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Abstract

Direct Yaw Moment Control (DYC) systems generate a corrective yaw moment to alter

the vehicle dynamics by means of active distribution of the longitudinal tire forces,

and they have been proven to be an effective means to enhance the vehicle handling

and stability. The latest type of DYC systems employs the on-board electric motors of

electric or hybrid vehicles to generate the corrective yaw moment, and it has presented

itself as a more effective approach than the conventional DYC schemes.

In this thesis, a wide range of existing vehicle dynamics control designs, especially the

typical DYC solutions, are investigated. The theories and principles behind these control

methods are summarized, and the features of each control scheme are highlighted. Then,

a full vehicle model including the vehicle equivalent mechanical model, vehicle equations

of motion, wheel equation of motion and Magic Formula tire model is established.

Using the derived vehicle equations of motion, the fundamental mathematical relation-

ships between the corrective yaw moment produced by the DYC system and the crucial

vehicle states (the yaw rate and vehicle side-slip) are derived. Based on these relation-

ships, two DYC systems are proposed for electric vehicles (or hybrid vehicles) by means

of individual control of the independent driving motors. These two systems are designed

to track the desired yaw rate and vehicle side-slip, respectively. Extensive simulation

results verify that these systems are effective in improving vehicle dynamic performance.

Apart from the two systems that adjust yaw rate or vehicle side-slip individually, a novel

sliding mode DYC scheme is proposed to regulate both vehicle states simultaneously,

aiming to better enhance the vehicle handling and stability. This control scheme guar-

antees the simultaneous convergences of both the yaw rate and vehicle side-slip errors

to zero, and eliminates the limitations presented in the common sliding mode DYC

solutions. Comparative simulation results indicate that the vehicle handling and sta-

bility are significantly enhanced with the proposed DYC system on-board. Also, this

DYC scheme is shown to outperform its corresponding counterparts in various driving

conditions.
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Chapter 1

Introduction

1.1 BACKGROUND AND SCOPE

Not long ago, restricted by the control techniques of the day, the braking torques gen-

erated by a vehicle braking system were evenly distributed between the left and right

wheels. Also, the driving torque produced by an Internal Combustion Engine (ICE) was

transferred equally to the left and right driving wheels, or mechanically altered between

the left and right wheels using, for example, a Torsen differential. As a result, the lon-

gitudinal tire forces (braking or traction forces) were not utilized to actively generate

yaw moments to regulate the vehicle motions. Yaw moments were, at large, generated

by the lateral tire forces through tire slip angles during steering motions.

The lack of control on yaw moment has brought about some problems. In some critical

driving scenarios (e.g. the vehicle enters a road with uneven surface conditions or the

vehicle corners sharply at a high speed), the yaw moment that is naturally generated by

the lateral tire forces may be excessive or insufficient to keep the vehicle stable, and can

result in accidents. On the other hand, passenger cars are normally designed to have

understeer characteristic to gain more stability margin. Note that the level of understeer

varies as the driving condition changes. For example, if the lateral load transfer of the

front wheels is greater than that of the rear wheels, then the level of understeer intensifies;

otherwise the level of understeer attenuates. In extreme cases, the lateral load transfer

can even force the vehicle to switch from understeer to oversteer. A conventional vehicle

cannot consistently remain in a desirable steer characteristic, say, neutral steer.

In view of the above problems, several types of electronic control systems have been

proposed in the last three decades, aiming to regulate the vehicle yaw motion by means

of active distribution of longitudinal tire forces (both braking and traction forces). A

2
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(a) ESP configuration (b) ESP components

Figure 1.1: Bosch ESP system [6].

yaw moment is directly generated through individual control of longitudinal tire forces.

Thus, these systems are normally termed as direct yaw moment control systems [1].

1.1.1 Vehicle stability control

The most popular type of DYC is the Vehicle Stability Control (VSC) systems. They

are sometimes referred to as the Vehicle Dynamics Control (VDC), Electronic Stability

Control (ESC) or Electronic Stability Program (ESP). The VSC systems apply indi-

vidual braking torques to each wheel to produce a corrective yaw moment, in order to

prevent the vehicle from spinning or drifting out in critical situations. It is shown in [2–

4] that VSC systems have significantly reduced the incidence of traffic accidents. So

far, the VSC systems have been the most adopted type of DYC and they have become

mandatory fitments on new cars in some countries.

The first VSC system was the Bosch ESP introduced in 1995 for the Mercedes-Benz

S-Class sedans [5]. Since then, the Bosch ESP has been widely employed by many

vehicle manufacturers and has become the most popular VSC system. A schematic of

the Bosch ESP is shown in Figure 1.1. This Bosch ESP employs the components of the

already available Anti-lock Braking System (ABS) and Traction Control System (TCS),

as well as several additional sensors, to apply individual braking torque to each wheel

and control the engine torque output [6].

The core of all VSC systems is the corrective yaw moment generated via active distribu-

tion of individual braking forces. The braking motions inevitably give rise to deceleration

and loss of vehicle speed, which may be intrusive to the driver [7, 8]. Besides, the en-

gine driving torque cannot be actively distributed between the driving wheels by VSC

systems. In other words, as a braking-based system, the VSC mainly operates in dan-

gerous situations where the vehicle is about to lose control, however in normal driving
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Fig. 1. (Dotted) Uncontrolled vehicle and (solid) target steering diagrams.
Vehicle speed: 100 km/h.

II. PROBLEM FORMULATION AND

CONTROL REQUIREMENTS

The first control objective of any active stability system is
to improve safety in critical maneuvers and in the presence
of unusual external conditions, such as strong lateral wind or
changing road friction coefficient. Moreover, the considered
RAD device can be employed to change the steady-state and
dynamic behavior of the car, improving its handling properties.
The vehicle inputs are the steering angle δ, commanded by
the driver, and the external forces and moments applied to the
vehicle center of gravity. The most significant variables de-
scribing the behavior of the vehicle are its speed v(t), lateral
acceleration ay(t), yaw rate ψ̇(t), and side slip angle β(t). Re-
garding the vehicle as a rigid body moving at constant speed v,
the following relationship between ay(t), ψ̇(t), and β̇(t) holds:

ay(t) = v
(
ψ̇(t) + β̇(t)

)
. (1)

In steady-state motion β̇(t) = 0, the lateral acceleration is pro-
portional to yaw rate through the vehicle speed. In this situation,
let us consider the uncontrolled car behavior: For each constant
speed value, by means of standard steering pad maneuvers,
it is possible to obtain the steady-state lateral acceleration ay

corresponding to different values of the steering angle δ. These
values can be graphically represented on the so-called steering
diagram (see Fig. 1, dotted line). Such curves are mostly influ-
enced by road friction and depend on the tire lateral force–slip
characteristics. At low acceleration, the shape of the steering
diagram is linear and its slope is a measure of the readiness of
the car: the lower this value, the higher the lateral acceleration
reached by the vehicle with the same steering angle and the
better the maneuverability and handling quality perceived by
the driver [21]. At high lateral acceleration, the behavior be-
comes nonlinear, showing a saturation value that is the highest
lateral acceleration the vehicle can reach. The intervention of an
active differential device can be considered as a yaw moment
Mz(t) acting on the car center of gravity: Such a moment is
capable of changing, under the same steering conditions, the

Fig. 2. RAD schematic. The input shaft 1 transfers driving power to the
traditional bevel gear differential 2 and, through the additional gearing 3, to
the clutch housings 4. Clutch disks 5 are fixed to the output axles 6.

behavior of ay , modifying the steering diagram according to
some desired requirements. Thus, a target steering diagram (as
shown in Fig. 1, solid line) can be introduced to take into
account the performance improvements to be obtained by the
control system. More details about the generation of such target
steering diagrams are reported in Section IV-A. Therefore, the
choice of yaw rate ψ̇ as the controlled variable is fully justified,
also considering its reliability and ease of measurement on the
car. A reference generator will provide the desired values ψ̇ref

for the yaw rate ψ̇ needed to achieve the desired performances
by means of a suitably designed feedback control law.

As for the generation of the required yaw moment Mz(t), in
this paper, a full RAD is considered (see [9]–[14] for details).
A schematic of the RAD taken into account in this paper is
shown in Fig. 2. This device is basically a traditional bevel gear
differential that has been modified in order to transfer motion to
two clutch housings, which rotate together with the input gear.
Clutch friction disks are fixed on each differential output axle.
The ratio between the input angular speed of the differential and
the angular speeds of the clutch housings is such that the latter
rotate faster than their respective disks in almost every vehicle
motion condition (i.e., except for narrow cornering at very low
vehicle speed); thus, the sign of each clutch torque is always
known, and the torque magnitude only depends on the clutch
actuation force, which is generated by an electrohydraulic
system whose input current is determined by the controller. The
main advantage of this system is the capability of generating
the yaw moment of every value within the actuation system
saturation limits, regardless of the input driving torque value
and the speed values of the rear wheels. The considered device
has a yaw moment saturation value of ±2500 N · m, due to the
physical limits of its electrohydraulic system.

The actuator dynamics can be described by the following
first-order model [5]:

GA(s) =
Mz(s)

IM (s)
=

KA

1 + s/ωA
(2)

Figure 1.2: Schematic of an example rear active differential [9]. 1 - input shaft, 2 -
bevel gear differential, 3 - additional gearing, 4 - clutch housings, 5 - clutch disks, 6 -

output axles.

conditions, VSC systems cannot work continuously to adjust the driving (traction) force

on each wheel to enhance the vehicle handling.

1.1.2 Actively controlled mechanical differentials

The second type of DYC systems is the actively controlled mechanical differentials (here-

after called active differentials for short). Compared to the braking-based VSC systems,

these active differentials control individually the driving torques delivered to the left and

right driving axles, and in turn generate a yaw moment to improve the vehicle handling.

Also, they operate continuously in various driving conditions rather than work only in

critical situations. This type of DYC is generally a combination of one conventional open

differential and two electronically controlled clutches [7–10], as schematically shown in

Figure 1.2. The input torque from the engine is transmitted to the conventional bevel

gear differential through the input shaft. When torque transfer is needed, one of the

clutches will be engaged to alter the torques delivered to the left and right axles.

Unlike the conventional Limited Slip Differentials (LSD) which always transfer torque

to the slower wheel, the active differentials are able to control both the magnitude and

direction of the torque transfer [7, 8]. Also, the magnitude of the torque transfer can be

any value within the saturation limit, regardless of the input driving torque and wheel

angular velocities [7, 9]. The asymmetric driving torques on the left and right wheels

bring about a yaw moment which is tuned to improve the vehicle handling.
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Figure 1.3: Schematic of a typical DYC system for an electric/hybrid vehicle equipped
with independent rear motors.

Active differentials present themselves as good solutions to enhancing the vehicle han-

dling, however they still have a number of shortcomings. Firstly, the need for two

electronically controlled clutches to manage the torque transfer between the left and

right driving axles complicates the differential structure and adds extra weight to the

vehicle. Secondly, the dynamics of clutch engagement (which is commonly actuated

by an electro-hydraulic system [9, 11] or an electro-magnetic system [7]) is relatively

slow, compared to electric motors which are employed to constitute the latest type of

DYC (see next section). Furthermore, when the speed difference between the left and

right wheels is sufficiently large, torque transfer becomes possible to only one of the

wheels [8, 10, 12], i.e. the direction of torque transfer is no longer controllable. Lastly,

the sliding of the clutch disks inevitably results in energy loss.

1.1.3 Direct yaw moment control using independent electric motors

The latest type of DYC employs electric motors to generate a corrective yaw moment

through individual control of longitudinal tire forces. This type of DYC is mainly de-

signed for electric vehicles or hybrid vehicles equipped with independent driving motors.

Figure 1.3 shows the schematic of a typical DYC system of such type. The processor of

the control system receives signals from different on-board sensors, such as the gyroscope

and throttle pedal sensor. Based on the sensor signals and state observation informa-

tion, the processor calculates the left and right motor torque commands according to

the DYC algorithm. Then the torque commands are sent to the inverters to drive the

electric motors.
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Thanks to the independent electric motor configuration, this new DYC type presents

several advantages over the aforesaid two types of DYC:

• Unlike the braking-based VSC systems, the new DYC systems do not result in

undesirable deceleration and loss of vehicle speed.

• The new DYC systems generate continuous corrective yaw moment to enhance the

vehicle handling and stability at all times, as opposed to operating only in critical

driving conditions.

• The generation of motor torque is swift and accurate, and the motor torque is

measurable. These attributes facilitate the design and implementation of DYC

schemes.

• The effectiveness of the new DYC systems does not depend on the speed difference

between the left and right wheels.

• The elimination of clutches makes the new DYC type more energy efficient as no

energy is dissipated in friction.

• Motors can generate negative torque in the electrical braking mode [13], which

assists the conventional braking system and enhances energy efficiency by regen-

erative braking.

The above advantages have attracted increasing research focus on this new DYC type in

the recent literature [14–16]. Along with the development of electric and hybrid vehicles

with independent motors, this DYC type has presented itself as a promising approach to

enhancing the vehicle handling and stability. Thus, the scope of this thesis is focused on

these new DYC systems. Specifically, this study looks into the DYC design for electric

and hybrid vehicles with two independent rear driving motors, as schematically shown

in Figure 1.3.

1.2 RESEARCH QUESTIONS

1.2.1 Control variables

How to produce a desirable yaw moment that would enhance the vehicle handling and

stability has been widely discussed in the published DYC solutions. In general, the

existing DYC methods employ the yaw rate and/or vehicle side-slip as the main control

variable(s), since these two vehicle states have been shown to be the fundamental states
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Figure 1.4: Vehicle top view.

that govern vehicle handling and stability [17–19]. As shown in Figure 1.4, the yaw

rate (denoted by r) is the vehicle angular velocity about the z axis of the vehicle local

coordinate x-y-z (the establishment of coordinate x-y-z will be introduced in Chapter 3),

and the vehicle side-slip (denoted by β) is the angle between the vehicle heading direction

(the positive direction of the x axis in the vehicle local coordinate x-y-z) and the velocity

vector v of point P1.

The yaw rate plays a crucial roll in vehicle dynamics control. Firstly, the steady-state

yaw rate (derived from the common bicycle model [20]) is a function of the front wheel

steer angle. Thus, it can be interpreted as the vehicle response desired by the driver.

Secondly, this steady-state yaw rate value defines the steer characteristic (i.e. under,

over, or neutral steer) of the vehicle. For these reasons, the yaw rate is closely related

to the vehicle handling and it should be selected as one of the major control variables.

The vehicle side-slip is also an essential vehicle state which, ideally, requires to be mini-

mized. It has been shown that as the vehicle side-slip increases to large values, the yaw

moment generated by the lateral tire forces generally descends [21]. When the vehicle

side-slip is sufficiently large, the generated yaw moment becomes negligible and it can

hardly be increased by changing the steer angle. Thus, the vehicle tends to lose its

stability. Besides, a small vehicle side-slip implies a consistency of the vehicle heading

direction with the velocity vector v, which provides the driver with superior sense of

control during cornering [22]. Due to the above reasons, the vehicle side-slip is closely

1P is a point under the vehicle mass center. See page 37 for the detailed explanation on P.
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connected to the vehicle stability and driver’s sense of control, and it should also be

chosen as the control variable.

Note that even though the yaw rate is more related to the vehicle handling and the

vehicle side-slip is mainly connected to the vehicle stability, these two vehicle states

are not independent, instead, they are intrinsically related by the vehicle dynamics (see

vehicle equations of motion in Chapter 3). Hence, they both affect the vehicle handling

and stability.

1.2.2 Research questions

Various DYC designs for controlling one or both of the above states have been introduced

in the literature. However, a basic question is often neglected by researchers and it has

not been well answered, which is: How does the additional yaw moment produced by

a DYC system change vehicle dynamics, i.e., what are the mathematical relationships

between the additional yaw moment and the vehicle states (yaw rate and vehicle side-

slip)?

The discovery of the above fundamental mathematical relationships should reveal the

essence of a DYC system, which leads to the second research question: How to design a

yaw rate-based or vehicle side-slip-based DYC system, based on the derived fundamental

mathematical relationships?

In order to improve DYC robustness as well as combine the benefits of controlling the

yaw rate and vehicle side-slip individually, many recent DYC works adopt both states

simultaneously as the control variables and such solutions have exhibited superior control

performance to the systems controlling one state only [17, 23–26]. However, in some

certain scenarios these solutions still present some imperfections and limitations. Thus,

the third research question is: How to design a DYC system to control both the yaw rate

and vehicle side-slip simultaneously, to improve the performance of the state-of-the-art

DYC systems?

The objectives of this thesis are to answer the above three research questions through

mathematical derivations and new DYC designs, and verify the proposed schemes by

means of extensive computer simulations. The following chapters will elaborate on the

design processes and verifications of the proposed DYC systems.
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1.3 CONTRIBUTIONS

The contributions of this study lie in three aspects. First of all, the fundamental math-

ematical correlations between the vehicle states (i.e. yaw rate and vehicle side-slip) and

the additional yaw moment generated by the DYC system are formulated and analyzed.

These relationships reveal how the DYC system influences the vehicle dynamics and pro-

vide implications for controller design. Secondly, based on the discovered relationships,

a yaw rate-based DYC system and a vehicle side-slip-based DYC system are proposed.

These systems are verified through extensive simulations to be effective in tracking the

desired yaw rate and desired vehicle side-slip, respectively. Lastly, a novel sliding mode

DYC scheme controlling both vehicle states is proposed to enhance the control perfor-

mance of the existing sliding mode DYC methods. Extensive simulations demonstrate

that the proposed method provides superior control performance to the conventional

solutions.

1.4 THESIS OUTLINE

This thesis consists of seven chapters. In Chapter 1, an introduction to the research

background, research scope and research questions is given. Then in Chapter 2, a

comprehensive literature review of various types of DYC systems, from the very basic

systems to the state-of-the-art DYC solutions, is presented.

In Chapter 3, a full vehicle model including the vehicle equivalent mechanical model,

vehicle equations of motion, wheel equation of motion and Magic Formula tire model is

established. The vehicle equations of motion governing the vehicle longitudinal, lateral,

roll and yaw motions are employed in Chapters 4–6 for DYC system design. The full

vehicle model is programed in MATLAB/Simulink environment to generate simulation

results.

In Chapter 4, based on the investigation of the vehicle equations of motion, a fundamen-

tal mathematical relation governing the yaw dynamics with a DYC system on-board is

derived. Based on this relationship, a yaw rate-based DYC system which aims to achieve

neutral steer performance is proposed. In Chapter 5, a similar mathematical equation

is derived for vehicle side-slip, based on which a vehicle side-slip-based DYC system

that tracks zero side-slip is devised. The yaw rate and vehicle side-slip-based DYC sys-

tems are verified through computer simulations to be effective in improving the vehicle

handling and stability, respectively.
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In Chapter 6, a new sliding mode-based DYC method is proposed for simultaneous

tracking of the desired yaw rate and vehicle side-slip. This DYC scheme directly employs

the complete nonlinear vehicle equations of motion established in Chapter 3 without

simplification to achieve a more effective control law. Also, the proposed DYC design

introduces a novel switching function that guarantees simultaneous convergences of both

the yaw rate and vehicle side-slip errors to zero. The effectiveness of the proposed DYC in

enhancing the vehicle handling and stability is verified through comparative simulations

in various challenging driving scenarios.

In Chapter 7, conclusions on the entire study are given and recommendations for future

work are presented.



Chapter 2

Literature Review

In this chapter, a comprehensive literature review of various types of DYC systems is

presented. Based on the control variable(s) used, the DYC systems are classified into

three main categories: the yaw rate-based DYC, the vehicle side-slip-based DYC and

the simultaneous control of the yaw rate and vehicle side-slip. In order to show how

DYC systems have evolved, two basic types of control systems for managing independent

electric motors, the equal torque methods and Ackerman methods, are introduced first.

For each type of control methods, the theoretical concepts and principles are summa-

rized, the features and characteristics are highlighted, and their control performances are

analyzed. This literature review lays the foundation for the analysis in the subsequent

chapters.

2.1 EQUAL TORQUE METHODS

The most straightforward way of controlling two independent motors is to send equal

torque commands to the two motors. The control methods using this approach are

referred to as the equal torque methods, and they emulate the behavior of an open

differential (the most used mechanical differential) which applies equal torques to both

wheels and allows speed differentiation at the same time. The equal torque methods

provide the electric vehicle with a cornering performance similar to an ICE vehicle

equipped with an open differential. Note that the equal torque methods cannot be

categorized as DYC systems, as no active yaw moment is generated to regulate the

vehicle motions. They are introduced here to show how simple control solutions evolved

to sophisticated DYC systems to enhance the control performance.

Magallán et al. proposed an equal torque method in their works [27, 28], as schematically

shown in Figure 2.1. In this solution, the torque commands sent to the motors are

11
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3.2 Electronic differential 

As presented in a previous paper (Magallán et al., 2008), the present work implemented a 
simple differential traction control by emulating the mechanical differential behaviour. 
During this first vehicle control design stage, steering angle and vehicle speed were not 
measured; only speeds and currents of each motor were measured. 

As can be seen in Figure 6, the accelerator pedal is the reference for the motor’s 
average speed. When the vehicle is moved in normal conditions (without slipping 
wheels), this reference is proportional to the vehicle speed: 

1 2 .
2 xr V

ω ω+
=  

where: 

ω1 = wheel 1 angular speed 

ω2 = wheel 2 angular speed 

r = wheel radius 

Vx = longitudinal vehicle speed. 

Figure 6 Implemented equal torque differential control 

A Proportional-Integral (PI) controller is used to control the average speed and its output 
is a torque reference for the traction motors’ controllers. This approach applies equal 
torques to each wheel for all the vehicle trajectories independent of wheel speeds. In this 
way, the mechanical differential behaviour is reproduced. 

However, if a traction wheel is blocked or running free, the free wheel tends to 
accelerate up to twice the reference speed. This drawback can be easily avoided by 
limiting the maximum wheel speed in each wheel controller (see Section 3.3). Another 
trade off in using this simple equal torque control is produced during turning manoeuvres. 
Under good adhesion conditions, the inner curve wheel produces an opposite moment to 
the turn of the vehicle, hardening the steering and increasing vehicle losses. The same 
occurs in vehicles with conventional mechanical differentials. 

Figure 2.1: An example equal torque method [27, 28].

determined based on the difference between the speed required by the driver (read from

the throttle pedal and denoted by Acel∗) and the average of the two driving wheel speeds

(denoted by ω̄). The speed error is then sent to a Proportional-Integral (PI) controller

to generate equal torque references for the two motor controllers.

When a vehicle is driving at a very low speed and does not have wheel slips, the average

of the two driving wheel speeds is proportional to the vehicle longitudinal speed and the

open differential behavior is reproduced by the proposed method in [27, 28]. However,

when the vehicle is running very fast or in driving conditions involving relatively high

wheel slips, the average of the two driving wheel speeds is no longer proportional to the

vehicle longitudinal speed. As a result, the proposed equal torque method would not

generate proper driving commands. For instance, when one driving wheel is locked, the

other one will be sped up to twice the reference speed [27, 28], resulting in severe tire

slip and undesirable yaw moment.

To solve this problem, a modified equal torque method with self-blocking function is

proposed in [28], as schematically shown in Figure 2.2. When the speed difference

between the two driving wheels is not excessively large (i.e. the speed ratio does not

exceed 1.5), the control system works in the same way as the original equal torque

method introduced above. Once the speed ratio reaches 1.5, the self-blocking control is

activated and the feedback signal for the PI controller is switched to the larger wheel

speed. By this means, the wheel speed of the faster wheel is maintained in a safe region.

Apart from the above schemes, other equal torque methods are also proposed in the lit-

erature, such as [29–33]. All these methods share the feature of sending the same torque

commands to the driving motors. They present themselves as the most straightforward

approach to controlling two independent motors, and bring benefits to the vehicle such
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More accurate and complex differential control schemes can be carried out by taking 
into account the geometry and vehicle dynamic models. In Cordeiro et al. (2006), Chen  
et al. (2007) and de Castro et al. (2007), vehicle speed, Vx, and steering angle, δ, were the 
input signals, and measured speeds of the inner and outer wheels were used. These 
approaches may present some drawbacks if any traction wheel is blocked, producing high 
and nonuniform torques and generating vehicle yaw movement. Some new strategies, 
based on the geometry and vehicle dynamic models, are being evaluated to improve the 
traction control implemented in the present paper. 

3.3 Electronic self-blocking differential 

As stated above, with the implemented traction differential scheme, if any drive wheel 
lost traction (e.g., for different road conditions in each wheel), it would tend to accelerate 
until double speed reference. To avoid this behaviour, a basic self-blocking differential 
control is performed as shown in Figure 7. 

Figure 7 Self-blocking differential control 

While the magnitude of the speed differential ratio on the traction wheels is maintained 
below 1.5, the self-blocking behaviour is identical to the equal-torque differential control 
(Figure 6). Once this value (difference of 1.5 times) is reached (e.g., during a wheel 
skidding), the self-blocking control switches to the two individual speed controls on each 
traction wheel. 

In this situation, each wheel speed control receives the same reference and the 
feedback signals are switched to the individual motor speeds measurement. In this way 
the wheels traction speeds are maintained under safe operation. 

Once the self-blocking control is activated, the return to the equal-torque control is 
performed when the differential speed decreases below 1.5 and an additional significant 
torque current exists (at least 5% of the rated current). This condition would indicate  
that the vehicle is in normal traction conditions. This hysteresis control prevents the 
oscillating behaviour in the transition. 

Figure 2.2: An example equal torque method with self-blocking function [28].

as swift torque response, reduction in mechanical parts and friction. However, as the

system constantly delivers equal torques to the driving wheels, the dynamic performance

of the electric vehicle is similar to the normal ICE vehicles with open differentials and

the independent motor configuration is not fully exploited for improving the vehicle

dynamic performance.

