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Abstract 
 
The volume of information derived from in situ field spectroradiometers, across a 

broad variety of, often costly, applications and instrumentation, grows each year. 

There is a recognized need within the international remote sensing community to 

document, store, and share field spectroscopy data and metadata in consistent 

formats within dedicated data sharing and other intelligent archiving systems 

(Committee on Earth Observing Satellites, 2013; Group on Earth Observations, 

2014). Establishing and maintaining optimal integrity of the data is a key priority to 

ensure effective re-use of the data, and to enable more efficient and higher impact 

research. 

 

Metadata is an important component in the cataloguing and analysis of field 

spectroscopy datasets because of their central role in identifying and quantifying the 

quality and reliability of spectral data and the products derived from them. There is 

currently no international standard methodology for collecting field spectroscopy 

metadata. This makes rich and flexible metadata capabilities a critical factor in the 

interoperability and quality assurance of datasets. 

 

This thesis identifies the core components for a field spectroscopy metadata 

standard to facilitate discoverability, interoperability, reliability, quality assurance 

and extended life cycles for datasets being exchanged in a variety of data sharing 

platforms.  The research is divided into five parts: 1) an overview of the importance 

of field spectroscopy, metadata paradigms and standards, metadata quality and 

geospatial data archiving systems;  2) definition of a core metadataset critical for all 
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field spectroscopy applications; 3) definition of an extended metadataset for specific 

applications; 4) methods and metrics for assessing metadata quality and 

completeness in spectral data archives; 5) recommendations for implementing a 

field spectroscopy metadata standard in data warehouses and ‘big data’ 

environments.  

 

Part 1 of the thesis is a review of the importance of field spectroscopy in remote 

sensing; metadata paradigms and standards; field spectroscopy metadata practices, 

metadata quality; and geospatial data archiving systems. The impact of field 

spectroscopy as a foundation to scientific operations and research is examined. 

Definitions of metadata from across disciplines are presented, and the usefulness of 

metadata as a tool for making datasets discoverable, shareable, and interoperable is 

explored. The unique metadata requirements for field spectroscopy are discussed. 

Conventional definitions and metrics for measuring metadata quality are presented. 

Finally, geospatial data archiving systems for data warehousing and intelligent 

information exchange are explained.   

 

Part 2 of the thesis presents a core metadataset for all field spectroscopy 

applications. The core metadataset is derived from the results of an international 

expert panel survey.  The survey respondents helped to identify a metadataset 

critical to all field spectroscopy campaigns, as well as recommend additional 

metadata to increase the versatility of a metadataset, both for application-specific 

metadata and general campaign metadata. These results form the foundation of a 

field spectroscopy metadata standard that is practical, flexible enough to suit the 
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purpose for which the data is being collected, and/or has sufficient legacy potential 

for long-term sharing and interoperability with other datasets.  

 

Part 3 presents an extended metadataset for specific application areas within field 

spectroscopy. The key metadata is presented for three applications: tree crown, soil, 

and underwater coral reflectance measurements.  The performance of existing 

metadata standards in complying with the field spectroscopy metadataset was 

measured.  Results show they consistently fail to accommodate the needs of both 

field spectroscopy scientists in general as well as the three application areas.  A 

hybrid standard that serves as a ‘best of breed’ incorporating useful modules and 

parameters within the standards is proposed. 

 

Part 4 presents criteria for measuring the quality and completeness of field 

spectroscopy metadata in a spectral archive.  Existing methods for measuring quality 

and completeness of metadata were scrutinized against the special requirements of 

field spectroscopy datasets. Field spectroscopy metadata quality can be defined in 

terms of  (but not limited to) logical consistency, lineage, semantic and syntactic 

error rates,  compliance with a quality standard, quality assurance by a recognized 

authority, and reputational authority of the data owners/data creators. Two spectral 

libraries were examined as case studies of operationalized metadata, and the degree 

to which they comply with the needs of field spectroscopy scientists.  The case 

studies revealed that publicly available datasets are underperforming on the quality 

and completeness measures. 
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Part 5 presents recommendations for adoption and implementation of a field 

spectroscopy standard, both within the field spectroscopy community and within the 

wider scope of IT infrastructure for storing and sharing field spectroscopy metadata 

within data warehouses and big data environments. The recommendations are 

divided into two main sections: community adoption of the standard, and 

integration of standardized metadatasets into data warehouses and big data 

platforms.  

 

In conclusion, this thesis has identified the core components of a metadata standard 

for field spectroscopy. The metadata standard serves overall to increase the 

discoverability, reliability, quality, and life cycle of field spectroscopy metadatasets 

for wide-scale data exchange. It also presents recommendations for a formal 

adoption of the standard by the field spectroscopy community and the steps forward 

for its integration into data warehouses and big data platforms.  
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Chapter 1 Introduction 
 

1.1 Introduction 

Field spectroscopy metadata is a central component in the quality and reliability of 

spectral data and the products derived from it. The impact of the quantity and 

quality of metadata created at this fundamental stage of spectral research is 

amplified as spectral data exchange becomes more important and widespread in the 

international remote sensing community. Cataloguing, data mining, and 

interoperability of these datasets rely upon the robustness of metadata protocols for 

field spectroscopy. Currently, no standard methodology for collecting field 

spectroscopy metadata exists.  There is an immediate need within the international 

remote sensing community to establish a metadata standard for field spectroscopy 

that ensures high quality, interoperable metadatasets that can be archived and 

shared efficiently within Earth observation data sharing systems.  

 

Field spectroscopy metadata consists of those data elements that explicitly 

document the spectroscopy dataset and field protocols, sampling strategies, 

instrument properties and environmental and logistical variables. Field spectroscopy 

datasets are dependent upon their associated metadata for ensuring their quality, 

reliability, and longevity. A superior quality metadataset can describe a broad range 

of observed field data, across a range of applications. Such metadata is vital since it 

can influence factors that affect standardized measurements (Pfitzner et al., 2006). 

Metadata can serve numerous other functions including describing and quantifying 

errors introduced into the spectra, and as a tool for potentially mitigating these 
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errors. The logistics of collecting sufficiently reliable and complete metadata, as well 

as the requisite volume of metadata, is a central consideration for creating a 

standardized methodology for defining and documenting metadata.  A practical 

metadata standard must be closely aligned to field spectroscopy data collection 

practices adopted by remote sensing research communities around the world.  

 

There is urgency in acquiring continuous high quality spectroscopy data to solve 

problems in Earth systems science (Milton et al., 2009).  Informing users and 

stakeholders of field spectroscopy datasets of the impact of high-quality data and 

metadata in the context of Earth observing data systems is an additional challenge 

facing the remote sensing community. Quality assurance of field spectroscopy 

datasets necessitates oversight and standardization, both at local, national, and 

international scales and is a way of ensuring robust metadata protocols for field 

spectroscopy. The need for a standardized methodology for collecting field 

spectroscopy metadata has increased with the emergence of data sharing initiatives 

such as NASA’s EOSDIS (Earth Science Data and Information System) LTER (Long 

Term Ecological Research) network, Australian Terrestrial Ecosystem Research 

Network (TERN), SpecNet, and some of the smaller ad hoc spectral libraries and 

databases created by remote sensing communities internationally.  

 

Careful examination of all stages of metadata collection and analysis can inform a 

robust metadata standard that is widely applicable to field campaigns. This thesis 

presents the core components of a metadata standard that serve to increase the 
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discoverability, reliability, quality, and life cycle of field spectroscopy datasets for 

wide-scale data exchange.  

 

1.2 Research objectives 

The main objectives of this research are: i) to identify core components of a 

metadata standard for field spectroscopy to enhance discoverability, reliability, 

quality, and longevity of datasets; and  ii) to derive methods and metrics for 

evaluating metadata completeness and quality in field spectroscopy datasets. 

 

1.3 Research questions 

The following research questions are answered in this thesis: 

1. What are the key elements of a core metadataset for all field spectroscopy 

applications? 

2. Is additional metadata required for specific field spectroscopy applications and to 

support interoperability with other metadata standards? 

3. What are the criteria for measuring the quality and completeness of field 

spectroscopy metadata in a spectral archive? 

4. What are the issues related to adoption of the proposed field spectroscopy 

metadata standard? 
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1.4 Thesis outline 

The thesis consists of seven chapters, four of which are research chapters, and a final 

chapter of conclusions. 

 

Chapter 2 presents a literature review addressing: the importance of field 

spectroscopy, metadata paradigms across a range of disciplines, field spectroscopy 

metadata practices, conventional definitions and metrics for measuring metadata 

quality, and geospatial data archiving systems. It seeks to present gaps in knowledge 

within the remote sensing community in the context of addressing needs of field 

spectroscopy scientists for quality-assured metadata documentation and spectral 

data exchange.  

 

Chapter 3 identifies elements of a core metadataset for all field spectroscopy 

applications. Results from an international expert panel survey produced a core 

metadataset that serves as the central component of a field spectroscopy metadata 

standard. The core metadataset is necessary for ensuring that a field spectroscopy 

metadata standard is practical, flexible enough to suit the purpose for which the 

data is being collected, and/or has sufficient legacy potential for long-term sharing 

and interoperability with other datasets.  

  

Chapter 4 identifies additional metadata for specific applications in field 

spectroscopy.  The key metadata is presented for three applications: tree crown, soil, 

and underwater coral reflectance measurement.  The suitability of existing metadata 

standards in supporting the core field spectroscopy metadataset presented in 
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Chapter 3 is measured, and a hybrid standard that serves as a ‘best of breed’ 

incorporating useful modules and parameters within the standards is proposed. 

 

Chapter 5 investigates criteria for measuring the quality and completeness of field 

spectroscopy metadata in a spectral archive. Existing methods for measuring quality 

and completeness of metadata are presented. These are scrutinized against the 

special requirements of field spectroscopy datasets. Two spectral libraries are 

examined as case studies of operationalized metadata, and the degree to which they 

align with the needs of field spectroscopy scientists is assessed. 

 

Chapter 6 investigates issues to adoption of the proposed field spectroscopy 

metadata standard. It presents a set of recommendations for community adoption 

of the standard. A proposed way forward for the integration of standardized 

metadatasets into data warehouses and big data platforms is also discussed. 

 

Chapter 7 presents the conclusions of the research by providing an overview of 

outcomes from the four research questions.  
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Chapter 2 Literature review 
 

2.1 Introduction 

This chapter presents a review of literature on the importance of field spectroscopy, 

metadata paradigms and standards, field spectroscopy metadata documentation 

practices, metadata quality, and geospatial data sharing systems. 

 

2.2 The importance of field spectroscopy 

2.2.1 What is field spectroscopy? 

Field spectroscopy falls within the science of remote sensing.  Remote sensing can be 

defined as using instruments to gather data about an object or an area from a 

distance (ESA, 2013; NOAA, 2013d) (Figure 2.1).  

 

 

 

 

 

 

 

 

 

Figure 2.1 Examples of satellite-based, airborne, and in situ remote sensing 
instruments (left) NASA's Landast 7 satellite scanning along its orbital path (center) 
handheld field spectroradiometer (right) airborne multispectral imaging  
Source: (NASA, n.d.; ASD, 2012; Channel Systems, 2010) 
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Figure 2.2 Reflectance signature generated by an airborne HyMap sensor 
Source: (HyVista Corporation, 2012) 
 
 

Figure 2.2 illustrates how a passive hyperspectral sensor (HyMap) on board a plane 

generates an electromagnetic (em) reflectance signature for the surface of the Earth 

along the flight path of the plane. 

 

Field spectroscopy takes place in what can be considered the natural environment, 

where em reflectance, radiance, irradiance and transmission of features in natural 

settings (vegetation, seagrass, rocks, soils, snow, and rooftops) are measured (Mac 

Arthur, 2011) (Figure 2.3). Principles underlying field spectroscopy, as with remote 

sensing in general,  are well defined and a variety of measurement and data analysis 

techniques are used, depending on the specific application domain (Li and Strahler, 

1992; Lewis and Barnsley, 1994; Sandmeier and Itten, 1999; Martonchik et al., 2000; 
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Nolen and Dozier, 2000; Sandmeier, 2000; Dangel et al., 2005; Peltoniemi et al., 

2005a, 2005b; Schaepman-Strub et al., 2006, 2009; Schaepman, 2007; Schopfer et 

al., 2008; Jacquemoud et al., 2009; Kokaly et al., 2009; Milton et al., 2009; Dekker et 

al., 2010; Dumont et al., 2010). A field spectroradiometer, or alternately, a 

‘spectrometer’ or ‘field radiometer’ is the device used to measure the em signals, 

and is a passive sensing instrument.  

 
 

 

 

 

 

 

 

 

 

Figure 2.3 Common types of field spectroscopy campaigns  Clockwise from left: 
vegetation, estuarine, snow, underwater coral, and geological. Source: (ASD, 2013c; 
CSER, 2012; NERC FSF, n.d.; Biophysical Remote Sensing Group, 2011; USGS, 2002) 
 
 

Prototype multispectral field spectroradiometers emerged in the 1960s for use 

within the research community and the first commercially available research grade 

portable spectroradiometer for the field was made available by ASD (Analytical 

Spectral Devices, now PANalytical Boulder, Inc.) in the early 1990s (Milton et al., 
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2009). Other manufacturers today include Spectra Vista Corporation, Ocean Optics, 

Skye Instruments, GmbH, and TriOS.  

 

A spectroradiometer can be characterized by technical specifications including its  

spectral range (the em wavelength span its sensor bank can respond to), spectral 

resolution (the smallest distance in wavelengths that can be discriminated),  number 

of spectral channels or bands, radiometric resolution (sensitivity to the magnitude of 

the em signal, expressed as a bit value),  and manufacturer. For example, the ASD 

Field Spec Hi-Res Spectroradiometer has a spectral range of 350-2500 nm, with a 

spectral resolution ranging from 3 nm to 8nm across 2151 bands and radiometric 

resolution of 16 bits (ASD, 2013a). The SVC (Spectra Vista Corporation) GER 1500 has 

a spectral range of 350-1050 nm, with a spectral resolution of 3.2nm across 512 

bands and a radiometric resolution of 16 bits (SVC, n.d.).  Other distinguishing 

characteristics include field of view, sensor head size, signal-to-noise ratio, 

integration time, photo diode composition, full-width-half-maximum measure, and 

foreoptics available. This review focuses on passive hyperspectral in situ 

spectroradiometers with sensitivity in the 0.35 -2.5 nm range. Hyperspectral can be 

defined as sensitivity in hundreds or thousands of bands versus multispectral 

instruments, which are sensitive in multiple bands, such as the MODIS (36 12-bit 

bands), Landsat 8 (11 12-bit bands) and MERIS (15 16-bit bands) satellite sensors.  
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2.2.2 Field spectroscopy’s contribution to remote sensing 

Field spectroscopy serves as the fundamental stage for primary research and 

operational applications (Herold et al., 2005; McCoy, 2005; Mazel, 2006; Milton et 

al., 2009; Viscarra Rossel et al., 2009; Asner et al., 2011) and provides critical input 

for calibration, validation, and other data modelling activities within the research 

community. It can be used to obtain information about the spectral characteristics of 

elements (leaf, rock, snow, asphalt) within a natural or urban scene (forest, riverbed, 

glacier, city); as ground-truth for calibration of airborne and spaceborne sensors; 

provide input for models (biophysical, radiative transfer); and provide reference 

signatures for spectral libraries and databases (Hueni et al., 2009; Milton et al., 2009, 

Mac Arthur, 2011).  This data is ideally objective and replicable, and can be used in a 

diverse range of applications including chlorophyll estimation in water, vegetation 

biomass, spatial variation in atmospheric constituents, and geomorphic mapping 

(Mac Arthur, 2011).  

 

There is a continual stream of studies and projects around the world that make 

direct use of field spectroscopy data to enhance scientific understanding both within 

the realm of remote sensing and in interdisciplinary contexts.  A sample of studies 

for a one-year period ending in 2012 was retrieved from the top three remote 

sensing journals (by impact factor over a five-year period representing the average 

number of citations received per paper published in that journal during the 

preceding five years) (Senf, 2013). Table 2.1 classifies the studies (n=20)  retrieved 

from Remote Sensing of Environment, ISPRS Journal of Photogrammetry and Remote 

Sensing, IEEE Transactions on Geoscience and Remote Sensing over a one-year 
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period by the purpose for which the field spectroscopy data was used and the 

research area (e.g. vegetation, snow, etc.). 

 
 
 
 
 
 
 
 
 
 
 
Table 2.1 Summary of application and research area for field spectroscopy data for 
remote sensing journal articles over 2012 (n=20) 
 
*where an individual study applied to more than one research area (e.g. snow and forest mapping), 
each research area was counted individually for that study 
 
*Source: (Cheng et al., 2012 ; Ciganda et al., 2012; Gonzalez et al., 2012; Hernandez-Clemente et al., 
2012 ;  Hesketh et al., 2012 ; Inoue et al., 2012 ; Jiao et al., 2012 ; Knaeps et al., 2012 ; Knox et al., 
2012 ; Mazzoni et al., 2012 ; Mishra et al., 2012 ; Niemi et al., 2012 ; Pascucci et al., 2012 ; Pisek et al., 
2012 ; Rodger et al., 2012 ; Sayer et al., 2012 ; Serrano et al., 2012 ; Thorp et al., 2012 ; Tits et al., 
2012 ; Zhang et al., 2012) 
 

The analysis of the studies shows that they are biased towards vegetation research 

(65%), and are more often used in model and algorithm validation (65%) than for 

target classification or mapping. None of the referenced studies explicitly stated that 

the data derived from field spectroscopy was used for other applications including 

sensor calibration (Pegrum et al., 2006; Green, 2010; Pacheco-Labrador et al., 2014) 

or population of spectral libraries (Becvar et al., 2006; Pfitzner et al., 2006, 2010; 

Hueni et al. 2009, 2010, 2012; USGS, 2006; Haselwimmer and Fretwell, 2009; Zomer 

et al. 2009; Iordache et al., 2010) that have been documented in other studies. The 

breadth of applications for field spectroscopy grows with the increased reliance on 

remote sensing to answer scientific questions, the development and availability of 

Research area* 

Application 

model / algorithm 
validation 

classification / 
mapping 

Generic 2 1 
Atmosphere 1 0 
Marine/Estuarine 2 0 
Vegetation 7 6 
Snow 0 1 
Soils 1 0 
Wetlands 1 0 
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new and more advanced spectroradiometers, the refinement of protocols for 

specific applications, the volume of field data being generated, and continually 

evolving data sharing capabilities among researchers.  

 

2.2.3 Field spectroscopy protocols 

Campaigns, or the operations and activities involved in the field spectroscopy data 

collection for a given application, can be defined and differentiated by their logistics 

(including equipment and ease-of-access to the target location), instrumentation, 

operators involved and purposes for which the data is being collected. This diversity 

stems from large potential variations in instrument setup and calibration, viewing 

geometry, reference standards, target sampling strategies, and environmental 

variables. It is widely acknowledged that these factors influence the spectral 

measurements and should be documented to allow mitigation and intercomparison 

(Duggin, 1985; Kerekes, 1998; McCoy, 2005; Stuckens et al., 2009).  

 

There are laboratories, research agencies and organizations that provide 

documentation for good practice in the field (Table 2.2). The degree of their 

prescriptiveness and assumptions about the instrument operator and principal 

investigator varies. There are guides that are comprehensive, especially for specific 

applications, and some that assume that the principal investigator has an advanced 

understanding of the principles of sampling (viewing geometry strategies, bi-

directional distribution functions) with little background information about field 

spectroscopy science provided.   
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 Topics addressed 

Name of document Application 
specific 

Em 
theory 

Instrument 
optimization 

Recommended 
viewing 

geometry 
Sampling 
strategy 

Field data 
documentation 

protocol 

NERC FSF instrument guides 
(ASD Field Spec Pro, GER1500, 
GER3700) (Mac Arthur, 2006, 
2007a, 2007b) 

  X    

Australian Government 
Department of Sustainability, 
Environment, Water, Population 
and Communities: Standards for 
reflectance spectral 
measurement of temporal 
vegetation plots (Pfitzner et al., 
2011) 

X X X X X X 

University of Queensland Field 
Spectrometer and Radiometer 
Guide (Phinn et al., 2007)  

X X X X X X 

Spectranomics Protocol: Leaf 
Spectroscopy (350-2500nm) 
(Carnegie Spectranomics, 2010) 

X    X  

ASD instrument guides and FAQ 
(ASD 2012, 2013b)  X X X   

Table 2.2 Comparison of field spectroscopy good practice guides 
 

The amount of advice given and its explicitness varies across the good practice 

guides and illustrates the spectrum of opinions about what constitutes good 

sampling strategy. The comparison shows that the application-specific guides 

(Australian Government Department of Sustainability, Environment, Water, 

Population and Communities: Standards for reflectance spectral measurement of 

temporal vegetation plots and the University of Queensland Field Spectrometer and 

Radiometer Guide) discuss the broadest range of topics for field spectroscopy and 

are more explicit in their instructions for field protocol and how to document it (with 

the exception of the Spectranomics Protocol: Leaf Spectroscopy (350-2500nm) 

guide).  The other guides leave it to the researchers to decide what viewing 
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geometries and sampling strategies are ideal, and omit references to field data 

documentation.   

 

NERC FSF (National Environmental Research Council Field Spectroscopy Facility) 

states in its online instrument (ASD Field Spec Pro, GER1500, GER5700) guides that it 

is unable to recommend sampling strategies due to varying requirements across 

projects, and that this responsibility ultimately lies with the principal investigator 

(Mac Arthur, 2006, 2007a, 2007b), but it does advise on sampling strategies in its 

training courses (NERC FSF, 2014).  It does provide general guidance about warming 

up the spectroradiometer prior to measuring samples, the importance of calculating 

the field of view, secure mounting of the instrument, and taking white reference 

measurements for the ASD Field Spec Pro (Fogwill 2005; Mac Arthur 2006, 2007a). 

PANalytical Boulder (formerly ASD Inc.), the leading world manufacturer of field 

spectroradiometers, maintains an online document repository on the physics of field 

spectroscopy, as well as general guidance for instrument optimization, and viewing 

geometry in its instrument guides (ASD 2012, 2013b).  

 

Others provide more explicit guidance on field protocol. The Australian government 

Department of Sustainability, Environment, Water, Population and Communities 

provides a detailed protocol for spectral measurement of temporal vegetation plots 

(Pfitzner et al., 2011). It includes a background on em theory for field spectroscopy, 

and recommends the number of average signals per sample, optimal viewing 

geometries, stabilizing equipment setup, methods for cleaning the white reference 

panel, and a protocol for measuring an instrument’s conformance to manufacturer 
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specifications (including warm-up time for illumination laps, average spectrums and 

white reference measurements taken).  The Carnegie Spectranomics lab provides 

detailed protocol for leaf collection and spectroscopy, but omits any discussion on 

em theory (Carnegie Institute for Science, 2010).  

