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HIGHLIGHTS 
 

• We present a comprehensive survey of GC×GC and GC×GC-MS data with chemometrics  
• This review includes principles, theories and graphical tools for data processing 
• We discuss deconvolution of 1D, coupled and GC×GC separations with FID/MS  
• We consider retention, structure, tR shifts, orthogonality and image analysis 

 
ABSTRACT 
 
The power of comprehensive two-dimensional gas chromatography (GC×GC) for the 
study of complex mixtures has been indisputably proved in the past several decades. This 
review encompasses the whole of GC×GC-related data processing and summarizes 
relevant applications. We include theoretical introduction to some specific methods and 
studies  to aid readers’ understanding of chemometrics strategies for advanced data 
interpretation. 
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1. Introduction 

 
Comprehensive two-dimensional gas chromatography (GC×GC) is a natural extension 

in the panoply of development of conventional separations, including single-dimensional 
chromatography (SDC) and heart-cut (H/C) techniques. H/C is also called 
multidimensional gas chromatography (MDGC), defined as “the process of selecting a 
(limited) region or zone of eluted compounds issuing from the end of one GC column, 
and subsequently subjecting the zone to a further GC displacement” [1].  

In the 1990s, a typical example of MDGC separation comprised about 50 individual 
sampled regions each with around 20 peaks for pattern recognition of pharmaceuticals [2]. 
In the past decade, the number of “cross-samples” investigated in a specific study and the 
number of peaks contained in each sample significantly increased (e.g., to 1000 and 500, 
respectively), because of biology-driven studies, such as proteomics and metabolomics.  

Our recent work reported that 2771 compounds were found in an investigation of a 
Chinese medicinal formulation (CMF) that included nine single herbs, using the platform 
of GC×GC with time-of-flight mass spectrometry (GC×GC-TOF-MS) [3]. The ability to 
resolve a sample of such complexity is an evident challenge or even an impossible task 
for SDC analysis.  

However, successful applications exploited the power of GC×GC related techniques to 
compositions in mixtures of high complexity, such as herbal medicines and drugs, flavors, 
foods, petroleum and biological samples [4–11]. The outcomes and the performance of 
this technique have been introduced and reviewed, with frequent updates [5,12–20]. The 
basic experiment comprises the connection of two chromatographic columns with 
complementary polarity that together enhance the separation capacity of the arrangement; 
the columns are interfaced through a modulator device, which effectively decouples 
elution on each column [21,22]. The column set pairs two columns that are most often 



  

 

defined as comprising a low polarity (LP) / polar (P) combination, a moderately polar 
(MP) / polar combination, a P / LP combination, or a P / MP combination. Note, however, 
that these are relative properties, since a very polar / P combination may perform similarly 
to a P / LP combination. Such smart configurations help to separate and to re-arrange 
further the peaks in the first dimension (1D) compared to the second one (2D), with a fixed 
modulation period (PM) and same total analysis time [23,24]. Thus, peak capacity, a 
theoretical measure of the number of peaks that can be separated in the 2D space, can then 
ideally attain to the product 1nc×

2nc, assuming the peak capacities in 1D and 2D 
separations are 1nc and 2nc, respectively [25]. This is the essential advantage of GC×GC, 
enabling the investigation – and separation – of samples with hundreds or even thousands 
of chemical components in contrast to SDC and MDGC techniques. 

Unlike the conventional data structures of SDC, MDGC and coupling of 
chromatographic and spectral instruments, GC×GC data have two special properties:  
(1) 2D characteristics with specific retention properties and response in 1D and 2D 

dimensions; and,  
(2) loss of raw chromatographic data in 1D, but continuous modulation of fractions in 2D 

for each 1D peak.  
For GC×GC-MS data with different mass analyzers, such as quadrupole and TOF, 

ideally a single-component mass spectrum can be detected at each retention-time (tR) 
measurement point throughout the 2D GC×GC separation plane. This effectively expands 
the original data to a three-dimensional (3D) data set, with tR in both 1D and 2D (1tR and 
2tR, respectively), and spectral intensity at the scanned m/z, comprising the x-, y-, and 
z-axes, respectively. Further, time-dependent and sample-to-sample dynamic variations 
complicate data processing and information extraction (extended to a four-dimensional 
arrangement) (e.g., metabolite fingerprinting analysis in metabolomics analysis with 
evolution of treatment or environmental effects over time). One of the typical examples is 
correction of tR shifts among different but related samples of GC×GC-TOF-MS, or 
different types of detectors on the basis of GC×GC separation [26,27]. 

The complexity of GC×GC related data and high-throughput analysis for real mixtures 
make chemometrics widely applicable to this area [28–31], which has the power to expose 
buried information in “white, grey and black systems” with different degrees of prior 
knowledge of multi-components, and draws on multivariate statistics, mathematics and 
computer science [32], as shown in Fig. 1. Many of the reported reviews of GC×GC 
incorporate the relevance of chemometrics for the investigation of GC×GC data, and 
include theoretical development and novel applications [28,29,33]. This work further 
explores the nexus between GC×GC and chemometrics to mine out hidden information 
with mathematical interpretation, and aims to provide extra understanding to the 
researcher without a chemometrics background. Previously reported chemometrics tools 
for processing of coupled data are introduced to explain GC×GC data, such as 
multivariate curve resolution (MCR) for bilinear data decomposition based on the 
principles of the Beer-Lambert Law (BLL). In terms of the 2D, or even 3D, data 
characteristics introduced above, we review some specific research insights of GC×GC, 
such as orthogonality and image analysis.  

First, chemometrics methods to deconvolute overlapping GC×GC peak clusters in 1D 
and 2D separations are introduced by using model or fitting techniques. Based on the 2D 
feature of GC×GC separation, conventional deconvolution methods for 2D or 3D data 
processing have been applied for GC×GC processing. This further helps to recover lost 
information of primary peaks. Second, MCR methods based on single or multiple runs are 
separately summarized, to extract chromatographic data and spectral profiles of pure 
components from GC×GC-TOF-MS data to support identification and quantification 



  

 

[34,35]. Four important chemometrics methods for 2-way and 3-way data resolution are 
introduced in theory, with worked examples of processed GC×GC related data, including 
heuristic evolving latent projection (HELP) [36,37], parallel factor analysis (PARAFAC) 
[38,39], MCR-alternating least squares (MCR-ALS) [40,41], and alternative moving 
window factor analysis (AMWFA) [42,43].  

Next, some new research topics applied to GC×GC data are expounded, exploiting the 
2D separation characteristics and matrix data structure, such as tR alignment, 
orthogonality and image analysis. Last, but not least, some routine considerations of the 
GC×GC experiment related to data processing aided by chemometrics are reviewed, such 
as peak detection, experimental design and optimization, signal processing, and 
component-calibration models. This should familiarize the reader with an appreciation of 
various chemometrics tools for presentation and interpretation of GC×GC and 
GC×GC-MS data. 