2.2 ACKERMAN METHODS

2.2.1 Background

When a vehicle runs at a very low speed, the well-known Ackerman steering geometry [34,

35] enables the inner and outer wheels to spin without wheel slips. The Ackerman

steering geometry is shown in Figure 2.3, and it is mathematically expressed by:

cot δ2 − cot δ1 =
dr
l
, (2.1)

where dr denotes the rear track width, l represents the wheel base, and δ1 and δ2 are

the steer angles of the front left and front right wheels, respectively. When the vehicle

speed is very low, the centrifugal force applied on the vehicle is negligible and no lateral

tire forces are generated. As a result, the tire slip angles are zero and the turning radius

O is on the extension of the rear axle, as shown in Figure 2.3.

Given that the Ackerman steering geometry is satisfied and the vehicle runs very slow,

the desired angular velocities of the left and right rear driving wheels without any slips,
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Figure 2.3: Ackerman steering geometry.

ωL and ωR, are derived as follows:

ωL =
vL
R

=
vr
R

(1− dr tan δ

2l
) (2.2)

ωR =
vR
R

=
vr
R

(1 +
dr tan δ

2l
), (2.3)

where R represents the tire radius, δ stands for the front wheel steer angle (cot-average

of the left and right front wheel steer angles, i.e. cot δ = (cot δ1 + cot δ2)/2), vr denotes

the velocity of the rear axle center, and vL and vR are the velocities of the left and right

rear wheel centers, respectively.

It has been proven by simulation [36] and experimentally [37] that at low speed equa-

tions (2.2) and (2.3) predict the actual wheel angular velocities with satisfactory accu-

racy. As a result, maintaining the wheel angular velocities at the these desired levels has

become the main objective of many existing solutions for controlling independent motors

on electric vehicles [38–46]. These control systems are often referred to as the “electric

differential”, “electrical differential” or “electronic differential” in the literature. In this

study, they are all categorized as the Ackerman methods.

All Ackerman methods share the same working principle: when an electric vehicle enters

a corner, the control system acts immediately on both motors, reducing the angular

velocity of the inner wheel while increasing that of the outer wheel [38] to their desired

values defined by equations (2.2) and (2.3). Note that to track these desired angular

velocity values, the knowledge of the actual angular velocities, vehicle velocity and front

wheel steer angle is required.

The Ackerman methods focus on the regulation of the driving wheel angular velocities,

as opposed to the yaw moment. Although a yaw moment may be generated by the
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Figure 2.4: Electric vehicle configuration proposed by Cordeiro et al. [39].

control methods in the course of angular velocity regulation, the moment is not directly

controlled. Thus, the Ackerman methods are not categorized as DYC systems, either.

They are introduced here to show how control solutions evolved from simple methods

to sophisticated DYC systems.

2.2.2 Control methods based on Ackerman steering geometry

Cordeiro et al. [39] designed a control scheme that employs the Ackerman steering ge-

ometry to control two independent DC motors. The proposed electric vehicle features

two independent permanent magnet brushed DC motors fed by two classic DC-DC con-

verters, as shown in Figure 2.4. The Ackerman steering geometry is utilized to calculate

the reference angular velocities for the left and right driving wheels. The actual angular

velocities are estimated using the knowledge of the motor parameters and the infor-

mation from the motor voltage and current sensors. The reference and actual angular

velocities of each wheel form the error for a sliding mode controller which drives the

actual angular velocity towards the reference value. The switching function s for the

sliding mode controller is a first-order differential equation expressed by:

s = ėω + keeω, (2.4)

where eω is the angular velocity error and ke is a design parameter. The global model

(schematic) of the complete electrical drive is shown in Figure 2.5.

Haddoun et al. [40] devised an electrical differential control system for an electric vehicle

with two independent induction motors for the rear wheels. In this design, the rotor

speeds of the induction motors (thus the actual wheel angular velocities) are estimated

using a speed estimation method based on a Recurrent Neural Network (RNN) with two
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Figure 2.5: Electrical drive proposed by Cordeiro et al. [39].
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Fig. 4. EV propulsion and control systems schematic diagram.

Fig. 5. Driving trajectory model.

Fig. 6. Block diagram of the electric differential system.

summarized in the Appendix (Fig. 7). Electrical vehicle me-
chanical and aerodynamic characteristics are also given in the
Appendix. Objectives of the simulations carried out were to

assess the efficiency and dynamic performance of the proposed
neural network control strategy.

The test cycle is the urban ECE-15 cycle (Fig. 8) [30].
A driving cycle is a series of data points representing the vehicle
speed versus time. It is characterized by low vehicle speed
(maximum 50 km/h) and is useful for testing electrical vehicle
performance in urban areas.

The electric differential performances are first illustrated by
Fig. 9, which shows each wheel’s drive speed during steering
for 0 < t < 1180 s. It is obvious that the electric differential
operates satisfactorily according to the complicated series of
accelerations, decelerations, and frequent stops imposed by the
urban ECE-15 cycle.

Figs. 10 and 11 illustrate the EV dynamics, respectively, the
flux (λdr) and the developed torque in each induction motor on
the left and right wheel drives, with changes in the acceleration

Figure 2.6: Schematic of electrical differential system proposed by Haddoun et al. [40].

hidden layers. The multilayer and recurrent structure of the neural network provides

robustness against the parameter variations and system noise. The actual wheel angular

velocities are regulated by the electrical differential system according to the Ackerman

steering geometry. The schematic of the proposed electrical differential system is shown

in Figure 2.6.

Haddoun et al. [41] proposed another Ackerman method employing equations (2.2)

and (2.3) as the reference angular velocities. The main feature of this control scheme

lies in the utilization of a motor speed observer based on the Model Reference Adaptive

System (MRAS) approach which provides robustness against the external disturbances
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and system uncertainties. The actual angular velocities are estimated by the MRAS-

based observer, and are fed back to an electric differential system to regulate the wheel

angular velocities.

In the works of Zhao et al. [42, 43], an electronic differential system is designed for an

electric vehicle with two Permanent Magnet Brushless Direct Current Motors (PMBD-

CMs). A fuzzy logic control algorithm is employed in this design to achieve the desired

wheel angular velocities derived from the Ackerman steering geometry.

Perez-Pinal et al. [44] proposed an electric differential design for a rear-wheel-drive

electric vehicle. This solution employs a motor synchronization control approach, aiming

to prevent deviation from the desired vehicle path. The synchronization strategy is

realized through a fictitious general master controller which provides each wheel with a

speed reference based on the Ackerman steering geometry.

In the work of Nasri et al. [45], a fuzzy logic control scheme is applied to control the

two independent induction motors to obtain better efficiency and enhanced robustness

against the parameter variation. In this design, the Ackerman steering geometry is

employed to compute the speed references for the two driving motors.

The Ackerman steering geometry can also be employed in the control designs for 4-

Wheel-Drive (4WD) electric vehicles. Zhou et al. [46] developed an electronic differen-

tial system for controlling a prototype electric vehicle with four brushless DC in-wheel

motors. When the vehicle moves in a straight line, this control system ensures that all

wheels rotate at the same speed as the slowest one, if they are not consistent. When

the vehicle makes a turn, the controller adjusts the wheel angular velocities to the de-

sired levels derived from the Ackerman steering geometry. Meanwhile, the vehicle speed

during cornering is held constant by the controller.

2.2.3 Remarks

It is important to note that the Ackerman steering geometry is a purely kinematic con-

dition that is accurate only when the vehicle speed is very low. This is because the

centrifugal force and tire slip angles are neglected in the Ackerman steering geometry.

As a result, neither the tire cornering characteristics nor the vehicle dynamics is taken

into account. On the other hand, the desired wheel angular velocities derived from the

Ackerman steering geometry assume no wheel slips. In reality, wheel slips are ubiqui-

tous in various driving conditions, and absolute zero wheel slip is impractical. For these

reasons, control designs based on the Ackerman steering geometry are only suitable for
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certain low-speed vehicle applications in which the tire slips are negligible during corner-

ing. In the following chapters, simulation results obtained from high speed maneuvers

will expose the inherent shortcomings of the Ackerman steering geometry-based control

solutions.

2.3 YAW RATE-BASED DYC

2.3.1 Background

As discussed in the preceding sections, both the equal torque methods and Ackerman

methods present obvious downsides and do not provide optimum control performances.

This has led researchers to seek new control solutions towards making full advantage

of independent driving motors and achieving better control performance. In this effort,

various DYC designs have been proposed in the literature. The major advantage of DYC

systems over the previous two types of methods is that they take the vehicle dynamics

into account, and directly adjust the yaw moment generated by the individual motor

torques to regulate the target vehicle state(s) and in turn remould the vehicle dynamics.

It has been pointed out in Chapter 1 that the yaw rate r plays a crucial role in vehicle

dynamics and should be selected as the control variable in DYC systems. In the litera-

ture, numerous DYC designs have been proposed to drive the actual yaw rate towards a

desired (reference) yaw rate value, aiming to enhance the vehicle handling and stability.

The vast majority of existing DYC solutions employ the steady-state yaw rate response

(or its variation/modification) derived from the two Degree-of-Freedom (DoF) planar

vehicle model (bicycle model) [20] as the desired (reference) yaw rate. This value can

be expressed in the following general form [20, 35]:

r =
vxδ

l(1 +Kvx2)
, (2.5)

where vx denotes the vehicle longitudinal velocity, δ represents the front wheel steer

angle, l stands for the wheel base, K is called the “stability factor” and given by:

K =
m

l2
(
lr
Cαf
− lf
Cαr

), (2.6)

where m is the total vehicle mass, lf and lr are the distances from the mass center to the

front axle and rear axle respectively, and Cαf and Cαr are the total cornering stiffnesses

of the front tires and rear tires respectively.
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On the one hand, the above steady-state yaw rate response is a reflection of the driver’s

control inputs. It is seen that the yaw rate r is a function of the front wheel steer angle δ

and the vehicle longitudinal velocity vx. Because δ is commanded by the driver through

steering wheel and vx is controlled by the driver via throttle or brake pedal, therefore

the yaw rate response given by equation (2.5) can be interpreted as the steady-state

vehicle response desired by the driver.

On the other hand, by means of vehicle turning radius, this yaw rate response defines

the vehicle’s steer characteristic which affects the vehicle handling and stability. The

vehicle steady-state turning radius can be derived from the yaw rate response equation.

Kinematically, the vehicle turning radius L is known as:

L = v/r, (2.7)

where v denotes the resultant velocity of the mass center, and r represents the yaw rate.

Since the velocity lateral component vy is considerably smaller than the longitudinal

component vx, the turning radius can be approximated by:

L = vx/r. (2.8)

Substituting equation (2.5) in equation (2.8) leads to the following steady-state turning

radius expression:

L =
l(1 +Kvx

2)

δ
. (2.9)

When the stability factor K is positive, it is seen from equation (2.9) that for a certain

front wheel steer angle δ the steady-state turning radius L increases with the longitudinal

velocity vx. This steer characteristic is defined as “understeer”. The driver has to steer

more if he/she wishes to keep the same turning radius when accelerating. An understeer

vehicle is stable and safe, as it is “reluctant” to turn. Most vehicles are designed to

understeer for safety purposes, but understeer is not optimum for the vehicle handling.

When the stability factor K is negative, the turning radius L drops as the longitudinal

velocity vx increases, for a certain steer angle δ. This steer characteristic is defined as

“oversteer”. An oversteer vehicle is unstable and dangerous, because when vx increases

to a certain value (i.e. critical speed [20]) the turning radius reaches zero and the vehicle

spins about itself.

The last situation is “neutral steer”, when K = 0. A neutral steer vehicle makes the

turning radius L independent of the longitudinal velocity vx. In other words, the driver

does not need to change the steer angle to keep the same turning radius whenever the
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vehicle accelerates or decelerates in a corner. Neutral steer is the ideal steer character-

istic, as it not only keeps the vehicle stable but also provides good handling. However,

it is impractical to constantly maintain neutral steer (i.e. K = 0) without any electronic

systems, because the stability factor K is a function of the cornering stiffnesses Cαf and

Cαr which constantly change with the driving condition.

To sum up, the steady-state yaw rate response, equation (2.5), not only represents

the vehicle response commanded by the driver, but also influences the vehicle handling

and stability through the stability factor K. In the following section, the typical yaw

rate-based DYC solutions that employ equation (2.5) (or its variation/modification)

as the desired (reference) response are reviewed. Note that apart from the yaw rate-

based DYC systems with independent motor configuration, other typical yaw rate-based

DYC solutions such as the differential braking systems and active differentials are also

reviewed, since they share similar design principles and provide insights into new DYC

design.

2.3.2 Typical yaw rate-based DYC methods

The yaw rate can be controlled by means of wheel slip ratio regulation. One such control

scheme was designed by Doniselli et al. [47] for front-wheel-drive vehicles. The overall

control structure is shown in Figure 2.71. The front wheel steer angle δ, yaw rate r and

vehicle longitudinal velocity vx are employed in the main control law to calculate the

following desired slip ratio difference between the left and right driving wheels:

∆λ∗ = k1(r −
vxδ

l
), (2.10)

where l denotes the wheel base and k1 represents a design parameter. Note that the

term
vxδ

l
in equation (2.10) is the yaw rate corresponding to neutral steer (stability

factor K = 0). The desired slip ratio difference ∆λ∗ and the actual slip ratio difference

∆λ are used by the torque split law to generate a correction torque Mc given by:

Mc = k2(∆λ
∗ −∆λ), (2.11)

where k2 is another design parameter. This correction torque is scaled and then added

to/subtracted from half the engine torque to form the torque inputs to the left and right

driving wheels, as shown in Figure 2.7. An important feature of the main control law is

1Symbols u, ∆s∗x and ∆sx are used in [47] to denote the vehicle longitudinal velocity, desired slip
ratio difference and actual slip ratio difference, respectively. In this thesis, to maintain consistent usage
of symbols, vx, ∆λ∗ and ∆λ are employed instead of u, ∆s∗x and ∆sx.
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dr i ver  controlle r and actuators 

ML = M I 2  + M c k ~  

Fig.3. Logical scheme of torque split control (symbols are explained in 5 3.2) 

The signals ax, UR and UL are processed, exactly as implemented in some ABS 
[20], in order to get the longitudinal vehicle velocity u and 'the longitudinal 
slips at the wheels s x ~  and S ~ R .  The. main control law processes r,  u and 6 and 
sets the required difference of longitudinal slips at the driving wheels 

(I: wheelbase, k ~ :  parameter. sxl SXR : actual slips at time t)). This law 
has been derived by the authors starting from two basic considerations 
(commented extensively in 5 3.2.1 and in 5 3.2.2) which refer to the two 
previously mentioned enhancements of vehicle dynamic behaviours, i.e. maximum 
reachable centripetal acceleration aymu and minjmun response time to a 
steering-wheel step-input Tr. Due to a convenient occurrence, both these two 
peculiar dynamic behaviours of automobiles can be enhanced by the same control 
law (3.1).  This law is linear but it is well suited and very effective to 
control non-linear systeqs too (see e.g. [I, 51). 

As the required A s x  has been set, a problem arises about how to get it at 
the wheels. Actuators are needed, and their characteristics are in general 
non-linear. So, the derivation of a control scheme, expressely studied for the 
operation of the actuators, is necessary: 

M  is the torque from the engine; h and lm are functions of sxt and S ~ R ,  
res ctively (they are introduced to improve the response to p-split only (see 
5 E . 3 )  
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Figure 2.7: Schematic of torque split control proposed by Doniselli et al. [47].

that it sets the desired ∆λ∗ in such a way that the vehicle steer characteristic becomes

as close as possible to neutral steer.

The idea of controlling the yaw rate by means of wheel slip ratio regulation was also em-

ployed by Buckholtz [25]. In his design, an upper level fuzzy logic controller is proposed

to track the desired yaw rate response by assigning an appropriate wheel slip ratio to

each wheel. The input to this fuzzy logic controller is defined as:

d = ė+ γe, (2.12)

where e = |r|− |r∗| denotes the yaw rate error and γ is a design parameter. The outputs

from this controller are the target (reference) wheel slip ratios for the four wheels. Four

lower level controllers are adopted for the four wheels to track the target wheel slip ratios

commanded by the upper level fuzzy logic controller, in order to generate the desired

corrective yaw moment.

Tahami et al. [48] developed a stability enhancement system for a four-motor-wheel

electric vehicle. This system employs a fuzzy logic controller to regulate the yaw rate,

using equation (2.5) as the reference response r∗. A multi-sensor data fusion method

is introduced to estimate the vehicle speed in order to compute r∗. The inputs to the

fuzzy logic controller are the yaw rate error e = r − r∗ and its derivative ė. The output

of this controller is added to or subtracted from a uniform throttle command applied

to each motor, by which means a corrective yaw moment is generated to regulate the

vehicle yaw motion. Besides, a fuzzy logic controller for each wheel is used to limit the

motor torque so that the wheel slip ratio remains in the safe region. Each slip controller

receives the wheel slip ratio and wheel angular acceleration as the inputs, and generates

the amount of torque that should be reduced from the total torque output of each motor

if severe wheel slip occurs.
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In the work of Motoyama et al. [49], a control method is proposed for traction force dis-

tribution between the left and right driving wheels. An ordinary Proportional-Derivative

(PD) controller is employed to control the vehicle yaw rate, aiming to achieve neutral

steer characteristic. This PD control law is written as:

α = α′ +K1(r − r∗) +K2(ṙ − ṙ∗), (2.13)

where r and r∗ are the actual yaw rate and desired yaw rate (expressed by equation (2.5)

with K = 0), respectively, K1 and K2 are the control parameters of the PD controller,

α denotes the traction force distribution ratio between the left and right wheels, and α′

represents the distribution ratio at the last sampling time.

Zhou and Liu [50] proposed a vehicle yaw stability control system using equation (2.5)

as the desired (reference) yaw rate response. This cascade yaw stability control system

consists of two interconnected parts. In the first part, a Sliding Mode Observer (SMO)

is employed to estimate the longitudinal and lateral tire forces which are used to update

the time-varying parameters in the vehicle and wheel models. In the second part, the

control input is computed in a backstepping control framework and through sliding mode

control in each step.

Nam et al. [51] developed an adaptive sliding mode control design for robust yaw stabi-

lization of an electric vehicle with two rear in-wheel motors. A sliding mode controller

is adopted in this design to make the vehicle track the desired yaw rate r∗, which is

defined as:

r∗ =
r′

1 + τp
, (2.14)

where r′ is the same reference yaw rate as equation (2.5), τ denotes the time constant

and p represents the Laplace transform variable. This low-pass filter,
1

1 + τp
, is used

to filter out the noise in the reference yaw rate signal. Besides, a parameter adaptation

law is employed to estimate the changing vehicle parameters and is incorporated into

the sliding mode control framework, which compensates the parameter uncertainties

and disturbances that vary with the driving condition. In the work of Yamamoto [52], a

desired yaw rate in the same form as equation (2.14) is employed. To track this reference

value, a control law is designed as follows:

∆Fx = k(r∗ − r), (2.15)

where ∆Fx denotes the longitudinal tire force difference between the left and right

driving wheels, k represents the control parameter, and r∗ and r are the desired and

actual yaw rates, respectively.
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Chen et al. [15] designed a sliding mode-based DYC solution for in-wheel motor electric

vehicles. This method takes into account the driver’s behavior, and applies a modified

version of equation (2.5) as the reference yaw rate. In the modified equation, instead

of the measured front wheel steer angle δ, an optimal steer angle δ∗SW is utilized to

reflect the driver’s steering intention based on a single point preview driver model [53].

Besides, an upper bound, µg/vx, is applied to the desired yaw rate, where µ and g are

the friction coefficient and gravitational acceleration, respectively. This is because the

vehicle lateral acceleration ay is limited by the friction coefficient [18], i.e. |ay| 6 µg,

and in steady state ay = vxr. A sliding mode controller is employed to drive the actual

yaw rate towards the reference value, using a simple sliding surface defined as follows:

s = r − r∗. (2.16)

Goodarzi et al. [54] devised two related DYC solutions based on Linear Quadratic Reg-

ulator (LQR) for motorized wheel electric vehicles. These schemes aim to enhance the

vehicle handling by tracking the reference yaw rate response described by equation (2.5).

The cost function of the proposed LQRs is defined as:

J =
1

2

∫ ∞

0

(
wM2

z + (r∗ − r)2
)
dt, (2.17)

where Mz represents the generated corrective yaw moment (control input), r∗ and r are

the desired yaw rate (equation (2.5)) and actual yaw rate, respectively, and factor w

denotes the relative importance of the yaw rate error and the energy expenditure due to

control action. Note that the control performance is greatly influenced by the choice of

the weighting factor w. When w reaches zero, the best yaw rate convergence is attained

with the cost of infinite control input Mz. In practice, the maximum achievable yaw

moment is limited by the road condition and maximum motor torque, which in turn

restricts the permissible range of w.

A similar DYC approach that also employs the optimal control technique was pro-

posed by Hancock et al. [10]. Instead of using the independent motor configuration,

the proposed DYC scheme was realized by means of an actively controlled mechanical

differential, particularly, an overdriven active rear differential, as schematically shown

in Figure 2.8. This active differential employs two clutches to control the magnitude

and direction of the torque transfer between the left and right wheels. When a torque

transfer to the left wheel is required, the left hand clutch is engaged, and if a torque

transfer to the right wheel is needed, the right hand clutch is engaged. An LQR is

employed by this scheme to control the yaw moment generated by this torque transfer.
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control system, but the relative merits of the two
systems and the benefits gleaned from integration
are not discussed in great detail [8].

The present paper investigates the potential of
an active overdriven differential to control the yaw
moment of a vehicle and offers a comparison with a
brake-based system.

2 VEHICLE MODEL

2.1 Chassis model

To facilitate the investigation, a vehicle handling
Fig. 1 Overdriven differential schematicmodel was created. The main features of this model

are highlighted below (a more detailed description
can be found in Appendix 2):

engaged. Provided a sufficient speed difference is(a) four degrees of freedom (4DOF): longitudinal,
present, the target torque transfer will be achievedlateral, yaw, and roll;
(see section 3.4.1).(b) rear-wheel drive;

The relationship between the input torque, clutch(c) non-linear tyres (utilizes version 94 of the magic
torques, and driveshaft torques can be described asformula tyre model);
follows [8](d) longitudinal and lateral weight transfer;

(e) compliance in the steering system.
Tl=

Ti
2
−

z
1
z
5

2z
4
z
2
DTcr+

z
1
z
6

2z
3
z
4
DT
cl

(1)

Note that aerodynamic drag and driveline dynamics
are not included in the model (driving/braking

Tr=
Ti
2
+A1− z

1
z
5

2z
4
z
2
BDTcr−A1− z

1
z
6

2z
3
z
4
BDTcl (2)

torques are thus applied directly to the wheels). The
SAE sign convention was employed and is used

These relationships were used to represent an over-throughout this paper.
driven differential in the vehicle model, and theirTo facilitate the analysis of the behaviour of the
derivation is detailed in Appendix 3.vehicle model, a simple driver model was also

employed. The objective of this model was to control
the steering of the vehicle to follow any predefined

3 CONTROLLER DESIGNtrajectory as precisely as possible. The demanded
trajectory is defined as a series of points, and the

In order to analyse the potential impact thatmodel operates by selecting the most appropriate
controlled differentials can have on yaw–sideslip‘target point’ ahead of it using a variable preview
dynamics, it is firstly necessary to develop ansystem. A proportional, integral, and derivative (PID)
appropriate yaw moment control algorithm.controller then uses the error between the yaw angle

required to reach this point and the actual yaw rate
3.1 Design structureto give the required steering angle.

It was considered essential that the yaw moment
controller be designed using a formal methodology,

2.2 Differential model
particularly in the light of the planned comparison
with ABC. Such an approach was intended to ensureA schematic of the type of overdriven differential

considered in this paper is shown in Fig. 1. The that a meaningful evaluation of the abilities of the
actuator (and not the controller) could be made. Todifferential uses two clutches (Cl and Cr in the

schematic) to control the magnitude and direction this end, linear optimal control theory was used to
design a reference model based controller.of torque transfer between the driveshafts. If torque

transfer to the left-hand wheel is desired, the left- The design of the yaw moment controller is based
on the methodology developed for a rear wheelhand clutch is engaged. If torque transfer to the

right-hand wheel is desired, the right-hand clutch is steer control system [9]. Here, a linear quadratic

D12203 © IMechE 2005Proc. IMechE. Vol. 219 Part D: J. Automobile Engineering

Figure 2.8: Schematic of DYC proposed by Hancock et al. [10].

The neutral steer yaw rate response (derived from equation (2.5) by setting K = 0) is

used to form the error in the cost function of the LQR.

lkushima and Sawase [55] developed another DYC system based on an actively controlled

mechanical differential. This system consists of a conventional differential, a Continu-

ously Variable Transmission (CVT) and a torque transfer shaft, as shown in Figure 2.9.

The CVT element A is directly connected to the right wheel axle, while the element

B is connected to the left wheel axle through the shaft and gearing system. When a

corrective yaw moment is not required, the same compressive forces are applied to the

CVT elements A and B, leading to an equal torque distribution between the left and

right wheels. If a clockwise yaw moment is needed, the compressive force on the element

A is increased and torque is then transferred from the right wheel axle to the left wheel

axle. On the contrary, when a counter-clockwise yaw moment is required the compres-

sive force on the element B is increased, then torque is transferred from the left wheel

axle to the right wheel axle. The amount of transferred torque is determined by the

required corrective yaw moment that is controlled using a PI controller. This controller

receives the actual yaw rate and reference yaw rate (calculated from equation (2.5)), and

determines the amount of yaw moment to be generated based on the yaw rate error. The

advantage of this active differential over the one presented in [10] lies in the reduction in

energy loss, since it utilizes a CVT instead of clutches which rely on friction to operate.

To compute the stability factor K (equation (2.6)) in the desired (reference) yaw rate

response, the knowledge of the cornering stiffnesses Cαf and Cαr is necessary. However, it

is difficult to obtain accurate values of Cαf and Cαr in real time as they constantly change
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When yaw moment control is not required, the
mechanism is in a state as shown in Fig.5(a). As the
same compressive force is applied onto CVT
elements A and B, with the right and left wheels
rotating freely and the CVT belt not slipping, the
input torque (Tin) is distributed to the right and left
wheels equally. The CVT is working at a velocity
ratio(&#x003C1;) as determined by the difference in rotating
speed between the right and left wheels as the
vehicle is cornering.