 

The University of Queensland provides a detailed protocol for marine campaigns  

that includes advice about  the instruments (ASD, Ocean Optics, TriOS Ramses) best 

suited to the type of signal being recorded (in situ marine spectral reflectance, down-

or up-welling irradiance for depth profiles) (Phinn et al., 2007). It also presents 

optimal sampling strategies and ways of minimizing influencing environment effects 

on the signal, including: specific references to CSIRO-recommended viewing 

geometries, proper communication with divers operating the instrument, ways to 

avoid splashing water on the instrument, minimizing reflecting effects of wet 

samples and surrounding environments, and measuring the water surface and 

column before each white reference measurement to counteract their influence 

(Phinn et al., 2007). 

 

Research groups around the world, each taking samples according to their own 

‘good practice’ protocols is not sufficient to guarantee consistent measurement and 

output, even when the target is a controlled variable. For example, Jung et al. (2010) 

reported on a simple scenario with a single non-variant object, in which fifteen 

spectroscopy laboratories used the same instrument, targets, and a consistent 

instrument calibration protocol to record the spectral reflectance of the targets.   A 
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marked variation in output reflectance was noticeable, suggesting potential 

consequences for the inter-comparability of the spectra.  

 

A more complex scenario has the potential for increased variation in measured 

output. In cases where the sample remains the same but the instrument and white 

reference panel changes, systematic differences are introduced by the device and 

reference panels (Jung et al., 2010). As an additional example of the impact of the 

instrument, PANalytical Boulder Inc. supplies a device known as a ‘Scrambler’ for its 

FieldSpec models to compensate for spectral discontinuities due to non-uniformity 

of field-of-view across the sensor bank fibreoptics (Mac Arthur et al., 2012). Good 

practice would assume that a FieldSpec user has accounted for this in their field 

protocol, especially in the cases where they are intercomparing datasets for the 

same samples generated from other instruments.  

 

In general, activities undertaken to produce reflectance products -- including data 

preprocessing, the choice of atmospheric correction algorithms, illumination and 

viewing angles, and radiometric calibration -- can each contribute to inconsistent 

measurements for the same sample (Schaepman-Strub et al., 2006).  Documenting 

the source of these differences in the derived reflectance products, in a standardized 

terminology for the benefit of data users, remains a challenge within the remote 

sensing community (Schaepman-Strub et al., 2006).   For this reason, “whether the 

methodology is designed for a one-off sample for correlation with airborne or 

satellite multispectral or hyperspectral image data, or temporal measurements, 
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spectral data must be collected in a well-designed and consistent manner” (Pfitzner 

et al., 2006, pp. 89-90).  

 

The review presented in this section has helped to demonstrate that field 

spectroscopy is an essential activity in remote sensing, in applications including 

modelling activities, classification and mapping, population of spectral libraries, and 

sensor calibration. Internationally, research groups adhere to different protocols for 

carrying out campaigns, with different opinions on what constitutes ‘good practice’ 

for  viewing geometry, sampling strategy, and documentation of field data, among 

others.   However, a lack of standardized protocols, and no community consensus on 

how to document them (i.e. what metadata to provide), ultimately may serve as a 

hindrance to intercomparison of field spectroscopy datasets and quality assurance.  

 

2.3 Metadata paradigms and standards  

2.3.1 Introduction 

Metadata, in its broadest definition, is ‘data about data’ or ‘information about 

information’. It originates in the discipline of computer science, from a 1968 book 

written on computer languages used for electronic database searching (Bagley, 

2013).  This definition has been expanded and refined within different disciplines.  It 

generally refers to information that functions to make datasets discoverable, 

interoperable regardless of source, software and hardware platforms that manage 

and maintain the data, and for the archiving and preservation of information (MIT, 
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n.d.; NISO, 2004, 2007; Higgins, 2007; ANDS, 2011). Figure 2.4 is an example of 

metadata generated automatically by a digital camera.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 Image metadata automatically generated as an EXIF (Exchangeable 
Image File Format) file by a digital camera. It includes information about the date 
the image was taken, camera properties and settings, and image dimensions and 
resolution. Source: (Williams, 2012) 
 
 

Information science, a discipline with a history of and vested interest in metadata 

research, defines metadata as information that serves to manage, preserve and 

distribute information resources.  It  can be divided into the following categories: i) 

descriptive (information about the subject matter, creators, type of data) for the 

purposes of discoverability; ii) operations metadata (technical information about the 

data management of the organization and distribution of digital objects);  iii) 

preservation metadata (archiving information); iv) rights metadata (security access, 
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legal restrictions, copyrights for publishing and viewing); v) administrative (describes 

organizing workflow for preparing and publishing electronic resources) (MIT, n.d.; 

NISO, 2004, 2007; Higgins, 2007; ANDS, 2011).  

 

This definition has also been extended to accommodate a unique category of 

metadata referred to as scientific metadata, which is “all the information that is very 

specific to the study, and is needed to use and interpret the data collected” (ANDS, 

2011) and “auxiliary information, ranging perhaps from the experimenter and the 

time and place that the experiment was conducted to arcane calibration details” 

(Davenhall, n.d.) 

 

Metadata can be used to reference any digital or physical object. Metadata can be 

created for such entities as museum artifacts, biological specimens, chemicals, data 

tables, music, films and web documents, among others.  Within computer science, 

metadata commonly refers to the identification and handling of data elements. For 

example, in the management of large datasets within databases and data 

warehouses, metadata can be categorized as business metadata (descriptive 

information about such entities as tables, calculations used for derived attributes), 

technical metadata (load and performance statistics, data quality problems) and 

process execution metadata (transfer duration, logging information) (Green, 2009; 

Gamji, 2011).  Audio files also have their own metadata. The ID3 tag is a metadata 

container with information including the title of the song, artist, album and track 

number, and is encoded within audio files (commonly .mp3 files) and readable 

within software (Windows Media Player, iTunes) and hardware players (Creative Zen, 
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iPod) (O’Neill, 2013). Museums worldwide adhere to specific protocols for creating 

and documenting metadata for their biological specimens, archaeological specimens, 

and works of art (Getty Research Institute, 2006).  Across the disciplines and 

applications, metadata can be generated automatically or created manually, 

depending on the type of object or entity being described (digital or physical), user 

community preferences, and whether software exists to support the documentation 

and archiving of metadata.  

  

Metadata can have multiple uses for the reason that it makes datasets 

documentable and discoverable.   It can have significant implications in instances of 

intellectual property and legal matters, as examples.  The validity and admissibility of 

evidence from electronic systems are dependent upon the existence of metadata 

(author, data of creation, location) (Gezler, 2008). At the other end of this spectrum, 

there are instances where it is preferable to minimize discoverability of metadata. In 

the protection of intellectual rights and medical privacy for example, for some 

datasets descriptive metadata published publicly should be kept to a minimum 

(Slamanig and Stingl, 2008). These examples illustrate that metadata can be a 

powerful tool in the discovery and sharing of datasets, as wells as establishing their 

provenance. 

 

2.3.2 Metadata standards and structure 

A metadata standard can be defined as the set of elements used to perform specific 

functions (description, preservation, access and operations information, 
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administration) within a metadataset. Standards will vary, therefore, on the number 

of metadata elements or metadata fields, and the application for which they were 

designed. Any individual or organization can develop a standard, but not all are 

officially recognized, adopted, and/or implemented. Figure 2.5 illustrates some of 

the metadata standards developed for different disciplines. 

 

Figure 2.5 Metadata standards across the disciplines Source: (Tarbet, 2012) 
 
 
Metadata standards can be categorized into generic standards, applicable to all 

datasets for the purposes of archiving and discoverability (Darwin Core, Dublin Core, 

D-Space Metadata) and more specialized standards of use for a given user 

community (Access to Biological Collections Data Schema 2.06 for ecology, ANZLIC 

Metadata Profile 1.1 (Geographic dataset core)  for geospatial datasets). Each 

standard is designed with different objectives for the use of the metadata, for 
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different user groups, with unique vocabularies, taxonomies (discipline-specific 

classifications based on ontologies among metadata elements), and granularity (the 

specificity or level of detail at which each metadata field is expressed). The variety of 

standards illustrates that there is no ‘one size fits all’, and the utility of a standard is 

directly linked to the preferences and needs of data users, and the purposes for 

which the metadata will be utilized.  

 

Metadata standards can be structured according to a specific schema, with unique 

taxonomies, syntax, and granularity. The term ‘standard’ has often been used 

interchangeably with the term ‘schema’, but there are differences between the two.   

Metadata schema are the specifications for representing metadata elements in 

digital format (Higgins, 2007).  The schema can include document format (HTML, 

XML, SGML), syntax (controlled vocabularies), taxonomies, and granularity.  Figure 

2.6 illustrates the relationship between metadata standards and schema for the ISO 

23081 Records Management standard. 

 

Standards and their schema play the greatest role in interoperability between 

metadatasets. Examining the complexity of schemas helps illustrate this. Schemas 

can be categorized into three levels of complexity:  

1) simple (highest degree of interoperability with other metadata schemas, generally 

multidisciplinary and non granular, with 15-25 metadata fields); 

2) simple/moderate (interoperability is inversely correlated with the specific needs 

of an application or discipline, granular with more metadata fields); 
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3) complex (interoperability requires expertise, hierarchical, granular, and extensive, 

with more than 100 metadata fields) (Greenberg, 2012).   

 

 

 

 

 

 

 

 

 

 

Figure 2.6 ISO 23081 Records Management standard, illustrates the relationships 
between metadata standards, schema, and application profiles Source: (ISO/TC, 
2008) 
 
 
For example, Dublin Core 1.1 has fifteen elements at a single level of granularity, 

whereas ABCD 2.06 has 1004 elements defined within hierarchies.  Mapping and 

intercomparison of metadata elements between these two standards would be no 

simple exercise and implies that much consideration must be given to adopting the 

most suitable metadata standard for a given dataset. Therefore, the complexity of a 

schema must accommodate the user’s needs and the purposes for which the 

metadata will be used (discoverability, archiving, other). 
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The ability to find a dataset in a digital repository and assess its usefulness for a given 

application is dependent in part on its underlying schema. Consider the simple 

scenario of a database user conducting a search for geospatial datasets by entering 

keywords for the criteria – this criteria might include geographic extent, description 

of the datasets, nature of the scientific study for which the dataset was generated, 

and the instrumentation and sampling protocols used.  It is possible that two similar 

datasets in the database meet the criteria for a user’s needs, but their respective 

metadata is structured according to different taxonomies, vocabularies, and levels of 

granularity-- perhaps one of these metadatasets adheres to a schema that is 

unrecognized by the database or insufficiently designed to describe the underlying 

dataset in a way that this is most useful to the data user. As a result, automated data 

mining algorithms may filter out the unrecognized metadataset or the data user is 

presented with search results that do not provide them with enough information to 

ascertain that both datasets in fact meet their criteria for usability.  

 

There are ongoing efforts to translate metadata from one standard or schema to 

another to avoid such problems – this is also known as ‘crosswalk mapping’ (NISO, 

2004). Figure 2.7 shows a simple mapping, at a uniform level of granularity, for 

Dublin Core, EAD (Encoded Archival Description) and MARC 21 (MAchine-Readable 

Cataloging) standards used in library applications.  Schemas have also been extended 

or adapted for specific applications. OGG (Open Geospatial Consortium) adopted 

GML (Geographic Markup Language) and KML (Keyhole Markup Language) as 

schemas based on the XML-format for geographic datasets and 3D map software, 

respectively.  
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Figure 2.7 Crosswalk mapping for Dublin Core, EAD, MARC21 Source: (NISO, 2004) 

 

2.3.3 The role of metadata in data discoverability, sharing and distribution 

Metadata is a central factor in data mining, sharing and distribution of datasets. 

Metadata is about “controlling the quality of data entering the data stream” 

(Mailvaganam, 2007). It is important for data producers, owners, and managers to 

ensure that a metadataset is as complete and high quality as possible before it is 

uploaded to databases, datawarehouses, cloud platforms, or otherwise made 

available for distribution (Orr, 1998; Bruce and Hillman, 2004; Loshin, 2010; da Cruz 

et al., 2011).   The richer and larger the metadataset, the greater its potential for 

discovery, establishing ontological relationships with other metadatasets, and  the 

more empowered  data users are to determine whether the underlying dataset is 

suitable for a given purpose.  

 

Any effective metadata system should provide good correspondence between the 

description of the resource by the cataloguer and the strategies of the searcher 

(Wason and Wiley, 2000).  This can be considered a ‘gold standard’ for any metadata 

policy that would necessitate addressing specific requirements (taxonomy, 

granularity, hierarchical structure, extensiveness of a metadata schema) for making a 
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metadataset as discoverable as possible.  For example, metadata spaces is one 

conceptualization of ideally structured metadata for maximum discoverability in data 

repositories. The ‘best’ metadata spaces in a data repository are defined by 

metadata fields that are orthogonal (independent) to each other where resolution 

(ability to differentiate between two separate datasets), precision (measure of 

metadata detail) and repeatability (ability to describe a dataset the same way on two 

or more occasions) are balanced with the querying approach and objectives of the 

data user (Wason and Wiley, 2000).  The Learning Object Metadata standard has 

incorporated the concept of metadata spaces for digital learning environments 

(Wason and Wiley, 2000; IEEE, 2002). However, for the time being, topics such as 

maximum discoverability and metadata spaces must remain as high-level concepts 

that are worth noting, but difficult to examine further on a practical level given that 

there is no community understanding within remote sensing of the fundamental 

requirements for field spectroscopy metadata.  

 

The simplest way of making datasets accessible through metadata is with metadata 

registries or clearinghouses, which are databases of metadata. They contain 

descriptive, access, and preservation data for information sources (other databases, 

text documents, pdfs, music, videos, museum artifacts, etc.). Any digital or physical 

object that has associated metadata can be referenced in a metadata registry.  The 

user can execute searches through an online interface. Examples of metadata 

registries are the Distributed Archive Centre for Biogeochemical Dynamics, for field 

campaigns, regional and global data, land validation products, environmental 

numeric data models (Oak Ridge National Laboratory, 2013); the Knowledge 
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Network for Biocomplexity for biodiversity ecosystem data biodiversity and 

ecosystem data across multiple habitats (KNB, 2013); the United States Health 

Information Knowledgebase for healthcare data and standards (Agency for 

Healthcare Research and Quality, 2013), and NASA's Global Change Master 

Directory, which holds a catalog of all of NASA’s Earth science data set and service 

descriptions, one of the largest public metadata inventories in the world (NASA, 

2013c).  

 

2.4 Field spectroscopy metadata documentation practices  

2.4.1 What is field spectroscopy metadata? 

Metadata in the context of field spectroscopy can be defined as those data elements 

that explicitly document the primary spectroscopy dataset and field protocols that 

capture sampling strategies, instrument properties and environmental and logistical 

variables, all of which are integral to assessing fitness-for-purpose of the spectral 

measurements (Milton et al., 2009; Dekker et al., 2010; Malthus et al., 2010, Pfitzner 

et al., 2011).  In a broader context, this definition is also aligned with the purpose 

and scope of geospatial metadata standards such as the FGDC Content Standard for 

Digital Geospatial Metadata: Shoreline Metadata Profile, used “to capture critical 

processes and conditions that revolve around creating and collecting shoreline data, 

and to help define and qualify shoreline data for use” (FGDC, 2001, p.1);  Ecological 

Metadata Language 2.1.1, used to describe the dataset in fine detail as well as the 

methodology, including field and sampling methods,  applied to obtain the dataset 

(KNB, 2013), and the ANDS definition of scientific metadata as “all the information 
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that is very specific to the study, and is needed to use and interpret the data 

collected” (ANDS, 2011). The provision within metadata standards for the 

documentation of protocols is accepted as good practice as scientists across 

disciplines acknowledge that such activities, considered to be in the background of 

research problems, are not commonly presented with the data outputs generated 

from field data collections, but are an important part of the research process and 

therefore must be captured and available for sharing (Wynholds et al., 2012).  Figure 

2.8 is a conceptualization of the interrelationships among metadata and their effect 

on the analysis of spectral measurements.  

 

Figure 2.8 A conceptualization of the interrelationships among metadata and their 
effect of the analysis of spectral measurements Source: (Pfitzner et al., 2006) 
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2.4.2 Field spectroscopy metadata standards and conventions 

There are no national or international standards for the documentation of field 

spectroscopy metadata, the minimum set required, or any quality assurance process 

for metadata. Metadata modelling techniques and standards have been proposed by 

numerous bodies overseeing and advising the geospatial sciences but fail on several 

fronts to address the relevant aspects of field spectroscopy datasets. Many are 

based on the ISO 191__ standard family relating to storage, encoding, and quality 

evaluation of geographic data. OGC (Open Geospatial Consortium) and INSPIRE 

(Infrastructure for Spatial Information in the European Community) have both 

adopted architecture and data interoperability protocols for geospatial metadata 

based on EN ISO 19115 and EN ISO 19119 (INSPIRE,  2009;  OGC 2012). While this 

helps to solve many problems in the intercomparison of geospatial metadatasets in 

general, field spectroscopy datasets are not represented in these protocols. 

 

Although providing general guidelines, geospatial metadata standards do not 

explicitly address the metadata requirements of field spectroscopy collection 

techniques, or the ontologies and data dependencies required to model the complex 

interrelationships among the observed phenomena as data and metadata entities. 

For example, a logical semantic model would express dependencies between 

metadata entities such as user-controlled viewing conditions including sensor 

orientation, height above the target, and area of target in the field of view, all three 

of which have a relationship with the spectral measurements. Weaknesses in field 

spectroscopy data collection and their implication for the need for a metadata 

standard have been identified by both users and providers of field spectroscopy 
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data, particularly in the European remote sensing community; these include a lack of 

quality assurance and calibration information for sensors; no real capability to define 

accuracy or validation for data processing; and a lack of agreed standards in data 

processing (Reusen et al., 2007). Steps forward in confronting these challenges must 

begin with investigating how the field spectroscopy community currently documents 

metadata.  

 

2.4.3 Documenting field spectroscopy metadata 

Methods of documenting and storing metadata vary across research groups and as 

with field protocols, are done on an ad hoc basis. Worldwide practice for recording 

metadata relating to the instrument properties, illumination and viewing angles, 

reference standards and general project information is done according to a group’s 

own definition of what constitutes a suitable metadataset (Dekker et al., 2010; Mac 

Arthur, 2007a; Pfitzner et al., 2011). When inconsistent sampling and measurement 

protocols remain undocumented through metadata, any valid intercomparison of 

datasets is compromised. The impact of these variables across datasets has not yet 

been fully identified within the remote sensing community nor can it be properly 

quantified in many instances, further necessitating the recording of adequate 

metadata.  The time invested in metadata collection is surpassed by its benefits in 

reducing system bias and variability (Pfitzner et al., 2006). While most users 

recognize this, what is required are standards and techniques to facilitate easy 

recording of this data. Capturing such data is therefore central to ensuring reliability, 

legacy, re-use, and interoperability of field spectroscopy datasets. Application-
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agnostic metadata has been recommended within the field spectroscopy community 

(Bojinski et al., 2003; Milton et al., 2009) but there is no consensus in the literature 

on conventions to use, or how inclusive it should be.  

 

Metadata can be documented manually, and concurrently with the spectral 

measurements, or generated automatically and obtained post-campaign. The choice 

to document concurrently or retrospectively can be a result of prioritizing metadata 

due to constraints of time and conditions under which the measurements are being 

taken (Fogwill 2005; CSER, 2006; Mac Arthur 2006, 2007a, 2007b; Phinn et al., 2007) 

(Figure 2.9). For example, information relating to viewing geometry, which includes 

the height and angle of the sensor above the target, and height of the sensor above 

ground, the field of view, and foreoptics used – is best documented in the same 

window of time as the em signatures being recorded, since this data is difficult to 

obtain post-fact and prone to error if done from memory alone.   

 

 

 

 

 

 

 

 
Figure 2.9 Documenting metadata underwater Source: (CSER, 2006) 
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Retrospectively documented metadata is most often information that is unlikely to 

change over the duration of the campaign, or information that has been 

documented elsewhere by a third party. Meteorological agencies, oceanographic 

institutes (NOAA, University of Hawaii Sea Level Center), and weather stations have 

online data relating to local weather information, solar angles, and tides. 

 

Automatically generated metadata include those from the field spectroradiometers 

themselves that encode instrument and signal properties information within their 

native files that can then be exported as metadata to a local or central database or 

other data repository. If a single instrument is used for multiple campaigns, the 

information can be documented once, and then referenced through the metadata by 

instrument serial number or other identifying key (Hueni, 2011).  

 

2.4.4 Storing and sharing field spectroscopy metadata 

Popular avenues for the storage of field spectroscopy metadata include log sheets, 

text documents, and excel files.  NERC FSF provides metadata log sheets for generic 

use in the field, but the number and type of metadata fields vary by instrument 

(Fogwill 2005; Mac Arthur 2006, 2007). The University of Queensland Centre for 

Spatial Environment Research supplies field metadata sheets for vegetation 

campaigns, but the metadata fields do not adhere to officially recognized norms 

other than the parameters pertaining to sky conditions for describing cloud amount 

(oktas) and type (based on recommendations from the UK Meteorological Office) 

and viewing geometry parameters (based on CSIRO recommendations) (Phinn et al., 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

46 

2007). It also supplies excel files for loading spectral measurements with their 

associated metadata for marine campaigns (CSER, 2006).  CSIRO provide datasheets 

for spectral measurements in shallow benthic habitats and for some metadata fields, 

proper documentation is restricted to pre-defined keywords to describe water 

colour, water type, substrate density of cover, epiphytic growth, cloud cover as a 

percentage (CSIRO, n.d.). These metadata proforma in general are inconsistent in the 

number of metadata fields they recommend, the information they represent, and 

how these metadata fields should be expressed (specificity, naming conventions, 

keywords).  

 

There are online repositories of field spectroscopy data and metadata for scientists 

and general members of the public to access. The USGS Spectral Library 

(http://speclab.cr.usgs.gov/spectral-lib.html) is available online for download. The 

library was developed to support imaging spectroscopy studies of the Earth and 

other planets (USGS, 2006). Functionally it is an html-based directory of spectra with 

associated metadata. There are 820 spectra, categorized into mineral, vegetation, 

man-made, mixture, volatile, microorganism, and plant samples. Each spectrum is 

stored as an image plot and metadata including sample name, description, chemical 

formula, sample donor, location, xrd analysis, with up to 24 metadata fields stored in 

pre-defined templates for each category of target.  It is a static library in the sense 

that the data is read-only, and members of the public cannot upload new spectra or 

perform updates.  It is one of three spectral libraries (both field and lab-based 

spectroscopy) within the ASTER Spectral Library (http://speclib.jpl.nasa.gov/).  
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Recent developments in relational spectral databases (some of which are online and 

publicly accessible) have allowed a more structured storage for spectral 

measurements and their associated metadata (Pfitzner et al., 2006; Hueni et al., 

2007).   The SPECCHIO (http://www.specchio.ch/) database is available online for 

members of the public and can also be downloaded as a local instance.  SPECCHIO 

was created by Remote Sensing Laboratories at the University of Zurich to store 

reference spectra and campaign data obtained by spectroradiometers in a central 

repository (Hueni et al., 2009).  It is accessible through a Java application, and all 

data is stored in a MySQL database.  The public can upload spectra and metadata 

and make edits to their own datasets. It contains 111,023 spectra across 55 

campaigns that are available for viewing and download. Metadata is stored at both 

the spectrum and campaign level, some of which is auto-generated. Users have the 

option of additional metadata they wish to populate, either at the spectrum level 

(including viewing geometry, target homogeneity, environment information) or 

campaign level (including description, associated institute).  