In addition, some commercial and freely downloadable programs or software for 
GC×GC data analysis are introduced and can be readily used following instructions 
[44–46]. This includes signal-to-noise filtering, baseline correction, retention-time 
alignment, normalization, peak picking, deconvolution, integration, and library searching 
and identification by using retention-index and MS libraries [47,48]. This allows 
chemometrics strategies to be readily employed by researchers with limited chemometrics 
experience, such as ChromaToF data-processing software (Leco, USA). However, 
discussion of this is not included in the present review. The nomenclature and the 
conventions used here follow our previous recommendations, recently updated [23,24]. 
 

2. GC×GC data deconvolution 

 
Deconvolution of unresolved chromatographic peaks largely extends experimental 

capability by using chemometrics tools. It can save time, labor and money to acquire the 
information about target analytes for identification and quantification with existing data at 
hand [35]. Though some analytical scientists prefer to use classical formulae or may be 
reluctant to apply chemometrics, previously reported applications introduce the 
effectiveness of these methods. This approach can overcome limitations of analytical 
instruments and/or insufficiently optimized conditions, and meets the demand to process 
complicated mixtures, such as biological fluids. If the chromatogram of pure components 
can be independently extracted from contaminated (overlapping) clusters, peak area or 
height can be applied for relative quantification, and retention time to determine the 
retention index for identification [49,50], especially for SDC analysis without MS 
detection. After this, absolute quantification can be achieved with the help of standard 
calibration strategies, including:  
(1) normalization method;  
(2) internal standard method;  
(3) external standard method; or,  
(4) standard addition method.  
Operational details can be followed via the summarized review work [35]. 

GC×GC separation amplifies the 1D chromatogram to form a 2D contour plot. 
Deconvolution can be divided into two parts, namely, full deconvolution of overlapping 
peaks in 2D, and recovery of chromatographic profile in 1D, in terms of Equation (1) for 
mass transfer from the 1D column to 2D. Deconvolution could also be achieved for 1D 
overlapping peak clusters after individual optimization of the chromatogram. 

  



  

 

 

      
i = 1, 2, …, nM

 

(1)

where, notations Ai and Ai,total, respectively, denote peak area of the ith fraction detected in 

2D and total area of the fractions from the 1st to the ith. Term S(t) is the signal profile of 
the primary peak with change of retention time. The three numbers t0, PM and nM 
represent the heart-cut (H/C) position of the first modulated fraction, modulation period 
and number detected for a given 1D peak. Here, H/C refers to the repetitive sampling 
event of the first column peak. 

For deconvolution of a chromatogram with multiple components in 2D, a range of 
conventional methods can be employed because of the similar characteristics of 
separation by SDC. This has been widely reported over several decades. The two 
techniques of non-linear least-squares (NLLS) analysis [51,52] and Fourier transform (FT) 
[53,54] generated many publications in this area. The former uses curve fitting and 
predefined functions of the chromatographic profile, and the latter is a reversible process 
of mathematical transformation from raw signal to complex frequencies, and then inverse 
deconvolution to pure peaks via FT operation. Another choice was to optimize the target 
chromatogram with an iterative technique and constrained conditions of peaks, such as 
unimodality and non-negativity [55,56]. Among the mathematical models to simulate the 
chromatogram, the polynomial modified Gaussian (PMG) function has been found most 
suitable to derive each eluting component [51,57]. Non-linear regression techniques for 
deconvolution were reviewed by Vivo-Truyols et al. [58], who proposed a new algorithm 
for alternative fitting of the original signal and the second derivatives. These 
deconvolution methods included Powell-1 and -2, multi-start local search (MSLS) and 
locally optimized genetic algorithm (LOGA) [59,60]. Globally optimal performance was 
achieved through automated selection of the most effective calculation procedure 
employing first-order multivariate selectivity. This enables users without strong 
mathematical background to process their data.  

In addition, strategies to process data obtained from high-performance liquid 
chromatography (HPLC) and capillary electrophoresis (CE) [61,62], or a multi-batch 
approach, combined with multiple-wavelength chromatograms for 1D data analysis, may 
be extended to GC deconvolution [63]. 

However, characteristic information about each fraction in 2D can be found if a 
component is present in more than one modulated fraction of the primary peak. The 
sequential chromatograms may be chemometrically interrogated to develop new strategies 
for peak deconvolution, including simultaneous derivation of 1D and 2D chromatographic 
profiles of pure components. For instance, Zeng et al. [64] developed a method for 
simultaneous deconvolution and re-construction of primary and secondary overlapping 
peak clusters in GC×GC analysis. Non-linear least squares curve fitting (NLLSCF) was 
employed to optimize the 2D chromatogram of pure components with a selective elution 
window, and then each area obtained from the corresponding modulated fraction of the 
primary peak was further used to simulate the 1D peak and its peak-profile data. 
According to Equation (1), the principle for mass transfer from 1D to the 2D column 
allows recovery of individual overlapping peaks in the 1D separation. Kong et al. [65] 
investigated this issue through full parameter search using the same principle introduced 
above. The linear relationships of parameters of the exponentially modified Gaussian 
(EMG) model and the corresponding tR values may be used for deconvolution of primary 
peaks in GC×GC analysis. In general, these methods were established to deconvolute 1D 
overlapping peaks after obtaining the pure chromatographic profile in 2D. Thus, the 
conventional algorithms for SDC deconvolution are suitable for the study of modulated 



  

 

fractions in 2D, and then simulation of 1D peaks generated by GC×GC.  
The 2D characteristics of GC×GC data mean that conventional chemometrics tools for 

multi-run-based data resolution may be introduced for deconvolution. For example, 
PARAFAC and PARAFAC2 methods were simultaneously utilized for quantification of 
kerosene in gasoline with GC×GC analysis [66]. MCR-ALS was developed by Tauler et 
al. to resolve second-order data from more than one run. It has been utilized to process 
GC×GC data with flame-ionization detection (GC×GC-FID) [67] and LC×LC data [68]. 
The raw chromatograms were unfolded to 2D GC×GC structure similar to coupled data 
with chromatographic and spectral information. Correlation of the concentration of 
analytes with the response of pure components permitted quantitative analysis of essential 
oils in perfume. The results indicated the effectiveness of the MCR-ALS method to 
resolve target chromatograms from complicated mixtures and, further, to build 
multivariate models of GC×GC-FID separation. The generalized rank-annihilation 
method (GRAM), also based on more than one experimental run, was successfully 
applied to study GC×GC quantification [69]. After alignment of tRs, it was utilized for 
analyte identification and accurate quantification of unresolved analyte peaks by Fraga et 
al [69]. These algorithms are introduced in detail in sub-section 3.2.2, including 
PARAFAC, MCR-ALS and GRAM methods. 
 