When a clockwise yaw moment is required, the
mechanism will change states to that shown in
Fig.5(b). As the compressive force on CVT element
A is increased, a force is generated to raise the gear
velocity ratio(&#x003C1;), raising the torsion in the torque

transfer shaft. Torque is then transferred from the
right wheel axle to the left wheel axle. For the
torque( &#x00394;T) transferred through the CVT to the left
wheel axle, the resultant torque on the right wheel
axle(TR) becomes:

On the other hand, for the torque(&#x00394;T) imparted to
the left wheel axle, the resultant torque on the left
wheel axle (TL) becomes:

Thus the torque on the left axle becomes larger than
on the right axle, thereby generating a clockwise yaw
moment on the vehicle.

When the condition is reversed and a counter
clockwise yaw moment is required, the mechanism
will change state to that shown in Fig.5(c). As the
compressive force is increased on CVT element B, a
force is generated to reduce the gear velocity
ratio(&#x003C1;), giving rise to atorsion in the torque transfer
shaft. Torque is then transferred from the left wheel
axle to the right wheel axle. For the torque(&#x00394;T)
transferred through the CVT to the right axle, the
resulting torque on the right axle(TR) becomes.

On the other hand, for the torque(&#x00394;T) absorbed
from the left axle, the resulting torque on left axle
(TL) becomes:

Thus the torque on the right axle becomes larger
than on the left axle, thereby, generating a counter
clockwise yawmoment on the vehicle.
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Figure 2.9: Schematic of DYC proposed by lkushima and Sawase [55].

with the driving condition. To avoid this difficulty, Tahami et al. [56] proposed a feed-

forward neural network to generate a reference yaw rate response which approximates

equation (2.5). The proposed reference response r∗ is expressed as follows:

r∗ =
vx
l
δ + rcorrection(δ, vx), (2.18)

where vx, l and δ denote the vehicle speed, wheel base and front wheel steer angle,

respectively. The first term in equation (2.18) represents the yaw rate response that

leads to neutral steer (K = 0), and the second term is the correction term produced

by a feed-forward neural network which is trained using sinusoidal steering input and

varying vehicle speed. To enhance the vehicle stability, similar to [48], a fuzzy logic

controller is used to drive the actual yaw rate towards the reference value, and another

four fuzzy logic controllers are employed to maintain the slip ratio of each wheel within

the stable region.

2.3.3 Remarks

Numerous typical yaw rate-based DYC methods have been reviewed in this section. In

these solutions, various control techniques are employed to tackle the problem of tracking

the desired (reference) yaw rate response, aiming at enhancing the vehicle handling and

stability. However, apart from the yaw rate, the vehicle side-slip is also an essential

vehicle state that requires to be controlled. The yaw rate-based systems do not take

into account the effect of the vehicle side-slip, thus their control performances may not be

optimum. In the following, the DYC methods that control the vehicle side-slip only will
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be first reviewed, followed by the introduction to more comprehensive and sophisticated

DYC solutions which regulate both the yaw rate and vehicle side-slip simultaneously.

2.4 VEHICLE SIDE-SLIP-BASED DYC

2.4.1 Background

As introduced in Chapter 1, in addition to the yaw rate r, the vehicle side-slip β is

also an essential vehicle state that needs to be controlled. Ideally, the vehicle side-slip

requires to be minimized for two reasons. Firstly, according to the findings reported

in [21], when the vehicle side-slip increases to large values, the tire cornering stiffnesses

decrease and the yaw moment generated by the lateral tire forces descends. Since the

slopes of the yaw moment curves (see Fig. 5 in [21]) are close to zero, the generated

yaw moment can hardly be increased by changing the steer angle. This means that no

sufficient yaw moment can be generated at large vehicle side-slip, which may lead the

vehicle to lose its stability. Secondly, a small vehicle side-slip indicates a consistency

of the vehicle heading direction with the velocity vector v (shown in Figure 1.4). This

consistency provides the driver with superior sense of control during cornering [22], as

the driver intuitively assumes that the vehicle heading direction is the direction where

the vehicle is going. Due to these reasons, zero desired vehicle side-slip, β∗ = 0, is often

employed in the vehicle dynamics and control literature.

Note that β∗ = 0 is a strict condition to be satisfied. Indeed, many existing DYC solu-

tions aim to limit β in a stable region or control β to follow some prescribed dynamics,

in order to prevent it from diverging and maintain the vehicle stability. For example, the

steady-state vehicle side-slip response (or its variation/modification) derived from the

two DoF planar vehicle model [20] is often employed as the desired (reference) vehicle

side-slip. This value can be expressed in the following general form [35]:

β =

(
lr −

mlfv
2
x

lCαr

)
δ

l(1 +Kv2x)
, (2.19)

where the symbols used are consistent with those in equation (2.5).

In the following section, the typical vehicle side-slip-based DYC solutions are reviewed.

These methods either constrain β in a stable region, or track a desired (reference) re-

sponse, i.e. zero vehicle side-slip or equation (2.19) (or its variation/modification). Note
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that apart from the vehicle side-slip-based DYC systems for electric vehicles with inde-

pendent motors, other typical types of vehicle side-slip-based DYC methods (e.g. dif-

ferential braking systems) are also reviewed, as they share similar design principles and

lay the foundation for new DYC designs.

2.4.2 Typical vehicle side-slip-based DYC methods

Abe et al. [57] proposed a DYC control method employing zero desired vehicle side-slip,

β∗ = 0. In this design, the transfer function of the vehicle side-slip response with the

DYC system on-board is expressed as follows:

β(p) =
Bf (p)δ(p) +BMM(p)

G(p)
, (2.20)

where p denotes the Laplace transform variable, β(p), δ(p) and M(p) are the Laplace

transformations of the vehicle side-slip, steering wheel angle and corrective yaw moment

generated by the DYC, respectively, and Bf (p), BM and G(p) are coefficients expressed

by the vehicle parameters (see [57]). Setting this vehicle side-slip response to zero leads

to the following control law:
M

δ
(p) = − Bf

BM
(p). (2.21)

Comparative simulation results indicate that the proposed DYC is less effective than

4-Wheel-Steering (4WS) in achieving zero vehicle side-slip, but it provides a more re-

sponsive yaw rate response than 4WS.

To analyze the vehicle stability graphically, a phase-plane method considering two vehicle

states (vehicle side-slip β and its derivative β̇) is proposed by Inagaki et al. [58]. In view

of the fact that the vehicle stability is intrinsically related to the vehicle lateral motion,

this method plots the state trajectories of the vehicle system on the β − β̇ phase-plane.

The stable and unstable regions, as well as how the trajectories evolve with time, are

clearly portrayed on the phase-plane, which provides insights into how vehicle stability

control systems should be designed to keep the vehicle stable. The state trajectories are

kept in the stable region if the following condition is satisfied:

|C1β + C2β̇| < 1, (2.22)

where C1 and C2 are two constants.

Based on this method, different DYC systems (e.g. [58–63]) have been devised to achieve

the task of maintaining the vehicle state trajectories within the stable region. Yasui et

al. [61] designed a vehicle stability enhancement system to achieve this task by controlling
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the wheel slip ratio of the front-outer wheel. The target wheel slip ratio is defined as

follows:

λ∗ = K1β +K2β̇, (2.23)

where K1 and K2 are two design parameters. The brake pressure for the front-outer

wheel is regulated to track this desired wheel slip ratio so that the state trajectories

remain in the stable region. In the work of Tian et al. [62], when the point (β, β̇) on

the phase-plane is outside the stable region, a DYC system is activated to drive it back

to the stable region. The nearest distance between the point (β, β̇) and the boundary

of the stable region is defined as d. A simple PI controller is employed by the DYC to

drive d to zero, with the distance d being the input and the corrective yaw moment M

being the output. When the point (β, β̇) is inside the stable region, an AFS system

based on sliding mode control is adopted to track the response of a reference vehicle

model. An analogous DYC approach which also adopts the distance d to determine the

control effort is proposed by He et al. [63].

Uematsu and Gerdes [17] proposed a sliding mode control scheme that employs the

vehicle side-slip and its derivative in the sliding surface design. This sliding surface can

be written as:

s = β̇ + αβ = 0, (2.24)

where α is a positive design parameter. To drive the state trajectory towards the sliding

surface, the following sliding condition should be satisfied:

ṡ = −ks, (2.25)

where k represents the convergence rate at which the state trajectory approaches the

sliding surface. It should be pointed out that this control design faces an implementation

challenge as the control input requires the derivatives of the lateral tire forces due to

the involvement of β̇ in the sliding surface.

Furukawa and Abe [64, 65] devised a DYC strategy to regulate the vehicle side-slip in

conjunction with 4WS by means of sliding mode control. In this design, the vehicle

states are driven towards the sliding surface defined as follows:

s = β̇ + c(β + aβ̇) = 0, (2.26)

where a and c are two design parameters. To guarantee that the above sliding surface

is reached, the following sliding condition is mandated:

ṡ = −ks, (2.27)
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where k denotes the convergence rate. The information of β required to generate the

control command is estimated by integrating the lateral tire forces computed from an

on-board tire model. When the control strategy is applied to a 2-Wheel-Steering (2WS)

vehicle, the sliding surface is modified as follows:

s = β̇ + c(β − β∗) = 0, (2.28)

where β∗ is the steady-state vehicle side-slip response expressed by equation (2.19).

In the works of Abe et al. [66–68], a model following control by means of sliding mode

control is proposed to compensate for the loss of stability due to the nonlinear tire

characteristics. The model response to be followed is derived from the common two

DoF planar vehicle model (bicycle model), and it can be expressed in the form of a

transfer function as follows:

β

δ
(p) = G

1 + Tp

1 +
Q

P
p+

1

P
p2
, (2.29)

where p denotes the Laplace transform variable, G is the vehicle side-slip gain constant

(the value of β in response to δ in steady state), and T , Q and P are constants expressed

by the vehicle parameters (see [66]). A sliding mode controller is adopted for the model

following control. The sliding surface is achieved by rewriting equation (2.29) in the

following form:

s = β̈ +Qβ̇ + Pβ − PGT δ̇ − PGδ = 0. (2.30)

The sliding condition to be satisfied is written as:

ṡ = −ks, (2.31)

where k represents the convergence rate. By this means, the vehicle side-slip response

is controlled to follow the model response expressed by equation (2.29), which in turn

enhances the vehicle stability. Abe et al. [66] concluded that: the vehicle side-slip-based

DYC is more effective than the yaw rate-based DYC and 4WS in stabilizing the vehicle.

2.4.3 Remarks

The implementation of the vehicle side-slip-based DYC schemes requires the real-time

information of the vehicle side-slip angle β, therefore a properly designed state observer

is necessary to estimate this state as no standard sensors are available for low-cost mea-

surements. The estimation of β is outside the scope of this study, but it has become
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a research focus and numerous estimation methods have been proposed in the litera-

ture [69–74].

So far, the typical control methods that regulate the yaw rate only and the vehicle

side-slip only have been reviewed in two seperate sections. Even though the yaw rate

and vehicle side-slip are intrinsically related by the vehicle dynamics (see the vehicle

equations of motion in Chapter 3), controlling only one of them may not lead to optimum

dynamic performance in terms of the vehicle handling and stability. Indeed, integrated

control of both vehicle states has been shown to be generally more effective. In the

following, the more comprehensive and sophisticated DYC solutions that regulate both

the yaw rate and vehicle side-slip simultaneously are reviewed.

2.5 SIMULTANEOUS CONTROL OF YAW RATE AND

VEHICLE SIDE-SLIP

2.5.1 Background

As introduced in Chapter 1, the yaw rate and vehicle side-slip are known to be the two

fundamental states that govern the vehicle handling and stability. It has been pointed

out in the literature that controlling one state only may bring about problems in some

certain circumstances. For instance, on low friction roads, controlling the yaw rate only

may be insufficient to prevent the vehicle side-slip from diverging, and in turn the vehicle

may lose its stability and spin [17–19]. On the other hand, controlling the vehicle side-slip

only guarantees the vehicle stability but may not produce desirable yaw rate response

(i.e. favorable steer characteristic) [24]. As a result, in order to eliminate the downsides

resulting from controlling one state only and combine the benefits of controlling the yaw

rate and vehicle side-slip individually, numerous recent DYC works adopt both states

simultaneously as the control variables. These solutions have presented superior control

performance to the systems controlling one state only [17, 23–26].

2.5.2 Typical control methods

Sliding mode control provides robustness against system uncertainties and external dis-

turbances [75–77]. Thanks to this property, sliding mode control is ideal for controlling

nonlinear plants such as the vehicle systems, and it has been commonly adopted in the

recent DYC system designs. One critical step in designing a sliding mode controller

is the choice of switching function (thus sliding surface). The most common switching
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function design in the recent DYC systems employs a linear combination of the yaw rate

and vehicle side-slip errors, which takes the following general form [17, 23, 24, 78–81]:

s = r − r∗ + ξ(β − β∗), (2.32)

where r∗ and β∗ are the desired (reference) yaw rate and vehicle side-slip, respectively,

and ξ is a positive design parameter. Both the yaw rate and vehicle side-slip errors are

adopted in this switching function, hence both vehicle states, the yaw rate and vehicle

side-slip, are regulated simultaneously by the sliding mode controller.

Yi et al. [23] devised a differential braking strategy for vehicle stability control. The

corrective yaw moment generated from differential braking is derived by means of sliding

mode control using a three DoF planar vehicle model. The proposed sliding mode

controller employs equation (2.32) as the switching function. Zero desired vehicle side-

slip, β∗ = 0, is employed in this scheme. To allow for the tire-road friction limit, the

desired (reference) yaw rate r∗ is defined as follows:

r∗ =





rt if |rt| <
µg

vx
,

µg

vx
sgn(rt) if |rt| >

µg

vx
,

(2.33)

where µ represents the friction coefficient, g denotes the gravitational acceleration and

rt is the same yaw rate response as described by equation (2.5).

The switching function, equation (2.32), was utilized by Li and Cui [78] to devise a

sliding mode controller for an electric vehicle with four independent driving wheels. The

desired yaw rate r∗ is the same as [23], while the desired vehicle side-slip is defined as

follows:

β∗ = (
lr
vx
− lfmvx

l
)r∗. (2.34)

This desired vehicle side-slip value is indeed the same as equation (2.19). In this design,

the front and rear motor torques are maintained at a fixed ratio, thereby eliminating

the task of motor torque distribution between the four driving wheels. However, this

simplified scheme does not make proper use of the adhesion condition of individual

wheels, thus it may not achieve optimum control performance. To tackle this problem,

some works have been proposed in the literature to dynamically and effectively distribute

the longitudinal tire forces to obtain a certain corrective yaw moment [82, 83].

Tchamna and Youn [24] proposed a braking-based sliding mode DYC design considering

the vehicle longitudinal dynamics, with equation (2.32) chosen as the switching function.

The feature of this design lies in that it does not adopt the simplifying assumptions

such as constant vehicle longitudinal velocity and small vehicle side-slip angle. These
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assumptions are commonly used in the control design process as many works are based

on the two DoF planar vehicle model (bicycle model) which is valid only under these

assumptions. Note that the vehicle side-slip is mathematically defined as β = arctan
vy
vx

,

where vx and vy denote the vehicle longitudinal and lateral velocities, respectively. The

conventional control methods assume small vehicle side-slip angle and constant vehicle

longitudinal velocity, which leads to the following approximations:

β ≈ vy
vx

(2.35)

β̇ ≈ v̇y
vx
. (2.36)

However, the proposed method does not adopt these assumptions and it employs the

following derivative that is directly derived from the vehicle side-slip definition:

β̇ = (1 + tan2 β)−1(
v̇y
vx
− v̇x
vx

tanβ). (2.37)

This expression is employed in the sliding mode control design to produce a more ef-

fective control input. The simulation results presented in [24] show that the proposed

scheme produces superior control performance to the conventional solutions that use

these assumptions.

Yim and Yi [79] developed an Active Roll Control System (ARCS) with Integrated

Chassis Control (ICC) for a hybrid 4WD vehicle. The hybrid power-train, as shown in

Figure 2.10, features an ICE for the front wheels and two independent motors for the

rear wheels. The ARCS based on sliding mode control is employed to minimize the roll

angle and roll rate using an active anti-roll bar. However, simulation results indicate that

using the ARCS alone leads the vehicle to oversteer and impairs the vehicle stability even

though the roll angle can be reduced. To solve this problem, an ICC with a two-level

structure is adopted to work in tandem with the ARCS to restore the vehicle stability

and maneuverability. The upper level of the ICC generates a corrective yaw moment

to regulate the yaw rate and vehicle side-slip, by means of sliding mode control with

equation (2.32) being the switching function. The lower level distributes this corrective

yaw moment to the ESC, AFS and 4WD systems available on the hybrid vehicle based

on a Weighted Least Square (WLS) approach. It is validated through simulations that

the proposed ARCS with ICC can effectively reduce the roll angle and roll rate while

maintaining the vehicle stability.

Mashadi and Majidi [80] designed an integrated AFS/DYC sliding mode controller for

a Hybrid Electric Vehicle (HEV). This HEV possesses an ICE for the front wheels and

two electric motors for the rear wheels, similar to the vehicle configuration in [79]. These

two motors produce equal torques in opposite directions, which generates a corrective
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Figure 2.10: Schematic of the hybrid power-train [79].

yaw moment and does not change the vehicle longitudinal dynamics. The integrated

AFS/DYC sliding mode controller employs a modified version of equation (2.32) as the

switching function, which is expressed as follows:

s = r − r∗ + w × (β∗ − β)× u(|β| − |β∗|), (2.38)

where w is a design parameter, and u(|β| − |β∗|) is a function defined as:

u(|β| − |β∗|) =





1 if |β| > |β∗|,
0 if |β| 6 |β∗|.

(2.39)

Using this switching function, the proposed sliding mode controller aims to track the

desired yaw rate while maintaining the absolute value of the actual vehicle side-slip equal

to or smaller than the desired one. The output of this controller is the total corrective

yaw moment generated by the AFS and DYC systems, and it is distributed to the AFS

and DYC systems according to the driving condition.

Apart from the above single sliding surface designs, several multi-surface sliding mode

DYC solutions have also been proposed in the literature [17, 84–86]. Similar to the single

sliding surface case, both the yaw rate and vehicle side-slip are regulated simultaneously

by these multi-surface sliding mode controllers. In the multi-surface designs, each vehicle

state is individually involved in one of the sliding surfaces, as opposed to being linearly

combined in a single surface. One common feature of these multi-surface works is their

hierarchical sliding surface configuration. Specifically, the primary sliding surface is

defined as the vehicle side-slip error, and the secondary sliding surface is defined as

the yaw rate error with a certain reference yaw rate value to match the vehicle side-

slip objective. For example, in the work of Uematsu and Gerdes [17], the primary and

secondary sliding surfaces are defined as:

s1 = β (2.40)

s2 = r − r∗. (2.41)



Literature Review 34

In order to achieve the primary control objective – zero vehicle side-slip, considering the

two DoF planar vehicle model, the following desired yaw rate must be tracked:

r∗ =

∑
Fy

mvx
− β̇, (2.42)

where
∑
Fy denotes the total external forces acted on the vehicle in the lateral direction.

The limitation of this sliding surface configuration is that the desired yaw rate in the

secondary surface has to be a certain function, and cannot be assigned an arbitrary

reference value as in the single-surface case. In other words, the yaw rate and vehicle side-

slip cannot actually be independently controlled. Comparative simulations presented

in [17] show that both the single-surface and multi-surface schemes present superior

control performances to the systems employing only one vehicle state as the control

variable. In particular, the multi-surface system provides better robustness but slower

yaw rate response than the single-surface scheme.

Even though sliding mode control has become the most popular control technique in the

recent DYC solutions for regulating the yaw rate and vehicle side-slip simultaneously,

other typical types of control techniques are also employed in the literature to tackle the

same problem. Chumsamutr and Fujioka [87] proposed a DYC scheme based on optimal

control theory to control the driving and braking torques for an electric vehicle. The

two DoF planar vehicle model used in the proposed design can be expressed with the

following state-space representation:

ẋ = Ax+BM +Eδ, (2.43)

where x = [β r]T denotes the state vector, M represents the corrective yaw moment,

δ stands for the front wheel steer angle, and A, B and E are the coefficient matrices

expressed by the vehicle parameters (see [87]). The steady-state responses of β and r

derived from the two DoF model with M = 0 are taken as the desired responses, denoted

by xdes. Then, the vehicle dynamics in terms of the error vector e = x−xdes is described

as:

ė = Ae+BM. (2.44)

The corrective yaw moment M is determined in such a way that the following cost

function is minimized:

J =

∫ ∞

0

(
eTQe+ εM2

)
dt, (2.45)

where ε is a design parameter and Q is a design matrix. The simulation results indicate

that in the linear region of the tire characteristics, the proposed controller provides the

vehicle with a faster cornering response, while in the nonlinear region, the controller

ensures the vehicle stability by driving the vehicle side-slip close to zero. Several similar
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control approaches have also been proposed [1, 88–92] to regulate the yaw rate and

vehicle side-slip simultaneously by means of optimal control theory.

Fuzzy logic control techniques are also employed by DYC systems to regulate both the

yaw rate and vehicle side-slip, as fuzzy logic control provides the benefit of not requiring

a mathematical model of the plant while still being highly robust [25]. Zhao et al. [93]

proposed a DYC solution based on fuzzy logic control for a four-in-wheel-motor drive

electric vehicle. In this design, equation (2.5) is used as the desired yaw rate response

and zero vehicle side-slip is adopted as the desired vehicle side-slip response. The inputs

to this fuzzy logic controller are the yaw rate error and vehicle side-slip error, and the

output from this controller is the corrective yaw moment. This control scheme is proven

to be effective in controlling the yaw rate and vehicle side-slip by both simulations and

experiments. A similar fuzzy logic control approach to the above solution is available in

the work of Kim et al. [94].

Buckholtz [26] devised a fuzzy logic yaw rate control scheme with vehicle side-slip limita-

tion. This fuzzy logic controller tracks the desired yaw rate by assigning an appropriate

wheel slip ratio to each wheel. The yaw rate tracking is activated only when the error

quantity, e = r∗ − r + k(ṙ∗ − ṙ) (k > 0 is a design parameter), exceeds a user-defined

threshold. Using this indirect approach, the vehicle side-slip magnitude is restricted and

no information of the vehicle side-slip is required.

In the work of Sun et al. [95], a fuzzy logic control algorithm is developed to integrate

the DYC and AFS. This fuzzy logic controller produces control commands for the DYC

and AFS to track the desired yaw rate and vehicle side-slip simultaneously. The two

inputs to the fuzzy logic controller are the yaw rate and vehicle side-slip errors, and the

outputs from this controller are the corrective yaw moment generated by the DYC and

the corrective front wheel steer angle produced by the AFS.

2.5.3 Remarks

Aiming at eliminating the downsides resulting from controlling one state only and com-

bining the benefits of controlling the yaw rate and vehicle side-slip individually, numerous

DYC solutions have been proposed in the recent literature to regulate both states simul-

taneously. In this section, typical DYC systems of such type have been reviewed. For

each DYC control scheme, the theories and principles behind the control technique are

clearly explained. Note that sliding mode control has become the most prevalent control

technique in this field due to its robustness against disturbances and uncertainties for

controlling nonlinear systems. Different variations of sliding mode DYC schemes, for

example various sliding surface designs, are currently being extensively discussed in the



Literature Review 36

literature. The implementations of these sliding mode controllers require real-time infor-

mation of the yaw rate and vehicle side-slip, which necessitates the design of appropriate

measuring and/or estimation methods. Besides, more experimental results are needed

to comprehensively and thoroughly validate the effectiveness of these sliding mode DYC

approaches.



Chapter 3

Full Vehicle Model

To validate the DYC designs proposed in the subsequent chapters through compre-

hensive computer simulations, an accurate full vehicle model that reflects closely the

vehicle dynamics in reality is required to establish the simulation model in the MAT-

LAB/Simulink environment. The vehicle equations of motion, as part of the full vehicle

model, are the mathematical representation of the plant (i.e. the vehicle) and they ex-

press the dynamics of the vehicle longitudinal motion, lateral motion, roll motion and

yaw motion. These equations are required in the subsequent chapters for control system

design. For these reasons, a full vehicle model, including the vehicle equivalent mechan-

ical model, vehicle equations of motion, wheel equation of motion and Magic Formula

tire model, is introduced in this chapter.

3.1 VEHICLE EQUIVALENT MECHANICAL MODEL

In order to obtain the vehicle equations of motion, we must first establish a vehicle

equivalent mechanical model. As a vehicle consists of two major parts: sprung mass

and unsprung mass, we regard these two parts as two rigid bodies in the mechanical

model. Figure 3.1 shows the vehicle equivalent mechanical model and the attached

coordinate systems. This mechanical model consists of two rigid bodies, with the top

body denoting the vehicle sprung mass and the bottom one representing the unsprung

mass. The coordinate system x-y-z is attached to the unsprung rigid body. The origin

of the coordinate system, P, is right under the mass center of the entire vehicle when the

vehicle is stationary. The x axis coincides with the vehicle longitudinal direction, the

y axis goes laterally to the left from the driver’s view, and the z axis directs vertically

upwards. The other coordinate system x′-y′-z′ is fixed to the sprung rigid body with

the same origin P. When the vehicle is stationary, the two coordinate systems coincide.

37
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Figure 3.1: Vehicle equivalent mechanical model and vehicle coordinate systems [97].

The two rigid bodies are assumed to produce the same yaw motion about the z axis,

thus the x axis and the x′ axis always coincide. Also, the sprung rigid body is assumed

to roll about the x′ axis, while the roll motion of the unsprung rigid body is neglected.

The vertical motion and pitch motion of the two masses are neglected, because these

motions are mainly related to vehicle ride [96] while the focus of this study is on vehicle

stability and handling.

