL OUTCOME: Our patient had his relapsed disease resected and CSI to 23.4 Gy in 13 fractions and local boost to 21.6 Gy in 12 fractions was delivered to all sites of relapsed disease. He is undergoing surveillance of his tumor and there is no disease recurrence 3 months post-CSI. CONCLUSION: Primary spinal germinomas appear chemo responsive and radioresistant; however, the optimal management to maximize disease control and minimize side effects is not clear. MRI, using local spinal RT, close surveillance with brain and spine imaging seems indicated as relapses anywhere in the central nervous system are possible. Further study is needed to determine the optimum treatment approach to this tumor.

RARE-28. HYPOTHALAMIC GERMINOMA AND NEUROSARCOIDOSIS: A TALE OF TWO PATHOLOGIES
Sushant Puri, Tibor Valy-Nagy, Nadera Swiss, Stefania Maraka, and Martin Nicholas; University of Illinois at Chicago, Chicago, IL, USA

CASE 1: 30-year-old Caucasian male with a history of hereditary cavernomas, testicular germ cell tumor s/p orchectomy 2017 presented recently with a chief complaint of increasing headaches. On a new dilatation of the lateral ventricles, MRI of neurrayx was not concerning for leptomeningeal spread. Initial differentials included suprasellar germinoma vs chiasmatic hypotalamic glioma vs metastatic lesion. Biopsies X2 showed glisson and granulomatous inflammation. Despite radiation treatment for the hypothalamic mass clinical course continued to deteriorate. CSF results showed RBC - 1,200; WBC - 51 with 77% lymphocytes, 3% neutrophils, 20% monocytes, FDG-PET did not reveal evidence of metastatic disease. He was treated with high-dose corticosteroids and azathioprine and later transitioned to methotrexate and infliximab. Follow up MRI scans showed a reduction in the hypothalamic mass. CASE 2: A 23-year-old African American male treated for ADEM in 2010 presented to clinic with behavioral problems in 2017. Initial presentation included lethargy with imaging showing an incidental hypothalamic mass. Twenty-eight months following completion of therapy, he was treated with a second course of high dose steroids, followed with 2 cycles chemotherapy and proton beam radiotherapy in 2012. In 2017, to exclude tumor recurrence an LP showed elevated ACE however, CSF was not supportive for leptomeningeal spread. Initial differentials included germinoma vs infundibular hypophysitis vs granulomatous process. He was treated with immunotherapy with pembrolizumab and radiation. He has been treated with pembrolizumab for neurosarcoidosis with mixed success for neurosarcoidosis. His prior course showed CSF stability, but disease recurrence. He was later diagnosed with suprasellar germinoma on biopsy subsequently treated with 2 cycles chemotherapy and proton beam radiotherapy in 2012. It highlights the fact, that although an effective, disinhibited immune response can overcome immune control, can help to understand the mechanisms of immune escape of circulating tumor cells. This case represents a unique opportunity to analyze potential mechanisms of GBM-mediated immune escape during immune activation with checkpoint inhibition. Biopsy confirmed peripheral GBM metastases. Immunophenotyping reflected the effective activation of the peripheral T-cell response, with, however, simultaneous upregulation of regulatory T-cells, which negatively impact disease progression. WGS sequencing demonstrated a distinct molecular profile of the GBM metastasis, with amplifications in chromosome 3 and 9, as well as genomic loss on chromosomes 4, 10 and 11. The peripheral metastasis was distinguished by mutations in mismatch repair genes, such as MSH4 and MLH1, associated with a hypermutated phenotype. Among the mutated genes we found potential candidates involved in immune escape of circulating tumor cells. This case represents a unique opportunity to analyze potential mechanisms of GBM-mediated immune escape during immune activation with anti-PD1 checkpoint therapy. It highlights the fact, that although an effective, disinhibited immune response can control the cranial GBM disease, hypermutated tumor clones can evade the tumor-specific T-cell response and disseminate to distant organs.