3. MCR of overlapping peaks in GC×GC-MS 

 
MCR was traditionally defined as “a model-free or a soft-modeling method that 

focuses on describing the evolution of the experimental multi-component measurements 
through their pure component contributions” [70]. The goal of MCR is to extract the pure 
chromatographic and spectral profiles C and S shown in Equation (2) from the raw data 
matrix X. The bold letter E denotes residual errors or experimental noise not explained by 
chemical components. If successful, qualitative and quantitative analysis of analytes can 
then be attained with simultaneous presence of co-eluting components. This is the 
mathematical definition of BLL with bilinear basis for MCR analysis, according to the 
principles given in Fig. 2.  
 
 X = CST + E (2)

For multi-run-based data resolution, the goal is the same but attempts to employ new 
information provided by the additional data. The assumptions of MCR analysis include 
two parts:  
(1) fundamental characteristics of signal (experimental data and peaks), such as 

bilinearity, non-negativity and unimodality; and,  
(2) each component has an experimentally identical spectrum in different runs.  
In Fig. 3, a flowchart to summarize the sampling process is given, to sketch the whole 
picture for MCR with chromatographic and spectral contributions. 

In substance, GC×GC-MS data are an extension of conventional coupled data, such as 
GC-MS and HPLC-DAD (diode-array detector), though it has 3D or even higher 
attributes (refer to Introduction). Thus, all the reported resolution methods based on 
single-run data and multi-run data can then be applied for GC×GC-MS data processing. 
They are summarized below. However, modulation of a primary peak to fractions and 
further separation in 2D make data of these types complicated. For example, 
re-arrangement of the fractions with spectral information may help resolution of 
overlapping peak clusters with high complexity, since molecularly-specific information 



  

 

among the sub-peaks in 2D may be helpful. This should be one of the most important 
study updates of GC×GC-MS in contrast to previous coupled chromatographic-spectral 
datasets. 
 
3.1. Single-run-based data resolution  
 

Manne proposed resolution theorems to introduce underlying premises to obtain 
correctly target matrices C and S for the resolution of a single data set [71]. The two key 
points of the theorems were originally stated as follows: 
(1) if all interfering compounds that appear inside the concentration window of a given 

analyte also appear outside this window, it is possible to calculate the concentration 
profile of the analyte; and, 

(2) if, for every interferent the concentration window of the analyte has a sub-window 
where the interferent is absent, then it is possible to calculate the spectrum of the 
analyte. 

This is the basis to develop new chemometrics methods for single coupled data 
resolution. In reported works, not so many applications can be found relevant to the 
GC×GC-MS process by using single-run-based data-resolution methods. It is suitable, of 
course, to mine out information about components buried in complicated datasets in terms 
of the modulation arrangement of GC×GC separation and principles for MCR analysis. 
The task includes stepwise processing of each modulation fraction following the steps 
shown in Fig. 3. However, the resolved matrices C and S are not completely the same 
within the sampled region of primary column eluate because of component overlap and 
H/C with a constant time window according to the PM value.  

In summary, single-run-based methods can be divided into two categories with unique 
resolution and rational resolution, respectively. 

 
3.1.1. Unique resolution methods 

Employment of local rank information (LRI) is the crucial advantage of this type of 
method. This helps to extract Ci and Si from each pure component with uniqueness 
property. LRI means the unique characteristics of an analyte hidden in a local 
evolutionary window where co-elution with other components is absent. Evolving factor 
analysis (EFA) was a considerable milestone in obtaining the elution window of each 
component and then LRI for chemometrics resolution [72]. It mined out the starting and 
end elution points of each peak though forward and backward derivation of eigenvalues 
with singular value decomposition (SVD) analysis of all gradually enlarged sub-matrices 
extracted from the whole data X [73]. Thereafter, several effective methods were 
developed on the basis of EFA to discover evolving elution information, but different 
strategies for full resolution, including fixed size moving window evolving factor analysis 
(FSMWEFA) [74], HELP [36, 37], window factor analysis (WFA) [75] and sub-window 
factor analysis (SFA) [76]. Among these methods, HELP, developed by Kvalheim and 
Liang et al., should have the widest application to resolve chromatographic data arising 
from studies of herbal medicines, biological samples, environmental pollutants, and others. 
The total literature citations to the two parts of this method number more than 600. It was 
recommended as having quite good performance [77,78]. Briefly, HELP can be 
decomposed to the following steps:  
(1) finding of zero-component regions with noise only to define the detection limit and to 

simulate background data for subtraction;  
(2) estimation of the number of components with eigenvalues from SVD operation, and 

further determination of selective regions via latent-projective graphs;  



  

 

(3) local rank analysis to confirm the selectivity of regions found by visual detection; 
and,  

(4) full rank resolution and component-stripping technique to determine C and S 
uniquely in Equation (2) by using the selective and zero-concentration regions. A 
conceptual interpretation of HELP introduced above is given in Fig. 4.  

However, all the methods mentioned above were established on the evolutionary 
condition of components eluting out from the column, namely, “first-in-first-out”. This 
means that the embedded overlap system exceeds the resolution abilities of these methods, 
where a minor peak is completely buried by a peak with large response along the whole 
elution window. Such a case challenges the conventional chemometrics methods, though 
some scientists attempted to solve this problem partially [79,80]. It may be resolved by 
the multi-run based methods introduced in sub-section 3.2.2. 

It should be pointed out that full resolution of all overlapping peaks in GC×GC-MS 
data is difficult in most cases because of the modulation of 1D peaks to 2D fractions that 
still comprise many peaks and the complexity of real samples. Chemometrics techniques 
were introduced in our work for component correlation strategically to extract elution 
windows of analytes with MS channels from the whole GC×GC-TOF-MS dataset, which 
has a large size of more than 1.0 GB [3,42]. In addition, two chemometrics methods, that 
is, the similarity index (SI) and Fisher ratio (FR), were recently compared to locate peaks 
with significant concentration difference amongst samples [81]. An introduction to 
non-targeted cross-sample analysis has been reviewed elsewhere [82,83]. 
 
3.1.2. Rational resolution methods 

Most methods providing rational resolution results were built with iterative approaches, 
and generally include three steps:  
(1) determination of initial set-point to start the iterative loop;  
(2) proposal of a chemometrics method to generate new and qualified C or S on the basis 

of the characteristics of the chromatogram and/or spectral profile; and,  
(3) termination of the iterative process with a predefined condition or attaining an 

acceptable precision.  
Using iterative target transformation factor analysis (ITTFA) as an example [84,85], 

the abstract chromatogram obtained from principal component analysis (PCA) [86–88] 
can be utilized as the iterative initial point, and further calculation of new 
chromatographic profile after acquiring the rotation matrix. A changing threshold of C 
between the nth and (n–1)th iterative cycle is defined to determine continuance of the 
process or export of the final results. Other methods in this series include simple-to-use 
interactive self-modeling mixture analysis (SIMPLISMA) [89,90], orthogonal projection 
analysis (OPA) [91–93], and SIMPLEX [94].  

