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Abstract 

Metal cutting has been shown by other researchers, as well as within this work, to be a 

stochastic process with many complex behaviours and sources of variance which 

detrimentally affects the scatter in tool life results.  Empirical testing is still the preferable 

method for cutting tool development especially in an industrial environment, as models are 

currently unable to replicate the complex interaction between cutting tool and workpiece as 

tool wear is the result of several mechanisms working simultaneously.  The use of low value 

Jobber drills has been used as a vehicle for cutting tool development beyond the scope of 

specific drill design features, specifically for the purpose of coating research and 

development. 

The need to quantify differences in sample groups and make sound statistical inference’s 

about their populations is crucial for any large scale tooling manufacturer to manage the 

level of quality, as well as to continually improve their products.  This is highlighted in the 

cutting tool market as end users are continually demanding longer tool lives, low variance 

and no early tool life failures, as large amounts of overhead costs are incurred in partially 

manufactured components, with sudden tool failure resulting in substantial costs to a 

business.  Accepting that the drive for productivity is constant and universal, manufacturers 

must not only continually increase the productivity and quality of their manufacturing 

capability but their research and development methods as well.  Hence within the arena of 

cutting tool manufacturing a robust, sensitive, rapid and low cost cutting tool test was found 

to not only be necessary but essential.  The objective of this research was to design and 

develop a destructive accelerated drill test. 

It was found, that although sources of machining complexity and variance which affects the 

scatter in tool life data, specifically in context of drill testing, have been identified within the 

literature; specifically the effect of plate hardness, a solution to deal with it has not yet been 

provided.  Using a systems approach facilitated the management of the complex behaviours 

so a machining regime could be identified which offered a repeatable and mono-modal tool 

failure, a robust test, as well as, where possible, to minimise and empirically model the effect 

of machining variance on tool life scatter, a sensitive test.  A statistical approach was also 

adopted for the drill test methodology so tool life data generated would be able to resolve 

differences in tool life, using small samples, so that conclusions could be made with a high 

level of confidence on the population of drills.  The notion of a universal drill test which can 

adequately resolve tool life differences for all design features was not possible because the 

application of the cutting tool would need to be taken into consideration before conducting a 

drill test. 

D2 cold work tool steel was able to offer a low tool life standard deviation and a mono-

modal tool failure mode.  In stark contrast P20 plastic mould steel showed a larger standard 

deviation and a bi-modal failure mode.  Therefore, D2 was able to fulfil the robustness 
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requirement that the drill test was identified to need.  This work also showed that for 

accelerated testing of HSS cutting tools, which are thermally sensitive, an abrasive wear test 

is preferable over a thermo-chemical wear type. 

Pre inspection of drill geometries for the rejection of Jobber drills outside of tolerance was 

found to be less of an issue when distinguishing the difference between sample means.  It 

was assumed that the drills outside of tolerance would be randomly distributed, along with 

their effect on tool life.  It was important however to determine, that the drills outside of 

tolerance, would have a small effect on the standard deviation in tool life, relative to the 

sample size and relative to the sample means so statistically significant results could be 

determined. 

It was found that the specific torque value may be used to describe a drills performance 

because it was shown to vary little over the steady state phase of life, however, further work 

would need to be conducted to test this hypothesis.  This methodology may allow drill 

testing to be stopped once the steady state region has been reached.  At which point the 

drilling torque can be compared with a reference or base line to distinguish if a design 

feature has made a change. 

An extended Taylor’s tool life model was generated which modelled the effect of batch to 

batch mean plate hardness between the range of 467HLD to 511HLD for annealed D2 cold 

work tool steel.  This work showed that the life of uncoated M2 HSS 6.35mm Jobber drills is 

sensitive to small changes in plate hardness.  At a cutting speed of 25m/min an increase in 

plate hardness from 467HLD to 492HLD, an increase of 5.3%, decreased drill life by 70.9%.  

The complexity of machining imposes limitations on the justification for how many 

machining factors should be modelled using empirical methods.  An alternative solution to 

empirical modelling is the use of a large population of reference test drills which could be 

sampled each time a new test plate or batch of test plates were supplied.  This methodology 

would allow a constant reference to be used to correct for the difference in plate hardness. 
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Nomenclature Drill Features 

 

Figure N.1. A schematic of the design features for Jobber drills [1], with kind permission 

from Springer Science+Business Media. 

Table N.1. The following terms have been copied from the ‘Geometry of Single-point Turning 

Tools and Drills’ as a point of reference for terminology on drill features used throughout this 

work [1], with kind permission from Springer Science+Business Media. 

Axis The imaginary straight line which forms the longitudinal 

centre line of the drill. 

Back taper A slight! decrease in diameter from front to back in the body 

of the drill. 

Body The portion of the drill extending from the shank or neck to 

the periphery corners of the cutting lips. 

Body diameter clearance That portion of the land that has been cut away to prevent its 

rubbing on the walls of the hole being drilled. 

Chip packing The failure of chips to pass through the flute during the 

cutting action. 

Chisel edge The edge at the end of the web that connects the cutting lips. 

Chisel edge angle The angle included between the chisel edge and the cutting 

lip, as viewed from the end of the drill. 

Clearance The space provided to eliminate undesirable contact 

(interference) between the drill and the workpiece. 

Cutting tooth A part of the body bound by the rake face and flank surfaces 

and by the land. 

Drill diameter The diameter over the margins of the drill measured at the 

periphery corners. 

Flute length The length from the periphery corner of the lips to the 

extreme back end of the flutes. 
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Flutes Helical or straight grooves cut or formed in the body of the 

drill to provide cutting lips, to permit removal of chips, and to 

allow cutting fluid to reach the cutting lips. 

Galling An adhering deposit of nascent work material on the margin 

adjacent to the periphery corned of the cutting edge. 

Helix angle The angle made by the leading edge of the land with the plane 

containing the axis of the drill. 

Land The peripheral portion of the cutting tooth and drill body 

between adjacent flutes. 

Land width The distance between the leading edge and the heel of the 

land measured at right angles to the leading edge. 

Lead The axial advance of a helix for one complete turn or the 

distance between two consecutive points at which the helix is 

tangent to a line parallel to the drill axis. 

 

Lip (major cutting edges) A cutting edge that extends from the drill periphery corner to 

the vicinity of the drill centre. 

Lip relief The relief made to form flank surface. There can be several 

consecutive relives as the prime relief, secondary relief etc. 

made to clear the lip as well as to prevent interference 

between the flank surface and the bottom of the hole being 

drilled. 

Margin The cylindrical portion of the land which is not cut away to 

provide clearance. 

Periphery corner The point of intersection of the lip and the margin. 

Relative lip height The difference in indicator reading between the cutting lips. 

Web The central portion of the body that joins the lands. The 

extreme end of the web forms the chisel edge on a two flute 

drill. 
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1 Introduction 

1.1   Cutting Tool Testing 

At the 2011 International Conference on Metallurgical Coatings and Thin Films (ICMCTF), 

Dr. S. Veprek; after his acceptance lecture for the R.F Bunshah award, was asked ‚what is 

the best way of testing coatings for cutting tools?‛  He answered that the only relevant way 

was ‚…to apply it on a cutting tool‛.  Kopac in 1996 also argues that experimental research 

has advantages over metal cutting models [2] ‚the experimentally-obtained specifics with 

respect to heterogeneity of the workpiece material can‛ using quick stop devices ‚be 

presented in the form of reliable results, which could otherwise, on the basis of theoretical 

models and calculations, hardly be done in such a clear way‛.  The specifics Kopac refers to 

are aspects of the cutting process such as, chip thickness, shear plane angle, crystal grain 

deformation and the effect BUE formation.  In 2001 he recognised that considerable effort in 

modelling had taken place, citing that molecular dynamic models have been used to 

simulate the cutting process. However, the models ‚considerably simplify‛ the cutting 

process as tool wear is the result of several mechanisms working simultaneously, hence, it is 

difficult to analyse [3] (Figure 2.2).  Shaw [4] goes a step further with respect to cutting tool 

development and states that ‚it is not possible to use non-cutting tests to evaluate cutting 

tools‛ as the temperatures and pressures play such an important and complex role.  

Therefore at the time of writing in 2014 it is still preferable, from a scientific standpoint, to 

test cutting tools directly. 

It is estimated that 15% of the value of all mechanical components manufactured worldwide 

are derived from machining (incidentally, 36% of all machining operations comprised hole 

making [5]).  The worldwide cutting tool revenue in 1999 was estimated to be $18.3B US 

dollars, with HSS cutting tools making up $5B [6].  By 2015 the market is estimated to grow 

to $20.44B, with HSS cutting tools growing to $6.2B [7].  Cutting tools are consumed by 

machine tools and this market follows global economic cycles [8] and technology advances.  

So, far from being a simple object, frozen in its design, the ‘cutting tool’ reflects, drives and 

is driven by machine tool development and consumption. 

Hole making can be broadly defined as operations which make holes in materials.  Atkins 

[9] uses an unorthodox example of hole making by burning a hole through wood with a red 

hot poker from the fire, this method can be thought of as the ancestor of hole making.  While 

at the time of writing this thesis one of the most advanced methods of hole making, using 

cutting tools, is helical milling.  Helical milling has been shown by Iyer [10], through 

experimentation, that it is able to offer, higher productivity, tool life and surface finish 

compared to drilling using specifically designed drills in the difficult to machine application 

of hole making in hardened D2 at 60HRC.  However, hole making using drills is still a 
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significant operation as the Gardner Tooling and Workholding survey of 2010 [11] revealed 

that in 2011 drills made up 12% of the entire US cutting tool market. 

This work is therefore well justified both scientifically and economically.  The work in this 

thesis was undertaken to further refine and develop a drill test methodology at the partner 

organisation’s workplace (Sutton Tools Pty Ltd), which was used to empirically model drill 

life and further optimise and develop cutting tool features and design attributes – i.e. with 

wider application than drills alone. 

1.2   Drill Testing Methodology 

There are three main reasons why cutting tool testing is conducted by the partner 

organisation.  The first is to perform quality assurance testing; so that a level of quality may 

be managed.  The second is benchmarking; where performance measures such as tool life, 

surface integrity and productivity are compared against competitor products.  The third is in 

the application of product engineering; testing different design features such as macro 

geometries, micro geometries, surface treatments and coating compositions and 

architectures (for tool life or productivity improvements).  Sutton Tools make and test many 

cutting tool products but as this work concentrates on twist drill testing, albeit with 

application to other cutting tools, tools such as end mills and cutting or forming taps will not 

be explicitly described. 

The ability of a drill test to provide experimental conclusions in product engineering 

experiments will be explored in later chapters, indeed it is the motivation for this thesis.  

However, it is important to introduce the basics of a drill and a drill test method at this 

point. 

A drill is [1] ‚an end point cutting tool for machining holes having one or more major 

cutting edges, and having one or more helical or straight chip removal flutes‛.  The prime 

cutting motion is rotation applied to the drill or workpiece or to both and the feed motion is 

applied along the longitudinal axis of the drill to the drill or workpiece. 

Vogel and Bergmann [12] in 1986 reported a method of drill testing where a number of 

Jobber drills are consumed in a machining centre at accelerated machining parameters.  The 

drills are driven by the VMC to failure over a number of holes, which are drilled into a 

prepared 42CrMo4 steel plate.  Failure is simply determined by catastrophic failure of the 

drills.  This is indicated by a loud screech, or occasionally a drill may shatter or melt.  This is 

a destructive test, suited to testing low value tools.  High value drills made from tungsten 

carbide cobalt (WC Co) for example are typically not tested destructively.  The carbide drill 

will be consumed (i.e. wear) until a predefined wear or force limit has been reached (Figure 

2.10).  This allows the tool to be recovered by re-grinding.  Carbide drills could be tested to 

destruction but this will likely consume large quantities of test material, as it is more wear 

resistant (physically and thermo chemically) than HSS [13, 14]. 
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1.3   Variance in Drill Testing 

It is clear when a single drill has failed destructively, however not all drills will fail at the 

same time.  The life of a population of drills will have some distribution.  Typically, wear-

out processes follow a normal distribution compared to fatigue failure which has a highly 

skewed distribution [15].  Notwithstanding, depending on the type and number of wear and 

failure modes in operation, the distribution may be non-normal and multi-model.  It is 

therefore necessary to define sources of variance in drilling which effect tool life variance as 

well as the theory of central limit theorem which is the basis for inferential statistical tests 

used to estimate population parameters using sample statistics. 

Statistics offers a tool to estimate population parameters.  This work will make multiple 

references to confidence and significance.  Both words have a particular meaning when used 

in statistical analysis.  Confidence means that a population mean (a constant) can be 

estimated to lie in a range applied to the sample mean (a variable) at a particular limit.  This 

limit is the significance level, the probability that the cause behind the change in population 

(in this work a change in tool life) has occurred due to a particular design change or fault.  If 

the researcher uses a significance limit of 5% they are allowing a 5% chance that they are 

wrong, that the change in tool life was due to some other cause besides the change that they 

have applied to a sample.  Incidentally, the central limit theorem is what allows levels of 

confidence to be applied to a population estimate.  Central limit theorem describes the 

population of means.  The population of means is the combination of an infinite number of 

individual means from a sample size of N randomly sampled from a large population.  

Regardless of the type of distribution of the original large population, the population of 

means curve will increasingly approximate the shape of a normal curve ‘bell shaped’ as the 

large population is repeatedly sampled. 

A source of variance that effects the distribution of tool life results and hence the ability to 

determine if a change has occurred is the workpiece.  This can be in the form of plate 

hardness variation within a single plate or batch to batch.  Vogel and Bergmann [12] 

determined the effect of plate hardness on the tool life for Jobber drills tested to screech 

failure in 42CrMo4 steel.  They showed that between 28-36 HRC an exponential fall in the 

number of holes drilled (tool life) occurs.  The batch to batch plate hardness variation is 

usually outside the control of the researcher, with only limited options for control, such as 

expensive heat treatment or excluding sections of plate which fall outside a specific 

tolerance.  In this instance it is therefore justified to empirically model this effect in order to 

develop a robust drill test which can compare tool life results over time. 

The variance in macro geometry features is another significant source of tool life variance.  

According to the American National Aerospace Standard for split point drill design [16] the 

primary lip relief, lip height variation and chisel edge centrality are key features which 

require repeatability and uniformity in manufacture.  Firstly, if these features deviate from 

required specifications and/or are non-uniformly ground, the dimensional accuracy and tool 
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life performance will be significantly lowered [17].  Secondly, if the repeatability of the 

grinding process varies across a production run, then the tool life distribution will likely 

reflect this variance [18].  This last statement is exactly what a quality assurance (QA) drill 

test should be able to resolve, on the other hand, a product engineering experiment aimed at 

distinguishing if there is a difference in tool life between two coatings or surface treatments, 

will require this source minimised (preferable eliminated altogether).  These concepts are 

universal to all cutting tool design features with varying levels of significance on tool life 

between them.  Galloway [19] reported that for the point angle a 50% difference in drill life 

was observed when drilling En 10 steel between the angles of 80-90 degrees.  Additionally, a 

65% difference in drill life can be obtained when the primary relief angle varies between 4-12 

degrees. 

Vogel and Bergmann [12] reported the results of a drill test and reiterated a well-known 

characterisitc that a PVD TiN coating can increase the mean tool life of HSS drills [20-22].  

Supplementary to this finding was the unexpected result that a high quality coating can 

reduce the tool life variance.  Their findings represent a goal in quality product engineering, 

increasing the mean and reducing the variation in a products intrinsic life. 

In the context of cutting tool testing, a low standard deviation is also preferable, as it may 

allow hypotheses to be answered with a high level of confidence.  According to                             

Eq. 3(page 30), the two main factors that can minimise the confidence intervals and 

maximise the ability to distinguish a difference between the mean tool lives of two 

populations; are the denominator n (sample size) and the numerator S (standard deviation).  

Typically, time and cost constrain the sample size n.  However, if n is small it will result in 

an increase in t, which will have a detrimental effect on the confidence interval (further 

discussed in chapter 2.7). 

Therefore, the standard deviation S needs to be as small as possible.  The numerator in the 

equation for ‘S’ (Eq. 4 page 30) reveals that the significant factor which can reduce S is 

minimising the difference between a tool life result and the mean tool life.  The need to 

minimise S is therefore the objective of the modifications to the drill test. 

1.4   Complex Behaviours 

Sources of variance are not the only element which needs to be addressed when designing a 

test which can correctly distinguish tool life differences between sample groups.  Complex 

behaviours within the machining system need to be managed.  Astakhov [1] published a 

report discussing the mismanagement of the gun drill in the automotive and mould-making 

industry.  A survey completed by members in this industry showed, among other points 

that the gun drill was not being used at the correct cutting parameters 52% of the time and 

was not being used (consumed) to the correct tool life capacity 57% of the time. He followed 

this survey by using a systems approach to identify the factors of the gun drill system.  He 

identified sources of complex behaviours and variance within the gun drill system and 
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stated that ‚that only when there is system coherency will we be able to achieve productive 

use of cutting tools‛, however, a solution to this problem was not provided. 

The complex behaviour of the wear mechanisms interacting with the cutting tool has been 

introduced.  Notwithstanding, another source of complex behaviour which requires 

management is exhibited by the workpiece material.  The crystal phase structure[23] thermal 

conductivity and carbide distribution [24] for example, will influence a materials ability to 

resist cutting i.e. machinability.  This intrinsic resistance to be cut can be observed by 

measuring the cutting forces, rate of tool wear or life at failure during machining (further 

discussed in chapter 2.4). 

A further source of complex behaviour is the machine tool interaction with the cutting tool 

and workpiece [1] i.e. machining system.  For example, the dynamic and static rigidity of the 

spindle and workpiece fixturing are sources of complex vibration during machining.  This 

thesis will not be directly investigating this source of complex behaviour; however, it is 

relevant to introduce it, as steps were taken during the preliminary drill test design phase to 

reduce this influence on tool life. 

1.5    Summary 

Empirical testing is still the preferable method for cutting tool development, especially in an 

industrial environment, as machining has been shown to be a stochastic process with many 

complex behaviours and sources of variance [12, 25, 26].  Drill testing can be used as a 

vehicle for cutting tool development beyond the scope of specific drill design features [12].  

Vogel and Bergmann identified that a drill test is sensitive to changes in plate hardness [12]. 

Astakhov, using a systems approach identified the sources of variance in the application of 

gun drilling.  However, a solution to dealing with these sources of machining variance 

which affects tool life data in the context of drill testing has not yet been provided.  

Therefore, the objective of this research is to apply a systems approach to designing and 

developing a destructive accelerated drill test.  Managing the complex behaviours and 

minimising and empirically modelling their source of variance on tool life will allow a drill 

test to be able to resolve differences in cutting tool failure data and be compared over 

multiple tests as the scatter in tool life results will be minimised.  So as to allow decisions to 

be made, by statistically analysing tool life data with a level of significance applied. 

Managing the complex behaviours found in machining leads to a concept of robustness.  In 

the context of drill testing this means that it must be able to offer a repeatable failure mode 

over time.  This will be achieved by determining a machining strategy which can offer a 

predominate and repeatable wear/failure mode, i.e. a regime of ‘stable complexity’.  

Minimising and modelling sources of machining variance on tool life leads to the concept of 

a sensitive test.  Hence, it is possible to have a robust yet sensitive test without it being a 

contradiction of terms.  
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2 Literature Review 

2.1   Introduction 

The machining system has a series of complex interactions working simultaneously [1, 13, 

25]; furthermore, these interactions have their own source of variance [1].  These sources of 

complex behaviour and their related sources of variance will have an effect on the measures 

of central tendency and dispersion of tool life results [1, 19].  Therefore, in order to design a 

drill test in which conclusions may be drawn with a level of confidence, these complex 

behaviours will need to be firstly identified using existing literature as well as 

experimentally investigated for a particular drilling system, with the aim of managing the 

complex behaviours for a repeatable and mono-modal failure mode, additionally, 

minimising or empirically modelling their source of variance on tool life (scatter) so small 

changes in life may be distinguished. 

The following subchapters review work completed by other researchers in the areas of drill 

design, cutting tool testing, metal cutting and tool life modelling.  It also covers the tools 

used in order to complete this work such as, statistical test methods for machining data 

analysis, PVD coating technology used for drill sample production, tool maker’s microscope 

and the Alicona Infinite Focus Microscope (IFM) used to determine the geometry and 

surface roughness of cutting tools. 
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2.2   Drill Design 

Cutting tool design is a combination of tool material such as HSS or WC-Co, macro and 

micro geometry and surface and coating engineering.  According to Davim [13] cutting tool 

geometry is of prime importance because it directly effects; chip control, productivity of 

machining, tool life, direction and magnitude of cutting forces and surface integrity.  This 

thesis uses Jobber drills as a vehicle for cutting tool development.  Therefore, the test must 

be able to correlate tool design and performance at accelerated cutting conditions; hence the 

author sees it as fundamental to understand the basic cutting actions and design features of 

a Jobber drill which is discussed throughout this work. 

A drill is ‚an end point cutting tool for machining holes having one or more major cutting 

edges, and having one or more helical or straight chip removal flutes‛ [1].  The prime 

cutting motion is rotation applied to the drill or workpiece or to both and the feed motion is 

applied along the longitudinal axis of the drill to the drill or workpiece.  There are many 

different types of drill designs, for this work the standard Jobber drill will be introduced, 

also known as a twist drill [16].  The Jobber drill is a homogenous drill, made of one piece of 

tool material such as HSS or carbide, making holes in solid workpieces without previously 

made holes.  It may have a straight shank, taper shank or a tang drive, which may or may 

not have the same diameter of the body of the drill.  The jobber used in this study is of 

regular length, having a length-to-diameter ratio not exceeding 10 [1].  Two flutes are used 

for chip removal with no special means for coolant supply.  According to Astakhov [1] the 

jobber drill is a ‘transiently-balanced drill’ meaning that only the margins support the radial 

direction.  This description by Astakhov is only accurate when the drill is fully engaged into 

the workpiece, meaning, when the outer corner/s of the cutting edge are engaged in the 

workpiece.  Prior to this point the drill is not transiently-balanced as the chisel edge causes 

the drill to ‘wander’ which affects dimensional accuracy and hole straightness.  Drill 

‘wandering’ was first overcome by drilling a pilot hole using a small diameter drill.  The 

split point drill was designed which provides secondary cutting edges near the centre of the 

drill.  Radhakrishnan [27] reports that a split point drill not only does reduces wandering 

but also reduces thrust forces during drilling. 
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2.3   Cutting Tool Testing 

2.3.1 Drivers of Cutting Tool Development 

A significant aim of cutting tool development is to design tools which can work faster, 

Sandvik have published data [28] showing that only 1% saving in total costs can be achieved 

from 50% increases in life or tooling cost, whereas a 20% increase in a tools productivity 

provides a 15% reduction in part or component cost.  In machining, an increase in 

productivity is achieved by increasing the material removal rate (MRR).  Therefore, cutting 

tool testing is used to optimise tool design, because the best tools can increase productivity.  

Productivity (not tool life) is the only means of control that a cutting tool user has to 

substantially modify the cost of a good.  Although productivity is significant in industry, it 

is difficult and time consuming to test for directly.  Taylor [29] provided a solution to 

determining the productivity of a cutting tool by determining the relationship of Time (tool 

life) versus cutting speed in his work ‘On the Art of Cutting Metal’.  Why is the productive 

use of cutting tools important?  There has been a continuous drive throughout history to 

make a profit and provide a service; it is summed by the mandate, faster, cheaper, lighter 

and stronger.   

As end users apply pressure for development of products industries have responded by 

using more application driven materials with specific mechanical and chemical properties.  

For example, high strength to weight ratio titanium alloys for the aerospace industry, 

corrosion resistant stainless steels in the maritime industry and high temperature oxidation 

resistant nickel super alloys in the aerospace and automotive industries. 

The adoption of new application driven materials by manufacturers has come at the price of 

machinability and therefore productivity.  Materials such as titanium alloys and nickel 

based super alloys cause reductions in tool life and productivity [30, 31], due to their high 

rate of work hardening, their low thermal conductivity and an affinity to adhere to the tool. 

Cutting tool manufacturers have sought solutions to these problems.  In fact Smith [32] 

highlighted the properties a cutting tool should have in modern machining, namely, hot 

hardness, toughness, oxidation resistance, thermal shock resistance and a non-affinity to 

work piece material.  Considerable research has been conducted into producing materials 

capable of sustaining high hardness at high temperatures, examples of which are HSS 

alloyed with cobalt [33], powder metallurgy HSS [34] and micro-grain carbide [35].  

Significant research has also been conducted into the mass application of PVD coatings [21, 

36, 37]. Such coatings offer abrasive wear resistance, low coefficient of friction and some act 

as a thermal barrier.  This allows the cutting speeds and feed rates to be increased 

significantly compared to their uncoated counterparts. 

This has led cutting tool manufacturers to no longer be just a cutting tool provider, but a 

source of expert knowledge in the machining of these ‘difficult to machine materials’ and the 
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associated cutting tool technologies.  This knowledge and expertise, however, requires 

considerable investment into research and development as the testing of mass manufactured 

cutting tools becomes complex as there are many design features, such as tool macro 

geometries, cutting edge micro geometries, surface treatments and coating composition and 

architectures.  All off which must be optimised for machining particular materials and part 

geometries, as well as characterising the optimal cutting conditions for primarily, 

productivity and secondary, life time improvements. 

2.3.2 Destructive Versus Non-Destructive Cutting Tool Testing 

As Davim writes ‚tool life is not an absolute concept‛ [13].  A tool may be considered to 

have failed depending on the tool life criterion.  Generally in finishing operations, surface 

integrity and dimensional accuracy are of prime concern, while in roughing operations 

excessive wear and cutting forces are the limiting factors[13].  It is not the aim of this thesis 

to examine different machining operations; however an appraisal of the different failure 

criteria and testing methods used by researches must be conducted so the type of tool failure 

used throughout this work is clearly justified. 

There are two cutting tool testing methodologies used by the partner organisation, a 

destructive method and a non-destructive method with two different failure criteria. The 

first methodology comprises of testing a small number of tools (1 or 2) at the cutting 

conditions and in the material for which the tool is designed.  The evolution of tool life is 

characterised by either measuring flank wear or the cutting forces periodically over the life 

of the tool until a predefined wear or force limit is reached.  This method can be graphically 

shown in Figure 2.10 and coincides with ISO standard 3685 [38] known as non-destructive 

testing, this method is typically used but not limited to high value tools.  However, this 

method gathers limited information about the variance in manufacturing capability and no 

information to calculate an estimate of the populations tool life performance, unless this 

method of testing is applied to a larger sample set.  However, this would significantly 

increase the work and time involved. 

The second method used comprises of testing a small batch of cutting tools usually 2-4 at 

accelerated cutting conditions to catastrophic failure (destructive testing) or to a predefined 

length of cut or number of holes close (non-destructive).  For example in a quality assurance 

test for drills, iron oxide treated drills would need to drill 40 holes at accelerated conditions 

before considered ‘passed’ while PVD coated drills would need to drill 120 holes before 

achieving the pass criteria.  This methodology is known in industry as a ‘go, no go’ test, as 

the drill will either pass or fail.  This criterion of failure censors the data to the right, 

therefore no information of the tool life variance is acquired and only limited information of 

the manufacturing variance.  It is necessary to compare the industrial sponsor’s current 

testing methodologies to others in the field of metal cutting. 
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One of the first empirical studies of metal cutting and cutting tool testing started in 1880 by 

Frederick Winslow Taylor.  As steel replaced cast iron as the predominate material of choice 

during the 2nd industrial revolution [39] the cutting conditions needed to work this material 

productively soon needed to be characterised.  Taylor, a foreman at the Midvale Steel 

Company, observed that the workers there were not functioning efficiently, and this was 

limiting the number of parts produced per day (train tyres).  He believed that the workers 

could be more productive, in his own words, Taylor [29]: 

‚He found, however, that his efforts to get the men to increase their output were blocked 

by the fact that his knowledge of just what combination of depth of cut, feed and cutting 

speed would in each case do the work in the shortest time, was much less accurate than 

that of the machinists who were combined against him.‛ 

Put simply, no one knew the best practice until Taylor asked the questions and conducted 

the experiments, as the introduction of steel brought about its own challenges (its own 

complex behaviours). 

There are many test methods for hard wear resistant PVD coatings, for example, the scratch 

test [40], pin on disk [36] and ball crater [37].  These tests have been used by PVD coating 

researchers to characterise the fracture toughness, wear, and adhesion strength respectively.  

Some of these coatings are then tested on cutting tools to determine if they can increase tool 

life or productivity.  If a cutting tool test was developed that was timely, low cost and 

sensitive to small changes in life, then the aforementioned tests would not be needed in the 

context of developing better coatings for metal cuttings operations. None of these tests 

simulate the unique forces, thermal gradients and chip-tool-workpiece interactions which are 

found along the cutting edge/s and the principle cutting faces in machining operations.  

Vogel and Bergmann [12] assisted in the development of such a drill test for Guhring and 

Balzers. The effect of cutting conditions on tool life were characterised over wide range for 

coated and uncoated drills as well as the effect of plate hardness on tool life so as to eliminate 

this source of variance from tool life data.  This type of cutting tool test can fulfil the three 

reasons why the partner organisation conducts tests for low value tools, as it would allow 

QA of products, benchmarking against competitors and experimental design performance 

verification. 

Posti and Nieminen’s work characterising the effect of coating thickness of TiN coated HSS 

turning and planning tools [41] used the combination of catastrophic failure criterion 

(destructive testing) with non-destructive methods, measuring the flank wear periodically.  

This methodology allowed the characterisation of tool life/wear evolution and also 

characterising the three stages of life, however, as this method is time/work intensive it was 

only applied to one tool per sample group and therefore not accounting for the variability in 

tool life performance. 
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A cutting tool test was developed by the Australian and New Zealand standards committee 

of 1994 for drills[42].  The cutting conditions and depth of holes are supplied for drill 

diameters between 3mm-75mm.  The cutting speed remains fixed through all diameters, 

however, the penetration rate (mm/min) decreases at the diameter increases while the depth 

of holes follows an inverse of this relationship.  The steel workpiece is also recommended, it 

must have a hardness value between 200-215 Brinell, a chemical composition with Carbon 

between 0.6-0.65%, Silicon between 0.15-0.30% and Manganese between 0.6-0.7 percent.  The 

failure criterion used in this test is a ‚go, no go‛ where drills are tested to a particular limit 

and they pass or fail depending if they have reached it.  Just like the partner organisations 

QA test this test censors the test to the right, therefore fails to provide information of the tool 

life variability or an indication of the manufacturing variance. 

By examining the partner organisations testing methods, current industry standards as well 

as scientific published work, the choice of cutting tool testing methodology has been found 

to depend on a number of factors.  One factor being the aim of the test such as, quality 

assurance, benchmarking or experimental verification.  Another being the information 

required, pass or fail (censored data), measures of central tendency and/or dispersion and 

sample size and lastly, time and budgetary constraints.  
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2.4   Metal Cutting 

Drilling produces chips using a number of cutting edges which are exposed to a variable 

cutting velocity and rake angle from the centre to the outer corner [1], therefore, it can be 

considered as a more complex machining operation than single point turning.  This section 

will introduce and discuss the complex behaviours and sources of variance within metal 

cutting, the simplest cutting models will be used.  The following subchapters first introduce 

the chip-formation process using a 2-D orthogonal single shear plane model.  Next the type 

of wear mechanisms involved in metal cutting will be defined, followed by the evolution of 

tool wear which determines the life of a cutting tool. 

2.4.1 Chip Formation 

Metal cutting covers all manufacturing operations which produces shapes out of materials 

through the generation and removal of chips [4, 14].  Modern machining technology has its 

roots from the production of the steam engine in the 1760’s, were easy to machine cast iron, 

brass and bronze as well as difficult to machine wrought iron were used and machined 

using basic hardened high carbon tool steel [14]. 

The simplest explanation of metal cutting is the 2-D orthogonal cut, which can be reasonably 

represented, in figure 2.1, as a hard large angled wedge (two faces, rake face and clearance 

face) which is fed into a work material to remove a thin layer through shear deformation 

[14].  The concentrated shear region has been observed, through orthogonal cutting 

experiments, to be localised along a shear plane starting at the cutting edge and heading up 

at an angle until the free surface, the angle and width of the shear plane is dependent on the 

cutting tool, workpiece and cutting parameters [1, 4, 14].  The newly created chip is then 

forced over the rake face under high compressive stresses, the underside of the chip 

undergoing further shear deformation [5, 14, 23, 43, 44]. 

An early and well know shear plane model was the Merchant single shear plane model [45].  

This model was able to calculate the shear stress encountered along the shear plane during 

chip formation and the friction between the chip-tool interface.  From this work Merchant 

concluded that the shear strength of the material is the only relevant characteristic showing 

the materials resistance to cut (machinability). 
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Figure 2.1. schematic diagram of an orthogonal cut as used by Ernst and Merchant in their 

single shear plane model.  It shows an area of undeformed material about to  under go high 

strain, high strain rate deformation along a shear plane producing a chip [14]. 

The assumptions of this model include [4, 45]: 

1. The tool is perfectly sharp and there is no contact along the clearance face. 

2. The shear surface is a plane extending upward from the cutting edge. 

3. The cutting edge is a straight line extending perpendicular to the direction of motion 

and generates a plane surface as the work moves past it. 

4. The chip does not flow to either side but behaves as a plane strain. 

5. The depth of cut is constant. 

6. The width of the tool is greater than the workpiece. 

7. The work moves relative to the tool with uniform velocity. 

8. A continues chip is produced with no built up edge. 

9. The shear and normal stresses along the shear plane and tool are uniform. 

There are some fundamentals of the chip formation process, such as the chip seperation 

criteria and contact conditions at the chip-tool interface that are not well understood.  For 

example, does the chip separate via the formation of micro cracks ahead of the tool [46, 47] 

or should the deformation of the material be treated as plastic flow around the cutting edge 

[14].  Contrasting views for the chip-tool interaction are, does seizure contact explain the 

interactions between the chip and rake face [48] rather than intimate contact with relative 

movement [4, 44]. 

Turley and Doyle [23] examined the chip formation process during orthogonal cutting from 

the behaviour of the microstructure during machining.  They concluded that chip formation 

is dictated by how the phase, size and orientation of the materials microstructure reacts 

under highly localised shear strain.  They concluded that shear band formation was the 

fundamental microstructural mechanism defining the geometry of the chip along the shear 

plane.  They observed that in machining copper in which the primary deformation 

mechanism is slip, acrystallographic shear bands do not form until high levels of strain are 

developed, this finding correlated with copper having a low shear plane angle.  Whereas, in 

70/30 brass acrystallographic shear bands form at lower levels of shear strain and hence give 

rise to a higher shear plane angle.  This work highlights that the complex behaviour of the 

material being cut is specific for a particular material grain structure and cutting parameters 

and will affect the cutting forces necessary to generate chips. 

Figure removed due to copyright 

reasons. 
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2.4.2 Wear Mechanisms 

During service, metal cutting tools are put under harsh conditions of high forces, high 

contact pressures, high temperatures and chemical attack [49].  Referring to figure 2.2, 

regions of wear and their corresponding wear mechanism are shown.  A significant feature 

of machining steels is Built-up-edge (BUE) formation.  This is another form of wear shown 

in shown in figure 2.8.  BUE does not appear when machining pure metals, only alloyed 

materials with a two phase structure predominantly found in steels [14], as this work deals 

with drilling steels, BUE must be defined as it is a source of complex behaviour and its effect 

on tool life and cutting forces will be discussed in chapter 2.5. 

Wear limits tool life by restraining productivity, increasing surface roughness and 

decreasing dimensional accuracy of the machined component.  The mechanisms that cause 

tool wear at these regions are abrasion, adhesion, plastic deformation, fracture, oxidation 

and diffusion.  What type of wear mechanism and the region it will operate in depends on a 

number of factors of the machining system, such as tool material, tool geometry, workpiece 

material and cutting parameters such as cutting speed, feed rate, depth of cut and cutting 

fluids. 

 

 

 

Figure 2.2. A schematic representation of an orthogonal cutting tool, depicting different 

potential mechanisms of tool wear operating at particular regions.  Which may work 

simultaneously, highlighting the complexity of the metal cutting system [25]. 