The points S and U represent the mass centers of the sprung mass and the unsprung

mass, respectively. The point U is located on the x axis. hS denotes the distance between

S and the x′ axis, c represents the distance between S and P on the x′ axis, and e is the

distance between U and P. r and p are the yaw rate and the roll rate respectively, and

φ is the sprung mass roll angle. The positive directions of the angular displacement and

the angular velocities are shown in Figure 3.1. The more detailed explanation on this

vehicle mechanical model is available in [97].

3.2 VEHICLE EQUATIONS OF MOTION

The vehicle equations of motion are of great significance in this study. They mathemat-

ically represent the plant to be controlled in the DYC system and they are employed

in the following chapters for control system design. Besides, they are adopted in the

simulation model to compute the vehicle states of the simulated vehicle. In this section,

the vehicle equations of motion are derived based on the vehicle equivalent mechanical
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Figure 3.2: Description of rigid body general motion.

model established in section 3.1. The detailed expression of this derivation is available

in [97].

3.2.1 Translational motion

In the translational motion analysis, in order for the Newton’s second law to be valid, an

inertial (global) coordinate system X-Y -Z with origin O is introduced. This coordinate

system is stationary in the absolute space. Assume that another coordinate system x-y-z

with origin P is attached to a rigid body which is moving in the absolute space. These

two coordinate systems are shown in Figure 3.2.

The point G denotes a fixed point in the rigid body. The vector ρG is the position

vector of the point G with respect to the coordinate system x-y-z. The vectors rP and

rG are the position vectors of the points P and G with respect to the coordinate system

X-Y -Z, respectively.

As can be seen in Figure 3.2, the three vectors are related by:

rG = rP + ρG. (3.1)

Differentiation of equation (3.1) in the global coordinate system X-Y -Z provides:

ṙG = ṙP + ρ̇G. (3.2)
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Expressing the vector ρG in the coordinate system x-y-z and applying the Transport

Theorem in mechanics [98] lead to:

ρ̇G = ρ̇Grel + ω × ρG, (3.3)

where ρ̇Grel represents the relative velocity of the point G with respect to the coordinate

system x-y-z, and ω denotes the angular velocity of the coordinate system x-y-z with

respect to the coordinate system X-Y -Z. In this study ρ̇Grel = 0 since the point G is

fixed in the coordinate system x-y-z. Note that ṙP, the velocity of the point P with

respect to the coordinate system X-Y -Z, should be expressed in the coordinate system

x-y-z in order for the addition in equation (3.2) to be valid. Substituting equation (3.3)

in equation (3.2) gives:

ṙG = ṙP + ω × ρG. (3.4)

Now equation (3.4) is applied to the sprung rigid body and unsprung rigid body. The

position vectors of the points S and U with respect to the coordinate system X-Y -Z

are denoted by rS and rU, respectively, the position vectors of the points S and U

with respect to the coordinate systems x′-y′-z′ and x-y-z are denoted by ρS and ρU,

respectively, and the angular velocities of the coordinate systems x′-y′-z′ and x-y-z with

respect to the coordinate system X-Y -Z are denoted by ωS and ωU, respectively. Then,

the following relations are obtained:

ṙS = ṙP + ωS × ρS (3.5)

ṙU = ṙP + ωU × ρU. (3.6)

In equations (3.5) and (3.6), ṙP is expressed in the coordinate systems x-y-z and x′-y′-z′

using the unit vectors in these two coordinate systems, respectively. The unit vectors in

the x, y and z directions are denoted by i, j and k, respectively, and the unit vectors

in the x′, y′ and z′ directions are denoted by i′, j′ and k′, respectively. Then, ṙP can

be expressed as:

ṙP = vxi+ vyj = vxi
′ + vy(j

′ cosφ− k′ sinφ), (3.7)

where vx and vy denote the longitudinal and lateral velocities of the point P in the x and

y directions (shown in Figure 1.4), respectively. The unit vector transformations used

in equation (3.7) are elaborated in [98], and are not repeated in this thesis. Since the

sprung mass roll angle φ is normally small (so cosφ ≈ 1 and sinφ ≈ 0) [97], equation (3.7)

simplifies to:

ṙP = vxi+ vyj = vxi
′ + vyj

′. (3.8)
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It is seen from Figure 3.1 that the sprung rigid body possesses a roll angular velocity p

about the x′ axis, and a yaw angular velocity r about the z axis. In the following, p and

r will be referred to as roll rate and yaw rate, respectively. The total angular velocity of

the coordinate system x′-y′-z′ (i.e. the sprung rigid body) with respect to the coordinate

system X-Y -Z is:

ωS = pi′ + rk = pi′ + r(j′ sinφ+ k′ cosφ). (3.9)

For the same reason explained above, equation (3.9) reduces to:

ωS = pi′ + rk = pi′ + rk′. (3.10)

As the roll motion of the unsprung rigid body is neglected, the unsprung rigid body

possesses only a yaw angular velocity r about the z axis. Thus, the total angular

velocity of the coordinate system x-y-z (i.e. the unsprung rigid body) with respect to

the coordinate system X-Y -Z is:

ωU = rk. (3.11)

The position vectors ρS and ρU are expressed in the coordinate systems x′-y′-z′ and

x-y-z, respectively:

ρS = ci′ + hSk
′ (3.12)

ρU = −ei. (3.13)

Substituting equations (3.8), (3.10) and (3.12) in equation (3.5), and equations (3.8),

(3.11) and (3.13) in equation (3.6) lead to:

ṙS = vxi
′ + (vy − hSp+ cr)j′ (3.14)

ṙU = vxi+ (vy − er)j. (3.15)

Differentiating equations (3.14) and (3.15) in the global coordinate system X-Y -Z yields:

r̈S = v̇xi
′ + vxi̇

′ + (v̇y − hSṗ+ cṙ)j′ + (vy − hSp+ cr)j̇′ (3.16)

r̈U = v̇xi+ vxi̇+ (v̇y − eṙ)j + (vy − er)j̇. (3.17)
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It is known that [97, 98]:

i̇′ = ωS × i′ (3.18)

j̇′ = ωS × j′ (3.19)

k̇′ = ωS × k′ (3.20)

i̇ = ωU × i (3.21)

j̇ = ωU × j (3.22)

k̇ = ωU × k. (3.23)

Substituting equations (3.10) and (3.11) in equations (3.18) to (3.23) provides:

i̇′ = rj′ (3.24)

j̇′ = pk′ − ri′ (3.25)

k̇′ = −pj′ (3.26)

i̇ = rj (3.27)

j̇ = −ri (3.28)

k̇ = 0. (3.29)

Then, substitution of equations (3.24), (3.25), (3.27) and (3.28) in equations (3.16)

and (3.17) gives:

r̈S = (v̇x − vyr + hSpr − cr2)i′ + (v̇y + vxr − hSṗ+ cṙ)j′

+ (vyp− hSp2 + cpr)k′ (3.30)

r̈U = (v̇x − vyr + er2)i+ (v̇y + vxr − eṙ)j. (3.31)

Equations (3.30) and (3.31) express the total accelerations of the sprung rigid body mass

center and the unsprung rigid body mass center, respectively.

Using the unit vector transformations, the total acceleration of the sprung rigid body

mass center r̈S can be rewritten as:

r̈S = (v̇x − vyr + hSpr − cr2)i+ (v̇y + vxr − hSṗ+ cṙ)(j cosφ+ k sinφ)

+ (vyp− hSp2 + cpr)(−j sinφ+ k cosφ). (3.32)

As mentioned above, φ is normally small, thus equation (3.32) approximates:

r̈S = (v̇x − vyr + hSpr − cr2)i+ (v̇y + vxr − hSṗ+ cṙ)j

+ (vyp− hSp2 + cpr)k. (3.33)
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According to equations (3.31) and (3.33), the longitudinal accelerations of the two mass

centers, i.e. the acceleration components in the x direction, are:

aSx = v̇x − vyr + hSpr − cr2 (3.34)

aUx = v̇x − vyr + er2. (3.35)

Also, the lateral accelerations of the two mass centers, i.e. the acceleration components

in the y direction, are:

aSy = v̇y + vxr − hSṗ+ cṙ (3.36)

aUy = v̇y + vxr − eṙ. (3.37)

Applying the Newton’s second law, the following governing equation for the longitudinal

motion of the entire vehicle is achieved:

∑
Fx = mS × aSx +mU × aUx

= (mS +mU)(v̇x − vyr) +mShSpr + (mUe−mSc)r
2

= m(v̇x − vyr) +mShSpr, (3.38)

where mS, mU and m denote the masses of the sprung rigid body, unsprung rigid body

and whole vehicle, respectively, and
∑
Fx and

∑
Fy represent the total external forces

acted on the vehicle in the x and y directions, respectively. Note that mS + mU = m,

and mSc = mUe since the origin P is the projection of the mass center of the entire

vehicle on the x or x′ axis. Likewise, the governing equation for the lateral motion of

the entire vehicle is given by:

∑
Fy = mS × aSy +mU × aUy

= (mS +mU)(v̇y + vxr)−mShSṗ+ (mSc−mUe)ṙ

= m(v̇y + vxr)−mShSṗ. (3.39)

The total external forces in the x and y directions are expressed as:

∑
Fx =

4∑
i=1

(Fxi cos δi − Fyi sin δi) (3.40)

∑
Fy =

4∑
i=1

(Fxi sin δi + Fyi cos δi), (3.41)

where δi represents the steer angle of the ith wheel, and Fxi and Fyi are the longitudinal

and lateral tire forces applied on the ith wheel. Note that for rear wheels δ3 = δ4 = 0,

and the cot-average of the front wheel steer angles, δ, is used in place of δ1 and δ2
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for simplicity (cot δ = (cot δ1 + cot δ2)/2). The values 1, 2, 3 and 4 of the subscript i

represent the front left, front right, rear right and rear left wheel, respectively. The tire

forces and wheel steer angles are shown in Figure 1.4.

Substituting equations (3.40) and (3.41) in equations (3.38) and (3.39) respectively, the

longitudinal and lateral equations of motion are obtained:

4∑
i=1

(Fxi cos δi − Fyi sin δi) = m(v̇x − vyr) +mShSpr (3.42)

4∑
i=1

(Fxi sin δi + Fyi cos δi) = m(v̇y + vxr)−mShSṗ. (3.43)

3.2.2 Rotational motion

The rigid body rotational motion is governed by the Euler’s law of motion which, along

with the Newton’s second law, provides the complete equations of motion for a rigid

body. The Euler’s law of motion states that:

MG = ḢG, (3.44)

where MG represents the resultant external moment about the mass center G, and HG

denotes the angular momentum of the rigid body about its mass center. The general

description of the angular momentum of a rigid body expressed in a centroidal (i.e. the

origin of the coordinate system is the mass center) body-fixed coordinate system xG-yG-

zG reads:

HG = (IGxxωGx − IGxyωGy − IGxzωGz)iG

+ (IGyyωGy − IGxyωGx − IGyzωGz)jG

+ (IGzzωGz − IGxzωGx − IGyzωGy)kG, (3.45)

where iG, jG and kG represent the unit vectors along the xG, yG and zG axes of the

coordinate system xG-yG-zG, respectively, ωGx, ωGy and ωGz denote the angular veloc-

ity components of the coordinate system xG-yG-zG in the xG, yG and zG directions,

respectively, IGxx, IGyy and IGzz represent the mass moments of inertia about the xG,

yG and zG axes, respectively, and IGxy, IGyz and IGxz denote the products of inertia

with respect to the xGyG, yGzG and xGzG planes, respectively.

To obtain the rotational equation of motion about an arbitrary point B other than the

mass center G, we use the more general equation [99]:

MB = ḢG +mGρG × aG, (3.46)



Full Vehicle Model 45

where MB represents the resultant external moment about the point B, mG denotes

the mass of the rigid body, ρG denotes the position vector of the mass center G with

respect to the point B, and aG stands for the acceleration vector of the mass center G.

With the mechanical model introduced in section 3.1, it is more convenient to compute

the external moments about the point P other than the mass centers S and U. Therefore,

the more general form of law of motion, equation (3.46), is applied to the sprung rigid

body and unsprung rigid body about the point P, respectively.

The angular momentum of the sprung rigid body about its own mass center, S, is firstly

looked into. Attaching a centroidal coordinate system xS-yS-zS (parallel to x′-y′-z′) to

the sprung rigid body, and applying equation (3.45) lead to:

HS = (ISxxωSx − ISxyωSy − ISxzωSz)iS

+ (ISyyωSy − ISxyωSx − ISyzωSz)jS

+ (ISzzωSz − ISxzωSx − ISyzωSy)kS. (3.47)

It is seen from equation (3.10) that the angular velocity components of the sprung rigid

body expressed in the coordinate system x′-y′-z′ are:

ωSx = p (3.48)

ωSy = 0 (3.49)

ωSz = r. (3.50)

Note that the sprung mass can be safely assumed to be symmetric about the xSzS plane,

so ISxy = ISyz = 0. Also, iS, jS and kS are parallel to i′ j′ and k′, respectively. Thus,

equation (3.47) reduces to:

HS = (ISxxp− ISxzr)i′ + (ISzzr − ISxzp)k′. (3.51)

Differentiation of equation (3.51) provides:

ḢS = (ISxxṗ− ISxz ṙ)i′ + (ISxxp− ISxzr)i̇′

+ (ISzz ṙ − ISxz ṗ)k′ + (ISzzr − ISxzp)k̇′. (3.52)

Substitution of equations (3.24) and (3.26) in equation (3.52) yields:

ḢS = (ISxxṗ− ISxz ṙ)i′ +
[
(ISxx − ISzz)pr − ISxzr2 + ISxzp

2
]
j′

+ (ISzz ṙ − ISxz ṗ)k′. (3.53)
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To utilize equation (3.46), the vectors ρS and aS are needed. The vector ρS is expressed

by equation (3.12), and the vector aS is given by equation (3.30). Thus, the cross

product of these two vectors reads:

ρS × aS = (ci′ + hSk
′)×

[
(v̇x − vyr + hSpr − cr2)i′

+ (v̇y + vxr − hSṗ+ cṙ)j′ + (vyp− hSp2 + cpr)k′
]

= −hS(v̇y + vxr − hSṗ+ cṙ)i′

+
[
hS(v̇x − vyr + hSpr − cr2)− c(vyp− hSp2 + cpr)

]
j′

+ c(v̇y + vxr − hSṗ+ cṙ)k′. (3.54)

Applying equation (3.46) to the sprung rigid body about the point P, and making use

of equations (3.53) and (3.54) produce:

MPS = ḢS +mSρS × aS
=
[
(ISxx +mSh

2
S)ṗ− (ISxz +mShSc)ṙ −mShS(v̇y + vxr)

]
i′

+
[
(ISxx +mSh

2
S − ISzz −mSc

2)pr + (ISxz +mShSc)(p
2 − r2)

+mShS(v̇x − vyr)−mScvyp
]
j′

+
[
(ISzz +mSc

2)ṙ − (ISxz +mShSc)ṗ+mSc(v̇y + vxr)
]
k′, (3.55)

whereMPS is the external moment about the point P which contributes to the rotational

motion of the sprung rigid body.

Then, the above procedure is repeated for the unsprung rigid body. Attaching a cen-

troidal coordinate system xU-yU-zU (parallel to x-y-z) to the unsprung rigid body, and

applying equation (3.45) lead to:

HU = (IUxxωUx − IUxyωUy − IUxzωUz)iU

+ (IUyyωUy − IUxyωUx − IUyzωUz)jU

+ (IUzzωUz − IUxzωUx − IUyzωUy)kU. (3.56)

According to equation (3.11), the angular velocity components of the unsprung rigid

body in the coordinate system x-y-z are:

ωUx = 0 (3.57)

ωUy = 0 (3.58)

ωUz = r. (3.59)

It can be reasonably assumed that the unsprung mass is symmetric about the xUzU

plane, and the height of the unsprung mass in the zU direction is negligible, thus IUxy =
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IUyz = IUxz = 0 holds. Besides, iU, jU and kU are parallel to i, j and k, respectively.

Then, equation (3.56) simplifies to:

HU = IUzzrk. (3.60)

The derivative of equation (3.60) is given by:

ḢU = IUzz ṙk + IUzzrk̇. (3.61)

Substituting equation (3.29) in equation (3.61) leads to:

ḢU = IUzz ṙk. (3.62)

To apply equation (3.46) to the unsprung rigid body, the vectors ρU and aU are needed.

Note that the vector ρU is expressed by equation (3.13), and the vector aU is given by

equation (3.31). Thus, the cross product of these two vectors is as follows:

ρU × aU = (−ei)×
[
(v̇x − vyr + er2)i+ (v̇y + vxr − eṙ)j

]

= −e(v̇y + vxr − eṙ)k. (3.63)

Applying equation (3.46) to the unsprung rigid body about the point P gives:

MPU = ḢU +mUρU × aU
=
[
IUzz ṙ −mUe(v̇y + vxr − eṙ)

]
k. (3.64)

whereMPU is the external moment about the point P which contributes to the rotational

motion of the unsprung rigid body.
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Combining equations (3.55) and (3.64) yields:

MP = MPS +MPU

=
[
(ISxx +mSh

2
S)ṗ− (ISxz +mShSc)ṙ −mShS(v̇y + vxr)

]
i′

+
[
(ISxx +mSh

2
S − ISzz −mSc

2)pr + (ISxz +mShSc)(p
2 − r2)

+mShS(v̇x − vyr)−mScvyp
]
j′

+
[
(ISzz +mSc

2)ṙ − (ISxz +mShSc)ṗ+mSc(v̇y + vxr)
]
k′

+
[
(IUzz +mUe

2)ṙ −mUe(v̇y + vxr)
]
k

=
[
(ISxx +mSh

2
S)ṗ− (ISxz +mShSc)ṙ −mShS(v̇y + vxr)

]
i

+
[
(ISxx +mSh

2
S − ISzz −mSc

2)pr + (ISxz +mShSc)(p
2 − r2)

+mShS(v̇x − vyr)−mScvyp
]
(j cosφ+ k sinφ)

+
[
(ISzz +mSc

2)ṙ − (ISxz +mShSc)ṗ+mSc(v̇y + vxr)
]
(−j sinφ+ k cosφ)

+
[
(IUzz +mUe

2)ṙ −mUe(v̇y + vxr)
]
k, (3.65)

where MP denotes the resultant external moment about the point P. As mentioned in

section (3.2.1), the sprung mass roll angle φ is small (thus cosφ ≈ 1 and sinφ ≈ 0), then

equation (3.65) reduces to:

MP =
[
Ixṗ− Ixz ṙ −mShS(v̇y + vxr)

]
i+

[
(Ix − ISzz −mSc

2)pr + Ixz(p
2 − r2)

+mShS(v̇x − vyr)−mScvyp
]
j + (Iz ṙ − Ixz ṗ)k, (3.66)

where

Ix = ISxx +mSh
2
S

Ixz = ISxz +mShSc

Iz = ISzz +mSc
2 + IUzz +mUe

2.

Note that Ix represents the roll moment of inertia of the sprung mass about the x axis,

Ixz denotes the product of inertia of the sprung mass with respect to the xz plane, and

Iz is the yaw moment of inertia of the entire vehicle (the sum of the sprung and unsprung

masses) about the z axis.

Based on equation (3.66), the following governing equations for the roll and yaw motions

can be derived:

MPx = Ixṗ− Ixz ṙ −mShS(v̇y + vxr) (3.67)

MPz = Iz ṙ − Ixz ṗ, (3.68)
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where MPx and MPz denote the external moment components in the x and z directions,

respectively, and are expressed as follows:

MPx = −Kφφ+mSghS sinφ− Cφp (3.69)

MPz =
4∑
i=1

xi(Fxi sin δi + Fyi cos δi)−
4∑
i=1

yi(Fxi cos δi − Fyi sin δi), (3.70)

where Kφ and Cφ denote the total roll stiffness and total roll damping of the suspension

system, respectively, g represents the gravitational acceleration, and xi and yi are the

coordinates of the ith wheel in the x-y-z coordinate system.

Combining equations (3.67)–(3.70), the following roll and yaw equations of motion are

achieved:

−Kφφ+mSghS sinφ− Cφp = Ixṗ− Ixz ṙ −mShS(v̇y + vxr) (3.71)
4∑
i=1

xi(Fxi sin δi + Fyi cos δi)−
4∑
i=1

yi(Fxi cos δi − Fyi sin δi) = Iz ṙ − Ixz ṗ. (3.72)

Equations (3.71) and (3.72), along with equations (3.42) and (3.43) derived in sec-

tion 3.2.1, constitute the complete set of vehicle equations of motion that govern the

longitudinal, lateral, roll and yaw motions. In the subsequent chapters, these equations

of motion are employed as the mathematical representation of the plant (i.e. the vehicle)

in the DYC design process, also, they are adopted in the simulation model to compute

the vehicle states of the simulated vehicle.

3.3 WHEEL EQUATION OF MOTION

To adopt the vehicle equations of motion in the simulation model, the values of the

longitudinal and lateral tire forces (i.e. Fxi and Fyi) are required, as can be seen from

equations (3.42), (3.43) and (3.72). Thus, the well-known Magic Formula tire model is

used to generate these tire forces. Since the wheel slip ratio is one of the inputs to the

Magic Formula model, in this section, the wheel dynamics is modeled to calculate the

wheel angular velocity, and in turn the wheel slip ratio (wheel longitudinal slip).

Based on the wheel force system presented in Figure 3.3, the following moment equilib-

rium equation about the center of the wheel can be established:

J
dω

dt
= T − FxR− Fza, (3.73)

where J denotes the mass moment of inertia of the wheel assembly, ω stands for the

wheel angular velocity, T represents the motor torque (assuming no gear reduction is
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Figure 3.3: Wheel schematic.

used), Fx is the longitudinal tire force, R is the tire radius, Fz is the normal reaction

force from the ground, a is the tire pneumatic trail, N is the wheel normal load, Fp is

the reaction force from the driving axle and vw is the velocity of the wheel center in

its heading direction. As in this thesis a rear-wheel-drive electric vehicle is considered,

when applying equation (3.73) to the front wheels the T term is not included.

3.4 TIRE MODEL

The well-known Magic Formula equations are employed to model the tire dynamics

in this study, in order to generate the tire forces required in the vehicle equations of

motion. It has been proven that the tire forces predicted by the Magic Formula equations

closely match the actual tire forces, thus this tire model has been widely utilized in

vehicle dynamic analysis [70, 100–102]. The basic Magic Formula equation is written as

follows [103]:

y(x) = D sin
{
C arctan

[
Bx− E(Bx− arctanBx)

]}
(3.74)

with

Y (X) = y(x) + SV (3.75)

x = X + SH (3.76)

where X represents the wheel slip ratio λ or the tire slip angle α, Y (X) denotes the

tire force Fx or Fy, SH and SV are the horizontal shift and vertical shift, respectively,

B, C, D and E are the stiffness factor, shape factor, peak value and curvature factor,

respectively.
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The meanings and detailed mathematical expressions for B, C, D, E, SH and SV are

available in [103]. The calculation of these parameters requires the value of the wheel

slip ratio λ, tire slip angle α and normal reaction force Fz.

The wheel slip ratio λ used in the Magic Formula is defined as [104]:

λ =
Rω

vwx
− 1. (3.77)

where vwx denotes the velocity of the wheel center in the wheel heading direction. Based

on equation (3.4), the following vector equation can be derived:

vi = vP + ωU × ρi, (3.78)

where vi denotes the velocity vector of the ith wheel center, vP represents the velocity

vector of the point P (the origin of the coordinate systems x-y-z and x′-y′-z′), and ρi

is the position vector of the ith wheel center with respect to the point P. Expanding

equation (3.78) gives:

v1 = (vx −
df
2
r)i+ (vy + lfr)j (3.79)

v2 = (vx +
df
2
r)i+ (vy + lfr)j (3.80)

v3 = (vx +
dr
2
r)i+ (vy − lrr)j (3.81)

v4 = (vx −
dr
2
r)i+ (vy − lrr)j, (3.82)

where df and dr represent the front and rear track widths, respectively, lf and lr denote

the distances from the point P to the front axle (wheel center) and rear axle (wheel

center), respectively. These parameters are shown in Figure 1.4. Using equations (3.79)–

(3.82) and considering the front wheel steer angle δ, the velocities of each wheel center

in the wheel heading direction are obtained as follows:

vwx1 = (vx −
df
2
r) cos δ + (vy + lfr) sin δ (3.83)

vwx2 = (vx +
df
2
r) cos δ + (vy + lfr) sin δ (3.84)

vwx3 = vx +
dr
2
r (3.85)

vwx4 = vx −
dr
2
r. (3.86)

Apart from the wheel slip ratio, the calculation of the Magic Formula parameters also

requires the tire slip angle which is defined as the angle between the wheel heading

direction and the velocity vector of the wheel center [104]. Employing equations (3.79)–

(3.82) and considering the suspension roll steer caused by the roll motion, the tire slip
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Figure 3.4: Schematic of the vehicle longitudinal motion.

angle for each tire is expressed as:

α1 = arctan
vy + lfr

vx − df
2 r
− δ − Cδfφ (3.87)

α2 = arctan
vy + lfr

vx + df
2 r
− δ − Cδfφ (3.88)

α3 = arctan
vy − lrr
vx + dr

2 r
− Cδrφ (3.89)

α4 = arctan
vy − lrr
vx − dr

2 r
− Cδrφ, (3.90)

where Cδf and Cδr represent the front and rear roll steer coefficients, respectively.

In addition to the wheel slip ratio λ and tire slip angle α, the parameters in the Magic

Formula are also dependent on the normal reaction force Fz (or the normal load N)

which are subject to the longitudinal and lateral load transfers. When the vehicle is

stationary, the static normal reaction forces applied on the four wheels are:

Ffs =
1

2l
mglr (3.91)

Frs =
1

2l
mglf , (3.92)

where Ffs and Frs denote the static normal reaction forces exerted on one front wheel

and one rear wheel, respectively.