Since these methods have ideal flexibility to cope with instrumental data with different 
structures, they were widely introduced to solve very complex chemical or biological 
problems. Especially, prior and external information can be applied to most of these 
methods for constrained searching and optimization, such as unimodality and 
non-negativity of chromatogram. This can speed up iterative convergence or improve the 
performance of the algorithm. 
 
3.2. Multi-run-based data resolution 
 

The multi-run-based method means that more than one chromatographic run is 
involved to resolve a co-elution problem through additional information provided by other 
datasets. It can be the same sample analyzed with different experimental conditions, or 



  

 

different, but related, samples with common chromatographic and/or spectral 
characteristics. For example, diseased biofluids and healthy controls containing both the 
same and different chemical components are instrumentally detected to find biomarkers 
for disease diagnosis in metabonomics, herbal medicines with different quality and 
therapy effects for disease treatment because of the different geographic origins of the 
herbs, prevailing climate/environmental effects, manufacture and/or storage conditions. 
For GC×GC-MS processing, primary peaks in 1D are modulated to fractions with spectral 
identification of each of the peaks or peak clusters in the fractions. Thus, it can mine out 
qualitative and quantitative information by using multi-run-based data resolution. 
Application examples are summarized below on the basis of trilinear decomposition (TLD) 
and non-trilinear methods [95,96]. It should be noted that the disadvantages and the 
limitations of single-run-based methods are largely overcome by this type of method (e.g., 
resolution of embedded overlapping multi-components). 

Another example of multi-run-based data analysis is targeted comparison and analysis 
of components of particular interest in a sample. This can be achieved with chemometrics 
tools (not introduced in detail for brevity). For example, component correlation of 
complex mixtures combined with GC×GC-TOF-MS was investigated by Zeng et al. [3]. 
This allows the rapid discovery of the similarity of, or the difference between, samples 
with hundreds (if not thousands) of compounds. No full data resolution is required for 
such a study. The Dotmap was previously developed by Sinha et al. [97,98] to locate a 
specific compound in a predefined elution window of the whole GC×GC-TOF-MS data. 
These chemometrics tools provide effective choices for GC×GC data processing with MS 
detection. Non-targeted cross-sample analysis has been reviewed by Reichenbach et al. 
[82,83]. It includes the following five approaches to the study of sample classification and 
clustering, chemical fingerprinting, monitoring, and marker discovery:  
(1) visual image comparisons;  
(2) datapoint feature analysis;  
(3) peak feature analysis;  
(4) region feature analysis; and,  
(5) peak-region feature analysis. 
 
3.2.1. Trilinear decomposition (TLD) methods 

Methods based on TLD techniques are natural generalizations of data resolution with 
bilinear characteristics, as shown in Equation (2). This is defined as the principle of linear 

additivity, suitable for each dimension of a cubic dataset including chromatographic and 
spectral detection, and dynamic change of samples (runs). The PARAFAC method is one 
of the most successful methods in this area with much reported work investigating 
GC×GC-TOF-MS data [66,99–103]. The detail and the decomposition flowchart of this 
algorithm is given in Fig. 5. For example, Snyder et al. [102] used this method for 
separation, identification and quantification of L-beta-methylamino-alanine, a neurotoxin 
possibly causing neurodegenerative disease, with GC×GC-TOF-MS analysis, and other 
biological studies with PARAFAC and GC×GC-TOF×MS analysis, including yeast 
metabolites exhibiting oscillatory behavior [103], and metabolite-profiling analysis of 
Methylobacterium extorquens AM1 [104]. A chemical-weapons precursor as possible 
forensic signature and automated analysis of target and non-target analytes were reported 
with very similar steps by Hoggard et al. [38,39,105], and other applications [106]. The 
limitation of PARAFAC for resolution of isomers has been investigated by Sinha et al. 
[107,108] initiated by TLD. 

Other important multi-way methods include GRAM [109–111] and direct TLD (DTD) 
developed by Kowalski et al. [112]. As introduced above, Fraga et al. [69] studied 



  

 

GC×GC data deconvolution by using GRAM. Of course, it can be extended to 
identification and quantification of analytes with GC×GC-MS. The purpose of TLD 
methods is to find matrices C and S of pure components as introduced in Equation (2), 
and quantitative change of relative concentrations about composition in different runs (A). 
However, the trilinear model assumes that the chromatographic profile of a particular 
analyte has no shift of tR and variation of peak shape among runs. This is not easy to 
attain in real experiments, and may require data preprocessing to correct peak shifting and 
the shape of the chromatographic profile. Obviously, this is time consuming with manual 
intervention, and may lead to errors. But the methods introduced below are independent 
of the tri-linear model, and can be conveniently applied for GC×GC-MS data analysis. 

 
3.2.2. Non-trilinear decomposition (non-TLD) methods 

Like the single-run-based method for resolution with iterative searching, non-TLD 
methods provide a rational solution to acquire C, S and A introduced above. Such 
methods include MCR-ALS [40,41], PARAFAC2 [113,114] and Tucker3-ALS [115,116] 
with flexible features for resolution, without serious restriction to the constraint, as in the 
TLD methods.  

Among these methods, MCR-ALS has been most successfully applied in the past two 
decades [96,117–120]; it is an iterative technique with identity as the algorithm 
introduced in Section 2. The two key features of this method can be summarized as 
follows:  
(1) augment datasets collected from different runs to obtain C and S simultaneously in all 

mixtures; and,  
(2) alternative optimization of C and S by using ALS.  

After determination of the initial values of C and S for iteration operation (e.g., with 
the help of EFA methods), the constraints of chromatographic and spectral profiles can be 
applied to reduce rotational ambiguity for resolution. It has been effectively extended to 
GC×GC-MS data processing. The working procedure is illustrated in Fig. 6. For example, 
Parastar and Tauler et al. [100] utilized it for resolution and quantification of complex 
mixtures of polycyclic aromatic hydrocarbons (PAHs) in heavy fuel-oil samples 
combined with GC×GC-TOF-MS analysis. The chromatographic and spectral profiles of 
pure compositions of samples and standard mixtures were obtained with the help of the 
MCR-ALS method because of the convenience of this method for simultaneous analysis 
of several chromatographic runs, and effectiveness for third-order and even fourth-order 
data resolution, such as GC×GC-TOF-MS data [121]. The results were compared to the 
PARAFAC method with relatively better performance. However, there are some 
drawbacks of MCR-ALS method, as follows:  
(1) iterative operation with potential failure to correct local minimum, unlike GRAM and 

DTD methods with unique outcomes;  
(2) initial estimates needed before iterative analysis; and,  
(3) advanced intervention required and unsuitability as a “black box” method.  