Soderberg [50], Hogmark [49] and Barrow [51] each discuss wear as the combination of 

mechanism and region, depending on the above mentioned machining factors.  This was 

found by the author to provide a more holistic interpretation of the wear mechanisms and 

their effect on tool life evolution.  Stressing the evolution of wear at different phases of tool 

life which may change in severity or mechanism entirely, an example of this is the evolution 

of crater wear (see below).  Davim [13] has published the wear mechanisms guide by 

Sandvik, this guide however, did not discuss wear as a dynamic process which evolves over 

time as the tool wears or if the machining parameters change.  A description of the wear 

mechanisms and which region it predominantly operates in is defined. 

 

 

 

 

Figure removed due to copyright 

reasons. 
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Abrasive wear 

Abrasive wear operates on the flank and rake face (flute face) surfaces and is characterised 

by the mechanical removal of tool material from the tool surface due to the ploughing/ 

scratching action of hard particles in the workpiece material.  Abrasive wear is counteracted 

by increasing the hardness and the volume of carbides inside the cutting tool. 

 

Figure 2.3. SEM micrograph showing ploughing/scratch marks on the flank and rake 

surfaces of a HSS cutting tool [49], with kind permission from the Society of Mechanical 

Engineers. 

Adhesive wear 

Adhesive wear is a tearing of tool surface material by high shear forces between the chip-

rake interface and the newly machined surface and the flank face, resulting in the removal of 

the surface layer and or small fragments in the direction of chip flow and tool (Figure 2.4(a)).  

Adhesive wear increases when the cutting edge reaches high temperatures or when cutting 

a chemically aggressive material, this may result in large scale plastic flow of surface 

material (Figure 2.4(b)).  This form of wear can be resisted by using tool materials with high 

yield strength at elevated temperature or by applying a protective ceramic coating [20, 52]. 

     
(a)                                                                                 (b) 

Figure 2.4 (a,b) SEM micrograph showing adhesive wear on the rake face of a HSS cutting 

tool. (a) low magnification of rake face, wear initailly appears to be abrasive. (b) high 

magnification reveals that work/tool material has plastically deformed in the direction of 

chip flow [49], with kind permission from the Society of Mechanical Engineers. 
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Plastic deformation 

Severe plastic deformation may occur along the cutting edge if the tool material is loaded 

beyond the yield strength (Figure 2.5(a, b)).  This may result in edge blunting and is 

exacerbated by an increase in cutting temperature [13, 49]. 

 

                       (a)                                                                   (b) 

Figure 2.5(a, b). SEM micrographs showing (a) large scale plastic deformation blunting the 

cutting edge, (b) cross sectioned and etched showing region of deformation [49], with kind 

permission from the Society of Mechanical Engineers. 

Fracture and chipping 
Macroscopic fracture of the cutting edge (Figure 2.6) may occur if the tool material is loaded 

beyond the yield strength at which point localised chippings may occur through brittle 

fracture.  Edge chipping is most common during interrupted cutting operations such as 

milling and is counteracted by a high toughness material, however a high toughness 

material will have the hardness reduced. 

 

 

Figure 2.6. SEM micrograph showing localised chipping on the cutting edge [49], with kind 

permission from the Society of Mechanical Engineers. 
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Crater wear 

At low cutting temperatures crater wear is caused by a combination of abrasive and mild 

adhesive wear from the chip flow across the rake face (Figure 2.7) [13].  As the cutting 

temperature increases, severe adhesive wear in combination with oxidation and diffusion 

processes, increase the rate of tool material removal especially reactive metals like titanium 

[13].  PVD coatings offer protection from this type of wear as they offer a passive layer with 

a low chemical affinity to the workpiece. 

 

Figure 2.7. Schematic cross section of a cutting tool which shows crater wear on the rake face 

with correspoding definitions of how to measure the crater wear [13], with kind permission 

from Springer Science+Bussiness Media. 

Built up edge 

Built-up-edge (BUE) will occur during the machining of alloyed materials with two phases 

in their structure such as steels, a coating may diminish the size and adhesion strength of the 

BUE.  Strain hardened workpiece material accumulates on the rake and flank faces as a 

series of successive layers (Figure 2.8) [14].  A BUE will eventually break away once it has 

grown unstable and will either travel up the rake face with the chip or be embedded in the 

newly machined surface reducing surface integrity. 

 

 

 

Figure 2.8. SEM micrograph showing built-up-edge on the rake face of a cutting insert [14]. 

  

Figure removed due to copyright 

reasons. 
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2.4.3 Tool Wear Evolution 

Cutting tools wear during use.  An important characteristic of a cutting tool is the tool life.  

Tool Life is the length of time, length of cut or the number of components machined before 

the surface roughness, dimensional accuracy or some other measure important to the user is 

unsatisfactory [13].  A standard method used in the machining industry of quantifying the 

amount of wear is by measuring the amount of flank wear termed VBB , ISO standard 3685 

[38].  Figure 2.9 shows where on a Jobber drill the VBB is measured.  The maximum 

allowable flank wear VBBMax, depends on a number of factors such as the machining 

operation, tool size and the tolerances of the machined component set by the user.  For 

example, rough milling allows a higher VBBMax as opposed to finish milling, justification for 

which is that sharpness of the cutting edge directly affects the surface roughness of the 

finished part.  Once this VBBMax limit is reached the tool is said to have reached its useful life 

and can be classified as failed, at which point the tool will either be thrown away or sent to 

be re-sharpened. 

Tool wear evolves over the lifetime of a cutting tool.  The relationship between flank wear 

VBB and length cut reveals three distinct phases of life (Figure 2.10(a)).  Region I shows a 

steep gradient revealing a high initial wear rate with possible causes being damaged surface 

layers during the grinding process and edge rounding of the cutting edge [13].  Region II is 

referred to as ‘steady state wear’, which has a lower wear rate then region I and is usually 

the longest operating region.  Region III also has an accelerated wear rate and is the final 

stage of tool life.  As the tool wears, the cutting edge becomes blunt (rounded) and the 

contact lengths between the tool-chip-workpiece interfaces increase.  This process directly 

increases the cutting temperature and forces at the cutting edge, leading to rapid tool failure. 

 

Figure 2.9. A shematic diagram of a worn Jobber drill showing the outer corner flank wear 

[20], With Kind permission from Sam Harris. 
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          (a)                                                            (b)  

Figure 2.10 (a, b). Tool wear curves. (a) General wear curve, showing the three main stages 

of tool life. Stage 1 rapid initial wear, stage 2 steady state wear and stage 3 rapid fianl wear 

(b) Graph of wear versus time showing an idealised tool life evolution for 3 different cutting 

speeds and 9 different failure criteria.  Point 1, 2, and 3 represent the time at which a cutting 

tool has reached a predefined wear point (non-destructive). Point 1, 4, and 5 represent the 

point in time where the tool has entered the third stage of life (non-destructive, prior to 

rapid tool wear but difficult to determine).  The last three failure points coincide with the 

notation V1 – V3 this is to destruction [13], with kind permission from Spriger 

Scinece+Bussiness Media. 

Tool wear curves have been used to characterise the performance of cutting tools in wear 

studies [51].  Tool wear curves also reveal the effect of machining factors on the evolution of 

tool wear.  One of the most significant machining parameters to effect tool life is the cutting 

speed, as it directly effects the rate of wear and cutting temperature and can affect the types 

of wear mechanisms in progress [13].  In Figure 2.10 (b), three tool wear curves are shown 

for three different cutting speeds, v1 < v2 < v3.  The tool wear curves show that the higher the 

cutting speed the higher the wear rate.  This tool life information is important for process 

management as the information may give a reasonable approximation for changing and 

resetting tools for automated machining processes as well as an indicator that the tool needs 

to be resharpened.  

Typical non-destructive 

failure Typical destructive failure 

Typical non-destructive 

failure 
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2.5   Metal Cutting as a System 

The metal cutting process can be viewed as a complex system with a large number of sub-

systems[1].  Figure 2.11 shows the components of the gundrilling system, revealing the 

scope of managing this operation.  These components are similar for every machining 

operation with specific differences depending on the machining operation, material to be cut 

and productivity requirements.  For example tool material (Figure 2.11), instead of quality of 

carbide it may be quality of HSS, with sources of variance such as distribution of carbides 

and subsequent heat treatment.  In the context of cutting tool testing it is this author’s 

hypothesis that, only when we can manage the complex behaviours and sufficiently 

minimise or model the effect of sources of variance on tool life, will we be able to achieve 

productive use of cutting tool test data.  This section will therefore discuss the research 

findings of complex behaviours and sources of variance in metal cutting and their effect on 

tool life. 

 

Figure 2.11. Components of the gundrilling system revealing the complexity of managing 

this manufacturing process[1], with kind permission from Springer Science+Bussiness 

Media. 

Williams, Smart and Milner [53] showed that the cutting force and thrust force (Figure 2.12 a 

& b) exponentially fall when turning materials such as pure iron, copper and brass over 

cutting speeds between 1-100m/min.  However, when machining low carbon steels the 

cutting force is significantly lower at low cutting speeds.  At low cutting speeds a built up 

edge (BUE) formes on the cutting edge, rake and flank faces up until a medium cutting 

speed of roughly 50m/min.  The BUE acts like a restricted contact length cutting tool 

reducing the cutting forces on the rake face.  As the cutting speed increases the BUE 
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formation stops and the cutting force increases to its maxima.  Further increases in the 

cutting speed will then lead to an exponential decrease in cutting forces. 

 

 

 

(a)                                                             (b) 

Figure 2.12. Empirical data collected by Williams, Smart and Milner of the cutting force and 

thrust force in turning operations at a feed rate of 0.25mm/rev and a depth of cut of 1.25mm. 

(a) shows the cutting force and thrust for iron, copper and titanium. (b) shows the cutting 

force and thrust for iron, low carbon steel, copper and 70/30 brass [14]. 

Astakhov and Osman [26] investigated the complex behaviour between wear mechanisms 

and their effect on tool life by varying a number of cutting conditions.  Their experiment 

characterised the change in tool life over a cutting speed range of 1-150m/min as well as 

turning dry, with oil and with emulsion coolant, labelled graph 1, 2 and 3 respectively 

(Figure 2.13). Their results show there are zones (zone 1, 2, 3 and 4) in which a cutting tool 

can exhibit increased and/or decreased tool life.  The relationship between tool life and 

cutting speed was explained by the authors as to change depending on the predominate 

wear mechanism in progress which affects the thermal and mechanical conditions at the 

cutting edge.  As the cutting speed increases the cutting force reduces, as also shown by 

Williams [53], however, the thermal gradient applied to the cutting tool increases.  At these 

high cutting temperatures, oxidation and diffusion wear begin to play a significant role in 

tool wear.  However, there are regions of linearity.  If these regions can be identified for a 

particular cutting tool test, it may be possible to model the linear portion only. 

 

 

 

Figure 2.13. Tool life versus cutting speed data from turning tests.  Workpiece: high alloy 

steel (0.2% C, 25% chromium 20% Nickel, 2% Silicon).  Cutting parameters: feed rate 

0.06mm/rev and a depth of cut 2.5mm [54]. 

Shaw [4] states that for the practical range of cutting parameters used for HSS cutting tools, 

the relationship between tool life and cutting speed will be generally linear on a Taylor’s 

tool life graph (Figure 2.14).  However, tool life may begin to show non-linarites if BUE 

formation is exhibited or if the HSS cutting tool reaches its tempering temperature and 

begins to soften. 
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Figure 2.14. A general Taylor’s tool life relationship for a HSS cutting tool machining steel 

with the log of tool life versus the log of cutting speed.  This graph reveals a linear region, if 

the cutting speed is too low or too high then it begins to show nonlinearity by BUE 

formation and thermal softening respectively[4]. 

Another source of complex behaviour is the machine tool interaction with the cutting tool 

and workpiece [1].  The dynamic and static rigidity of the spindle and workpiece fixturing 

are sources of vibration during machining.  The cutting tool is attached to the spindle via a 

chuck or collet; it interacts with the workpiece which is fixed to the machine bed.  The 

acoustic vibration of the spindle has been used as a measure to determine a machining 

systems optimal MRR and tool life [55].  This relationship is the main reason why cutting 

tools made from ‘super’ hard materials such as WC-Co must be used in a highly rigid 

system, as excessive vibration may cause the cutter to chip and fracture, causing premature 

failure. 

There are many sources of variance which effect the distribution of tool life results.  The 

intrinsic plate hardness and batch to batch variability has already been introduced.  Another 

significant source of variance in the workpiece is the chemical composition and carbide 

distribution defined by the ASM committee of 1990 [24].  They report that a non-uniform 

chemical composition and carbide distribution within a steel plate will increase the variance 

in tool life by affecting the wear rate. 

The cutting tool itself has many sources of design variance. The variance in macro geometry 

features is a significant source of tool life variance.  According to the American National 

Aerospace Standard (NAS) for split point drill design [16] the primary lip relief, lip height 

variation and chisel edge centrality (chapter 2.2 for definitions) are key features which 

require repeatability and uniformity in manufacture.  If these features deviate from required 

specifications and/or are non-uniformly ground, the tool life performance in regard to 

dimensional accuracy and life will be significantly lowered [17]. Secondly, if the 

repeatability of the grinding process varies across a production run, then the tool life 

distribution will directly reflect this variance [18]. 

Another source of cutting tool design variance which can significantly affect the dispersion 

of tool life results is the coating thickness.  Posti [41] published work characterising the effect 

of TiN coating thickness on tool life for planing and turning operations.  The tool life results 

showed that for turning, a continuous cutting operation, coating thickness and tool life 

follows a linear relationship.  Reviewing Posti’s results for turning showed that an increase 

in coating thickness of 1µm can increase tool life by 36%.  Posti also observed that the 

Figure removed due to copyright 

reasons. 
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amount of free titanium inside the TiN coating decreases wear resistance, however TiN 

coatings aim to be deposited with a stoichiometric balance of titanium and nitrogen.  Drill 

testing conducted for coating research may need tool life results to be normalised for the 

effect of coating thickness variation with the calculation of a holes/micron of coating value, 

so the tool life data is more representative of the specific coating process factor under 

investigation such as chemical composition, temperature or voltage. 
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2.6   Tool Life Modelling 

Tool life is an important parameter, as Marksberry states [56]‚it is one of the most important 

factors in process planning and total machining economics‛.  The use of the scientific 

method for tool life calculation began in 1880 with F. W. Taylor’s work ‘On the art of cutting 

metals’ and published in 1906 [29].  This work developed the well-known Taylor’s Tool Life 

equation (Eq. 1) determining the relationship between cutting speed and tool life. 

 

                                                                     
                                                Eq. 1 

 

Where: 

C = Cutting speed for a lifetime of 1min. 

Vc = Cutting speed in m/min 

T = Tool Life in min 

n = Exponent which depends on the machining system, cutting tool design, 

workpiece material etc. 

 

Since this time researchers such as Niebel, Draper and Wysk [57] have extended the 

equation to account for more of the cutting parameters such as, cutting speed, feed rate and 

depth of cut (Eq. 2) [58].  An extended Taylor’s tool life model has also been developed by 

Lau, Venuvinod and Rubenstein [59] to model the effect of cutting tool geometry features 

such as the rake and flank angles on tool life. Models may be designed for any number of 

factors, however, as this is an empirical based model this equation may become quite large 

and the number of machining trials needed to calculate the exponents becomes costly and 

time consuming. 

                                                                                                                              Eq. 2 

  

Where: 

f = Feed rate in mm/rev. 

a = Exponent which describes the effect of feed rate in a machining system. 

d = Depth of cut in mm. 

b = Exponent which describes the effect of depth of cut in a machining system. 
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Another drawback from using an empirical model is that the results may only be 

representative for a particular machining system (machining operation, workpiece material, 

tool geometry, lubrication) which limits its wide spread use from one factory to another or 

one machine to another.  Another important factor in the context of cutting tool testing is to 

determine the effect of plate hardness variability on tool life, either within a plate or batch to 

batch.  This is a factor with a significant effect on tool life as shown by Vogel and Bergmann 

[12] as the researcher often has little control on the variability in steel plate.  They may either 

reject sections of plate which are outside tolerances or preform expensive heat treatments to 

reduce plate hardness variability. 

To develop a tool life model an experiment must be designed with particular boundary 

condition encompassing the region of interest for determination of the effect of machining 

factors on tool life.  It is beneficial to incorporate more than two levels per factor to 

determine if the range chosen has a linear or non-linear relationship, if two levels are chosen 

then any nonlinearities will not be able to be determined.  It is also valuable to account for 

the variability in tool life performance by collecting data using a number of samples. 
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2.7   Statistical Methods  

To test new products and manage the level of quality of mass manufactured goods a 

statistical approach is a valid and powerful method.  As Logothetis writes [60] ‚Everything 

varies.  No two things are ever the same, no matter how similar they seem to be‛.  This 

premise has driven statisticians to develop techniques to assess how similar objects are or 

how not similar they are, in the case of this work, cutting tool lifetime performance.  

Statistics are often classified as either ‘parametric’ or ‘non-parametric’ and engineers often 

implicitly work with parametric statistics.  A parametric distribution may be defined by 

measures of central tendency; such as the mean, median or mode and the measures of 

dispersion; such as the standard deviation, variance and range.  Therefore, quoting the mean 

and statistical deviation of data is satisfactory. 

In a manufacturing environment, potentially thousands of products are produced daily; in 

order for a manufacturer to estimate the population statistic of a particular product, small 

sample sets are collected, possibly at random and parametrically characterised.  Once the 

samples have been tested for a particular measure usually a hypothesis is tested using the 

data.  Hypothesis testing is a method of evaluating ‚two mutually exclusive statements 

about a population‛[61].  The first statement is called the null hypothesis, simply, the null 

hypothesis will contain a statement that ‚two or more things are equal, or unrelated‛ [62].  

The other contrasting statement is called the alternative hypothesis, which states that the 

population statistic is different to the value of the null hypothesis or there ‚is a relationship 

between variables‛.  A hypothesis test can only be conducted after an inferential statistical 

test is performed. An inferential test calculates the probability (an estimate) of what the 

population statistic really is.  Calculating the probability that a population statistic lies 

within a certain range (confidence limits) is possible due to the central limit theorem [61] 

which states that, a sample distribution will be approximately normal if the original 

population (parent population) is repeatedly sampled (Figure 2.2).  The more asymmetric 

the original population is the larger the sample size needs to be to yield a normal 

distribution from the sample also known as the population of means. 
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(a)                                                  (b) 

Figure 2.15. (a) Uniform distribution, (b) Normal distribution 

Inferential statistics apply some probable accuracy to the estimated population statistic.  A 

level of confidence is chosen such as 90, 95 or 99% depending on the application.  The 

following formula Eq.3 is used to calculate confidence intervals of where the population 

mean statistic is likely to reside. 

 

                                                                                                                                                               

                                     Eq. 3 

 

Where: 

μ = Population mean. 

X = Sample mean, arithmetic average. 

t = t distribution value. 

df = degrees of freedom. 

α = Significance level. 

S = Standard deviation. 

n= number of samples. 

 

                                                                   

                                          Eq. 4 

Where: 

Xi = The value of sample i 

 

The confidence intervals are calculated by adding and subtracting a probability dispersion 

value which is calculated by knowing the ‘t’ value which is dependent on by the degrees of 

freedom and the level of confidence chosen and found in the ‘t tables’.  Degrees of freedom 

can be thought of as the number of observations in a sample set used to estimate a 

parameter (such as the mean) from which that sample is drawn. 
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Figure 2.16.  Graph of the t value for a two tailed α level of 5% versus sample size. Showing 

that after 5 samples there is only a small decrease to the ‘t’ value as n increases (‘t’ values 

from Devore [61]). 

The ‘t’ value is then multiplied by the standard deviation divided by the square root of the 

number of samples.  The researcher may only change the level of confidence, the number of 

samples and potentially design an experiment which minimises the standard deviation.  The 

level of confidence in a majority of engineering applications is usually 95%; however it is 

raised when dealing with critical mechanisms such as jet engine components.  The number 

of samples is usually limited by the time and cost of the experiment and in the application of 

drill testing which is somewhat costly and time consuming the requirement to keep sample 

size small is significant.  Some experiments are designed to block external factors which may 

contribute to a large standard deviation (in this case minimising sources of machining 

variance). 

This idea will be explored within the design and subsequent drill test experiments in later 

chapters but the important idea here is that there is most always a pressure to keep samples 

sizes low and the only factor left to the researcher is to ‘adjust’ is the standard deviation (Eq. 

4).  There may be limitations on lowering the standard deviation.  There may be only a 

limited number of factors in a particular system which can be adjusted and this may not 

reduce the standard deviation.  In some cases the natural distribution of the sample may not 

be normal but fit some other distribution, for example a batch of drills with a large 

distribution of macro geometry features. 

In R&D and production engineering, inferential statistics need to be combined with a 

suitably designed experiment so that a researcher may infer something about a product or 

process in a timely and inexpensive manner.  This may be to test the significance of a new 

design feature or the change to a manufacturing process.  To keep the experiment timely and 

costs low, it has been beneficial but difficult to move away from the ‘change one factor at a 

time method’ and move to a factorial experimental design developed by R. A. Fisher in the 

1920’s where multiple factors or treatments are studied in the one experiment.  As 
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Logothetis says [60] ‚One should start the experimental process with the understanding that 

real life rarely allows the manipulation of only a single factor‛.  Factorial experimental 

design becomes difficult to manage if the number of factors or the available levels within 

that factor are high, Eq. 5. 

                                                                                                                                

                                                           Eq. 5 

 

Where: 

n0 = Number of experimental groups. 

l = Number of levels of a particular factor. 

f = Factor. 

Hence, if the number of factors becomes too large then a fractional factorial design is more 

suited.  However, both experimental designs require that there is a sufficient level of 

reproducibility in the treatment or process for reliable information about the factors effects. 

Once an appropriately designed experiment has been conducted and the results collated, it 

is then time to apply an appropriate statistical test that will determine whether or not a 

significant change has or has not occurred for the factor or factors under investigation and 

allow the null hypothesis to be accepted or rejected.  The analyses of means and variance 

(ANOM & ANOVA) provides that capability [63].  Both test for a lack of homogeneity 

among means.  However, the alternative hypotheses are different. The alternative 

hypothesis for ANOM is that one of the population means is different from the other means, 

which are equal. The alternative hypothesis for ANOVA is that the variability among 

population means is greater than zero. 

Another statistical method which is particularly useful in analysing failure data is Weibull 

analysis Eq. 6. This tool is able to define a characteristic life and define a failure probability 

for a distribution of sample data with a level of confidence.  A product, component etc. is 

reliable or unreliable by assessing failure data and determining a frequency of failure [60].  

Reliability in a Weibull analysis is defined as when an expected lifetime is reached, when a 

product satisfies expectations and when a product is not impaired in terms of its 

function[64].   

                                                               

                                                    Eq. 6 

 

Where: 

F(t) = Frequency of failure. 

t = Lifetime variable, distance covered, operating time, etc. 

T = Scale parameter, characteristic life during which a total of 63.2% of samples have 
failed. 
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b = Shape parameter, slope of the fitting line in the Weibull plot. 

A distinguishing feature of this analysis method is that it is able to analyse multiple 

distributions.  The slope (shape parameter) indicates the type of distribution the failure data 

represents.  This is due to the fact that the derivative of Eq. 6 is the Weibull density function.  

A Weibull graph shown in Figure 2.17 with three generalised failure plots with three 

different slopes (shape parameters), b=1 corresponds to an exponential distribution, b=2 

corresponding to a Rayleigh distribution and b=3.2-3.6 corresponding to a normal 

distribution [64]. 

 

Figure 2.17. Weibull graph with three generalised failure plots with different slopes i.e. three 

different failure types [64], with kind permission from Curt Ronniger. 

 

Table 2.1 Slope b (shape parameter) with corresponding failure type with possible 

examples[64], with kind permission from Curt Ronniger.  

Slope b Failure Type Example 

b < 1 Early-type failures (premature failures) Due to production/assembly faults 

b = 1 Chance-type failures (random failures) 

there is a constant failure rate and there is 

no connection to the actual life 

characteristic (stochastic fault), 

Electronic components 

b = 1-4 Time depending (aging effect) failures 

within the design period 

Ball bearings b ~ 2,  

roller bearings b ~ 1.5  

corrosion, erosion b ~ 3 – 4 

rubber belt b ~ 2.5 

b > 4 Belated failures Stress corrosion, brittle materials 

such as ceramics, certain types of 

erosion 
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This analysis method also allows the determination of mixed failure modes using the slope 

test and characteristic life test.  These tests help researchers to potentially identify different 

wear/failure mechanism in progress or problems during the fabrication process.  It is 

important to understand that the analysis method may identify that a different wear/failure 

mechanism has occurred to particular data points, but not exactly what they are.  This 

would require physical examination of the failed component/sample. 

Combining the aforementioned analysis methods and design of experiment leads to 

techniques which may offer insight into the tool life performance of drills tested using an 

accelerated cutting tool test [65, 66]. 
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2.8   PVD Technology 

The PVD (Physical Vapour Deposition) TiN coating used in this work was deposited onto 

jobber drills using a cathodic arc evaporation deposition system.  The following chapter 

describes in detail the sample cleaning applied and the coating process to allow the 

replication of this coating. 

2.8.1 Substrate Cleaning 

All drills were cleaned, prior to coating; using multi stage water based cleaning line.  An 

ultrasonic bath was used with alkaline detergent to remove oil and soils from tools followed 

by rinsing in de-ionised water and drying at approximately 110°.  After the tool surface was 

cleaned of the majority oils and impurities they were then ready to be loaded onto a triple 

rotation carousel and loaded into the coating chamber. 

2.8.2 Cathodic Arc Deposition 

Tools were loaded into the cathodic arc coating chamber Figure 2.18, the base pressure was 

pumped down to 1x10-3 mbar which took approximately twenty five minutes, after which 

radiant heaters located on the chamber walls increased the substrate temperature to 

approximately 375°.  Once this temperature was achieved the current across the filament in 

the ionisation chamber was ramped up from 50A to 250A and the substrate holder was set to 

a positive bias to commence the electron heating stage, using the Helmholtz coils to focus 

the electrons on the substrate to a temperature of approximately 400°.  Hydrogen gas was 

then introduced into the chamber to remove any organic material and reduce iron oxides 

such as Fe2O3 and FeO2 on the surface of the tools, this step lasted 30 minutes, a secondary 

reason for the time length is to equalise the bulk temperature across all tools.  After this 

process, argon etching was used to sputter clean the tool substrate via pumping argon 

through the ionisation chamber which ionised the gas through collisions with electrons.  The 

chamber pressure was then increased to 2.4x10-3 mbar, the bias on the substrate was 

switched to negative and ramped up to -170V for thirty minutes.  After this step the process 

switched to the coating phase which commenced at approximately 350°C.  Six titanium 

sources were set at an arc current of 160A and a bias voltage of 100V, nitrogen was then 

introduced to the chamber for ten minutes to deposit an interlayer.  After the interlayer was 

deposited the arc current was increased to 170A and argon as well as nitrogen was admitted 

into the chamber at 400sccm and 800sccm respectively for forty nine minutes.  The final step 

used an arc current of 160A without argon for ten minutes. 
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(a)                                                           (b) 

Figure 2.18. (a) Image of the cathodic arc deposition chamber used in this work (b) Chamber 

door with pair of cathodes and radiant heaters. 
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2.9   Metrology Tools 

2.9.1 Alicona Infinite Focus Microscope 

The Alicona IFM was used in this work to characterise the surface roughness of Jobber drills.  

As this is a novel technology this capability must be explained in order to understand what 

the measurement output is and how it was measured. 

The infinite focus microscope (IFM) is a high resolution optical microscope designed to 

generate 3xD Images.  The IFM is capable of capturing form and roughness in one 

measurement due to the focus variation technique.  This technique operates by combining 

the small depth of field of high resolution optical lenses with a vertical scanning range.  This 

combination of small depth of field and vertical scanning can be seen in Figure 2.19, this 

image shows that a three dimensional object such as the outer corner of a drill, will only 

have a small section in focus at a high resolution. 

 

Figure 2.19. Screen shot of the outer corner through the IFM at 10x.  Reveals where the drill 

intersects the focal plane of the lense. 

 

Figure 2.20. 10x image of the outer corner compiled from the 3D scan.  Scale bar equals 

100µm 
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Figure 2.21. Screen shot, 3D surface representation of the outer corner, constructed from a 

large number of images along a vertical scan range. Dimensions of scan, length 1.08mm, 

width 1.43mm and height 437.29µm 

The user must select a vertical scanning range which covers the area of interest; this is 

accomplished using a fine motorized stage which allows any section of the sample to be 

scanned.  As the distance between the sample and objective lens is varied, images are 

continuously captured.  The images are collected by illuminating the sample with 

modulated white light, which has passed through a beam splitter, at which point the light is 

passed through an objective lens.  The resulting image is similar to conventional optical 

microscopy see Figure 2.20.  Once the harmonized interaction between modulated 

illumination, vertical scanning and sensor capturing, a 3 dimensional model is constructed 

Figure 2.21.  The 3D model is a surface representation made up of a large number of 

elements in space.  Figure 2.22 shows that the 3D model of the drill outer corner is 

constructed from 3159121 triangles  

 

Figure 2.22. Screen shot zoomed in on the surface of the drills outer corner, the entier scan of 

the surface is made of 3159121 triangles. 

Focus variation has been added to the latest ISO standards for classifying surface texture 

methods.  The new ISO standards 25178 for the first time includes standardized parameters 

to classify area based measurements.  As this new method of surface characterisation is used 

in this thesis, the author feels that it is required to explain the nuances of the ISO standard 
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surface profile measurement using a tactile probe and its incorporation into this new non-

contact method of capturing a surface profile using focus variation. 

ISO standard 4288 requires that for a surface profile captured using the focus variation 

technique to be comparable to a tactile probe measurement some information about the 

profile must be known, such as an estimated surface roughness range for example between 

0.1µm and 2µm.  This will dictate how long the scan length must be and what cut off 

wavelength must be used, in this example the scan length must me 4mm long and a cut off 

wavelength must be 800µm.  The cut off wavelength is the parameter that separates the 

waviness and roughness from the primary surface profile.  Figure 2.23 shows the primary 

surface profile of a rake face from a TiN coated Jobber drill.  The primary profile shows high 

frequency and low frequency waves, by applying a cut off wavelength (Lc) of 800µm (Figure 

2.24) some of the low frequency has been separated and can be seen in Figure 2.26. 

 

Figure 2.23. Screen shot, showing a topographical image of the scanned surface.  The line 

across the scan is a graphical representaion of the line scan, similair to the idea of a probe 

running across the surface. The primary surface profile can be seen at the bottom showing 

both high and low frequency data.  The repeated pattern is due to the roughness line scan 

being repetedly run across the surface. 

Observing the roughness profile it can still be seen that there is waviness in the roughness 

profile (low frequency), therefore, the cut off wavelength must be reduced.  By reducing the 

cut off wavelength the measurement will not conform to the ISO 4288 standard, however, 

this must be done to eliminate all waviness; this is stated in the Alicona procedure manual 

for surface profile measurements.  By applying a cut off wavelength of Lc 80µm, all of the 

waviness from the primary surface profile has been separated Figure 2.25 and Figure 2.27. 
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Figure 2.24. Screen shot, roughness profile Lc 

800µm, shows partial separation of waviness 

features. 

 
Figure 2.25. Screen shot, roughness profile at a cut 

off wavelength of Lc 80µm, shows only high 

frequency data with all waviness separated from 

primary profile. 

 
Figure 2.26. Screen shot, waviness profile at a cut 

off wavelength of Lc 800µm, shows the partial 

seperation of the waviness from the primary 

profile. 

 
Figure 2.27. Screen shot, waviness profile at a cut 

off wavelengh of Lc 80µm, shows only the low 

frequency data and no high frequency data 

‘roughness’. 
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2.9.2 Tool Maker’s Microscope 

Cutting tool geometries were measured using Tool maker’s microscopes.  The two devices 

used were the Mowhawk (SOP [67]) and the Euro-tech.  The same operating procedure 

applied to both as the only differences between the devices is that the Eurotech has a digital 

camera and a three roller self-centring tool holder assembly, these two differences allow 

quicker measurements to be made as they allow a better view and control of the cutting tool.  

The Mowhawk tool maker’s microscope is shown in Figure 2.28. 

 

Figure 2.28. Image of the Mowhawk tool maker’s microscope showing the Vee slide at a 

position of 90° relative to the objective lens.[67] 

Chisel angles were measured by first placing the drill against the stop inside the vee slide 

and positioning the vee slide to 0° relative to the objective lens.  The cross hairs were then 

lined up with one of the cutting edges as a reference point for the angle measurement seen 

in Figure 2.29, then the eyepiece was rotated counter clockwise to superimpose the 

horizontal cross hair on the chisel angle. 

 

Figure 2.29. A diagram showing the measurement of the chisel angle.  Firstly, positioning 

the vertical cross hair to line up against the cutting edge.  Then to rotate horizontal cross hair 

to line up with the chisel.[67] 

To measure the point angle the vertical cross hair was positioned up against a cutting edge.  

The vee slide was then rotated 90° as seen in Figure 2.30.  At which point the eyepiece was 

rotated clockwise until the cross hair was superimposed on the cutting edge. 
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Figure 2.30. Drawing showing the two steps in measuring the point angle.  Firstly showing 

the vertical cross hair lined up against the cutting edge, followed by the horizontal cross hair 

lined up against the cutting edge.[67] 

To measure the lip relief angle drills were placed against the stop inside the vee slide and 

rotated 90° (Figure 2.31).  The left hand horizontal cross hair was then lined up against the 

cutting edge at which point the vee slide was rotated 90°.  The protractor on the eyepiece 

was then rotated clock wise until the horizontal cross hair lined up with the point face and 

margin. 

 

Figure 2.31. Drawing showing the two steps in measuring the lip relief angle.  Firstly, the 

horizontal cross hair is lined up against the cutting edge, followed by the horizontal cross 

hair on the intersection of the point face and margin.[67] 

Any helical feature, in this case the margin width, can be measured in three ways, by 

measuring the axial, normal and transverse width.  The axial margin width is measured 

along the longitudinal axis of the drill.  The normal margin width is measured normal to the 

helix angle, while the transverse margin width is measured across the margin.  The 

transverse margin width was measured in this work by positioning the drill against the 

stoper in the vee slide with the vertical cross hair lined up against the cutting edge shown in 

Figure 2.32, the vee slide was then rotated 90° at which point the digital vernier callipers 

were set to zero and the vertical scale was moved to the trailing edge of the margin. 
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Figure 2.32. Drawing showing the two steps in measuring the margin width.  Firstly, the 

vertical cross hair lined up against the cutting edge, followed by measuring the margin 

using a digital vernier calliper.[67] 

To measure the web thickness a pin micrometre was used.  Drills were set up in a vertical 

magnetic vee holder to keep them steady, at which point the micrometre was carefully 

wound up so the pin did not indent the drill webbing and affect the measurements.  The 

helix angle was measured using the Euro-tech software which required the operator to 

position the drill as shown in Figure 2.32 at which point three points along the flute were 

inputted into the software to calculate the helix angle using an inverse tan relationship. 
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2.10 Summary 

The choice of cutting tool testing methodology was found to depend on a number of factors 

for example the justification for the test, QA, benchmarking etc. as well as the type of data 

output required, progression of wear or failure data.  Testing methodologies can be broadly 

categorised into two groups, non-destructive and destructive testing.  Non-destructive 

testing the progression of wear is measured periodically for a low number of samples to a 

predefined wear or force limit, at which point the cutting tool may be recovered by re-

grinding.  Destructive testing typically uses a larger sample set but tested to failure. 

The machining system was found to comprise of a number of complex behaviours with 

corresponding sources of variance.  Table 2.2 shows a summary of the three complex 

behaviours and related sources of variance in machining which affects the performance and 

dispersion of tool life.  The preliminary drill test design was developed by taking into 

consideration these factors (Chapter 3.1).  The drill test was designed to operate in a cutting 

regime which could offer a repeatable, single wear/failure mode cutting tool test (robust) 

which minimises the effect of sources of variance on tool life variance, in order to allow 

conclusions to be drawn using small data sets (sensitive). 

Table 2.2 A Summary of three complex behaviours and their related sources of variance 

within the machining system in the context of the developed test. 