The normal reaction force is changed due to the longitudinal load transfer. Figure 3.4

shows the schematic of the vehicle longitudinal motion. Since the pitch motion is ne-

glected in the vehicle equivalent mechanical model, we treat the sprung and unsprung

masses as a whole and consider that they produce the same motion in the x direction.
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Figure 3.5: Front view of the vehicle equivalent mechanical model.

The points Wf and Wr represent the tire-road contact centers of the front and rear

wheels, respectively, h denotes the height of the mass center of the entire vehicle (point

CG) from the ground, and
∑
Fxf and

∑
Fxr represent the total front and rear tire forces

in the x direction (
∑
Fxf +

∑
Fxr =

∑
Fx), respectively. Taking moment about the mass

center CG and considering the force equilibrium in the z direction lead to the following

normal reaction forces for one front wheel and one rear wheel, respectively:

Ff =
1

2l
(mglr − h

∑
Fx) (3.93)

Fr =
1

2l
(mglf + h

∑
Fx). (3.94)

Then, the effect of the lateral load transfer caused by the roll motion is taken into

account. The roll motion of the unsprung rigid body is illustrated in Figure 3.5, the

front view of the vehicle equivalent mechanical model. As shown in this figure, the roll

moment about the front roll center in the plane perpendicular to the x axis has to be in

equilibrium, which leads to the following lateral load change between the front wheels:

∆Ff =
1

df

[
Kφfφ+ Cφfp+ hf(Fside1 + Fside2)

]
, (3.95)

where hf denotes the front roll center height, Kφf and Cφf are the roll stiffness and the

roll damping of the front suspension, respectively. Similarly, the lateral load change

between the rear wheels is:

∆Fr =
1

dr

[
Kφrφ+ Cφrp+ hr(Fside3 + Fside4)

]
, (3.96)
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where hr denotes the rear roll center height, Kφr and Cφr are the roll stiffness and the

roll damping of the rear suspension, respectively. The side forces Fside1, Fside2, Fside3

and Fside4 in equations (3.95) and (3.96) are expressed as follows:

Fside1 = Fx1 sin δ + Fy1 cos δ (3.97)

Fside2 = Fx2 sin δ + Fy2 cos δ, (3.98)

Fside3 = Fy3 (3.99)

Fside4 = Fy4. (3.100)

Introducing equations (3.97) to (3.100) to equations (3.95) and (3.96) provides:

∆Ff =
1

df
(Kφfφ+ Cφfp+ hf

∑
Fyf) (3.101)

∆Fr =
1

dr
(Kφrφ+ Cφrp+ hr

∑
Fyr), (3.102)

where

∑
Fyf = (Fx1 + Fx2) sin δ + (Fy1 + Fy2) cos δ (3.103)

∑
Fyr = Fy3 + Fy4. (3.104)

Note that this approach of computing ∆Ff and ∆Fr is also available in [105].

Now, combining equations (3.93), (3.94), (3.101), and (3.102), the normal reaction forces

for each wheel considering both the longitudinal and lateral load transfers are written

as follows:

Fz1 =
1

2l
(mglr − h

∑
Fx)− 1

df
(Kφfφ+ Cφfp+ hf

∑
Fyf) (3.105)

Fz2 =
1

2l
(mglr − h

∑
Fx) +

1

df
(Kφfφ+ Cφfp+ hf

∑
Fyf) (3.106)

Fz3 =
1

2l
(mglf + h

∑
Fx) +

1

dr
(Kφrφ+ Cφrp+ hr

∑
Fyr) (3.107)

Fz4 =
1

2l
(mglf + h

∑
Fx)− 1

dr
(Kφrφ+ Cφrp+ hr

∑
Fyr). (3.108)

Note that the wheel numbering follows the same manner as before.

So far, the establishment of the full vehicle model has been completed. This model

includes the vehicle equivalent mechanical model, vehicle equations of motion, wheel

equation of motion and Magic Formula tire model. This full vehicle model is programed

in the MATLAB/Simulink environment for the simulation studies. The details of the

MATLAB/Simulink model are shown in Appendix. The vehicle equations of motion are

employed in the DYC design process in the following chapters.



Chapter 4

Yaw Rate-Based Direct Yaw

Moment Control

In this chapter, a mathematical relationship between the yaw rate and the corrective yaw

moment produced by the DYC system is derived from the vehicle equations of motion

established in Chapter 3. This mathematical relationship reveals that the steady-state

yaw rate directly depends on the torque difference between the left and right driving

motors, which implies that it can be controlled by tuning this torque difference. Based

on this relationship, a yaw rate-based DYC method is proposed to achieve neutral steer.

Comparative simulation results show that the proposed DYC method closely tracks

the reference yaw rate associated with neutral steer, also it outperforms the competing

methods in terms of tracking the desired yaw rate and vehicle path in various driving

scenarios.

4.1 BACKGROUND

As introduced in Chapter 1, the yaw rate r is the vehicle angular velocity about the z

axis of the vehicle local coordinate x-y-z, as shown in Figure 1.4. The yaw rate plays

a crucial roll in vehicle stability and handling control, and is one of the main control

variables for DYC systems. Firstly, the steady-state yaw rate (derived from the common

bicycle model) is a function of the front wheel steer angle. So, it is interpreted as the

vehicle response commanded by the driver. Secondly, this steady-state yaw rate value

defines the steer characteristic (i.e. under, over, or neutral steer) of the vehicle. To

enhance vehicle handling, in this chapter a yaw rate-based DYC method is proposed to

drive the yaw rate towards a desired/target value that would lead to neutral steer.

55
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In Chapter 2, several typical types of control methods have been reviewed, including the

equal torque methods [27–33], the Ackerman methods [38–46] and the yaw rate-based

DYC methods which employ equation (2.5) with a positive K as the reference yaw

rate [48, 50, 54, 55]. In the simulation studies in this chapter, to verify the effectiveness

of the proposed DYC, the control performances of the proposed method and the aforesaid

three types of methods are compared. Here, the concepts and principles behind these

methods are recalled.

The equal torque methods are the most straightforward solutions for controlling two

independent motors. They emulate the behavior of an open differential by applying

equal torques to the two driving wheels. Thus, these methods provide the electric

vehicle with a cornering performance similar to an ICE vehicle equipped with an open

differential. Actually, the equal torque methods cannot be categorized as DYC systems,

as no active yaw moment can be generated to regulate vehicle motion.

The Ackerman methods use the vehicle speed and the front wheel steer angle the as input

parameters and calculate the required inner and outer wheel angular velocities, by means

of the well-known Ackerman steering geometry. When the electric vehicle enters a corner,

the control system acts immediately on both motors, reducing the angular velocity of the

inner wheel while increasing that of the outer wheel [38] to their desired values defined

by equations (2.2) and (2.3). In the simulation studies, to examine the performance

of the Ackerman methods, the driving wheel angular velocities have been tuned based

on their sum and difference, with the sum being proportional to the speed command

read from the throttle pedal sensor and the difference computed from equations (2.2)

and (2.3) as follows:

∆ω = ωR − ωL =
vrdr tan δ

Rl
. (4.1)

Note that neither the equal torque methods nor the Ackerman methods take into account

the vehicle dynamics. New DYC designs have been proposed in the literature to incor-

porate the vehicle dynamics, by maintaining the yaw rate at a desired level determined

by a planar vehicle dynamic model. This desired yaw rate is described by equation (2.5)

in which the stability factor K is normally maintained at a positive value to provide

sufficient stability margin for the vehicle. However, a positive stability factor causes

understeer and makes the vehicle “reluctant” to turn, which is not optimum for vehicle

handling. In the proposed DYC design, K = 0 is selected to achieve the ideal steer

characteristic, neutral steer, without impairing the vehicle stability. The advantageous

vehicle handling performance with no loss in the stability is fully demonstrated in highly

challenging driving scenarios, as presented in the simulation results.
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4.2 VEHICLE CONTROL MODEL DERIVATION

In this section, a vehicle control model, i.e. a simplified set of vehicle equations of

motion, is derived to provide more insight into the design of a yaw rate-based DYC

scheme. Recall that the complete vehicle equations of motion, equations (3.42), (3.43),

(3.71) and (3.72), govern the vehicle longitudinal, lateral, roll and yaw motions. These

equations are rewritten here:

4∑
i=1

(Fxi cos δi − Fyi sin δi) = m(v̇x − vyr) +mShSpr (4.2)

4∑
i=1

(Fxi sin δi + Fyi cos δi) = m(v̇y + vxr)−mShSṗ (4.3)

−Kφφ+mSghS sinφ− Cφp = Ixṗ− Ixz ṙ −mShS(v̇y + vxr) (4.4)
4∑
i=1

xi(Fxi sin δi + Fyi cos δi)−
4∑
i=1

yi(Fxi cos δi − Fyi sin δi) = Iz ṙ − Ixz ṗ. (4.5)

To reveal the fundamental mathematical relationships that govern the vehicle dynamics

with a DYC system on-board, in the following, equations (4.2)–(4.5) are simplified and

linearized, and the implications deduced from the resulting equations are investigated.

When the ith tire undergoes a normal load and a lateral tire force, its path of motion

makes an angle αi with respect to the tire plane [106]. This angle is called the tire

slip angle, whose definition and mathematical expression have been given in section 3.4.

When αi is small, the lateral tire force can be considered linearly proportional to αi,

which reads:

Fyi = −Cαiαi (4.6)

where Cαi is called the cornering stiffness of the ith tire. When a vehicle rolls, it is

known that the wheel camber angle will change which in turn results in a tire camber

thrust. To accommodate the effect of the camber angle, a new term is added to the

lateral tire force equation [107]:

Fyi = −Cαiαi − Cφiφ (4.7)

where Cφi is the tire camber thrust coefficient of the ith tire.

Assuming that the front wheel steer angle δ and the vehicle side-slip angle β are small,

and considering a two DoF planar vehicle model (bicycle model) [20] whose track widths
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are neglected, the mathematical expressions of the tire slip angles (equations (3.87)–

(3.90)) can be simplified to

α1 = α2 ≈
vy + lfr

vx
− δ − Cδfφ ≈ β +

lfr

vx
− δ − Cδfφ (4.8)

α3 = α4 ≈
vy − lrr
vx

− Cδrφ ≈ β −
lrr

vx
− Cδrφ. (4.9)

Substituting equations (4.8) and (4.9) in equation (4.7), the following lateral tire force

expressions for the four wheels are obtained:

Fy1 = −Cα1(β +
lfr

vx
− δ − Cδfφ)− Cφ1φ (4.10)

Fy2 = −Cα2(β +
lfr

vx
− δ − Cδfφ)− Cφ2φ (4.11)

Fy3 = −Cα3(β −
lrr

vx
− Cδrφ)− Cφ3φ (4.12)

Fy4 = −Cα4(β −
lrr

vx
− Cδrφ)− Cφ4φ. (4.13)

It is assumed that the longitudinal tire forces are symmetric, i.e. Fx1 = Fx2 and Fx3 =

Fx4, and that the front wheel steer angle δ and the sprung mass roll angle φ are both

small (thus sin δ ≈ 0, cos δ ≈ 1 and sinφ ≈ φ). Then, substituting equations (4.10)–

(4.13) in the left-hand side terms in equations (4.2)–(4.5) leads to:

∑
Fx = Fx1 + Fx2 + Fx3 + Fx4 (4.14)

∑
Fy = −Cαf(β +

lfr

vx
− δ − Cδfφ)− Cφfφ− Cαr(β −

lrr

vx
− Cδrφ)− Cφrφ (4.15)

MPx = −Kφφ+mSghSφ− Cφp (4.16)

MPz = −lf
[
Cαf(β +

lfr

vx
− δ − Cδfφ) + Cφfφ

]
+ lr

[
Cαr(β −

lrr

vx
− Cδrφ) + Cφrφ

]
(4.17)

where Cαf = Cα1 + Cα2 and Cαr = Cα3 + Cα4 are the sums of the left and right tire

cornering stiffnesses for the front tires and rear tires, respectively, and Cφf = Cφ1 +Cφ2

and Cφr = Cφ3 + Cφ4 are the sums of the left and right tire camber thrust coefficients

for the front tires and rear tires, respectively.

To retain the linearity of the equations of motion, in the following analysis, the vehicle

longitudinal dynamics is neglected (assuming vx is constant). Note that the vehicle

longitudinal motion is generated due to traction and braking without direct relation

to steering, thus this motion is not directly connected to the vehicle lateral and yaw

motions which are generated by steering the vehicle [96]. Hence, it is a common practice

to neglect the vehicle longitudinal dynamics when the focus is on the vehicle lateral and

yaw behaviors [108, 109].
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Equation (4.14) is no more considered as the vehicle longitudinal dynamics is neglected,

then equations (4.15)–(4.17) are rearranged as follows:

∑
Fy = aββ + arr + aφφ+ aδδ (4.18)

MPx = bφφ+ bpp (4.19)

MPz = cββ + crr + cφφ+ cδδ, (4.20)

where,

aβ = −Cαf − Cαr (4.21)

ar = −Cαf
lf
vx

+ Cαr
lr
vx

(4.22)

aφ = CαfCδf − Cφf + CαrCδr − Cφr (4.23)

aδ = Cαf (4.24)

bφ = −Kφ +mSghS (4.25)

bp = −Cφ (4.26)

cβ = −lfCαf + lrCαr (4.27)

cr = −Cαf
l2f
vx
− Cαr

l2r
vx

(4.28)

cφ = lfCαfCδf − lfCφf − lrCαrCδr + lrCφr (4.29)

cδ = lfCαf . (4.30)

Thus, equations (4.3)–(4.5) which govern the vehicle lateral, roll and yaw motions can

be rewritten as:

aββ + arr + aφφ+ aδδ = m(v̇y + vxr)−mShSṗ (4.31)

bφφ+ bpp = Ixṗ− Ixz ṙ −mShS(v̇y + vxr) (4.32)

cββ + crr + cφφ+ cδδ = Iz ṙ − Ixz ṗ. (4.33)

The simplified vehicle equations of motion (4.31)–(4.33) constitute the vehicle control

model, and they will be adopted in the next section to derive the control law for the

proposed yaw rate-based DYC system.

So far, the small angle assumption has been employed several times in the above deriva-

tions. It is important to justify that the usage of the small angle assumption retains the

validity of the above simplified vehicle equations of motion (4.31)–(4.33).

The application of the small angle assumption to α can be justified by an example

in [110], a typical racing tire inflated at 31 psi for a given load of 1800 lb. This Goodyear

racing tire provides the maximum lateral force at a tire slip angle of about 6.5◦ after
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which the tire enters an unstable frictional range. Notice that 6.5◦ is only about 0.1 rad

and the tire normally operates in the range below 6.5◦, which allows a safe application

of the small angle assumption to α in the linearization.

As for δ, assuming a steering ratio of 1:12, a small front wheel steer angle of 0.2 rad

is corresponding to a steering wheel/column angle of about 138◦. At a medium vehicle

speed, say 60 km/h, this steer angle is a typical marginal magnitude beyond which the

vehicle tends to lose stability. So in the stable region, the vehicle will mostly operate

with a smaller steer angle at that speed, which in turn makes it justified to apply the

small angle assumption to the front wheel steer angle δ.

Furthermore, when both α and δ are assumed to be small, the associated vehicle side-slip

angle β becomes small as well. Summing up the above points, the vehicle control model

(i.e. the simplified vehicle equations of motion (4.31)–(4.33)) obtained by means of small

angle assumptions are practically valid and can capture the major characteristics of the

vehicle dynamics. As can be seen in the next section, this model is utilized to derive the

relationship between the steady-state yaw rate and the left-right motor torque difference,

based on which the proposed DYC system is designed.

4.3 YAW RATE-BASED DYC DESIGN

The proposed design, as a direct yaw moment control system, is based on independently

generating different torque commands to the two driving motors. Different motor torques

are intuitively expected to generate different longitudinal tire forces on the driving wheels

to produce a yaw moment. In this section, using the vehicle control model obtained in

section 4.2, an equation showing a direct relationship between the steady-state yaw rate

and the torque difference between the left and right driving motors is derived. Based

on this mathematical relationship, a yaw rate-based DYC system is proposed to achieve

the ideal steer characteristic, neutral steer.

With a DYC system on-board, there can be a difference between the longitudinal tire

forces of the two rear driving wheels. Denoting this difference by ∆Fx = Fx3−Fx4, it can

be seen that the effect of ∆Fx is equivalent to an additional moment ∆M = ∆Fx × d/2
applied on the rear axle plus a force ∆Fx exerted at the center of the rear axle, as

illustrated in Figure 4.1. Thus, in presence of the difference between the tire forces, only

equation (4.33) needs to be modified as follows:

cββ + crr + cφφ+ cδδ +
dr
2
·∆Fx = Iz ṙ − Ixz ṗ. (4.34)
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Figure 4.1: Force system acting on the vehicle.

Note that the dynamics of the vehicle (its lateral, roll and yaw dynamics) is substantially

slower than the dynamics of the electric motors. Therefore, in the context of control

command generation (torque commands sent to the motors for generating particular

values of torques), the time-derivative terms in the equations of motion are negligible

and can be discarded. Hence, for the purpose of controlling the driving motors, the

following steady-state forms of the equations of motion can be safely used:

aββ + arr + aφφ+ aδδ = mvxr (4.35)

bφφ = −mShSvxr (4.36)

cββ + crr + cφφ+ cδδ +
dr
2
·∆Fx = 0. (4.37)

Rewriting equations (4.35)–(4.37) in matrix form gives:




aβ ar −mvx aφ

0 mShSvx bφ

cβ cr cφ







β

r

φ


 =




−aδ 0

0 0

−cδ −dr
2




[
δ

∆Fx

]
. (4.38)

Solving the above system of equations for r, the following yaw rate response is derived

in terms of the control inputs δ and ∆Fx:

r =
Z1

Z0
δ +

Z2

Z0
∆Fx, (4.39)
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where,

Z0 = aβbφcr − arbφcβ + bφcβmvx − aβcφmShSvx + aφcβmShSvx (4.40)

Z1 = bφ(aδcβ − aβcδ) (4.41)

Z2 = −1

2
aβbφdr. (4.42)

Equation (4.39) shows a direct relationship between the steady-state yaw rate and the

longitudinal tire force difference ∆Fx.

As mentioned earlier, compared to the dynamics of the electric motors, the dynamics of

the mechanical parts is very slow. Particularly, during each sampling time of the elec-

tronic control system, the variation of the wheel angular velocity is negligible. Besides,

the tire pneumatic trail is normally quite small. Thus, neglecting the wheel angular

acceleration and the tire pneumatic trail simplifies equation (3.73) to:

T = FxR. (4.43)

This shows that the longitudinal tire forces (and their difference) can be directly con-

trolled by tuning the torque commands sent to the driving motors.

Substituting equation (4.43) in equation (4.39) leads to:

r =
Z1

Z0
δ +

Z2

Z0R
∆T. (4.44)

Equation (4.44) clearly demonstrates a direct relationship between the steady-state yaw

rate and the difference between the two motor torques, ∆T . This implies that by

controlling the two motor torques, the vehicle steady-state yaw rate can be tuned to

attain its desired value.

To calculate the desired yaw rate, the main criterion for neutral steer behavior is con-

sidered: the vehicle’s instantaneous turning radius should not change with speed, as

introduced in section 2.3. Kinematically, the turning radius is known as L = v/r, where

v is the vehicle velocity at point P, as shown in Figure 1.4. Because the lateral com-

ponent of v is considerably smaller than its longitudinal component vx, so the tuning

radius can be approximated by L = vx/r.

Replacing vx with rL in the numerator of the fraction in equation (2.5), and solving for

L lead to:

L =
l(1 +Kvx

2)

δ
. (4.45)
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For L to be invariant with vx, the Kvx
2 term needs to vanish. Hence, the desired yaw

rate of a neutral steer vehicle is:

r∗ =
vx
l
δ. (4.46)

To calculate this desired yaw rate, the front wheel steer angle δ is computed from the

reading of a steering wheel angle sensor, and the longitudinal velocity vx can be estimated

using one of the methods proposed in [111].

It has already been shown in (4.44) that, with a DYC system on-board, the steady-state

yaw rate is a function of the motor torque difference. According to (4.44), the controller

should be designed to achieve the desired yaw rate r∗ by creating a corresponding desired

motor torque difference ∆T ∗, namely:

r∗ =
Z1

Z0
δ +

Z2

Z0R
∆T ∗. (4.47)

Subtracting equation (4.44) from equation (4.47), the following relationship expressed

in terms of errors in ∆T and r is derived:

∆T ∗ −∆T =
Z0R

Z2
(r∗ − r). (4.48)

Note that the proposed DYC system is a discrete control system. The output of the

controller ∆T (k + 1) at discrete time k + 1, must be generated to make r(k) approach

r(k)∗ as soon as possible. Thus, the proposed control policy is to create ∆T (k+1) = ∆T ∗

which leads to:

∆T (k + 1)−∆T (k) =
Z0R

Z2
(r(k)∗ − r(k)). (4.49)

Dividing both sides by the sampling time ts provides:

∆T (k + 1)−∆T (k)

ts
=
Z0R

Z2ts
(r(k)∗ − r(k)). (4.50)

Since the sampling time ts is very small, the left-hand side of equation (4.50) can be

considered as the time-derivative of the torque difference ∆T . Therefore, integration of

both sides of equation (4.50) in continuous time t yields:

∆T (t) =
Z0R

Z2ts

∫ t

0
er(τ)dτ, (4.51)

where,

er(τ) = r(τ)∗ − r(τ). (4.52)

Equation (4.51) implies that the desired torque difference between the two driving motors

can be attained by using a simple Integral (I) controller. As introduced in Chapter 3,

a full vehicle model including the nonlinear vehicle equations of motion is programed in



Yaw Rate-Based Direct Yaw Moment Control 64

PID

PID
Left 

Driving 
Motor

Gyroscope

Throttle Pedal 
Sensor

Inverter

Right 
Driving 
Motor

Inverter

Yaw Rate 
Controller

Speed Controller

ΔT/2

Tbase

TL

TR

Steering Wheel 
Angle Sensor

Vehicle Speed 
Observer1/l

r

δ

vx

δ

r*

r

DYC Controller Vehicle

vx

vx*

vx*

 

Figure 4.2: Schematic of the proposed DYC system.

the MATLAB/Simulink environment for simulation studies. However, a set of linearized

and simplified equations of motion is utilized to achieve the above controller design. To

accommodate the modeling errors and better regulate the yaw rate, a Proportional-

Integral-Derivative (PID) controller is employed instead of just an I controller for the

proposed yaw rate-based DYC system.

Figure 4.2 shows the schematic of the proposed DYC system. This DYC consists of two

controller units. As explained earlier, the PID form yaw rate controller unit compares the

actual yaw rate with the desired yaw rate computed from equation (4.46) and generates

half the difference in the torque commands, ∆T/2. The speed controller unit, also

suggested in PID form, provides the base torque Tbase which is the average of the two

torque commands on the left and right sides, TL and TR. The base torque is tuned in

such a way that the vehicle longitudinal velocity, vx, follows the desired value v∗x read

from the throttle pedal sensor [108].

The parameters of both controllers can be easily tuned by trial-and-error. The outputs

of the two controllers are subtracted and summed up to form the torque commands sent

to the left and right inverters. The saturation blocks model the physical limits to the

extent of torque the motors can generate. The two inverters convert torque commands

to electric signals to drive the motors, using the feedback phase signal ϕ read from the

motor encoders. Two PMBDCMs are selected as the driving motors, which allows both

positive and negative torques to be generated. Several sensors are employed to measure

the vehicle state r and the driver’s commands v∗x and δ (see Figure 4.2). As mentioned

previously, vx is estimated using a state observer. These signals are fed back to form

the errors for the two PID controller units.
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Figure 4.3: Third generation all-electric racing car developed at RMIT University.

4.4 SIMULATION RESULTS

A set of simulations are conducted in the MATLAB/Simulink environment to verify the

effectiveness of the proposed DYC design and compare the steering performances be-

tween the competing methods. A full vehicle model established in Chapter 3 is employed

for simulation studies. The vehicle parameters used in the simulations are from a real

electric racing car built at RMIT University as shown in Figure 4.3. This car is the third

generation of electric racing cars designed and developed by the students, equipped with

two independent driving motors for rear wheels. The vehicle parameters are listed in

Table 4.1. As the university is a member of the Formula SAE Tire Test Consortium

(TTC), the real tire testing data obtained from TTC are employed in the Magic For-

mula for the tire force calculations in the simulations [112]. It has been pointed out in

section 4.2 that in order to reveal the fundamental lateral and yaw behaviors, the vehicle

longitudinal velocity vx is normally maintained constant in the analysis. Thus, in the

simulations vx is maintained at 16 m/s using Tbase produced by the speed controller

unit.

As mentioned previously, the proposed method is compared with several typical types

of control solutions introduced in Chapter 2. These solutions are the equal torque

methods, Ackerman methods and yaw rate-based methods that employ equation (2.5)

with a positive K as the reference yaw rate (in the following these methods are referred to

as the conventional methods for brevity). The simulation studies comprise two groups:

case studies with step steering inputs and case studies with sinusoidal steering inputs.

In each group, the steering performance of a fully simulated vehicle in response to the
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Table 4.1: Vehicle parameters of the electric racing car.

Parameter Symbol Value

Vehicle total mass m 318 kg
Sprung mass mS 283 kg
Front track df 1.144 m
Rear track dr 1.153 m
Wheel base l 1.55 m
Distance lf 0.785 m
Distance lr 0.765 m
Distance hS 0.048 m
Mass center height h 0.26 m
Front roll center height hf 0.218 m
Rear roll center height hr 0.218 m
Roll moment of inertia Ix 200 kg m2

Yaw moment of inertia Iz 1000 kg m2

Front suspension roll stiffness Kφf 25750 Nm/rad
Rear suspension roll stiffness Kφr 25750 Nm/rad
Total roll stiffness Kφ 51500 Nm/rad
Front suspension roll damping Cφf 1953 N m s
Rear suspension roll damping Cφr 1875 N m s
Total roll damping Cφ 3828 N m s
Tire radius R 0.218 m
Inertia of wheel assembly J 2 kg m2

Motor peak power Pmax 30 kw

step/sinusoidal steering inputs with various magnitudes and frequencies (for sinusoidal

inputs) is examined.