PARAFAC2 is another method in this area proposed by Bro et al., which is a modified 
version of PARAFAC and is not limited by shifting tRs and change of peak shape. It has 
been successfully applied [33]. The three reasons for tR shifts in GC×GC-TOF-MS 
analysis were first summarized by Skov et al. [122], and PARAFAC2 was then used to 
study severely shifted peak profiles and compared to PARAFAC. However, PARAFAC2 
is a method with high computational cost and complexity. Further, the constraint 
conditions of chromatographic and spectral profiles, such as unimodality and 
non-negativity, can be used to optimize the results, as well as selective constraints to 
specific compounds.  



  

 

The benefit of these methods is that they consider the resolution of more than one 
chromatographic run. The data dimensions (total running time) of chromatograms among 
the runs can be different, but the spectral range should be identical for all runs. For 
GC×GC-MS data analysis, such methods have evident advantages, in contrast to 
algorithms based on TLD, because of the frequent shift of tRs in the 2D separation, and the 
change of peak shape. Experimentally, they are ideally the same for fractions of primary 
peaks and runs as expected.  

AMWFA is an effective tool developed by Zeng and Liang et al. [42,43] to compare 
the similarity and the difference of different but related chromatograms by using 
evolutionary window information. It is another kind of multi-run-based method for data 
resolution, which can be utilized to resolve “contaminated” peak clusters through use of 
information buried in two matrices, say X and Y. The basic principle of AMWFA is 
illustrated in Fig. 7. The core idea is to transform the resolution problem of pure common 
spectra into a solution of the eigen equation of the data matrix. It is then readily possible 
to extract spectra for component identification, and simultaneous discovery of the number 
of common compounds. It has been a powerful algorithm to fill in the gap between 2D 
and 3D resolution methods. Two datasets are involved in this method, but no tri-linear 
model is required for X and Y, and unique results especially can be obtained with no 
iterative operation. Though AMWFA has not yet been applied to solve problems 
combined with GC×GC-MS analysis, it has potential advantages in terms of the 
theoretical basis and the wide applications of this method to process coupled datasets. 
 

4. New insights from chemometrics for GC×GC structure 

interpretation with two-dimensional characteristics 

 
4.1. Data preprocessing 
 

Data preprocessing is important to improve data quality and then to enhance the 
performance of chemometrics methods to obtain final results [123]. Here, two aspects are 
introduced, including peak detection and correction of time shift among runs. Further 
studies for signal processing of GC×GC are not included in this review [124,125]. The 
typical illustration to summarize GC×GC data processing is given in Fig. 1. 
 
4.1.1. Two-dimensional peak detection  

Peak detection in SDC and coupled column 2D datasets has been widely studied 
[126–129]. For example, Vivo-Truyols et al. [128] developed high-order derivatives and 
smoothing techniques for chromatograms to automate estimation of peak parameters, and 
the corresponding elution ranges. All conventional algorithms for SDC and coupled 2D 
studies can be employed to process GC×GC and GC×GC-MS directly, if the raw 
chromatograms are used without data conversion and dimensional transformation. 
However, peak detection in GC×GC can be quite different because of the 2D 
characteristics of separations in both 1D and 2D after data re-arrangement according to the 
principles for modulation, as mentioned in the Introduction (Section 1 above). In general, 
tRs and intensity of the detected peaks are used to determine data points of analytes in 
both SDC and GC×GC analysis. The two main methods for GC×GC peak detection, 
including a two-step algorithm and the watershed algorithm, have been compared in 
previous studies [130]. The result shows that the two-step algorithm has higher accuracy 
than when no correction of tR shift was applied to the watershed algorithm. Latha et al. 



  

 

[131] further investigated the two methods in 2011 after correcting shifts of tRs with the 
two methods. It showed the watershed algorithm has better accuracy to detect resolved 
peaks.  

In 2007, Peters et al. [132] proposed a method for detection of 1D peaks, and then 
determine the attribution and merge these peaks to the same component in 1D separation 
by using a decision-tree technique. The features of tR and separation regions of peaks in 
2D are compared, and unimodality in 1D, difference of tRs and regions of common peak 
were applied as criteria. It was demonstrated for a commercial air-freshener sample.  

Peak detection is one of the important steps for data preprocessing in both SDC and 
GC×GC studies. If this can be attained correctly, it may help other aspects for information 
extraction (e.g., deconvolution) and then qualitative and quantitative analysis of analytes.  

The limits of peak detection and quantification in comprehensive two-dimensional 
separation (C2DS) were theoretically investigated by de la Mata and Harynuk [133]. 
Because of the model consistency of 2D modulated fractions with the 1D chromatographic 
profile, a conventional Gaussian filter method was applied by Vivó-Truyols for peak 
detection.  

Next, a new method was proposed to merge the corresponding sub-peaks of each 
primary peak effectively by using Bayesian inference [134].  

In addition, Allen et al. and Filgueira et al. [135,136], respectively, proposed a singular 
value decomposition-based method to reduce the influence of background in LC×LC 
separation and to improve further the quality for peak detection and quantification. This 
should be potentially extendable to GC×GC peak detection. 
 
4.1.2. Correction of retention-time shift 

Alignment of shift of tRs among runs is important for GC×GC (e.g., for peak 
comparison, chemometrics clustering, discriminant analysis, and other data processing 
steps) [137,138]. For high-throughput data analysis in metabolomics, automated 
alignment is required for rapid handling of hundreds or thousands of chromatograms. This 
challenges conventional methods, especially GC×GC-MS data with their spectral 
attributes.  

Correlation optimized warping (COW) and dynamic time warping (DTW) are two of 
the most important methods to align shifts of SDC through correction of samples towards 
a reference chromatogram [139,140]. The detailed principles were introduced in the 
reported work. Through interpolation, the COW algorithm warps local regions to 
maximize the correlation between warped and reference chromatographic profiles. DTW 
was originally proposed for speech recognition, and is employed to align chromatograms 
through non-linearly warping two trajectories with an objective function of minimum 
distance between them. They have been extended for correction of tR shifts of 
GC×GC-TOF-MS and GC×GC by Vial et al [141]. and Zhang et al. [142], respectively. 

On the basis of the 3D data structure of GC×GC-MS with chromatographic retention 
and MS information, an algorithm with simultaneous correlation optimization of distance 
and spectra (DISCO) was developed by Wang et al. [143]. After z-score transformation of 
raw retention data, distance minimization of 2D tRs and maximization of Pearson’s 
correlation coefficient of MS were applied as indices to determine alignment of the peaks. 
A progressive retention-time map-search method was utilized to correct the 2D shifts by 
using a local linear fitting technique. An improved version of this algorithm (DISCO2) 
has been reported to overcome the drawbacks of the previous method [144].  