Object Complex Behaviour Source of Variance 

Workpiece The intrinsic ability of a 

material to resist cutting i.e. 

machinability  

Chemical compositions 

Distribution of carbides 

Batch heat treatments  

Microstructure/Hardness 

Different suppliers 

Cutting Tool Drill design features interaction 

with workpiece (chip formation 

and tribology i.e. wear 

mechanisms): 

Substrate 

Macro Geometry 

Micro Geometry 

Surface finish 

Coating architecture 

Distribution and volume of 

carbides. 

Deviations of macro and micro 

geometries. 

Surface roughness variation. 

Coating thickness variation. 

CNC Machine Machine tool interaction with 

cutting tool and workpiece: 

Coolant quality 

Static and dynamic 

rigidity(vibration) 

Stability of spindle 

Workpiece fixturing position 

Coolant pH and concentration 

Flow rate 

Temperature  

Worn components 
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Empirical modelling has been used to characterise the effect of machining factors on tool life, 

the limitation of which is that the model will only be representative of the machining system 

the data was collected from.  Therefore, it was used as a tool within this work to model 

sources of tool life variance which a researcher has limited control over, such as batch to 

batch workpiece hardness. 
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3 Experimental Design, Development and Application of an 

Accelerated Drill Test 

3.1   Drill Test Design 

The drill test methodology adopted in this work is that of a accelerated destructive test of 

reletivily inexpensive cutting tools (Jobber drills).  This work was undertaken to reduce 

scatter in the tool life results.  It has been shown in chapter 1 that inorder to accomplish this 

task the complex behaviour within the machining system must be managed and sources of 

variance minimised such as the workpiece fixturing, tool holder and coolant.  Therefore, 

careful clamping of the test plate was needed to reduce any vibrational effects as well as 

deflection caused by the thrust force when drilling (Figure 3.1.).  The previous drill test used 

by the partner organisation drilled 4D (4xDiameter) through holes.  This machining strategy 

potentially exposes the drills cutting edges to chipping (wear mechanism), therefore blind 

holes were used in this drill test to eliminate this potential source of tool life variance.  The 

developed test also limited the depth of hole drilled to 2.5xD, minimising any chip jamming 

effects, which has been shown by Balzers to be a source of cutting torque fluctuation and 

tool breakage Figure 3.2 a & b.  Limiting the hole depth to 2.5xD also reduced any coolant 

access issues, potentially reducing the effect of thermal softening at the cutting edges which 

is a significant factor affecting the performance to HSS cutting tools. 

The choice of cutting tool material was limited to HSS as all grades of WC Co are expensive, 

while HSS is relatively inexpensive.  Also cost and practicality are important issues when 

commercial testing is carried out, therefore, the principle of the value of information gained 

versus the cost of obtaining that information must remain equal or greater, hence M2 HSS 

Jobber drills were chosen as a vehicle for cutting tool development as it is a relatively low 

cost material with a simple design.  There are issues using HSS, it is temperature sensitive, 

once temperatures reach over the tempering temperature ~560 degrees Celsius the material 

begins to lose its hardness and at ~650 the material becomes weak and ductile [68].  This 

temperature limitation restricts the application of the material because it limits the cutting 

speed one can use.  In order to overcome this limitation metal cutting fluids must be used.  

Additionally it is difficult to compare uncoated tools to coated tools due to the difference in 

tool life at the same cutting conditions as coated tools are able to last much longer and 

withstand higher cutting speeds [12].  In addition, once the coating has been worn from the 

outer corner; the tool will be under highly accelerated wear conditions and wear rapidly.  

Therefore, thermal softening must be avoided as the tool life results affected by this will not 

portray an accurate description of the sample sets intrinsic life during use by end users. 

A test material is needed which accelerates tool wear and provides low tool life variance.  

Ideally, this material would have uniform hardness and carbide distribution which may 

allow a sample of cutting tools to wear uniformly.  The test material also needs to be readily 

available and have similar properties over time (batch to batch).  Therefore, D2 cold work 

tool steel and P20 plastic mould steel have been chosen for this study.  D2 cold work tool 
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steel is supplied in the annealed condition which is soft ~ 200 Brinell, however this material 

has large chromium carbides distributed throughout its ferritic matrix therefore it has a low 

machinability by offering a predominately high abrasive wear rate during machining.  On 

the other hand P20 plastic mould steel is supplied in the quenched and tempered condition 

with a Brinell hardness ~310.  This is considerably harder than the D2 steel, however there 

are no hard inclusions to wear the tool which translates to potential high cutting parameters 

to accelerate wear.  This was considered detrimental as HSS is known to be temperature 

sensitive, this wear mechanism has been shown to be a non-linear for a Taylor’s tool life 

graph.  A pseudo random drilling array is also employed to minimise any potential 

unavoidable heterogeneous characteristics in the test plate such as hardness and hard 

carbide inclusions, so all tools in the sample group will be exposed to the same conditions.  

The two test materials were examined through paralleled tool life testing and analysed using 

t tests, bivariate analysis and Weibull analysis then compared against the criteria set. 

A drill test was designed which incorporated the findings from the appraisal of the current 

literature as well as discussions with partner organisation engineers.  The drill test design is 

examined as well as the implications of the choices made for aspects such as the choice of 

cutting tool, workpiece material and the cutting conditions.  An outline of the work in this 

thesis is then put forward. 

 

 

Figure 3.1. Diagram showing the change in workpiece fixturing from the old acceerated drill 

test employed by the partner organisation to the new workpiece fixturing employed during 

the preliminary drill test design phase.  Clamping directly to the CNC bed will eliminate 

plate deflection caused by the thrust forces during drilling, as well as reduce vibration, a 

source of variance from the machine tool system. 
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Figure 3.2. Spindle torque data published by Balzers comparing TiAlN PVD coating on 5D 

hole drilling with (a) and without (b) post polishing.  Drill test: 8.5mm WC-Co drilling into 

graphite cast iron at cutting conditions of 70m/min 0.2mm/rev [69]. 

 

Figure 3.3 Diagram summarising the drill test design as a system. 

 

Figure 3.4. Image showing the drill test setup in a HAAS VF2 VMC. 

Figures removed due to copyright 

reasons. 
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This thesis firstly examined the tool life and the failure modes induced by two workpiece 

materials D2 and P20 steel plate at accelerated cutting conditions in order to decide which 

material could offer an accelerated yet predominately single wear and failure mode.  Sample 

statistics, boxplots, bivariate analysis and Weibull analysis in conjunction with the slope and 

characteristic life tests were used to analyse the data.  The determination of mixed failure 

modes when testing in P20 was determined while D2 did not. 

At this point the machinability of D2 was investigated by measuring the cutting forces 

during drilling for 9 different cutting parameters.  Sources of variability in the drilling 

system were also characterised, such as, the hardness distribution across a steel plate (D2) 

using Leeb D and Vickers hardness measurements as well as the variability in macro 

geometry features of mass manufactured Jobber drills.  The findings showed that plate 

hardness was heterogeneous across a plate but the variance was small.  Jobber drill 

geometry features were found to have a large variance but the majority were within 

tolerances. 

The developed drill test was then evaluated for its sensitivity to small changes in tool life 

using a surface engineering case study, pre and post polishing of TiN coated Jobber drills.  A 

full factorial experiment was designed to evaluate the effect of pre and post drag polishing 

on tool life at two different cutting speeds.  Statistical tests such as ANOVA and Mood’s 

median were used to distinguish whether population changes had occurred to tool life and 

surface roughness measures using small samples.  The results of which showed that 

although both pre and post polishing significantly affected surface roughness measures the 

only treatment which significantly effected tool life was pre polishing, this result was 

reproduced at both cutting speeds using ANOVA, however the Mood’s median test 

suggests that the sample size may need to be 6 or greater with the current drill test design 

(current standard deviation). 

Batch to batch plate hardness was observed.  Therefore the effect of batch to batch plate 

hardness on tool life for uncoated Jobber drills was empirically modelled by extending the 

Taylor’s tool life formula.  The range of plate hardness this work covered was based on the 

variability in the supplied D2 steel from one supplier (Schmolz and Bickenbach) and was 

limited by the steel plates left.  The cutting conditions characterised were of the range for 

uncoated M2 HSS Jobber drills. 

An overall discussion is presented which incorporates the implications of all research 

findings in the context of the design, characterisation and application of the developed 

accelerated drill test.  The thesis ends by highlighting the significant conclusions and future 

work. 
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3.2   A Statistical Analysis Comparing Tool Life and Failure 

Modes from Accelerated Drill Tests in P20 and D2 Steel Plate 

3.2.1 Introduction 

It has been shown (chapter 1 & 2.5) that the complex behaviour exhibited by the workpiece 

material 4needs to be managed in the context of cutting tool testing.  The crystal phase [23] 

thermal conductivity and carbide distribution [24] for example, will influence a materials 

ability to resist cutting i.e. machinability.  This intrinsic resistance to cutting can be observed 

by measuring the cutting forces, rate of tool wear or life (time or no. of holes) at failure 

during machining. 

The cutting tool chosen for this particular study was the Sutton Tools 2.9mm uncoated R40 

stub drill with a 130° split point angle and parabolic flute shape.  This drill geometry was 

used (instead of the simpler Jobber drill design), because it offered a real manufacturing case 

study the partner organisation had, which was to determine the effect of two drill body 

hardness’s on tool life.  The work allowed the evaluation of the preliminary drill test design 

using the existing workpiece material used by the partner organisation P20 compared 

against D2. 

The objective of this experiment was to determine the tool life distribution and the number 

of wear/failure modes present when drilling under accelerated conditions into P20 and D2 

steel plate via statistical methods. 

In order to design and develop a robust yet sensitive drill test which operates rapidly, it has 

been identified that a test material is needed which provides low tool life variance by 

offering a single/repeatable failure mode under accelerated tool wear conditions.  The 

solution may be provided by drilling a material with low machinability and/or accelerating 

the cutting conditions and limiting the number of wear/failure modes in operation.  Ideally, 

this material would have uniform hardness and microstructure and if applicable, carbide 

distribution.  These properties may allow a sample of cutting tools to wear uniformly and 

fail by one mode repeatedly.  Typically, wear-out processes follow a normal distribution 

compared to fatigue failure [15]; notwithstanding, depending on the type and number of 

wear and failure modes in operation, the distribution may be non-normal. 

D2 cold work tool steel and P20 plastic mould steel have been chosen for this study.  D2 steel 

is supplied in the annealed condition which is soft ~ 200 Brinell, however this material has 

large chromium carbides distributed throughout its ferritic matrix therefore it has a low 

machinability by offering a predominately high abrasive wear rate during machining [24].  

On the other hand P20 plastic mould steel (partner organisations current testing material) is 

supplied in the quenched and tempered condition with a Brinell hardness ~310.  This is 

considerably harder than the D2 steel; however there are no hard inclusions (carbides) to 
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wear the tool.  Therefore, P20 may need a high cutting speed and/or feed in order to attain 

failure within an economic test duration. 

3.2.2 Experimental Procedure 

This work generated optical micrographs and measured the surface hardness of two 

different workpiece materials D2 cold work tool steel and P20 plastic mould steel.  The body 

hardness was also measured on all R40 drills, followed by accelerated drill testing to failure 

in the two aforementioned materials. 

3.2.2.1 Workpiece Material D2 and P20 

The supplier of the D2 steel, Schmolz and Bickenbach, supply an equivalent D2 plate 

material within the AISI tolerances [70], trade name Cryodur.  They report a hardness value 

of approximately 200 Brinell and a nominal chemical composition shown in Table 3.1 [71]. 

From this point on in the work this material will be referred to as D2, unless specified.  The 

supplier of the P20 steel, Bohler Uddeholm, supply an equivalent P20 steel within AISI 

standards [70] trade name M200.  They report a plate hardness within the range of 290-330 

Brinell hardness [72] and a nominal chemical composition shown in Table 3.2. 

The hardness was measured across the surface using Leeb D hardness tester.  A 

microstructural analysis of the two materials was completed.  A top, bottom and side piece 

was cut off from the test plate, first by using a KASTO mechanical hacksaw at a low feed 

rate with cutting oil, followed by a Struers Labotom cut off wheel using emulsion coolant. A 

slow feed rate was used not to excessively heat the workpiece.  The samples were then 

mounted in conductive phenolic resin in a Presi Mecapress.  After which, the samples were 

polished in a Struers RotoPol using the MD-Piano disk with water for plane grinding then 

the MD-Allegro and MD-Largo with a 9μm diamond suspension for fine grinding, followed 

by a polishing step using the MD-Plus with a 3μm diamond suspension.  Lastly the MD-Nap 

with 1μm diamond suspension was used for a final polishing step.  Once samples were 

ground and polished a chemical etching treatment of 4%Nitric acid 96% ethanol was 

accomplished with 25 seconds for D2 and 15 seconds for P20. 

Table 3.1. Nominal workpiece composition for D2 cold work tool steel supplied by Schmolz 

and Bickenback [71]. 

Chemical composition (wt%)           

  C Si Mn Cr Mo V Fe 

D2 1.55 0.3 0.35 12.0 0.75 0.9 Balance 
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Table 3.2. Nominal workpiece composition for P20 plastic mould steel supplied by Bohler 

Uddeholm [72]. 

Chemical composition (wt%)           

  C Si Mn Cr Ni Mo Fe 

P20 0.37 0.3 1.4 2.0 1.0 0.2 Balance 

3.2.2.2 Drilling Conditions in D2 and P20 Steel 

Using tool life as the machinability criterion [73] preliminary testing was completed to find 

accelerated cutting conditions which would give between 100 and 200 holes tool life, this 

method of determining cutting conditions has also been used by Posti [41] and shown to be 

a reliable method of cutting condition determination .  The chosen accelerated conditions 

was a cutting speed of 23m/min, feed rate of 0.08mm/rev for D2 while 35m/min and a feed 

of 0.14mm/rev was used for P20.  A drill depth of 7.25mm or 2.5xD was used to minimise 

any chip packing and coolant flow issues.  Testing was conducted in a HAAS-VF2 CNC 

machine (Vertical Machining Centre) VMC.  The lubricant used was Houghton Hocut960 

with concentration of approximately 7-8% in a flooded configuration. 

3.2.2.3 R40 Drill Hardness 

The body hardness for the 2.9mm R40 drills used in this study was measured using a 

Vickers Limited hardness tester with a 30kg load.  Drills were first secured to a V-block 

clamp designed for multiple drill measuring, followed by a small flat ground into the body 

of the drill.  Three indents were made per drill and the results averaged. 

 

Figure 3.5. Image of the R40 stub drills held in a multiple vee clamp with the Vickers 

indenter above. 

3.2.2.4 Statistical Analysis methods 

Tool life data was analysed using the boxplot [74] and sample statistics to compare the 

measures of central tendency and dispersion of tool life between sample groups.  Bivariate 

analysis [61] was used in order to determine if there existed a correlation between drill body 

hardness and tool life and whether body hardness could be responsible for tool life scatter.  

Weibull analysis using the median rank was used in order to apply the b slope and 

characteristic life tests for mixed failure distributions.  The median rank was used compared 
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to the mean rank, as it has been shown to represent a sample group central tendency more 

accurately  for sample sizes lower than 49[64]. 

3.2.3 Results 

3.2.3.1 P20 and D2 microstructure and hardness 

Optical micrographs of the microstructure for D2 cold work tool steel in the annealed 

condition and P20 plastic mould steel in the quenched and tempered condition are shown in 

Figure 3.6.  Inspecting Figure 3.6 a, c and e confirms that the microstructure of D2 plate used 

has a ferritic matrix with large chromium carbides as the chromium carbides did not etch 

while the ferrite grain boundaries are slightly exposed. Chromium carbide grain size was 

measured to be between 5 and 30µm wide.  Additionally, there appears to be slight banding 

of the chromium carbides across the side sample (Figure 3.6 e).  Figure 3.6 b, d and f, reveals 

that P20 has a fine martensitic microstructure, as evidenced by the acicular grain structure, 

with a small number of inclusions sparingly distributed across the samples between 5-10µm 

wide.  Plate hardness measurements shown in Table 3.3 reveals that P20 has a mean 

hardness of 559 HLD (~280 Brinell) and D2 a mean hardness of 470 HLD (~193 Brinell), with 

both plates having a small dispersion of hardness measurements. 
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Table 3.3. Sample statistics of measured hardness data for D2 and P20 test plate. 

Variable  N Mean  St Dev Min Q1 Median Q3 Max 

D2 Plate HLD 28 470 3.9 460 467 471 473 476 

P20 Plate HLD 28 559 5.2 549 555 560 564 573 

 

  
D2 Top Face 20x (a) P20 Top face 20x (b) 

  
Bottom Face 20x (c) P20 Bottom face 20x (d) 

  
D2 Side face 20x (e) P20 Side face 20x (f) 

Figure 3.6 (a,b,c,d,e,f). SEM micrographs with a 50μm scale bar showing top, bottom and 

side face of D2 and P20 steel plate used in drill testing. Samples etched with Nital 4% 
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3.2.3.2 R40 Drill Hardness 

The drill hardness results show that the low hardened R40 drills have a mean Vickers 

hardness normally distributed around 760HV30, while the high hardened drills have a mean 

Vickers hardness normally distributed around 864HV30.  Both drill samples have a small 

standard deviation of 10HV30 and 7HV30 respectively.  From this point on in the work the 

low and high hardened drills will be referred to as 760HV30 860HV30. 
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Figure 3.7. Boxplot of drill body hardness measurements made from the average of three 

Vickers hardness readings on the body of each low and high hardened R40 drill. 

Table 3.4. Sample statistics for low and high hardened R40 drills made from the average of 

three Vickers hardness readings on the body. 

Description  N Mean  St Dev Min Q1 Median Q3 Max 

Low hardened drills  20 760.3 10 742 755 761 767 780 

High hardened drills 20 864.5 7 851 861 865 869 878 

3.2.3.3 Tool life results 

Individual tool life results for the R40 drills tested in P20 and D2 test plate are shown in 

Figure 3.8, sample statistics of the tool life are shown in Table 3.5, in addition the mean tool 

lives with their corresponding 95% confidence intervals are shown in  

Table 3.6.  These results show that from the 760HV30 drills tested in P20 and D2 the mean 

results are similar, 158.7 and 133.0 holes respectively, however, the results show that the 

drills tested in D2 have a higher median value, 99.0 and 137.0 respectively.  Comparing the 

mean and median value of the drills tested in P20 and D2 the tool life distribution for the 

R40 drills tested in P20 are skewed while the tool life distribution for D2 is normal.  The tool 

life from drills tested in P20 have a higher standard deviation then the drills tested in D2, 

122.4 and 46.7 respectively.  The confidence intervals for the mean tool life show that the P20 
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results with the lower and upper confidence interval being 71.2 – 246.2 respectively and for 

D2 the confidence intervals are 100.5 to 167.3. 

The 860HV30 R40 drills tested in P20 and D2 have significantly different means of 247.9 and 

183.9 respectively, however, the median results reveal the same relationship as the 760HV 

R40 drills with the median being higher for the D2 tool life of 160.5 to 14.0 2.5xD holes 

respectively.  Table 3.5 indicated that the tool life is highly skewed for the 860HV drills 

tested in P20 and only slightly skewed for the 860HV drills tested in D2.  The standard 

deviation is extremely high for the 860HV drills tested in P20 compared to the D2 results, 

with values of 386.5 and 90.0 respectively.   

 

Table 3.6 shows a large range between the lower and upper confidence intervals for 860HV 

R40 drills tested in P20 -28.5 to 524.3 indicating that calculating the confidence intervals for 

the population mean is not practical for this data set, as it is not a normal distribution.  The 

860HV30 drills from the same population tested in D2 have a confidence interval range of 

119.2 – 248.3 for the population mean. 
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Figure 3.8. Individual value plot for 750 and 850HV30 R40 2.9mm bright stub drills tested in 

P20 and D2 steel showing a smaller range of results testing in D2. 

Table 3.5. Sample statistics for tool life results represented as the number of 2.5xD holes for 

R40 760HV30 and 860HV30 drills tested in P20 and D2 workpiece. 

Description  N St Dev Min Q1 Median Q3 Max 

P20 760HV30 10 122.4 39.0 61.2 99.0 306.7 363.0 

P20 860HV30 10 386.5 4.0 6.7 14.0 414.0 1114.0 

D2 760HV30 10 46.7 70.0 93.0 137.0 171.0 208.0 

D2 860HV30 10 90.0 83.0 120.5 160.5 215.7 383.0 

 

 

Table 3.6. Mean tool life of 760HV30 and 860HV30 R40 drills tested in P20 and D2 with 

corresponding lower and upper confidence intervals for the mean number of 2.5xD holes. 



   54 

 

Description N Mean Mean 95% CI Lower Mean 95% CI Upper 

P20 760HV30 10 158.7 71.2 246.2 

P20 860HV30 10 247.9 -28.5 524.3 

D2 760HV30 10 133.0 100.5 167.3 

D2 860HV30 10 183.9 119.5 248.3 

 

Referring to Figure 3.9, the results show that the 760HV30 R40 drills tested in P20 had six 

drills preforming below the average tool life, with two of the six drills having hardness 

above the mean and four below.  The remaining four drills preformed above the mean tool 

life with two drills above and below the mean hardness.  The 860HV30 R40 drills tested in 

P20 had six drills with tool lives far below the mean tool life, with five drills below the mean 

hardness and one above.  While the remaining four drills had tool lives above the mean tool 

life and above the mean hardness. 

The results from Figure 3.10 shows that the 760HV30 R40 drills tested in D2 have six drills 

which preformed below the mean tool life with two drills having hardness’s above the mean 

and four below.  Four of the 760HV30 drills preformed above the mean life with two above 

the mean hardness and two below.  The 860HV30 R40 drills tested in D2 had six drills with 

tool lives below the mean, with five drills below the mean hardness and one above.  

Furthermore the remaining four drills preformed above the mean life with three having 

body hardness’s below the mean and one above 

 

Figure 3.9. Tool life results versus corresponding drill hardness measurements for samples 

drilled in P20 test. Vertical and horizontal lines refer to the means of the tool life and drill 

body hardness. 
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Figure 3.10. Tool life results versus corresponding drill hardness measurements for samples 

drilled in D2. Vertical and horizontal lines refer to the means of the tool life and drill body 

hardness. 

 

3.2.3.4 Weibull Failure Mode Analysis 

Weibull analysis was applied to the failure data collected from accelerated drill tests, 

(chapter 2.7 Eq. 6).  Samples 760HV30 and 860HV30 drills tested in P20 appear to have mixed 

failure modes in operation as two different slopes are observed in both groups (Figure 3.11).  

The shape factor (b) for the 760HV30 drills is 1.33 indicating a wear out failure mode within 

the design period (Table 3.7).  The shape factor for the 860HV30 drills is 0.45, this shape 

parameter is below 1, indicating that early life failures have predominately occurred due to 

the low gradient and therefore the spread of results.  In the context of cutting tools  

In order to test the hypothesis of mixed failure modes, the failure transition point was 

estimated in both 760 and 860HV30 drills tested in P20.  Using the rule of maximising the 

linear correlation coefficients the data sets were split into two subsets labelled 760HV30a and 

760HV30b, the same was applied to 860HV30 failure data.  Applying the b slope test with a 

95% confidence limit (Eq. 7) resulted in the hypothesis of mixed failure modes being 

confirmed.  The flatter slope of both subsections lied below the lower confidence bound and 

or the steeper slope lied above the upper confidence bound Table 3.8.  The subsections have 

been shown to be statistically different groups with different failure modes.  The 760HV30a 

data has a shape factor of 1.84, still indicating failure within the design period.  The 

760HV30b data has a shape factor of 3.66 (Table 3.8) which is also failure within the design 

period, however, this value indicates a normal distribution unlike the 760HV30a which is a 
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skewed distribution.  The 860HV30a subsection has a shape factor of 1.76 which is a failure 

within the design period with a skewed distribution Table 3.8.  The 860HV30b has a slope of 

0.57 indicating early life or premature failure. 

 

Figure 3.11. Weibull plot of the life time data using median rank for 760 and 860HV30 R40 

2.9mm bright stub drills tested in P20 steel plate. 

Table 3.7. Weibull factors using median rank, shape factor b, Characteristic life T and linear 

correlation coefficiant R2 for 760 & 860HV30 drills failure data. 

Median rank       

Description b slope T characteristic life R2 

P20 760HV30 1.33 177.84 0.91 

P20 860HV30 0.45 136.64 0.78 

 

Slope test for mixed failure distribution 

                                                              

                                                  Eq. 7 

 

Where: 

u1-  = Confidence limit for both sides (1.96 for 95% confidence limit) 

b = Shape parameter, slope of the fitting line in the Weibull plot. 

n = Number of samples. 

Characteristic life test for mixed failure distribution 

                                                               

                                                  Eq. 8 
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Where: 

u1-  = Confidence limit for both sides (1.96 for 95% confidence limit) 

n = Number of samples. 

T = Scale parameter, characteristic life during which a total of 63.2% of samples have 

failed. 

b = Shape parameter, slope of the line of best fit from the Weibull plot. 

The lower and upper 95% confidence bounds are calculated using the data from  

Table 3.7. 

Slope test for 760HV30 drills in P20. 

                                                       

                                                  Eq. 9 

 

 

Slope test for 860HV30 drills in P20. 

                                                       

                                                  Eq. 10 

 

 

 

Figure 3.12. Mixed Weibull plot of the life time data using median rank for 760 and 860HV30 

R40 2.9mm bright stub drills tested in P20 steel plate. 
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Table 3.8. Seperated Weibull factors using median rank. Shape factor b, Characteristic life T 

and linear correlation coefficiant R2. Within bounds meaning that the distributions do not 

have mixed failures. 

Median rank         

Description b slope   
T characteristic life (no. 

of 2.5xD holes) 
R2 

P20 750 HV30 a 1.84 Within Bounds 135.4 0.92 

P20 750 HV30 b 3.66 Out of Bounds 275.5 0.97 

P20 850 HV30 a 1.76 Out of Bounds 16.0 0.95 

P20 850 HV30 b 0.57 Within Bounds 218.1 0.94 

 

The Weibull graph (Figure 3.13) of the 760HV30 and 860HV30 R40 drills tested in D2 also 

showed possible mixed failure modes.  The 760HV30 drills had a shape factor of 2.91 with a 

characteristic life of 151 holes (Table 3.9), indicating that these drills failed within the design 

period.  The 860 HV30 drills have a shape factor of 1.36 and a characteristic life of 135 holes 

(Table 3.9) also indicating failure within design period.  The 760HV30 group appears to have 

similar slopes but offset in time, while the 860HV30 group appears to have different slopes 

(Figure 3.13).  Therefore the slope (Eq. 11) and characteristic life (Eq. 12) test was conducted 

on these data sets.  The 760HV30 and 860HV30 groups were split into subsets by using the 

rule of maximising the linear correlation coefficients.  The characteristic life test revealed 

that the 760HV30 groups ‘a’ and ‘b’ are not offset in time; however the slopes are significantly 

different with subset ‘b’ lying above the upper slope limit.  The 760HVa and b subsets have a 

shape factor 3.96 and characteristic tool lives of 136 and 158 holes.  The results showed that 

the 860HV30a and 860HV30b passed the slope test indicating that all drills in this sample 

failed uniformly. 
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Figure 3.13. Weibull plot of the life time date using median rank for 760 and 860HV30 R40 

2.9mm bright stub drills tested in D2 steel plate. 

Table 3.9. Weibull factors using median rank, shape factor b, Characteristic life T and linear 

correlation coefficiant R2 for 760 & 860HV30 drills failure data. 

Median rank       

Description b slope 

T characteristic life 

(no. of 2.5xD holes) R2 

D2 750HV30 2.91 150.9 0.97 

D2 850HV30 1.36 135.8 0.97 

 

Slope test for 760HV30 drills in D2 with median ranking. 

                                                     

                                                  Eq. 11 

 

 

Characteristic life test for 760HV30 drills in D2 with median ranking. 

                                             

                                             Eq. 12 

 

 

Slope test for 860HV30 drills in D2 with median ranking. 

                                                           

                                                    Eq. 13 
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Figure 3.14. Mixed Weibull plot of the life time date using median rank for 760 and 860HV30 

R40 2.9mm bright stub drills tested in D2 steel plate. 

Table 3.10. Seperated Weibull factors using median rank. Shape factor b, Characteristic life T 

and linear correlation coefficiant R2. Within bounds meaning that the distributions do not 

have mixed failures. 

Median rank           

Description b slope   
T characteristic life 

(no. of 2.5xD holes) 
  R2 

D2 760HV30 a 3.52 Within Bounds 136.1 Within Bounds 0.91 

D2 760HV30 b 3.96 Out of Bounds 158.9 Within Bounds 0.96 

D2 860HV30 a 1.28 Within Bounds 155.2 Not Tested 0.99 

D2 860HV30 b 0.96 Within Bounds 114.1 Not Tested 0.94 

3.2.4 Discussion 

This experiment was designed to identify which of the two test materials could offer a single 

wear and failure mode during a test and accelerate tool wear in order to minimise time 

spent testing, so as to provide low tool life variance induced by the complex behaviour of 

the material and the wear mechanisms interacting with a HSS drill. It has been identified 

that wear-out processes follow a normal distribution compared to fatigue failure [15].  

Therefore this indicator was considered during the analysis of tool life data.  The materials 

microstructure was also examined, as a material with a uniform hardness and 

microstructure and if applicable, carbide distribution may offer low tool life variance by 

having all samples interacting with notionally the same material over a test. 

A microstructural examination of D2 and P20 steel showed that the D2 equivalent steel plate 

on a microscopic scale is an inhomogeneous material.  The D2 plate consisted of large 
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chromium carbides embedded in a ferritic matrix, with weak banding of carbides.  This is 

consistent with the microstructural analysis of annealed D2 reported by Roberts [75].  

However, the D2 steels inhomogeneity is uniformly distributed.  Coupled with the fact that 

the scale of the drill features used such as the cutting edge lengths (~1.2mm) is an order of 

magnitude larger than any localised non-uniformity (carbide size 5-30µm), in the context of 

drill testing the material may be considered uniform.  Therefore, a sample of drills will be 

interacting with notionally the same microstructure.  Variation of the surface plate hardness 

was measured in D2, with a mean hardness of 470HLD and a standard deviation of 3.9HLD; 

however, this is still a low dispersion of hardness.  Therefore, D2 steel in the application of 

drill testing can be described as a homogeneous material with uniform properties. 

The P20 plate examined was found to be homogeneous with a martensitic micro structure 

and a small amount of inclusions distributed sparingly throughout.  The P20 plate was 

considerably harder than the D2 plate with a mean hardness of 559HLD.  The standard 

deviation was also slightly higher with a value of 5.2HLD; however this is a low dispersion 

of hardness measurements.  Therefore, P20 steel may also be considered, in the application 

of drill testing, to be a homogeneous material with a uniform hardness and microstructure 

suitable for testing.  However, these results are only applicable to a small region of the plate 

where the sample was taken.  A sample from the centre and edge of the plate may reveal a 

difference in the microstructure across the plate, as the cooling rate is an extremely 

important factor in grain size [76]. 

The sample statistics and box plots of the tool life data from drilling in D2 and P20 reveal 

that a lower tool life standard deviation was attained when testing in D2 rather than P20.  

Additionally the drills tested in D2 had normal distributions of tool life, this indicates a 

wear-out process [15]. 

The Weibull slope and characteristic life test for mixed failure distributions revealed that 

both sample groups had at least two different failure types when tested in P20, while only 

the 760HV30 R40 drills tested in D2 had mixed failures due to the b slop test.  The mixed 

failures while testing in P20 is one reason for the significantly larger standard deviations 

calculated, while the mixed failure in the 760HV30 drills tested in D2 did not influence the 

standard deviation as much.  The bivariate graphs revealed that the cause of the failures was 

potentially not due to the variance in the body hardness of the R40 drills as the standard 

deviation for both 760HV30 and 860HV30 samples are small, 10HV30 and 7HV30 respectively 

and drills with similar hardness performed well when tested in D2.  Additionally, the drill’s 

hardness is still significantly harder than the workpiece materials. 

The early life failures may be due to microstructural defects within the HSS, such as 

fractured ledeburite carbides which have fractured during the drawing process which may 

weaken the cutting edges.  Another possible reason could be the macro geometry features 

out of tolerance, such as the primary lip relief [16].  If the primary lip relief of the six drills 

which failed early was not high enough then their interaction with the workpiece at the 
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accelerated feed rate used would result in severe friction conditions on the flank face, 

however, this is impossible to be done post-test.  It may be acceptable for the inspection of 

the primary lip relief pre-test, in order to eliminate this factor as a potential cause, as this 

feature is relatively simple and quick to measure compared to point centrality or lip height 

variation.  However, the D2 material was more difficult to machine due to the chromium 

carbides and did not require high cutting speed or feed rate in comparison to P20 to 

accelerate wear and therefore would not require any pre-test inspection of macro 

geometries.  Note that the abrasive wear encountered while machining annealed D2 is 

difficult to identify.  The 2 body abrasion model as described by Misra and Finnie [77] where 

the hard particles are embedded or rigidly attached in or to the second body and are able to 

cut deeply into the first body may explain this type of abrasive wear encountered while 

machining D2.  However, Leed [78] states that while machining annealed D2 the cutting 

edge is able to ‚plough through the soft *ferritic+ matrix and literally push the hard carbides 

aside‛ which is more in favour of a closed three body abrasion model as defined by Misra 

and Finnie [77] where the hard particles are free to move between two closely mating 

surfaces.  A source of complexity in defining the abrasive wear holistically arises from the 

questions, are the chromium carbides truly fixed, free to move or somewhere in between?  

How do the carbides interact with the cutting tool as the chip flows across the rake and the 

flank moves across the freshly machined surface? 

The analysis of tool life performance of the 760HV30 and 860HV30 R40 drills revealed that the 

860HV30 high hardened drills had the highest mean tool life performance when tested in P20 

and D2 steel.  The median tool life results only show this relationship for drills tested in D2, 

as the 860HV30 drills resulted in a large standard deviation in tool life and a large number of 

early life failures (60% of drills) which significantly skewed the distribution to the lower 

end.  However, when comparing the 760HV30 and 860HV30 R40 drills tested in D2 there is no 

significant difference between the mean of the samples at a confidence limit of 95%, as the 

confidence limits cross over.  This conclusion could not be drawn from the drills tested in 

P20.  It can be argued that if no significant conclusion can be drawn from a test, therefor no 

new information has been gathered yet a cost has been paid.  This places D2 as the 

preferable test material in the context of developing a robust, sensitive and timely drill test. 

3.2.5 Conclusions 

As expected, D2 cold work tool steel was found to have an inhomogeneous microstructure, 

however, it was confirmed that it is evenly distributed across the sample examined with 

weak banding of the chromium carbides.  Conversely, P20 plastic mould steel was found to 

have a homogenous microstructure with inclusions found sparingly distributed.  Surface 

hardness measurements were within a small range for both materials.  Localised 

heterogeneous characteristics such as carbide banding in D2 and inclusions in P20 were 

found to not be in the same order of magnitude as the length of cutting edges for the 2.9mm 

diameter drill used.  Notwithstanding, in the context of drill testing, the inhomogeneous 
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material (D2) did not lead to an increase in tool life variance, while the homogenous material 

(P20) did. 

Tool life data analysed revealed skewed tool life distributions when testing in P20 and 

Weibull tests for mixed failures distributions suggests that multiple failure modes operated 

during accelerated drill testing in P20.  This resulted in a large standard deviation which did 

not allow a statistically significant comparison to be made between the 760HV30 and 860HV30 

drills.  In stark contrast, no mixed failures were found from 860HV30 drills tested in D2 but a 

mixed failure distribution was found within the 760HV30 drills tested.  However, this did not 

significantly increase the standard deviation in tool life and therefore the conclusion that 

there is no difference in the population mean for the two hardness drills could be made.  The 

D2 material potentially offered an accelerated wear rate through predominately abrasive 

wear, however, the actual wear mechanism was not determined.  The tool life criteria used 

to determine accelerated cutting conditions (100-200 holes) for P20 was potentially too high 

for drills which may have had their primary lip relief too low.  This work suggests the 

importance of the acceleration of the abrasive wear mechanism for low tool life variance in 

testing of HSS drills and not high mechanical or thermochemical wear mechanisms with 

P20. 