The performance of each DYC scheme can be evaluated in terms of several criteria.

The first important criterion is the capability of tracking the desired yaw rate expressed

by equation (4.46) which corresponds to the ideal steer characteristic, neutral steer.

Secondly, vehicle paths are taken into consideration. These paths demonstrate how

close the vehicle is to the desired track, and they also act as a complement to the first

criterion. Lastly, the wheel slip ratio and the corresponding longitudinal tire force of

the inner driving wheel are assessed, in order to check if the DYC system causes any

instability or excessive tire wear.

4.4.1 Simulations with step inputs

In this group of simulations, step inputs are used as the steering inputs in different

rounds to verify the effectiveness of the proposed method. In each round, the same

value of step input is applied to all competing control methods, but the value is varied

between different rounds. A large range of possible step magnitudes have been examined.

To avoid prolixity, here only the results for the step inputs δ = 0.1 rad, δ = 0.075 rad
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Figure 4.4: Yaw rate error responses to the step input δ = 0.1 rad.

and δ = 0.05 rad are presented in three different rounds. In order to clearly show the

transients, all step steering commands occur at t = 10 s.

4.4.1.1 Step input δ = 0.1 rad

As is seen in Figure 4.4, the yaw rate errors of all competing DYC methods converge

to a non-zero value after a period of time, and only the proposed control method has

been able to bring the yaw rate error to zero. In other words, in steady state, only

with the proposed method on-board does the vehicle achieve neutral steer. As expected,

the equal torque methods perform the worst, as they always output the same torque

commands to the driving motors and emulate the behavior of an open differential. A

pulse is observed at t = 10 s for all these four curves. This happens because the slope of

the step input at t = 10 s is infinity and all methods need time to converge. At t = 10 s,

all methods have the same yaw rate error of slightly over 1 rad/s, but this error fades

out very quickly.

The vehicle paths using the aforesaid four types of DYC algorithms, during the first

12.5 s of simulation, are plotted in Figure 4.5. It is evident that the path traversed

with the proposed DYC on-board is the closest to the desired vehicle track, which is

consistent with the yaw rate errors shown in Figure 4.4.

Figure 4.6 shows the wheel slip ratio responses of the inner driving wheel using different

control methods. The inner driving wheel normally presents the worst wheel slip be-

cause it is considerably unloaded by the centrifugal force during cornering. The wheel

slip ratios of the equal torque methods and the conventional methods are both positive,

while those of the Ackerman methods and the proposed method are negative. Moreover,
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Figure 4.5: Vehicle path responses to the step input δ = 0.1 rad during the first 12.5 s
of simulation.
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Figure 4.6: Wheel slip ratio responses of the inner driving wheel to the step input
δ = 0.1 rad.

the wheel slip ratios of all other three types of methods are very small in absolute value,

compared to that of the proposed method. These results indicate that the longitudi-

nal tire forces generated by the equal torque methods and the conventional methods

are positive (forward) and small, and the force produced by the Ackerman methods is

negative (backward) and small. Only with the proposed method on-board can a large

(in absolute value) negative (backward) longitudinal tire force be generated to decrease

the yaw rate error. This explanation is verified by Figure 4.7 in which the values of the

longitudinal tire forces generated on the inner driving wheel by different methods are

clearly plotted. In fact, the about 6% (absolute value) wheel slip ratio exhibited by the

proposed method is normally an optimal value for most tires, at which, sufficient longi-

tudinal tire forces can be generated, and neither does this slip ratio jeopardize vehicle

safety nor causes any excessive tire wear.
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Figure 4.7: Longitudinal tire force responses of the inner driving wheel to step input
δ = 0.1 rad.
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Figure 4.8: Wheel angular velocity responses of the two driving wheels to the step
input δ = 0.1 rad using the proposed DYC.

As mentioned before, with PMBDCMs, both positive and negative torques can be gen-

erated. When motors generate negative torques, they are actually working in the “elec-

trical braking” mode [13]. It is observed in Figure 4.7 that the longitudinal tire force

generated by the proposed method is negative, while the wheel angular velocity of the

inner driving wheel seen from Figure 4.8 is positive. This means that the direction of the

motor torque is opposite to the direction of the wheel angular velocity, namely the motor

is operating in the “electrical braking” mode. Since the vehicle longitudinal velocity vx

is maintained by the speed controller unit that generates the base torque, vx will not

be decreased due to this “electrical braking” motion. Furthermore, in the “electrical

braking” mode, regenerative braking can be made possible to enhance the efficiency of

the driving system.
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Figure 4.9: Yaw rate error responses to the step input δ = 0.075 rad.
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Figure 4.10: Vehicle path responses to the step input δ = 0.075 rad during the first
13.5 s of simulation.

4.4.1.2 Step inputs δ = 0.075 rad and δ = 0.05 rad

The performances of the competing DYC methods with δ = 0.075 rad and δ = 0.05 rad

are similar to those with δ = 0.1 rad, as can be seen in Figures 4.9–4.12. The proposed

method still brings the yaw rate error down to zero, and keeps the vehicle path the closest

to the desired track. For brevity, the wheel slip ratio responses and the longitudinal tire

force responses of the inner driving wheel for step input δ = 0.075 rad and δ = 0.05 rad

are omitted, but it is worth emphasizing that they are similar to Figure 4.6 and Figure 4.7

and the responses agree with the aforesaid explanation.
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Figure 4.11: Yaw rate error responses to the step input δ = 0.05 rad.
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Figure 4.12: Vehicle path responses to the step input δ = 0.05 rad during the first
15 s of simulation.

4.4.2 Simulations with sinusoidal inputs

In this group of simulations, sinusoidal signals are employed as the steering inputs to the

system. Various combinations of magnitudes and frequencies for the steering commands

have been examined. The results of four cases are presented here. To avoid prolixity,

only the yaw rate tracking results are presented.

Figure 4.13 displays the yaw rate error responses to the sinusoidal steering input δ =

0.1 sinπt rad. It is observed that the proposed DYC tracks the desirable yaw rate with

errors considerably smaller than the competing methods. The error peak value produced

by the proposed method is approximately 0.1 rad/s lower than the equal torque methods

and 0.07 rad/s lower than the Ackerman methods. Similar superior performances of

the proposed DYC can also be observed from the yaw rate error plots presented in
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Figure 4.13: Yaw rate error responses to the sinusoidal input δ = 0.1 sinπt rad.

Figure 4.14 (for the steering input δ = 0.1 sin 0.5πt rad), Figure 4.15 (for the steering

input δ = 0.05 sinπt rad) and Figure 4.16 (for the steering input δ = 0.05 sin 0.5πt rad).

The observations from the above figures demonstrate that the proposed DYC solution

is able to keep the vehicle much closer to neutral steer with the challenging sinusoidal

steering inputs.

In short, the simulation results demonstrate that in response to sharp steering commands

(in the form of large steps and large and fast sinusoids), the proposed method outper-

forms the competing methods in terms of the steering performance. More precisely,

when applying step inputs with various magnitudes, the proposed DYC consistently

drives the yaw rate to the desired value, and keeps the vehicle the closest to the desired

path. Meanwhile, only small wheel slips (absolute values) occur on the inner driving

wheel, which does not impair the stability of the vehicle maneuvers. When employ-

ing sinusoidal steering inputs with different combinations of amplitude and frequency,

the proposed DYC shows the smallest yaw rate errors, thereby maintaining the car the

closest to neutral steer.

4.5 SUMMARY

A neutral steer vehicle follows the driver’s command accurately and enables the driver to

accelerate in a corner without constantly adjusting the steering wheel. This capability

greatly enhances the vehicle handling and is of special significance to high-performance

vehicles. The typical types of control solutions (i.e. the equal torque methods, Ackerman

methods and conventional methods) do not, by design, maintain a vehicle in neutral steer

in various driving conditions. In this chapter, how neutral steer can be made possible



Yaw Rate-Based Direct Yaw Moment Control 73

 

0 5 10 15
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (s)

Ya
w

 ra
te

 e
rro

r (
ra

d/
s)

 

 

Equal torque methods
Ackerman methods
Conventional methods
Proposed method

Figure 4.14: Yaw rate error responses to the sinusoidal input δ = 0.1 sin 0.5πt rad.
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Figure 4.15: Yaw rate error responses to the sinusoidal input δ = 0.05 sinπt rad.
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Figure 4.16: Yaw rate error responses to the sinusoidal input δ = 0.05 sin 0.5πt rad.
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for vehicles with independent motors using the proposed yaw rate-based DYC system

has been mathematically and graphically demonstrated.

Simulation results manifest that with the challenging steering inputs, using the proposed

DYC method, the vehicle closely tracks the desired yaw rate that corresponds to neutral

steer, namely, a close-to-neutral steer characteristic is achieved. It is also shown in the

simulations that in various challenging steering scenarios, the proposed DYC outper-

forms the competing control solutions in terms of tracking the desired yaw rate and

desired vehicle path.



Chapter 5

Vehicle Side-Slip-Based Direct

Yaw Moment Control

In this chapter, similar to Chapter 4, a mathematical relationship is derived from a set

of simplified vehicle equations of motion. This relationship reveals that the steady-state

vehicle side-slip directly depends on the torque difference between the left and right

driving motors, therefore, it can be directly controlled by tuning this torque difference

to track a reference value. On the basis of this relationship, a vehicle side-slip-based DYC

solution is proposed to achieve zero vehicle side-slip. Simulation results manifest that

the proposed DYC method keeps the vehicle side-slip close to zero in various challenging

steering scenarios. Also, the proposed DYC solution outperforms two typical types of

control schemes in terms of the vehicle side-slip responses.

5.1 BACKGROUND

As introduced in Chapter 1, the vehicle side-slip β is the angle between the vehicle

heading direction (the positive direction of the x-axis in the vehicle local coordinate

x-y-z) and the velocity vector v of the point P, as shown in Figure 1.4. The vehicle

side-slip is also a crucial vehicle state which requires to be controlled. Ideally, it needs

to be minimized, for two reasons: Firstly, due to the nonlinear tire characteristics, as

the vehicle side-slip increases to large values, the tire cornering stiffnesses decrease and

the yaw moment generated by the lateral tire forces descends [21]. When the vehicle

side-slip is sufficiently large, the generated yaw moment becomes negligible and it can

hardly be increased by changing the steer angle. As a result, the vehicle tends to lose its

stability. Secondly, the vehicle side-slip is normally non-zero during cornering, and the

driver intuitively assumes that the vehicle heading direction is the direction where the

75
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vehicle is going. This wrong assumption can mislead the driver into performing excessive

or insufficient steering actions. A small vehicle side-slip angle implies a consistency of

the vehicle heading direction with the velocity vector v, which provides the driver with

superior sense of control during cornering [22].

In the following, a direct relationship between the steady-state vehicle side-slip and

the motor torque difference is first derived from the same simplified vehicle equations

of motion as in Chapter 4. Based on this relationship, a vehicle side-slip-based DYC

method is then devised to maintain the vehicle side-slip magnitude as small as possible.

Namely, the proposed DYC aims to maintain the vehicle heading direction consistent

with the velocity vector v. The merits of having small vehicle side-slip magnitude greatly

enhance the vehicle stability and driver’s sense of control. Besides, the proposed DYC

maintains the wheel slip ratio of the inner driving wheel at low magnitudes so that

excessive tire wear is prevented and the vehicle stability is further guaranteed.

The effectiveness of the proposed vehicle side-slip-based DYC is validated through sim-

ulation studies. Similar to Chapter 4, two typical types of control solutions, the equal

torque methods and Ackerman methods, are employed for comparison purposes in the

simulations.

5.2 VEHICLE SIDE-SLIP-BASED DYC DESIGN

5.2.1 Controller design

In Chapter 4, a vehicle control model, i.e., a set of linearized and simplified equations

of motion was derived to achieve the yaw rate-based DYC scheme. In this chapter, the

same control model is utilized again to derive the control law for the proposed vehicle

side-slip-based DYC.

In steady state, the vehicle control model can be expressed by equation (4.38), which is

rewritten as follows:




aβ ar −mvx aφ

0 mShSvx bφ

cβ cr cφ







β

r

φ


 =




−aδ 0

0 0

−cδ −dr
2




[
δ

∆Fx

]
. (5.1)

In Chapter 4, the above equation was solved for the yaw rate r. Here, solving this

equation for β leads to the following steady-state vehicle side-slip response in terms of
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the control inputs δ and ∆Fx:

β =
Z3

Z0
δ +

Z4

Z0
∆Fx, (5.2)

where Z0 remains the same as in Chapter 4 and

Z3 = −aδbφcr + arbφcδ − bφcδmvx + aδcφmShSvx − aφcδmShSvx (5.3)

Z4 =
dr
2

(arbφ − bφmvx − aφmShSvx). (5.4)

Equation (5.2) shows that, similar to equation (4.39), the steady-state vehicle side-slip

directly depends on the longitudinal tire force difference ∆Fx.

Substituting equation (4.43) in equation (5.2) leads to:

β =
Z3

Z0
δ +

Z4

Z0R
∆T. (5.5)

Equation (5.5) clearly demonstrates a direct relationship between the steady-state vehi-

cle side-slip and the difference between the two motor torques, ∆T . This implies that,

by properly controlling the two motor torques, the steady-state vehicle side-slip can be

tuned to attain its desired value.

According to equation (5.5), for a certain steer angle δ, the controller should be designed

to achieve a desired vehicle side-slip β∗ by creating a corresponding desired motor torque

difference ∆T ∗, namely:

β∗ =
Z3

Z0
δ +

Z4

Z0R
∆T ∗. (5.6)

Equation (5.6) lays the theoretical foundation for the following controller design.

Subtracting equation (5.5) from equation (5.6) produces the following relationship ex-

pressed in terms of the errors in ∆T and β:

∆T ∗ −∆T =
Z0R

Z4
(β∗ − β). (5.7)

Note that the proposed DYC system is a discrete control system. The output of the

controller ∆T (k + 1) at discrete time k + 1, must be generated to make β(k) approach

β(k)∗ as soon as possible. Therefore, the proposed control strategy is to generate ∆T (k+

1) = ∆T ∗, which yields:

∆T (k + 1)−∆T (k) =
Z0R

Z4
(β(k)∗ − β(k)). (5.8)
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Dividing both sides by the sampling time ts leads to:

∆T (k + 1)−∆T (k)

ts
=
Z0R

Z4ts
(β(k)∗ − β(k)). (5.9)

The sampling time ts of the control system is fairly short, so, the left-hand side of

equation (5.9) can be considered as the time-derivative of the torque difference ∆T .

Thus, integration of both sides of equation (5.9) in continuous time t provides:

∆T (t) =
Z0R

Z4ts

∫ t

0
eβ(τ)dτ, (5.10)

where,

eβ(τ) = β(τ)∗ − β(τ). (5.11)

As explained previously in section 5.1, the vehicle side-slip β should be minimized, which

means β(τ)∗ ≡ 0. Thus equation (5.11) reduces to:

eβ(τ) = −β(τ). (5.12)

Equation (5.10) indicates that the ideal torque difference between the two driving mo-

tors can be achieved by simply using an I controller. Similar to Chapter 4, the full

vehicle model introduced in Chapter 3 with the nonlinear vehicle equations of motion

is employed in the MATLAB/Simulink environment to produce the simulation results.

However, a set of linearized and simplified equations of motion is adopted to achieve

the above DYC design. To accommodate the modeling errors and better regulate the

vehicle side-slip, a PID type controller, instead of a simple I controller, is chosen for the

proposed vehicle side-slip-based DYC system.

5.2.2 Controller effect on yaw rate

Notice that the steady-state vehicle control model, equation (4.38), was solved in Chap-

ter 4 to achieve the steady-state yaw rate response, equation (4.44). Again, the same

equation is solved in this chapter to obtain the steady-state vehicle side-slip response,

equation (5.5).

Equations (4.44) and (5.5) imply that when ∆T is tuned to obtain a certain steady-state

vehicle side-slip, the steady-state yaw rate is also influenced, and vice versa. Therefore,

when designing a DYC system to regulate the vehicle side-slip, the control parameters

have to be carefully tuned in such a way that not only is a satisfactory vehicle side-slip

performance achieved, but also the yaw rate performance is not compromised. This tun-

ing involves appropriate trade-off between the vehicle side-slip and yaw rate responses.
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This issue will be revisited in Chapter 6 where a sliding mode controller is proposed to

tune the above-mentioned balance systematically using a user-defined control parameter.

5.2.3 Complete control structure

Figure 5.1 shows the structure of the proposed vehicle side-slip-based DYC design. This

DYC system consists of two PID type controller units. The side-slip controller unit

generates half the difference in the torque commands, ∆T/2, from the vehicle side-slip

error (the difference between the desired vehicle side-slip and its actual value), and the

speed controller unit provides the base torque Tbase which is the average of the two

torque commands. The base torque is tuned in such a way that the vehicle longitudinal

velocity, vx, follows the desired value v∗x read from the throttle pedal sensor [108]. In the

simulations, the throttle pedal is held at a fixed position in order to keep vx constant.

The outputs of the two controllers are summed up and subtracted to form the left and

right torque commands TL and TR. The two inverters receive these commands and

convert them to electric signals, in conjunction with the feedback phase signal ϕ read

from the motor encoders, to drive these two PMBDCMs.

The actual longitudinal velocity vx and vehicle side-slip β can hardly be measured physi-

cally by any sensors at low cost and they need to be estimated by vehicle state observers.

In the same way as Chapter 4, vx can be estimated using one of the methods proposed

in [111]. As for β, many vehicle side-slip estimation methods have been proposed in the

literature such as [70, 71, 113, 114] which can be readily employed in the proposed DYC

design. The actual and desired longitudinal velocities vx and v∗x, as well as the actual

vehicle side-slip β are fed back to form the errors for the two PID controller units.

5.3 SIMULATION RESULTS

In order to verify the effectiveness of the proposed control scheme, a number of simula-

tions have been conducted. The same MATLAB/Simulink model used in Chapter 4 is

employed in this chapter as well for the simulation studies. The vehicle parameters used

in the simulations are the same as those used in Chapter 4, as shown in Table 4.1. In

all simulations, the initial vehicle longitudinal velocity vx is chosen as 15 m/s (54 km/h)

and is maintained constant by the speed controller unit.

In the following simulation analysis, the proposed DYC method is compared with two

typical types of control schemes: the equal torque methods and Ackerman methods.

The simulation studies comprise two groups: simulations with step steering inputs and
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Figure 5.1: Schematic of the proposed DYC system.

simulations with sinusoidal steering inputs. In each group, the vehicle side-slip perfor-

mances produced by the competing systems are examined. The yaw rate responses are

also evaluated to investigate the effect of the controller on the yaw dynamics. Besides,

the wheel slip ratio responses of the inner-driving wheel (which normally presents the

worst wheel slip among the four wheels) are assessed as well in each simulation study.

5.3.1 Simulations with step inputs

In this group of simulation studies, step inputs are employed as the steering inputs to

the simulated vehicle. A large range of possible step magnitudes have been examined.

For the sake of brevity, here only the simulation results for step inputs δ = 0.1 rad and

δ = 0.12 rad are presented. With a longitudinal velocity of 15 m/s, the two selected

steering inputs represent rather challenging cornering scenarios. To clearly show the

transients, in the simulations all step steering commands occur at t = 10 s.

Figure 5.2 shows the vehicle side-slip responses versus time with the three types of

control solutions on-board, when the steering input is δ = 0.1 rad. It is observed that

all three response curves converge to some steady-state values very quickly after the

steering input occurs, but the steady-state value of the proposed DYC is smaller than
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Figure 5.2: Vehicle side-slip responses to the step input δ = 0.1 rad.

the other two. Indeed, using the proposed method, a steady-state vehicle side-slip of

about 0.005 rad is gained, while with the equal torque methods and Ackerman methods

on-board, the vehicle side-slips increase to about 0.0135 rad and 0.016 rad, respectively.

The simulated vehicle presents the smallest vehicle side-slip with the proposed DYC

on-board. In other words, the vehicle heading direction is closer to the velocity vector

v of point P, and the driver can handle the vehicle more stably with superior sense of

control.

As explained in section 5.2.2, along with the suppression of the vehicle side-slip, the

vehicle’s yaw rate is also influenced by the DYC system. This interplay necessitates the

trade-off between the vehicle side-slip and yaw rate responses. Thus, the parameters of

the proposed controller are adjusted in such a way that not only is a highly satisfac-

tory vehicle side-slip response achieved (not necessarily perfect zero side-slip, as shown

in Figure 5.2), but also a good yaw rate response is obtained to improve the vehicle

handling. Note that the attainment of both satisfactory vehicle side-slip and yaw rate

responses is not always possible, because the adjustment of the control parameters are

highly subject to the vehicle specifications and driving conditions such as the motor

torque, tire cornering stiffness, yaw moment of inertia and vehicle speed.

It is shown in Figure 5.3 that the yaw rate of the vehicle with the proposed DYC on-

board is almost the same as the ideal value, when δ = 0.1 rad. However, the other

two curves are much lower than the desired one, which means that the vehicle presents

sluggish understeer characteristic. When designing a DYC system for high-performance

vehicles, this benefit becomes more important because sports vehicles normally tend

to have a neutral steer or even slight oversteer characteristic [16, 115] to enhance the

cornering agility.



Vehicle Side-Slip-Based Direct Yaw Moment Control 82

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Ya
w

 ra
te

 (r
ad

/s
)

 

 

Equal torque methods
Ackerman methods
Proposed method
Ideal yaw rate

Figure 5.3: Yaw rate responses to the step input δ = 0.1 rad.

Figure 5.4 shows the wheel slip ratio responses of the inner-driving (inner-rear) wheel

with different control solutions on-board when δ = 0.1 rad. The inner-driving wheel

normally presents the worst wheel slip because it is considerably unloaded by the cen-

trifugal force during cornering. In Figure 5.4, it can be seen that the wheel slip ratio

value of the equal torque methods is always positive, while the wheel slip ratios of the

other two are negative. Besides, the wheel slip ratio of the proposed method is larger

than the competing methods in absolute value. These results indicate that the lon-

gitudinal tire force applied on the inner-driving wheel is positive (forward) and small

with the equal torque methods on-board, and the tire force generated by the Ackerman

methods is negative (backward) and small. However, using the proposed method, a large

(in absolute value) negative (backward) longitudinal tire force is produced to decrease

the vehicle side-slip and increase the yaw rate. This is verified by Figure 5.5 in which

the longitudinal tire forces exerted on the inner-driving wheel are clearly plotted. It is

crucial to notice that the wheel slip ratio with the proposed DYC on-board is still in

a very safe range, even though its absolute value is larger than the other two. Neither

does this slip ratio jeopardize vehicle safety nor causes any excessive tire wear.

As mentioned previously, with PMBDCMs on-board, both positive and negative torques

can be generated. When motors generate negative torques, they are actually working in

the “electrical braking” mode [13]. Similar to the case in Chapter 4, Figure 5.5 shows

that the longitudinal tire force on the inner-driving wheel using the proposed DYC is

negative, while the wheel angular velocity seen from Figure 5.6 is positive. This implies

that the inner-driving motor is operating in the “electrical braking” mode. Because

the vehicle longitudinal velocity vx is maintained by the base torque Tbase generated

by the speed controller unit, so vx will not be compromised due to this “electrical
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Figure 5.4: Wheel slip ratio responses of the inner-driving wheel to the step input
δ = 0.1 rad.
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Figure 5.5: Longitudinal tire force responses of the inner-driving wheel to the step
input δ = 0.1 rad.

braking” motion. Also, in the “electrical braking” mode, regenerative braking can be

made possible to enhance the efficiency of the driving system.

Figure 5.7 plots the vehicle side-slip responses of the competing control schemes when

the step steering input is pushed up to a more challenging case, δ = 0.12 rad. As shown

in this figure, the proposed DYC outperforms the other two types of control methods

in terms of providing the smallest vehicle side-slip. In steady state, the equal torque

methods produce a vehicle side-slip value almost five times larger than the one given

by the proposed method. The Ackerman methods lead the vehicle side-slip to diverge

rapidly, and the simulated vehicle loses its stability very quickly.

Accordingly, the yaw rate response curves plotted in Figure 5.8 demonstrate similar

trends. The yaw rate of the simulated vehicle with the proposed DYC on-board converges
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Figure 5.6: Wheel angular velocity responses of the two driving wheels to the step
input δ = 0.1 rad using the proposed DYC.
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Figure 5.7: Vehicle side-slip responses to the step input δ = 0.12 rad.

to a certain value after a short period of oscillation, and it is the closest one to the

desired value among the three curves. The curve corresponding to the equal torque

methods converges as well but it is further away from the ideal curve. Again, the yaw

rate produced by the Ackerman methods diverges, which is consistent with the vehicle

side-slip response shown in Figure 5.7.

Figure 5.9 shows the wheel slip ratio responses of the inner-driving wheel. Similarly, the

wheel slip ratio diverges very quickly when applying the Ackerman methods, while the

other two types of control schemes quickly stabilize the slip ratio. Although oscillation

appears at the beginning of cornering with the proposed DYC on-board, the peak values

of this oscillation (absolute value) are very small. Thus, this oscillation does not cause

any instability or excessive tire wear.
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Figure 5.8: Yaw rate responses to the step input δ = 0.12 rad.
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Figure 5.9: Wheel slip ratio responses of the inner-driving wheel to the step input
δ = 0.12 rad.

Table 5.1 presents the average errors of the vehicle side-slip and yaw rate for the steering

input δ = 0.1 rad. The average errors are defined as follows:

ēβ =
1

tsim

∫ tsim

0
|eβ(t)| dt (5.13)

ēr =
1

tsim

∫ tsim

0
|er(t)| dt, (5.14)

where tsim denotes the simulation time and,

eβ(t) = β(t)∗ − β(t) = −β(t) (5.15)

er(t) = r(t)∗ − r(t). (5.16)

As shown in this table, the average errors of the proposed DYC are remarkably lower than

the errors of the competing methods. This quantitative comparison testifies the graphical
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Table 5.1: Average errors of the vehicle side-slip and yaw rate.