Recently, Jeong et al. [145] investigated alignment of GC×GC-MS data for the 
analysis of metabolomic profiling. With the help of an empirical Bayes model, matching 
confidence of peaks was calculated via posterior probability, and then the metabolite pairs 



  

 

with high confidence were selected on the basis of the results. The representative 
landmark peaks were further generated for adjustment of tRs for all the runs. Weusten et al. 
[26] first transformed GC×GC chromatograms with wrap-around separation in the 2D 
display as a surface of a 3D cylinder. Then, the cylindrical distance and mass spectral 
correlation were applied to define a combined similarity index and further clustering 
analysis of GC×GC-MS data. The former reflects similarity of chromatographic behavior, 
and the latter for chemical structure, respectively. An evident advantage of this method is 
the suitability for wrap-around treatment, which widely exists in GC×GC separation, 
arising when 2tR exceeds the PM setting. The study of GC×GC with high-resolution mass 
spectrometry (HRMS) was reported by Reichenbach et al. [146] on the basis of an 
informatics approach. The biggest challenge for alignment of this data type is the large 
size of the raw datasets. No comprehensive peak matching is required for this method by 
using a few reliable peaks and peak-based retention-plane windows. 

Other techniques for GC×GC alignment include piecewise alignment [27], rank 
alignment [69], correlation optimized shifting [147], a bilinear peak alignment (BPA) a 
combined MCR technique [148], and GC×GC-MS alignment (e.g., Smith-Waterman local 
alignment-based algorithm) [149], novel mixture similarity algorithm with simultaneous 
peak distance and spectral similarity measures [150], and integrative normalization and 
comparative analysis [137]. 

In conclusion, shift correction is still a “hot”, but difficult, research area in GC×GC 
separation, especially for GC×GC-MS data processing with high-throughput and high 
complexity. Very recently, an automated data-analysis strategy was introduced by Shellie 
and Harvey for GC×GC data reduction including processing of tR alignment. No user 
intervention was required from input of raw chromatogram, data transformation and 
preprocessing to output of results. Thus, it allows rapid analysis of batch samples [123]. 
 
4.2. Orthogonality study 
 

GC×GC distributes each peak in the 2D plane with 1tR and 2tR corresponding to the 
separation by two columns. Different experimental conditions will change the peak 
capacity (see Introduction, Section 1 above) and distribution of peaks in the 2D space 
[151]. Calculation of 2D peak capacity was re-addressed in recently-reported work 
[152,153]. Orthogonality is the quantitative evaluation of the separation performance 
(resolving power) estimated by defining an efficiency index according to a measure of 
effective use of ideal peak capacity (nmax). It is generally defined from 0 to 1, respectively 
corresponding to perfectly correlated separation (abbreviated as PCS) and orthogonal 
separation (abbreviated as OS). Maximizing orthogonality should correspond to best use 
of separation space and highest overall resolution of sample components, This helps to 
select the optimal column set and other conditions to separate complicated mixtures.  

Most reported works were established based on assessment of rectangular bins, as 
introduced in Fig. 8. First, 1tR and 2tR are normalized in order to make the magnitudes of 
the tRs comparable. The GC×GC 2D space is then divided into equal intervals along the 
two separation dimensions after determination of peak capacities in 1D and 2D, namely, 
1nc and 2nc. Next, occupation and distribution of peaks in the 2D virtual grid space 
(rectangular bins) is evaluated according to the orthogonality definition. For example, 
Gilar et al. [154] proposed an equation, as given in Equation (3) to calculate orthogonality 
with consideration of occupation percent of bins. The numerator and the denominator 
correspond to the practical and theoretical peak capacity of a GC×GC separation. Two 
years later, Watson et al. [155] modified the definition to Equation (4), since orthogonality 
is a function of nc and Equation (3) is only a special case with the nc limit of positive 



  

 

infinity. However, the distribution correlation of peaks in the 2D plane is not taken into 
account in both these methods.  

 

In 2011, an information-theory method was developed for orthogonality evaluation, 
still based on occupation of rectangular bins [156]. It is defined by using conditional 
entropy of 2D peak distribution.  

Prior to this, another method on the basis of the principle of information theory was 
proposed by Slonecker et al. [157]. This is based on the mathematical consistency 
between chromatographic separation and the fundamental concept of entropy. In addition, 
geometric approaches were developed to study GC×GC separation power with factor 
analysis [158,159] and peak distribution in parallelograms or other patterns [152]. But the 
target analytes not diagonally distributed in the C2DS space cannot be ideally calculated.  

However, there are some serious limitations with these methods as follows:  
(1) the value of each orthogonality metric does not exclusively correspond to a single 

case of C2DS (i.e. the index is not sensitive enough to determine subtle differences in 
GC×GC separation);  

(2) only derived data are used to define orthogonality, not the original data including 
retention information;  

(3) only occupation of bins is considered, not how the bins are correlated in the 2D plane; 
and,  

(4) orthogonality is restricted to 0–1 artificially. It is not achievable for real separations 
and may be unsuitable to some separation cases.  

One or more shortcomings obtain for all these methods introduced above.  
A comprehensive comparison has been provided by Gilar et al. [160], introducing the 

suitability and the pitfalls of these methods. Thus, new methods for orthogonality 
evaluation still need to be developed in the future [161–163]. The most recent 
contribution was made by ourselves [164], and divides the orthogonality metric into two 
parts (i.e. Cpert and Cpeaks) to introduce naturally` peak coverage percent, and distribution 
correlation of compounds spanning the 2D separation panel, respectively. They were 
further quantitatively estimated by “bin coverage” and a simple-linear regression model. 
This ideally overcomes the shortcomings of previous methods mentioned above. 
 
 
4.3. Image processing 
 

As mentioned in the Introduction (Section 1, above), the high-dimensional 
characteristics of GC×GC data make it appropriate for image-structure interpretation and 
to be processed with image techniques. Most of the previous GC×GC studies in this area 
can be found in reported work [28,29,165]. Software for GC×GC data analysis and image 
processing include ChromaToF (Leco, USA), ImageJ 1.37v (Wayne Rasband, NIH, USA), 
GC Image developed by Reichenbach et al. [169], Image software (GC Image, Lincoln, 
NE), and Statistica (StatSoft, Tulsa, OK) [137,166–168]. In the literature, image-analysis 
techniques have been employed for comparative visualization, peak matching, 
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background removal, quantification and pattern recognition in GC×GC analysis. For 
example, ImageJ software was used for fingerprint recognition and comparison with PCA 
after obtaining areas of the chromatographic spots in contour plots [168,169]. 