The findings from this experiment indicate that D2 steel is the preferable test material over 

P20 steel, as it has shown to offer a repeatable failure mode with a low standard deviation of 

tool life, potentially via a predominately abrasive wear mode.  D2 has also shown to 

accelerate wear without significantly increasing the cutting parameters in comparison to 

P20, offering an economic test duration.  Therefore this material was exclusively used during 

the subsequent accelerated drill tests. 
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3.3   Examining Sources of Tool Life Variability and Torque 

and Thrust Response to Cutting Parameters in Drilling of D2 

Steel 

3.3.1 Introduction 

A premise of this thesis is that if sources of tool life variance are eliminated and/or reduced 

and the complex behaviours of the machining system can be managed for a single and 

repeatability wear/failure mode, then small differences between samples (which themselves 

are small) may be distinguished by reducing scatter in the tool life results.  It is known that 

sources of variance within the machining system effect the distribution of tool life results.  It 

was shown in the previous experiment (chapter 3.2) that two physically different sample 

sets of the same drill design tested in P20 were not able to be tested for a population 

change/difference as the standard deviation in tool life was large and the distribution non-

normal and bi-modal.  However, this did not occur with the same samples tested in D2, as 

the standard deviation was small compared to the sample size and the distributions were 

close to normal which allowed a statistical test to show that there was no significant 

difference in tool life between the two samples.  It was postulated that D2 drilled in the 

specific cutting regime was able to offer a single and repeatable failure mode as shown by 

the low standard deviation. 

A source of tool life variance previously identified in chapter 1.3 is the macro geometry 

features.  Key features which have significant effects on the central tendency and dispersion 

of tool life results are the primary lip relief, lip height variation and chisel edge centrality 

[16].  Therefore, the variability in macro geometry features of the 6.35mm uncoated Jobber 

drills was determined using tool maker’s microscopes, as this drill has been chosen by the 

partner organisation to be used exclusively in cutting tool design experimentation.  

Therefore an estimate of the dispersion of the population is justified. 

Another source of tool life variance examined within this chapter is the plate hardness.  The 

effect on tool life dispersion has been shown to be significant in the study by Vogel and 

Bergmann [12].  They determined the effect of plate hardness on the tool life for Jobber drills 

tested to screech failure in 42CrMo4V steel.  They showed that between 28-36 HRC an 

exponential fall in the number of holes drilled (tool life) occurs.  Therefore, tool life is 

sensitive to plate hardness, hence, the plate hardness was measured using a Leeb D portable 

hardness device and a Vickers 30Kg hardness machine, in order to map the spatial hardness 

distribution in the test plate.  The hardness distribution was a factor investigated in the 

previous experiment however, the distribution of hardness across the plate was not 

determined, additionally an evaluation of the accuracy of the portable hardness method 

needed to be conducted as this method will be used in future tests due to the size of the steel 

plate. 
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It has been shown by Williams, Smart and Milner in their turning experiments of low carbon 

steel (Figure 2.12) that a minimum in cutting force occurs between 30-35m/min as the cutting 

speed is increased from 0-50m/min due to BUE formation.  Additionally, according to 

Dolodarenko and Ham [79] ‚In actual drilling operations, built-up-edge is observed in all 

but a few exceptional cases‛ as HSS drills are typically operating in the BUE formation 

region (Figure 2.12).  Balzers have also shown that the cutting torque will increase the 

deeper a hole is drilled due to chip removal issues (Figure 3.2) [69].  With all the complex 

interactions and large number of factors which influences the cutting forces, can a specific 

cutting force be prescribed to a drill?  Hence, the machinability of D2 was investigated 

through the evolution of torque and thrust over the life of a drill at a set of nine cutting 

parameters using the M2 uncoated 6.35mm Jobber in order to determine whether a specific 

cutting force can be prescribed as well as to determine if 2.5xD hole depths offer no chip 

removal issues. 

3.3.2 Experimental Procedure 

The macro geometry features of 52 randomly selected 6.35mm uncoated Jobber drills from a 

batch of 500 was measured.  The surface hardness measurements of a plate of D2 cold work 

tool steel.  Lastly, the torque and thrust was progressively measured during drilling into the 

aforementioned D2 plate for nine different cutting conditions using nine of the 52 drills 

randomly sampled. 

3.3.2.1 Jobber Drill Geometry 

The drill used in this study was the Sutton Tools 6.35mm uncoated M2 HSS Jobber.  The drill 

macro design was measured using two tool makers’ microscopes, the first model 

MohawkTools Co. 560 Tool Analyzer consisting of the standard 90° pivot vee stage with 

objective lens, the second, a Euro-tech tool makers microscope fitted with a digital camera.  

Both measurement devices follow the same procedures (chapter 2.9.2) in order to measure 

cutting tool features, it is the same measurement tool after all.  The Jobber drill design 

specification is shown in Table 3.11.  Jobber drills used in the work were selected at random 

from a batch of 500 drills in total were measured to gauge the macro geometry variance. 

Table 3.11. Design specifications measured for the 6.35mm jobber drill. 

Design specification 6.35mm diameter 

jobber drill 
Value Standard  

Chisel angle (°) 120-125 Sutton Tools standard 

Point angle (°) 118 ± 5 ASME B94.11M-1993 

Web thickness (mm) 0.95-1.00 DIN 1414 Twist Drills 

Mean transverse margin width (mm) 0.315–0.63 DIN 1414 Twist Drills 

Lip relief angle(°) 14 ± 2 Sutton Tools standard 
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Mean helical angle (°) 30-35 DIN 1414 Twist Drills 

Point centrality (µm) 102 MAX ASME B94.11M-1993 

Relative lip height (µm) 76 MAX ASME B94.11M-1993 

3.3.2.2 Workpiece Material & Hardness 

The D2 steel used in this work was supplied by Bohler Uddeholm.  The D2 plate steel is 

supplied in the annealed condition with a hardness approxamently 210 Brinell and a 

composition given in Table 3.12.  The plate hardness was measured using a hand held Leeb 

D tester (HLD) and a Vickers Limited hardness tester with a 30kg load (HV30).  The 

measurements were made across the top surface of a 40cm x 36cm D2 plate in an 8x8 grid.  

Four measurements were made per grid and averaged. 

Table 3.12. Nominal workpiece composition for D2 cold work tool steel supplied by Bohler 

Uddeholm [80]. 

Chemical composition (wt%)           

  C Si Mn Cr Mo V Fe 

D2 1.55 0.25 0.35 11.8 0.8 0.95 Balance 

3.3.2.3 Accelerated Cutting Conditions 

Nine accelerated cutting parameters (cutting speed and feed rate) were selected in a 2 factor 

3 level array.  The lowest cutting parameter (30m/min and 0.1mm/rev with emulsion 

coolant) was the lowest recommended accelerated conditions from discussion with Sutton 

Tools engineers [81].  The feed rate of 0.1mm/rev is the recommended for general purpose, 

however the cutting speed is double that advised for tool steels.  The other eight cutting 

parameters were determined by increasing the lowest cutting speed by intervals of 5m/min 

and the feed rate by 0.025mm/rev see (Table 3.13).  Nine jobber drills were selected from the 

52 drills test each of the cutting condition over their entire life measuring torque and thrust.  

The drill test was carried out in a VMC HAAS-VF2SS CNC machine.  The lubricant used 

was a Houghton Hocut960 with concentration of approximately 7-8% in a flooded 

configuration. 

Table 3.13. Showing experimental design of accelerated cutting conditions for study. 

Drill No. Feed rate (mm/rev) Cutting Speed (m/min) 

28 0.100 30 

38 0.100 35 

35 0.100 40 

40 0.125 30 

37 0.125 35 

34 0.125 40 

36 0.150 30 

32 0.150 35 
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33 0.150 40 

3.3.2.4 Torque and Thrust Measurements 

Prior to the trial a strip of D2 material from the test plate was cut and machined to provide a 

small test piece (180mm x 40mm) which could be mounted to the dynamometer (Figure 

3.15).  Torque and thrust measurements were recorded starting at hole 1 and every hole after 

till the 20th hole, at which point the torque and thrust measurement were recorded after 

every 20th hole till failure.  Measurements were recorded using a Kistler 9272 dynamometer, 

via Kistler charge amplifiers (5011B) and an Iotech Daqbook 2000.  The larger D2 test piece 

was mounted in a rigid workpiece clamp, this test piece was used to drill holes between 

torque and thrust measurements. 

A torque and thrust measurement was then collected at recommended cutting conditions 

from the Machining Data Handbook [82] (Figure 3.16).  The cutting conditions were 

30m/min at a feed rate of 0.1mm/rev at 2.5xD hole depth in a flooded coolant configuration.  

The results show a steady torque and thrust trace with little noise and no chip packing.  As a 

result of this test it was decided to characterise the torque and thrust with cutting conditions 

boundaries of a 50% increase in feed rate and 33% increase in cutting speed.  All torque and 

thrust measurements were averaged across the section where the outer cutting edges are 

engaged refer to the red boundary conditions in Figure 3.16. 

 

Figure 3.15. Image showing the drilling setup in the HAAS VF2SS for torque and thrust 

measurements, left shows the Kistler dynamometer with a D2 test piece, followed by on the 

right a larger D2 test piece mounted in a rigid workpiece holder. 



   68 

 

 

Figure 3.16. A torque and thrust versus time graph showing an initial increase in drilling 

torque and thrust which levels off and becomes constant once the peripheral cutting edges 

are engaged.  Small fluctuations in forces increase with hole depth. 

3.3.3 Results 

3.3.3.1 Jobber Drill Geometry 

The drill geometries which were measured are shown in Table 3.11, with a total of fifty two 

drills measured in this study.  The 6.35mm jobber twist drill designed by Sutton Tools is 

made up from a combination of standards, ASME B94.11M-1993, DIN 1414-1977 and Sutton 

Tools own standards. Comparing the measured features in Figures 3.10-3.13 to the design 

specification, the results show that there are a number of drills that fall outside the tolerance.  

The measured chisel angles show that 67.3% were outside of the tolerance limit, as can be 

seen in Figure 3.17.  The point angles measured all fall within tolerance with a small 

standard deviation Table 3.14.  The web thickness results show that 57.7% lie outside the 

tolerance limit.  The mean margin width results show that the majority of drills fell within 

tolerance with a small standard deviation (Table 3.15); 7.7% fell outside the tolerance limit.  

Lip relief angles measured also fell within tolerance see Figure 3.19 with a tight distribution 

(Table 3.16) with only 7.7% lying outside.  The mean helical angle for all fifty two drills had 

a very tight distribution with a mean and standard deviation of 31.69 and 0.40 respectively 

(Table 3.16), with all drills within tolerance.  The point centrality had 19.2% over the 

maximum tolerance see Figure 3.20 and the relative lip height showing 7.7% over the 

maximum, with both drill features having large standard deviations (Table 3.17). 
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Figure 3.17. Dot plot showing the distribution of chisel angle and point angle measurements 

from fifty two Jobber drills. 

Table 3.14. Table showing sample statistics of chisel angle and point angle measurements. 

Variable N Mean St Dev Min Q1 Median Q3 Max 

Chisel angle (°) 52 124.8 3.8 117.0 121.0 127.0 128.0 129.1 

Point Angle (°) 52 120.9 1.2 118.0 120.0 121.0 122.0 122.0 
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Figure 3.18. Dot plot showing the distribution of web thickness and mean margin width 

from fifty two uncoated Jobber drills 

Table 3.15. Table showing sample statistics of web thickness and mean margin width. 

Variable N Mean St Dev Min Q1 Median Q3 Max 

Web thickness (mm) 52 1.02 0.04 0.96 0.99 1.01 1.04 1.11 

Mean margin width (mm) 52 0.552 0.061 0.467 0.507 0.532 0.587 0.758 
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Figure 3.19. Dot plot showing the distribution of lip relief angle and mean helical angle from 

fifty two uncoated Jobber drills. 

Table 3.16. Table showing sample statistics for lip relief angle and mean helical angle. 

Variable N Mean St Dev Min Q1 Median Q3 Max 

Lip relief angle (°) 52 13.2 1.2 9.0 13.0 13.0 14.0 16.0 

Mean helical angle (°) 52 31.7 0.4 30.9 31.4 31.5 31.9 32.9 
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Figure 3.20. Dot plot showing the distribution of point centrality and relative lip height from 

fifty two uncoated Jobber drills. 

Table 3.17. Table showing sample statistics for point centrality and relative lip height. 

Variable N Mean St Dev Min Q1 Median Q3 Max 

Point centrality (μm) 52 72.8 43.2 0.0 40.5 81.0 94.5 195.0 

Relative lip height (μm) 52 44.6 26.1 7.0 27.2 40.5 56.7 133.0 
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Figure 3.21. Bivariate graph of relative lip height versus point centrality.  The red lines 

indicate the maximum tolerance for ASME B94.11M-1993 and the green lines indicate the 

maximum tolerance for AS/NZS 2438.1:1994. 

The bivariate graph (Figure 3.21) shows that there is little correlation between the relative lip 

height and the point centrality, which means that the two design features are not dependent 

on one another in the grinding process.  The results also highlight that using the ASME 

standard 23% of the drills measured are outside tolerance while using the AS/NZ standard 

which is based on the German DIN 1414 standard 46.1% of drills are outside tolerance. 

3.3.3.2 Workpiece Material 

Sample statistics for the D2 steel plate measured using Leeb D and Vickers (30Kg) 

instruments are shown in Table 3.3.  The sample statistics for both instruments show a low 

standard deviation in the hardness results, 3.7 HLD and 1.8 HV30.  A small deviation in 

results is also shown by the range, 430-445HLD and 204-214HV30.  Referring to the Leeb and 

Vickers contour plots Figure 3.22 & Figure 3.23 respectively, reveals small differences 

between the measurement methods.  The Leeb contour plot shows lower hardness values 

near around the edges of the plate, while the Vickers plot shows a few regions near the edge 

where the hardness is higher but only slightly (2.5 HV30).  Both plots show that there a 

localised regions of higher and lower hardness values with respect to each other, however, 

the difference are low. 
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Figure 3.22. A contour plot showing the surface hardness distribution measured via a Leeb 

D hardness tester of a 40cm by 36cm D2 test plate. 
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Figure 3.23. A contour plot showing the surface hardness distribution measured via a 

Vickers indenter with 30kg load of a 40cm by 36cm D2 test plate. 

Table 3.18. Table showing sample statistics for a D2 plate with a Leeb D hardness 

measurement device and a Vickers indents under 30kg load. 

Description  N Mean StDev Min Q1 Median Q3 Max 

Leeb D 64 439 3.7 430 436 440 442 445 

Vickers 30Kg 64 209 1.8 204 208 209 211 214 

 

3.3.3.3 Torque and Thrust Results 

The torque and thrust data plotted in Figure 3.24 & Figure 3.25 show that for all cutting 

conditions, besides the thrust at 40m/min 0.15mm/rev, the forces follow mimic the general 3 



   73 

 

stage wear progression shape (see chapter 2.4.3).  The results first show a short initial rapid 

increase in torque and thrust, followed by stage 2, a period of steady state forces with a 

small increase and lastly stage 3 a rapid increase in forces acting on the tool and usually the 

indication of tool failure.  For six of the cutting conditions cutting speeds 30 and 35m/min 

for all feed rates there was not enough plate to continue characterising this pattern however, 

all 40m/min at three different feed rates showed this pattern and it may be expected that if 

testing continued the same would be observed.  The nine cutting conditions were largely 

grouped by their feed rates.  In Figure 3.24 initially only small changes in torque for the 30, 

35 and 40 m/min cutting speeds in ascending order can be seen however, after entering stage 

2 of the classical 3 stage wear pattern the changes in torque become larger.  This is not 

observed in the thrust shown in Figure 3.25, thrust has a larger change across all cutting 

conditions early in drilling, showing that the thrust force is more sensitive to the initial rapid 

wear stage. 

Examining the torque measurements at hole 1 Figure 3.26 the cutting speed did not 

significantly change the torque measured for 0.1mm/rev, conversely for 0.125mm/rev 

increasing the cutting speed from 30m/min to 35 and 40 the torque measured was 

considerably lower.  At a feed rate of 0.15mm/rev the torque remained constant up until 

40m/min.  The thrust results in Figure 3.27 reveal a different pattern, as the feed rate 

increases from 0.1mm/rev to 0.15mm/rev a minima occurs at 35m/min.  The results for 

torque at the point of steady state see Figure 3.28 show no significant change across the 

cutting conditions besides a slight drop when increasing the cutting speed from 30m/min to 

35 and 40m/min for the feed rate of 0.125mm/rev. The thrust values at the point of steady 

state seen in Figure 3.29 are constant across all feed rates between the speeds of 30 and 

35m/min, however, by increasing the cutting speed to 40m/min all torque results increase.  

Torque measurements at hole 20 show that there is a small decrease from 30m/min to 35 and 

40m/min for 0.125 and 0.15mm/rev seen in Figure 3.30 while a small increase for 0.1mm/rev.  

The thrust results Figure 3.31 show no correlation to the torque, the 0.1mm/rev feed rate 

shows a steady increase in thrust while at 0.125mm/rev there is a slight minima at 35m/min 

and at 0.15mm/rev the thrust remains constant between 30 and 35m/min with a significant 

increase at 40m/min. 
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Figure 3.24. The average drilling torque results through the life of the drill for the nine 

accelerated cutting conditions selected. 

 

Figure 3.25. The average drilling thrust results through the life of the drill for the nine 

accelerated cutting conditions selected. 

 

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120

T
o

rq
u

e 
(N

cm
)

No. of 2.5xD holes

Drilling Torque 6.35mm Uncoated Jobber 

30m/min 0.1mm/rev 35m/min 0.1mm/rev 40m/min 0.1mm/rev

30m/min 0.125mm/rev 35m/min 0.125mm/rev 40m/min 0.125mm/rev

30m/min 0.15mm/rev 35m/min 0.15mm/rev 40m/min 0.15mm/rev

1000

1200

1400

1600

1800

2000

2200

2400

0 20 40 60 80 100 120

T
h

ru
st

 (
N

)

No. of 2.5xD Holes

Drilling Thrust 6.35mm Jobber Uncoated

30m/min 0.1mm/rev 35m/min 0.1mm/rev 40m/min 0.1mm/rev

30m/min 0.125mm/rev 35m/min 0.125mm/rev 40m/min 0.125mm/rev

30m/min 0.15mm/rev 35m/min 0.15mm/rev 40m/min 0.15mm/rev



   75 

 

 
Figure 3.26. Average drilling torque measured at 

the 1st hole. 

 

Figure 3.27. Average drilling thrust measured at 

the 1st hole. 

 

Figure 3.28. Average drilling torque operating in 

the steady state life reagion. 

 

Figure 3.29. Average drilling thrust operating in 

the steady state life reagion. 

 

Figure 3.30. Average drilling torque measured at 

the 20th hole. 

 

Figure 3.31. Average drilling thrust measured at 

the 20th hole
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3.3.4 Discussion 

The dot plots and sample statistics of the macro geometry features revealed that there is 

considerable variability in a few macro design features of mass manufactured uncoated M2 

HSS 6.35mm Jobber drills.  Jobber drills have wide tolerances due to the fact that they are a 

standard drill used for low to moderate machinability applications, therefore the tolerances 

are not required to be tight, however, these tolerances are still required to be met, especially 

in features such as the primary lip relief, lip height variation and point centrality, as 

reported by NAS [16].  Large variability in Jobber drill macro design features from a number 

of cutting tool manufacturers has been reported by Armarego and Kang [18, 83].  Similar 

results were found in this study. 

Certain geometry specification standards had larger tolerances than others.  According to 

the ASME B94.11M-1993 standards[84] 95% of drills measured from a sample batch should 

conform to the tolerance limits.  Out of the three features which are set by the ASME 

standard only the point angle conforms, with the point centrality and relative lip height 

features having 92.3% falling within tolerance, combining these two features 26% of drills 

fell outside of tolerance.  When comparing these results to the Australian/New Zealand 

Jobber drill standard [42] all of the Jobber drills point centralities fall within tolerance as the 

limit is 220µm for 6.35mm diameter drills.  For the relative lip height the limit is 45µm which 

would make 46.1% of the Jobber drills measured fall outside of tolerance.  This highlights 

that different standards will affect the number of drills which should be rejected. 

In the case of the relative lip height and the point centrality, once the relative lip height 

begins to increase the forces on the two cutting lips begin to be unbalanced as one cutting lip 

is cutting more than the other.  When the previous statement occurs, one cutting edge and 

outer corner will wear at a higher rate than the other and will result in a lower tool life 

because one cutting edge will fail before the other [17].  The relative lip height and point 

centrality also has a significant role in the dimensional accuracy of the drilled hole with its 

ability to drill concentric holes diminished as the relative lip height and point centrality 

moving away from uniformity [17]. 

Armarego and Kang [18, 83] both reference Galloway’s work which highlighted that 

deviations in drill point features will affect tool life scatter.  Galloway [19] reported that for 

the point angle a 50% difference in drill life was observed when drilling En 10 steel between 

the angles of 80-90 degrees.  Additionally, a 65% difference in drill life can be obtained when 

the primary relief angle varies between 4-12 degrees.  It is reasonable to assume that drills 

within a sample will be randomly distributed; therefore it does not matter that a number of 

those drills will be outside of tolerance.  This leads to the question, how small do sample 

sizes need be to distinguish population changes? 
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The surface hardness results of the D2 plate measured using a hand held Leeb D tester and a 

Vickers Limited hardness tester with a 30kg load shows that there is a small hardness 

distribution across the plate.  Both measurement techniques show a small standard 

deviation of 3.7 HLD and 1.8 HV30.  The contour plots reveal the hardness spatial 

distribution using both measurement methods.  When comparing the contour plots the 

spatial hardness distribution is not considerably different.  The contour plot using the Leeb 

D measurements reveals that the majority of the plate is between 440-445 HLD with the 

edges having the softest regions 430.0-439 HLD.  The contour plot generated using the 

Vickers hardness measurements consisted of the majority of the plate being within 207.5-

210HV30 with regions of hard (210-212.5HV30) and soft (205-207.5) which do not show up in 

the Leeb D contour plot.  The Leeb D testing method works by calculating the kinetic energy 

loss of a WC-Co ball bearing as it is vertically dropped and indents onto a workpiece. The 

ball plastically deforms the workpiece material, at which point the elastically accumulated 

energy then rebounds the ball at a particular rebound velocity [85], the energy loss is 

dependent on the plastic and elastic characteristics of the test material.  While the Vickers 

hardness test measures the ability of a material, which is in a particular state, to resist 

deformation by indenting a 136 degree pyramidal diamond under a specific load, 30Kg in 

this case.  As the variations in plate hardness are small, this is likely to be due to localised 

difference in plate hardness as the exact same position on the plate was not measured as 

these hardness measurement device leave an indent on the surface.  Both measurement 

devices are able to discriminate small differences in plate surface hardness, however, to be 

able to use the Vickers Limited hardness tester the 40cm by 36cm D2 plate had to be cut into 

four pieces.  This will not be able to be accomplished in future drill tests as to save time and 

money the plate will be used in the as received size.  Therefore the Leeb D tester will be used 

in subsequent experiments. 

A solution to the small hardness distribution found is to use a pseudo random drilling array.  

This has been employed in the drill test design through the CNC program so as to distribute 

heterogeneous hardness effects on all cutting tools within a sample, as well as any potential 

chromium carbide spatial non-uniformity.  According to the American Society for Metal 

(ASM) [24] a non-uniform carbide distribution will affect the tool life distribution 

significantly, as these particles play a major role in the abrasive wear characteristic of this 

material.  Future work may be to determine the carbide distribution within a large section of 

D2 plate steel.Dynamometer results confirmed that when drilling to 2.5xD hole depths using 

6.35mm Jobber drills the cutting torque and thrust are contestant when the outer corners are 

engaged in the material, therefore there are no chip removal issues, confirming the choice of 

a 2.5D hole depth.  This results has also confirmed that chip removal will not be source of 

tool life failure, as shown by Balzers [69], which would increase the scatter in tool life results. 

Examining the evolution of torque and thrust of the nine drills each driven at nine different 

cutting speeds reveals that the cutting torque during the steady state region changes little 

over the life of a drill until the drill enters the third stage of rapid wear.  In stark contrast the 
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cutting thrust during steady state region increases at a larger rate as shown by the increased 

gradient.  Examining the absolute value trends of the nine cutting conditions at hole 1, 

steady state transition point and hole 20, for cutting speeds between 30-40m/min, there is 

little to no difference in torque for hole 1, steady state transition and hole 20, only the feed 

rate was a significant factor in increasing the value of the cutting torque.  The comparison of 

the cutting thrust shows a minima at 35m/min for all three feed rates at hole one.  By the 

steady state transition point thrust begins to increase linearly for 0.1mm/rev feed rate but 

still exhibits the minima at 35m/min for 0.125mm/min and 0.15mm/min.  By hole 20, the 

cutting thrust is significantly larger at 40m/min at all three feed rates, while the 35m/min 

minimum thrust is maintained at 0.125mm/min.  From these results it may be said that the 

cutting torque would be a suitable measure to describe the performance of a drill.  The 

resultant cutting force may be calculated from the torque and thrust, however where would 

be a suitable point on a drill to calculate the resultant cutting force if, the rake angle on a 

standard Jobber drill changes from a low negative rake angle to a high positive angle from 

the chisel region to along the cutting edge, as well as the cutting velocity increasing from 

near zero at the centre to its maximum at the periphery outer corner [19, 86].  A solution to 

these issues has been provided by Abele et al [87] and Chen et al [88] who used the solution 

of breaking the cutting edge and chisel into small elements to calculate individual resultant 

forces.  Notwithstanding in regard to this work a specific torque may be used to describe a 

drills performance however further work would need to be conducted to test this 

hypothesis. 

3.3.5 Conclusions 

There exists variability in the macro design features in the uncoated M2 HSS 6.35mm Jobber 

drills examined and depending on which standards are used and on which design feature, 

certain drills will fall in and out of tolerance as others have found.  However, the small 

number of drills found to be outside of tolerance would be randomly distributed among 

samples; therefore in the case of drill testing using sample groups it would still be justified 

to use them.  Future work would need to be conducted to establish the smallest size needed 

so differences between samples could still be distinguished.  The surface hardness 

distribution for D2 plate steel has been characterised by using two different methods and 

found to be small.  The accelerated drill test has employed a pseudo random drilling array, 

to expose any heterogeneous characteristics of the test material to all samples.  An 

investigation into the cutting torque and thrust for the Jobber drills used shows that 2.5xD 

hole depths is suitable, as chip removal problems do not arise at these depths.  The torque 

and thrust results revealed that the torque may be a suitable measure for designating a 

specific force to a drill, however, this would require further work as the thrust would be 

ignored in this type of analysis. 
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3.4   Applying the Drill Test to a Surface Engineering Case 

Study 

3.4.1 Introduction 

A significant area of engineering which has evolved considerably over the past few decades 

is in the application of surface engineering, particularly to cutting tools.  The surfaces of the 

cutting tool i.e. the faces which are in contact with the chip and workpiece can considerably 

affect the tool life [89], productivity [90] and the surface finish of a machined component 

[91].  This is especially evident in difficult to machine applications and where high surface 

finish of the machined part is demanded [92].  The severe contact conditions between the 

workpiece-cutting tool-chip system [49, 50, 54] can initiate a number of wear mechanisms 

and rates (chapter 2.4.2).  Two surface treatments which increase tool life, productivity and 

the surface finish are the pre and post polish of a coated cutting tool which the coating has 

been deposited using the cathodic arc evaporation deposition technology. 

Bradbury et al [93, 94] have shown that surface preparation, specifically via micro-blasting, 

improves tool life and productivity, and they point out that similar results can be achieved 

via drag polishing and wet-blasting methods.  This improvement was attributed to removal 

of subsurface damage caused by the grinding process, a smoother surface finish and 

improved coating adhesion.  Posti et al [41] have shown through turning experiments,(a 

continuous machining operation, drilling is semi-continuous) that an increase in coating 

thickness of 1µm can increase tool life by 36%.  In order to continually improve and develop 

better cutting tools through surface engineering, for the above mentioned benefits, the drill 

test must be able to resolve these differences in the tool life data and not be affected by 

sources of machining variance using small sample sizes. 

Therefore, this experiment was designed to gauge the sensitivity of the drill test, (designed 

in chapter 3.1 and refined in chapter 3.2), in distinguishing if differences in tool life, 

produced by applying a pre and post drag polishing treatment to TiN coated Jobber drills, 

can be resolved.  This work examined the effect of cutting tool surface roughness, coating 

thickness variation, cutting speed and sample size on determining real difference in tool life 

data.  Measurements collected were analysed using sample statistics, box plots bi-variant 

analysis, ANOVA (parametric) and Mood’s median test (non-parametric). 
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3.4.2 Experimental Procedure 

A two factor, two level full factorial design has implemented making a total of four sample 

groups.  12 drills per sample (Table 3.19) were produced.  The effect of cutting speed was 

investigated in this experiment so as to verify that the cutting speed would not be 

detrimental to distinguishing differences when testing for tool life changes for surface 

treated Jobber drills.  It is not the aim of this experiment to determine linearity between tool 

life and cutting speed and as this is an accelerated drill test both cutting speeds need to be 

high, therefore, testing at 35m/min and 45m/min was justified.  Sample size has been 

identified as crucial in determining experimental outcomes (section 3.3.4).  However, when 

the experiment was carried out at 35m/min 1 drill from each sample was tested at too low a 

hole depth.  This resulted in different sample sizes for the 35m/min and 45m/min tests.  

Notwithstanding this, the experimental variability was so low as not to be a problem.  This 

highlights the importance of low variance.  In the case low variance (scatter) in the tool life 

results allowed significant conclusions to be made, regardless of the small sample size. 

The surface engineering case study consisted of the pre and post drag polishing of TiN 

coated Jobber drills.  Jobber drills were coated with a TiN coating using a commercial PVD 

coating machine (Balzers INNOVA cathodic arc evaporation see chapter 2.8).  The pre and 

post polishing was applied using an OTEC drag polishing machine.  Prior to the pre and 

post drag polishing treatments all drills were de-burred using an automated walnut blasting 

machine for 12 seconds.  ANOVA was applied to determine whether population changes 

had occurred to tool life and surface roughness measures.  When distinguishing the effect of 

a factor, in this case pre and post polish and using post polish as an example, the effect of 

pre polish has been averaged out by comparing a group that consists of the two levels of pre 

polish with one level of post polishing against the other group that also consists of the two 

levels of pre polish, with the other level of post polishing.  This is the basis of experimental 

design, it is finding the effect of a factor when all the other factors vary [60]. 

Mood’s median test was applied to the tool life data as it is able to deal with skewed 

distributions better than ANOVA.  The surface roughness was characterised using the 

Alicona IFM and the coating thickness variation was determined using the combination of 

SEM and XRF measurements.  The effect of coating thickness variation on tool life was also 

analysed using ANOVA and Mood’s median test.  A bivariate analysis [61] was conducted 

to determine if a correlation between coating thickness and tool life existed in this particular 

case so as to justify correcting the tool life data for coating thickness variation by calculating 

a life/micron of coating value 
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3.4.2.1 Drag Polishing 

The tools are held point down in a 3-axis spindle tool holder and rotated within a container 

which houses a mixture of fine grain silicon carbide (SiC) and walnut shells (Figure 3.32).  

The rotation to the drills causes the fine abrasive media to course over the surface under 

pressure [95].  This treatment is a material removal process; therefore the rate of material 

removal is defined by the revolutions per minute and the length of time.  All drag polishing 

parameters were chosen through discussions with industry sponsor engineers who have 

characterised process parameters for a wide range of substrates and cutting tool geometries.  

Drills requiring a pre polish were set to rotate at 40rpm for 8 minutes.  After which all 48 

drills were coated in a cathodic arc PVD system in the same run.  Drills designated for post 

PVD coating polishing were set to rotate at 30rpm for 3 minutes, a complete sample 

preparation sequence can be seen in Table 3.19. 

Table 3.19. Production treatments applied to the four sample groups in a two factor two 

level full factorial experimental design. 

Group 3.1 Nut Blasted  Pre Polish  Coated TiN Balzers A3 Post Polish  

Group 3.2 Nut Blasted  Pre Polish  Coated TiN Balzers A3 - 

Group 3.3 Nut Blasted  - Coated TiN Balzers A3 Post Polish  

Group 3.4 Nut Blasted  - Coated TiN Balzers A3 - 

 

 

Figure 3.32.  Image of the OTEC drag polishing machine.  Depicting The 3 axis of rotation 

tool holder above the polishing medium container. 
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3.4.2.2 Surface Roughness Analysis 

A quantitative and qualitative analysis of the surface was completed using the Alicona IFM 

(Infinite Focus Microscope).  Two regions were characterised (Figure 3.33), the rake face on 

the outer corner of the drill and the flute 3 diameters away from the chisel point.  The 

surface roughness was predicted to be within 0.1μm-2μm, therefore according to ISO 4288 

the Lc (cut off wavelength) should be equal to 800 μm; however, it was found that for scans 

made 3xD up the flute, a Lc of 800μm was not suitable to remove all the waviness from the 

primary profile.  Therefore a cut off wavelength of 80μm was selected.  Refer to the 

literature review chapter 2.9.1, put simply if the cut off wavelength did not remove the 

waviness from the primary profile the surface roughness measures being analysed such as 

Ra would be higher than they should be as not all the high amplitude waviness from the 

primary profile would be filtered out.  In addition a high resolution scan was selected, with 

a vertical resolution of 20nm and a lateral resolution of 1μm using a 50X objective lens. 

 

Figure 3.33.  Image showing where on the rake face and the flute the surface was measured 

using the Alicona IFM. 

The Ra value (the average height of the profile) is the most widely accepted measure of 

surface roughness and is reported in the majority of measurement standards literature but it 

is not the only measure to characterise a surface.  The Alicona IFM software allows many 

roughness measures to be calculated from the roughness profile generated.  The surface 

measures listed in Table 3.20 were chosen simply because they reveal different information 

about a surface, for example Rt, Rz and Rv will give some indication that the pre drag 

polishing has reduced the larger/deeper grinding marks from the drill surface. While Rp will 

be an indicator whether post polishing has removed or reduced the height of macro 

particles. 

Table 3.20. List of surface roughness measures used in this study. 

Ra Average height of roughness profile 

Rt Maximum peak to valley height of roughness profile 

Rz Mean peak to valley height of roughness profile 

Rp Maximum peak height of roughness profile 

Rv Maximum valley height of roughness profile 

 

Flute, 3xDiameter away 

from chisel point. 

Rake face, at the 

outer corner 
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3.4.2.3 Coating Thickness Measurements 

A comparative analysis was first conducted to verify which detector type would be most 

accurate in measuring the TiN coating.  The two detectors in this study were a proportional 

counter and a silicon PIN detector.  Eight drills were measured using both detectors and 

compared against SEM measurements.  The samples measured using the SEM would also be 

used as calibration pieces for the device for future measurements.  According to the results 

of the comparative test (Appendix E) the Fischerscope XDL[96] (proportional counter) 

showed better correlation with SEM measurements, and improved slightly after calibration, 

therefore it was chosen to measure the remaining samples.  All drills had the coating 

thickness calculated by making three fifty second scans on the margin face in middle of the 

drill (Figure 3.34). 

Coated drills measured via the SEM (Phillips XL30) were prepared by first making a 

transverse cross section by means of a Struers Labotom cut off wheel using water.  A slow 

feed rate was used so not to damage the samples.  The samples were then mounted in 

conductive phenolic resin in a Presi Mecapress.  After which, they were polished in a Struers 

RotoPol using the MD-Piano disk with water for plane grinding then the MD-Allegro and 

MD-Largo with a 9μm diamond suspension for fine grinding, followed by a polishing step 

using the MD-Plus with a 3μm diamond suspension and lastly the MD-Nap with 1μm 

diamond suspension for a final polishing step.  Samples were then thoroughly cleaned in 

ethanol then placed in inside the vacuum chamber of a Phillips XL30 scanning electron 

microscope, the on board software was used to measure the coating thickness. 

 

Figure 3.34. Image showing a TiN Jobber drill inside the XRF machine, pointing to where the 

scans were acquired. 