δ = 0.1 rad δ = 0.1 sin
π

3
t rad

ēβ (rad) ēr (rad/s) ēβ (rad) ēr (rad/s)

Equal Torque Methods 0.01255 0.09607 0.01231 0.07812
Ackerman Methods 0.01078 0.06999 0.01153 0.06089
Proposed Method 0.00392 0.00190 0.00662 0.03208
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Figure 5.10: Vehicle side-slip responses to the sinusoidal input δ = 0.1 sin
π

3
t rad.

simulation results shown in this section. The quantitative results for δ = 0.12 rad are

not presented since the errors of the Ackerman methods diverge.

5.3.2 Simulations with sinusoidal inputs

In this section, sinusoidal signals are utilized as the steering inputs to the system.

First, the vehicle side-slip responses to a very intense sinusoidal steering input δ =

0.1 sin
π

3
t rad are presented in Figure 5.10. With a steer ratio of, say 1:12, the steering

column is turned from −69◦ to +69◦ then back to −69◦ every 6 seconds at a vehicle

speed of vx = 15 m/s, which represents a highly challenging steering scenario. Fig-

ure 5.10 shows that the vehicle side-slip magnitude produced by the proposed DYC is

consistently lower than the other two. Besides, it is seen in Figure 5.11 that the yaw rate

curve of the proposed DYC is very close to the ideal curve while the other two curves

are not. Figure 5.12 demonstrates that consistent with the step steering input situation,

the wheel slip ratio of the proposed method is larger in magnitude but always within a

very small and safe range.

Similarly, when the sinusoidal steering input is pushed up to an even more challenging

case δ = 0.13 sin
π

3
t rad, the Ackerman methods lead the vehicle states to diverge and
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Figure 5.11: Yaw rate responses to the sinusoidal input δ = 0.1 sin
π

3
t rad.
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Figure 5.12: Wheel slip ratio responses of the inner-driving wheel to the sinusoidal

input δ = 0.1 sin
π

3
t rad.
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Figure 5.13: Vehicle side-slip responses to the sinusoidal input δ = 0.13 sin
π

3
t rad.
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Figure 5.14: Yaw rate responses to the sinusoidal input δ = 0.13 sin
π

3
t rad.

the vehicle loses its stability very quickly, as seen from Figures 5.13–5.15. But with

the proposed DYC scheme on-board, the simulated vehicle is completely stable, and the

vehicle side-slip and yaw rate responses still present themselves as the best among the

three. The equal torque methods, as expected, present an intermediate performance.

Table 5.1 also presents the average errors of the vehicle side-slip and yaw rate for the

steering input δ = 0.1 sin
π

3
t rad. In this scenario, the average errors of the proposed

DYC are greatly lower than the errors of the competing methods. The results for

δ = 0.13 sin
π

3
t rad are not presented in the table since the errors of the Ackerman

methods diverge.

In short, the simulation results demonstrate that in response to challenging steering

inputs (in the form of large steps and large and fast sinusoids), the proposed DYC out-

performs the competing methods in terms of the vehicle side-slip and yaw rate responses.



Vehicle Side-Slip-Based Direct Yaw Moment Control 89

 

0 0.5 1 1.5 2 2.5
-0.05

0

0.05

Time (s)

Sl
ip

 ra
tio

 

 

Equal torque methods
Ackerman methods
Proposed method

Figure 5.15: Wheel slip ratio responses of the inner-driving wheel to the sinusoidal

input δ = 0.13 sin
π

3
t rad.

More precisely, the proposed DYC solution maintains the vehicle side-slip very close to

zero in both steering scenarios. Thus, the vehicle heading direction is kept very close

to the vehicle velocity vector v. In the simulated conditions, the yaw rate can be main-

tained close to the ideal level that corresponds to neutral steer, which phenomenon is

subject to the vehicle specifications and driving conditions and is not always possible.

The improvements in the vehicle side-slip and yaw rate responses increase the wheel slip

ratio magnitude of the inner-driving wheel, but it still remains within a small and safe

range.

5.4 SUMMARY

In this chapter, a mathematical relationship between the steady-state vehicle side-slip

and the motor torque difference is demonstrated. Based on this mathematical derivation,

a DYC scheme that minimizes the vehicle side-slip is designed. Simulation results show

that in challenging steering scenarios, the proposed method outperforms two typical

types of control schemes, the equal torque methods and Ackerman methods, in terms

of the vehicle side-slip and yaw rate responses. The stability of the electric vehicle and

driver’s sense of control are effectively enhanced through the reduction of the vehicle

side-slip. Meanwhile, the wheel slip ratio of the inner-driving wheel is maintained at low

magnitudes, which further guarantees the vehicle stability and prevents excessive tire

wear.



Chapter 6

Simultaneous Control of Yaw

Rate and Vehicle Side-Slip

The potential problems of controlling one vehicle state only (either the yaw rate or vehicle

side-slip) have been pointed out in section 2.5.1. To eliminate the potential downsides

and combine the benefits of controlling the yaw rate and vehicle side-slip individually,

numerous recent DYC designs adopt both states simultaneously as the control variables.

In these works, the sliding mode control technique is commonly employed to generate

the target yaw moment. This chapter proposes a new sliding mode-based DYC method

for tracking both the desired yaw rate and vehicle side-slip. This DYC scheme employs

a novel switching function, a linear combination of the normalized absolute values of the

yaw rate and vehicle side-slip errors, to guarantee the simultaneous convergences of both

vehicle states. Also, instead of the linearized and simplified vehicle control model, the

complete nonlinear vehicle equations of motion established in Chapter 3 are employed

in the control system design, which helps to construct a more effective control law.

Comparative simulation results demonstrate that the proposed DYC design outperforms

the competing methods in terms of tracking the reference yaw rate, vehicle path and

vehicle side-slip in various challenging driving scenarios.

6.1 BACKGROUND

As shown in the preceding chapters, the yaw rate and vehicle side-slip present themselves

as the fundamental states that govern the vehicle handling and stability. In Chapters 4

and 5, two DYC system for controlling the yaw rate or vehicle side-slip individually are

proposed. However, the improvements in control performance by taking into account

both vehicle states have not been discussed yet so far. In this chapter, a new sliding mode

90
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control scheme is proposed to regulate the yaw rate and vehicle side-slip simultaneously,

aiming at eliminating the imperfections and limitations of the existing sliding mode-

based DYC systems.

A vehicle is a nonlinear system which undergoes various ambient disturbances. Be-

sides, the vehicle models are never perfectly accurate and some model uncertainties are

always present. Since the sliding mode control technique provides robustness against

disturbances and uncertainties when controlling nonlinear systems [75–77], it is widely

used in vehicle stability and handling control and has become the most popular control

technique in the latest DYC solutions.

In the recent DYC solutions, the most common sliding mode control design employs a

linear combination of the yaw rate and vehicle side-slip errors as the switching function

which takes the following form [17, 23, 24, 78–81]:

s = r − r∗ + ξ(β − β∗), (6.1)

where r∗ and β∗ are the same desired (reference) yaw rate and vehicle side-slip as in

Chapters 4 and 5, and ξ is a positive design parameter.

The above popular switching function presents two limitations. Firstly, in some certain

circumstances, this switching function cannot guarantee simultaneous convergences of

both errors to zero. In sliding mode control, the objective is to drive the system trajec-

tories towards the sliding surface s = 0 and then maintain the trajectories on it. With

the above switching function, if the yaw rate error r − r∗ and the vehicle side-slip error

β − β∗ have the same sign, when the sliding surface s = 0 is reached, these two errors

are guaranteed to vanish. However, since the signs of the errors may change in various

driving conditions, s = 0 can also hold when one error is positive and the other is nega-

tive with the right ξ. As a result, the sliding mode controller may fail. This limitation

is exposed in a simulation case study in Section 6.3 where the two errors present oppo-

site signs and the common sliding mode controller using the above switching function

produces inferior control performance to the competing methods. Secondly, the design

parameter ξ, intuitively, is expected to represent the emphasis between the two error

terms. However, the yaw rate error r − r∗ and the vehicle side-slip error β − β∗ have

different dimensions. In order for the addition in equation (6.1) to be valid, the param-

eter ξ cannot be dimensionless. Thus, it cannot represent the emphasis between the two

errors. These two limitations may jeopardize the robustness of DYC systems and bring

about confusions in the course of DYC design.

Many existing DYC solutions (e.g. [23, 51, 66, 79]) are designed based on the well-known

two DoF bicycle model [20] and/or linear tire model [116], which neglect the vehicle roll
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motion and tire cornering stiffness nonlinearity, respectively. In high lateral acceleration

scenarios, significant vehicle body roll and lateral load transfer lead to the change of tire

cornering stiffnesses and in turn, vehicle dynamics. Thus, the bicycle model and linear

tire model cannot accurately describe the vehicle responses in high lateral acceleration

scenarios [116]. As a result, the control systems based on such models may produce

unexpected vehicle responses [109].

In this chapter, the complete nonlinear vehicle equations of motion derived in Chapter 3

are used to devise a novel sliding mode DYC method. The proposed DYC scheme is

designed based on a new switching function, a linear combination of the normalized abso-

lute values of the yaw rate and vehicle side-slip errors, to eliminate the above-mentioned

limitations with the commonly used switching function, equation (6.1). Extensive com-

parative simulations show that the proposed DYC solution outperforms the competing

methods in terms of tracking the desired (reference) yaw rate, vehicle path and vehicle

side-slip in different challenging driving scenarios.

6.2 PROPOSED DYC DESIGN

In this section, a DYC system based on sliding mode control is designed to track the

desired yaw rate and vehicle side-slip simultaneously. The same desired (reference) yaw

rate and vehicle side-slip used in Chapters 4 and 5 are employed, which are rewritten as

follows:

r∗ =
vx
l
δ (6.2)

β∗ = 0. (6.3)

As mentioned in Chapter 4, δ is computed from the reading of a steering wheel angle

sensor, and vx can be estimated using one of the methods proposed in [111]. Note that

these desired values can be altered according to the driver’s preference, which does not

change the basic properties of the proposed controller.

The control objective is to track the desired yaw rate and vehicle side-slip simultaneously.

To achieve this goal by means of sliding mode control, one critical step is to appropri-

ately design a switching function. In this design, instead of equation (6.1), a linear

combination of the normalized absolute values of errors is proposed as the switching

function:

s =
ρ

|∆r|max
|r − r∗|+ 1− ρ

|∆β|max
|β − β∗|, (6.4)
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where ρ ∈ [0, 1] is a design parameter, and |∆r|max and |∆β|max are the maximum

absolute values of the yaw rate error and vehicle side-slip error defined by the designer,

respectively.

Due to the absolute values, the proposed switching function (6.4) becomes zero only

when r converges to r∗ and β converges to β∗ simultaneously, regardless of the signs of

the yaw rate and vehicle side-slip errors. Besides, the two error terms are normalized,

so the design parameter ρ is dimensionless and it represents the emphasis on the yaw

rate error (while 1− ρ represents the emphasis on the vehicle side-slip error).

Since the target vehicle side-slip is zero, equation (6.4) reduces to:

s =
ρ

|∆r|max
|r − r∗|+ 1− ρ

|β|max
|β|, (6.5)

and the derivative of the switching function (6.5) is given by:

ṡ =
ρ

|∆r|max
(ṙ − ṙ∗) sgn(r − r∗) +

1− ρ
|β|max

β̇ sgn(β). (6.6)

Following the fundamental principle in sliding mode control, to drive the system trajec-

tories to the sliding surface s = 0, the following sliding condition should be satisfied [77]:

1

2

d

dt
s2 = sṡ 6 −η|s|, (6.7)

where η is a strictly positive constant. Since outside the sliding surface, s > 0, the above

condition simplifies to:

ṡ 6 −η. (6.8)

In order to investigate ṡ, according to equation (6.6), the expression of the yaw accel-

eration ṙ is required. Rearrangement of equation (3.72) yields the following expression

for ṙ:

ṙ =
1

Iz

(
Ixz ṗ+

4∑
i=1

xi(Fxi sin δi + Fyi cos δi)−
2∑
i=1

yi(Fxi cos δi − Fyi sin δi) + ∆M
)
, (6.9)

with ∆M =
dr
2

(Fx3 − Fx4). Note that this ∆M is the yaw moment generated by the

difference between the rear longitudinal tire forces.

To satisfy the sliding condition (6.8), the following corrective yaw moment command is

proposed as the control input to the vehicle system:

∆M = ∆Meq − k sgn(r − r∗), (6.10)
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where k is a design parameter, and ∆Meq is the term called “equivalent control” in the

sliding mode control theory. In this application, ∆Meq is given by:

∆Meq = Iz

(
ṙ∗ − |∆r|max

|β|max

1− ρ
ρ

β̇ sgn
(
(r − r∗)β

))

−
4∑
i=1

xi(Fxi sin δi + Fyi cos δi) +
2∑
i=1

yi(Fxi cos δi − Fyi sin δi). (6.11)

This ∆Meq would maintain ṡ = 0 if all states in expression (6.11) were exactly known.

Substituting the above control input ∆M in equation (6.9), and substituting the result-

ing ṙ in equation (6.6), the following expression for ṡ can be derived:

ṡ =
ρ

Iz|∆r|max

(
f sgn(r − r∗)− k

)
, (6.12)

with f = Ixz ṗ. Substituting equation (6.12) in the sliding condition (6.8) necessitates

the design parameter k to satisfy:

k > f sgn(r − r∗) +
ηIz|∆r|max

ρ
. (6.13)

Since Ixz is constant and the roll acceleration ṗ is practically constrained, it can be

assumed that the term f is bounded, i.e. |f | 6 Ixz ṗmax. In practice, a user-defined

constant bound F > Ixz ṗmax is applied. Therefore, to guarantee that the above condition

(hence the sliding condition) is met, k can be chosen as:

k = F +
ηIz|∆r|max

ρ
. (6.14)

The computation of the proposed control input ∆M requires the knowledge of some

vehicle states including the yaw rate, vehicle side-slip and tire forces. The yaw rate

can be measured by an on-board gyroscope with reasonable accuracy, and the vehicle

side-slip can be estimated using one of the techniques proposed in [69–74]. Besides, the

estimation of tire forces is addressed in [69, 70, 100, 101].

It is important to note that the measurement or estimation errors can be compensated

for by appropriately increasing the chosen value of F . How this is the case for the force

estimation error is shown in the following. Denoting the estimated longitudinal and

lateral tire forces of the ith wheel by F̂xi and F̂yi, respectively, the equivalent control

∆Meq is computed as follows:

∆Meq = Iz

(
ṙ∗ − |∆r|max

|β|max

1− ρ
ρ

β̇ sgn
(
(r − r∗)β

))

−
4∑
i=1

xi(F̂xi sin δi + F̂yi cos δi) +
2∑
i=1

yi(F̂xi cos δi − F̂yi sin δi), (6.15)
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which leads to the following expression for the term f in equation (6.12):

f = Ixz ṗ+
4∑
i=1

xi
(
(Fxi − F̂xi) sin δi + (Fyi − F̂yi) cos δi)

)

−
2∑
i=1

yi
(
(Fxi − F̂xi) cos δi − (Fyi − F̂yi) sin δi)

)
. (6.16)

The chosen value of F in presence of the force estimation errors is then increased by

the maximum value of the two error summation terms in (6.16). Namely, the design

parameter F needs to be chosen in such a way that:

F > Ixz ṗmax +
√

(∆Fx)2 + (∆Fy)2
( 4∑

i=1

|xi|+
2∑

i=1

|yi|
)
, (6.17)

where ∆Fx and ∆Fy denote the maximum estimation errors of the longitudinal and

lateral tire forces, respectively. The above derivations imply that by appropriately in-

creasing the value chosen for F (hence increasing the design parameter k), the effect of

the measurement/estimation errors can be suppressed. It should be pointed out that the

increase of the design parameter k inevitably enlarges the magnitude of the control in-

put (thus the energy used) and exacerbates chattering, which necessitates an appropriate

trade-off in the selection of k.

The proposed control input ∆M is discontinuous due to the presence of the “sgn” terms

(see equations (6.10) and (6.11)), which in practice leads to chattering. In order to

eliminate chattering, the control discontinuity is smoothed out by replacing sgn
(
(r −

r∗)β
)

with sat
((r − r∗)β

Φ1

)
and sgn(r−r∗) with sat

(r − r∗
Φ2

)
, where sat is the saturation

function and Φ1 and Φ2 denote the boundary layer thicknesses [77]. Thus, the proposed

control input ∆M is modified as:

∆M = Iz

(
ṙ∗ − |∆r|max

|β|max

1− ρ
ρ

β̇ sat
((r − r∗)β

Φ1

))
−

4∑
i=1

xi(Fxi sin δi + Fyi cos δi)

+
2∑
i=1

yi(Fxi cos δi − Fyi sin δi)− k sat
(r − r∗

Φ2

)
. (6.18)

The structure of the proposed DYC system is shown in Figure 6.1. The torque command

∆T generated from the sliding mode controller unit is given by:

∆T =
∆M

dr
R, (6.19)

where dr denotes the rear track width and R represents the tire radius. Apart from the

sliding mode controller unit, a vehicle speed controller unit is also employed to generate

a base torque Tbase in such a way that the vehicle longitudinal velocity vx follows the

desired value v∗x read from the throttle pedal sensor. Then Tbase is added to −∆T and
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Figure 6.1: Schematic of the proposed DYC system.

+∆T to form the motor torque commands TL and TR. Note that the vehicle speed

controller unit can be shut down (Tbase = 0) to leave vx uncontrolled.

6.3 SIMULATION RESULTS

In this section the comparative simulation results of three different methods are pre-

sented. They are the proposed DYC system, the DYC system employing equation (6.1)

as the switching function, and the passive system which constantly sends identical torque

commands to the two motors. In the following, for brevity, the three systems are referred

to as the “proposed DYC”, “conventional DYC” and “passive system”, respectively. The

full vehicle model established in Chapter 3 is employed again to simulate the vehicle ma-

neuvers and produce the control performances of the three systems.

As mentioned in Chapter 4, to reveal the fundamental lateral and yaw behaviors, the ve-

hicle longitudinal velocity vx is normally maintained constant in the analysis [108, 109].

In this section, however, in order to thoroughly investigate the control performances

of the above three methods, the simulation results for two cases, constant vx and un-

controlled vx, are presented. In the first case, vx is maintained constant using Tbase

generated by the vehicle speed controller unit. In the second case, this controller unit is

shut down (Tbase = 0) to leave vx uncontrolled.
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Note that with the proposed switching function (6.5), the following relationship holds:

s ∝ |r − r∗|+
( |∆r|max

|β|max

1− ρ
ρ

)
|β|. (6.20)

Thus, once the user-defined parameters |∆r|max and |β|max are selected, for comparison

purposes, the parameter ξ in the switching function (6.1) of the conventional DYC is

set to:

ξ =
|∆r|max

|β|max

1− ρ
ρ

. (6.21)

Therefore, each set of ρ, |∆r|max and |β|max corresponds to only one value of ξ, which

provides comparable simulation results of the proposed DYC and the conventional DYC.

In this study, |∆r|max = 0.1 rad/s and |β|max = 0.02 rad are chosen for the maximum yaw

rate error and maximum vehicle side-slip. These values are set based on the observations

from simulations in extreme driving conditions. As mentioned previously, the parameter

ρ represents the emphasis on the yaw rate error (with 1−ρ representing the emphasis on

the vehicle side-slip). In the simulations, three different choices for this parameter are

explored, ranging from higher emphasis on the yaw rate error to more emphasis on the

vehicle side-slip: ρ = 0.75, 0.5 or 0.25. With the above choices of |∆r|max and |β|max,

the corresponding values of ξ are 5/3, 5 or 15, respectively.

Two types of steering inputs are employed to simulate the common J-turn and lane

change maneuvers [17, 23, 24, 80]. Besides, two values of initial longitudinal velocity, 60

km/h (16.7 m/s) and 80 km/h (22.2 m/s), are used to simulate a medium and a high

lateral acceleration scenario, respectively1. In each simulation study, the performances

of the proposed DYC, conventional DYC and passive system are examined and compared

in terms of the yaw rate, vehicle path and vehicle side-slip responses.

6.3.1 Simulations with constant vx

The following two case studies with constant vehicle longitudinal velocity vx are first

presented. The speed controller unit is activated to maintain vx at 60 km/h and 80 km/h

in these two case studies, respectively.

6.3.1.1 J-turn and lane change maneuvers at vx = 60 km/h

This section demonstrates the results of the simulated J-turn and lane change maneuvers

undergoing medium lateral acceleration caused by medium longitudinal velocity (vx =

1Equation (3.43) shows that the vehicle lateral acceleration increases with the longitudinal velocity
vx. In view of this dependence, here vx = 60 km/h and vx = 80 km/h are adopted to simulate the
maneuvers with medium and large lateral accelerations, respectively.
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Figure 6.2: Front wheel steer angle for the J-turn maneuver at vx = 60 km/h.

60 km/h). The front wheel steer angle used for the J-turn maneuver is plotted in

Figure 6.2. Note that for a certain steer angle, perfect steer characteristic (i.e. neutral

steer) corresponds to an ideal yaw rate described by equation (6.2). This ideal yaw rate

response and the actual yaw rate responses produced by the three systems during this

J-turn maneuver are plotted in Figure 6.3. Parts (a)–(c) of this figure show the results of

the three methods with different parameter choices, starting from ρ = 0.75 in Figure 6.3

(a), then ρ = 0.5 in Figure 6.3 (b) and ρ = 0.25 in Figure 6.3 (c).

The following observations are made from the results demonstrated in Figure 6.3. Firstly,

the yaw rate responses produced by the proposed DYC method closely track the ideal

yaw rate, which provides the vehicle with neutral steer performance. This is while

the other two methods lead to generally understeer behaviors (yaw rates smaller than

ideal). The conventional DYC presents a very small steady-state error in the yaw rate

response when ρ = 0.75 (ξ = 5/3), however the magnitude of this steady-state error

increases when a smaller value of ρ (a larger value of ξ) is chosen. The passive system

exhibits a yaw rate response that eventually converges to the ideal value, however, with

a remarkable lag.

Figure 6.4 shows the vehicle paths produced by the three competing methods. The ideal

curve represents the vehicle path traversed by a neutral steer vehicle. The results in this

figure verify the observations made from Figure 6.3: the proposed DYC produces neutral

steer behaviors and the vehicle paths closely track the ideal one, while the other two

methods cause understeer behaviors and as a result, the vehicle paths deviate from the

ideal one in outward direction (i.e. with larger turning radii). Note that the conventional

DYC can lead the vehicle to track the ideal path tightly with ρ = 0.75 (ξ = 5/3), however

the deviation from the ideal path deteriorates as ρ decreases (ξ increases).

Figure 6.5 demonstrates the vehicle side-slip responses with different control systems

on-board. Again, the results show that the proposed DYC outperforms the competing

methods and results in smaller vehicle side-slip values. The conventional DYC presents

good vehicle side-slip performance when ρ = 0.75 (ξ = 5/3), however with smaller ρ’s
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Figure 6.3: Yaw rate responses of the J-turn maneuver when vx = 60 km/h and (a)
ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.

(larger ξ’s), its performance degrades and leads to larger vehicle side-slips. The passive

system exhibits a response with a large spike before dropping to a steady-state value

that has been already reached by the proposed DYC without any spike. In practice,

such a spike can give rise to an undesirable swing of the vehicle heading direction.

It is important to note that in this case study, when the conventional DYC is employed,

the yaw rate errors are non-positive at all times (see Figure 6.3) while the vehicle side-

slip values remain non-negative (see Figure 6.5). As it was mentioned in section 6.1,

the opposite signs of the two errors defy their convergences to zero even though the

switching function (6.1) is controlled towards zero.



Simultaneous Control of Yaw Rate and Vehicle Side-Slip 100

0 10 20 30 40 500

10

20

30

40

X-displacement (m)

Y-
di

sp
la

ce
m

en
t (

m
)

 

 

Ideal
Proposed DYC
Conventional DYC
Passive system

(a)

0 10 20 30 40 500

10

20

30

40

X-displacement (m)

Y-
di

sp
la

ce
m

en
t (

m
)

 

 

Ideal
Proposed DYC
Conventional DYC
Passive system

(b)

 

0 10 20 30 40 500

10

20

30

40

X-displacement (m)

Y-
di

sp
la

ce
m

en
t (

m
)

 

 

Ideal
Proposed DYC
Conventional DYC
Passive system

(c)

Figure 6.4: Vehicle paths of the J-turn maneuver when vx = 60 km/h and (a) ρ = 0.75
(b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.5: Vehicle side-slip responses of the J-turn maneuver when vx = 60 km/h
and (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.6: Front wheel steer angle for the lane change maneuver at vx = 60 km/h.

In a different case study, a lane change maneuver is simulated with medium lateral

acceleration (vx = 60 km/h). The front wheel steer angle for this maneuver and the

simulation results are presented in Figures 6.6–6.9. Note that the ideal curve in Fig-

ure 6.7 represents the desired yaw rate described by equation (6.2), and the ideal curve

in Figure 6.8 denotes the vehicle path transversed by a neutral steer vehicle.

Similar to the J-turn maneuver case, the proposed DYC endows the vehicle with neutral

steer behavior by tracking the desired yaw rate tightly. Again, with the conventional

DYC on-board, the vehicle presents close-to-neutral steer performance (yaw rate very

close to ideal) with ρ = 0.75 (ξ = 5/3), but the intensity of understeer increases as ρ

decreases (ξ increases). The passive system still provides an obvious lag in the yaw rate

response, thus also leads the vehicle to understeer.

The yaw rate results are verified by the vehicle paths shown in Figure 6.8. It is seen

that the simulated vehicle can track the ideal path closely with all selected values of ρ

only when the proposed DYC is employed.