 

The DLR (German Aerospace Center) Spectral Archive 

(http://cocoon.caf.dlr.de/intro_en.html)  is a publicly available database created in 

2006 to serve as a tool for archiving, managing and using spectral signals collected 

from a variety of campaigns in the field and/or in the laboratory (Becvar et al., 2006). 

It has 152 campaigns with 1609 spectra, with metadata defied at the campaign and 

spectrum level. The data is published as html files accessible through any web 

browser. To upload data, users must comply with the metadata formatting provided, 

but there is no minimum required metadataset specified.   
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None of these spectral databases, however, have a full suite of standardized 

metadata definitions, and nor do they provide quality assessment or assurance for 

the metadataset (SPECCHIO allows users to assign a quality designation to their 

metadataset but this option has not been used for any of the stored datasets).  

 

There are other databases that are in the process of being developed or being 

enhanced. The SSD (Supervising Scientist Division, Australia) Spectral Vegetation 

Database was developed in 2006 for the objective of providing a database of 

reference spectral signatures in the 200-2500 nm range for vegetative ground covers 

(Pfitzner et al., 2006).  It is not available to the public currently. The Carnegie 

Spectranomics Lab has published a database online for spectroscopy data and 

metadata for tropical forest canopy trees, lianas, vines, hemi-epiphytes, and other 

lifeforms that are normally inaccessible to scientific researchers; spectroscopy data is 

not yet available (Carnegie Spectranomics, 2013). SPECCHIO is undergoing an 

enhancement to become a national spectral database for Australia to ensure the 

long-term storage of data and support scientists in data analysis activities (Hueni et 

al., 2012). The purposes for which these spectral libraries and databases have been 

created are not consistent; while some have been created as a repository of 

reference data (USGS Spectral Library), others are a tool simply for sharing data (DLR 

Spectra Library, SPECCHIO). This in turn creates inconsistency in quality control 

policy for input datasets and their associated metadata, in those cases where quality 

control policy exists and/or is enforced. In order for any current or future data 

metadata exchange mechanisms and platforms to be useful to data users as tools for 
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making informed choices about a dataset’s usability, issues of metadata quality must 

be addressed.  

 

2.5 Geospatial data sharing systems  

There are international initiatives to share geospatial data among researchers and 

the public. Their architecture is a mixture of metadata registries, databases, 

datawarehouses, and cloud platforms. These systems were built with the objective 

of providing reference datasets and products for researchers and the public, 

enabling sharing of datasets in a quality controlled manner, and facilitating the 

distribution of datasets and their metadata through a single point of access.  

 

EOSDIS (Earth Observing System Data Information System) is a network of data 

centres, metadata repositories, middleware providers and directory services for 

NASA’s Earth science data (Kuo, 2010). It provides datasets and products derived 

from satellites, aircraft, field measurements and other sources. As of September 

2012, it offered 6,886 unique data products, with an average daily archive growth of 

5.4 TB, and total archive volume of 7.4 PB (NASA, 2013a).  EOSDIS incorporates the 

Global Change Master Directory, a metadata clearinghouse for NASA Earth 

observation datasets, documents, and services. NASA has also collaborated with OCC 

(Open Cloud Consortium) on Project Matsu to create cloud-serviced Earth Observing 

satellite image processing for global flood and fire monitoring (Grossman et al., 

2012). Figure 2.10 is a high-level overview of NASA’s Earth science data operations, 
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showing the data flow from source data acquisition, to processing, and distribution 

through EOSDIS for access to researchers and members of the public.  

 

TERN (Terrestrial Ecosystem Research Network) is an Australian initiative to 

coordinate a national data network with quality assured observational data from the 

terrestrial domain (TERN, 2013). It was built for Australia’s ecosystem science 

community to share and manage data from a network of research facilities including 

plot-based monitoring systems and remotely sensed data time-series products 

(AusCover Facility), coastal ecosystem datasets (The Australian Coast Ecosystems 

Facility) and multidisciplinary ecosystem observatories (The Australian Supersite 

Network), among others (TERN, 2013). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 NASA’s  Earth Data Science Operations, incorporating EOSDIS, and 
distribution through clearinghouses including GCMD   
Source: (NASA, 2011) 
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The TERN Data Discovery Portal, a metadata clearinghouse for datasets sourced from 

each facility, is the access point for these datasets. In 2012, TERN teamed with 

Google to leverage their cloud computing services to create an online vegetation 

monitoring tool through the Google Earth Engine for land managers (States News 

Service, 2012).  Figure 2.11 provides a data flow overview for facilities participating 

in TERN.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 A hierarchical overview of the facilities contributing to the TERN 
dataset accessible through the TERN Data Discovery Portal Source: (TERN, 2013) 
 

NOAA’s National Climatic Data Centre is a digital archive of global weather and 

climate data. It originated in 1951 as a weather records bureau and has evolved to 

become the world’s largest provider of land-based, marine, model, radar, weather 

balloon, satellite, and paleoclimatic datasets (NOAA, 2013a). NCDC’s digital archive 
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has increased from 1 petabyte to 6 petabytes in the past 10 years and is expected to 

exceed 15 petabytes by 2020 with the continual introduction of new remote sensing 

technologies (NOAA, 2013a). 

 

Though not comprehensive, the list above exemplifies the largest operational 

geospatial data sharing systems, with the greatest variety of source data. These 

systems present the possibilities that exist for quality assured sharing of geospatial 

datasets, metadata, and derived products for the research community and the public 

on national and international scales. They are examples of on-demand access that 

were developed to meet the needs of scientific communities that require a central 

archiving and distribution platform for their data and metadatasets to assist in 

answering research questions both individually and as a group. The speed at which 

the data repositories continue to grow within these systems also emphasizes the 

need to implement standards and policies at the level of the data producers, data 

owners, data managers, and within the IT infrastructure to maintain complete, high-

quality, and up-to-date metadatasets.    

 

2.6 Metadata quality  

2.6.1 Introduction 

It is important here to differentiate between concepts of data quality and metadata 

quality. Data quality refers to the characteristics of the dataset referenced by the 

metadata. Within geospatial applications, this can include parameters such as 

positional accuracy, precision, and timeliness, and are typically documented within 
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the metadata referencing the dataset, whether the dataset is a raster image, 

coverage, or recorded spectrum (FGDC 2002; ISO, 2003).  However, metadata quality 

refers to the characteristics of the metadataset itself, recognizing it as a distinct body 

of data that can be analyzed separately. Metadata quality makes no direct reference 

to the underlying spectra or field data collection protocols, as the case may be, for 

field spectroscopy applications.   Therefore data quality will not be addressed further 

in any substantive manner as it is not within the scope of this thesis and instead the 

focus will be on metadata alone.   

 

The concepts of metadata quality and completeness arise within the framework of 

metadata standards and it is on this foundation that they must be defined and 

developed as useful measures with meaning for data users.  There is no established 

definition of quality and completeness for field spectroscopy metadata.  Evaluation 

of existing standards can serve as a starting point to creating logical, rational, and 

useful quality and completeness criteria for such datasets.  

 

 

2.6.2 Quality and completeness within existing metadata standards  

Geospatial metadata quality has not been formally defined either in any standard or 

by any advisory body (FGDC, 2002; ISO, 2002, 2011; ANZLIC, 2007; INSPIRE 2009) 

responsible for issuing these standards. Rather, metadata fields assigned to the 

‘quality’ modules or classes within existing standards refer to the quality of the 
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dataset (such as a coverage or raster image), not the metadata itself. For example, 

the ISO 19113:2002 standard for quality principles for geographic data  

‘'is applicable to data producers providing quality information to describe and 

assess how well a dataset meets its mapping of the universe of discourse as 

specified in the product specification, formal or implied, and to data users 

attempting to determine whether or not specific geographic data is of 

sufficient quality for their particular application”  (ISO, 2002).  

 

This definition of quality is often expressed in quantitative and qualitative terms 

describing the positional accuracy, temporal accuracy, thematic accuracy, logical 

consistency, and completeness of the original dataset (FGDC 2002; ISO, 2003).  

 

The concept of metadata quality is more commonly referenced in literature relating 

to general information science and research on the design and utility of metadata for 

digital data repositories. Even here however, the definition of metadata quality is an 

oblique one and has been characterized variously as “a true representation of the 

resource” (Margaritopoulos, 2008, p. 106), important to information seeking 

activities (Stvilia et al., 2004), an expression of fitness for purpose (Park, 2009) and 

supportive of interoperability and long-term curatorship and preservation (NISO, 

2007).  

 

Methods for assessing information quality have been applied to studies of metadata 

quality. These methods most commonly includes measures of dimensions referring 

to accuracy, conformance to expectations, logical consistency and coherence, 
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accessibility, and  timeliness, with up to thirty two individual items proposed within 

these categories (Bruce and Hillman, 2004; Stvilia et al., 2007; Ochoa and Duval, 

2009). These quality dimensions can be further grouped into classes representing the 

causes underlying quality variance on each dimension, specifically those causes that 

are intrinsic (referring to a standard within a data user’s conventions, norms, and 

language), relational (relationships between objects and their context) and 

reputational (the merit and reputation of the metadataset and its creators) (Stvilia et 

al., 2007).  

 

Quantification of metadata quality can provide information, whether directly or 

implicitly, about the metadataset, its suitability for a given purpose, the data 

repository in which it is stored, and the creators and/or owners of the data. 

Quantifying is useful to highlight challenging-to-acquire components of specification 

(Liolios et al., 2012). Metrics for metadata quality are mostly generated through 

automated processes and take various forms including: 

 an ordinal scale 'good/moderate/poor/unusable' describing the overall 

quality of the metadataset (Currier et al., 2004) 

 quantifying the problems themselves (ambiguity, inaccuracy, inconsistency, 

redundancy) as percentage of occurrence within a recordset (Stvilia et al., 

2007) 

 accuracy as a measure of semantic distance between a metadata instance 

and the textual information it references (Ochoa and Duval, 2009) 
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 reputation of a metadataset as a linear combination of weighted sub-

parameters including number of unique editors, edits, connectivity, reverts, 

registered user edits, anonymous user edits (Stvilia et al., 2007) 

Metrics are limited only by the inventiveness of the metadata analysts and the 

degree of informativeness these measures provide to data users.  

 

Agreement on what constitutes metadata completeness is even more difficult to 

achieve than that for metadata quality. The reasons for this arise mostly out of the 

numerous and varied applications that metadata is created and used for, as well as 

the diverse standards inherently related to these applications, whether the 

applications are bibliographic, machine readability, searchability and discoverability 

by users, among others.   Simply put, metadata fields for a dataset, however 

numerous, are not relevant for all resources (Ochoa and Duval, 2009). What defines 

completeness is “conditioned by characteristics of the resource type ... specifically by 

local metadata guidelines and best practices ... and modulated by characteristics of 

local communities” (Park, 2009, p. 220). Metadata completeness is described more 

consistently in terms of the advantages of creating a complete set in conforming to a 

given standard. A complete metadataset “should describe the resource as fully as 

possible” (Goovaerts and Leinders, 2012, p. 182), enables the user to “locate entities 

by the attributes the user intends to use” (Stvilia et al., 2004, p. 116), and “makes [a 

dataset] more trustworthy” (ANDS, 2011).  Completeness metrics are almost 

exclusively derived through automated data mining processes and have most often 

been expressed as individual or combinations of weighted percentages of 

compliance statistics with a requisite set of metadata fields.  



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

57 

It can be summarized that quality and completeness parameters ultimately serve to 

give a data user the necessary information to make decisions about the utility of the 

metadata for a given purpose. These two attributes can be viewed as complimentary 

but individual measures that, in combination, provide a data user with a more 

comprehensive and less ambiguous assessment of a metadataset than either 

measure would on its own. For example, a metadataset assessed within the confines 

of a single metadata standard for a given application may be evaluated as high 

quality due to its logical consistency and ontological compliance, but can be 

incomplete according to the requirements of a data user.  Likewise, a metadataset 

may be complete, but corrupted by syntactic and semantic errors. Therefore, both 

measures are necessary to enable the user to make intelligent and informed choices.  

 

Metadata quality and completeness are factors that determine whether a 

metadataset is available for discovery in a metadata clearinghouse, or whether it 

passes through the data filtering systems of datawarehouses.  In the context of 

sharing and distributing metadatasets for research and public access, it is incumbent 

upon the designers and managers of IT infrastructure software policies to ensure 

that they provide the data users with as rich and complete metadatasets as possible 

to permit them to make informed choices about whether a dataset is usable for a 

given purpose.  
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2.7 Conclusions 

This review confirms the need for creating a metadata standard for field 

spectroscopy. A lack of formally identified metadata,  the insufficiency of existing 

metadata standards in meeting the requirements of field spectroscopy standards, 

and limited or no implementation of quality control of field spectroscopy metadata 

in spectral databases and data sharing platforms results in scientists being unable to 

make informed decisions about whether  datasets are suitable for a given purpose. It 

also reduces the potential for datasets to be discovered, shared, and re-used for 

multiple purposes.  

 

A review of field spectroscopy metadata practices revealed that campaigns differ 

according to the purpose for which the data is collected, the geographic and 

environmental variables, and the target being sampled.  The impact of inconsistent 

sampling and measurement protocols and the fact that these protocols largely 

remain undocumented through metadata together compromise valid 

intercomparison of datasets. The variety, but limited number of metadata 

documentation practices by field spectroscopy scientists and opinions on what 

constitutes application-specific and application-agnostic metadata means that there 

is no formally identified metadataset for field spectroscopy.  

 

Existing geospatial metadata standards do not meet the requirements of the field 

spectroscopy community. They do not explicitly address field spectroscopy collection 

techniques, or the ontologies and data dependencies required to model the complex 

interrelationships among the observed phenomena as data and metadata entities. 
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There is no consensus on definitions of metadata quality and completeness, but 

what is clear is that they can be defined to suit the requirements of field 

spectroscopy metadata users. Issues of metadata completeness and quality are given 

little attention in spectral archives, and in cases where the user has the option for 

some degree of quality assessment, they are not enforced by the system.  

 

As data sharing becomes more prolific and data users expect on-demand access, it is 

vital that data sharing exchange mechanisms and platforms incorporate metadata 

quality metrics and quality control for field spectroscopy datasets. This allows data 

users to make the best choices when searching for and selecting a dataset for a given 

application.  

 

This review has identified the gaps in knowledge within the remote sensing 

community about what constitutes field spectroscopy metadata, how to document 

it, and how to meet data users’ requirements for interoperability and quality 

assurance.  From this emerges a framework for specific areas of enquiry to respond 

to these problems, where to look for guidance on building a standard, and the 

unique components of a field spectroscopy metadata standard that require focus.  

 

Global-scale metadata exchange, intelligent and automated archiving processes for 

datasets, and quality controlled distribution of field spectroscopy data all require a 

concerted effort from the field spectroscopy community to first of all, identify their 

needs for robust, complete, and high quality metadatasets. Metadata standards, 

polices and quality control processes can then be developed and implemented on 
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this foundation. Only when these conditions are met can field spectroscopy datasets 

be released into data warehouses and other data sharing platforms with maximum 

potential for discoverability and re-use. 
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3.1 Introduction 

This chapter addresses research question #1, ‘What are the key elements of a core 

metadataset for all field spectroscopy applications?’ The results and analysis of an 

international expert panel survey (n=90) are presented on the use and utility of 

metadata for field spectroscopy sampling. Next, a core set of metadata parameters 

for all spectroscopy campaigns is proposed based on the survey analysis.  

 

A review of field spectroscopy protocols, including their diversity and commonalities, 

as well as the rationale for a metadata standard is presented in Chapter 2.  A 

standardized methodology for defining and storing metadata must be closely aligned 

to in situ data collection practices, but currently, no such methodology for 

documenting in situ spectroscopy metadata exist. To address the requirements for 

efficient and viable intercomparison and fusibility of datasets generated from 

quantitative field observations, it is necessary to identify which metadata 

parameters are common to all campaigns, which are unique to specific applications, 

and which among these are critical to all campaigns. The aim of this chapter is to 

present a way of prioritizing metadata that can be applied to any in situ field 

spectroscopy metadata standard that is practical, flexible enough to suit the purpose 

for which the data is being collected, and/or has sufficient legacy potential for long-

term sharing and interoperability with other datasets. 

 

A field spectroscopy metadata standard must handle both generic and application-

specific information. Figure 3.1 illustrates a conceptualized prototype field 
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spectroscopy metadata standard that can be informed by the research in this 

chapter and subsequent chapters.  It consists of fundamental building blocks 

including core metadata that is common to and requisite for all applications, 

application-specific metadata, and additional metadata modules from existing 

standards and paradigms to enhance quality, discoverability, and interoperability.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A conceptualized prototype field spectroscopy metadata standard 
 

In order to create a full suite of metadata definitions, first the unique conditions 

under which field spectroscopy campaigns operate must be identified and described. 

Secondly, these definitions must be robust and sufficiently versatile to accommodate 

the breadth of campaigns commonly conducted. Thirdly, the metadata standard 

must overcome the obstacles to interoperability and quality assurance expressed by 

data users within the remote sensing community (Reusen et al., 2007). To solve 

these issues, a survey of spectroscopy experts was conducted. 
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3.2 Consulting the experts 

To define a common set of metadata standards, the opinion of the spectroscopic 

science community was canvassed.  An expert panel was convened for guidance 

through the process. To establish membership in this group, one, or more, of the 

following criteria was met by each participant: 1) be an established investor in the 

quality of the spectroscopic metadata; 2) have experience in, and possess 

understanding of theory and methods of spectroscopic data capture; and, 3) express 

an interest in developing techniques for increased sharing and intercomparison of 

their datasets with other remote sensing research groups. The group was 

representative and comprised a broad spectrum of expertise, but was not 

comprehensive. 

 

A pilot survey was introduced to a group of remote sensing scientists at the 7th 

EARSeL (European Association of Remote Sensing Laboratories) workshop in 

Edinburgh, Scotland, in 2011.  Refinements to the survey were made based on the 

response from the test group and an improved and expanded online survey was 

launched later in 2011 in the form of a user-needs analysis for field spectroscopy 

metadata. The purpose of the survey was to determine, based on the input of 

experts in the field, the metadata fields that are critical for creating valid and reliable 

field spectroscopic datasets, with enough integrity to generate datasets for long-

term cataloguing and data exchange across a range of campaigns. Approximately 200 

metadata fields were presented to the survey participants. A large proportion of the 

fields were obtained from Malthus and Shirinola (2009) and appended with 

application-specific metadata proposed by select field spectroscopy experts through 
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personal interviews. Appendix A lists all the metadata elements in each category.  

Table 3.1 is a listing of the generic and application-specific metadata categories 

included in the survey. 

 

 

 

 

 

 

 

 
Table 3.1 Categories of metadata fields in the survey 

 

The audience was an international panel of scientists with expertise in in situ field 

spectroscopy, who were asked to respond on an anonymous basis. The survey was 

completed by 90 participants from organizations and institutes with a history of 

research on the relevant topics and included the NERC FSF (National Environment 

Research Council Field Spectroscopy Facility, UK), DLR (German Aerospace Center, 

Germany), CSIRO (Commonwealth Scientific and Industrial Research Organisation,  

Australia), RSL (Remote Sensing Laboratories, Switzerland), EPA (Environmental 

Protection Agency, USA),  numerous other North American and European university 

research labs and participants from the commercial sector.  Each participant 

assessed the criticality of several categories of metadata fields, and could propose 

additional metadata fields that they believed could enhance the quality of a 

hyperspectral dataset generated in the field. Open-ended comments were possible 

Generic campaign metadata Application-specific metadata 
instrument 
reference standards 
calibration 
spectral signal properties 
illumination information 
viewing geometry 
environment information 
atmospheric conditions 
general project information 
location information 
general target and sampling information 
 

vegetation 
woodland and forest 
agriculture 
soil 
mineral exploration 
snow 
urban environments 
marine and estuarine 
underwater substratum targets 
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throughout the survey for further input in each metadata category. A copy of the 

survey is supplied in Appendix A.  

 

Respondents had the option of participating in the categories of their choice, and 

were also asked to nominate themselves as experts in one or more areas of field 

spectroscopy application. This self-nomination of area of expertise did not in any 

way limit the categories available to each participant, and primarily served the 

purpose of informing analysis between a participant’s area of expertise and their 

assessment of metadata criticality. Metadata fields presented in the survey could be 

given one and only one ranking, each defined accordingly:  

• ‘critical’ (required metadata field for a field spectroscopy campaign; without this 

data the validity and integrity of the associated spectroscopy data is 

fundamentally compromised); 

• ‘useful’ (not required, but enhances the overall value of the dataset); 

• ‘not useful now but has legacy potential’ (not directly relevant to the associated 

field spectroscopy data but potentially has use for a related hyperspectral 

product) 

• ‘not applicable’ (this metadata is not relevant) 

 

These four rankings were chosen to inform a prioritization model for criticality for a 

metadata standard.  
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3.3 Results of the survey 
 
This section presents an analysis of the survey participants’ responses. Sections 3.3.1 

(metadata categories) and 3.3.2 (metadata elements) present the quantitative 

results and Section 3.3.3 is a synopsis of the free-form comments from the 

participants. The quantitative analysis enabled identifying a core metadataset for all 

applications, which includes ‘Viewing Geometry’, ‘Location Information’, ‘General 

Target and Sampling Information’, ‘Illumination Information’, ‘Instrument’, 

Reference Standards’, ‘Calibration’, ‘Hyperspectral Signal Properties’, ‘Atmospheric 

Conditions’, and ‘General Project Information’.  Quantitative analysis also identified 

the varying degrees of consensus, both inter- and intra- category, among the generic 

and application-specific categories. The following section provides a more detailed 

discussion on the derivation of the core metadataset and examples of responses to 

specific categories.  

 

3.3.1 Quantitative results – metadata categories 

Figure 3.2 identifies the areas of expertise of the participants. Each respondent was 

asked to designate themselves as experts in one or more fields. Areas of 

spectroscopy research beyond this scope, as stated by the respondents, included 

atmospheric studies, calibration and validation activities for airborne sensors, and 

wetlands and peatlands research (all grouped within the ‘other’ category). The 

largest group of experts were from the agriculture (40), forest/woodland (39), and 

soils (27). The smallest sample was from the snow research area (2). The range of 
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group sizes sampled required both parametric and non-parametric statistical 

methods to analyze the results.  