 

 

XRF scan region. 

Margin face. 
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3.4.2.4 Drill Test 

Drills from the four sample groups were tested in a HAAS-VF2 VMC CNC and followed the 

experimental design shown in Table 3.21.  Two different cutting speeds were chosen, both 

accelerated for drilling D2 steel with coated Jobber drills the first was low (35m/min) and the 

second was high (45m/min).  Coolant used was the Houghton Hocut 960 at 7-8% in a 

flooded configuration. 

Table 3.21. Drill test setup with corresponding cutting speeds pre and post drag polishing 

treatments with the number of drills tested. 

Cutting conditions Group No. No. of drills 

35m/min 0.125mm/rev 3.1 5 

  3.2 5 

  3.3 5 

  3.4 5 

45m/min 0.125mm/rev 3.1 6 

  3.2 6 

  3.3 6 

  3.4 6 
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3.4.3 Results 

3.4.3.1 Coating Thickness 

The coating thicknesses measurements (Figure 3.35) show a small range.  Referring to Table 

3.22 the mean coating thicknesses for all groups lay between 2.57μm and 2.78μm with group 

3.1 and 3.2 having the largest standard deviations of 278nm and 146nm respectively while 

group 3.3 and 3.4 having the lowest standard deviation of 77nm and 91nm respectively. 
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Figure 3.35.  Boxplot showing coating thickness of all four sample groups made using a 

Fischerscope proportional counter XRF device. 

Table 3.22. Sample statistics for coating thickness measurements made via XRF using the 

calibrated XDL for the four sample groups, all values are in units of µm. 

Group N Mean StDev Min Q1 Median Q3 Max 

3.1 12 2.78 0.27 2.39 2.51 2.79 3.07 3.17 

3.2 12 2.75 0.14 2.53 2.64 2.75 2.82 3.10 

3.3 12 2.58 0.07 2.44 2.51 2.59 2.66 2.68 

3.4 12 2.57 0.09 2.43 2.49 2.56 2.65 2.74 

3.4.3.2 Surface Analysis 

Pre polished samples (Figure 3.36 (a) and (b)), appear to have the large grinding marks 

slightly diminished while the number of light grinding marks are reduced.  Post polishing 

appears to remove macro particles on the rake surface (Figure 3.36(a) and (c)) and leave the 

large and small minor grinding marks unaltered.  Macro particles (droplets) are a 

consequence of using cathodic arc evaporation deposition.  Put simply, due to the high 

power density of the arc, small droplets are produced as well as ionised metal vapour when 

the cathode is struck, these macro particles land on the forming thin film during deposition.  

Macro sockets are therefore the result of a macro particle being removed. Pseudo colour 
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information was applied to the micrograph (Figure 3.36) to help in distinguishing between 

macro particles and sockets, note: black dots seen in Figure 3.36 (b) and (d) which did not 

receive a post polish, should not be confused with a macro socket, they are macro particles 

with a height larger than the height scale which was kept the same for all scans for 

comparative analysis.  The number of macro sockets were manually counted (Table 3.23).  

These results indicate that post drag polishing removes a significant amount of macro 

particles that leave macro sockets behind or partially broken particles. 

 Yes post drag polish No post drag polish 

Yes pre 

drag 

polish 

  

 (a) Sample 3.1.8 (b) Sample 3.2.3 

No pre 

drag 

polish 

  
 (c)  Sample 3.3.2 (d) Sample 3.4.9 

Figure 3.36 (a, b, c, d). Alicona IFM 50x optical micrographs with pseudo colour  

topographical information.  All scans were taken at the rake face adjacent from the outer 

corner cutting edge, scan sizes are 286µm by 217µm with the black scale bar equal to 20µm. 

All curvature has been removed. 

Table 3.23. shows the number of macro sockets manually counted from pseoudo colour 

optical micrographs from Figure 3.36. 

Sample No. Pre Polish Post Polish Approximate no. of Macro Sockets 

3.1.8 Yes Yes 26 

3.2.3 Yes No 1 

3.3.2 No Yes 35 

3.4.9 No No 2 
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Examining the micrographs of the IFM scans taken 3xD up the flute (Figure 3.37), it appears 

that drag polishing has made no affect on the surface topography either pre or post 

treatment.  Pre polishing appears to have not reduced the grinding marks and post polishing 

has not removed and macro particles. 

 Yes post drag polish No post drag polish 

Yes pre 

drag 

polish 

  
 (a) Sample 3.1.6 (b) Sample 3.2.2 

No pre 

drag 

polish 

  
 (c) Sample 3.3.11 (d) Sample 3.4.8 

Figure 3.37 (a, b, c, d). Alicona IFM 50x optical micrographs with pseudo colour  

topographical information. Images taken 3xD up the flute from chisel point, scan sizes are 

286µm by 217µm with the black scale bar equal to 20µm.  All curvature has been removed. 

The average height of the roughness profile (Ra) shows that there is a decrease in the mean 

values due to pre and post polishing, from 687nm to 631nm and 687nm to 626nm 

respectively; however these decreases are not significantly different at a 95% confidence 

limit.  The P values calculated are 9.5% and 7.3% for pre polish and post polish respectively.  

Alternatively, if the significance is lowered to 90% the Ra mean values would be significantly 

different, but only for the main effects.  There would still be no significant interaction from 

the two treatments on Ra, as only an additive effect has been demonstrated. 
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Table 3.24.  Summary of results to ANOVA tests applied to surface roughness data. Whether 

the result was statistically significant or not 

Response: Tested using ANOVA 

at 95% confidence 
Pre Polish  
3.1 & 3.2 V 3.3 & 3.4 

Post Polish 
3.1 & 3.3 V 3.2 & 3.4 Interaction 

Ra Rake face outer corner No No No  

Rt Rake face outer corner Yes Yes  Yes 

Rz Rake face outer corner Yes Yes  No  

Rp Rake face outer corner No Yes Yes 

Rv Rake face outer corner Yes Yes No  

Ra 3xD up Flute No  No  No  

Rt 3xD up Flute No  No  No  

Rz 3xD up Flute No  No  No  

Rp 3xD up Flute No  Yes  No  

Rv 3xD up Flute No  No  No  

 

The surface roughness measure Rt (maximum peak to valley height) supports the 

observations made from the micrographs, that drag polishing reduces the heights of low 

and high grinding marks.  The results show that pre polishing lowered the Rt value from 

7.87μm to 5.86μm and post polishing lowered the value from 7.87μm to 5.08μm with the 

group receiving both treatments changing the Rt value from 7.87 to 4.97μm.  The results are 

statistically significant at a confidence level of 95%.  The P-values calculated were 0.03% and 

0.00% for pre and post respectively, while the P-value for an interaction 0.08%. 

The surface roughness measure Rz (mean peak to valley height) results show that the mean 

value dropped from 5.87μm to 4.58μm due to pre polishing also the mean lowered from 

5.87μm to 4.37μm as a result from the post polishing.  The results are statistically significant 

at a confidence level of 95% with P-Values calculated to be 0.00% for pre and post.  The Rz 

value only having the main effects of pre and post polishing statistically significant with no 

interaction effect with the P-value calculated to be 9.5%, this result shows however, that at 

90% there would be an interaction. 

The surface roughness measure Rp (maximum peak height) had a drop in the mean value 

from 4.37μm to 3.36μm due to pre polishing and reduced the mean value down from 

4.37μm to 2.39μm due to post polishing.  The group receiving both treatments had a change 

in the mean Rp from 4.37μm to 2.63μm.  The results from an ANOVA show that the changes 

are statistically significant for post polish only at a confidence level of 95% with P-Values 

calculated to be 15.9% and 0.00% for pre and post.  The Rp value had an interaction effect 

between pre and post polishing which is statistically significant with a P-value calculated to 

be 2.7%.  This suggests that on its own pre polishing is not enough to change the maximum 

peak height but the interaction with a post polish is. 

The last surface roughness measure to be examined at the rake face is the Rv (the maximum 

valley height), the results show that pre polishing reduced the mean value from 3.23μm to 
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2.49μm and post polishing lowered the mean from 3.23μm to 2.64μm.  The group receiving 

both treatments had the mean value drop from 3.23μm to 2.34μm.  The maximum valley 

height had a statistically significant decrease in the mean value for pre and post polish at a 

confidence level of 95% with P-Values calculated to be 0.01% and 0.15% for pre and post 

respectively.  The Rv value had no interaction effect between pre and post polishing which is 

statistically significant at 95% with a P-value calculated to be 13.6%. 

The only surface measure to have a statistical significant change 3 diameter up the flute was 

Rp (maximum peak height).  Pre polishing reduced the Rp value from 3.60μm to 3.52μm and 

post polishing reduced the mean Rp from 3.60μm to 3.08μm with an additive effect of 

3.60μm to 2.46μm.  The P-Values calculated for the main effects of pre and post polishing are 

74.2% and 2.30% respectively.  The Rv value had no interaction effect between pre and post 

polishing which is statistically significant at 95% with a P-value calculated to be 94.8%.This 

result indicates that for drills drag polishing is not an effective treatment, this may be due to 

the lack of movement of the SiC particles against the surface inside the flute. 

3.4.3.3 Tool Life Results 

Referring to Figure 3.38 (bivariate graph), individual tool life results are graphed against 

their corresponding coating thickness.  All sample groups cluster, the drills having received 

a pre polish having longer tool lives.  The correlation coefficients (Table 3.25) reveal that 

there is no relationship between tool life and coatings thickness for the drills tested at 

35m/min.  Figure 3.39 reveals the individual holes per micron of coating for the drills tested 

at 35m/min using a box plot.  The results also show that drills which had received a pre drag 

polish prior to coating out performed drills with no pre polishing, referring to  

 

Table 3.26 the mean holes per micron of coating values for drills receiving a pre polish were 

45.96 and 47.66 compared to 40.22 and 40.99 which did not.  Drills which were post polished 

had slightly lower mean holes per micron values compared to their pre polished 

counterparts and higher standard deviations 8.11 and 5.39 to 3.82 and 3.40.  Applying 

ANOVA (parametric test) to the raw tool life data and the corrected data for coating 

thickness, the results revealed that the pre polishing was the only significant factor, at 95%, 

which increased the tool life population mean.  Mood’s median test (non-parametric) was 

applied to both tool life data sets and the results revealed that at 35m/min pre polish did not 

have a significant effect on the increase on tool life with 95% confidence (Table 3.28).  Tests 

calculated a P-value of 7.4% (see appendix 3.4). 
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Figure 3.38. Bivariate graph comparing the tool life results tested at 35m/min 0.125mm/rev 

against coating thickness measurements made via XRF.  Group numbers refer to polishing 

treatments see Table 3.13. 

Table 3.25 Correlation coefficiants for bivariate analysis between tool life and coating 

thickness. Drills tested at 35m/min 

Group No. Tested at 35m/min Correlation coefficient R2 

3.1 0.0009 

3.2 0.3324 

3.3 0.5759 

3.4 0.3695 
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Figure 3.39. Boxplot of holes per micron of coating, drills tested at 35m/min 0.125mm/rev. 
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Table 3.26. Sample statistics for holes per micron of coating, tested at 35m/min 0.125mm/rev. 

Cutting Conditions 35m/min 0.125mm/rev         

Group No. Sample size Mean St Dev Min Q1 Median Q3 Max 

3.1 5 45.9 8.1 38.0 38.8 43.0 54.5 56.1 

3.2 5 47.7 3.8 43.2 44.3 47.3 51.2 53.3 

3.3 5 40.2 5.4 32.5 35.3 40.8 44.9 46.9 

3.4 5 40.9 3.4 37.3 37.4 42.1 44.1 44.5 

 

Table 3.27.  Summary of results to ANOVA tests applied to tool life data. Whether the result 

was statistically significant or not. 

Response: Tested using ANOVA at 95% 

confidence Pre Polish Post Polish Interaction 

Tool Life No. of 2.5xD Holes at (35m/min) Yes No No  

Tool Life No. of 2.5xD Holes at (45m/min) Yes No No  

Tool Life No. of 2.5xD Holes/Micron of 

Coating at (35m/min) Yes No No 

Tool Life No. of 2.5xD Holes/Micron of 

Coating at (45m/min) Yes No No 

 

Table 3.28.  Summary of results to Mood medain test applied to tool life data.  Whether the 

result was statistically significant or not. 

Response Tested using Mood Median Test 95% 

Confidence Pre Polish Post Polish 

Tool Life No. of 2.5xD Holes at (35m/min) No No 

Tool Life No. of 2.5xD Holes at (45m/min) Yes No 

Tool Life No. of 2.5xD Holes/Micron (35m/min) No No 

Tool Life No. of 2.5xD Holes/Micron (45m/min) Yes No 

 

Examining the tool life versus coating thickness results from the drills tested at 45m/min 

(Figure 3.40), there is less clustering between groups than the drills tested at 35m/min.  Drills 

with similar coating thicknesses have considerably different tool lives and drills with thick 

coatings having the same tool life as those with almost half a micron difference in coating 

thickness.  However, according to the correlation coefficients (Table 3.29) there is a 

correlation between tool life and coating thickness for sample groups 3.1 and 3.4.  The 

individual holes per micron of coating data shown in Figure 3.41 & the sample statistics in 

Table 3.30 show that drills which received a pre drag polish had higher mean holes per 

micron values of 17.91 and 19.93 to 14.58 and 15.54.  Applying ANOVA with a 95% 

confidence limit table 3.27 showed that pre drag polishing was the only statistical significant 

treatment for increasing tool life.  Mood’s median test applied to both data sets (No. of 2.5xD 

holes and holes/micron), show that at 45m/min pre polish did have a significant effect on the 
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increase on tool life with 95% confidence.  Both tests calculated a P-value of 1.4% indicating 

a strong significance of the increase in the mean tool life with a confidence of 98.6%. 

 

Figure 3.40. Bivariate graph comparing the tool life results tested at 45m/min 0.125mm/rev 

against coating thickness measurements made via XRF. 

Table 3.29 Correlation coefficiants for bivariate analysis between tool life and coating 

thickness. Drills tested at 45m/min 

Group No. Tested at 45m/min Correlation coefficient R 

3.1 0.8687 

3.2 0.0424 

3.3 0.6013 

3.4 0.8565 
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Figure 3.41. Boxplot of tool life per micron of coating results for pre and post drag polished 

drills tested at 45m/min 0.125mm/rev. 
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Table 3.30. Sample statistics for tool life results per micron of coating, tested at 45m/min 

0.125mm/rev. 

Cutting Conditions 45m/min 0.125mm/rev         

Group No. Sample size Mean St Dev Min Q1 Median Q3 Max 

3.1 6 17.9 2.3 15.5 16.3 17 20.4 21.2 

3.2 6 19.9 4.2 15.3 15.5 20.5 23.6 24.5 

3.3 6 14.6 1.7 12.3 13.2 14.8 16.1 16.9 

3.4 6 15.5 1.9 12.9 13.7 15.6 17.2 18.2 

3.4.4 Discussion 

The Optical micrographs revealed qualitatively that pre coating drag polishing reduced the 

appearance of light and heavy grinding marks at the rake face adjacent to the cutting edge 

on the 6.35mm TiN coated Jobber drills.  Post coating drag polishing was found to remove 

or break off a majority of the macro particles on the surface which left macro sockets or 

fractured macro particles, the major and minor grinding marks were unaffected by post 

polishing (as expected).  Neither pre nor post drag polishing was found to change the 

appearance of the flute surface 3xD up the drill.  These qualitative results are supported by 

the quantitative analysis of the surface measures collected except in regard to 3xD up the 

flute.  ANOVA was applied to these surface measures with a 95% confidence limit and 

found that pre and post polishing significantly affected the Rt, Rz, Rp and Rv measures at the 

rake face adjacent to the outer corner cutting edge.  Unexpectedly, the Ra was only 

significant at 90% confidence which may suggest that in the application of characterising 

drill surfaces it is not an appropriate measure as it clearly was not sensitive enough to 

distinguish the changes to the surfaces.  The Rp surface measure had the only significant 

change 3xD up the flute due to post polish.  This result strongly suggests that Rp is the 

correct surface measure in which to characterise a change in macro particle removal as the 

macro particles clearly stand proud out of the surface 1.5-2µm above the highest grinding 

marks. 

The lack of any real effect by pre coating drag polishing 3xD up the flute may be due to a 

lack of movement and pressure of the SiC particles against the surface.  However, the 

change in the Rp surface measure strongly suggests that post drag polishing was sufficient in 

removing high spots in the coating due to macro particles.  An area on the drill where 

surface roughness plays a role in machining which was not characterised in this study is the 

margin.  This is a face where friction is encountered between the cutting tool and the wall of 

the hole, as the margins support the radial direction of the drill [1].  Due to the mechanism 

of the drag polishing process it would be highly likely that this surface was also affected and 

contributed to the increase in tool life.  The surface measures used in this study did resolve 

the effects of pre a post polishing; however, the analysis may have been enhanced and 

simplified if Sa (average height of area) and Sz (maximum height of area) were used, as these 
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new ISO measures which are available to devices which use the method of focus variation 

calculate values by using the entire scanned area and are not effected by repeatability issues 

that may arise if the line scan is not placed on the exact same region every time. 

The bi-variant analysis showed no correlation between coating thickness and tool life for all 

but two sample groups tested at 45m/min.  Notwithstanding, in order to test the findings of 

the bi-variant analysis the raw tool life data was corrected for coating thickness.  Tool life 

results were divided against coating thickness for each drill so a no. of holes per micron of 

coating value was obtained.  The analysis of both data sets using ANOVA at 95% confidence 

showed the same results, that pre polishing was the only significant factor to increase tool 

life.  This result strongly suggests that for this case, where the coating thickness variation 

was small, the coating thickness variation did not play a significant role in increasing the 

scatter of tool life results or in the determination of a significant change in mean tool life due 

to the drag polishing treatments.  Comparing the findings in this study to Posti’s [41] work, 

where a difference of 1µm increased the tool life by 36%, the small variation in coating 

thickness is what allowed this source of variance to not adversely affect the scatter in tool 

life results.  The smallest standard deviation was found to be 90nm while the largest was 

270nm.  Only when the range is examined does the coating thickness variation approach 

1µm.  Of the 48 drills in this study the thinnest coating was measured to be 2.39µm and the 

thickest 3.17µm, a difference of 0.78µm.  This highlights the importance of sample size as 

Posti only examined one cutting tool per coating thickness when determining the effect of 

coating thickness on tool life, while in this study the few drills which deviated from the 

mean were randomly distributed among all sample groups.  Future work in regard to the 

effect of coating thickness on tool life should examine the coating thickness on the point of 

the drill and the rake face.  As these faces are in contact with the hole wall and chips 

respectively.  Also due to the geometry of the drill and the type of tool packing on the 

carousel used to deposit the TiN coating there is a possibility that the coating thicknesses 

may vary between the two regions due to line of sight issues of the ions during the coating 

process. 

The analysis of the tool life results using ANOVA applied to the two factor two level 

experiment tested at 35m/min and 45m/min reveals that pre polishing is the only significant 

polishing treatment to increase tool life for holes drilled at 2.5xD.  Comparing these tool life 

results to the extensive work completed by Bradbury et al [94] and Bouzakis [97] who 

reported the tool life improvement due to a reduction of surface roughness pre coating and a 

hardness increase of the protective coating post coating due to a micro-blasting treatment, 

the improvement to the mean tool life can be ascribed to the decrease in surface roughness, 

as has been shown in this work but also to the increased adhesion strength a coating 

acquires due to the reduced roughness.  Bradbury [93] also reports that surface treatments, 

such as drag polishing, removes oxide scale and subsurface damage caused during the 

grinding process, this further increase the adhesion strength of a protective coating. 
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There was evidence that drag polishing significantly affected the Rp surface roughness 3xD 

up the flute, however the effect on tool life was not resolved in the current drill test regime.  

Balzers[69] have published data showing that coated drills, using the cathodic arc process, 

which have received post polishing have better chip removal properties due to the decrease 

in flute surface roughness.  However, chip removal becomes a problem and a potential 

source of tool life variance when drilling deeper holes than were drilled in this test. 

However, as the drill test developed within this work was designed to eliminate this source 

of tool life variance it poses a limitation on what design features may be tested.  Therefore, it 

is justified that certain machining parameters will need to change in order to test a specific 

design feature.  In this example, to test post coating polishing treatments applied in the flute, 

hole depths of 5xD or greater would need to be used, however, 5xD may be the limit for 

standard Jobber drills as parabolic flute shapes are usually used when designing drills for 

deep holes. 

The results of the tool life analysis using ANOVA and the Mood’s median test differed.  

Mood’s median test showed that at 45m/min pre polishing is significant but not at 35m/min.  

In this case the smaller sample size of 5 drills used in the 35m/min test compared to the 

sample size of 6 used in the 45m/min test increased the standard deviation enough so the 

significance of the result was not at the set 95%.  However, the significance of the mean tool 

life increase was 92.6%, this result should not be interpreted as non-significant as the sample 

size is small and the significance still quite large, as Rupert Miller [98] from Stanford 

University writes ‚It cannot be denied that many journal editors and investigators use P ≤ 

0.05 as a yardstick for the publishability of a result. This is unfortunate because not only P 

but also the sample size and the magnitude of a physically important difference determine 

the quality of an experimental finding‛.  Therefore, this work suggests that for the particular 

drill test regime a sample size of 5 is adequate but a sample size of 6 is better.  This result 

correlates well with the t-distribution versus sample size graph (Figure 2.16), that once a 

sample size is larger than 5-10 the t-value decreases minimally. 

3.4.5 Conclusions 

This work revealed that pre and post drag polishing is effective at reducing the surface 

roughness of HSS 6.35mm TiN coated Jobber drills at the rake face adjacent to the cutting 

edge but not 3xD up the flute.  Pre drag polishing was the only significant factor in this 

experiment to increase the mean tool life.  The analysis of the coating thickness revealed a 

small thickness variation among all drills.  However, this small variation showed no 

significant effect on the scatter of tool life results.  The two cutting speeds chosen did not 

affect the significance of the reduction in surface roughness on mean tool life.  The current 

drill test design has limitations as the effect of flute polishing may likely not be able to be 

resolved in a test which only drills to 2.5xD holes depths.  Therefore flexibility in the test 

regime must be introduced so as to allow the drill test to be more amenable to the needs of 
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the researcher.  The minimum sample size to use for the application of product engineering 

testing using this drill test and to be 95% confident that the factor under experimentation is 

indeed the cause of the tool life improvement is 6. 
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3.5   Modelling the Effect of Batch to Batch Plate Hardness on 

Tool Life for Uncoated Jobber Drills using Empirical Methods 

3.5.1 Introduction 

Workpiece hardness invariably effects tool life, no matter the machining operation or the 

cutting conditions used.  This relationship has been shown by Vogel and Bergmann [12] 

who studied the effect of plate hardness in the application of drill testing and showed that 

the number of holes drilled decreased exponentially for 42CrMo4 steel as the hardness 

increased, however, they did not provide a solution to deal with the problem.  In cutting tool 

testing, a researcher has limited control of the workpiece hardness unless heat treatment is 

applied, (which is costly and time consuming) or sections of plate outside a specific 

tolerance are rejected. 

Workpiece hardness variation can be categorised into four types; the first is the hardness 

variation within a plate, the second is the variation plate to plate which are manufactured 

within the same batch.  The third, is batch to batch variation, while the forth source is 

supplier to supplier variation of nominally the same plate.  A single steel plate has a 

relatively small hardness distribution as has been shown in section 3.2 & 3.3.  

Notwithstanding, a pseudo random drilling array has been applied to the drill test 

methodology to minimise any heterogeneous effects of the workpiece on tool life across all 

drills tested.  However, the work completed within this thesis has shown that batch to batch 

and more significantly supplier to supplier mean plate hardness variability exists and is 

significant.  Therefore, the effect of batch to batch mean plate hardness for one supplier of 

D2 (Schmolz and Bickenback) on tool life was characterised, so long term comparisons may 

be made. 

Taylor’s tool life model was developed to empirically model the effect of cutting speed on 

tool life for hardened carbon steel and HSS cutters.  This was primarily used for calculating 

a set of cutting parameters which would result in the most productive use of a cutting tool 

[29].  Since its inception just over a century ago, many researches have expanded this model 

for drilling and milling [99] as well as the effect of cutting parameters such as the effect of 

minimum quaintly lubricant on tool life [56].  Empirical modelling has been shown to 

approximate tool life well, however, only for the particular system the tool life data was 

collected from. 

Hoffman [100], Wang and Wysk [101] have reported an empirical method of characterising 

the effect of workpiece hardness on tool life by expanding the Taylor’s tool life model [29]. It 

is claimed to be a good approximation for tool life ranges between 10-60 minutes.  Therefore, 

the aim of this work was to model the effect of batch to batch mean plate hardness on tool 

life by expanding the Taylor’s tool life model, therefore providing a solution to the effect of 

batch to batch plate hardness of tool life. 
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3.5.2 Experimental Procedure 

Uncoated Jobber drills at a single feed rate and a range of cutting speeds were drilled to 

failure in various D2 steel plates.  All plates were from a single supplier and over a range of 

supplied batches.  The boundary conditions of the cutting speeds were set at the upper and 

intermediate cutting speed limits of uncoated M2 HSS drills, applicable to  drill testing of the 

Schmolz and Bickenbach supplied D2 cold work tool steel.  The three cutting speeds chosen 

were 20, 25, and 30m/min.  One set of drills were tested at 35m/min in the 467HL D2 plate.  

The three plate hardnesses chosen had a mean hardness of 467, 492 and 511 Leeb D 

hardness.  See Table 3.31 for experimental design and Table 3.32 for plate hardness 

measurements.  T-tests were applied to the plate hardness measurements to confirm that the 

plates were significantly different. 

Tool life results were first converted from no. of holes to minutes spent drilling and plotted 

on a log-log graph (Figure 3.42).  The data was first applied to the classic Taylor’s tool life 

formula (Eq.1) exponents constants were first calculated and the correlation coefficient R2.  

Octave was then used (a numerical computation software for solving linear and non-linear 

problems) to fit a 3 dimensional plane to the tool life data, to generate the extended Taylor’s 

tool life formula (Eq. 14).  Due to the limited supply of the three different plate hardnesses, 

sample sizes were first limited to 4, however, plate 2 492 HLD allowed two more drills to be 

tested. 

                                                                       
Eq. 14 

Where: 

C = Cutting speed for a lifetime of 1min. 

Vc = Cutting speed in m/min 

T = Tool Life in min 

n = Exponent which depends on the machining system, tool material, workpiece 

material etc. 

HL = Mean plate hardness in Hardness Leeb D. 

m = Exponent which depends on the effect of plate hardness on tool life. 
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Table 3.31.  Drill test design, showing the number of samples to be tested at each cutting 

condition and plate hardness. 

Cutting conditions Plate hardness HLD No. of drills 

20m/min 0.125mm/rev 467 4 

  492 4 

  511 4 

25m/min 0.125mm/rev 467 4 

  492 5 

  511 4 

30m/min 0.125mm/rev 467 4 

  492 5 

  511 4 

35m/min 0.125mm/rev 467 4 

3.5.2.1 Workpiece Material 

Table 3.32. Sample statistics for plate hardness measurements measured using a Leeb D 

hardness tester. 

Plate hardness Leeb D          

Variable N 
Mean 

St Dev  Min Q1  Median  Q3  Max 
  

Plate 1 30 511.6 9.6 497 503 510 521 530 

Plate 2 30 492.5 4.2 486 490 492 494 508 

Plate 3 30 467.6 7.3 454 463 466 471 486 

3.5.3 Results 

3.5.3.1 Workpiece Material 

Results from t-tests applied to the three workpiece hardness measurements, revealed that all 

plates were statistically different with 95% confidence.  Plate 1 was compared against plate 2 

and found to have a difference of 19 HLD while plate 2 was tested against plate 3 and found 

to have a difference of 25 HLD see Appendix F for Minitab output. 

3.5.3.2 Taylor’s Tool Life Model 

The tool life results plotted on a log-log graph, shown in Figure 3.42, reveals that for the 

cutting conditions chosen (20, 25, 30 and 35m/min at 0.125mm/rev) each plot which 

represents a particular mean plate hardness has a high correlation coefficient to a power 

curve for all three plate hardness used (Table 3.33) 0.976, 0.994 and 0.991 for plate hardness 
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of 467, 492 and 511HLD respectively.  The tool life relationship with cutting speed is 

observed to be linear besides the uncoated drills tested at 20m/min in the 467HLD plate.  As 

the cutting speed reduces, tool lifetime increases, except in the softest plate where the tool 

life has significantly reduced at 20m/min compared to 25m/min, as the tool life at 20m/min 

in the softest plate is not linear, this point was not used in the regression line as a region of 

linearity was the focus of this work.  The characteristic cutting speed for 1 minute tool life 

shows that for the hardest plate (511HL) the cutting speed needed is 29.94m/min, for the D2 

plate with a mean hardness of 492 HLD the cutting speed is 31.15 and for the softest plate 

(467HLD) the cutting speed is 37.95m/min. 

 

 

Figure 3.42.  Log-log plot of the life time data collected from D2 plate with average hardness 

of 467, 492 and 511 Leeb D. 

Table 3.33. Coefficients calculated for the Taylors tool life equation for three different plate 

hardness and the corresponding correlation coefficient R2. 

Description  

Cutting speed 1min life 

(m/min) ‘C’ 

Characteristic 

exponent ‘n’ R2 

Plate HL 467 37.95 0.142 0.976 

Plate HL 492 31.15 0.133 0.994 

Plate HL 511 29.94 0.127 0.991 
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(a) Drill no. 46. Screetch failure. Chisel 

completely worn, nose flank wear excessive. 

Small BUE along cutting edges. 

(b) Drill no. 7. Screetch failure. Minimal chisel 

wear, minimal nose flank wear. Large BUE 

along both cutting edges. 

  

(c) Drill no. 46. Screetch failure. Outer corner 

margin completely worn. Minimal pick up of 

work piece material. 

(d) Drill no. 7. Screetch failure. Minimal outer 

corner wear.  Significant material pickup 

along the entire margin. 

Figure 3.43 (a,b,c,d).  Images of two failed drills tested to screetch failure.  Drill no. 46 (a & c) 

shows a normal screetch failure, while drill no. 7 (b & d) non-standard failure. 

Compring drill no. 46 (figure 3.43 (a) & (c)), normal screetch failure which represents the 

failure type of the majority of drills tested in this work, to drill no. 7 (figure 3.43 (b) & (d)), 

non-normal screetch failure which represent the four drills tested at 20m/min in the softest 

plate (467 HLD).  The differences between the two failed drills are the amount of BUE 

formation and material transfer.  Drill no. 46 has large amounts of flank wear on the point 

flank and margin flank faces, also the chisel has been completely worn off.  In stark contrast, 

drill no. 7 has minimal wear on the chisel and point flank and intermediate wear on the 

outer corner margin flank but the amount of BUE on both cutting lips and the margin is 

significantly more then drill no. 46. 
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3.5.3.3 Extended Taylor’s Tool Life Model 

 

Figure 3.44. 3 axis graph showing a plane fit to the tool life data (min), cutting speed 

(m/min) and plate hardness (HLD).  All data has been logged to the base 10. 

Table 3.34. Coefficients from a plane fit performed using Octave software with 

corresponding lower and upper 95% confidence limits.  

Coefficient  Value Lower 95% confidence  Upper 95% confidence 

b(1) 8.09201 7.23633 8.94768 

b(2) -0.13315 -0.14293 -0.12337 

b(3) -2.44526 -2.76313 -2.12736 

 

Table 3.35 Correlation coefficient F-value and P value output from plane fit using Octave. 

R2 F P 

0.96461 477.008 0.00 

 

The tool life data showed a high correlation to the plane fit (Figure 3.44) applied using the 

Octave software, R2 0.964 (Table 3.35).  The coefficients for the developed tool life model are 

shown in Table 3.34 labelled b(1), b(2) and b(3) with the corresponding upper and lower 95% 

confidence intervals. Eq.15 shows the coefficients substituted in a log form of the tool life 

equation.  Eq.15 was then rearranged to the form of the Taylor’s tool life equation, first by 

Logging all terms by Log10 (Eq.16), followed by transposing the equation to have b(2), b(3) 

and Vc terms on one side (Eq.17).  The extended Taylor’s tool life equation with coefficients 

substituted is shown in Eq.18.  Equation 18 represents the goal of this work, that is, an 
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extended Taylor’s tool life equation for the effect of plate hardness in D2 cold work tool steel 

between the mean hardness of 467-511 HLD. 

 

3.5.4 Discussion 

The results of the present study show that for the cutting conditions examined the tool life 

data fits a plain well, with a correlation coefficient value of 0.964.  One cutting condition, 

20m/min in 467 HLD mean plate hardness, did not follow the linear behaviour as the rest of 

the cutting conditions did.  This cutting condition had significantly lower mean tool life and 

large scatter.  This is the boundary of where tool life begins to no longer follow a linear 

relationship with cutting speed on a log-log graph.  According to Shaw [4], tool life will 

exhibit a region of linearity for a particular range of cutting speeds (Figure 2.14).  The region 

of linearity is bound on the left hand side by BUE formation (low cutting speed) and on the 

right hand side by thermal softening (high cutting speed).  The images of the failed drills 

show that at this cutting condition (20m/min 467HLD) the amount of BUE formation on the 

cutting edges and margin faces was significantly more than a drill (no. 46) which 

represented the majority of failure type within this study.  Therefore, a cutting condition has 

been identified where BUE formation significantly affects the failure mode of uncoated M2 

HSS 6.35mm Jobber drills in 467HLD annealed D2 steel. 

The tool life results from this work also correlate with the trend found by Vogel and 

Bergmann [12], where the tool life of drills tested in 42CrMo4 exponentially fell as the 

hardness was increased from 28HRC to 36HRC.  Examining Vogel and Bergmann’s data 
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revealed that an increase in plate hardness from 28 HRC to 33HRC, which converted to Leeb 

D is 561HLD to 593HLD a 5.7% increase, resulted in a 55% decrease in drill life.  Results 

from this study show that at a cutting speed of 25m/min an increase in plate hardness from 

467HLD to 492HLD, an increase of 5.3%, decreased drill life by 70.9%.  This result reveals 

that a similar percentage increase in hardness of D2 steel has a larger effect on decreasing 

tool life than 42CrMo4 steel.  Revealing just how sensitive tool life is to hardness.  The 

percentage change in hardness is similar but the absolute value of hardness of the two 

materials is significantly different.  If the relationship between tool life and hardness would 

continue at the same rate for D2, tool life would be even more sensitive to hardness 

variations. 

This study still requires further work.  Firstly the model will need to be evaluated for its 

ability to approximate tool life of uncoated 6.35mm HSS Jobber drills.  Further work would 

then consist of expanding the model for a number of drill diameters, so a degree of 

flexibility in what size drills can be tested.  However, this methodology of expanding the 

model for every factor leads to large data sets which need to be collected which is costly and 

time consuming.  Venkatesh [102] reported his model which needed the combination of 

eight constants and coefficients to model the effect of all cutting parameters (speed, feed and 

depth of cut) as well as the effect of workpiece hardness.  The alternative solution to using 

an empirical model for comparing tool life performance over time is the use of a large batch 

of reference drills (a control sample group).  Each time a test would be conducted, a small 

reference sample would be used.  This would allow tool life comparisons to be made over 

time, instead of using the empirical model solution which will have its tool life 

approximation questioned if the plate hardness is out by a few percent from the collected 

data plate hardness range. 

3.5.5 Conclusions 

Taylor’s tool life equation has been expanded for the effect of batch to batch mean plate 

hardness for D2 steel, supplied by Schmolz and Bickenbach, trade name Cryodur, between 

the range of 467-511HLD.  The data collected fitted a plane well with a 0.964 correlation 

coefficient.  For the softest plate at the lowest speed the plain fit was no longer valid.  It has 

been shown that the cause of the non-linearity was due to large amounts of BUE formation 

on the cutting edges and margins, also the curve in the Taylor’s tool life graph matches well 

with work published by Shaw.  This work also revealed that within this range of plate 

hardnesses a small increase of 5.3% can decrease the life of uncoated 6.35mm M2 HSS Jobber 

drills by 70.9%.  Further work that is definitely required is the evaluation of the model to 

approximate tool life for uncoated M2 HSS 6.35mm Jobber drills.  Optional work would be 

to expand the model for the effect drill diameter and wear resistant coatings. However, this 

would require calculating the validity of this approach compared to using reference drills.  