As for the vehicle side-slip, the proposed DYC consistently provides the vehicle with the

smallest vehicle side-slip magnitude. The passive system yields larger vehicle side-slip

than the proposed DYC and presents a lead in the response, while the conventional DYC

presents increasing vehicle side-slip as ρ drops (ξ increases).
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Figure 6.7: Yaw rate responses of the lane change maneuver when vx = 60 km/h and
(a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.8: Vehicle paths of the lane change maneuver when vx = 60 km/h and (a)
ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.9: Vehicle side-slip responses of the lane change maneuver when vx =
60 km/h and (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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6.3.1.2 J-turn and lane change maneuvers at vx = 80 km/h

This section presents the results of the simulated J-turn and lane change maneuvers in

presence of high lateral acceleration caused by high longitudinal velocity (vx = 80 km/h).

Figure 6.10 shows the steering input used to simulate the J-turn maneuver. The yaw

rate responses, vehicle paths and vehicle side-slip responses during this J-turn maneuver

are presented in Figures 6.11, 6.12 and 6.13, respectively. It is observed that in this

high speed maneuver, the proposed DYC still leads the vehicle to track the desired yaw

rate closely, and in turn makes the vehicle traverse in a path very close to the ideal one.

Meanwhile, the passive system causes an obvious lag in the yaw rate response, deviating

the vehicle path outward. The conventional DYC produces oversteer performance (yaw

rate larger than ideal) and bends the vehicle path inward, which behavior deteriorates

with smaller ρ values (larger ξ values).

In terms of the vehicle side-slip, it can be seen in Figure 6.13 that with the conventional

DYC on-board, the vehicle side-slip remains small when ρ is large (ξ is small), however

it diverges and the vehicle tends to spin as ρ decreases (ξ increase). In addition, the

passive system exhibits a very slow oscillation: the vehicle side-slip climbs up slowly and

then drops sluggishly. This slow convergence and the change of sign in vehicle side-slip

do harm to the driver’s sense of control. The proposed DYC produces fast convergence

and small vehicle side-slip magnitude for all ρ values.

The steering command and vehicle responses for the lane change maneuver with high

lateral acceleration (vx = 80 km/h) are shown in Figures 6.14–6.17. The observations

are similar to the case study of J-turn maneuver at high speed: with the proposed

DYC on-board, the vehicle closely follows the ideal path, with its yaw rate tracking the

ideal value tightly and its vehicle side-slip magnitude being generally less than the other

methods. The conventional DYC results in intensifying oversteer behavior as well as

increasing vehicle side-slip, with decreasing ρ (increasing ξ). The passive system causes

a lag in the yaw rate response which gives rise to understeer performance. In the vehicle

side-slip response, the passive system presents a remarkable phase difference from the

other two, with a spike at the end of the steering command (t = 2.5 s).
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Figure 6.10: Front wheel steer angle for the J-turn maneuver at vx = 80 km/h.
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Figure 6.11: Yaw rate responses of the J-turn maneuver when vx = 80 km/h and (a)
ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.12: Vehicle paths of the J-turn maneuver when vx = 80 km/h and (a)
ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.13: Vehicle side-slip responses of the J-turn maneuver when vx = 80 km/h
and (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.14: Front wheel steer angle for the lane change maneuver at vx = 80 km/h.
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Figure 6.15: Yaw rate responses of the lane change maneuver when vx = 80 km/h
and (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.16: Vehicle paths of the lane change maneuver when vx = 80 km/h and (a)
ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.17: Vehicle side-slip responses of the lane change maneuver when vx =
80 km/h and (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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6.3.2 Simulations with uncontrolled vx

In the preceding section, the simulation results with constant vehicle longitudinal ve-

locities, vx = 60 and vx = 80, were demonstrated. The longitudinal velocities were

maintained constant using Tbase generated by the vehicle speed controller unit. As men-

tioned in Chapter 4, the analysis with constant longitudinal velocity can reveal the

fundamental vehicle lateral and yaw behaviors. However, when vx is not fixed, which

is commonly the case in practice, the proposed DYC should also work effectively and

provide satisfactory control performance. Thus in this section, the vehicle speed con-

troller unit is shut down (Tbase = 0) to leave the longitudinal velocity vx uncontrolled.

Intuitively, vx will gradually decrease as the vehicle maneuvers. In the following two case

studies, the initial longitudinal velocities are set to 60 km/h and 80 km/h, respectively.

6.3.2.1 J-turn and lane change maneuvers starting at vx = 60 km/h

This section presents the results of the simulated J-turn and lane change maneuvers

starting from vx = 60 km/h. The front wheel steer angles employed for these two

maneuvers are the same as those in the constant vx case studies, as shown in Figures 6.2

and 6.6.

Since the vehicle speed controller unit is shut down, the vehicle longitudinal velocity vx

will change during the maneuvers. Figure 6.18 shows how vx changes during the J-turn

maneuver, with different values of ρ (ξ). All vx curves gradually descend from 16.7 m/s

(60 km/h) as the J-turn maneuver starts, and end up with slightly over 16 m/s. The

three competing methods do not produce much discrepancy between each other in the

vx responses, as seen in Figure 6.18.

Figures 6.19–6.21 demonstrate the yaw rate, vehicle path and vehicle side-slip responses

produced by the three methods during the J-turn maneuver, with different parameter

choices. It is observed that the yaw rate responses are fairly similar to the constant vx

case shown in Figure 6.3, and they generally follow the same pattern as in the constant

vx scenario. The only difference presented in this case is that, with each value of ρ (ξ),

all three response curves slightly drop as time elapses, which is caused by the gradually

descending vx. The vehicle paths also follow the same manner as in the constant vx

case. As for the vehicle side-slip responses, it is seen in Figure 6.21 that the response

curves are at large similar to the ones in the constant vx scenario shown in Figure 6.5.

But, all three curves slightly increase as time goes by. This is because vx gradually

descends and vy slightly increases as time elapses, and consequently the vehicle side-slip

(β = arctan
vy
vx

) increases.
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Figure 6.18: Vehicle longitudinal velocity responses of the J-turn maneuver starting
at vx = 60 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.19: Yaw rate responses of the J-turn maneuver starting at vx = 60 km/h
with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.20: Vehicle paths of the J-turn maneuver starting at vx = 60 km/h with (a)
ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.21: Vehicle side-slip responses of the J-turn maneuver starting at vx =
60 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.



Simultaneous Control of Yaw Rate and Vehicle Side-Slip 118

Figure 6.22 shows how vx changes during the lane change maneuver, starting from vx =

60 km/h with different values of ρ (ξ). During this maneuver, with each value of ρ (ξ),

the three response curves present slight decreases with some oscillations. The proposed

DYC generally produces the largest oscillation, but this does not impair the vehicle

performance as the magnitude of this oscillation is very small. With the conventional

DYC on-board, the vx oscillation gradually abates as ρ drops (ξ increases). The passive

system, on the other hand, produces the smoothest vx response.

Figures 6.23–6.25 demonstrate the yaw rate, vehicle path and vehicle side-slip responses

during the lane change maneuver, employing different parameter choices. It can be seen

that these three types of vehicle responses are almost the same as the responses in the

constant vx case presented in Figures 6.7–6.9. This similarity is easily comprehensible:

even though vx in general drops with all three methods on-board, yet the magnitudes

of the vx variations are quite small.
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Figure 6.22: Vehicle longitudinal velocity responses of the lane change maneuver
starting at vx = 60 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.23: Yaw rate responses of the lane change maneuver starting at vx =
60 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.24: Vehicle paths of the lane change maneuver starting at vx = 60 km/h
with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.25: Vehicle side-slip responses of the lane change maneuver starting at
vx = 60 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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6.3.2.2 J-turn and lane change maneuvers starting at vx = 80 km/h

This section presents the results of the simulated J-turn and lane change maneuvers

starting from a higher vehicle longitudinal velocity, vx = 80 km/h. The front wheel

steer angles used for these two maneuvers are the same as those in the constant vx case

studies, as shown in Figures 6.10 and 6.14.

Figure 6.26 demonstrates how vx changes during the J-turn maneuver, with different

values of ρ (ξ). As shown in this figure, when ρ = 0.75 (ξ = 5/3) and ρ = 0.5 (ξ = 5), all

vx curves generally start descending from 22.2 m/s (80 km/h) as the J-turn maneuver

begins. This is similar to the vx responses shown in Figure 6.18. However, in Figure 6.26

(c) it is observed that with ρ = 0.25 (ξ = 15), the conventional DYC leads vx to increase

after this J-turn maneuver begins, and the curve reaches a peak of about 24 m/s at

around t = 4 s.

Figure 6.27 plots the yaw rate responses generated by the three competing control so-

lutions during this maneuver. The overall tendency of the response curves follows the

same pattern shown in Figure 6.11. With the proposed DYC on-board, the simulated

vehicle best tracks the ideal yaw rate response. The conventional DYC produces good

performance with ρ = 0.75 (ξ = 5/3), however as ρ drops (ξ increases) the conventional

DYC provides intensifying oversteer. The passive system still presents a remarkable lag

in the yaw rate response. Similarly, the vehicle paths of this J-turn maneuver, as shown

in Figure 6.28, are almost the same as those in the constant vx case previously presented

in Figure 6.12.

As for the vehicle side-slip responses in Figure 6.29, the curves produced by the proposed

DYC and the passive system, in general, follow the same fashion as the responses in the

constant vx scenario (shown in Figure 6.13). However with the conventional DYC on-

board, it was observed in Figure 6.13 that the vehicle side-slip diverges when ρ = 0.5

(ξ = 5), while in Figure 6.29 the corresponding curve is still stable and its magnitude

decreases after experiencing a peak. When ρ decreases to 0.25 (ξ increases to 15), the

conventional DYC makes the vehicle side-slip diverge in both constant and uncontrolled

vx cases, but the diverging rate in Figure 6.13 is mush slower than that in Figure 6.29.
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Figure 6.26: Vehicle longitudinal velocity responses of the J-turn maneuver starting
at vx = 80 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.27: Yaw rate responses of the J-turn maneuver starting at vx = 80 km/h
with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.



Simultaneous Control of Yaw Rate and Vehicle Side-Slip 126

 

0 10 20 30 40 50 60 700

10

20

30

40

50

X-displacement (m)

Y-
di

sp
la

ce
m

en
t (

m
)

 

 

Ideal
Proposed DYC
Conventional DYC
Passive system

(a)

 

0 10 20 30 40 50 60 700

10

20

30

40

50

X-displacement (m)

Y-
di

sp
la

ce
m

en
t (

m
)

 

 

Ideal
Proposed DYC
Conventional DYC
Passive system

(b)

 

0 10 20 30 40 50 60 700

10

20

30

40

50

X-displacement (m)

Y-
di

sp
la

ce
m

en
t (

m
)

 

 

Ideal
Proposed DYC
Conventional DYC
Passive system

(c)

Figure 6.28: Vehicle paths of the J-turn maneuver starting at vx = 80 km/h with (a)
ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.29: Vehicle side-slip responses of the J-turn maneuver starting at vx =
80 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.30 demonstrates the vx responses during the lane change maneuver starting

from vx = 80 km/h, with different choices of ρ (ξ). As shown in this figure, the vx

response curves generally descend after the lane change maneuver commences. The

responses produced by the conventional DYC and the proposed DYC present oscillations,

and the conventional DYC leads the magnitude of oscillation to increase as ρ decreases

(ξ increases). Note that the magnitudes of all these oscillations are generally fairly small.

Figures 6.31–6.33 demonstrate the yaw rate, vehicle path and vehicle side-slip responses

during this lane change maneuver. These responses follow almost the same patterns as in

the constant vx case shown in Figures 6.15–6.17. When the proposed DYC is employed,

the vehicle closely tracks the ideal yaw rate and tightly follows the desired path, and the

vehicle side-slip magnitude is also generally less than the other two. The conventional

DYC results in intensifying oversteer behavior and increasing vehicle side-slip magnitude,

as ρ descends (ξ rises). The passive system causes lags in the yaw rate and vehicle path

responses, which leads the vehicle to understeer. Besides, like the constant vx case, the

vehicle side-slip response of the passive system presents a remarkable phase difference

from the other two, and it shows a spike in the response at the end of the steering

command (t = 2.5 s).



Simultaneous Control of Yaw Rate and Vehicle Side-Slip 129

 

0 0.5 1 1.5 2 2.5 3 3.5 422.1

22.12

22.14

22.16

22.18

22.2

22.22

Time (s)

Ve
hi

cl
e 

lo
ng

itu
di

na
l v

el
oc

ity
 (m

/s
)

 

 

Proposed DYC
Conventional DYC
Passive system

(a)

 

0 0.5 1 1.5 2 2.5 3 3.5 422.1

22.12

22.14

22.16

22.18

22.2

22.22

Time (s)

Ve
hi

cl
e 

lo
ng

itu
di

na
l v

el
oc

ity
 (m

/s
)

 

 

Proposed DYC
Conventional DYC
Passive system

(b)

 

0 0.5 1 1.5 2 2.5 3 3.5 422.1

22.12

22.14

22.16

22.18

22.2

22.22

Time (s)

Ve
hi

cl
e 

lo
ng

itu
di

na
l v

el
oc

ity
 (m

/s
)

 

 

Proposed DYC
Conventional DYC
Passive system

(c)

Figure 6.30: Vehicle longitudinal velocity responses of the lane change maneuver
starting at vx = 80 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.31: Yaw rate responses of the lane change maneuver starting at vx =
80 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.32: Vehicle paths of the lane change maneuver starting at vx = 80 km/h
with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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Figure 6.33: Vehicle side-slip responses of the lane change maneuver starting at
vx = 80 km/h with (a) ρ = 0.75 (b) ρ = 0.5 (c) ρ = 0.25.
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6.4 SUMMARY

In this chapter, a novel sliding mode DYC design for simultaneous control of the yaw

rate and vehicle side-slip is presented. The proposed sliding mode controller employs a

linear combination of the normalized absolute values of the yaw rate and vehicle side-slip

errors as the switching function. The complete nonlinear vehicle equations of motion

derived in Chapter 3 are employed to formulate the sliding mode control command.

Extensive comparative simulations are conducted to verify the effectiveness of the pro-

posed DYC scheme. In the simulation studies, the vehicle undergoes the J-turn and lane

change maneuvers with constant or uncontrolled vehicle longitudinal velocities. The

simulation results demonstrate that the proposed DYC solution clearly outperforms the

compared methods in terms of achieving close-to-neutral steer characteristic, tracking

the ideal vehicle path, and obtaining smaller magnitude of vehicle side-slip.



Chapter 7

Conclusions and

Recommendations

7.1 CONCLUSIONS

Direct yaw moment control systems produce a corrective yaw moment to achieve en-

hanced vehicle handling and stability, by means of individual control of longitudinal tire

forces (braking and/or traction forces). Conventionally, DYC systems were commonly

realized in the form of braking-based VSC systems or active differentials, either of which

presents certain types of downsides. Since the advent of electric vehicles (or hybrid ve-

hicles) equipped with independent driving motors, the latest type of DYC using electric

motors to generate the corrective yaw moment has become a research focus. This new

DYC type presents several apparent advantages over the conventional DYC schemes,

and its effectiveness in enhancing the vehicle handling and stability has been verified by

the published works.

Most existing DYC schemes adopt the yaw rate and/or vehicle side-slip as the main

control variable(s), as these two vehicle states are known to be the fundamental states

that govern the vehicle handling and stability. The scope of this study has been focused

on the analysis and design of the latest DYC type for electric vehicles (or hybrid vehicles)

with independent driving motors, employing the yaw rate and/or vehicle side-slip as the

control variable(s).

This thesis has looked into a wide range of existing vehicle dynamics control designs,

ranging from the basic and straightforward solutions to the state-of-the-art DYC schemes.

In a detailed literature review, the theories used in the control techniques were explained

and the characteristics of each control scheme were highlighted. Then, a full vehicle

134
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model including the vehicle equivalent mechanical model, vehicle equations of motion,

wheel equation of motion and Magic Formula tire model was established. On the basis

of the literature review and full vehicle model, three types of DYC systems have been

proposed with detailed design processes and simulation verifications. These systems are

the yaw rate-based DYC, vehicle side-slip-based DYC and simultaneous control of the

yaw rate and vehicle side-slip.

To clarify the basic question on how the corrective yaw moment generated by a DYC

system changes the vehicle dynamics, a mathematical relationship was derived from the

vehicle equations of motion to show how the steady-state yaw rate response depends on

the torque difference between the two driving motors (i.e. the corrective yaw moment).

This relationship implies that the steady-state yaw rate can be directly controlled by

tuning the torque difference to achieve a reference value. Based on this relationship, a

yaw rate-based DYC system was designed to track the desired neutral steer yaw rate

response. Comparative simulation results show that the vehicle closely traces the desired

yaw rate with the proposed DYC on-board, and the vehicle handling is significantly

improved.

Similarly, another mathematical relationship was derived to reveal the effect of a DYC

system on the other crucial vehicle state, vehicle side-slip. This relationship demon-

strates that the steady-state vehicle side-slip is a function of the torque difference be-

tween the left and right driving motors. On the basis of this relationship, a vehicle

side-slip-based DYC solution was proposed to achieve zero vehicle side-slip. Simulation

results manifest that the vehicle side-slip is minimized by the proposed DYC system.

As a result, the vehicle stability and driver’s sense of control are greatly enhanced.

After dealing with the yaw rate and vehicle side-slip individually, an integrated sliding

mode control scheme which employs the yaw rate and vehicle side-slip simultaneously as

the control variables was devised. This design introduces a novel switching function that

guarantees the simultaneous convergences of both the yaw rate and vehicle side-slip er-

rors to zero, and eliminates the limitations presented in the common sliding mode DYC

solutions. Extensive simulations demonstrate that the proposed sliding mode DYC ap-

proach is effective in suppressing both the yaw rate and vehicle side-slip errors in various

driving scenarios, and it outperforms the common sliding mode DYC schemes in terms

of tracking the desired yaw rate, vehicle path and vehicle side-slip. The simultaneous

regulation of the yaw rate and vehicle side-slip by the proposed DYC method effectively

enhances both the vehicle handling and stability.



Conclusions and Recommendations 136

7.2 RECOMMENDATIONS

Throughout this thesis, all research questions raised in Chapter 1 have been answered

and the research objectives have been achieved. However, in the light of the work carried

out in this study, some possible areas are thought worthy of further investigation.

It is recommended that experimentation be performed to validate and improve the pro-

posed schemes further. For each control method, firstly, Hardware-In-the-Loop (HIL)

simulations should be conducted to check and regulate the control law in the Electronic

Control Unit (ECU). Then, field tests should be performed using the same vehicle ma-

neuvers as in the simulations to evaluate the control scheme thoroughly. Based on the

HIL simulation and field testing results, possible adjustments and improvements can be

made to the control design.

The scope of this study has been narrowed down to the DYC systems for electric vehi-

cles (or hybrid vehicles) with two rear independent driving motors. The control schemes

proposed in this thesis can also be applied to 4WD electric vehicles. With four inde-

pendent driving motors on-board, the problem of appropriate distribution of the motor

torques to generate a certain corrective yaw moment needs to be tackled. The proposed

DYC methods for 2-Wheel-Drive (2WD) vehicles, also known as the upper level control,

can be employed to compute the target corrective yaw moment for 4WD vehicles. Then

this yaw moment should be realized by allocating an appropriate torque to each driving

motor based on the torque distribution strategy. So far, a large number of upper level

control methods have been proposed, however there are not sufficient torque distribution

strategies available in the literature. It is suggested that further research be conducted

to design an effective torque distribution strategy, in order to extend the proposed upper

level control schemes to 4WD electric vehicles.

In the recent literature, some control solutions integrate DYC system with other types

of vehicle dynamics control systems such as AFS, 4WS and ARCS. It is known that a

certain vehicle dynamics control system is most effective in a specific region. The inte-

grated control systems take advantage of each type of vehicle dynamics control system,

and ensure satisfactory control performance in a wide range of driving condition. The

proposed DYC methods in this thesis are able to work in tandem with other vehicle

dynamics control systems, and the design of an appropriate integrating strategy should

be studied in the future.

Furthermore, a challenge confronted in this study is that different vehicle equations of

motion and tire models are available in the literature, and they need to be carefully

selected, combined and possibly modified to establish a suitable full vehicle model. The

experience learned from this challenge is that the subsystems in the full vehicle model
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must be mathematically and physically compatible, i.e. they do not contradict each

other. It is also suggested that computer simulations of different full vehicle models

be performed, and the simulation results be compared with the field test data to check

the validity of these vehicle models. By this means, an optimal full vehicle model can

possibly be found out.

Last but not least, there are not sufficient review articles available in the literature

introducing DYC designs for electric and hybrid vehicles with independent motors. It is

recommended that comprehensive review papers be written to sum up the state-of-the-

art DYC designs, in order to facilitate further research in this field.



Appendix

MAIN M-FILE

clear;

%vehicle parameters

m = 318; %total mass

m s = 283; %sprung mass

d f = 1.14400; %front track

d r = 1.15266; %rear track

I z = 1000; %total yaw moment of inertia, previously 250

I x = 200; %total roll moment of inertia, previously 18.43

l = 1.55; %R10 l=1.65

l f = 0.78475; %R10 a1=0.96, petrol a1=0.850

l r = 0.76525; %R10 a2=0.69, petrol a2=0.696

h = 0.26; %height of COG of the whole car

h s = 0.04719; %distance between the sprung mass COG to the unsprung mass COG,

previously 0.27175

h rcf = 0.218; %height of the front roll center, previously 0.01754

h rcr = 0.218; %height of the rear roll center, previously 0.01876

R = 0.218; %tire radius, R10 R=0.254

J = 2; %inertia of the driving wheel assembly, kg∗mˆ2

K = 51500.88; %roll stiffness, R10 k=40177.52, petrol kr=72694.02

K f = 25750.44; %front spring stiffness, previously 23432.83

K r = 25750.44; %rear spring stiffness, previously 28068.06

C = 3828.71; %roll damping, previously 6668.91

C f = 1953.43; %front shock absorber damping, previously 3415.09
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C r = 1875.27; %rear shock absorber damping, previously 3253.82

F sf = 770.085; %front tire static tire load

F sr = 789.705; %rear tire static tire load

V ini = 22.2; %16.7; %initial speed of the vehicle

%magic formula parameters

F z0 = 661.15304; %657.33511;

P dx1 = 2.5722; %2.4149;

P dx2 = -0.21555; %-0.15154;

P cx1 = 1.338; %1.7;

P ex1 = 0.64992; %0;

P ex2 = 0.40397; %0;

P ex3 = -0.36698; %0;

P ex4 = 0.27059; %0;

P kx1 = 68.6146; %52.8311;

P kx2 = 0.000005; %0.000012;

P kx3 = 0.064062; %-0.009406;

P dy1 = 2.507853; %2.489121;

P dy2 = -0.154951; %-0.120498;

P cy1 = 1.466801; %1.568288;

P ey1 = -0.000022; %-0.01619;

P ey2 = 0.000004; %-0.057131;

P ey3 = -2425.236; %-1.75437;

P ky1 = -144.83247; %-209.32818;

P ky2 = -4.816265; %-6.138896;

%controller parameters

Kp = 1000;

Ki = 0;

Kd = 0;

xi = 5/3;

rho = 500;

boundary = 100;
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%start simulation

open system(‘new control model 7.mdl’);

sim(‘new control model 7.mdl’);
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SIMULATION MODEL OVERVIEW (TURNED 90◦)
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VEHICLE DYNAMICS SYSTEM (TURNED 90◦)
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VEHICLE LONGITUDINAL MOTION SUBSYSTEM
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VEHICLE ROLL MOTION SUBSYSTEM
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DRIVING WHEEL SYSTEM (TURNED 90◦)

 

     

6
F_

y4 5
F_

x4

4
F_

z4

3
si

de
_s

lip

2
sl

ip
_r

at
io

1
om

eg
a

F_
x

m
o

to
r 

to
rq

u
e

o
m

e
g
a

W
he

el
 d

yn
am

ic
s

V
_x

r o
m

e
g
a

sl
ip

_r
a

ti
o

Ti
re

 S
lip

V
_y

V
_x

r

si
d
e

_s
lip

Ti
re

 S
id

es
lip

F
_x

su
m

F_
yr

ph
i

p

F_
z4

R
L_

N
or

m
al

_L
oa

d

[F
_y

r]

[p
]

[p
hi

]

[r]

[V
_y

]

[F
_x

su
m

]

[V
_x

]

[F
_y

r]

[r]

[V
_x

]

[r]

[V
_x

]

[V
_y

]

[F
_x

su
m

]

[p
hi

]

[p
]

F_
z

si
de

_s
lip

sl
ip

_r
at

io

F_
y

F_
x

M
ag

ic
_F

or
m

ul
a

8
m

ot
or

 t
or

qu
e

7
F_

yr6
F_

xs
um5 p4 ph
i

3 r2
V

_y1
V

_x



Appendix 146

WHEEL NORMAL LOAD SUBSYSTEM
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EMBEDDED FUNCTION FOR MAGIC FORMULA

function [F y,F x] = Magic Formula(F z, side slip, slip ratio, F z0, P dx1, P dx2, P cx1,

P ex1, P ex2, P ex3, P ex4, P kx1, P kx2, P kx3, P dy1, P dy2, P cy1, P ey1, P ey2,

P ey3, P ky1, P ky2)

df z = F z/F z0-1;

U x = P dx1+P dx2∗df z;

C x = P cx1;

D x = U x∗F z;

E x = (P ex1+P ex2∗df z+P ex3∗df zˆ2)∗(1-P ex4∗sign(slip ratio));

K x = F z∗(P kx1+P kx2∗df z)∗exp(-P kx3∗df z);

B x = K x/C x/D x;

F x = D x∗sin(C x∗atan(B x∗(1-E x)∗slip ratio+E x∗atan(B x∗slip ratio)));

U y = P dy1+P dy2∗df z;

C y = P cy1;

D y = U y∗F z;

E y = (P ey1+P ey2∗df z)∗(1-P ey3∗sign(side slip));

K y = P ky1∗F z0∗sin(2∗atan(F z/F z0/P ky2));

B y = K y/C y/D y;

F y = -D y∗sin(C y∗atan(B y∗(1-E y)∗side slip+E y∗atan(B y∗side slip)));
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CONTROLLER (TURNED 90◦)
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