 

Figure 3.2 Areas of expertise self-nominated by survey respondents (n=90) 
 

The survey was designed to gather information on two metadata categories – 

generic and application-specific (Table 1). Generic campaign metadata refers to 

subsets of metadata common to all campaigns, regardless of the application or 

purpose for collection and includes, for example: instrument (Figure 3.3), calibration 

(Figure 3.4), reference standards, and viewing geometry information. Application-

specific (or target) metadata is associated with the purpose of the campaign and the 

type of target being measured; this category is separated into subsets including 

vegetation, snow, soil, mineral exploration and marine targets. For each subset of 

metadata, whether in the general or target specific categories, a criticality index of 

four measures (‘critical’/’useful’/‘not useful now but has legacy potential’/’not 

applicable’) was used by each respondent. The ordinal criticality (or degree of 
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importance) rankings were standardized to numerical values (ranging from 0 for 

‘N/A’ to 3 for ‘critical’ to permit statistical analysis of variance. The criticality rankings 

for all metadata categories are presented in Appendix B.  

 

Variation in ranking of criticality varied for each metadata category. As examples, 

Figures 3.3 and 3.4 depict the frequency of ranking for two subsets of general 

campaign metadata fields in the ‘instrument’ (2) and ‘calibration’ (3) metadata 

categories, responded to by the scientists.  

 

Figure 3.3 Frequency of criticality ranking for ‘instrument’ metadata (n=79) 
 

In the ‘instrument’ category, assignment of ‘critical’ to a given metadata field ranges 

from 90% for ‘spectral wavelength range’ to less than 20% for [instrument] ‘serial 

number’.  The former field is highlighted as the only one with no ‘N/A’ or ‘legacy 

potential’ ranking, suggesting that it is regarded as a fundamentally crucial metadata 

field and warrants inclusion in all field spectroscopy metadata protocols. The latter 
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field, ‘serial number’ implies that it is perceived as less important to respondents, 

despite its crucial role in databases and other information systems in tracking the 

history of use and calibration of an instrument. Respondents’ familiarity with and 

knowledge of metadata storage within information systems may have an impact on 

the frequency of ‘serial number’ being ranked ‘critical’. The implication is that most 

respondents do not have direct use for ‘serial number’ but in many cases it is vital to 

maintaining an accurate history of the use and calibration of instrument, and could 

be used within an information system to automatically populate detailed metadata 

for a given instrument.  

 

Figure 3.4 Frequency of criticality ranking for ‘calibration’ metadata (n=68) 
 

In the ‘calibration’ category, there is a lower disparity in assignment of ‘critical’ 

ranking across the fields with a range between 70% (‘radiance’) to 32% (‘stray light’). 

This implies a greater degree of consensus opinion on the influencing factors of 

calibration activities on both the hyperspectral data and the end-products for which 

the data and metadata will be utilized e.g. end-member retrieval, land cover 

classification, satellite sensor validation and BRDF modelling.  It must be noted that 
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different interpretations of a given metadata element as well as the number of 

metadata elements provided in a category may have influenced the ranking given by 

some respondents.  For example, comments provided by the respondents for the 

‘calibration’ category indicated that for one respondent, there was ambiguity as to 

whether the ‘calibration data’ field referred to the spectral measurements against 

the calibration standard, and another suggested that additional fields should be 

provided indicating whether the calibration was relative (to a spectral plate as is) or 

absolute to a specific NIST-traceable spectralon panel.  

 

Some of the variation in the ‘instrument’ category may be accounted for by the 

choice of instrument listed by the participants of the survey; more than twenty 

different instruments were identified as being commonly used for in situ campaigns, 

with the top four being ASD models, Ocean Optics USB2000, SVC GER1500, and 

TRiOS Ramses, in addition to others designed in-house. Figure 3.5 shows preferred 

instruments by expert group.  

 

The unique technical aspects of each instrument may have a bearing on the 

particular metadata fields that an operator chooses to include in their metadataset; 

these may include instrument housing (for extreme weather conditions or non-

terrestrial campaigns), the degree to which an instrument has been customized for a 

particular application and whether it is a prototype, and sensor behaviour affected 

by manufacturer design. As an example, PANalytical Boulder, Inc. (formerly ASD) 

supplies a device known as a ‘Scrambler’ for its FieldSpec models to compensate for 

spectral discontinuities due to non-uniformity of field-of-view across the sensor bank  
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Figure 3.5 Top 5 preferred instruments by expert group 
 

fibreoptics. It may be worthwhile investigating the proportion of FieldSpec users who 

incorporate biased field-of-view calculations into their spectral data modelling and 

how this impacts their calibration, viewing geometry, and reference standards 

protocols and the subsequent designation of metadata that are critical to account 

for this. 

 

Levels of agreement between respondents across all categories were measured 

using the intraclass correlation coefficient (ICC) (Tabachnick and Fidell, 2007).  This 

method was most amenable to the ordinal rankings and adjusted for the scale of 

measurement, which varied across the categories. Figure 3.6 shows a measure of 

consensus among the respondents, from highest to lowest, across the metadata 

categories. The trend for consensus is determined mostly by the population size and 

composition of the respondents for each group. Generally, the smaller and more 
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specialized the expert group and the more specialized the metadata category, the 

higher the degree of consensus within it. The four metadata category groups with 

almost perfect consensus were ‘Underwater Substratum Target’ (ICC=0.922), 

‘Marine and Estuarine’ (ICC=0.847), ‘Snow Campaign’ (ICC=0.824), and ‘Agriculture 

Campaign’ (ICC=0.802). The top eight metadata categories for consensus ranking 

were all application-specific. The ‘Vegetation Campaign’ metadata category is the 

only application-specific category that exhibits ‘Fair’ consensus (ICC=0.381).  

 

Figure 3.6 Group consensus measure for metadata field criticality among the 
respondents, from highest consensus (‘almost perfect’) to lowest (‘poor’), across 
the metadata categories. Size of sphere denotes numbers of respondents in each 
category.  
 
Note: The estimator for each intraclass coefficient of variance measure is the same, 
whether the interaction effect is present or not. ICC can be interpreted as follows: 0-
0.2 indicates poor agreement:  0.3-0.4 indicates fair agreement; 0.5-0.6 indicates 
moderate agreement; 0.7-0.8 indicates strong agreement; and >0.8 indicates almost 
perfect agreement. 
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As an example of responses to application-specific metadata, Figure 3.7 depicts the 

frequency of ranking for marine ‘substratum target’ metadata which was responded 

 

Figure 3.7 Frequency of criticality ranking for ‘substratum target’ metadata (n=40) 
 

to by a smaller population of scientists (40). The substratum target metadata 

category most commonly refers to submerged biological marine targets such as 

seagrass and corals, but can include any target on a submerged surface.  For all fields 

in this category, there was a greater consensus between the four available rankings 

than in the non-specialized metadata categories, and further investigation revealed 

that most of the ‘N/A’ rankings were assigned by respondents whose primary 

expertise lay outside of the marine sciences. Among the metadata fields presented 

throughout the survey, from generic campaign to specialized campaign categories, 

every field was designated as ‘critical’ by at least a small subset of respondents, 

regardless of their area of expertise. The ranking results for all metadata categories 

are found in Appendix A. 
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The criticality rankings also indicate that group membership has an impact on the 

degree of variance in response. An example among the marine and estuarine 

scientists demonstrates the variability in their responses from the other expert 

groups, with group differences between the two being amplified in the marine-

specific metadata categories. In the viewing geometry metadata category, shown in 

Figure 3.8, group means ranged between ‘useful’ and ‘critical’ for both the marine 

and non-marine scientists.  

 

Figure 3.8 Group means and variance in ‘viewing geometry’ metadata (Marine and 
Estuarine n1=18, Non Marine n2=49) 
 
 
The non-marine scientists rate the first three metadata fields ‘distance from target’, 

‘distance from ground’ and ‘area of target in FOV’  as ‘critical’ more often than the 
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marine group. There was more agreement in the remaining metadata fields relating 

to solar and sensor angles, suggesting that regardless of a respondent’s area of 

expertise, metadata relating directly to reflectance anisotropy, either in the 

atmosphere, water column, or due to the target surface properties, is of equal 

importance to all campaigns. Variance in criticality ranking for viewing geometry 

metadata was consistently higher among non-marine scientists, implying that there 

exists greater consensus among field spectroscopy scientists from the same expert 

group.  

 

Figure 3.9 illustrates group means and group variances for criticality rankings in the 

‘marine and estuarine environmental conditions’ metadata category. This is a more 

specialized campaign category, where it can be justifiably assumed that the marine 

scientists have a better informed opinion as to the metadata that most impacts the 

validity and reliability of in situ marine datasets. The group mean rankings for marine 

scientists were uniformly higher for all metadata fields in this category, and variance 

was uniformly lower than for rankings assigned by non-marine scientists. 

Underwater campaigns can vary in terms of the application of the data being 

investigated and the protocol necessary to capture the required data.  Targets can 

include seagrass, macro-algae, corals and sponges and spectral measurements may 

be taken above surface or below surface; opinions differ on how inclusive a 

metadataset must be to document environmental and target properties (Bhatti et 

al., 2009 and Dekker et al., 2010). The unique complexities of measuring targets and 

controlling influencing variables in a marine environment can be understood best by 

the scientists with in-field expertise (details of these complexities are discussed in 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

77 

Chapter 2).  These considerations and the results of the survey strengthen the 

implication that consensus and agreement are dependent upon the respondents’ 

area of expertise. 

 

Figure 3.9 Group means and variance in ‘marine and estuarine environmental 
conditions’ metadata (Marine and Estuarine n1=18, Non Marine n2=49) 
 

3.3.2 Quantitative results – metadata elements 

An optimal standard that would meet basic requirements for practical 

implementation, flexibility, and longevity of a dataset, would be constructed using 

the most essential (‘critical’) fields that are common to all campaigns. Such a 

standard would need to accommodate variation in response by expert groups across 

the metadata categories, as well as the logistics, aims, and goals inherent to each 
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campaign. To explore this, thresholds for inclusion of a metadata field in a protocol 

were determined based on its criticality. The ordinal and non-parametric nature of 

the data necessitated a suitable suite of tests that could adjust for the scale of 

measurements in each metadata category and permit repeatability and 

intercomparison for all categories. The first phase of analysis was conducted using a 

stringent test for calculating the likelihood of a dichotomous outcome -- either a field 

must be included in a protocol (the ‘critical’ fields extracted from the responses) or it 

is excluded – and this was achieved via binomial analysis. The second phase 

identified additional metadata fields that demonstrated ranking aberrant to the 

other fields in the category; this was accomplished via scale statistics for describing 

internal consistency and interrelation between items in a given category; in other 

terms, the usefulness of every metadata item being in that particular category.  

 

Table 3.2 shows the binomial test results and scale statistics analysis on calibration 

metadata where the frequency of critical rankings were compared to the non-critical 

(‘useful’/’legacy potential’/’NA’). The binomial tests were conducted such that the 

proportion of ‘critical’ ratings were compared with a baseline proportion of 0.5. 

Metadata fields that have been designated as critical more than 50% of the time 

have been highlighted in bold. They comprise half of the metadata fields within the 

category and include ‘Date’, ‘Dark Noise’, ‘Signal to Noise’, ‘Stray Light’ and 

‘Calibration Data’.  

 

While binomial analysis is useful for generating a dichotomous outcome, it fails to 

calculate the proportion of individual ‘useful’/’legacy potential’/’NA’ measures and  
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Metadata 
category  Observed 

Prop. p-value Scale Variance 
if Item Deleted 

Corrected 
Item-Total 
Correlation 

Cronbach's 
Alpha if Item 

Deleted 

Date 
Critical 0.68 0.002 26.443 0.596 0.888 

Non-critical 0.32     

Irradiance Critical 0.32 0.002 25.786 0.649 0.885 
Non-critical 0.68     

Radiance Critical 0.30 0.001 25.909 0.660 0.885 
Non-critical 0.70     

Darknoise Critical 0.52 0.818 26.210 0.686 0.884 
Non-critical 0.48     

Signal to Noise Critical 0.55 0.422 26.638 0.579 0.890 
Non-critical 0.45     

Linearity Critical 0.40 0.105 25.623 0.636 0.886 
Non-critical 0.60     

Stray Light Critical 0.67 0.005 25.063 0.660 0.884 
Non-critical 0.33     

Calibration Data Critical 0.61 0.081 25.416 0.620 0.887 
Non-critical 0.39     

Traceability 
(yes/no) 

Critical 0.49 1 24.547 0.631 0.887 
Non-critical 0.51     

Standard 
(NIST/NPL, etc.) 

Critical 0.47 0.728 24.097 0.723 0.880 
Non-critical 0.53     

 
Table 3.2 Binomial test results and scale statistics analysis for ‘calibration’ 
metadata (n=78) 
 
Metadata fields that have been designated as critical more than 50% of the time 
through binomial testing have been highlighted in bold. Scale statistics examined 
those metadata fields that generated relatively extreme values for Corrected Item-
Total Correlation and Cronbach’s Alpha, or a strong effect on the scale mean and 
variance if they were deleted; these have also been highlighted in bold. 
 

therefore an additional method of analysis using scale statistics is necessary for this 

purpose.  Scale statistics examined those items that generated relatively extreme 

values for corrected item-total correlation and Cronbach’s Alpha, or a strong effect 

on the scale variance if they were deleted; these also have been highlighted in Table 

2.  Cronbach’s Alpha, α,  is a reliability coefficient that is a useful measure of internal 

consistency of inter-rater agreement (Bland 1997, Santos 1999, Gliem and Gliem, 

2003) on the metadata fields in each category, and ranges from 0 ≤ α < 6 for 

unacceptable and/or poor internal consistency and any value α ≥0.9 is considered 
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excellent.  The corrected item-total correlation is the correlation of the metadata 

field with the summated score for all other metadata fields in the category. 

Identifying those metadata fields that have the strongest effect on the inter-rater 

agreement levels by their effect on Cronbach’s Alpha if they are removed warrants 

investigation as to why they exhibit a trend of rating different from other metadata 

fields in that category, and invites consideration for their exclusion from the category 

or potentially being assigned a status more important than the other items (Howard 

and Forehand, 1962; Henrysson, 1963).  

 
 
In the ‘Calibration’ category, ‘Cronbach’s Alpha if Item Deleted’ value is relatively 

high for all metadata fields in the category, representing good internal consistency 

within the category.  However, ‘Standard’ is a field not previously identified through 

binomial testing but indicates the need for further study into this metadata field as 

to the causes for its impact on the degree of agreement among respondents. It is 

closely correlated with the results for ‘Traceability’. This implies that for most of the 

survey participants, documenting frequency and results of calibration is important, 

but the details of the reference standard less so. The survey data permits speculation 

only at this point but the reason for choosing not to document the reference 

standard may arise from the level of significance a scientist assigns to the instrument 

itself being a factor in the recorded spectra, and the extent to which they are willing 

to collect and analyze ancillary calibration data to mitigate any spectral discrepancies 

resulting from the instrument. Similar results from all metadata categories illustrate 

the ambiguity presented by fields that lie below or near the threshold, therefore not 

being representative of the majority of respondents but having been identified as 
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‘critical’ frequently enough to support inclusion in a customized metadata standard 

for given campaigns. 

 
A foundation for a standard can be established by including those metadata 

categories with high overall rankings of criticality and internal consistency. Table 3.3 

illustrates ranking, from highest to lowest, of metadata categories in terms of field 

ranking means, variances, and analysis of variance between fields.  

   

ANOVA between item means  
for respondents  

(per metadata category) 
 

Metadata category Item means Item variances 
(mean)a 

df Friedman 
Test 

p-value 

Environment Information 1.822 0.597 4 17.704 0.001 
Mineral Exploration 1.822 0.841 15 189.355 <0.001 
Snow Campaign 1.890 1.183 10 58.645 <0.001 

Soil Campaign 2.057 0.657 20 192.433 <0.001 

Woodland and Forest Campaign 2.068 0.705 8 40.058 <0.001 

General Project Information 2.103 0.469 5 146.004 <0.001 

Atmospheric Conditions 2.153 0.425 6 117.125 <0.001 

Urban Environments 2.189 0.866 10 116.875 <0.001 

Marine and Estuarine 2.199 1.014 10 69.282 <0.001 

Underwater Substratum Target 2.216 1.139 9 28.481 0.001 
Vegetation Campaign  2.231 0.462 15 159.044 <0.001 

Agriculture Campaign 2.242 0.690 8 84.810 <0.001 

Hyperspectral Signal Properties 2.352 0.561 18 294.364 <0.001 

Calibration 2.379 0.605 9 54.067 <0.001 

Reference Standards 2.388 0.628 6 79.651 <0.001 

Instrument 2.393 0.484 18 310.47 <0.001 

Illumination Information 2.420 0.474 5 86.771 <0.001 
General Target and Sampling 
Information 2.477 0.446 13 105.327 <0.001 
Location Information 2.489 0.464 7 53.578 <0.001 
Viewing Geometry 2.571 0.358 6 12.624 0.049 

 
Table 3.3 Ranking of metadata categories by frequency of critical rankings and 
between-field variances 
 
All metadata categories that surpassed the threshold mean (2.0) for inclusion in the 
model metadata standard (ten categories were identified) have been highlighted in 
bold. 
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A Friedman Test was run against the non parametric data to measure variability in 

ordinal criticality rankings in each category (Tabachnick and Fidell, 2007). The 

Friedman Test measures the difference between the observed rankings per 

respondent for each metadata category against a baseline of uniform rankings 

between respondents with α = 0.05 and the results show that for each category the 

differences between respondents is statistically significant for values p<0.05.  

 

It can be assumed that for any given campaign, an ideal or model metadata standard 

would include both the generic campaign metadata (up to eleven categories) and at 

least one application-specific category, creating a total of 12 metadata categories.  

The item mean for a given category, as shown in Table 3.3,  incorporates the 

compound measure of the frequency of ‘critical’, ‘useful’, ‘legacy potential’, and 

‘N/A’ rankings. The more often that given fields in the metadata category were 

ranked ‘critical’ or ‘useful’, the higher the item means values for that category. This 

accounts for metadata categories with low inter-item consensus between 

respondents, such as ‘Reference Standards’ (ICC=0.224) and ‘Instrument’ (ICC=0.185) 

but high overall rankings for the metadata fields in that category. In Table 3.3 all 

generic (non-target-specific) metadata categories that surpassed the threshold mean 

(2.0) for inclusion in the model metadata standard (ten categories were identified) 

have been highlighted in bold. A mean greater than 2.0 for a given category means 

that on average, the fields in that category have a minimum overall ranking 

exceeding ‘useful’ (2.0) and a maximum overall ranking of ‘critical’ (3.0). All general 

campaign metadata categories surpassed this threshold, except for ‘Environment 

Information’, with a mean criticality ranking of 1.822. Therefore, those metadata 
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categories necessary for inclusion in the model metadata standard are (in order of 

mean criticality ranking): ‘Viewing Geometry’, ‘Location Information’, ‘General 

Target and Sampling Information’, Illumination Information’, ‘Instrument’, 

‘Reference Standards’, ‘Calibration’, ‘Hyperspectral Signal Properties’, ‘Atmospheric 

Conditions’, and ‘General Project Information’.   

 

3.3.3 Additional qualitative feedback from the survey participants 

Designing a standard benefits from both the quantitative data and the 

recommendations provided by the respondents.  The comments section in the 

survey was an alternative, non-systematic method of canvassing the opinion of the 

field spectroscopy community on metadata, what purpose they believe it serves for 

their research activities, and what they believe are best practices for metadata 

documentation.  The spectrum of free-form commentary ranged from general 

remarks (the utility and benefits of the survey, the necessity to create a standardized 

way of documenting field spectroscopy activities and variables, and additional 

considerations for creating a metadata standard) to suggestions on additional 

metadata to include for specific applications. Some of the suggestions and 

comments from the participants included: 

 

“the context of inquiry must be specific enough to address the variety of type of 

radiometric data (reflectance, radiance, irradiance, transmission, etc.) and the 

purpose of the measurements (field survey, algorithm development)” 
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“regardless [of] the applications of the field spectroscopy, metadata should contain 

sufficient information for users 1) to repeat the sampling (or in the least to imagine 

the measurements and its surrounding condition), 2) to cite and pinpoint the dataset 

for the reference, and 3) to explore the data as much flexible as possible, even 

beyond its original purpose” 

 

“depending on the campaign and available budget and instrumentation different 

[metadata] points become critical and other[s] useful or negligible” 

 

“there's a need for an integrated 'quality flag' so that people can rapidly assess 

whether to utilise the data or not” 

 

“there is no end to metadata!”      

(Rasaiah, 2011) 

 

More than fifty additional metadata fields across many categories were suggested by 

the respondents. They provide a strong ancillary set of data to the quantitative 

results for informing design of a robust standard capable of accommodating a broad 

selection of campaigns in field spectroscopy. The application-specific metadata 

recommended by participants was incorporated into the metadatasets presented in 

Chapter 4.  
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3.4 The core metadataset 

A core set of metadata is proposed based on those categories and fields identified as 

critical most often by the respondents. The results indicate that the categories 

meeting this criteria are ‘Viewing Geometry’, ‘Location Information’, ‘General Target 

and Sampling Information’, ‘Illumination Information’, ‘Instrument’, ‘Reference 

Standards’, ‘Calibration’, ‘Hyperspectral Signal Properties’, ‘Atmospheric Conditions’, 

and ‘General Project Information’. Consequently, the core metadataset must include 

the minimum ten generic metadata categories and at least one application-specific 

category, for a total of eleven (Figure 3.10).   

 

Figure 3.10 A metadataset for a given field spectroscopy campaign, including the 
core set common to all campaigns, application-specific metadata, and non-critical 
metadata  
 
 
Other categories, within both the generic and application-specific metadata 

divisions, may be included to enhance the usefulness and legacy potential of the 

field spectroscopy metadataset. Appendix A presents the core metadataset of 

generic campaign metadata with critical and optional fields within each category, 

generic campaign metadata outside the core metadataset that may be included to 

enhance the robustness of a metadataset, and the critical and optional metadata 
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elements for each application-specific campaign. Among the generic campaign 

metadata categories, only one category met the threshold for exclusion from the 

core set, ‘Environment Information’, and none of the metadata elements within the 

category were designated overall to be critical. 

 

Application-specific metadata are presented in Appendix A and show a mix of critical 

and non-critical fields as designated by respondents for each target. ‘Underwater 

Substratum Target’ and ‘Agriculture’ have the highest ratios of critical to optional 

fields, in contrast to ‘Woodland and Forest’ target metadata where no fields were 

designated overall as critical. 

 
For both generic and application-specific categories, there are subsets of critical 

metadata fields, identified by both binomial analysis and scale statistics, and 

ambiguously ranked metadata fields that warrant further investigation as to their 

inclusion or exclusion. Establishing what the data is being collected for (activities 

such as population of a spectral library, calibration and validation) may help 

determine whether protocols must be streamlined for fitness-for-use within each 

campaign. This may be especially useful for those fields that have been designated as 

both ‘critical’ and ‘N/A’ in almost equal proportion.   