RARE-29. AZD8055 ENHANCES IN VIVO EFFICACY OF AFTABIN IN CHORDOMAS
Tianan Zhu1, Bei-Mei Su2, Tara Williamson3, Haoyu Zhang1, Chenchen Ji1, Peter Burger1, Lucia Perrone Flandez1, Christine Hanne1, and Gary Gallia1; 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 2Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 3Department of Pathology, University College London, London, United Kingdom, and 4Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

INTRODUCTION: Chordomas are rare, locally aggressive bone tumors that arise in cranial base, mobile spine, and sacrum. Currently, there are no FDA-approved therapies for chordoma patients, thus there is a high unmet need to develop effective treatments. In this study, we aim to evaluate the anti-tumor efficacy of small molecule inhibitors that target crucial oncogenic pathways in chordomas in similar in vivo preclinical models with the greatest translation potential. METHODS: A panel of small molecule compounds that had exhibited in vitro efficacy against human chordoma cell lines or target known chordoma driver genes was screened in vivo against patient-derived xenograft (PDX) models of chordoma, and their efficacy was further evaluated using chordoma cell lines and xenograft models. RESULTS: The in vivo activity of compounds identified in a NIH Chemical Genomics Center screen utilizing chordoma cell lines, together with inhibitors of c-MET and PDGFR, were evaluated in PDX models of chordoma that were previously described or recently established for this study. Inhibitors of EGFR (BIBX1382, erlotinib and afatinib), c-MET (crizotinib) or mTOR (AZD8055) significantly inhibited tumor growth in vivo but did not induce tumor regression. Co-inhibition of EGFR and c-MET using erlotinib and crizotinib synergistically reduced cell viability in chordoma cell lines but did not result in enhanced in vivo activity. Co-inhibition of EGFR and mTOR pathways using afatinib and AZD8055 synergistically reduced cell viability in chordoma cell lines. Importantly, co-inhibition of EGFR and mTOR also synergistically suppressed tumor growth in vivo, showing improved disease control. CONCLUSION: Single inhibition of EGFR, c-MET or mTOR suppresses chordoma growth both in vitro and in vivo. Co-inhibition of EGFR and mTOR synergistically inhibits chordoma growth in a range of preclinical models. The insights gained from our study provide a novel combination therapeutic strategy for patients with chordoma.

RARE-30. PEDIATRIC GILOBLASTOMA IN THE POST-TEMOZOLOMIDE ERA: OUTCOMES AND CHARACTERISTICS
Ankush Chandra1, Taemin Oh2, Sharh Wadhwa1, Sumeeth Shail1, Nalini Gupta1, Mike McDermott1, Mitchell Berger1, and Manish Agih2; 1University of California, San Francisco, and 2University of California, San Francisco

(28.5%) had died, with median OS of 168.5 months. Although PPTDs have a known potential for local recurrence and craniospinal dissemination (quoted as 22% and 10%, respectively in WHO 2016), our data show a minimal clinical experience with 71% recurrence and 80% dissemination at first recurrence. Lack of standardized therapies results in challenges in individual patient management.