On the basis of 2D gel-based image analysis in proteomics, Schmarr and Bernhardt 
developed a method for unbiased pattern comparison of GC×GC for profiling analysis of 
volatile compounds obtained from fruits [170,171]. It was summarized as follows:  
(1) raw GC×GC chromatograms were converted into contour plots and further gray-scale 

images;  
(2) variation among runs was compensated by image warping and merged to fusion 

image and spot patterns;  
(3) quantification of analytes was achieved after determination of spot boundaries; and,  
(4) it can be used for multivariate statistical analysis and pattern recognition.  

In order to find the chemical difference from GC×GC chromatograms, visual 
comparison was attained after data preprocessing, such as registration and scaling to 
remove variations in tRs and sample amounts [172]. Three methods for image comparison 
were introduced in detail, including the grayscale-difference method to obtain individual 
pixel differences between images, the colorized difference method to show pixel 
differences and values simultaneously, and the fuzzy difference method to remove 
possible variations in peak shape and alignment.  

Another study of image processing in GC×GC was employed for discrimination 
analysis by Vial et al. [173]. The discriminant pixel approach (DPA) was introduced to 
find the most discriminating pixels with linkage to chromatographic peaks (i.e. the 
discriminatory power to each class is defined according to chromatogram pixels after data 
pre-processing and time alignment). 

In addition, a method to remove GC×GC image background was proposed by 
Reichenbach et al. [174]. Structural and statistical properties of the data were used to 
estimate image-background levels, and the image background was further removed from 
the raw image to generate “pure” chromatogram data. The quantitative relationship 
between the peaks and chemicals was then obtained for rapid, accurate detection of 
GC×GC peaks. 
 

5. Summary of other aspects of GC×GC studies with chemometrics 

 
5.1. Experimental optimization 
 

Experimental optimization is important to analyze complicated mixtures and to 
maximize instrumental capability [175–178]. The complicated network and interplay of 
parameters for GC×GC analysis was reviewed by Harynuk and Gorecki [179]. The whole 
picture of experimental variables clearly shows the difficulty in deducing optimal 
conditions. In practice, design of experiment (DoE) [180–184], multi-objective and 
variable optimization [185–187] and employment of separation peak capacity and 
orthogonality [155,162,163,188–190] should be three pillars to achieve this purpose. For 
example, Omar et al. [181] optimized the conditions for GC×GC-MS analysis of essential 
oils of plants by using the DoE method and Multisimplex. Amongst the optimized 
parameters were PM, discharge-time and first and second column flows.  

In 2005, O’Hagan et al. [186] developed a closed-loop, multi-objective approach to 
optimize parameters for GC-TOF-MS analysis automatically, and further delivered the 
same strategy to GC×GC-TOF-MS in 2007 [187]. For serum separation in a 
metabolomics study, 18 experimental variables were optimized. Dorman et al. [185] fully 



  

 

optimized and predicted separation in GC×GC by using computer simulation and 
modeling. Simultaneous optimization of all columns and run-time variables were studied 
on the basis of enthalpy and entropy. 

Model approaches for prediction of two-dimensional tRs and/or peak widths (wb) were 
developed in recent studies [191,192]. This can help to simulate and to optimize further 
analytical conditions. For example, experimental data under isothermal separation were 
extended to obtain tR and wb of temperature programmed GC×GC analysis on the basis of 
chromatographic theory [193]. With the help of the solvation parameter model, Seeley 
successfully generated retention diagrams of 1tR and 2tR for GC×GC [191, 194]. This is a 
crucial step for the prediction of 2D separation before experimentation and further 
confirmation of retention properties. very recently, we developed a new method for 
determination of tRs [50]. The concept of center of gravity (COG) was applied to estimate 
the tRs of primary peaks (1tR) by using the peak area and 2tRs of modulated fractions in the 
comprehensive separation. A moving window search strategy was further used to derive 
the tRs of overlapping peaks simultaneously. 

Separation quality of comprehensive two-dimensional LC (LC×LC) was estimated by 
defining a new chromatographic response function [151]. It was attained through 
extension of peak purity of SDC to LC×LC separation. This may be extended to GC×GC 
analysis for parameter optimization. It was reviewed recently by Bedani et al. [195]. 
 
5.2. Pattern recognition 
 

Pattern-recognition techniques for both supervised and unsupervised analysis have 
been applied for GC×GC data treatment, as illustrated in Fig. 9. PCA and partial least 
squares discriminant analysis (PLS-DA) [196–199] are the two representative methods 
with most successful applications. 

The principle of PCA has been widely introduced in the literature [86]. For processing 
GC×GC data, PCA can cluster samples with correlations. But PCA was mostly applied to 
analyze peak tables obtained from GC×GC or GC×GC-MS analysis. It is unable to 
process raw GC×GC related data with 2D or higher dimension data. For example, Vestner 
et al. [200] recently differentiated control wines and those fermented with different starter 
cultures of malolactic fermentation (MLF), and, using GC×GC-TOF-MS analysis, 
McGregor et al. [201] separated 12 dense non-aqueous phase liquids (DNAPLs)from 
former manufactured gas plants. Further applications include: 
(1) discrimination of five different animal-derived fatty acids, including lard, chicken fat, 
beef tallow, mutton tallow and cod-liver oil [202]; 
(2) classification of radix ginseng with different ages [203] and Notopterygium incisum 
Ting ex H.T chang collected from different regions [204]; and,  
(3) difference discovery of 54 chromatograms from three different species, namely, basil, 
peppermint, and sweet herb stevia [205], and other examples by the PCA method 
[27,206–209].  

The techniques of GC×GC or GC×GC-MS were utilized as tools for sample analysis 
and component identification for all these studies. After alignment of GC×GC 
chromatograms with the 2D DTW method, Vial et al. [141] compared and classified three 
types of tobaccos by using independent component analysis (ICA) with comparison of 
PCA, and ICA extracts the original signals with a hypothesis of independence among the 
signals, but PCA found a sequence of uncorrelated principal components (PCs) including 
the variance. In addition, hierarchical clustering analysis (HCA) has some applications for 
pattern recognition of GC×GC data [170,210]. 

The PLS-DA method has been valuable for GC×GC data analysis with a supervised 



  

 

strategy [211,212]. Prediction of total exposure time of petroleum mixtures to weathering 
effects allowed an environmental investigation to determine the reason for a fire. Zorzetti 
and Harynuk applied the PLS-DA method to predict the weathering levels (relatively 
fresh or highly weathered) in combination with GC×GC separation [213]. It was also 
utilized to detect gasoline samples with varying octane ratings and from several vendors.  

For studies in metabolomics, PLS-DA with GC×GC-TOF-MS data successfully 
implemented: 
(1) the discrimination analysis of HUC-1 (non-tumorigenic) and HUC T-2 (tumorigenic) 

cells with metabolic footprinting [196];  
(2) two transgenic lines and the control line with terpenoid metabolic profiling analysis 

[197];  
(3) chromatograms of control and exposed rats with aged and diluted side-stream 

cigarette smoke [198]; and,  
(4) metabolite peak tables of diabetic patients and healthy controls [214]. 