 

The versatility of a metadataset can be increased by including both the critical fields 

and those difficult to identify as critical. Group membership is an influencing factor 

on criticality rankings within a metadata category. Consensus is highest among 

expert groups for those categories directly related to their area of specialization, as 
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exemplified by the high consensus and low variance for the marine scientists in the 

‘marine conditions’ category. This indicates that a metadata standard designed for 

specific applications is best informed by the expert group most closely associated 

with research involving those applications. Overall the results provide an informed 

and detailed summary of what is required across many campaigns, with the fields 

identified as critical most often by respondents being the core metadata set that 

must be including in all standards.  

 

3.5 Conclusions 
 

The survey results provide the key elements of a metadataset that can be applied to 

any field spectroscopy metadata standard that is practical, flexible enough to suit the 

purpose for which the data is being collected, and/or has sufficient legacy potential 

for long-term sharing and interoperability with other datasets. The survey 

respondents helped to identify the key elements of a core metadataset critical to all 

field spectroscopy campaigns, as well as recommend additional metadata to increase 

the versatility of a metadataset, both for application-specific metadata and generic 

metadata.  

 

A core metadataset must include ‘Viewing Geometry’, ‘Location Information’, 

‘General Target and Sampling Information’, ‘Illumination Information’, ‘Instrument’, 

‘Reference Standards’, ‘Calibration’, ‘Hyperspectral Signal Properties’, ‘Atmospheric 

Conditions’, and ‘General Project Information’ and at least one application-specific 

metadata category, depending on the type of target being sampled. The inclusion of 
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additional categories, relating to both generic and application-specific metadata, 

serve to enhance the robustness of the dataset. The composition of each category is 

a factor of those metadata fields that were easily identified as critical (through 

binomial analysis in the ‘Calibration’ category, for example) and those that are 

difficult to designate.  Overall, the results from the binomial and scale measurement 

testing prompt two important questions: i) whose opinion among the experts can be 

used as a basis for designating a metadata field as critical, and supported by what 

rationale?; ii) Is fitness-for-purpose an additional dynamic that must be accounted 

for when designing a metadata standard? 

 

Consensus is highest among experts within the same field, and within categories 

most closely related to their area of knowledge. This was illustrated by marine 

scientists who showed lower variance in response and higher overall criticality 

rankings in the ‘Marine and Estuarine Environmental Conditions’ metadata category 

than did their non-marine counterparts in the same category. The trend for 

consensus amongst all categories, measured using the intraclass correlation 

coefficient, demonstrates that application-specific metadata with smaller but more 

specialized groups of experts have the highest level of agreement between 

respondents on the criticality rankings for each field.   

 

The survey results and subsequent analysis provide answers to the problem of 

identifying critical field spectroscopy metadata with the following information: 

• metadata categories that have the highest overall criticality rankings 

• metadata fields that can be easily identified as critical to all campaigns 
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• metadata fields that are identified ‘critical’/’useful’/’legacy potential’/’NA’ most 

frequently 

• the impact of group membership on determination of what is critical in a given 

metadata category 

• consensus trends among groups in both generic and application specific 

metadata categories 

 

Adapting the core metadataset as a standard for facilitation in data exchange is the 

best way forward for ensuring interoperability, intercomparison, and wide-scale 

sharing of high quality field spectroscopy metadata. This is the ideal solution to the 

problem of absent or ill-defined geospatial metadata standards currently in place 

that do not address the specific needs of field spectroscopy scientists.   
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Chapter 4 Identifying additional metadata for specific field 
spectroscopy applications and supporting interoperability 
with other metadata standards 
 
 
Published in part as: 
 

Rasaiah, B.;  Malthus, T.;  Jones, S.D.;  Bellman, C. (2012). A Novel Metadata Schema 

for in situ Marine Spectroscopy. Proceedings of Geospatial Science Research 

Symposium 2, December 10-12 in Melbourne, Australia. (peer-reviewed) 
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4.1 Introduction 

This chapter addressed research question #2, ‘Is additional metadata required for 

specific field spectroscopy applications and to support interoperability with other 

metadata standards?’ The key metadata is presented for three applications: tree 

crown, soil, and underwater coral reflectance.  The performance of existing 

metadata standards in supporting the proposed core field spectroscopy metadataset 

is assessed, and a hybrid standard that serves as a ‘best of breed’ incorporating 

useful modules and parameters within the standards is proposed. 

 

In Chapter 2, metadata in the context of field spectroscopy was defined as those 

data elements that explicitly document the primary spectroscopy dataset and field 

protocols that capture sampling strategies, instrument properties and environmental 

and logistical variables, all of which are integral to the assessment of fitness-for-

purpose of the spectral measurements. This definition is aligned with the purpose 

and scope of metadata standards such as the FGDC Content Standard for Digital 

Geospatial Metadata: Shoreline Metadata Profile, used “to capture critical processes 

and conditions that revolve around creating and collecting shoreline data, and to 

help define and qualify shoreline data for use” (FGDC, 2001, p.1); Ecological 

Metadata Language 2.1.1, used to describe ecological datasets in fine detail as well 

as the method of data collection, including field and sampling methods (KNB, 2013); 

and the ANDS definition of scientific metadata as “all the information that is very 

specific to the study, and is needed to use and interpret the data collected” (ANDS, 

2011). Please refer to Chapter 2 for a more comprehensive discussion on metadata.  
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The analysis of the results of the metadata survey presented in Chapter 3 

demonstrate that there is a core metadataset that is critical to all campaigns,  and 

scientists with expertise relating to specific applications are best informed about 

what belongs in a metadata standard relating to those applications of interest. As 

illustrated previously in consensus and variance analysis across metadata categories, 

a marine scientist, for example, has the requisite knowledge, expertise, and 

experience to provide a credible opinion on a metadata standard for substratum 

targets such as seagrass and coral.  Feedback from the survey participants included 

arguments for further refining the metadata presented because in certain cases, the 

recording of metadata is dependent on the purposes for which the data is being 

collected. This information can be used as a basis for adapting and expanding the 

metadataset originating in the survey results to make it useful for specific user 

communities.  As stakeholders of the data, field spectroscopy scientists have a 

vested interest in adopting a standard most suitable to their needs as both metadata 

data creators and users of these data.  

 

There are several core principles that must be adhered to when designing a ‘good’ 

metadata standard.  These include:  

• identification of  the needs of users who will access and use the data  

• identification of an application profile 

• direct involvement of interested stakeholders 

• extension or refinement of existing standards that may not entirely meet the 

requirements of users 

• enabling modularity for logical and consistent organization of the data 
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• facilitation of data discovery, retrieval, and re-use 

• elimination of redundancy in data documentation so that data is collected only 

once 

(Duval et al., 2002; ANZLIC, 2007; ISO/TC 2008; INSPIRE, 2009 ; ANDS 2011; ISO 

2011). 

 

Therefore, the best approach for building a user-centric metadata standard is to 

begin by identifying the needs of the scientists who are being asked, potentially, to 

implement and use it. This has been accomplished for the core metadataset 

presented in Chapter 3, and what follows in this section concerns identifying 

specialist needs for field spectroscopy metadata.  

 

4.2 Identifying key metadata required for soil, tree crown, and underwater coral 

reflectance 

Defining the key metadata for specific applications requires firstly identifying the 

user community, and secondly, consulting them directly on what they judge to be 

critical metadata within the applications they would use this metadata for. 

 

4.2.1 Identifying a user community 

In 2012, an expert panel of field spectroscopy data stakeholders from the Australian 

and international community was convened at the TERN ACEAS ‘Bio-optical data: 

Best practice and legacy datasets’ workshop in Brisbane, Australia held on June 18-
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22 in 2012 (please see Appendix B.1 for a list of attendees).  The purpose of the 

workshop was to “drive best practice in field measurement and to lay the 

foundations of an international standard for the exchange of spectral datasets” 

(Malthus, 2012, p. 1). The workshop participants included scientists with expertise in 

vegetation, marine, estuarine, mineralogical, and soil.   Based on the collective 

expertise in the group, panel discussions were structured to identify key metadata 

for soil, tree crown, and underwater coral applications.  

 

4.2.2 Method 

Three teams were formed to provide their input for a field spectroscopy metadata 

standard for three application domains:  7 vegetation scientists (tree crown), 2 

marine scientists (substratum coral) and 3 soil scientists (soil). Individually assigned 

to the vegetation and soil teams were two IT consultants (including a data 

governance expert) who were stakeholders in field spectroscopy data management. 

 
Each team was presented with a baseline metadataset derived from the survey 

results from the previous chapter, field data collection protocols unique to each 

application, and proposed metadata obtain through personal interviews with field 

spectroscopy scientists prior to the workshop. The objective of the activity was to 

derive the elements of a standard for each application that would incorporate the 

core metadataset, application-specific metadata, and optional metadata as proposed 

by each team for enhancing exchange and usability (Figure 4.1). 
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Figure 4.1 Profile of an application-specific field spectroscopy metadataset 

 

Once presented with the baseline metadataset, the participants were asked two 

questions: 1) ‘If you were to create the highest quality metadataset possible, for use 

in either calibration or validation activities, which fields would be critical, and which 

would be optional? 2)’Do you recommend any new fields?’ For the first question, 

‘highest quality’ was defined to be a dataset that was: 

1) comprehensive: accurately documents the protocol executed to obtain the data; 

2) complete: inclusive of all metadata critical to that metadataset; 

3)interoperable (digitally and semantically): comprises metadata elements expressed 

in a manner conforming to commonly accepted terminologies and ontologies to 

accommodate fusion with other datasets and exchange across data platforms; 

4) explicit: captures the requisite metadata to a granularity that minimizes potential 

for recording ambiguous metadata (granularity in this context is the smallest unit of 

metadata defined for capturing a given unit of information) 

 

Prior to panel discussions on application-specific metadata, the above parameters 

had been defined and discussed with the participants during a presentation given on 
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methods and criteria for a ‘best fit’ metadata standard for field spectroscopy 

datasets. Calibration and field validation activities were used as a point of reference, 

as they are widely acknowledged within the field spectroscopy community to require 

the most stringent adherence to best practices in data collection (Schaepman-Strub 

et al., 2006; Milton et al., 2009). Field protocol, or the sampling and methodology 

used to generate the field spectroscopy datasets, was selected for inclusion in the 

metadatasets because it is an integral component in the collection of in situ 

spectroscopy data. Section 2.4 discusses the rationale and importance of including 

field protocol in field spectroscopy metadatasets.   

 

For each metadata field presented within the baseline set, the scientists were asked 

to provide a reason for inclusion or comments, categorize the fields as critical or 

optional, provide an example, and to specify the data type for each field 

(Boolean/text/numeric/other).  Providing an example and specifying a data type 

allowed the scientists to customize the metadataset in accordance with the 

taxonomies and vocabularies of their discipline.   

 

The human perspective on metadata was a central consideration in the design of the 

panel discussions. Rather than being an exercise simply in documenting information 

related to a given application, it was important that the scientists provide direct 

input into the semantic structure of the metadata. Best practice for creating an 

application profile requires identifying specific requirements of the community that 

is going to use the application profile.  Using scenarios and case studies, and defining 

the obligation of data elements,  with the emphasis on human-generated metadata 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

98 

developed by skilled classifiers ensuring more precise and high-quality metadata (Syn 

and Spring, 2007; Malta and Baptista, 2012), is the advised approach.  It has been 

previously demonstrated that in the interpretation and application of a metadata 

standard, people can easily confuse a concept with the designation used to 

represent it (Davies et al., 2008).  For this reason, the metadata elements were 

expressed at a single level of atomization, with no subclasses or formally defined 

ontological interdependencies among metadata elements.  The structure of the 

discussions served to minimize any potential confusion about what information is 

being documented and to enable the scientists to define the metadata elements in a 

way that is least ambiguous and most meaningful to them. Additionally, each team 

was also invited to volunteer any new fields that may be suitable. 

 

4.2.3 Results: Key metadata for soil, tree crown, and underwater coral applications 

presented 

The application-specific metadatasets, as amended and expanded by each team, are 

presented in Sections 4.2.3.1-3. These metadata elements present the critical 

elements (for brevity) as designated by the scientists.   A more comprehensive 

presentation of the metadatasets, with both critical and optional elements, is 

provided in Appendix B.  
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4.2.3.1 Underwater coral reflectance 

The underwater coral reflectance metadata list is the most comprehensive of the 

three applications, because it includes metadata elements relating to location and 

environment conditions in addition to application-specific parameters.  This more 

voluminous metadataset is a result of additional metadata elements recommended 

by 1) the marine and estuarine scientists in the survey presented in the previous 

chapter and 2) scientists participating in the workshop. The critical elements for 

underwater coral reflectance are presented in Table 4.1 

 

There are parameters in the location category directly relating to the unique and 

complex conditions under which marine spectroscopy operates and the 

environmental factors influencing the spectral measurements that are absent from 

terrestrial campaigns (these include tide conditions, above- and sub-surface 

conditions, and water column profile data). There is an almost even distribution of 

critical and optional designations, and two parameters (wind speed and direction) 

have been ranked as critical in the special case of severe conditions.  

 

There are fifteen fields relating to coral properties, nearly half of which have been 

designated as critical.  Two fields refer to a photo for additional data 

‘Homogeneity/heterogeneity’ and ‘Presence of epiphytes’ (presented in the 

comprehensive list in Appendix B). This is illustrative, in part, of the difficulty of 

recording metadata in situ for marine campaigns and the use of alternate methods 

(such as analysis of a photo taken onsite) to add metadata retrospectively.  
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Table 4.1 Underwater coral reflectance metadataset (critical metadata elements) 
 

The illumination category, a component of the core metadataset presented in the 

previous chapter, has also been expanded for the underwater coral reflectance; 

these include non-critical metadata fields presented in Appendix B including ‘natural 

canopy shading’ and ‘artificial canopy effect’. There are four parameters relating to  

viewing geometry that are normally not required for terrestrial campaigns  – 

‘distance from bottom/substrate’, ‘distance of operator from sensor’, ‘height of 

sensor from surface’, and ‘depth of sensor from surface’.  The latter three are critical 

METADATA FIELD REASON FOR INCLUSION / COMMENTS EXAMPLE DATA TYPE 

GPS coordinates 
Permits referencing to aerial/satellite/other campaigns; 
Difficult to do in situ; done on the dive site; Coordinates, 

datum + projection can be determined from Google Earth 
x,y,z numeric 

Location description (in 
situ/on boat/in lab) 

Critical to quantifying environmental factors to spectral 
measurement  Lab/boat/in situ text 

Reference to photo of 
local relevant environment 

+ target 

Provides additional visual data where recording additional 
metadata of target and environment is not possible or 

feasible 
photo # or filename  text 

Depth From lowest astronomical tide   18 m numeric 

Tide conditions H or L Input for determining true depth relative to datum and wave 
lensing effects 6:36 PM time 

Wave height and period 
(for reflectance measures) 

Input for determining true depth relative to datum and wave 
lensing effects 0.25 m numeric 

Wind speed Critical in severe conditions 5 kn numeric 

Wind direction Critical in severe conditions Ssw  text 
Distance from 

bottom/substrate Critical if 3D structure present (seagrass, branching coral) 20 m numeric 

Substratum height 
Input parameter for determining upwelling radiance/ 

background reflectance affecting spectral measurements 4 m numeric 
Height of sensor from 

surface Critical for water column profiles 1.75 m numeric 
Depth of sensor from 

surface Critical for water column profiles 7 m numeric 
Distance of operator from 

sensor 
Only applies if there is presence of shading from operator's 

body 0.25 m numeric 

CDOM spectral slope Coloured dissolved organic matter; critical for water column 
profiles  -S value numeric 

CDOM concentration Coloured dissolved organic matter; critical for water column 
profiles  A 440 nm numeric 

Detritus concentration Critical for water column profiles 1200 µg C•l -1 numeric 
Phytoplankton 
species/classes Critical for water column profiles Gymnodinium spp. text 

Target ID Code identifier/tag for sample Name code text 

Type  Qualitative descriptor of target type Coral algae etc. text 

Species or name Coral species Diploria strigosa text 

Density of growth Quantitative measure of density of target 2.94 g cm-3 text 
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only in cases of shading by the operator’s body or where data is required for profiling 

the water column. 

 

4.2.3.2 Tree crown reflectance 

This metadataset was originally presented to the seven scientists on the vegetation 

team as a ‘tree crown reflectance’ standard but was changed by the respondents to 

‘vegetation reflectance’. This group spent the most amount of time (approximately 2 

hours) debating the inclusion of the proposed metadata elements. The critical fields 

are presented in Table 4.2.  There are five metadata fields that have been designated 

as critical and these include ‘Collected within 1 week of campaign’, ‘Position in 

canopy’, ‘Illuminated leaves’, ‘Target or scale’ that denote sampling protocol steps 

that must be completed in accordance with good practice, or a recognized protocol.     

 

 

 

 

 

 

 

 

Table 4.2 Tree crown reflectance metadataset (critical metadata elements) 
 
 
Of the three teams, the vegetation team had the least consensus among members, 

with the lowest proportion of metadata elements agreed upon for inclusion in the 

METADATA FIELD REASON FOR INCLUSION / COMMENTS EXAMPLE DATA TYPE 

Collected within 1 week 
of aerial campaign 

Minimizes any detectable changes in leaf 
phenology (this can be referenced via a 

protocol citation) 

Yes; ABCD Organization  
Tree Crown Reflectance 

Protocol, 2012 
text 

Position in canopy 
Corresponds to visible canopy in an aerial 

hyperspectral campaign (this can be referenced 
via a protocol citation) 

Emergent leaves on top 
third of canopy; ABCD 

Organization  Tree 
Crown Reflectance 

Protocol, 2012 

text 

Illuminated leaves  (this can be referenced via a protocol citation) 
Yes; ABCD Organization  
Tree Crown Reflectance 

Protocol, 2012 
text 

Target or scale (single 
leaf, branches, mature 

leaves, etc.)  

Ensures consistent phenological state for all 
samples and sufficient leaf size for integrating 
sphere measurement  (this can be referenced 

via a protocol citation) 

Yes; ABCD Organization  
Tree Crown Reflectance 

Protocol, 2012 
boolean 

Tree species   Eucalyptus aquatica text 
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standard. In a group discussion following the team activity, the vegetation scientists 

stated that it was difficult to arrive at a conclusive optionality designation without 

knowing “what the purpose of the campaign is”. Consequently, no exemplar 

metadataset for tree crown reflectance could being developed within the timeframe 

of the workshop.   As a solution, one of the team members with expertise in tree 

crown reflectance was consulted after the workshop to specify optionality for the 

metadata elements. For this reason the metadataset retained its original 

designation, ‘tree crown reflectance’ for utility as an exemplar metadataset. 

 

4.2.3.3 Soil reflectance  

The soil team designated the largest proportion of metadata fields as critical (over 

75%) (Table 4.3).  All the fields in the soil reflectance metadataset refer almost 

exclusively to the properties of the soil and not environmental conditions in the field 

or sampling protocol. Unlike the metadata elements in the previous applications, 

most of the parameters in the soil metadataset can only be obtained retrospectively 

(chemical constituents, alkalinity, etc.) but were designated by the team to be critical 

for creating a ‘highest quality’ metadataset. Comments or reasons for inclusion in 

the metadataset were not provided for every field. 

 

4.2.4 Discussion 
 
Overall, the results re-assert the findings from the previous chapter that defining a 

dataset for specific applications requires the input of those who know best about the  

 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 Soil reflectance metadataset (critical metadata elements) 
 
 

field practices and properties of the feature being sampled.  The metadatasets also 

demonstrate that the proportion of metadata that are obtained retrospectively 

varies from a minimum, as demonstrated by the tree crown reflectance 

metadataset, to a maximum, as demonstrated by the soil metadataset.  

 

METADATA FIELD REASON FOR INCLUSION / COMMENTS EXAMPLE DATA TYPE 

Description   ferri-soil text 

Sample #   1 text 

Name can be extracted from a taxonomic list / 
soil series name calcic orthid text 

Weight can be used to describe wet or dry 
weight dry weight to moisture  numeric 

Volume derived from soil cans 134.5 cm3 numeric 

Mineral bulk density    also can be designated 'soil bulk density' msd/vd  numeric 

Particle density   265g/cm3 numeric 

Order   Aridisol text 

Type   loam text 

Horizon   A' text 

Grain size   3 parts numeric 

Texture sand/silt/clay sieving text 

Surface roughness necessary for BRDF/erosion calculations 0.025 numeric 

Colour  MUNSELL units/ colour chips can be used 10 YR 6/4 alphanumeric 

Level surface/rough/inclined aspect should be included 10˚ or 10`0 numeric 

Moisture content gravimetric or volumetric 57% numeric 

Humus content   3.40% numeric 

Nitrogen content   20 ppm numeric 

Clay content   20% numeric 

Sand content   5% numeric 

Silt content   5% numeric 

pH in H20   7.0pH numeric 

Water retention (field 
capacity)     numeric 

Wilting point   0.44 cm3/cm3 numeric 

Total alkalinity   10 mg L-1 numeric 

Conductivity   8 dS/m numeric 

Porosity   0.45 numeric 

Contamination 
(none/mining/agriculture/etc)   mining text 
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The relative difficulty in creating a definitive standard for tree crown reflectance 

suggests that 1) consensus can be difficult to achieve and may not always be a 

prerequisite in building a good standard for a given application or objective and 2) 

there is a threshold at which a prescriptive standard becomes restrictive.  

 

Despite the low consensus among scientists as to which fields should be designated 

as optional or critical, the tree crown reflectance metadataset remains a valid 

baseline of comprehensive metadata relating to both quantitative and qualitative 

field data that are commonly recorded in field spectroscopy campaigns in 

accordance with good practice. For the purpose of meaningful analysis in this study, 

the tree crown reflectance metadataset retained its original name, despite it being 

changed by the scientists to ‘vegetation campaign’. The reference to vegetation is 

too broad a term (as it can include applications such as those in agriculture or 

estuarine environments) and it was necessary to restrict the metadataset to a single 

and specific application, especially for use in further examination in the next section.  

 

The degree of prescriptiveness of a standard is worth considering as a measure of its 

value to a given community. Prescriptiveness has the potential to guide good 

practice for metadata documentation in the field. However, it is possible that 

requiring a user to record protocol steps, or target properties in multiple metadata 

fields at too fine a granularity may in fact be prohibitive and result in an inflexible 

and onerous standard.  This can arise first from draining resources of time in the field 

by forcing the user to comply with the proposed standard. Secondly, aligning the 

metadataset to a field data collection protocol that prevents an expert user from 
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making their own informed choices about what is good practice is counter to 

principles of sound and innovative research.  

 

4.3 Do current geospatial metadata standards accommodate the needs of specific 

applications (soil/tree crown/underwater coral reflectance)? 