   105 

 

4 Discussion: The Developed Accelerated Drill Test 

Tool life has been shown by other researchers [12, 25, 26], as well as within this work, to be a 

stochastic process with many complex behaviours and sources of variance which 

detrimentally affects the scatter in tool life results.  Empirical testing is still the preferable 

method for cutting tool development especially in an industrial environment, as models are 

currently unable to replicate the complex interaction between cutting tool and workpiece as 

tool wear is the result of several mechanisms working simultaneously.  The use of low value 

Jobber drills has been used as a vehicle for cutting tool development beyond the scope of 

specific drill design features, specifically for the purpose of coating research and 

development [12].  Accepting that the drive for productivity is constant and universal, 

manufactures must not only continually increase the productivity and quality of their 

manufacturing capability but their research and development methods as well.  Hence 

within the arena of cutting tool manufacturing a robust, sensitive, rapid and low cost cutting 

tool test was found to not only be necessary but essential.  The objective of this research was 

to design and develop a destructive accelerated drill test. 

It was found, that although sources of machining complexity and variance which affects the 

scatter in tool life data, specifically in context of drill testing, have been identified, such as 

the effect of plate hardness, a solution to deal with it has not yet been provided.  Using a 

systems approach facilitated the management of the complex behaviours so a machining 

regime could be identified which offered a repeatable and mono-modal tool failure, a robust 

test, as well as, where possible, to minimise or empirically model the effect of machining 

variance on tool life scatter, a sensitive test.  A statistical approach was also adopted for the 

drill test methodology so tool life data generated would be able to resolve differences in tool 

life, using small samples, so that conclusions could be made with a high level of confidence 

on whether a change in the population of drills had occurred. 

If was found that specific aspects of the accelerated drill test design and methodology can be 

adopted for wider cutting tool testing applications.  Features such as, rigid workpiece 

fixturing and cutting tool holders so as to minimise the effect of vibration on tool life 

variance.  The detrimental effect of machining system vibration is already well known and is 

an active area at the forefront of machining research.  For example, Song et al [103] in June of 

2014 determined chatter free machining regions and optimal cutting parameters for stable 

milling of aerospace aluminium using a shrink-fit tool holder. 

The data analysis methodology used throughout this work (see chapter 2.7) can also be 

incorporated into wider cutting tool testing and non-cutting testing[66] applications.  

Weibull analysis is known to be able to determine failure distributions and was used within 

this work to determine the type and number of failure distributions during the accelerated 

drill testing into D2 and P20 steel.  However, a limitation was found when applying the b 

slope test and characteristic life test used to distinguish mixed failure distributions.  Small 
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amounts of curvature or offsets in the data may be hard to distinguish or be completely 

insignificant by observation of the data on a Weibull graph alone.  In fact, the literature 

suggests that a sample size of 50 or greater be used when determining mixed failures using 

these tests.  A specific example in this work was the mixed failure of the 760HV30 drills 

tested in D2.  This mixed failure was initially identified, through the preliminary appraisal 

of the failure data on a Weibull graph, to be an offset in the characteristic life; however, this 

was not the case.  Applying the b slope test, to be thorough, revealed that there were two 

significantly different slopes within the original data set.  The results from the ANOVA and 

Mood’s median test suggests that the Mood’s median test is more sensitive to the larger 

standard deviation caused by there being a sample size of 5 for drills tested at 35m/min, as 

the results from ANOVA show a significant difference in tool life for this same data.  Even 

though the result for the Mood’s median test was just below 95%, it can still be interpreted 

as a significant change, as the significance in comparison to the sample size is large, as 

Rupert Miller points out [98].  The metrology tools used to characterise macro geometry, 

Toolmakers microscope, can obviously be used for wider cutting tool testing applications 

then drills alone (it was designed for this reason).  However, The surface roughness 

characterised using the Alicona IFM, plate hardness measured using a Leeb D hardness 

tester and Vickers 30Kg load, as well as the coating thickness measured using a XRF with a 

proportional counter detector, can all be incorporated into a wide variety of cutting tool tests 

as they were found to provide a suitable level of control, repeatability and accuracy needed 

to characterise these associated drill design variances so the determination of any correlation 

existing between tool life could be determined. 

The microstructural examination of D2 and P20 steel showed that the D2 equivalent steel 

plate on a microscopic scale is an inhomogeneous material.  However, the D2 steels 

inhomogeneity was uniformly distributed.  Therefore, the samples of drills were interacting 

with notionally the same microstructure during a test.  Small hardness variation within a 

plate was measured in D2, however the average chromium carbide size and spatial 

distribution across a plate was not characterised.  This should also be investigated in future 

work as the American Society for Metal [24] reports that a non-uniform carbide distribution 

will affect the tool life scatter significantly, as these particles play a major role in the abrasive 

wear characteristic of D2 steel.  In comparison the P20 plate examined was found to be 

homogeneous with a martensitic micro structure and a small amount of inclusions 

distributed sparingly throughout.  The standard deviation in plate hardness was also small. 

However, the use of boxplots and Weibull slope and characteristic life tests for mixed failure 

distributions revealed that when drilling into D2 it was able to offer a low tool life standard 

deviation and mono-modal tool life distribution.  Hence this is why differences were able to 

be distinguished between sample groups using D2 and not P20.  This work also suggests 

that the use of a pseudo random drilling array allowed the small variation in plate hardness 

to be distributed among all drills sampled.  This solution may also distribute any potential 

chromium carbide spatial non-uniformity among all drills to a certain extent. 
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D2 steel was more difficult to machine due mainly to the chromium carbides and did not 

require high cutting speed or feed rate in comparison to P20 to accelerate wear.  For 

accelerated testing of HSS cutting tools, which are thermally sensitive in comparison to WC-

Co and Cermet materials, an abrasive wear test is preferable over a thermo-chemical wear 

mechanism.  The exact mechanism for abrasive wear encountered while machining annealed 

D2 was difficult to identify through the literature.  The 2 body abrasion model as described 

by Misra and Finnie [77] does not entirely match the description reported by Leed [78] 

which stated that while machining annealed D2 the cutting edge is able to ‚plough through 

the soft [ferritic] matrix and literally push the hard carbides aside‛.  This description may be 

interpreted as a closed three body abrasion model as defined by Misra and Finnie [77] where 

the hard particles are free to move between two closely mating surfaces.  The questions that 

require further research are, whether the chromium carbides are truly fixed, free to move or 

somewhere in between at the interface between D2 and the HSS drill?  How do the carbides 

interact with the cutting tool as the chip flows across the rake face and as the flank face of 

the cutting tool moves across the freshly machined surface under intimate contact?  This lack 

of knowledge may not enhance the ability of the drill test to distinguish differences between 

tool life samples, as this has already been shown in this work via a predominantly single 

wear mechanism and mono-modal failure distribution; however, it does identify a gap in the 

current literature of this complex wear behaviour between annealed D2 and HSS cutting 

tools. 

A certain percentage of Jobber drills sampled from a population of 500 were found to have 

key geometrical features that NAS [16] identified were crucial to tool life performance and 

dimensional accuracy outside tolerances, the percentage would change depending on what 

standard was used to compare.  However, it is reasonable to assume that the percentage of 

drills outside of tolerance would be randomly distributed among samples.  Therefore it does 

not matter that a number of those drills will be outside of tolerance because there influence 

on the scatter in tool life will also be randomly distributed.  What does matter is that the 

effect of those drills on the standard deviation in tool life is relative to sample size [104].  If 

the sample mean between two samples is large than the standard deviation is not required 

to be small when determining a change in population mean but if there is only a small 

difference between the two sample means than the standard deviation is required to be 

small, especially when using small sample sizes (Eq.3). 

The cutting torque was found to potentially offer a suitable measure to describe the 

performance of a drill.  The resultant cutting force can be calculated from the torque and 

thrust, however where would be a suitable point on a drill to calculate the resultant cutting 

force if, the rake angle on a standard Jobber drill changes from a low negative rake angle to a 

high positive angle from the chisel region to along the cutting edge, as well as the cutting 

velocity increasing from near zero at the centre to its maximum at the periphery outer corner 

[19, 86].  A solution to these issues has been provided by Abele et al [87] and Chen et al [88] 

who used the solution of breaking the cutting edge and chisel into small elements to 
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calculate individual resultant forces.  Notwithstanding, in regard to this work a specific 

value cutting force to describe a drill is not possible, however, once a drill has entered the 

steady state regime, a specific torque value may be used to describe a drills performance 

because it was shown to vary little over this stage of life, however further work would need 

to be conducted to test this hypothesis.  This methodology may allow drill testing to be 

stopped once the steady state region has been reached.  At which point the drilling torque 

can be compared against to distinguish if a design feature made a change. 

There was evidence that drag polishing significantly affected the Rp surface roughness 3xD 

up the flute, however the effect on tool life was not resolved in the current drill test regime.  

Balzers[69] have published data showing that coated drills, using the cathodic arc process, 

which have received post polishing have better chip removal properties due to the decrease 

in flute surface roughness by removing large macro particles.  By using torque 

measurements, chip removal was shown to become a problem and a potential source of tool 

life variance when drilling deeper holes.  However, in order to achieve the goal of low tool 

life scatter one drill test design feature was to drill to 2.5xD hole depths.  Torque and thrust 

results confirmed that when drilling to 2.5xD hole depths using uncoated 6.35mm Jobber 

drills the cutting torque and thrust are constant when the outer corners are engaged in the 

material, therefore, this feature removed the effect of chip removal.  Notwithstanding, this 

drill test design factor has now been shown to limit which drill design features can be tested, 

such as the effect of post coating polishing of the flute.  Therefore, the notion of a universal 

drill test which can adequately test for tool life differences for all design features is not 

possible because the required application of the cutting tool would need to be taken into 

consideration before conducting a drill test.  Put simply, if the effect of post coating flutes 

polishing on tool life is the intended aim then deep holes would need to be drilled.  This 

hypothesis would require testing. 
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The life of uncoated M2 HSS 6.35mm Jobber drills was found to be sensitive to small 

changes in plate hardness.  At a cutting speed of 25m/min an increase in plate hardness from 

467HLD to 492HLD, an increase of 5.3%, decreased drill life by 70.9%.  In this work the effect 

of plate hardness on tool life was modelled using empirical methods; however, empirical 

modelling has its limitations but empirical modelling is not the problem, the complex 

behaviours and associated sources of machining variance is.  Tool life has been shown to 

change disproportionally if a small change is made to the machining system, specifically 

workpiece hardness.  An alternative solution to empirically modelling every machining 

factor and expanding the models boundaries is the use of a large population of reference test 

drills which could be sampled each time a new test plate or batch of test plates were 

supplied.  This methodology would allow a constant reference to be used to correct for the 

difference in plate hardness.  For example if treatment ‘A’ is applied to a sample set of drills 

and tested alongside a sample of reference drills in a soft plate and the mean tool life result 

for both was 100 holes then it can be concluded that treatment ‘A’ made no effect to tool life.  

Now treatment ‘B’ is applied to a sample set of drills and tested alongside a set of reference 

drills but now in a harder plate then the last test.  The tool life results show that the drills 

with treatment ‘B’ had a mean tool life of 60 holes while the reference set had a mean tool 

life of 50 holes.  By comparing the ratios of the two separate tests it can be concluded that 

treatment ‘B’ increased too life by 20%. 
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5 Conclusions and Recommendations for Further Work 

5.1   Conclusions 

A destructive accelerated drill test has been designed, characterised and applied.  A solution 

is now provided which can deal with the detrimental effect batch-to-batch plate hardness 

has on tool life scatter and long term tool life comparisons.  A systems approach has 

facilitated the management of the complex behaviours so a machining regime could be 

identified which offered a repeatable and mono-modal tool failure, a robust test, as well as, 

where possible, to minimise or empirically model the effect of machining variance on tool 

life scatter, a sensitive test.  The statistical approach adopted for the drill test methodology 

has allowed tool life data generated by the drill test to be able to resolve differences in tool 

life, using small sample sizes, with conclusions being drawn with a high level of confidence 

that a population change has occurred.  However, a universal drill test which can 

adequately test for tool life differences for all design features at the same cutting conditions 

is not possible because the required application of the cutting tool would need to be taken 

into consideration before conducting a drill test. 

Specific aspects of the accelerated drill test design and methodology can be adopted for 

wider cutting tool testing applications, such as using rigid workpiece fixturing and tool 

holders, tool life data analysis methods and the metrology tools used to characterise cutting 

tool design features and workpiece hardness. 

D2 cold work tool steel in the annealed condition was found to have a small hardness 

distribution within a plate and be an inhomogeneous material on a microscopic scale with 

large chromium carbides embedded in a ferritic matrix, notwithstanding, the inhomogeneity 

was uniformly distributed.  While the alternative material investigated, P20 plastic mould 

steel in the quenched and tempered condition was found to be a homogenous material with 

a martensitic microstructure and also have a small hardness distribution within a plate.  D2 

was able to offer a low tool life standard deviation and a mono-modal tool failure mode.  In 

stark contrast P20 showed a larger standard deviation and a bi-modal failure mode.  

Therefore, D2 was able to fulfil the robustness requirement that the drill test was identified 

to need.  This work also showed that for accelerated testing of HSS cutting tools, which are 

thermally sensitive, an abrasive wear test is preferable over a thermo-chemical wear 

mechanism. 

If the difference between two sample means is large then the standard deviation is not 

required to be small when determining a change in population mean.  However, if there is 

only a small difference between the two sample means then the standard deviation is 

required to be small, especially when using small sample sizes.  Pre inspection of drill 

geometries for the rejection of Jobber drills outside of tolerance was found to be less of an 

issue when distinguishing the difference between sample means.  It was assumed that the 
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drills outside of tolerance will be randomly distributed, along with the effect on tool life.  It 

is important however, that the effect of those drills on the standard deviation in tool life is 

small relative to the sample size and small relative to the sample means. 

It was found that the specific torque value may be used to describe a drills performance 

because it was shown to vary little over the steady state phase of life.  However further work 

would need to be conducted to test this hypothesis.  This methodology may allow drill 

testing to be stopped once the steady state region has been reached.  At which point the 

drilling torque can be compared with a reference or base line to distinguish if a design 

feature has made a change.  The Rp surface roughness measure is the most suitable for 

detecting changes to the surface roughness for a treatment which is applied to remove 

macro particles. 

An extended Taylor’s tool life model was generated which modelled the effect of batch to 

batch plate hardness between the range of 467HLD to 511HLD for annealed D2 cold work 

tool steel.  This work showed that the life of uncoated M2 HSS 6.35mm Jobber drills is 

sensitive to small changes in plate hardness.  At a cutting speed of 25m/min an increase in 

plate hardness from 467HLD to 492HLD, an increase of 5.3%, decreased drill life by 70.9%.  

The complexity of machining imposes limitations on the justification for how many 

machining factors should be modelled using an empirical methods.  Tool life has been 

shown to change disproportionally if a small change is made to the machining system, 

specifically workpiece hardness and the large number of factors which contribute to tool life 

would require larger data sets to be collected.  An alternative solution to empirically 

modelling every machining factor and expanding the models boundaries is the use of a large 

population of reference test drills which could be sampled each time a new test plate or 

batch of test plates were supplied.  This methodology would allow a constant reference to be 

used to correct for the effect different plate hardness have on tool life. 
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5.2   Recommendations for Further Work 

The average chromium carbide size and spatial distribution across a plate was not 

characterised.  This should be investigated in future work as it has been discussed that a 

non-uniform carbide distribution will affect the tool life scatter significantly, as these 

particles play a major role in the abrasive wear characteristic of D2 steel. 

The abrasive wear mechanism found while drilling D2 should be characterised for HSS 

cutting tools as this is lacking in the current literature due to a lack of knowledge of what 

happens to the chromium carbides during cutting.  The following question needs answering.  

How do the chromium carbides interact with the cutting tool as the freshly generated chip, 

flows across the rake face but also as the flank face of the cutting tool moves across the 

freshly machined surface under intimate contact? 

A specific torque value may be used to describe a drills performance because it was shown 

to vary little over the steady state stage of life.  Further work would need to be conducted to 

test this hypothesis.  This methodology may allow drill testing to be stopped once the steady 

state region has been reached.  At which point the drilling torque can be compared against 

to distinguish if a design feature made a change. 

The hypothesis that, in order to test the effect of post coating polishing in the flute on drill 

life can only be resolved by drilling deep holes is required to be tested. 

An experiment to evaluate the prediction capability of the extended Taylor’s tool life model 

for D2 plate hardnesses between the range of 467HLD and 511HLD is required. 
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Appendix A – VMC Setup and Programming for Drill 

Testing 

In order to investigate the machining mechanics in drilling as well as test cutting tools in an 

industrial environment a drill testing methodology was required which would be robust to 

variation such as test plate and cutting speed and sensitive to resolve tool life improvements 

through surface engineering techniques, such as polishing treatments and PVD coating 

architectures using small sample sizes.  Any drill test designed for industrial use would also 

have constraints such as time and money.  The following sections discuss the cutting tool 

testing methodology designed for an industrial environment. 

Programming a VMC Using G and M Code with Global and 

System Variables 

Below is a list of the CNC programs which were used to preform drill tests in D2 and P20 

test plate material.  In order to use the global variables, separate programs were needed to 

be programmed in order to conduct testing using the two test plates but also separate 

programs to test drills with a 1-3mm diameter and 4-8mm diameter so as to use as much of 

the plate as possible. 

The drill test programs were designed to function using a main program and a subroutine 

program shown in Table A.3, the program labelled "Drill Test Program 4mm-8mm" prepares 

the CNC for drilling; holding all X and Y positions for each group of holes as well as 

preforming important internal checks to make sure the CNC will run safely. The program 

labelled "Drill Test Subroutine 4mm-8mm" would be called up at the beginning of every 

group of holes and would perform all drilling operations through a G81 canned cycle code. 

This subroutine is also where all cutting conditions are imputed such as cutting speed in 

terms of rpm, Feed rate in terms of millimetres per minute and hole depth in millimetres. 

The subroutine also has its own internal checks using global variables and simple counting 

logic to verify which holes have already been drilled, to prevent the spindle crashing into 

the workpiece. 

Listing all main programs and subroutines used in the study 

Main Programs Subroutines 

Drill Test Program D2 4mm-8mm Drill Test Subroutine D2 4mm-8mm 

Drill Test Program P20 4mm-8mm Drill Test Subroutine P20 4mm-8mm 

Drill Test Program D2 1mm-3mm Drill Test Subroutine D2 1mm-3mm 

Drill Test Program P20 1mm-3mm Drill Test Subroutine P20 1mm-3mm 
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Global variables for D2 plate  

Table A.1. Shows the variable number and its corresponding meaning in the drill testing 

program and possible values during execution of a drill test into D2. 

Variable No.# Variable description 
Possible 

values 

#103 Hole number counter 4-8mm drills 1 to 10 

#104 Group number counter 1 to 90 

#105 Work coordinate system (G58 and G59) 0 or 1 

#107 Hole number counter 3mm drills 1 to 32 

#108 Logic controller, 3mm drills in same plate as 4-8mm 0 or 1 

 

Global variables for P20 plate 

Table A.2. Shows the variable number and its corresponding meaning in the drill testing 

program and possible values during execution of a drill test into P20. 

Variable No.# Variable description 
Possible 

values 

#100 Hole number counter 4-8mm drills 1 to 10 

#101 Group number counter 1 to 90 

#102 Work coordinate system (G56 and G57) 0 or 1 

#106 Hole number counter 3mm drills 1 to 32 

#108 Logic controller, 3mm drills in same plate as 4-8mm 0 or 1 

 

Table A.3. Shows the main program (O9004) and subroutine programs (O9005 & O9006) 

used in testing 6.35mm Jobber drills into D2. 

% 

O9004 (Accelerated Drill Test Program D2 4mm-

8mm. This program prepares the CNC for drill 

testing and holds the coordinates of the first hole 

from 90 groups with 10 holes in each, it ends by 

resetting the global variables, resetting and 

homing the machine) 

G103 P1 (Limit block look ahead, P1 CNC will 

read one line of code at a time) 

G90 (Absolute positioning command) 

G21 G94 G43 (Metric coordinate system, Feed per 

minute, Tool length composition in + direction) 

T01 M06 (Tool no. 1, change tool command) 

H01 (Tool no. 1, tool settings coolant nozzle 

direction, value of compensation length)  

G00 X-100. (Rapid motion to machine coordinate 

% 

O9005 (Accelerated Drill Test Subroutine D2 

4mm-8mm. This subroutine holds the cutting 

parameter settings and the coordinates of the ten 

holes within the G52 work coordinate system) 

#198 = #5201 (record the value of the system 

variable #5201 ‘value of x coordinate’ to the 

global variable #198) 

#199 = #5202 (record the value of the system 

variable #5202 ‘value of y coordinate’ to the 

global variable #198) 

S1754 M42 (the spindle is set to a 1754rpm and 

the high gear is overridden.) 

M03 (rotate spindle in the clockwise direction) 

G00 Z20. (move spindle to Z 20mm above plate 

within local coordinate system) 
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X-100) 

Z120. (Rapid motion to machine coordinate Z120) 

N100 (Used as a reference for pointer logic) 

IF [#105] THEN G59 (If the global variable #105 is 

not equal to zero then use local coordinate 

system G59) 

IF [#105 LT 1] THEN G58 (If the global variable 

#105 is less than 1 then use local coordinate 

system G58 otherwise move to the next line of 

code) 

IF [#104 GT 90] THEN #104 = 1 (If global variable 

#104 is greater than 90, then #104 is equal to 1, 

otherwise move to the next line of code) 

GOTO#104 (Go to the line of code with the value 

of this variable) 

N1 G52 X165.4 Y-124.1 (line of code no. 1 move to 

X165.4 Y124.1 then go into local coordinate 

system G52) 

M98 P9005 (Read the subroutine program P9004) 

N2 G52 X64.5 Y-239.1 (see line N1) 

M98 P9005 

 

(this area has 87 repeats of the same code with 

different X and Y coordinates covering the whole 

plate) 

 

N90 G52 X39.3 Y-239.1 

M98 P9005 

#105 = #105 +1 

IF [#105 EQ 1] GOTO100 (If the global variable is 

equal to 1 then go to line N100 other wise move 

to the next line of code) 

G28 (home the CNC machine) 

#103=1 ( reset the global variable to 1) 

#104=1 ( reset the global variable to 1) 

#105=0 ( reset the global variable to 0) 

M30 (program end and reset) 

% 

M08 G81 F219.3 R5. Z-15.87. L0 (Turn on coolant, 

drill canned cycle with a feed rate of 219.3 

mm/min to a hole depth of 15.87mm) 

IF [#103 GT 9] THEN #103 = 1 ( If global variable 

is greater than 10, then #103 is equal to 1 

otherwise move to the next line of code) 

GOTO#103 (Move to the line of code with the 

value of #103) 

N1 X0. Y0.0 #103 = #103 + 1  

M98 P9006 (drill hole at X0 Y0, plus one to the 

global variable #103 and open subroutine P9006) 

N2 X6.3 Y-5.8 #103 = #103 + 1 M98 P9006 (see N1) 

N3 X0. Y-11.6 #103 = #103 + 1 M98 P9006 

N4 X6.3 Y-17.4 #103 = #103 + 1 M98 P9006 

N5 X0. Y-23.2 #103 = #103 + 1 M98 P9006 

N6 X0. Y-29.0 #103 = #103 + 1 M98 P9006 

N7 X6.3 Y-34.8 #103 = #103 + 1 M98 P9006 

N8 X0. Y-40.6 #103 = #103 + 1 M98 P9006 

N9 X6.3 Y-46.4 #103 = #103 + 1 M98 P9006 

N10 X0. Y-52.2 #104 = #104 + 1 M98 P9006 (Drill 

hole at the XY coordinates and plus 1 to global 

variable #104 then open program P9006) 

#103 = #103 + 1 

G00 Z20.(Bring spindle to Z20 

M99 (Go back to main program P9004) 

% 

% 

O9006 (Drill Test Subroutine X,Y DPRNT. This 

program sends the X-Y coordinates of every hole 

a specific drill has drilled in the plate) 

#189 = #198 + #5041 

#190 = #199 + #5042 

DPRNT[X#189[13]*Y#190[13]] (sends the value 

via RS-232 to the PC) 

% 
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Network Infrastructure 

To send and receive data from a PC to a CNC the following network infrastructure needed 

to be implemented due to the fact that the CNC receives data signals across a RS-232 serial 

port.  A router was used to connect PC’s to a network, the router is then connected to a TRP-

C32 serial to Ethernet device which would convert IP addresses to physical serial ports 

shown in Figure A.1. 

 

Figure A.1. Schematic showing the network configuration for Ethernet to serial 

communication between PC’s and CNC’s for cutting tool testing. 
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Appendix B - Designing an Automated Drill Test and DAQ 

System for Spindle Current Collection 

In any commercial industrial environment it is important to maintain and whenever 

possible improve efficiency.  It may also be necessary to improve upon current systems.  A 

situation arose after completion of the drill test, with the following questions being asked, 

would it be possible to automate this system and can any more information be collected 

from the drill test.  The following sections discuss the design of an automated drill testing 

system as well the collection of the spindle motor current as a means of calculating the 

power consumed during metal cutting.  This system would be potentially able to stop 

testing at a predefined limit, change drill and continue testing all the while recording 

spindle current in order to calculate power consumption during drilling. 

Automated Drill Testing 

An automated drill test would need to be able to reliably execute the following three steps.  

Firstly, the system would require knowing when a tool has failed and stop drilling.  

Secondly, be able to change to the next tool in the tool carousel and record this change.  

Thirdly, restart the drilling program and continue on with the next hole in the test plate.  A 

secondary goal of this study was to modify the drill test developed in the previous sections 

and make it an automated system.  However, not all three steps where possible in the HAAS 

VF2.  The first step to stop drilling at a predefined limit was possible through the ‚Tool 

overload‛ option designed into the HAAS VF2 CNC.  This option allows for a user to define 

a spindle load limit as a percentage of total spindle output, once this limit is reached the 

CNC will perform one of the following options, it may trigger an alarm which will stop the 

axis motors and the spindle motor, turn off the coolant and disable servos.  The CNC may 

also perform a ‚feed hold‛ action which stops the feed motor and alerts the operator with a 

message on the screen, the spindle motor is still running using this option.  Lastly the CNC 

may simply beep with a message on the screen and continue drilling.  The ‚tool overload‛ 

option was tested and found to be adequate in stoping drilling at the point of failure.  The 

second step needed to transform the drill test to an automated system is the tool change.  

This step was found to be outside the capability of the HAAS VF2 for the following reasons.  

To accomplish a tool change while using a programme an operator must first either be in 

Manual Data Input (MDI) mode and input the correct command or press the tool change 

up/down button found on the interface while in MDI mode, the CNC must not be running a 

programme for this action to take place, if for example a ‚tool overload‛ alarm occurred the 

operator must first ‚RESET‛ the CNC before any further action may take place. Secondly, 

the tool number must be updated inside the program; if the tool number has not been 

updated once the program begins again the CNC will change the tool to whatever tool 

number has been programmed this of course being the failed tool.  The third step was taken 

care of in the initial program design by using global variables to count the hole number and 
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group number on the plate, nevertheless without a solution to step two the automated drill 

test would not be possible in a HAAS VF2.  The important reason why an operator cannot 

change a tool during a program is for safety, a ‚RESET‛ must first be initialised to stop all 

motors and servos.  The reason why the manufactures of the HAAS VMC implement this 

safety feature, is due to the fact that the VMC is designed to do more machining operations 

than just drilling.  For example if a tap fails during a hole and the feed and spindle motors 

stop, then the tap is rapidly withdrawn from the hole, it will damage to the machined part. 

DAQ System for Spindle Current Collection 

A DAQ system to collect spindle current for the calculation of power consumed during 

drilling was also a goal of this study.  A National Instruments USB-6008 DAQ device would 

be connected to the spindle motor controller which is an inverter drive.  The inverter drive 

generates an adjustable voltage/frequency three phase output for complete cutting speed or 

rpm control, by adjusting the frequency of the signal it allows the control of the voltage 

across the spindle motor and is why inverter drives are termed variable-frequency drives.  

The inverter drive provides a 0-10Vdc signal which is proportional to either output 

frequency, output current, output voltage reference or output power between terminals 21 

&22 inside the inverter.  Why this is a useful signal to measure has already been stated the 

ability to calculate the power consumed during drilling, but it also allows analysis of tool 

wear across the tool life due to the feedback loop that the inverter uses to maintain a 

particular rpm.  During a drill test or normal cutting operations the cutting edges and outer 

corners will wear, consequently the power needed to cut at a particular cutting speed will 

need to be increased, forcing the inverter drive to supply a higher current output to 

maintain the desired rpm.  Taking advantage of this fact allows the tool wear and life to be 

examined as a change in spindle current. 

Spindle current collection can be triggered while a drill test program is running. a digital 

signal may be used to trigger the DAQ to stop and start acquisition according to the physical 

state of a relay on the HAAS CNC controller board, the relays used on the CNC are Single 

Pole Double Throw (SPDT) 120V 1A.  To ensure that the logic state signal connected to the 

DAQ is steady, a pull-up or a pull down resistor set-up will be arranged in the circuit as can 

be seen below. Pull-up/down resistors are used in electronic logic circuits to ensure that the 

signal inputs to logic devices settle at their desired levels, in this case either at 0 or 5 volts. A 

pull-up resistor will pull the voltage towards its voltage source, while a pull down resistor, 

which is connected to ground, will pull down the voltage to zero. 
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Pull-down orientation Logic state Voltage 

Switch closed 1 5 

Switch open 0 0 

Figure B.1. Circuit diagram showing a pull-down resistor setup with a table explaining the 

logic states and voltage levels. 

 

 

Pull-up orientation Logic state Voltage 

Switch closed 0 0 

Switch open 1 5 

Figure B.2. Circuit diagram showing a pull-up resistor setup with a table explaining the logic 

states and voltage levels. 

Switch bouncing is a problem found in circuitry designed to alter the state of a digital signal, 

high or low.  Physically, the problem is that the contacts within a switch do not make contact 

cleanly but slightly bounce which may cause the signal to trigger a number of times. Below 

is a signal trace demonstrating this phenomenon.  There are many solutions that deal with 

switch bouncing, for example, de-bouncing circuits, software de-bouncing and integrated 

de-bouncing chips. Below is an example of a de-bouncing circuit.  While the switch is open 

the capacitor will charge via resistor 1 and diode 1, once the capacitor has charged the point 

of Vb will reach within 0.7V of VCC and the Schmitt trigger will be at a logic state of 0.  
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When the switch is closed the capacitor will discharge via resistor 2 and eventually the point 

at Vb will reach 0V therefore the Schmitt trigger will be at a logic state of 1.  A Schmitt 

trigger retains its logic state until the voltage input sufficiently changes, when the input is 

higher than a certain chosen threshold, the output is high; when the input is below a chosen 

threshold, the output is low; when the input is between the two, the output retains its state. 

The Schmitt trigger allows for the voltage to rise and drop during the switch bouncing 

without altering the logic state of the signal. 

 

 

Figure B.3. Signal trace showing the effect of a switch bouncing. 

http://www.labbookpages.co.uk/  

 

Figure B.4. Circuit diagram showing a de-bouncing circuit. http://www.labbookpages.co.uk/ 

A flow chart was created for the spindle current collection system so as to understand the 

steps required.  This flowchart covers the steps involved from the data acquisition 

perspective, not the CNC drill testing. 
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Figure 0.5. Flowchart showing step one to five in the data acquisition system for spindle 

current collection. 
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Appendix C – Chapter 3.2 Data 

D2 and P20 workpiece hardness 

D2 Plate Hardness 

(HV) 

P20 Plate Hardness 

(HV) 

D2 Plate Hardness 

(HLD) 

P20 Plate Hardness 

(HLD) 

217 291 467 564 

220 240 471 560 

220 288 471 561 

217 293 467 565 

219 286 470 559 

217 284 467 556 

220 285 471 557 

223 287 474 560 

221 285 473 557 

221 282 473 554 

222 288 474 561 

221 291 473 564 

219 301 470 573 

220 286 471 559 

219 293 470 565 

220 291 471 564 

219 291 470 564 

221 292 473 565 

225 283 476 555 

213 276 463 549 

211 280 461 552 

217 283 467 555 

221 288 473 561 

223 280 474 552 

223 291 474 564 

219 283 470 555 

210 287 460 560 

217 288 467 561 
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R40 Drill Hardness and Tool Life 

Tool Life No. of 2.5xD 

Holes in P20 HV30760 

Drill Hardness 

Average HV30 

Tool Life No. of 2.5xD 

Holes in P20 HV30860 

Drill Hardness 

Average HV30v 

100 778 6 857 

303 780 304 869 

39 750 745 871 

47 755 1114 874 

160 755 15 855 

93 759 261 867 

66 756 13 852 

318 762 7 861 

363 755 9 869 

98 767 4 851 

 

Tool Life No. of 2.5xD 

Holes in D2 HV30760 

Drill Hardness 

Average HV30 

Tool Life No. of 2.5xD 

Holes in D2 HV30860 

Drill Hardness 

Average HV30 

154 773 158 878 

105 744 163 865 

208 761 188 861 

160 761 126 863 

180 767 290 866 

70 742 83 864 

75 767 104 865 

99 761 153 867 

120 763 191 872 

168 751 383 863 
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Appendix D – Chapter 3.3 Data 

Jobber Drill Measurements 

Drill No. Chisel Angle 

(°) 

Chisel Angle 

(°) 

Point Centrality 

(μm) 

Primary Lip 

relief (°) 

Point Angle 

(°) 

Measurement 

device 

Mowhawk Mowhawk Mowhawk Mowhawk Mowhawk 

1 127 37 94.5 13 122 

2 129 39 67.5 13 122 

3 128 38 121.5 10 122 

4 129 39 94.5 11 120 

5 128 38 121.5 13 120 

6 117 27 27.0 14 118 

7 119 29 40.5 12 120 

8 127 37 81.0 16 122 

9 119 29 94.5 14 120 

10 122 32 54.0 14 120 

11 118 28 81.0 14 122 

12 122 32 40.5 14 120 

13 120 30 27.0 13 120 

14 122 32 13.5 12 120 

15 121 31 0.0 13 122 

16 121 31 40.5 12 120 

17 122 32 0.0 13 122 

18 128 38 81.0 13 120 

19 128 38 94.5 14 122 

20 129 39 148.5 13 122 

21 122 32 40.5 14 120 

22 127 37 81.0 13 122 

23 121 31 40.5 14 120 

24 129 39 81.0 13 122 

25 128 38 94.5 14 122 

26 129 39 121.5 13 120 

27 124 34 54.0 13 120 

28 120 30 0.0 12 120 

29 120 30 0.0 13 118 

30 127 37 108.0 14 122 

31 128 38 108.0 15 122 

32 128 38 67.5 13 122 

33 120 30 81.0 14 120 

34 127 37 135.0 14 120 

35 121 31 40.5 12 120 

36 128 38 94.5 14 120 

37 126 36 94.5 13 122 

38 121 31 67.5 15 120 

39 128 38 67.5 14 122 
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Drill No. 