Other techniques, including DPA (as introduced above), principal-component 
discriminant analysis, projection pursuit, back propagation-artificial neural networks 
(BP-ANN) and least squares-support vector machine (LS-SVM) were proposed to find 
differences of chemical profiles with GC×GC or GC×GC-MS data, and then classify 
samples [173,215,216]. 
 

5.3. Model calibration  
 

The principles and the methods for quantitative modeling have been comprehensively 
introduced elsewhere [217–219]. For the study of GC×GC analysis, PLS, including 
conventional PLS, trilinear PLS and N-way PLS, are the main chemometrics tools to 
predict chemical properties of components, such as retention time [117,220–224]. 
Compounds of environmental interest, such as polychlorinated biphenyls (PCBs), PAHs 
and gasoline were the main research objectives in past studies [66,225–228].  

Interval multi-way PLS (iNPLS) was newly developed for target quantitative analysis 
of GC×GC [229]. The new idea is to split the 2D chromatogram into small sections as 
independent new (partial) chromatograms. The conventional NPLS method was used to 
establish models for each segment of the whole chromatogram with concentration of the 
target analyte. It was found effective for quantification of some allergens in perfume 
samples, even for poorly resolved peaks. Noorizadeh and Noorizadeh investigated 69 
drugs with comparison of two linear methods and non-linear methods, including multiple 
linear regression (MLR) and PLS, and kernel PLS (KPLS) and Levenberg-Marquardt 
artificial neural network (LM-ANN) [221]. Genetic algorithm (GA) was used for variable 
selection before regression analysis. In the above-mentioned study by Zorzetti and 
Harynuk [213], several calibration methods were compared to predict the amount of 
exposure time of a petroleum mixture to weathering effects, including PLS, non-linear 
PLS (PolyPLS) and locally-weighted regression (LWR) [213]. The best multi-linear 
regression (BMLR) method was also used by Ren et al. [230] to predict tRs of PCBs 
congeners for GC×GC-TOF-MS analysis. 

The area of model calibration in GC×GC is essentially no different from conventional 
QSPR or QSAR studies. Prior chemometrics tools and research perspectives can be 
conveniently extended and combined with GC×GC separation. 
 

6. Concluding remarks 

 



  

 

Chemometrics comprises many methods to mine out the rich information existing in 
instrumental data, including GC×GC and GC×GC-MS. Cross-discipline support, such as 
mathematics, statistics and computer science, offer effective developments to process data 
with the help of updated tools. Though chemometrics has been successfully used in many 
research areas of GC×GC-related data studies, new developments are still ongoing. An 
urgent challenge is the automated, high-throughput data analysis of samples with 
hundreds or more chemical components, such as the investigation of metabolite profiling 
or fingerprinting of metabolomics. This is a continuing issue with chemometrics.  

However, the special data structures of GC×GC and GC×GC-MS with 2D retention 
and spectral detection complicate data processing for chemometrics. Thus, future studies 
will probably exploit many research topics of chemometrics, such as data pretreatment to 
improve data quality, deconvolution methods to extend experiments for qualitative and 
quantitative analysis of analytes (with 1tR, 2tR and MS data), pattern recognition to classify 
samples with certain similarities and differences, model calibration to establish 
quantitative relationships of explanatory variables and response variables, and special 
aspects of GC×GC and GC×GC-MS data processing, including orthogonality estimation 
and image analysis. To readers with an interest to enter this area, this should be a good 
initial and enlightening start, with introduction of fundamental principles and theories. It 
also provides an overview understanding to researchers with some experience in this field.  
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Captions 

Fig. 1. Illustration of the importance of chemometrics to extract information from GC×GC related 

data for real scientific problems: results interpretation, including experimental optimization, 

data pre-treatment, multivariate curve resolution (MCR), pattern recognition (PR), quantitative 

modeling and some new insights of GC×GC study with 2D data characteristics. 

 

Fig. 2. Bilinear decomposition of coupled chromatographic data with spectral information on the 

basis of the Beer-Lambert Law (BLL). Matrix E is explained in Equation (1). (A) Raw data X 

can be decomposed for the situation of N pure chemical components. (B) Each component 

shown in (A) can be decomposed by multiplication of C and S (pure compositions). (C) 

Matrices C and S include chromatographic and spectral profiles of all the N compounds (i.e. 

from C1 to CN and S1 to SN, respectively). This is the basis and the goal of MCR analysis. 

 

Fig. 3. Flowchart of the procedure for MCR analysis. 

  

Fig. 4. Illustrative introduction of the HELP method. (A) A two-component system (peaks a and b) 

within a co-elution window around retention time points 43 to 62. (B) Latent-projective 

graphs (LPGs) proposed by Kvalheim and Liang [36,37], which can be applied to find the 

selective elution regions (SERs) of the two compositions, respectively. For example, the 

projection curve of PC1-PC2 from retention points 32 to 42 corresponds to the SER of peak a, 

and from 63 to 81 to peak b, since the LPG is almost a linear relationship in these two regions. 

 

Fig. 5. A tri-linear decomposition of cubic data X with the PARAFAC model. The three parts (A), (B) 

and (C) have similar meanings as given in Fig. 2, but with a combination of more than one set 

of 2D bilinear data in X. For tri-linear decomposition, linear additivity is satisfied for each 

dimension, including A, C and S given in Fig. 5. Here, C and S have the same meaning as 

given in Equation (1), and A denotes the concentration of each component in different 

samples/runs. 

Fig. 6. Flowchart of the MCR-ALS method for GC×GC and GC×GC-MS data. Details are provided 

in the text. 

 

Fig. 7. The principle of AMWFA for alternative search to find spectra of pure components. Matrices 

X and Y respectively represent the two datasets to provide a moving search window and a 

base window. If a common compound exists in both data X and Y, it can be denoted by the 

abstract spectra of these two matrices after SVD analysis, respectively. Then, the spectrum of 

common compounds can be extracted through solving an eigen equation problem. 

  

Fig. 8. Graphical representation of a 2D GC×GC separation. Denotations 1nc and 2nc correspond to 

peak capacities in 1D and 2D dimensions, respectively. The rectangular bins can be obtained to 

divide the 2D space, and are then employed for orthogonality evaluation. 

 

Fig. 9. Procedure to introduce unsupervised and supervised pattern recognitions (PRs) of GC×GC 

data for sample classification. The main methods for PR are included in this Figure. 
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• We present a comprehensive survey of GC×GC and GC×GC-MS data with chemometrics  
• This review includes principles, theories and graphical tools for data processing 
• We discuss deconvolution of 1D, coupled, and GC×GC separations with FID/MS  
• We consider retention structure, tR shifts, orthogonality and image analysis 
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