4.3.1 Geospatial metadata standards as a test case 

Assessing the usefulness of existing standards to accommodate the needs of specific 

user communities requires a comparison of the core metadataset and the three field 

spectroscopy metadatasets (underwater coral, tree crown, soil) presented in the 

previous section with standards commonly implemented within geospatial science.  

 

Choosing a standard for analysis was based on an informal survey of those endorsed 

by agencies involved in research in geospatial science or geospatial data standards 

and include FGDC (Federal Geographic Data Committee), NASA's Earth Science 

Division, CSIRO (Commonwealth Scientific and Industrial Research Organisation), and 

INSPIRE (Infrastructure for Spatial Information in the European Community), among 

others. Many of these standards are implemented in popular commercial GIS 

packages, signifying the implication of an inadequately performing standard when 

applied to widely distributed geospatial datasets Table 4.4 provides an overview of 

the seven standards chosen for analysis.  
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Table 4.4 Geospatial standards selected for analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4 Geospatial standards selected for analysis 

 

Standard Date created 
(initial version) Creator(s) Purpose External standards 

incorporated 
# of 

elements 

Dublin Core 1.1 1995 
Dublin Core 
Metadata 
Initiative 

for use in resource 
description for a wide range 
of resources (DCMI, 2013) 

  15 

Access to 
Biological 
Collections Data 
Schema 2.06 

2006 ABCD Task Group 

support the exchange and 
integration of detailed 
primary collection and 
observation data (ABCD Task 
Group, 2013) 

• Dublin Core 
• FGDC Content standards for 
digital spatial metadata 
• FGDC-STD-005 Vegetation 
Classification and Information 
Standards 
• FGDC-STD-001-1998 
• FGDC Content Standard for 
Digital Geospatial Metadata: 
Biological Data Profile 
• SPECTRUM 
• Abstract Syntax Notation One 

1004 

Ecological 
Metadata 
Language 2.1.1 

2000 

National Center 
for Ecological 
Analysis and 
Synthesis  

provide the ecological 
community with an 
extensible, flexible, metadata 
standard for use in data 
analysis and archiving that 
will allow automated 
machine processing, 
searching and retrieval (KNB, 
2013) 

• Dublin Core 
• CSDGM 
• CSDGM Biological Profile 
• ISO 19115 
• ISO 8601 Date and Time 
Standard 
• GML 
• STMML 
• XSIL 

562 

Darwin Core 1998 Darwin Core Task 
Group 

• provide a stable standard 
reference for sharing 
information on biological 
diversity 
• provide stable semantic 
definitions with the goal of 
being maximally reusable in 
a variety of contexts (Darwin 
Core Task Group, 2013) 

Dublin Core 45 

Content 
Standard for 
Digital 
GeoSpatial 
Metadata: 
Remote Sensing 
Extension 

1998 
Federal 
Geographic Data 
Committee 

provide a common 
terminology and set of 
definitions for documenting 
geospatial data obtained by 
remote sensing (FGDC, 2002) 

ISO 19115 360 

Content 
Standard for 
Digital 
GeoSpatial 
Metadata: 
Shoreline 
Metadata 
Profile 

2001 

• Federal 
Geographic Data 
Committee 
• Marine and 
Coastal Spatial 
Data 
Subcommittee 

capture the critical processes 
and conditions the revolve 
around creating and 
collecting shoreline data, and 
to help define and qualify 
shoreline data for use (FGDC, 
2001) 

FGDC-STD-001-1998 33 

ANZLIC 
Metadata 
Profile 1.1 
(Geographic 
dataset core) 

2007 ANZLIC 

create metadata records that 
provide information about 
the identification, spatial and 
temporal extent, quality 
application schema, spatial 
reference system, and 
distribution of digital 
geographic data (ANZLIC, 
2007) 

• AS/NZS ISO 19115:2005 
• ISO 19115:2003/Cor.1:2006 
• ISO/TS 19139:2007 

45 
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Section 2.3 presents a discussion on metadata standards in general. Generic 

geographic metadata standards such as ISO 19115 were already incorporated in part 

or in whole in several of the standards selected (EML 2.1.1, CDGSM, ANZLIC 

Metadata Profile) and therefore were not directly examined to avoid redundant 

analysis. 

 

4.3.2 Method 

Measuring the capacity of an existing geospatial metadata standard to document the 

requisite metadata for a given campaign type (tree crown/underwater coral 

target/soil)  was done by answering a single question:  for campaign-level data, how 

many metadata fields (metadata elements) in each existing  standard could be used 

to capture the information specified in the metadatasets presented in Section 4.2? 

 

The purpose of the analysis was to accomplish more than simply examining whether 

the field spectroscopy metadata elements could be operationalized as a metadataset 

conforming to an existing standard. Operationalizing a field spectroscopy 

metadataset as an existing standard could entail storing the metadata elements 

wherever available within the standard, including generic free-text parameters (such 

the value-eml-text field in EML 2.1.1 standard). This could be possible in cases where 

more explicit metadata elements relating specifically to field spectroscopy were 

unavailable. However, this manner of over-simplistic analysis would fail to yield any 

meaningful results as it would not be an accurate measure of instances where an 

existing standard succeeds or fails to correspond to the field spectroscopy dataset. 
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Rather, the analysis was used to determine how well an existing standard can be 

mapped to, unidirectionally, on a metadata element-by-metadata element basis, to 

the field spectroscopy metadatasets. Figure 4.2 shows a successful mapping for 

metadata elements in two existing standards to metadata elements in the proposed 

field spectroscopy metadataset.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 A conceptual example of a successful mapping from two existing 
geospatial metadata standards to the proposed field spectroscopy metadata 
standard 
 
 
Criteria were applied to define successful mapping.  These are explained in detail in 

Table 4.5. Metadata elements specified at the smallest level of granularity or 

atomization in the standard were chosen.  This was done to allow a uniform 

comparison among the proposed and existing standards.  For example, the ‘Date’ 

field in the field spectroscopy metadataset is expressed as a single unit of metadata, 
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Table 4.5 Criteria for accepting or rejecting a metadata element in an existing 
standard for mapping 
 
 
whereas the ABCD standard for Date data (in the 

/DataSets/DataSet/Units/Unit/Identifications/Identification/Date container class) 

has nine subfields (DateText, TimeZone, ISODateTimeBegin, DayNumberBegin, 

TimeOfDayBegin, ISODateTimeEnd, DayNumberEnd, TimeOfDayEnd, PeriodExplicit) 

used to capture this information. 

ACCEPT REJECT 

   
Explicit reference 
Example:  The ‘Wind speed’ metadata 
element in the FDGC Marine Extension 
standard was successfully mapped to ‘Wind 
Speed’ in the coral target metadataset. 
 
Implicit reference 
Example: Instrument category metadata 
elements (‘Make’, ‘Model’, ‘Serial Number’) 
could be recorded in the EML 2.1.1 
‘Instrumentation’ metadata field in both the 
‘Protocol’ and ‘Methods’ module. 

Undefined or ambiguous metadata element 
Example: Where the parameter description was 
absent or too vague to determine its purpose, it was 
not counted as a suitable metadata element. For 
example, in ABCD standard user guidelines, the 
‘Method’ field within the  
‘/DataSets/DataSet/Units/Unit/Sequences/Sequence/’ 
class has no definition.  
 
Incorrect parent or container class 
Example: The ‘Viewing Geometry’ category in the 
proposed core metadataset is comprised of critical 
elements relating to sensor viewing angles.  A 
mapping was not successful if counterparts in an 
existing standard were in the wrong parent or 
container classes.  Sensor azimuth and zenith angle 
parameters exist within the FGDC Remote Sensing 
Extension but are defined within the ‘Satellite’ 
container class and therefore could not be mapped to 
sensor geometry metadata in the core dataset.  
 
Manually-defined classes or fields  
Example: Instances of the EML 2.1.1 ‘attribute’ 
parameter that could defined by the user to record 
any campaign metadata.  
 
Generic metadata element 
Example: Any metadata elements within an existing 
standard that referred to data that could be extracted 
from a generic data table, such as those referenced by 
the EML 2.1.1 ‘dataset’ module; the 
‘measurementValue’,  ‘Attribute’, ‘dynamicProperties’ 
metadata fields in Darwin Core 1.1 that could be 
applied to any numeric or text metadata parameter. 
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Using the finest granularity was true for all cases where the documentation for the 

standard defined parameters to this level of granularity. This was the baseline 

against which all standards were measured. All other standards needed to be 

reduced to the same level of granularity for analysis, taking into account both explicit 

and implicit references to a given metadata element.  The definition of each element 

was used as the determining factor for mapping. For example, EML 2.1.1 specifies 

that the ‘instrumentation’ metadata element in the ‘Methods’ module can include 

information about the quality control and quality assurance for the instrument, 

therefore it could be mapped to the instrument calibration metadata category in the 

proposed core metadataset.  

 

Unique and non-unique mappings were counted. A unique mapping occurs when a 

metadata element (e1) in an existing standard has been mapped to one and only one 

metadata element (p1) in the field spectroscopy dataset (core/ tree crown/ 

underwater coral/ soil). An example of this is the ‘Wind direction’ field for above-

surface marine conditions in the FGDC Marine Shoreline Data Extension that was 

mapped to the ‘Wind direction’ field in the underwater coral metadataset, with no 

other mappings to other fields in the underwater coral metadataset. If metadata 

element e1 can be mapped to multiple metadata elements in a proposed dataset, 

this is considered a non-unique mapping. An example of this is two metadata fields 

in ABCD 2.06 that can be mapped to both [target]‘Species or name’ and 

‘Phytoplankton species/classes’ in the underwater coral set. Counting unique and 

non-unique mappings is useful for determining the requisite explicitness for an 
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existing standard to successfully capture information in a field spectroscopy 

metadataset.  

 

4.3.3 Results 

The results of the mappings are summarized in Figure 4.3. 

 

 

 

 

 

 

 

 

 

Figure 4.3 Successful mappings from existing standards to the field spectroscopy 
metadatasets as a percentage of the total number of elements mapped in the 
proposed core and application-specific metadatasets 
 

4.3.3.1 Dublin Core 1.1 

Fifteen metadata fields within Dublin Core were examined.  The number of 

successful mappings ranged from 0-5 % of the target metadatasets. The consistency 

in high failure rates across the four field spectroscopy metadatasets could be 

accounted for by Dublin Core’s primary purpose to identify a dataset at the 

collection-level with parameters whose scope are limited to content (i.e. subject, 
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description), intellectual property (i.e. publisher, rights), and  instantiation (i.e. 

format, identifier). The mapping  had some success (5%) with the core metadataset, 

specifically within a subset of the core metadataset relating to project information, 

of which four metadata elements could be mapped to (given that the owner of the 

dataset would choose to use the project/experiment details as identifiers for the 

dataset as well).  

 

4.3.3.2 Access to Biological Collections Data Schema 2.06 

One thousand and four metadata elements were examined in ABCD 2.06. Success 

ranged from a minimum of 4% of critical elements with the soil metadataset to 80% 

for tree crown with the mean value of elements mapped being 39% with σ=32%. It 

mapped to 29% of the core metadataset and 43% of the critical elements in the coral 

metadataset. Dublin Core has been wholly incorporated into ABCD 2.06 so a 

minimum of successful mappings to the core metadataset is guaranteed. The 

mandate for ABCD is to facilitate “access and exchange” of “primary biodiversity 

data” (ABCD Task Group, 2013), of which the underwater coral reflectance 

metadataset has the highest proportion  in terms of  biological sample parameters 

(including species, specimen id) compared to the core, soil, and tree crown sets. The 

tree crown has a higher proportion of sampling protocol parameters which can be 

captured in several of the /DataSets/DataSet/Units/Unit/Gathering/ modules.  
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4.3.3.3 Ecological Metadata Language 2.1.1 

Four hundred eighty four elements in EML 2.1.1 were examined.  It had the highest 

overall success with all four metadatasets: 91% for core, 60% for critical elements in 

the tree crown metadataset, 11% soil, and 33% underwater coral the mean value of 

elements mapped being 49% with σ=35%. As with ABCD 2.06, it is biased towards 

biological data collection. Mappings to soil and underwater coral can increase (up to 

100% for soil) if the ‘table dataset value’ element, referring to an associated table 

with target characteristics, is selected to store parameters such as clay content (soil) 

and chlorophyll concentration (coral). This element was ignored for successful 

mappings as it was classed as too generic, according to the criteria in Table 4.5.  

 

Its success with the core metadataset can be accounted for in part the by the fact 

that it has a larger amount of dataset-level metadata elements that can be mapped 

to the ‘project information’ subset, and instrumentation metadata that can be 

populated in the ‘methods’ module ‘instrumentation’ metadata element, which 

accommodates description of any instruments used in the data collection. The 

sampling protocol metadata elements in the tree crown metadataset (‘illuminated 

leaves’, ‘position in canopy’) can also be captured either in the ‘methods’ or 

‘protocols’ modules. According to the EML documentation, either parameter is 

suitable, based on how the protocols are described: “‘methods’ is descriptive (often 

written in the declarative style: "I took five subsamples...") whereas ‘protocol’ is 

prescriptive (often written in the imperative mood: "Take five subsamples...")” (KNB, 

2013). 
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4.3.3.4 Darwin Core 

Forty five elements in Darwin Core were examined. It had the highest success with 

tree crown (80% of the critical elements), 33% for coral, 15% for core and 7% for soil 

with the mean value of elements mapped being 34% with σ=33%.  Those parameters 

referring to sample properties have been semantically structured for biodiversity 

data, hence its relative success with coral data. There were no explicit or implicit 

references to instrument properties (within the core metadataset), and the ‘method’ 

parameter was considered insufficient in scope by the author to be suitable for 

sampling protocol or viewing geometry.  

 

4.3.3.5 FGDC Content Standard for Digital Geospatial Metadata (Remote Sensing 

Extension) 

Three hundred and sixty elements in FGDC Content Standard for Digital Geospatial 

Metadata (Remote Sensing Extension) were examined. The Remote Sensing 

Extension could be mapped only to 2% of the core metadataset with no mappings to 

the three specific applications. Mappings to the core were for dataset-level 

metadata, given that the experiment information (name, date) could be used to 

identify the metadataset at this level. However, this hypothetical dataset would be 

empty as no target properties could be documented within the standard. The 

Remote Sensing Extension is designed for digital geospatial data (obtained from 

satellite and airborne sensors primarily), and has no suitable parameters to capture 

sampling techniques, viewing geometry, or instrument information for in situ 

sensors.  
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4.3.3.6 FGDC Content Standard for Digital Geospatial Metadata: Shoreline 

Metadata Profile 

Thirty three elements in the Shoreline Metadata Profile were examined. It had the 

highest success with critical elements in the underwater coral reflectance (19%), and 

core (2%), but no elements were mapped to either the tree crown or soil 

metadatasets. Even though this standard applies to digital geospatial metadata, 

when examined on its own, it is useful for recording location and environment 

parameters (wind speed, tide, above surface conditions) for the underwater coral 

campaign. It is noteworthy that this standard has no ‘depth’ parameter. The 

metadata elements mapped to the core metadataset related to a subset of location 

and environment parameters.  

 

4.3.3.7 ANZLIC Metadata Profile 1.1 (Geographic dataset core) 

Forty five elements in the ANZLIC Metadata Profile 1.1 (Geographic dataset core) 

were examined. Successful mappings were restricted to the core dataset (8%) and 

5% of the critical elements in the coral reflectance metadataset. This is due to the 

fact that ANZLIC standards are primarily for cataloguing services, and in the  context 

of the geographic dataset core standard, document information about the 

“identification, spatial and temporal extent, quality, application schema, spatial 

reference system, and distribution of digital geographic data” (ANZLIC, 2007). The 

few core metadataset parameters that were mapped to relate to project and 

experiment profile information, or the special case of GPS coordinates categorized as 

spatial reference information for underwater coral reflectance.  
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4.3.4 Measuring flexibility 

An additional measure was included in the analysis to determine whether an existing 

standard’s flexibility had an effect on how much information it could capture in the 

field spectroscopy metadatasets (core/tree crown/soil/underwater coral). In this 

context, flexibility is defined as the potential for a metadata element in an existing 

standard to be re-used (or re-mapped) to multiple metadata fields in a field 

spectroscopy metadataset. For example, according to the user guidelines for EML 

2.06 (KNB, 2013), in the ‘Sampling’ module, the metadata element ‘instrumentation’ 

can be mapped to all parameters for instrument metadata defined in the core 

metadataset. This is considered a non-unique mapping. On the other hand, the 

‘Wind speed’ metadata element in the FGDC Shoreline Metadata Profile standard 

can be successfully mapped to one and only one metadata element (‘Wind Speed’) in 

the coral reflectance metadataset. This is considered a unique mapping. The more 

explicit a metadata element in the existing standard is, the greater the likelihood of a 

unique mapping for that field.  An average of unique (UM/me) and non-unique 

(NUM/me) mappings per total number of mapped elements for each dataset was 

calculated.  These averages were then correlated to a standard’s success in capturing 

information in the field spectroscopy metadatasets (core/tree 

crown/soil/underwater coral) (Figure 4.4).  

 

The datasets shows that the correlation between the amount of data captured by an 

existing standard (% elements mapped in the dataset) and average mappings per 

element is stronger for non-unique mappings (r=0.365 n=28, p=0.001) than for  
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Figure 4.4 Correlation of mappings per element (both unique and non-unique) to 
the percentage of total elements mapped in the dataset 
 

unique mappings (r=0.003 n=28, p=0.001). This suggests that in the context of the 

standards studied, generally, the less prescriptive or explicit an existing standard is, 

the more likely it is to capture a larger amount of information in the field 

spectroscopy metadataset. These results are significant to the formal adoption and 

implementation of a field spectroscopy metadata standard. First of all, a balance 

must exist between the generality of metadata parameters (for capturing the 

maximum amount of information necessary for a dataset) and the granularity of 

metadata parameters (so that datasets can be described in sufficient detail). 

Secondly, the interoperability between a field spectroscopy metadata standard and 

other metadata standards is dependent in part on the prescriptiveness of the field 

spectroscopy metadata standard. These two considerations must be addressed to 

enable data users to share and intercompare datasets.  
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4.3.5 Discussion 

The mapping results, from the seven existing standards, demonstrate that they are 

almost uniformly lacking in meeting the needs of field spectroscopy scientists in the 

context of the four field spectroscopy metadatasets. The overall compliance levels, 

in decreasing order, are tree crown (μ=31%, σ=40%), proposed core metadataset 

(μ=22%, σ=32%), coral (μ=19%, σ=18%) and soil (μ=3%, σ=4%) applications.  In no 

instances were the critical metadata elements for any of the datasets captured in 

their entirety.  Field spectroscopy metadata has a large proportion of protocol and 

sampling information that is commonly documented in biological data metadata 

standards (hence the relative success with EML 2.1.1) but these are absent from 

dataset-level specific standards such as Dublin Core 1.1 and the ANZLIC Metadata 

Profile 1.1 (Geographic dataset core). There was a consistent lack of explicit 

references to critical field metadata such as instrument properties, viewing 

geometry, and reference standards. The metadata model in the FGDC Content 

Standard for Digital Geospatial Data (Remote Sensing Extension) for satellite and 

airborne sensors was the most closely aligned with requirements for field 

spectroradiometers.  Despite the deficiencies in the existing standards, many of 

them have dataset-level modules and parameters (literature citations, quality 

assessment reports) that may be useful in enhancing a field spectroscopy 

metadataset’s potential for discoverability and re-use.  

 

The correlation tests for unique and non-unique mappings show that flexibility has a 

positive effect on a standard’s success in capturing more information.  These results 
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have the greatest implication for metadata that documents field or sampling 

protocol, as these are most likely to be non-standard and dependent upon the 

purpose for which the data being is being collected. This was exemplified in part in 

Section 4.2 by the low consensus among vegetation scientists as to which protocol 

steps and other metadata to include in the tree crown dataset. Therefore an 

instrument operator or other campaign participant recording the metadata must be 

able to document field protocol unambiguously (with sufficient explicitness) without 

the restrictions imposed by a metadata standard that cannot be adhered to because 

it is not aligned with the operator’s field methods.  

 
 

4.4 A hybrid standard  
 
The work presented in this chapter so far has met four of the criteria for building a 

good standard presented in the introduction.  The application profiles (tree crown, 

soil, underwater coral application) and needs of the data users (metadatasets 

presented in Section 4.2 and the core metadataset in the previous chapter) have 

been identified; they were asked for assistance in building the standard, and as 

stakeholders, they were directly involved. The remaining criteria -- extend or refine 

existing standards that may not entirely meet the requirements of users; enable 

modularity for logical and consistent organization of the data; facilitate data 

discovery, retrieval, and re-use; eliminate redundancy in data documentation so that 

data is collected only once – are satisfied in this section through the creation of a 

hybrid field spectroscopy standard that integrates the metadatasets presented in 

Section 4.2 and metadata elements from the standards scrutinized in Section 4.3. 
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Examination of existing geospatial metadata standards demonstrates that although 

they are deficient in meeting the needs of field spectroscopy scientists, they are 

comprised of modules and parameters that are useful for enabling and enhancing 

the robustness, discoverability, quality assurance, and interoperability of the field 

spectroscopy datasets. These include metadata relating to dataset-level information 

(title, abstract, keywords, contacts, maintenance history, purpose), data quality 

(logical consistency, completeness, lineage), access rights (copyrights, levels of 

access for user groups), revision history, literature citations, and physical format 

data, among others.  

 

Digital provenance information is especially significant for long-term preservation of 

datasets, and research scientists have demonstrated a preference for long-term 

storage capabilities (i.e. over five years) over short-term storage (i.e. less than twelve 

months) and commonly share datasets from 1-3 months to 2-5 years after findings 

have been published (Guenther, 2010; Chao, 2012). Documenting this metadata has 

benefit within and outside the field spectroscopy community.  It enables logging of 

the use of the dataset, promotes greater understanding of research inquiries, 

provides those responsible for its governance with information for forecasting the 

use of the dataset, who in turn endorse services to support data access (Chao, 2012).  

 

Figure 4.5 shows a proposed hybrid metadata standard that fuses the metadatasets 

identified as requisite by the vegetation, soil, and marine scientists, and additional 

metadatasets imported from the standards examined in Section 4.3 that can serve as 

a ‘best of breed’ standard.  
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Figure 4.5 A proposed hybrid standard fusing the four field spectroscopy 
metadatasets (core and application-specific) with elements from the standards 
examined 
 

The new modules that have been imported and customized from existing standards 

are:  
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dataset module: broad-scope information that describes the entire dataset and 

includes  title of the dataset, metadata standard name and version,  revision history, 

keywords, purpose, and other general descriptors, for the main purpose of 

cataloguing and discoverability. Imported from the ANZLIC Metadata Profile 

(Geographic dataset core) metadata element, ABCD 2.06 metadata module, EML 

2.1.1.dataset module. 