Downloaded from https://academic.oup.com/neuro-oncology/article-abstract/21/Supplement_6/vi227/5619631 by California Digital Library user on 29 April 2020
INTRODUCTION: Glioblastoma (GBM) is the most common brain tumor, however, is a rare occurrence in children and is poorly characterized. We evaluated the characteristics and outcomes of pediatric GBM (pGBM). METHODS: Retrospective analysis of pediatric (age < 18) patients diagnosed with GBM undergoing first glioblastoma resection at our brain tumor center (2005-2016). RESULTS: From 1457 GBM patients, we concluded twenty-four (1.65%) pGBMs (Median Age: 9 years, Females: 45.8%). Median overall survival (OS) was 32.1 months, while the median progression-free survival was 11.5 months. The commonest symptoms at presentation were headaches (34.2%, n=13) and motor symptoms (30.0%, n=12). Mean tumor diameter was 4.5 cm and 23% of the cohort underwent gross total resection (GTR) of their tumor. Univariate analysis revealed median OS significantly associated with tumor extent of resection (GTR=56.4 months; STR/Biopsy=13.7 months, p=0.001), age at surgery (>10 years=43.9 months, ≤ 10 years=17.2 months, p=0.01), tumor size (>4 cm=31.8 months, ≤ 4 cm=65.9 months, p=0.01), motor symptoms at presentation (present=14.9 months, absent=41.04 months, p=0.02) and infratentorial tumors (infratentorial=17.4 vs supratentorial=53.4 months, p=0.02). Multivariate analysis revealed GTR (HR 0.295 [95% CI 0.07-0.72], p=0.02) and age > 10 years (HR 0.6095 [95% CI 0.34-1.3], p=0.02) were independent predictors of OS. Comparing patients under and over 10 years, we found that older patients had larger tumors at presentation (median tumor size=4.1 cm vs 3.6 cm, p=0.03), more extensive preoperative temozolomide (n=1,77% vs n=6, 54.3%) and bevacizumab (n=1,77% vs n=4, 36.4%) treatment, and lower rates of EGF amplification (66.7% vs 11.1%) that could explain survival disparities between groups. CONCLUSION: GBM in pediatric patients, larger tumors at presentation, extensive preoperative treatments and EGF amplification may be indicative of poorer outcomes in pGBM. However, maximal tumor resection, aggressive chemoradiation and tumor presentation at age >10 years may confer better prognosis in these patients.

RARE-32. POLYMORPHOUS LOW-GRADE NEUROEPITHELIAL TUMOR OF THE YOUNG (PLNTY): GENETIC ANALYSIS CONFIRMS FREQUENT MAPK PATHWAY ACTIVATION

Christopher J. Ho, Daniel D. Johnson, Thomas W. Miller, DongKun Kim, Timothy Kinkelmann, Benjamin Kipp, Robert Jenkins, and Caterina Giannini; Mayo Clinic, Rochester, MN, USA

Polymorphous low-grade neuroepithelial tumor of the young (PLNTY) is an underrecognized epithelioid tumor character by oligodendro-glia-like components, aberrant CD34 expression, and genetic MAPK pathway activation through alterations such as BRAF V600E mutation, and FGFR2-KIAA1599/CTNNAL1 and FGFR3-TACC3 fusions. We report the molecular profile of PLNTY in 9 patients, aged 7 females and 2 males from 9 to 17 years of age, at diagnosis of PLNTY (6 cases) or secondary glioblastoma of 16 years (range, 5-34). All tumors were supratentorial with diagnostic morphological features of PLNTY including oligodendroglioma-like areas and strong diffuse CD34 immunostaining. Four (of 9; 44%) tumors were positive for BRAF V600E mutation, indicating the presence of a BRAF V600E mutation. The 6 cases evaluated for IDH1 status were negative by IDH1-R132H immunostain (n=5; 3 BRAF V600E-negative and 2 BRAF V600E-positive) or by NGS (n=1; BRAF V600E-negative). Oncoscan chromosomal microarray performed on 5 of 7 V600E tumors showed recurrent copy number changes including gain of whole chromosomes 5, 7, 8, 9, 12, 18, 19, 20, 21 and X, and loss of chromosomes 1, 2, 10q, 13, 22 and Xq. The 10q losses (n=2) were highly suggestive of an FGF2R-KIAA1598 and of a potentially novel FGF2R underling fusion event in one target case (n=1). Univariate analysis revealed median OS panel performed in 2 cases revealed a fusion similar to fusions previously reported in pilocytic astrocytoma: one with a KIAA1594-BRAF (exon 15-exon 9) fusion associated with a 7q14–7q35 deletion deletion rather than the characteristic ~2 megabase duplication seen in pilocytic astrocytoma, and another with a QKI-NTRK2 (exon 6-exon 15) fusion associated with a 9q21–191q31 duplication disrupting NTRK2. The KIAA1594-BRAF fusion-positive case also had a TPS3 mutation with loss of whole chromosome 11, and a characteristic ~2 megabase duplication seen in pilocytic astrocytoma. This study confirms that PLNTY is a low-grade neuroepithelial tumor with frequent MAPK pathway activation and expands the spectrum of MAPK activating alterations observed in PLNTY.