Web thickness 

(mm) Helix Angle 1 (°) Helical Angle 2 (°) Mean Helical Angle (°) 

Measurement 

device Pin micrometre Euro-Tech Euro-Tech Euro-Tech 

1 1.02 31.75 31.47 31.61 

2 1.01 31.30 31.49 31.40 

3 0.99 31.51 31.51 31.51 

4 1.02 31.50 31.55 31.53 

5 1.00 31.66 31.70 31.68 

6 0.99 31.92 31.85 31.89 

7 0.96 31.71 31.27 31.49 

8 1.01 31.47 31.77 31.62 

9 1.00 31.92 31.69 31.81 

10 0.98 31.86 31.40 31.63 

11 1.03 31.45 31.65 31.55 

12 1.01 31.17 31.58 31.38 

13 0.99 31.35 31.46 31.41 

14 1.02 31.48 31.16 31.32 

15 1.04 31.10 30.97 31.04 

16 0.99 31.67 31.26 31.47 

17 0.97 31.35 31.61 31.48 

18 1.01 31.24 30.74 30.99 

19 0.98 31.43 31.50 31.47 

20 1.00 31.28 31.43 31.36 

21 0.98 31.29 31.64 31.47 

22 0.99 31.52 31.31 31.42 

23 1.01 31.66 31.39 31.53 

24 1.00 31.50 31.44 31.47 

25 1.01 31.32 31.69 31.51 

26 0.98 32.24 31.77 32.01 

27 1.01 31.55 31.47 31.51 

28 1.02 31.31 31.58 31.45 

40 129 39 67.5 14 122 

41 124 33.5 21.0 9 122 

42 127 37.4 195.0 12.5 120 

43 119 29.45 92.0 11.5 120 

44 127 37.1 157.0 13 122 

45 127 37.1 19.0 12 119 

46 129 39.1 101.0 13 122 

47 126 36.3 60.0 13 121 

48 128 38.4 90.0 14.5 122 

49 122 32 119.0 14 121 

50 128 38.1 66.0 15 122 

51 128 38 92.0 13.5 122 

52 128 38.3 5.0 13.5 122 
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29 1.02 31.31 31.85 31.58 

30 1.06 31.93 32.12 32.03 

31 1.02 31.53 32.37 31.95 

32 0.99 32.01 32.30 32.16 

33 1.02 31.94 31.74 31.84 

34 1.04 32.03 31.04 31.54 

35 1.00 31.57 31.69 31.63 

36 1.00 31.14 31.50 31.32 

37 0.98 31.48 31.82 31.65 

38 1.00 31.44 31.15 31.30 

39 1.00 31.62 31.31 31.47 

40 1.01 31.75 31.60 31.68 

41 1.03 31.75 30.92 31.34 

42 1.06 33.00 31.25 32.13 

43 1.11 30.96 31.77 31.37 

44 1.04 32.23 32.47 32.35 

45 0.98 32.74 32.04 32.39 

46 1.11 31.74 33.40 32.57 

47 1.09 33.72 32.22 32.97 

48 1.10 32.49 32.74 32.62 

49 1.07 31.23 33.29 32.26 

50 1.08 33.18 31.26 32.22 

51 1.04 32.11 31.72 31.92 

52 1.06 32.07 31.91 31.99 

 

Drill No. 

Margin Width 1 

(mm) 

Margin Width 2 

(mm) 

Mean Margin Width 

(mm) 

Relative Lip Height 

(μm) 

Measurement 

Device Euro-Tech Euro-Tech Euro-Tech Euro-Tech 

1 0.577 0.597 0.587 62 

2 0.482 0.563 0.523 22 

3 0.561 0.578 0.569 35 

4 0.591 0.547 0.569 53 

5 0.530 0.505 0.517 56 

6 0.486 0.531 0.509 20 

7 0.459 0.476 0.467 13 

8 0.600 0.563 0.581 38 

9 0.543 0.522 0.533 21 

10 0.442 0.520 0.481 49 

11 0.592 0.574 0.583 48 

12 0.533 0.487 0.510 52 

13 0.507 0.457 0.482 13 

14 0.497 0.481 0.489 28 

15 0.587 0.544 0.565 51 

16 0.503 0.477 0.490 61 

17 0.571 0.452 0.511 7 
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18 0.578 0.488 0.533 39 

19 0.517 0.470 0.493 37 

20 0.472 0.541 0.507 61 

21 0.455 0.517 0.486 36 

22 0.478 0.522 0.500 56 

23 0.504 0.531 0.517 41 

24 0.536 0.592 0.564 50 

25 0.590 0.553 0.572 34 

26 0.528 0.480 0.504 49 

27 0.471 0.527 0.499 30 

28 0.605 0.523 0.564 11 

29 0.530 0.504 0.517 14 

30 0.608 0.551 0.580 59 

31 0.554 0.482 0.518 50 

32 0.523 0.494 0.508 57 

33 0.492 0.536 0.514 19 

34 0.622 0.563 0.592 49 

35 0.488 0.540 0.514 35 

36 0.618 0.557 0.587 60 

37 0.509 0.479 0.494 27 

38 0.483 0.547 0.515 38 

39 0.473 0.523 0.498 58 

40 0.548 0.606 0.577 47 

41 0.524 0.540 0.532 13 

42 0.669 0.562 0.616 125 

43 0.591 0.639 0.615 66 

44 0.573 0.699 0.636 110 

45 0.746 0.770 0.758 33 

46 0.653 0.680 0.667 133 

47 0.666 0.563 0.615 59 

48 0.659 0.602 0.631 40 

49 0.625 0.571 0.598 38 

50 0.586 0.601 0.594 84 

51 0.683 0.576 0.630 20 

52 0.697 0.718 0.708 14 
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D2 Workpiece Hardness Measurements 

Leeb D measurements 

x(cm) y(cm) 

M 1 

(HLD) 

M2 

(HLD) 

M 3 

(HLD) 

M4 

(HLD) 

Average M 

(HLD) 

4.5 5 428 436 435 442 435 

4.5 10 435 435 436 437 436 

4.5 15 434 435 436 439 436 

4.5 20 430 433 442 437 436 

4.5 25 429 426 439 426 430 

4.5 30 428 433 438 434 433 

4.5 35 429 426 436 435 432 

4.5 40 431 420 441 427 430 

9 5 433 440 436 440 437 

9 10 441 444 442 441 442 

9 15 436 436 440 440 438 

9 20 440 444 440 437 440 

9 25 438 437 437 439 438 

9 30 437 437 441 436 438 

9 35 437 441 438 425 435 

9 40 441 429 440 431 435 

13.5 5 433 446 431 443 438 

13.5 10 442 444 443 450 445 

13.5 15 443 441 445 446 444 

13.5 20 440 442 436 441 440 

13.5 25 442 443 439 441 441 

13.5 30 438 437 445 436 439 

13.5 35 443 443 440 435 440 

13.5 40 438 428 443 430 435 

18 5 428 440 430 447 436 

18 10 444 440 440 445 442 

18 15 446 446 447 444 446 

18 20 444 442 443 438 442 

18 25 440 435 440 439 439 

18 30 444 443 442 444 443 

18 35 437 445 442 443 442 

18 40 430 430 445 435 435 

22.5 5 432 442 431 447 438 

22.5 10 447 442 443 440 443 

22.5 15 446 444 446 440 444 

22.5 20 445 443 444 440 443 

22.5 25 442 442 443 440 442 

22.5 30 445 442 441 444 443 

22.5 35 444 445 442 442 443 
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22.5 40 444 431 440 427 436 

27 5 427 440 434 447 437 

27 10 441 438 443 446 442 

27 15 441 439 447 447 444 

27 20 445 443 445 438 443 

27 25 445 442 442 438 442 

27 30 443 447 441 442 443 

27 35 443 437 443 441 441 

27 40 442 437 447 431 439 

31.5 5 437 444 433 445 440 

31.5 10 445 439 442 443 442 

31.5 15 445 443 444 437 442 

31.5 20 438 440 443 441 441 

31.5 25 443 441 441 441 442 

31.5 30 441 443 445 442 443 

31.5 35 449 444 444 441 445 

31.5 40 449 439 440 435 441 

36 5 434 445 420 439 435 

36 10 446 442 437 440 441 

36 15 443 443 435 435 439 

36 20 439 442 436 434 438 

36 25 440 442 438 435 439 

36 30 443 447 441 435 442 

36 35 442 441 438 436 439 

36 40 446 430 437 428 435 

 

Vickers 30Kg Measurements 

x(cm) y(cm) 

M 1 

(HV30) 

M2 

(HV30) 

M 3 

(HV30) 

M4 

(HV30) 

Average 

(HV30) 

4.5 5 205 211 205 208 207 

4.5 10 207 211 207 200 206 

4.5 15 208 207 206 206 207 

4.5 20 217 206 207 203 208 

4.5 25 208 204 203 207 206 

4.5 30 209 208 206 209 208 

4.5 35 211 215 210 207 211 

4.5 40 210 211 206 207 209 

9 5 205 208 207 212 208 

9 10 204 206 204 204 205 

9 15 207 207 208 207 207 

9 20 207 206 209 207 207 

9 25 212 212 207 204 209 

9 30 208 207 208 211 209 
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9 35 206 207 208 211 208 

9 40 212 207 210 207 209 

13.5 5 211 206 209 210 209 

13.5 10 207 210 206 208 208 

13.5 15 209 207 209 211 209 

13.5 20 207 207 208 207 207 

13.5 25 208 211 209 211 210 

13.5 30 207 207 211 207 208 

13.5 35 208 206 208 206 207 

13.5 40 207 207 208 207 207 

18 5 209 209 212 213 211 

18 10 211 209 207 208 209 

18 15 214 207 214 215 213 

18 20 207 209 212 211 210 

18 25 209 212 211 211 211 

18 30 209 209 209 209 209 

18 35 208 208 208 209 208 

18 40 209 208 207 207 208 

22.5 5 213 213 207 210 211 

22.5 10 208 209 208 214 210 

22.5 15 211 209 211 209 210 

22.5 20 213 210 210 210 211 

22.5 25 210 210 209 208 209 

22.5 30 214 210 211 210 211 

22.5 35 211 211 211 213 212 

22.5 40 214 211 208 213 212 

27 5 204 207 208 208 207 

27 10 211 207 210 207 209 

27 15 210 209 207 209 209 

27 20 206 211 207 206 208 

27 25 208 206 210 209 208 

27 30 211 212 215 210 212 

27 35 210 215 212 211 212 

27 40 212 211 212 210 211 

31.5 5 211 211 209 210 210 

31.5 10 210 210 211 211 211 

31.5 15 211 211 208 210 210 

31.5 20 209 208 207 207 208 

31.5 25 207 208 212 208 209 

31.5 30 208 211 207 210 209 

31.5 35 211 207 209 216 211 

31.5 40 212 212 210 211 211 

36 5 213 215 214 213 214 

36 10 210 214 210 211 211 
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36 15 211 211 211 211 211 

36 20 208 208 207 210 208 

36 25 207 207 207 211 208 

36 30 208 207 209 207 208 

36 35 208 210 208 210 209 

36 40 208 208 209 212 209 

 

Cutting Force measurements 

Hole 1              

Cutting condition 

(m/min_mm/rev) 

Torque 

Ncm pC/Ncm pC 

error ± 

% 

error ± 

pC 

error ± 

Ncm 

30_0.15 264 1.66 438.24 0.01 4.4 2.6 

35_0.15 261 1.66 433.26 0.01 4.3 2.6 

40_0.15 276 1.66 458.16 0.01 4.6 2.8 

30_0.125 243 1.66 403.38 0.01 4.0 2.4 

35_0.125 225 1.66 373.5 0.01 3.7 2.3 

40_0.125 230 1.66 381.8 0.01 3.8 2.3 

30_0.1 196 1.66 325.36 0.01 3.3 2.0 

35_0.1 197 1.66 327.02 0.01 3.3 2.0 

40_0.1 204 1.66 338.64 0.01 3.4 2.0 

Hole 1              

Cutting condition 

(m/min_mm/rev) 

Thrust 

N pC/N pC error ± % 

error ± 

pC error ± N 

30_0.15 1340 3.46 4636.4 0.01 46.4 13.4 

35_0.15 1273 3.46 4404.58 0.01 44.0 12.7 

40_0.15 1399 3.46 4840.54 0.01 48.4 14.0 

30_0.125 1215 3.46 4203.9 0.01 42.0 12.2 

35_0.125 1150 3.46 3979 0.01 39.8 11.5 

40_0.125 1192 3.46 4124.32 0.01 41.2 11.9 

30_0.1 1081 3.46 3740.26 0.01 37.4 10.8 

35_0.1 1048 3.46 3626.08 0.01 36.3 10.5 

40_0.1 1061 3.46 3671.06 0.01 36.7 10.6 

Point of steady state           

Cutting condition 

(m/min_mm/rev) 

Torque 

Ncm pC/Ncm pC 

error ± 

% 

error ± 

pC 

error ± 

Ncm 

30_0.15 286 1.66 474.76 0.01 4.7 2.9 

35_0.15 282 1.66 468.12 0.01 4.7 2.8 

40_0.15 288 1.66 478.08 0.01 4.8 2.9 

30_0.125 263 1.66 436.58 0.01 4.4 2.6 

35_0.125 249 1.66 413.34 0.01 4.1 2.5 

40_0.125 252 1.66 418.32 0.01 4.2 2.5 

30_0.1 217 1.66 360.22 0.01 3.6 2.2 
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35_0.1 217 1.66 360.22 0.01 3.6 2.2 

40_0.1 211 1.66 350.26 0.01 3.5 2.1 

Point of steady state           

Cutting condition 

(m/min_mm/rev) 

Thrust 

N pC/N pC 

error ± 

% error ± pC error ± N 

30_0.15 1488 3.46 5148.48 0.01 51.5 14.9 

35_0.15 1469 3.46 5082.74 0.01 50.8 14.7 

40_0.15 1665 3.46 5760.9 0.01 57.6 16.7 

30_0.125 1349 3.46 4667.54 0.01 46.7 13.5 

35_0.125 1307 3.46 4522.22 0.01 45.2 13.1 

40_0.125 1438 3.46 4975.48 0.01 49.8 14.4 

30_0.1 1190 3.46 4117.4 0.01 41.2 11.9 

35_0.1 1211 3.46 4190.06 0.01 41.9 12.1 

40_0.1 1234 3.46 4269.64 0.01 42.7 12.3 

Hole 20             

Cutting condition 

(m/min_mm/rev) 

Torque 

Ncm pC/N pC 

error ± 

% 

error ± 

pC error ± Ncm 

30_0.15 305 1.66 506.3 0.01 5.1 3.1 

35_0.15 294 1.66 488.04 0.01 4.9 2.9 

40_0.15 298 1.66 494.68 0.01 4.9 3.0 

30_0.125 266 1.66 441.56 0.01 4.4 2.7 

35_0.125 258 1.66 428.28 0.01 4.3 2.6 

40_0.125 262 1.66 434.92 0.01 4.3 2.6 

30_0.1 224 1.66 371.84 0.01 3.7 2.2 

35_0.1 225 1.66 373.5 0.01 3.7 2.3 

40_0.1 231 1.66 383.46 0.01 3.8 2.3 

Hole 20             

Cutting condition 

(m/min_mm/rev) 

Thrust 

N pC/N pC 

error ± 

% error ± pC error ± N 

30_0.15 1624 3.46 5619.04 0.01 56.2 16.2 

35_0.15 1625 3.46 5622.5 0.01 56.2 16.3 

40_0.15 1870 3.46 6470.2 0.01 64.7 18.7 

30_0.125 1437 3.46 4972.02 0.01 49.7 14.4 

35_0.125 1408 3.46 4871.68 0.01 48.7 14.1 

40_0.125 1556 3.46 5383.76 0.01 53.8 15.6 

30_0.1 1226 3.46 4241.96 0.01 42.4 12.3 

35_0.1 1268 3.46 4387.28 0.01 43.9 12.7 

40_0.1 1389 3.46 4805.94 0.01 48.1 13.9 
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Appendix E – Chapter 3.4 Data & Results 

Surface roughness data outer corner rake face 

Lc 800 μm            

Drill ID  

Ra 

Average 

roughness  

(nm) 

Rt Max peak 

to valley 

height (μm) 

Rz Mean peak 

to valley 

height (μm) 

Rp Max 

peak height  

(μm) 

Rv Max 

valley 

height (μm) 

3_1_1 597.95 5.94 3.98 3.92 2.02 

3_1_2 804.77 5.48 4.97 2.59 2.89 

3_1_3 693.38 6.17 4.81 3.49 2.68 

3_1_4 654.25 4.53 3.95 2.63 1.89 

3_1_5 533.91 4.03 3.25 2.05 1.98 

3_1_6 379.96 3.59 2.77 1.96 1.63 

3_1_7 651.31 4.86 4.10 2.17 2.69 

3_1_8 428.05 4.13 3.35 2.61 1.52 

3_1_9 493.20 5.53 3.88 2.67 2.86 

3_1_10 421.86 4.40 3.09 1.73 2.67 

3_1_11 532.93 5.55 3.95 3.24 2.30 

3_1_12 540.13 5.39 4.15 2.45 2.93 

Average 560.98 4.97 3.85 2.63 2.34 

3_2_1 738.68 6.39 5.03 4.17 2.22 

3_2_2 678.68 6.05 5.17 3.44 2.61 

3_2_3 464.94 6.41 4.24 3.69 2.72 

3_2_4 478.39 5.44 3.61 3.42 2.01 

3_2_5 634.75 5.42 4.41 2.71 2.70 

3_2_6 863.46 10.32 7.23 6.53 3.78 

3_2_7 820.48 6.17 5.35 3.58 2.58 

3_2_8 657.73 5.00 4.14 2.50 2.50 

3_2_9 527.93 5.29 4.38 2.50 2.78 

3_2_10 599.81 4.61 3.85 2.66 1.94 

3_2_11 670.74 4.51 3.94 2.52 1.98 

3_2_12 437.90 4.66 3.66 2.63 2.02 

Average 631.12 5.86 4.58 3.36 2.49 

3_3_1 545.71 3.98 3.41 1.93 2.03 

3_3_2 578.05 4.51 4.25 2.27 2.24 

3_3_3 631.26 5.47 4.46 2.19 3.28 

3_3_4 712.52 5.54 4.51 2.86 2.67 

3_3_5 496.41 4.57 3.69 2.53 2.03 
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3_3_6 604.82 4.92 4.09 1.92 2.99 

3_3_7 704.38 5.07 4.69 2.53 2.54 

3_3_8 540.36 4.51 4.15 1.69 2.28 

3_3_9 769.81 5.45 4.85 2.55 2.90 

3_3_10 588.09 4.81 4.35 2.56 2.25 

3_3_11 686.39 5.80 5.28 2.27 3.52 

3_3_12 659.51 6.35 4.74 3.43 2.92 

Average 626.44 5.08 4.37 2.39 2.64 

3_4_1 562.31 6.42 5.10 3.26 3.16 

3_4_2 905.57 8.86 6.80 5.98 2.88 

3_4_3 719.26 9.30 6.30 5.73 3.57 

3_4_4 957.94 8.70 6.86 4.97 3.72 

3_4_5 626.41 6.94 5.37 3.97 2.96 

3_4_6 742.48 6.97 5.33 3.82 3.15 

3_4_7 788.89 10.27 7.04 2.80 4.20 

3_4_8 625.02 6.76 5.21 3.45 3.31 

3_4_9 607.91 8.66 6.13 5.87 2.78 

3_4_10 549.98 5.36 4.24 2.74 2.62 

3_4_11 496.70 8.63 5.66 5.95 2.67 

3_4_12 667.74 7.62 6.44 3.92 3.69 

Average 687.52 7.87 5.87 4.37 3.23 

 

Surface roughness data on flute 3 diameters away from chisel point 

Lc 800 μm 

 

        

Drill ID  

Ra 

Average 

roughness 

(μm) 

Rt Max peak 

to valley 

height (μm) 

Rz Mean peak 

to valley 

height (μm) 

Rp Max 

peak height  

(μm) 

Rv Max 

valley 

height (μm) 

3_1_1 1.5624 9.68 8.39 6.01 3.66 

3_1_2 1.7078 14.44 11.95 7.35 7.09 

3_1_3 1.5402 12.51 9.96 7.77 4.74 

3_1_4 1.8210 11.04 9.43 6.28 4.76 

3_1_5 2.2100 11.61 9.97 7.24 4.36 

3_1_6 1.8083 13.76 11.44 7.94 5.82 

3_1_7 1.4630 10.43 8.58 6.26 4.17 

3_1_8 1.6971 12.89 10.51 7.73 5.16 

3_1_9 1.7033 14.05 11.93 7.48 6.57 

3_1_10 1.6376 11.05 9.42 6.89 4.16 
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3_1_11 1.8380 11.97 10.03 7.15 4.81 

3_1_12 1.9991 12.10 10.54 6.33 5.78 

Average 1.7490 12.13 10.18 7.04 5.09 

3_2_1 1.4764 10.15 8.51 6.49 3.66 

3_2_2 1.7000 9.96 8.82 5.66 4.29 

3_2_3 1.5513 9.96 8.25 5.90 4.06 

3_2_4 2.0908 11.96 10.22 6.65 5.31 

3_2_5 2.0623 12.71 10.46 7.55 5.15 

3_2_6 1.7839 13.27 10.49 8.42 4.85 

3_2_7 1.4857 10.32 8.82 6.37 3.96 

3_2_8 1.9320 14.59 12.76 7.95 6.63 

3_2_9 1.7934 10.91 8.84 6.92 3.99 

3_2_10 1.6391 11.36 8.85 7.28 4.07 

3_2_11 1.6066 11.94 9.93 7.19 4.75 

3_2_12 2.0526 12.53 11.21 6.69 5.84 

Average 1.7645 11.64 9.76 6.92 4.71 

3_3_1 1.4140 11.45 8.95 7.29 4.16 

3_3_2 1.8406 12.55 10.80 7.25 5.30 

3_3_3 1.7279 13.60 10.96 8.43 5.18 

3_3_4 1.8891 12.19 10.89 7.19 4.99 

3_3_5 1.5580 12.93 10.27 7.65 5.28 

3_3_6 1.7173 12.69 10.99 7.95 4.74 

3_3_7 1.4282 10.62 9.19 6.62 4.01 

3_3_8 2.0145 16.01 12.69 8.49 7.52 

3_3_9 1.6375 12.25 10.65 7.20 5.05 

3_3_10 1.6192 11.26 9.69 6.26 4.99 

3_3_11 1.7923 9.82 8.79 5.51 4.31 

3_3_12 2.0866 12.57 11.04 6.91 5.66 

Average 1.7271 12.33 10.41 7.23 5.10 

3_4_1 2.1996 14.22 11.95 7.12 7.10 

3_4_2 2.0778 12.51 10.90 7.88 4.63 

3_4_3 1.8275 12.48 10.22 7.44 5.05 

3_4_4 1.9197 11.77 10.13 6.22 5.55 

3_4_5 1.7255 11.32 10.06 5.79 5.53 

3_4_6 1.9144 13.94 12.72 7.75 6.20 

3_4_7 1.5034 9.77 8.01 6.40 3.37 

3_4_8 1.3441 9.39 8.01 6.00 3.39 

3_4_9 2.2141 15.57 13.46 7.91 7.66 

3_4_10 1.6217 12.01 9.68 7.94 4.07 
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3_4_11 1.6022 10.97 9.79 6.39 4.58 

3_4_12 1.5679 12.26 10.21 6.95 5.31 

Average 1.7932 12.18 10.43 6.98 5.20 

 

Lc 80 μm 

 

        

Drill ID  

Ra 

Average 

roughness 

(nm) 

Rt Max peak 

to valley 

height (μm) 

Rz Mean peak 

to valley 

height (μm) 

Rp Max 

peak height  

(μm) 

Rv Max 

valley 

height (μm) 

3_1_1 460.46 4.38 3.52 2.52 1.85 

3_1_2 889.40 7.20 6.35 3.34 3.86 

3_1_3 591.95 4.70 4.28 2.49 2.21 

3_1_4 470.98 4.87 3.62 2.80 2.07 

3_1_5 642.00 5.21 3.85 3.02 2.18 

3_1_6 645.39 5.45 4.93 2.83 2.62 

3_1_7 507.27 4.36 3.67 2.61 1.75 

3_1_8 615.28 5.10 4.66 2.89 2.21 

3_1_9 746.70 5.92 5.19 2.63 3.29 

3_1_10 643.26 6.60 5.11 4.08 2.52 

3_1_11 670.56 4.65 4.27 2.31 2.34 

3_1_12 857.89 7.41 5.69 4.77 2.64 

Average 645.10 5.49 4.59 3.02 2.46 

3_2_1 565.62 8.58 4.69 5.22 3.36 

3_2_2 532.04 4.76 4.16 2.61 2.15 

3_2_3 527.07 4.23 3.82 2.11 2.11 

3_2_4 613.39 5.16 4.45 2.78 2.38 

3_2_5 600.44 6.89 5.15 5.04 1.85 

3_2_6 746.90 6.12 4.87 4.16 1.95 

3_2_7 669.09 5.05 4.35 2.99 2.06 

3_2_8 1325.30 7.59 6.59 3.70 3.88 

3_2_9 505.21 4.73 4.00 2.95 1.78 

3_2_10 533.48 5.06 4.01 3.37 1.69 

3_2_11 772.54 5.80 4.77 3.25 2.55 

3_2_12 860.29 6.66 5.44 4.03 2.63 

Average 687.61 5.88 4.69 3.52 2.37 

3_3_1 436.90 4.63 3.67 2.65 1.98 

3_3_2 736.85 6.19 4.96 3.54 2.65 

3_3_3 705.97 5.47 4.65 2.95 2.52 
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3_3_4 960.79 5.72 5.06 3.49 2.25 

3_3_5 566.62 5.66 4.98 2.62 3.04 

3_3_6 706.15 5.63 4.90 3.15 2.48 

3_3_7 513.89 5.04 4.30 2.89 2.15 

3_3_8 1085.80 7.31 6.39 3.62 3.69 

3_3_9 846.39 6.51 5.85 3.47 3.04 

3_3_10 790.33 5.18 4.55 2.78 2.40 

3_3_11 570.91 5.65 4.28 3.10 2.55 

3_3_12 939.89 5.59 5.35 2.73 2.86 

Average 738.37 5.71 4.91 3.08 2.63 

3_4_1 860.52 6.21 5.82 2.62 3.59 

3_4_2 764.62 6.23 5.47 4.10 2.13 

3_4_3 763.83 6.64 5.16 3.45 3.19 

3_4_4 590.24 4.23 3.89 2.59 1.64 

3_4_5 757.38 6.76 5.84 3.48 3.27 

3_4_6 777.93 6.87 5.54 4.08 2.80 

3_4_7 414.28 4.64 3.29 3.05 1.59 

3_4_8 484.28 7.39 4.49 5.27 2.13 

3_4_9 790.27 7.07 6.17 3.79 3.28 

3_4_10 562.45 5.67 4.43 3.41 2.27 

3_4_11 806.96 6.97 5.67 4.54 2.43 

3_4_12 693.58 5.29 4.78 2.86 2.43 

Average 688.86 6.17 5.04 3.60 2.56 
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Coating thickness data and results 

 

SEM image showing the margin of drill 3.1.11, all coating thickness measurements are taken 

from this point. 

 

SEM image showing the PVD coating thickness measurements made on drill 3.3.5 

The results from the comparative study of XRF detectors show coating thicknesses between 

2.72μm and 3.55μm, while coating thicknesses from the XDV-SD were between 4.29μm and 

4.79μm, prior to calibration.  The coating thickness should be 3.00 μm, therefore the initial 

findings supported the XDL model with the proportional counter.  SEM measurements 

correlated more closely with the XDL model.  The samples were then used as calibration 

pieces and all eight drills were remeasured.  Calibrated results laid even closer to the SEM 

measurements, hence the XDL was chosen to measure all forty eight drills. 
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Bar chart showing results comparing the XDL and XDVSD X-Ray Fluorescence measuring 

devices against measured thicknesses via SEM as well as the XDL results after calibrating 

the device with SEM samples. 

 

TiN Coating Thickness Measurements via XRF 

Group 3.1       

M1 (µm) M2 (µm) M3 (µm) Average (µm) 

3.081 3.062 3.117 3.087 

3.021 3.020 3.011 3.017 

2.393 2.411 2.382 2.395 

2.433 2.490 2.435 2.453 

3.190 3.162 3.164 3.172 

3.188 3.133 3.147 3.156 

2.789 2.561 2.687 2.679 

2.837 2.811 2.808 2.819 

2.473 2.487 2.504 2.488 

2.802 2.799 2.771 2.791 

2.796 2.794 2.755 2.782 

2.551 2.545 2.545 2.547 

 

Group 3.2       

M1 (µm) M2 (µm) M3 (µm) Average (µm) 

2.784 2.761 2.796 2.780 

2.542 2.612 2.575 2.576 

1 2 3 4 5 6 7 8

XDL 3.51 3.18 3.29 2.75 3.4 3.55 3.23 2.72

XDVSD 4.79 4.39 4.74 4.38 4.69 4.70 4.45 4.29

SEM 2.53 2.38 2.33 2.76 3.11 2.96

XDL Calibrated 3.09 2.55 2.72 2.61 2.45 2.63 2.47 2.55

0

1

2

3

4

5

6
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Coating Thickness Comparision 
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2.631 2.423 2.542 2.532 

2.776 2.773 2.749 2.766 

3.119 2.480 2.590 2.730 

3.122 2.640 2.750 2.837 

2.715 2.634 2.875 2.741 

2.798 2.799 2.780 2.792 

3.114 3.069 3.106 3.096 

2.791 2.834 2.852 2.826 

2.593 2.619 2.612 2.608 

2.726 2.720 2.734 2.727 

 

Group 3.3       

M1 (µm) M2 (µm) M3 (µm) Average (µm) 

2.485 2.486 2.523 2.498 

2.700 2.669 2.613 2.661 

2.624 2.655 2.670 2.650 

2.654 2.660 2.669 2.661 

2.452 2.413 2.471 2.445 

2.618 2.565 2.580 2.588 

2.676 2.694 2.658 2.676 

2.559 2.580 2.555 2.565 

2.541 2.469 2.488 2.499 

2.621 2.631 2.641 2.631 

2.570 2.601 2.591 2.587 

2.518 2.538 2.500 2.519 

 

Group 3.4       

M1 (µm) M2 (µm) M3 (µm) Average (µm) 

2.545 2.519 2.566 2.543 

2.594 2.608 2.691 2.633 

2.576 2.579 2.487 2.545 

2.723 2.765 2.745 2.744 

2.722 2.628 2.630 2.660 

2.613 2.539 2.559 2.570 

2.695 2.642 2.669 2.669 

2.506 2.405 2.383 2.431 

2.459 2.617 2.562 2.546 

2.456 2.492 2.467 2.472 

2.545 2.616 2.566 2.576 

2.431 2.503 2.478 2.471 
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Tool Life Data 

Drill ID 

Cutting parameters speed 

m/min feed mm/rev 

No. of 2.5xD 

holes 

3_1_1 45_0.125   

3_1_2 45_0.125 50 

3_1_3 45_0.125 40 

3_1_4 45_0.125 38 

3_1_5 45_0.125 64 

3_1_6 45_0.125 67 

3_1_7 35_0.125 142 

3_1_8 35_0.125 104 

3_1_9 35_0.125 86 

3_1_10 35_0.125 103 

3_1_11 45_0.125 48 

3_1_12 35_0.125 143 

3_2_1 45_0.125   

3_2_2 45_0.125 60 

3_2_3 45_0.125 59 

3_2_4 45_0.125 43 

3_2_5 45_0.125 67 

3_2_6 45_0.125 50 

3_2_7 35_0.125 146 

3_2_8 35_0.125 127 

3_2_9 35_0.125 152 

3_2_10 35_0.125 122 

3_2_11 45_0.125 40 

3_2_12 35_0.125 129 

3_3_1 45_0.125   

3_3_2 45_0.125 38 

3_3_3 45_0.125 45 

3_3_4 45_0.125 39 

3_3_5 45_0.125 30 

3_3_6 45_0.125 35 

3_3_7 35_0.125 87 

3_3_8 35_0.125 110 

3_3_9 35_0.125 102 

3_3_10 35_0.125 100 

3_3_11 45_0.125 41 

3_3_12 35_0.125 130 

3_4_1 45_0.125   

3_4_2 45_0.125 40 



   143 

 

3_4_3 45_0.125 33 

3_4_4 45_0.125 50 

3_4_5 45_0.125 45 

3_4_6 45_0.125 41 

3_4_7 35_0.125 100 

3_4_8 35_0.125 106 

3_4_9 35_0.125 95 

3_4_10 35_0.125 104 

3_4_11 45_0.125 36 

3_4_12 35_0.125 110 

 

Surface Roughness Analysis Statistical Results: ANOVA tables, Interactions plots 

Analysis of surface data measured on the rake face at the outer corner 
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Interaction plot showing the effect of pre and post drag polishing on the mean value for the 

Ra average height of the profiles measured on the rake face adjacent to the cutting edge. 

ANOVA results for the Ra average height of primary profile measured on the rake face 

adjacent to the cutting edge. 

Rake Face Outer Corner Ra Lc 800μm             

 

DF Seq SS Adj SS Adj MS F-Value P-Value 

Main Effects 2 96210 96210 48104.8 3.15 0.053 

Pre Polish 1 44550 44550 44550.2 2.92 0.095 

Post Polish 1 51659 51659 51659.3 3.38 0.073 

2 Way Interactions 1 247 247 247 0.02 0.899 

Pre Polish +Post Polish 1 247 247 247 0.02 0.899 

Residual error 44 671615 671615 15264 

 

  

Pure error 44 671615 671615 15264 

 

  

Total 47 768071         
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Interaction plot showing the effect of pre and post drag polishing on the mean value for the 

Rt maximum peak to valley height of the profiles measured on the rake face adjacent to the 

cutting edge. 

ANOVA results for the Rt maximum peak to valley height of primary profile measured on 

the rake face adjacent to the cutting edge. 

Rake Face Outer Corner Rt Lc 800μm             

 

DF Seq SS Adj SS Adj MS F-Value P-Value 

Main Effects 2 54.32 54.32 27.16 19.51 0.000 

Pre Polish 1 13.65 13.65 13.65 9.81 0.003 

Post Polish 1 40.66 40.66 40.66 29.21 0.000 

2 Way Interactions 1 10.87 10.87 10.87 7.81 0.008 

Pre Polish +Post Polish 1 10.87 10.87 10.87 7.81 0.008 

Residual error 44 61.26 61.26 1.39 

 

  

Pure error 44 61.26 61.26 1.39 

 

  

Total 47 126.44         
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Interaction plot showing the effect of pre and post drag polishing on the mean value for the 

Rz mean peak to valley height of the profiles measured on the rake face adjacent to the 

cutting edge. 
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ANOVA results for the Rz mean peak to valley height of primary profile measured on the 

rake face adjacent to the cutting edge. 

Rake Face Outer Corner Rz Lc 800μm             

 

DF Seq SS Adj SS Adj MS F-Value P-Value 

Main Effects 2 24.73 24.73 12.36 20.22 0.000 

Pre Polish 1 9.80 9.80 9.80 16.03 0.000 

Post Polish 1 14.93 14.93 14.93 24.41 0.000 

2 Way Interactions 1 1.78 1.78 1.78 2.91 0.095 

Pre Polish +Post Polish 1 1.78 1.78 1.78 2.91 0.095 

Residual error 44 26.91 26.91 0.61 

 

  

Pure error 44 26.91 26.91 0.61 

 

  

Total 47 53.42         
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Interaction plot showing the effect of pre and post drag polishing on the mean value for the 

Rp maximum peak height of the profiles measured on the rake face adjacent to the cutting 

edge. 

ANOVA results for the Rp maximum peak height of primary profile measured on the rake 

face adjacent to the cutting edge. 

Rake Face Outer Corner Rp Lc 800μm             

 

DF Seq SS Adj SS Adj MS F-Value P-Value 

Main Effects 2 23.91 23.91 11.956 13.52 0.000 

Pre Polish 1 1.84 1.81 1.813 2.05 0.159 

Post Polish 1 22.1 22.1 22.1 24.98 0.000 

2 Way Interactions 1 4.61 4.16 4.619 5.22 0.027 

Pre Polish +Post Polish 1 4.61 4.61 4.619 5.22 0.027 

Residual error 44 38.92 38.92 0.8846 

 

  

Pure error 44 38.92 38.92 0.8846 

 

  

Total 47 67.45         
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Interaction plot showing the effect of pre and post drag polishing on the mean value for the 

Rv maximum valley height of the profiles measured on the rake face adjacent to the cutting 

edge. 

ANOVA results for Rv maximum valley height of primary profile measured on the rake face 

adjacent to the cutting edge. 