 

resource module: information about the creators/owners/distributors of the data, 

lineage information, and contact information for the data resources. Imported from 

ANZLIC Metadata Profile (Geographic dataset core) metadata element; ABCD 2.06 

metadata module; Dublin Core 1.1 publisher metadata element, EML 2.1.1.dataset 

module.  

 

access module: specifies access rights to groups or particular users. Includes 

information about copyrights, trademarks, licenses, sequestered/classified datasets. 

Imported from Dublin Core 1.1 rights metadata element, EML 2.1.1 access module.  

 

project module: information about the research context and purpose, experiment 

design, funding and sponsorship. Imported from the EML 2.1.1 project module.  

 

applications module:  databases/datawarehouses/online repositories where the data 

can be accessed, and software recommended for viewing or analyzing the associated 

dataset. These can be references to EOSDIS Reverb|ECHO, Carnegie Spectranomics,  

TERN Data Discovery Portal, DLR Spectral Archive (for data access),  ViewSpec Pro, 
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SPECCHIO, MATLAB (for data analysis).  Imported from the EML 2.1.1 software 

module.  

 

data quality module: reports, indices, and assurances on the completeness, quality, 

and logical consistency of the data. Imported from the FGDC Content Standard for 

Digital Geospatial Metadata (Remote Sensing Extension).  

 

citations module: relevant literature, publications, reports, journal articles, etc.  cited 

in the metadataset or specifications about how the dataset itself should be cited 

externally. Imported from the EML 2.1.1 literature module.  

 

protocol module: documentation of (or references to) the sampling and field 

protocols used in the collection of the field data, such as those for hyperspectral 

ground calibration, leaf sampling, underwater coral sampling. Can also include 

taxonomies, nomenclatures, and classification systems used in the protocol such as 

the AASHTO/FAO/USDA/Canadian/Australian soil classification systems for soil 

applications.  Imported from the EML 2.1.1 literature module.   

 

The protocol module is especially relevant to field spectroscopy. Section 4.2 

demonstrated that in many cases, sampling techniques for a single target are 

dependent on the purposes for which the data is being collected, and Section 4.3 

established the value of flexibility in a standard in capturing the requisite metadata 

for a given campaign. Including a protocol module in a field spectroscopy standard 

allows the user to choose the protocol (with associated metadata elements) they 
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want to apply to their metadataset, and in cases where they are creating one ad hoc, 

the baseline metadataset for the application is available and can be customized 

accordingly to the campaign.  

   

4.5 Conclusions 

Three user communities within field spectroscopy were identified and interviewed to 

help design a metadataset for three applications – tree crown, soil, and underwater 

coral. Three metadatasets were created, with descriptions and rationale for each 

metadata element, optionality rankings, and preferred data formats.  Consensus 

within the tree crown group was lowest on which metadata should be included in 

their metadataset, based on the argument that knowledge of what the dataset will 

be used for determines the metadata elements that are required. It was established 

that some parameters are difficult to obtain in situ and can only be populated 

retrospectively, as illustrated with the underwater coral application, which is carried 

out under conditions and in environments unique to marine campaigns.  

 

Seven metadata standards, selected as being representative of standards within 

geospatial science and its applications were examined for their ability to support 

proposed field spectroscopy metadatasets.  These were: Dublin Core 1.1, Access to 

Biological Collections Data Schema 2.06, Ecological Metadata Language 2.1.1, Darwin 

Core, Content Standard for Digital GeoSpatial Metadata (Remote Sensing Extension), 

Content Standard for Digital GeoSpatial Metadata (Shoreline Metadata Profile) and 

ANZLIC Metadata Profile 1.1 (Geographic dataset core).  The results show they 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

125 

consistently fail to accommodate the needs of both field spectroscopy scientists in 

general as well as the three user communities (vegetation, soil, marine). Mappings 

from each standard to the field spectroscopy metadatasets were, on average, 22% of 

the proposed core metadataset, 31% tree crown, 3% soil, and 19% of the coral 

metadatasets. Flexibility analysis revealed that the less prescriptive or explicit an 

existing standard is, the more likely it is to capture a larger amount of information in 

the field spectroscopy metadatasets. 

 

By building upon the knowledge of scientists in ecology, marine science, the physical 

sciences and data governance experts who helped to develop existing geospatial 

standards, a hybrid standard can be created. Elements describing and documenting 

the dataset, resources, access, applications, data quality, citations, and protocols can 

enrich a field spectroscopy standard and make it adaptable to multiple data 

infrastructures.   This entirely new field spectroscopy metadata standard addresses 

the specific needs of field spectroscopy data stakeholders with sufficient robustness 

to facilitate documentation, quality assurance, discoverability and data exchange 

within large-scale data sharing platforms.  
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Chapter 5 Field spectroscopy metadata quality 
 

5.1 Introduction 
 
This chapter addresses research question #3, ‘What are the criteria for measuring 

the quality and completeness of field spectroscopy metadata in a spectral archive?’ 

Unique methods for measuring quality and completeness of metadata to meet the 

requirements of field spectroscopy datasets are presented. Two spectral libraries are 

examined as case studies of operationalized metadata policies, and the degree to 

which they are aligned with the needs of field spectroscopy scientists.  

 

The previous chapter suggested that a hybrid model is best for a metadata standard 

that accommodates the uniqueness of field spectroscopy data sets and permits 

documentation, quality assurance, and maximizes potential for discoverability and 

data exchange within large-scale data sharing platforms. A hybrid model 

incorporates the core metadataset and application-specific metadata as defined by 

remote sensing scientists in surveys and interviews presented in Chapters 3 and 4. It 

also adopts metadata quality modules from existing geospatial metadata standards 

that include reports, indices, and assurances on the completeness, quality, and 

logical consistency of the data. 

 

It was also established in the previous chapter that  field spectroscopy metadata 

cannot be discretized in the same manner as  defined by generic metadata standards 

(Dublin Core 1.1, Darwin Core) or those within geospatial  science (Content Standard 

for Digital GeoSpatial Metadata: Remote Sensing Extension, ANZLIC Metadata Profile 
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1.1: Geographic dataset core).  Likewise, the principle of fusing the best elements of 

existing standards with the requisite core metadata presented in earlier chapters 

extends to assessing the quality and completeness of a field spectroscopy 

metadataset. Therefore, metadata quality and completeness must be defined in a 

way of greatest utility and relevance to users of field spectroscopy datasets and 

encompass a set of criteria that relates to a baseline set of parameters from existing 

standards and those unique to field spectroscopy metadata. 

 

5.2 A quality and completeness definition for field spectroscopy metadata  

In the context of field spectroscopy stored within digital libraries and databases, 

metadata can be described in both its completeness and quality. Please refer to 

Section 2.6 for a discussion on general concepts of metadata completeness and 

quality.  In the absence of a formal definition of quality and completeness for field 

spectroscopy metadata, a definition is required that is a) useful, informative, and 

understandable to users of this metadata, b) can quantify the success of a given 

metadataset or data repository in meeting users’ needs, and c) provides information 

about the reputability of the repository or the data creators as a source of complete 

and high quality metadata.   

 

Field spectroscopy metadata quality can therefore be defined as a set of qualitative 

and quantitative measures that provide the data user with information that allows 

them to decide on the suitability of the metadata and associated dataset for a 

particular purpose. Ideally this set includes parameters that have been identified as 
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most important in information science studies on metadata (Bruce and Hillman, 

2004; Stvilia et al., 2007; Ochoa and Duval, 2009), while at the same time conforming 

in some respect to concepts of data quality proposed for geospatial datasets by 

geospatial science advisory bodies (FGDC 2002; ISO, 2002, 2003, 2011; ANZLIC, 2007; 

NISO, 2007; INSPIRE 2009). At the intersection between geospatial and information 

science metadata, there exists a set of parameters that are most commonly 

identified as essential: logical consistency (metadata elements are expressed using 

ontologies,  taxonomies, data types and relationships conforming to an informed 

consensus rationale); lineage (the source of the metadataset, responsible parties, 

citations and metadata revision history); error rate  (documents semantic and 

syntactic errors in the metadata); compliance with a metadata quality standard; 

quality assurance by a recognized authority; and reputational authority of the data 

owners/data creators. While this is not a comprehensive list of all the possible 

metadata quality parameters, it serves as a suitable compromise between the two 

disciplines, and satisfies the criteria for a field spectroscopy metadata quality 

definition presented earlier in this section.  

 

Field spectroscopy metadata completeness can be defined as a two-fold measure 

consisting of a) conformance with the core metadataset and application-specific 

metadata presented in Chapters 3 and 4 and b) compliance with the standards of the 

data infrastructure in which they are stored. The former sets a consistent benchmark 

for all field spectroscopy metadatasets.  The latter is a fluctuating target dependent 

upon the benchmarks defined by the database/data repository designers; it provides 

implicit reputational information about the database/data repository because it 
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measures how well (or if it all) a data repository complies with its own completeness 

rules.   

 

5.3 How do current spectral libraries perform in terms of the proposed quality and 

completeness measures? 

Applying the proposed quality and completeness measures in Section 5.2 to existing 

spectral libraries gives an illustration of how well existing datasets meet the needs of 

the field spectroscopy community.  The results of the analysis also reveal areas of 

potential change to metadata policies for future implementation of spectral data 

repositories.  

 

5.3.1 Datasets 

An investigation into publicly available field spectroscopy libraries that hold a range 

of spectra with associated metadata revealed that few exist that can be considered 

suitable for analysis. These include the ASTER Spectral Library v. 2.0, DLR Spectral 

Archive, USGS Spectral Library v. splib06a, and SPECCHIO v. 2.2 (a more detailed 

discussion on spectral libraries can found in Section 2.4.4).  Of these, tests cases 

were chosen based on their diversity of spectra, volume of data, and availability of 

the metadataset for download and analysis. The two chosen were the USGS Spectral 

Library and the SPECCHIO database. The DLR Spectral Archive could not be analysed 

concurrently with SPECCHIO and the USGS Spectral Library because data could not 

be obtained from the DLR data center in a suitable format in time for analysis. USGS 

Spectral Library, as a subset of the ASTER Spectral Library, was chosen as a suitable, 
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more appropriate proxy than the entire ASTER Spectral Library itself, given that USGS 

Spectral Library has a larger proportion of field spectroscopy data. Table 5.1 provides 

a general overview of the two selected data libraries.  

 

The USGS Spectral Library (http://speclab.cr.usgs.gov/spectral-lib.html) is available 

online for any member of the public to download. The library was developed to 

support imaging spectroscopy studies of the Earth and other planets (USGS, 2006). 

Functionally, it is an html-based directory of spectra with associated metadata. There 

are 820 spectra, categorized into mineral, vegetation, man-made, mixture, volatile, 

microorganism, and plant samples. Each spectrum is stored as an image plot and 

metadata including sample name, description, chemical formula, sample donor, 

location, xrd analysis, with up to 24 metadata elements stored in pre-defined 

templates for each category of target.  It is a static library in the sense that the data 

is read-only, and members of the public cannot upload new spectra or perform 

updates.   

 

The SPECCHIO (http://www.specchio.ch/) database is available online for members 

of the public and can also be downloaded as a local instance.  SPECCHIO was created 

by Remote Sensing Laboratories at the University of Zurich to store reference spectra 

and campaign data obtained by spectroradiometers in a central repository (Hueni et 

al., 2009).  It is accessible through a Java application, and all data is stored in a 

MySQL database.  The public can upload spectra and metadata and make edits to 

their own datasets. It contains 111,023 spectra across 71 campaigns. Metadata is 

stored at both the spectrum and campaign level, some of which is auto-generated.  



 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5.1 Overview of USGS and SPECCHIO spectral data libraries 

Spectral 
Library Agency Purpose Year 

Created Format Campaigns Spectra 
Explicit 
quality 

assurance 

Mandatory 
metadataset 

USGS USGS 

• used as reference for 
material identification in 
remote sensing images 
• cataloguing of field and 
laboratory observations 

2003 Static archive (online) 

Data not 
defined at 
campaign 

level 

820 No Yes; pre-formatted 
templates 

SPECCHIO RSL 

• designed to hold reference 
spectra and spectral campaign 
data obtained by 
spectroradiometers 
• rich metadataset in the data 
model  for ensuring the 
longevity of spectral data and 
enables the sharing of 
spectral data between 
research groups 
•cataloguing of field 
observations 

2007 

Open access 
database (online and 
as a single or multi-

user instance) 

71 111,023 No Yes; at campaign and 
spectrum level 

 



 

Users have the option of additional metadata they wish to populate, either at the 

spectrum level (including viewing geometry, target homogeneity, environment 

information) or campaign level (including description, associated institute). 

 

Both the SPECCHIO and USGS datasets had to be prepared for analysis. A database 

backup copy of SPECCHIO was provided by the RSL data center at the University of 

Zurich. The entire SPECCHIO database was restored as a local MySQL instance. The 

database schema required some redesign caused by data in the SPECCHIO database 

that violated the original schema as specified by the database designer. These 

schema violations were due to the fact that since becoming publicly available, data 

had been loaded into SPECCHIO by members of the public with no oversight as to 

whether it conformed to the original schema. Once the schema underwent a small 

amount of redesign, all the data that currently resides in SPECCHO could be loaded 

in to the local instance. A total of 111,023 spectra categorized into 55 campaigns 

(the SPECCHIO website advertises 71 campaigns but only 55 are available for 

analysis), with metadata stored across 61 interrelated tables were loaded into the 

local instance.  

 

The USGS metadata was downloaded from the USGS Spectroscopy Lab website as a 

set of html files. It was then extracted from the html files (one file per spectrum) and 

transferred to a custom designed MySQL database. This was a time-intensive process 

as each file of spectrum data had to be extracted individually and then loaded into a 

database schema conforming to the dataset. As such, 90 spectra were chosen, 

comprising a random selection of 10% of the total datasets from each sample 
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category (mineral, mixture, vegetation, micro-organism, man-made, volatile). 

Random numbers were generated using SPSS v. 21 software random number 

generator module to select the sample set.  In the only category that had two 

spectra (volatile), both spectra were used to permit statistical analysis for that 

category. Using a range of samples permitted a more equable comparison with the 

SPECCHIO datasets, which are also varied in sample type. The number of samples 

was chosen based on statistically acceptable thresholds for sampling sizes in data 

mining (SAS 2010; Khandar and Dani, 2011). 

 

5.3.2 Method 

Assessing the quality and completeness in the data libraries was based on the 

parameters proposed for measuring metadata quality presented in Section 5.2. 

Completeness measures were entirely quantitative.  The evaluation could be 

implemented as an automated process to individually evaluate the completeness of 

the metadata for 111,023 spectra in the SPECCHIO database and the 90 spectra in 

the USGS dataset using data querying utilities within MySQL. A mapping of metadata 

between SPECCHIO, USGS Spectral Library and the core metadataset is found in 

Appendix C.  

 

The quality measure was an assessment based on the five proposed parameters 

(logical consistency, error rate, quality assurance, lineage, reputational authority) 

presented in Section 5.2.  The choice to use a qualitative assessment for both test 

cases was based on the manner in which measures for logical consistency and error 
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rates are typically derived. Both comprise counts of instances where a metadataset 

contains contradictory information or inconsistent formatting for the same unit of 

information. Both require a pre-defined vocabulary and a baseline set of reference 

metadata against which to verify semantic and syntactic errors and consistency.  A 

reference metadataset in this case would be defined based on knowledge of the 

correct formatting and spelling of metadata elements such as names of data owners, 

campaign locations,  and dates,  none of which were specified in either the 

SPECCHIO or USGS database design or user guidelines; nor could they reasonably be 

expected to be provided by the database owners based upon the volume of data and 

the diversity of sources from which they originate (the SPECCHIO database, for 

example, has a single database administrator responsible for managing all data). 

These factors prohibited a practical implementation of an automated process to 

check the metadataset for each spectrum (111,0233 in SPECCHIO, 90 in USGS 

Spectral Library) for presence of errors or measures of logical consistency.  Rather, 

analysis was applied to derive results that implied logical consistency or degrees of 

reputational authority, and included analysis such as cumulative entropy calculations 

for populated metadata parameters and completeness measures per database user 

and institute.  

 

Both datasets underwent filtering and cleaning prior to analysis. In preparation for 

completeness analysis, metadata had to be searched for every instance of fields that 

would qualify as non-populated.  These included fields with entries of null values, 

‘None’, ‘none available’, ‘unknown’, ‘Not done yet’ and other similar variations. This 

was relevant mostly to the USGS data.  The bulk of the data loaded into the library 
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had been acquired via metadata templates that had undergone several iterative 

changes over the lifetime of the library, with each subsequent iteration being an 

expanded version of those before, therefore unpopulated fields in earlier datasets 

had default null values. In newer iterations of the metadata templates, users had the 

option of manually populating  most metadata fields, and where there was no data 

for the user to enter, the user either left it blank, or explicitly stated that there was 

no data. In SPECCHIO, in most instances, if metadata is not entered by the user, it is 

automatically stored as a null value in the database.  

 

5.3.3 Results 

The completeness and quality reports for SPECCHIO and the USGS Spectral Library 

are presented in this section. The mappings for metadata elements between the 

core metadataset and SPECCHIO and USGS Spectral Library are found in Appendix C.  

 
 

5.3.3.1 Metadata Completeness Analysis 
 
A summarized completeness report for both SPECCHIO and the USGS Spectral Library 

is provided in Table 5.2.  SPECCHIO and the USGS Spectral Library both show higher 

compliance with their internal metadata requirements (SPECCHIO at 59.3 % at 

campaign level and 52% at spectrum level metadata; USGS at an average 72% 

compliance for all samples) than with the proposed core metadataset (SPECCHIO at 

18% and USGS at 7.7%). This is expected, as the SPECCHIO and USGS Spectral Library 

data managers do not have knowledge of what the core metadataset is, therefore 

have not implemented it in their metadata policy.  
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SPECCHIO metadata is defined at the campaign and spectrum level (16 and 35 

metadata elements respectively). Almost every metadata element in the SPECCHIO 

set can be mapped to elements in the core metadataset – the majority of these 

pertained to viewing geometry, instrument information, location information, 

atmospheric information, illumination information, and general project information. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 Metadata Completeness report for SPECCHIO and USGS Spectra Library 
 
 

In SPECCHIO, there is no calibration information metadata. In cases where a 

spectrum completeness measure for SPECCHIO exceeded the core metadataset 

completeness measure, this was due to additional metadata elements in SPECCHIO 

that do not exist within the proposed core metadataset. These include but are not 

limited to: three additional metadata elements pertaining to metadata quality – the 

Spectral  
Library/Database Completeness Statistics 

SPECCHIO 

  Campaign Completeness  
(internal metadata policy) 

Core Metadataset 
Compliance  

(campaign + spectrum) 

 
# of 

campaigns 
examined 

# of 
parameters min max avg %  stdev min max avg %  stdev 

 55 15 6 15 59.3% 12.7% 11 21 18.4% 1.3% 

  Spectrum Completeness  
(internal metadata policy)     

 
# of 

spectra 
examined 

# of 
parameters min max avg %  stdev     

 111 023 35 10 20 51.7% 4.0%     

USGS 

  Spectrum Completeness  
(internal metadata policy) 

Core Metadataset 
Compliance (spectrum) 

 
# of 

spectra 
examined 

# of 
parameters min max avg %  stdev min max avg %  stdev 

Man-made* 11 24 15 18 68.8% 5.4% 7 8 7.2% 0.5% 
Microorganism* 2 19 11 14 65.8% 11.1% 7 10 8.2% 2.0% 

Minerals* 44 25 16 20 74.8% 4.8% 7 8 8.2% 0.5% 
Mixture* 13 25 16 23 82.0% 12.0% 6 11 8.0% 0.3% 
Plant* 18 19 11 16 62.6% 7.4% 7 10 7.1% 0.8% 

Volatile* 2 25 17 22 78.0% 14.0% 8 8 7.7% 0.0% 
           

Average     72.0% 9.1%   7.7% 0.7% 
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‘required quality level’ and ‘quality level’ flags at the spectrum level, and ‘quality 

comply’ flag at the campaign level; air pressure/ambient temperature/wind direction 

metadata in the environmental conditions category; ‘illumination distance’ in the 

sampling geometry category and database user, institute, and instrument 

manufacturer information (postal address, email, etc.) all of which are not explicitly 

referenced in the proposed core metadataset.  

 

Mappings to the core metadataset incorporated SPECCHIO metadata elements at 

both the spectrum and campaign level, since much of the campaign level metadata 

can be mapped to the ‘General Project Information’ category in the core 

metadataset (including campaign description, relevant websites, and project 

participants). The database user who loaded the campaign into the database was 

designated as a project participant when mapped to the core metadataset.  

However, there was no metadata in SPECCHIO indicating who the field operators 

were. The core metadataset distinguishes between project participants, affiliates, 

and field instrument operators.  

 

SPECCHIO spectra could not be categorized into individual sample types because 

there is no field describing the sample type (vegetation/mineral/aquatic/other) and 

the sample name in most cases is not informative. There is no information about the 

sample itself other than the ‘target name’ metadata field. The campaign description, 

in some cases, provides minimal information about the types of samples and 

purpose of the campaign.  
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Information about the hyperspectral signal properties is limited to type 

(reflectance/radiance/absorbance/transmittance/DN/wavelength/mueller10/muelle

-r20/irradiance), wavelength interval, and wavelength data, that are assigned mostly 

to the ‘measurement type’ and ‘sensor’ metadata categories (SPECCHIO 

distinguishes between sensor and instrument information). The SPECCHIO user 

interface, via a Java application, does provide access to additional instrument and 

signal properties encoded within the instrument-native files (ASD binary, GER 

signature files, SVC HR-1024 files, among others), but these are not enforced by the 

internal SPECCHIO metadata policies. Rather, it is assumed that the user can load 

these retrospectively if they have a local installation of the database and they had 

customized it to allow additional metadata fields for instrument, sensor, and signal 

properties. Therefore SPECCHIO makes assumptions that users may not wish to 

populate all metadata at once, or do not need to view all metadata available while 

searching for the dataset of their choice. 

 

None of the quality flags for SPECCHIO metadata were populated. These flags 

reference the level of completeness of the metadata only. At the spectrum level, 

both the ‘required quality level’ and ‘quality level’ can be populated. There are two 

rankings for both the ‘required quality level’ and ‘quality level’ parameters -- Level A 

(not defined or implemented in the current version of SPECCHIO) and Level B, which 

is defined to be a metadataset that “should make spectral data useable by third 

persons who were not directly involved in the capturing process and are thus not 

familiar with the sampling circumstances” (Hueni, 2011, p. 15). According to the 

SPECCHIO metadata policies, Level B metadata comprise campaign investigator, 
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sensor, instrument, foreoptic, landcover, target homogeneity, measurement unit, 

sampling environment, measurement type, latitude, longitude, altitude, cloud cover, 

sensor/illumination azimuth and zenith, and target type. At the campaign level, the 

‘quality comply’ flag is not defined.  There is no SPECCHIO metadata policy that 

requires a minimum metadataset, and the metadata, once loaded, is not reviewed 

by the database administrator.  