RARE-33. LEPTOMENEGAL DISEASE IN PATIENTS WITH MIDLINE GLIOMAS HARBORING HISTONE H3 K27M MUTATIONS

Carlos Eduardo Silva Correia, Elena Pentsova, Andrew Lin, and Alexandra Miller; Memorial Sloan-Kettering Cancer Center, NY, NY, USA

INTRODUCTION: The 2016 WHO classification describes a specific subtype of midline gliomas harboring histone H3 K27M mutations which compromises 15–40% of gliomas in children and young adults. Since we began to perform molecular profiling at Memorial Sloan Kettering Cancer Center (MSKCC) we have observed an increased prevalence of leptomeningeal (LMD) spread. Herein, we describe the clinical behavior of this group has not been well-defined. METHODS: This was a retrospective study of patients with H3K27M diffuse midline gliomas at MSKCC from 01/2012 to 01/2019. Mutations were identified through next-generation sequencing (NGS). RESULTS: We identified 24 patients. Median age was 21 (6–70) and 13 were male. Thirteen tumors were in the thalamus, 6 in the brainstem, 1 in the spinal cord, and 1 in the pineal region. H3K27M mutations were detected by NGS from tumor tissue in 21 patients, from cerebral spinal fluid (CSF) circulating tumor DNA (ctDNA) in 2 and from both LMD and CSF ctDNA in 1. Mutations were confirmed radiographically. Of these, 8 underwent LP: CSF cytology was positive in 2/8 and CSF ctDNA was detected in 3/8. All patients received RT and one or more lines of chemotherapy. At analysis, thirteen patients remain alive. Median time to last follow up for all patients was 14.2 months. Median time from diagnosis to LMD was 13.2 months (0–45.1), with median OS of 6.5 months (0.3–27) after diagnosis of LMD. CONCLUSION: Our study showed that more than two-thirds of the patients with H3 K27M diffuse midline glioma met the LMD diagnosis. Neuroaxial imaging should be performed in concert with CSF studies to diagnose LMD. Besides, CSF ctDNA represents an important tool to identify molecular profile of tumors when biopsy is not feasible or allowed for the analysis.

RARE-34. TUMOR IMMUNITY AND EXTRACRANIAL METASTASIS, AND MECHANISM OF PD-L1 EXPRESSION IN INTRACRANIAL SOLITARY FIBROUS TUMOR/HEMANGIOPERICYTMAT

Daiki Kamamoto, Kentaro Ohara, Yohi Kitamura, Kazunari Yoshida, and Hikaru Sasaki; Keio University School of Medicine, Tokyo, Japan

Intracranial solitary fibrous tumor (SFT) /hemangiopericytoma (HPC) are rare, however, these tumors are often associated with aggressive clinical course with recurrence and/or extracranial metastasis. PD-1, PD-L1 play important roles as immune-checkpoint mediators within tumor micro-environment, and the antibodies to these molecules are now approved for the treatment of various kinds of cancers. Some mechanisms of activation of PD-L1 are reported, including cytokines or chemokines from immune cells, tumor microenvironment, and genetic mutations such as translocations, or amplification. We have investigated the expression of PD-1, PD-L1, and tumor infiltrating lymphocytes (TIL) in 16 cases of SFT/HPC by immunohistochemistry. Kaplan-Meier method and log-rank/Wilcoxon tests were used to analyze the relationship between their expression with overall survival (OS), progression free survival (PFS), metastasis free survival (MFS), and of a potentially novel