Rake Face Outer Corner Rv Lc 800μm           

 

DF Seq SS Adj SS Adj MS F-Value P-Value 

Main Effects 2 4.862 4.862 2.431 9.640 0.000 

Pre Polish 1 3.234 3.234 3.234 12.830 0.001 

Post Polish 1 1.62 1.628 1.62 6.460 0.015 

2 Way Interactions 1 0.580 0.580 0.580 2.300 0.136 

Pre Polish +Post Polish 1 0.580 0.580 0.580 2.300 0.136 

Residual error 44 11.093 11.093 0.252 

 

  

Pure error 44 11.093 11.093 0.252 

 

  

Total 47 16.536         

 

Analysis of surface data measured 3 diameters up the flute from the chisel point. 
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Interaction plot showing the effect of pre and post drag polishing on the mean value for Ra 

average height of the profiles measured 3 diameters up the flute from the chisel point. 

 

 

ANOVA results for the Ra average height of primary profile measured 3 diameters up the 

flute from the chisel point. 
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Analysis of Variance for Ra (nm) 3xD up flute Lc80 

 

Source                    DF   Seq SS   Adj SS   Adj MS     F      P 

Main Effects               2    26953    26953  13476.3  0.41  0.664 

  Pre Polish               1    26806    26806  26805.9  0.82  0.369 

  Post Polish              1      147      147    146.7  0.00  0.947 

2-Way Interactions         1    25409    25409  25409.5  0.78  0.382 

  Pre Polish*Post Polish   1    25409    25409  25409.5  0.78  0.382 

Residual Error            44  1432320  1432320  32552.7 

  Pure Error              44  1432320  1432320  32552.7 

Total                     47  1484682 
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Interaction plot showing the effect of pre and post drag polishing on the mean value for the 

Rt maximum peak to valley height of the profiles measured 3 diameters up the flute from 

the chisel point. 

ANOVA results for the Rt maximum peak to valley height of primary profile measured 3 

diameters up the flute from the chisel point. 

Analysis of Variance for Rt (μm) 3xD up flute Lc80 

 

Source                    DF   Seq SS   Adj SS   Adj MS     F      P 

Main Effects               2   2.9248   2.9248  1.46242  1.34  0.273 

  Pre Polish               1   0.7693   0.7693  0.76935  0.70  0.406 

  Post Polish              1   2.1555   2.1555  2.15549  1.97  0.167 

2-Way Interactions         1   0.0091   0.0091  0.00909  0.01  0.928 

  Pre Polish*Post Polish   1   0.0091   0.0091  0.00909  0.01  0.928 

Residual Error            44  48.1303  48.1303  1.09387 

  Pure Error              44  48.1303  48.1303  1.09387 

Total                     47  51.0642 
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Interaction plot showing the effect of pre and post drag polishing on the mean value for the 

Rz mean peak to valley height of the profiles 3 diameters up the flute from the chisel point. 
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ANOVA results for the Rz mean peak to valley height of primary profile measured 3 

diameters up the flute from the chisel point. 

Analysis of Variance for Rz (μm) 3xD up flute Lc80 

 

Source                    DF   Seq SS   Adj SS   Adj MS     F      P 

Main Effects               2   1.5086   1.5086  0.75430  1.12  0.335 

  Pre Polish               1   1.3471   1.3471  1.34707  2.00  0.164 

  Post Polish              1   0.1615   0.1615  0.16153  0.24  0.627 

2-Way Interactions         1   0.0033   0.0033  0.00332  0.00  0.944 

  Pre Polish*Post Polish   1   0.0033   0.0033  0.00332  0.00  0.944 

Residual Error            44  29.5921  29.5921  0.67255 

  Pure Error              44  29.5921  29.5921  0.67255 

Total                     47  31.1040 
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Interaction plot showing the effect of pre and post drag polishing on the mean value for the 

Rp maximum peak height of the profiles measured 3 diameters up the flute from the chisel 

point. 

ANOVA results for Rp maximum peak height of primary profile measured 3 diameters up 

the flute from the chisel point. 

3xD up Flute Rp Lc 80μm             

 

DF Seq SS Adj SS Adj MS 

F-

Value P-Value 

Main Effects 2 3.1438 3.1438 1.5719 2.85 0.069 

Pre Polish 1 0.0606 0.0606 0.0605 0.11 0.742 

Post Polish 1 3.0832 3.0832 3.0832 5.58 0.023 

2 Way Interactions 1 0.0024 0.0024 0.0024 0.00 0.948 

Pre Polish +Post Polish 1 0.0024 0.0024 0.0024 0.00 0.948 

Residual error 44 24.2987 24.2987 0.55224 

 

  

Pure error 44 24.2987 24.2987 0.55224 

 

  

Total 47 27.4449         
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Interaction plot showing the effect of pre and post drag polishing on the mean value for the 

Rv maximum valley height of the profiles measured 3 diameters up the flute from the chisel 

point. 

ANOVA results for Rv maximum valley height of primary profile measured 3 diameters up 

the flute from the chisel point. 

Analysis of Variance for Rv (μm) 3xD up flute Lc80 

 

Source                    DF   Seq SS   Adj SS    Adj MS     F      P 

Main Effects               2   0.4918   0.4918  0.245924  0.68  0.514 

  Pre Polish               1   0.4069   0.4069  0.406916  1.12  0.296 

  Post Polish              1   0.0849   0.0849  0.084933  0.23  0.631 

2-Way Interactions         1   0.0021   0.0021  0.002079  0.01  0.940 

  Pre Polish*Post Polish   1   0.0021   0.0021  0.002079  0.01  0.940 

Residual Error            44  16.0004  16.0004  0.363645 

  Pure Error              44  16.0004  16.0004  0.363645 

Total                     47  16.4943 
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Tool Life Statistical Results: ANOVA and Mood Median Tests 

Analysis of Variance for Tool Life No. of 2.5xD Holes 35m/min 

 

Source                    DF  Seq SS  Adj SS  Adj MS     F      P 

Main Effects               2  2557.8  2557.8  1278.9  4.62  0.026 

  Pre-Polish               1  2205.0  2205.0  2205.0  7.96  0.012 

  Post-Polish              1   352.8   352.8   352.8  1.27  0.276 

2-Way Interactions         1   627.2   627.2   627.2  2.26  0.152 

  Pre-Polish*Post-Polish   1   627.2   627.2   627.2  2.26  0.152 

Residual Error            16  4432.8  4432.8   277.0 

  Pure Error              16  4432.8  4432.8   277.1 

Total                     19  7617.8 

Minitab output: ANOVA using raw tool life data (No. of 2.5xD Holes) at 35m/min 

0.125mm/rev testing the significance of pre polishing, post polishing and interaction. 

Analysis of Variance for Tool Life No. of 2.5xD Holes/Micron 35m/min 

 

Source                    DF   Seq SS   Adj SS   Adj MS     F      P 

Main Effects               2  200.633  200.633  100.316  3.31  0.062 

  Pre Polish               1  192.820  192.820  192.820  6.37  0.023 

  Post Polish              1    7.812    7.812    7.812  0.26  0.618 

2-Way Interactions         1    1.104    1.104    1.104  0.04  0.851 

  Pre Polish*Post Polish   1    1.104    1.104    1.104  0.04  0.851 

Residual Error            16  484.248  484.248   30.265 

  Pure Error              16  484.248  484.248   30.266 

Total                     19  685.985 

Minitab output: ANOVA using Tool life No. of 2.5xD holes/micron data at 35m/min 

0.125mm/rev testing the significance of pre polishing, post polishing and interaction. 

Analysis of Variance for Tool Life No. of 2.5xD Holes 45m/min 

 

Source                    DF   Seq SS   Adj SS   Adj MS      F      P 

Main Effects               2  1010.42  1010.42  505.208   6.31  0.008 

  Pre-Polish               1   975.38   975.38  975.375  12.17  0.002 

  Post-Polish              1    35.04    35.04   35.042   0.44  0.516 

2-Way Interactions         1     1.04     1.04    1.042   0.01  0.910 

  Pre-Polish*Post-Polish   1     1.04     1.04    1.042   0.01  0.910 

Residual Error            20  1602.50  1602.50   80.125 

  Pure Error              20  1602.50  1602.50   80.125 

Total                     23  2613.96 

Minitab output: ANOVA using raw tool life data (No. of 2.5xD Holes) at 45m/min 

0.125mm/rev testing the significance of pre polishing, post polishing and interaction. 

Analysis of Variance for Tool Life No. of 2.5xD Holes/Micron 45m/min 

 

Source                    DF   Seq SS   Adj SS  Adj MS      F      P 

Main Effects               2  101.604  101.604  50.802   6.89  0.005 

  Pre Polish               1   88.550   88.550  88.550  12.02  0.002 

  Post Polish              1   13.054   13.054  13.054   1.77  0.198 

2-Way Interactions         1    1.654    1.654   1.654   0.22  0.641 

  Pre Polish*Post Polish   1    1.654    1.654   1.654   0.22  0.641 

Residual Error            20  147.392  147.392   7.370 

  Pure Error              20  147.392  147.392   7.370 

Total                     23  250.650 

Minitab output: ANOVA using Tool life No. of 2.5xD holes/micron data at 45m/min 

0.125mm/rev testing the significance of pre polishing, post polishing and interaction. 
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Mood median test for Tool Life No. of 2.5xD Holes 35m/min Pre Polish 

Chi-Square = 3.20    DF = 1    P = 0.074 

 

Pre                             Individual 95.0% CIs 

Polish  N<=  N>  Median  Q3-Q1  ----+---------+---------+---------+-- 

No        7   3   103.0   11.3  (--*---) 

Yes       3   7   128.0   40.0     (---------------*----------) 

                                ----+---------+---------+---------+-- 

                                  105       120       135       150 

Overall median = 108.0 

 

 

A 95.0% CI for median(-1) - median( 1): (-43.0,6.0) 

Minitab output: Mood median test using raw tool life data (No. of 2.5xD Holes) at 35m/min 

0.125mm/rev testing the significance of pre polishing. 

Mood median test for Tool Life No. of 2.5xD Holes/Micron 35m/min Pre Polish 

Chi-Square = 3.20    DF = 1    P = 0.074 

 

Pre                             Individual 95.0% CIs 

Polish  N<=  N>  Median  Q3-Q1  -----+---------+---------+---------+- 

No        7   3    41.5    6.4  (-------*----) 

Yes       3   7    46.4   11.0           (--------*------------) 

                                -----+---------+---------+---------+- 

                                  40.0      45.0      50.0      55.0 

Overall median = 43.1 

 

 

A 95.0% CI for median(No) - median(Yes): (-15.5,0.6) 

Minitab output: Mood median test using Tool life No. of 2.5xD holes/micron data at 

35m/min 0.125mm/rev testing the significance of pre polishing. 

Mood median test for Tool Life No. of 2.5xD Holes 35m/min Post Polish 

Chi-Square = 0.80    DF = 1    P = 0.371 

 

                                     Individual 95.0% CIs 

Post-Polish  N<=  N>  Median  Q3-Q1   +---------+---------+---------+------ 

-1             4   6   116.0   30.3         (----------*--------------) 

 1             6   4   103.5   36.3   (-----*-------------------------) 

                                      +---------+---------+---------+------ 

                                     96       108       120       132 

Overall median = 108.0 

 

 

A 95.0% CI for median(-1) - median( 1): (-26.0,29.0) 

Minitab output: Mood median test using raw tool life data (No. of 2.5xD Holes) at 35m/min 

0.125mm/rev testing the significance of post polishing. 

Mood median test for Tool Life No. of 2.5xD Holes/Micron 35m/min Post Polish 

Chi-Square = 3.20    DF = 1    P = 0.074 

 

Post                            Individual 95.0% CIs 

Polish  N<=  N>  Median  Q3-Q1  ---+---------+---------+---------+--- 

No        3   7    44.0    6.8          (-----------*------------) 

Yes       7   3    41.8   10.2  (-----------*-----------------------) 

                                ---+---------+---------+---------+--- 

                                39.0      42.0      45.0      48.0 

Overall median = 43.1 

 

A 95.0% CI for median(No) - median(Yes): (-4.8,9.0) 

Minitab output: Mood median test using Tool life No. of 2.5xD holes/micron data at 

35m/min 0.125mm/rev testing the significance of post polishing. 

Mood median test for Tool Life No. of 2.5xD Holes 45m/min Pre Polish 

Chi-Square = 6.00    DF = 1    P = 0.014 
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Pre                             Individual 95.0% CIs 

Polish  N<=  N>  Median  Q3-Q1  ------+---------+---------+---------+ 

No        9   3    39.5    8.8  (----*-----) 

Yes       3   9    50.0   22.3         (-----------*---------------) 

                                ------+---------+---------+---------+ 

                                   40.0      48.0      56.0      64.0 

Overall median = 42.0 

 

 

A 95.0% CI for median(-1) - median( 1): (-24.0,-2.0) 

Minitab output: Mood median test using raw tool life data (No. of 2.5xD Holes) at 45m/min 

0.125mm/rev testing the significance of pre polishing. 

Mood median test for Tool Life No. of 2.5xD Holes/Micron 45m/min Pre Polish 

Chi-Square = 6.00    DF = 1    P = 0.014 

 

Pre                             Individual 95.0% CIs 

Polish  N<=  N>  Median  Q3-Q1  -----+---------+---------+---------+- 

No        9   3   14.95   3.05  (----*------) 

Yes       3   9   17.45   7.00          (------*--------------------) 

                                -----+---------+---------+---------+- 

                                  15.0      17.5      20.0      22.5 

Overall median = 16.30 

 

 

A 95.0% CI for median(No) - median(Yes): (-7.20,-0.60) 

Minitab output from a Mood median test using Tool life No. of 2.5xD holes/micron data at 

45m/min 0.125mm/rev testing the significance of pre polishing. 

Mood median test for Tool Life No. of 2.5xD Holes 45m/min Post Polish 

Chi-Square = 0.67    DF = 1    P = 0.414 

 

                                     Individual 95.0% CIs 

Post-Polish  N<=  N>  Median  Q3-Q1  -------+---------+---------+--------- 

-1             5   7    44.0   16.8      (-----*--------------------) 

 1             7   5    40.5   11.5  (----*-------------) 

                                     -------+---------+---------+--------- 

                                         42.0      48.0      54.0 

Overall median = 42.0 

 

 

A 95.0% CI for median(-1) - median( 1): (-8.0,12.0) 

Minitab output: Mood median test using raw tool life data (No. of 2.5xD Holes) at 45m/min 

0.125mm/rev testing the significance of post polishing. 

Mood median test for Tool Life No. of 2.5xD Holes/Micron 45m/min Post Polish 

Chi-Square = 0.00    DF = 1    P = 1.000 

 

Post                            Individual 95.0% CIs 

Polish  N<=  N>  Median  Q3-Q1   --+---------+---------+---------+---- 

No        6   6   16.45   6.80      (----*---------------------) 

Yes       6   6   16.20   2.82   (------*---) 

                                 --+---------+---------+---------+---- 

                                15.0      17.5      20.0      22.5 

Overall median = 16.30 

 

 

A 95.0% CI for median(No) - median(Yes): (-1.70,3.50) 

Minitab output: Mood median test using Tool life No. of 2.5xD holes/micron data at 

45m/min 0.125mm/rev testing the significance of post polishing.  



   153 

 

Appendix F – Chapter 3.5 Data & Results 

Plate Hardness Data 

D2 Plate 1 511 

(HLD) 

D2 Plate 2 492 

(HLD) 

D2 Plate 3 467 

(HLD) 

515 493 463 

505 493 457 

508 496 454 

502 493 461 

503 491 477 

530 493 466 

521 492 458 

508 486 459 

514 492 463 

516 488 464 

523 496 471 

508 486 466 

521 488 461 

522 490 470 

523 488 486 

529 489 469 

505 491 467 

524 492 469 

519 494 466 

518 491 481 

509 493 472 

505 508 469 

500 492 464 

499 491 465 

511 491 476 

511 493 469 

502 494 471 

497 498 471 

503 495 463 

498 498 480 

 

2 Sample t-Tests Plate Hardness 

Two-sample T for Plate 1 511 HLD vs Plate 2 492 HLD 

 

           N    Mean  StDev  SE Mean 

511 HL D  30  511.63   9.60      1.8 

492 HL D  30  492.50   4.21     0.77 

 

Difference = mu (511 HL D) - mu (492 HL D) 
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Estimate for difference:  19.13 

95% CI for difference:  (15.26, 23.00) 

T-Test of difference = 0 (vs not =): T-Value = 10.00  P-Value = 0.000  DF = 39 

 

Two-sample T for Plate 2 492 HLD vs Plate 3 467 HLD 

 

           N    Mean  StDev  SE Mean 

492 HL D  30  492.50   4.21     0.77 

467 HL D  30  467.60   7.32      1.3 

 

Difference = mu (492 HL D) - mu (467 HL D) 

Estimate for difference:  24.90 

95% CI for difference:  (21.80, 28.00) 

T-Test of difference = 0 (vs not =): T-Value = 16.16  P-Value = 0.000  DF = 46 

 

Tool Life Data 

D2 Plate 1 511 HLD       

Drill No. 

Cutting parameters 

(speed m/min_feed 

rate mm/rev) 

No. of 2.5xD 

holes at 

failure 

Tool Life 

Time spent 

drilling (min) 

22 30_0.125 10 0.84 

12 30_0.125 11 0.93 

19 30_0.125 15 1.27 

23 30_0.125 11 0.93 

  average tool life 12 0.99 

9 25_0.125 41 4.15 

29 25_0.125 43 4.36 

18 25_0.125 43 4.36 

39 25_0.125 41 4.15 

  average tool life 42 4.26 

4 20_0.125 204 25.82 

6 20_0.125 191 24.18 

14 20_0.125 143 18.10 

11 20_0.125 195 24.68 

  average tool life 183 23.20 

 

D2 Plate 2 492 HLD       

Drill No. 

Cutting parameters 

(speed m/min_feed 

rate mm/rev) 

No. of 

2.5xD holes 

at failure 

Tool Life Time 

spent drilling 

(min) 

1 30_0.125 15 1.27 

10 30_0.125 14 1.18 

13 30_0.125 15 1.27 

27 30_0.125 17 1.44 
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16 30_0.125 15 1.27 

  average tool life 15 1.28 

15 25_0.125 57 5.78 

8 25_0.125 52 5.27 

24 25_0.125 53 5.37 

3 25_0.125 54 5.47 

20 25_0.125 63 6.38 

  average tool life 56 5.65 

25 20_0.125 186 23.54 

5 20_0.125 216 27.34 

2 20_0.125 228 28.86 

26 20_0.125 210 26.58 

  average tool life 210 26.58 

 

D2 Plate 3 467 HLD       

Drill No. 

Cutting parameters 

(speed m/min_feed 

rate mm/rev) 

No. of 

2.5xD 

holes at 

failure 

Tool Life Time 

spent drilling 

(min) 

52 35_0.125 25 1.81 

49 35_0.125 28 2.03 

45 35_0.125 31 2.24 

48 35_0.125 24 1.74 

  average tool life 27 1.95 

41 30_0.125 57 4.81 

44 30_0.125 43 3.63 

54 30_0.125 62 5.23 

53 30_0.125 60 5.06 

  average tool life 56 4.69 

42 25_0.125 202 20.47 

51 25_0.125 207 20.97 

46 25_0.125 160 16.21 

50 25_0.125 203 20.57 

  average tool life 193 19.56 

21 20_0.125 79 10.00 

7 20_0.125 22 2.78 

47 20_0.125 145 18.35 

43 20_0.125 115 14.56 

  average tool life 90 11.42 

 

  



   156 

 

References 

1. Astakhov, V.P., Geometry of Single-point Turning Tools and Drills Fundamentals and 

Practical Applications. Springer Series in Advanced Manufacturing. 2010: Springer. 

565. 

2. Kopač, J. and S. Dolinšek, ADVANTAGES OF EXPERIMENTAL RESEARCH OVER 

THEORETICAL MODELS IN THE FIELD OF METAL CUTTING. Experimental 

Techniques, 1996. 20(3): p. 24-28. 

3. Kopac, J., M. Sokovic, and S. Dolinsek, Tribology of coated tools in conventional and HSC 

machining. Journal of Materials Processing Technology, 2001. 118(1–3): p. 377-384. 

4. Shaw, M.C., Metal Cutting Principles. Second Edition ed. 2005: Oxford University 

Press. 

5. Astakhov, V.P., On the inadequacy of the single-shear plane model of chip formation. 

International Journal of Mechanical Sciences, 2005. 47(11): p. 1649-1672. 

6. Suri, R., World Machine Tool Cutting Tool Markets. 2000. 

7. Analysts, G.I. High Speed Steel (HSS) Metal Cutting Tools 2009; Available from: 

http://www.strategyr.com/HighSpeedSteel(HSS)MetalCuttingToolsMarketReport.as

p. . 

8. Quinto, D. The Tool Company Executive Decision on All This PVD Stuff in World Markets 

and Technology for Advanced Coatings and Surface Treatments for Cutting Tools and Wear 

Parts. 2000. Atlanta USA: Gorham. 

9. Atkins, T., The science and engineering of cutting: the mechanics and processes of separating 

and puncturing biomaterials, metals and non-metals. 2009: Butterworth-Heinemann. 

10. Iyer, R., P. Koshy, and E. Ng, Helical milling: An enabling technology for hard machining 

precision holes in AISI D2 tool steel. International Journal of Machine Tools and 

Manufacture, 2007. 47(2): p. 205-210. 

11. Gardner, T.a.W.S., USA 2011 Breakdown of Cutting Tools by Category. 2010. 

12. Vogel, J. and E. Bergmann, Problems encountered with the introduction of ion plating to 

large-scale coatings of tools. J. VAC. SCI. & TECHNOL. A, 1986. 4(6 , Nov.-Dec. 1986): 

p. 2731-2739. 

13. Davim, J.P., Machining Fundamentals and Recent Advances 2008: Springer. 

14. Trent. E, W.P., Metal Cutting 4th edition ed. 2000: Butterworth-Heinmann. 

15. Carter, A.D.S., Mechanical reliability. Vol. 1. 1986: Macmillan London. 

16. Barish, H.B., Split-point twist drill. 1985, Google Patents. 

17. Lyman, T., METALS HANDBOOK; ; VOL. 3; MACHINING. 1967. 

18. Kang, D., Geometrical analysis and CAD/CAM software for twist drills. 1997: University 

of Melbourne (Department of Mechanical and Manufacturing Engineering). 

19. Galloway, D., Some experiments on the influence of various factors on drill performance. 

Trans. ASME, 1957. 79(2): p. 191. 

20. Harris, S.G., Improving the dry machining performance of advanced physical vapour 

depositied coatings with particular reference to applications in the automotive industry, in 

School of Engineering and Science. 2003, Swinburne University of Technology: 

Melbourne. 

21. Sproul, W.D. and R. Rothstein, High rate reactively sputtered TiN coatings on high speed 

steel drills. Thin Solid Films, 1985. 126(3-4): p. 257-263. 

22. Jamal, T., R. Nimmagadda, and R.F. Bunshah, Friction and adhesive wear of titanium 

carbide and titanium nitride overlay coatings. Thin Solid Films, 1980. 73(2): p. 245-254. 

http://www.strategyr.com/HighSpeedSteel(HSS)MetalCuttingToolsMarketReport.asp
http://www.strategyr.com/HighSpeedSteel(HSS)MetalCuttingToolsMarketReport.asp


   157 

 

23. Doyle, E.D. and D.M. Turely, Microstructural Behaviour - Its Influence on Machining 

The American Society of Mechanical Engineers, 1982. 

24. Committee, A.I.H., Properties and selection: irons, steels, and high-performance alloys. 

1990. 

25. Holmberg, K. and A. Mathews, Coatings Tribology - Properties, Techniques and 

Applications in Surface Engineering. 1994, Elsevier Amsterdam. 

26. Astakhov, V.P., M.O.M. Osman, and M. Al-Ata, Statistical Design of Experiments in 

Metal Cutting - Part One: Methodology. Journal of Testing and Evaluation, 1997. 25(3): 

p. 322-327. 

27. Radhakrishnan, T., S. Wu, and C. Lin, A mathematical model for split point drill flanks. 

Journal of Engineering for Industry, 1983. 105(3): p. 137-142. 

28. Linman, R. Carbide Inserts: Price vs. Productivity - You Be the Judge.  2004 2007. 

29. Taylor, F.W., On the Art of Cutting Metals, in Proceeding of The American Society of 

Mechanical Engineers. 1906, The American Society of Mechanical Engineers New 

York. 

30. Ulutan, D. and T. Ozel, Machining induced surface integrity in titanium and nickel alloys: 

A review. International Journal of Machine Tools and Manufacture, 2011. 51(3): p. 250-

280. 

31. Choudhury, I.A. and M.A. El-Baradie, Machinability of nickel-base super alloys: a general 

review. Journal of Materials Processing Technology, 1998. 77(1–3): p. 278-284. 

32. Smith, G.T., Advanced Machining -  The Handbook of Cutting Technology 1989: Springer -

Verlag. 

33. Gumpel, P.H., E. , TETB, 1983. 13. 

34. Giménez, S., et al., Sintering behaviour and microstructure development of T42 powder 

metallurgy high speed steel under different processing conditions. Materials Science and 

Engineering: A, 2008. 480(1–2): p. 130-137. 

35. Kumar, A.K.N., M. Watabe, and K. Kurokawa, The sintering kinetics of ultrafine 

tungsten carbide powders. Ceramics International, 2011. 37(7): p. 2643-2654. 

36. Aramcharoen, A., et al., Evaluation and selection of hard coatings for micro milling of 

hardened tool steel. International Journal of Machine Tools and Manufacture, 2008. 

48(14): p. 1578-1584. 

37. Cozza, R.C., D.K. Tanaka, and R.M. Souza, Micro-abrasive wear of DC and pulsed DC 

titanium nitride thin films with different levels of film residual stresses. Surface and 

Coatings Technology, 2006. 201(7): p. 4242-4246. 

38. ISO, Tool-life testing with single-point turning tools. 1993. 

39. von Tunzelmann, N., Historical coevolution of governance and technology in the industrial 

revolutions. Structural Change and Economic Dynamics, 2003. 14(4): p. 365-384. 

40. Lugscheider, E., K. Bobzin, and K. Lackner, Investigations of mechanical and tribological 

properties of CrAlN+C thin coatings deposited on cutting tools. Surface and Coatings 

Technology, 2003. 174–175(0): p. 681-686. 

41. Posti, E. and I. Nieminen, Influence of coating thickness on the life of TiN-coated high speed 

steel cutting tools. Wear, 1989. 129(2): p. 273-283. 

42. ME/10, c.A.N.Z., Drills and reamers. 1994: Standards Australia. 

43. Time, I., Resistance of Metals and woods to cutting Dermacow, St.Petersberg, Russia, 

1870. 



   158 

 

44. Doyle, E.D., J.G. Horne, and D. Tabor, Frictional interactions between chip and rake face 

in continuous chip formation Proceedings of the Royal Society London 1978. 366: p. 

173-183. 

45. Merchant, M.E., Mechanics of the Metal Cutting Process. II. Plasticity Conditions in 

Orthogonal Cutting. Journal of Applied Physics, 1945: p. 7. 

46. Atkins, T., Toughness and processes of material removal. Wear, 2009. 267(11): p. 1764-

1771. 

47. Atkins, T., Chapter 3 - Simple Orthogonal Cutting of Floppy, Brittle and Ductile Materials, 

in The Science and Engineering of Cutting. 2009, Butterworth-Heinemann: Oxford. p. 

35-74. 

48. Trent, E.M., Conditions of Seziure at the Tool Work Interface. Iron and Steel Institute 

1967. special report 94. 

49. Hogmark, S. and M. Olsson, Wear Mechanisms of HSS Cutting Tools, The Angstrom 

Laboratory. p. 14. 

50. Söderberg, S. and S. Hogmark, Wear mechanisms and tool life of high speed steels related 

to microstructure. Wear, 1986. 110(3–4): p. 315-329. 

51. Wear of cutting tools : G. Barrow, Tribology, 5 (1) (1972) 22–30; 12 figs., 18 refs. Wear, 

1972. 21(2): p. 415. 

52. Cselle, T., Influence of Edge Preparation on the Performance of Coated Cutting Tools, in 

International Conference Metalurgical Coatings Thin Coatings 2007: San Diego. p. 34. 

53. Williams, J., E. Smart, and D.R. Milner, Metallurgia: the British Journal of Metals, 

1970. 81(3): p. 51-89. 

54. Astakhov, V.P., M. O. M. Osman, An analytical evaluation of the cutting forces in self-

piloting drilling using the model of shear zone with parallel boundaries International 

Journal of Machine Tools and Manufacture, 1996. 36. 

55. Gómez, M.P., et al., Tool wear evaluation in drilling by acoustic emission. Physics 

Procedia, 2010. 3(1): p. 819-825. 

56. Marksberry, P.W. and I.S. Jawahir, A comprehensive tool-wear/tool-life performance model 

in the evaluation of NDM (near dry machining) for sustainable manufacturing. 

International Journal of Machine Tools and Manufacture, 2008. 48(7–8): p. 878-886. 

57. Niebel, B.W., A.B. Draper, and R.A. Wysk, Modern manufacturing process engineering. 

1989: McGraw-Hill New York. 

58. Boston, O.W., Metal processing. 1941, New York, NY: Wiley. 

59. Lau, W., P. Venuvinod, and C. Rubenstein, The relation between tool geometry and the 

Taylor tool life constant. International Journal of Machine Tool Design and Research, 

1980. 20(1): p. 29-44. 

60. Logothetis, N., Managing for Total Quality From Deming to Taguchi and SPC. The 

Manufacturing Practitioner Series. 1992: Prentice Hall. 

61. Devore, J.L., Probability and Statistics for Engineering and the Sciences. 7th ed. 2007: 

Thomson Brooks/Dale. 

62. Salkind, N.J., Statistics for People who (think They) Hate Statistics: Excel 2010 Edition. 

2012: Sage. 

63. Milliken, G.A., Johnson, D.E., Analysis of Messy Data. Vol. Volume 1. 1984: Van 

Nostrand Reinhold. 

64. Ronniger, C., Reliability Analyses with Weibull. 2012: www.crgraph.com. 

65. Dowey, S.J., et al., Life analysis of coated tools using statistical methods. Surface and 

Coatings Technology, 1999. 116-119: p. 654-661. 

http://www.crgraph.com/


   159 

 

66. Dowey, S.J., B. Rähle, and A. Matthews, Performance analysis of coated tools in real-life 

industrial experiments using statistical techniques. Surface and Coatings Technology, 

1998. 99(1-2): p. 213-221. 

67. Sutton, T., Training Module for the Mowhawk 1999, Sutton Tools: Melbourne. 

68. Hoyle, G., High Speed Steels. 1988: Butterworths. 

69. Balzers, O. Balinit Futura Top, Reliability to the dopth. 

70. Davis, J.R., K. Mills, and S. Lampman, Metals Handbook. Vol. 1. Properties and Selection: 

Irons, Steels, and High-Performance Alloys. ASM International, Materials Park, Ohio 

44073, USA, 1990. 1063, 1990. 

71. Bickenbach, S., Cryodur 2379 Technical Data Sheet. 

72. Uddeholm, B., Uddenholm Impax Supreme, Uddeholm, Editor. 2011. 

73. Boubekri, N., J. Rodriguez, and S. Asfour, Development of an aggregate indicator to 

assess the machinability of steels. Journal of Materials Processing Technology, 2003. 

134(2): p. 159-165. 

74. Tukey, J.W., Exploratory data analysis. 1977. Massachusetts: Addison-Wesley, 1976. 

75. Roberts, G.A., Cary, R, A,, Tool Steels. 4th ed. 1980: American Society for metals. 

76. Brandt, D.A., Warner, J. C., Metallurgy Fundamentals. 4th ed. 2005, Illinois: The 

Goodheart-Willcox Company,Inc. 

77. Misra, A. and I. Finnie, A classification of three-body abrasive wear and design of a new 

tester. Wear, 1980. 60(1): p. 111-121. 

78. Leed, R.M., Tool and Die Making Troubleshooter. 2003: SME. 

79. Dolodarenko, A. and I. Ham, Effects of built-up edge in drilling. Journal of Engineering 

for Industry, 1976. 98(1): p. 287-292. 

80. Uddeholm, B., Bohler K110 Cold Work Tool Steel. 

81. Sutton, T., Sutton Tools Industrial Catalogue. 2011: Melbourne. 

82. Machiniability Data Center, Machining Data Handbook. 2nd ed. 1972, Cincinnati: 

Machinability Data Centre Metcut Research Associates Inc. 

83. Armarego, E.J.A., Some fundamental and practical aspects of twist drills and drilling. 

Journal of Materials Processing Technology, 1994. 44(3–4): p. 189-198. 

84. Czopor, E.J., Twist Drills, in ASME B94.11M-1993. 1993, The American Society of 

Mechanical Engineers: New York. 

85. Leeb, D., Dynamic hardness testing of metallic materials. NDT International, 1979. 12(6): 

p. 274-278. 

86. Haggerty, W., Effect of point geometry and dimensional symmetry on drill performance. 

International Journal of Machine Tool Design and Research, 1961. 1(1): p. 41-58. 

87. Abele, E. and M. Fujara, Simulation-based twist drill design and geometry optimization. 

CIRP Annals - Manufacturing Technology, 2010. 59(1): p. 145-150. 

88. Chen, W.-C., et al., Design optimization of a split-point drill by force analysis. Journal of 

Materials Processing Technology, 1996. 58(2): p. 314-322. 

89. Sugihara, T. and T. Enomoto, Crater and flank wear resistance of cutting tools having 

micro textured surfaces. Precision Engineering, 2013. 37(4): p. 888-896. 

90. Sarwar, M., Application of advanced surface engineering treatments to multi-point cutting 

edges. Surface and Coatings Technology, 1998. 108–109(0): p. 612-619. 

91. Arunachalam, R.M., M.A. Mannan, and A.C. Spowage, Surface integrity when 

machining age hardened Inconel 718 with coated carbide cutting tools. International 

Journal of Machine Tools and Manufacture, 2004. 44(14): p. 1481-1491. 



   160 

 

92. Lalwani, D.I., N.K. Mehta, and P.K. Jain, Experimental investigations of cutting 

parameters influence on cutting forces and surface roughness in finish hard turning of 

MDN250 steel. Journal of Materials Processing Technology, 2008. 206(1–3): p. 167-179. 

93. Bradbury, S.R., D.B. Lewis, and M. Sarwar, The effect of product quality on the integrity 

of advanced surface engineering treatments applied to high speed steel circular saw blades. 

Surface and Coatings Technology, 1996. 85(3): p. 215-220. 

94. Bradbury, S.R., et al., Impact of surface engineering technologies on the performance and life 

of multi-point cutting tools. Surface and Coatings Technology, 1997. 91(3): p. 192-199. 

95. Handbook, A., Vol. 5: Surface Engineering. ASM International, Materials Park, OH, 

1994: p. 345-347. 

96. Fischerscope, X.-R., Fischerscope X-Ray Product Line 

http://pdf.directindustry.com/pdf/fischer/fischerscope-x-ray/54320-66428.html, Fischer. 

97. Bouzakis, K.D., et al., Effect of dry micro-blasting on PVD-film properties, cutting edge 

geometry and tool life in milling. Surface and Coatings Technology, 2009. 204(6–7): p. 

1081-1086. 

98. Miller, R.G., Beyond ANOVA, Basics of Applied Statisitcs 1986, New York: John Wiley & 

Sons. 

99. Armarego, E., et al., An appraisal of empirical modeling and proprietary software databases 

for performance prediction of machining operations. Machining science and technology, 

2000. 4(3): p. 479-510. 

100. Hoffman, E.G., Fundamentals of tool design. 1984: Society of Manufacturing Engineers 

Dearborn, Mich. 

101. Wang, H.-P.b. and R.A. Wysk, An expert system for machining data section. Computers 

& Industrial Engineering, 1986. 10(2): p. 99-107. 

102. Venkatesh, V. Computerised machinability data. in Proceedings of Automach. 1986. 

Australia, Sydney,: SME. 

103. Song, Q., et al., Subdivision of chatter-free regions and optimal cutting parameters based on 

vibration frequencies for peripheral milling process. International Journal of Mechanical 

Sciences, 2014. 83(0): p. 172-183. 

104. Tomas, P. and R. Smith. The wear failure of titanium nitride coated drills. in Third 

International Conference on Manufacturing Engineering 1986: Technology for 

Manufacturing Growth; Preprints of Papers, The. 1986: Institution of Engineers, 

Australia. 

 

 

http://pdf.directindustry.com/pdf/fischer/fischerscope-x-ray/54320-66428.html