 

USGS Spectral Library metadata is populated according to templates categorized by 

sample type:  man-made (rooftop shingles, asphalt, concrete, etc.), microorganism 

(lichen, bacteria, etc.), minerals (zinc, calcite, etc.), mixture (andradite, siderite. etc.), 

plant (trees, flowers, grasses, etc.), volatile (water, melting snow, etc.), each with 

varying degrees of maximum allowable metadata elements. The majority of the 

metadata describe the sample itself (sample ID, mineral type, Latin name, formula, 

etc.) including image metadata.  

 

Remaining metadata refer to the location where the spectra were recorded (if 

outdoors), former and current sample location, original donor, and results of xrd and 

chemical analysis, where applicable. The original donor field was considered a 

project participant when mapped to the ‘General Project Information’ category in 

the core metadataset. Metadata referring to instrument, hyperspectral signal 

properties, calibration, viewing geometry, or illumination information do not exist 

within the metadata templates; such information is only available if the user chooses 

to include these in the ‘Sample Description’ metadata field. The metadata does not 

specify that the data itself is a reflectance measure, but this is stated on the USGS 
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Spectral Library website information pages. Instrument information, including 

wavelengths used in the measurement and spectral resolution, can be obtained from 

the SpectraProc files that are available separately from the USGS website. As with 

SPECCHIO, there is no specified minimum completeness level for metadata, nor is 

there any explicit evidence that the data is reviewed once loaded. The library is 

acknowledged not to have “…all samples completely characterized. The 

characterization of samples will continue as our resources allow, and results will be 

added in future releases of the database” (USGS, 2006).  There are no completeness 

or quality flags in the metadata.  

 

Investigating those categories where the database users were inconsistent in 

populating metadata categories can serve to inform the future design of metadata 

policies within databases, especially in those parameters relating to core metadata.  

When users are consistent in the way they populate the same set of metadata fields 

(they either populate them or not with little variance), it can be assumed that the 

users have a consensus opinion on whether these metadata are critical or not. 

Otherwise the cause can be attributed in part to system design.  In the case where 

users are consistently populating the same fields, the database interface encourages 

or at the very least makes it easier for the user to populate those fields and 

conversely, inhibits users where consistently unpopulated fields are concerned.  It is 

necessary here to assume that for metadata elements that are being inconsistently 

populated, users who are not populating these fields are technically literate and/or 

capable enough not to be inhibited by poor database user interface, and are not 

populating them of their own volition.  Investigating users’ motives is beyond the 
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scope of this discussion, but it remains worthwhile, to highlight any patterns of 

variance, specifically, why certain users consider a given set of metadata fields 

important, while others do not. 

 

The SPECCHIO spectrum-level metadataset is the most useful for this kind of 

analysis, because of the large number of spectra (111,023) and the uniform number 

of metadata elements (35) associated with each sample (the USGS Spectral Library is 

not uniform in its metadata policy for sample types). While SPECCHIO metadata is 

not sufficiently discretized to allow the segregation of users into specific groups, it is 

possible to identify those fields that contribute to the greatest variance.   

 

SPECCHIO spectrum-level metadata was analysed to determine if there were 

patterns of variance for completeness levels. The method of analysis chosen was 

dimensional scaling of the data, to better understand the variance and co-variance 

relationships among the SPECCHIO metadata elements for spectrum-level 

completeness. This was accomplished with categorical principal component analysis 

(with ordinal measurement) to determine those metadata parameters that cluster 

together, by their proportionate variance, for completeness measure. Principal 

components analysis generates linear combinations (dimensions) of the original 

variables (metadata elements) expressed as proportions of variance. Categorical 

principal components is a method specialized for categorical data (‘populated’ or 

‘not populated’) and does not require normal distributions for input (Linting, et al., 

2007; Meulman and Heiser, 1989, 2012; Starkweather, 2012).  All zero-variance 

metadata elements were excluded, and these were ‘IsReference’, 
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‘ReferenceSerialNumber’ and ‘ReferenceBrandName’ (all referring to the reference 

standard used while taking measurements) and the ‘RequiredQualityLevel’ and 

‘QualityLevel’ fields (these were not populated for any spectra).  

 

The analysis yielded seven dimensions for the spectrum-level metadata.  The choice 

of seven dimensions was based on prior factor analysis testing that showed seven 

factors was the threshold at which 85-90% of the cumulative variance could be 

accounted for. Only factors with eigenvalues greater than 1 were extracted (Kaiser, 

1960).   Table 5.3 shows the (metadata element) loadings for each dimension. 

 

The highest loading for each metadata element has been highlighted in bold.  The 

results show that dimension 1 is principally viewing geometry (‘SensorAzimuth’, 

‘SensorDistance’, ‘SensorZenith’, ‘IlluminationZenith’, ‘IlluminationZenith’), 

hyperspectral signal properties (‘MeasurementType’, ‘InternalAverageCount’), and  

location information (‘SamplingEnvironmentName’, ‘LocationName’). Dimension 2 is 

almost exclusively environmental conditions ('AirPressure', 'AmbientTemperature', 

'RelativeHumidity', 'WindDirection', 'WindSpeed'). Dimension 3 is exclusively 

instrument information (‘ManufacturerName’,’ ManufacturerShortName’, 

‘SensorDescription’, ‘SensorName’, ‘SensorNoOfChannels’). Dimension 4 is primarily 

location information, (‘LandcoverDescription’, ‘Altitude’, 'Latitude', 'Longitude') with 

two elements of instrument information ('InstrumentName', 

'InstrumentSerial_number') and one from sample properties (‘TargetHomogeneity’). 

Dimension 5 has one metadata element from viewing geometry 

('IlluminationDistance') and one from instrument information 
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(‘ManufacturerWWW’).  Dimension 6 has its highest loading for one parameter from 

environmental conditions (‘CloudCoverInOctas’), and dimension 7 is primarily 

hyperspectral signal properties (‘MeasurementUnit’). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3 Dimension loadings for SPECCHIO spectrum level metadata completeness 
using categorical principal components analysis with variable principal 
normalization. The highest loading for each metadata element has been highlighted 
in bold. 
 

Metadata element Dimension 

1 2 3 4 5 6 7 
AirPressure .034 .797 -.555 -.228 -.010 -.047 -.003 

Altitude -.299 -.415 .034 -.670 -.111 -.338 .207 

AmbientTemperature .034 .797 -.555 -.228 -.010 -.047 -.003 

CloudCoverInOctas .066 -.015 -.011 -.114 -.090 .600 -.001 

IlluminationAzimuth .553 -.304 -.107 -.516 -.432 .090 -.199 

IlluminationDistance -.073 .003 .037 -.125 .439 -.219 -.420 

IlluminationZenith .872 -.219 -.133 -.177 .036 -.099 .188 

InstrumentName .457 .052 -.075 .618 -.463 -.199 -.027 

InstrumentSerialNumber .457 .052 -.075 .618 -.463 -.199 -.027 

InternalAverageCount -.892 -.060 .158 -.201 .053 -.065 -.126 

LandcoverDescription -.257 -.042 .065 -.485 .116 .441 .271 
Latitude .543 -.311 -.101 -.570 -.422 .121 -.167 

LocationName .903 -.197 -.127 -.085 .157 -.191 .042 

Longitude .543 -.311 -.101 -.570 -.422 .121 -.167 

ManufacturerName .226 .511 .810 -.126 -.104 -.042 .011 

ManufacturerShortName .226 .511 .810 -.126 -.104 -.042 .011 

ManufacturerWWW .227 .274 .383 .087 .452 .315 -.211 

MeasurementType .918 .086 -.128 .243 .118 .177 .054 

MeasurementUnit .125 -.003 .037 -.076 .038 -.052 .720 
RelativeHumidity .034 .797 -.555 -.228 -.010 -.047 -.003 

SamplingEnvironmentName .904 -.124 .000 -.150 .309 -.049 .026 

SensorAzimuth .919 -.089 -.028 -.034 .251 -.045 -.025 

SensorDistance .921 -.005 -.071 .084 .239 .052 -.001 

SensorZenith .929 -.083 -.027 -.020 .271 -.049 -.010 

SensorDescription .226 .511 .810 -.126 -.104 -.042 .011 

SensorName .226 .511 .810 -.126 -.104 -.042 .011 

SensorNoOfChannels .226 .511 .810 -.126 -.104 -.042 .011 

TargetHomogeneity -.186 -.337 .219 -.644 .273 -.379 -.054 

WindDirection .034 .797 -.555 -.228 -.010 -.047 -.003 

WindSpeed .034 .797 -.555 -.228 -.010 -.047 -.003 
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The first three dimensions account for 63% of the total variance (with progressively 

diminishing variance loading on the remaining four dimensions). The first three 

dimensions relate strongly to viewing geometry, instrument information, 

hyperspectral signal properties and environmental conditions, all of which are 

elements of the core metadataset. These findings invite future investigation as to 

why database users are not consistent in populating metadata in these three 

categories that have been identified by their peers (in Chapters 3 and 4) as critical to 

all field spectroscopy metadatasets. Unpopulated metadata in these categories is 

fundamentally compromising the overall quality, interoperability, and 

intercomparison of these datasets. These findings also invite data managers and 

stakeholders to educate data creators about the importance and implications of 

metadata completeness, and to implement metadata policies within data sharing 

platforms that force data creators to comply with given levels of completeness.  

 
 

5.3.3.2 Metadata Quality Analysis 

In the absence of metadata quality flags in both SPECCHIO and the USGS Spectral 

Library, a metadata quality analysis was completed on parameters including logical 

consistency, error rate, lineage, quality assurance, and reputational authority.  A 

comprehensive analysis was not possible for all parameters, and this is discussed in 

more detail in the sections below.  
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Quality Assurance 

Neither SPECCHIO nor USGS Spectral Library have any metadata quality measures 

(aside from those discussed in Section 5.3.3.1 that are inapplicable) or quality 

assurance parameters.  

 
Lineage 
 
Neither SPECCHIO nor USGS Spectral Library have lineage metadata for records.  

 

Reputational Authority 
 
SPECCHIO and the USGS Spectral Library do not have explicit reputational authority 

metadata for data creators. Reputational authority can be established if metadata 

about the data creator or owner includes information about their professional 

affiliations, publications, projects on which they have worked, and other similar data 

that allows user to make value judgements about whether the data creator has 

sufficient gravitas within the research community to produce reliable datasets. 

However, when this metadata is absent, there are ways of establishing reputational 

authority implicitly or indirectly. This is the case for the SPECCHIO database, in which 

each spectrum is associated with both a database user and the institute under which 

they are registered (multiple users can belong to one institute). Measuring data 

owner or data creator compliance to metadata policies supplies the data user with 

some information on which to form an opinion about the reliability of the data 

creator.  The premise for this argument being, if a data creator is being diligent in 

complying with metadata policies, then they are likely to be diligent in producing 

reliable and higher quality datasets than their counterparts.  
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Analysis of variance was one method of determining the effect of user and institute 

on completeness measures. This was computed on normalized completeness 

measures using a one-way between subjects ANOVA.   Completeness measures used 

were those for SPECCHIO campaign and spectrum-level metadata, and for the 

proposed core metadataset. There was a significant effect of user on completeness 

measures at the p<0.001 level for the 26 users examined F(25,110997) = 280.45 for 

SPECCCHIO spectrum, F(25,46174) = 1488.79 for SPECCHIO campaign, and 

F(25,110997) = 337.75 for the proposed core metadataset. There was a significant 

effect of institute on completeness measures at the p<0.001 level for the 15 

institutes examined F(14,111008) = 289.81 for spectrum, F(14,46185) = 1325.23 for 

campaign, and F(14,111008) = 348.79 for core. 

 

Z-scores were calculated from the raw completeness measures to determine 

whether they differed across users and institutes. A Z-score quantifies the original 

completeness values in terms of the number of standard deviations that that value is 

from the mean of the distribution. It is useful for identifying any users or institutes 

which have values below or above the mean.  Z-scores above zero indicate that a 

given user or institute populates metadata to a higher level of completeness than 

their peers; the reverse is true for Z-scores below zero.  

 

Figures 5.1 and 5.2 show the mean Z-score for spectrum, campaign, and core dataset 

completeness for each user and institute, respectively, with the mean for all scores 

at y=0.   The Z-score is a calculation of the distance of each user or institute from the 

mean completeness score for all users or institutes. 
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The Z-scores for database users (Figure 5.1) show overall poor completeness levels 

for spectrum, campaign, and core metadataset completeness. They indicate that 

spectrum-level and core metadataset compliance exhibit similar scores, mostly due 

to the fact that a large proportion of the spectrum-level metadata is a subset of the 

core. The mean Z-score ranges were 12.6 for the proposed core metadataset 

completeness, 10.3 for SPECCCHIO campaign-level completeness and 13.9 for 

SPECCHIO spectrum-level completeness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 Mean Z-scores for completeness by database user 
 
 
The highest mean Z-scores for spectrum-level and core metadataset completeness 

belong to user 4 (accounting for 82% of the spectra), user 142 (< 1% of the spectra) 

and user 155 (<1 % of the spectra).  The lowest mean Z-scores for spectrum-level and 

core metadataset completeness belong to user 107 (<1% of the spectra), user 267 

(<1% of the spectra) and user 407 (1% of the spectra).  The highest campaign 
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completeness scores belong to user 136 (<1% of the spectra), user 239 (<1% of the 

spectra) and user 305 (<1% of the spectra). The results show that a high spectrum-

level completeness does not imply the same degree of campaign completeness for a 

given user, therefore the must be considered separately when assessing reputational 

authority. 

 

The Z-scores for the institute associated with each spectrum (Figure 5.2) indicate the 

same degree of similarity between spectrum-level and core metadataset 

completeness as with the Z-scores for database users, but again, overall poor 

performance for completeness. 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 Mean Z-scores for completeness by institute 
 

The highest mean Z-scores for spectrum-level and core metadataset completeness 

belong to institute 1 (89% of the spectra), institute 103 (<1 % of the spectra), 

institutes 119 and 138 (<1 % of the spectra).  The lowest mean Z-scores for 
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spectrum-level and core metadataset completeness belong to institutes 10, 79, and 

102, each accounting for 1% or less of the spectra).  The highest campaign 

completeness scores belong to institutes 23, 67, 99, each accounting for less than 1% 

of the spectra. The highest-performing institute for spectrum-level and core 

metadataset completeness, Institute 1, is also associated with the top-scoring users 

for spectrum and core metadataset completeness (users 4, 155) and is not 

associated with any of the lowest-scoring users.  

 

The results show that in the absence of explicit information relating to the 

reputational authority of the metadata creators, it is still possible for a data user to 

form an opinion about the reliability of the data creator. For example, in the 

SPECCHIO database, the highest-ranking database users and institutes for metadata 

completeness could be identified.  Since they were demonstrably diligent in 

complying with metadata policies, it can be assumed that they are likely to be 

diligent in producing reliable and higher quality datasets than their counterparts. 

These results suggest that in order to aid the data user in making informed choices 

about the suitability of a dataset, the conventional definition of reputational 

authority can be expanded to include implicit measures.  

 
 
 
Error rates 
 
A systematic assessment of syntactic and semantic error rates was not possible due 

to the absence of a reference dataset for either SPECCHIO or the USGS Spectral 

Library, as discussed in more detail in Section 5.3.2.  Instances of metadata that were 
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presumed to be erroneous are noted here for illustration purposes only.  This was 

mostly relevant to the USGS Spectral Library, due to its numerous free-form text 

metadata elements.  Examples of presumed semantic errors include:  'image sample' 

metadata field left null when image is attached (BR93-33Arecord); 'XRD analysis' 

metadata not clear about whether data does not exist or the analysis did not yield 

results: 'See/'Unknown' (multiple records). Examples of presumed syntactic errors 

include: variations of the spellings in 'original donor' field presumably representing 

the same entity: 'Greg Swayze'/'Gregg Swayze' (multiple records).  

 
 
Logical Consistency 
 
Logical consistency for a metadata instance can be defined as “the degree to which it 

matches the metadata standard definition” (Ochoa and Duval, 2009, p. 9). It can be 

measured in part by the type and amount of information that users are entering into 

the metadata fields.  Inconsistencies can be caused by incompetent data entry, or 

fundamental systematic problems in the metadata policy. Ruling out incompetent 

data entry, the effects of systematic problems can be manifest if one group of users 

is recording metadata in a markedly differently way than other users, whether by 

populating a given field with too little or too much information, or with information 

not within the standard definition of what that metadata field is designed to 

represent. This can suggest that the metadata policy is not consistent with their 

needs as a user group.   

 

The USGS Spectral Library, based on its numerous free-form text fields, and 

metadata templates specialized by sample type, permits this kind of examination. 
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The metadata instance chosen for analysis was ‘sample description’. This metadata 

element is used by the USGS Spectral Library users to provide details about a given 

spectroscopic sample, including a physical description, core compounds, trace 

elements, main spectral features etc. The two groups chosen for comparison were 

the vegetation community (designated as all data users who populated the 

vegetation metadatasets) and the non-vegetation community (all other users). 

Inspection of USGS records revealed that vegetation spectroscopy on live samples 

documented in the USGS Spectral Library was more likely to be done in the field 

(rather than many of the mineral samples that were examined in the lab). Therefore, 

the vegetation sample metadata would be a more accurate reflection of metadata 

arising from a field campaign.  

 

The method of analysis was a comparison of cumulative entropy measurement 

(Simon, 2010) for the ‘sample description’ text length between vegetation and non-

vegetation groups. Text length was used as a measure of how much data users are 

entering into the sample description. The reasonable assumption was that a larger 

text length denoted more data. Since there was no pre-defined vocabulary or a 

baseline set of reference metadata within the USGS Spectral Library against which to 

verify the kind of information that users should input for ‘sample description’, text 

length was the most the suitable measure given the data available.  

 

Entropy is a concept derived from thermodynamics used to describe the possible 

microstates of a system.  It has been extended to information theory and computer 
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science to be defined as the amount of information required on average to describe 

a random variable (Cover and Thomas, 1991) (Equation 5.1) 

 
 

The entropy H(X) of a discrete random variable X is defined by 
 

H(X) = -  Ʃ p(x) log p (x)   (Equation 5.1) 
 
 
 

Entropy is calculated in log base 2 as a quantity in bits for computer science 

applications. When applied to a discrete variable representing categories of 

information (in this instance, the ‘sample description’ field), entropy is large when 

each category has roughly the same proportion, but small when the probability is 

concentrated in a few specific categories (Simon, 2010). Entropy and cumulative 

entropy are useful for metadata quality analysis because they can be used to identify 

changes in data entry characteristics (Simon, 2010) and as a measure of the diversity 

of information being stored (Stvilia et al., 2004).  

 

Prior to entropy analysis, the probability of each ‘sample description’ text length had 

to be calculated. All null values were changed to 0 (indicating that user had entered 

no data, therefore having a text length of 0). The non-vegetation group was 

separated from the vegetation samples, and a subset was randomly selected as a 

training set.  Within the training set, 20 bins for text length were created, based on 

percentiles, at a width of 5%. The 20th percentile included those values higher than 

1231 characters (the maximum text length in the training set). A probability was then 

assigned to each bin based on the number of occurrences of values within a given 
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bin. Based on the training dataset, the largest value expected was 1300 characters in 

length. For the purpose of analysis, both the lowest cut-off (0) and highest cut-off 

(1300) were considered to have no bounds and extend into either negative or 

positive infinity.  

 

The probabilities derived from the training dataset were then assigned to the 

vegetation and non-vegetation groups. Cumulative entropy was calculated on two 

sets of data: a non-vegetation-only group, and a mixed vegetation and non-

vegetation group. The cumulative entropy graph is shown in Figure 5.3.  

 

 

 

 

 

 

 

 

 
 
Figure 5.3 Cumulative entropy for non-vegetation and mixed groups 
 

The metadata instance represents an individual ‘sample description’ field. A 

bifurcation is visible at approximately the 35th metadata instance, after the 

vegetation group is introduced to the mixed group. With each vegetation instance 

added, the cumulative entropy remains nearly constant at a value of 8, whereas 
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cumulative entropy for the non-vegetation group continues to rise. This is explained 

by the fact that the text length for the vegetation ‘sample description’ instances had 

an overall lower probability of occurring, because they were beyond the normal 

expected length (1300 characters) derived from the training dataset. Two vegetation 

instances in particular had the highest ‘sample description’ text length in the entire 

metadataset, at 1742 and 6082 characters.  

 

Closer examination as to what was causing such large values for text length revealed 

that the vegetation group is using this metadata element to store detailed and 

explicit information about field data collection protocol including viewing geometry, 

sensor information, illumination information, target homogeneity and atmospheric 

conditions. This suggests that the vegetation metadata template in the USGS 

Spectral Library is insufficiently structured and lacks the richness required to permit 

users to store the information for vegetation field spectroscopy in a logically and 

semantically consistent way.  

 
 

5.3.4 Discussion 

The results show that in the completeness and quality measures, SPECCHIO and the 

USGS Spectral Library are not aligning well with the needs of field spectroscopy 

scientists as identified in Chapters 3 and 4. Overall, the low scores on completeness 

and generally poor metadata quality in both cases are a hindrance to discoverability 

of the data, interoperability with other datasets, and make it difficult for data user to 

assess whether a given metadataset is suitable for their purpose.   
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SPECCHIO has an average completeness measure of 51.7% at the spectrum level, 

59.3 % at the campaign level, and 18.4% compliance with the core metadataset. The 

USGS Spectral Library has an average completeness level of 72% across the metadata 

templates and 7.7% compliance with the core metadataset. The two datasets fail to 

comply completely with their internal metadata policies, with 59.3% compliance with 

the campaign-level and 51.7% with spectrum-level completeness for SPECCHIO, and 

average of 72% compliance for samples in the USGS Spectral Library. There are no 

metadata quality parameters in either dataset, aside from two spectrum-level 

quality parameters in SPECCHIO that describe metadata completeness; the third 

quality parameter, at the campaign level, is undefined. None of the quality 

parameters in SPECCHIO have been populated for any dataset in the database.  

 

The five metadata quality parameters selected to assess SPECCHIO and the USGS 

Spectral Library were 1) logical consistency, 2) lineage, 3) semantic and syntactic 

error rates, 4) quality assurance by a recognized authority, and 5) reputational 

authority of the data owners/data creators. However, only two (logical consistency 

and reputational authority) could be evaluated based on the datasets available.  In 

both SPECCHIO and the USGS Spectral Library, there is a lack of metadata quality 

assurance or lineage information. Presumed semantic and syntactic errors could be 

identified within the USGS Spectral Library given the numerous free-form text fields 

used within its metadata templates, but for both the USGS Spectral Library and 

SPECCHIO, it was not possible to automate this process given the lack of a reference 

dataset or metadata dictionary to use for comparison.  
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A preliminary estimate of reputational authority was established within SPECCHIO by 

identifying the highest and lowest completeness measures for spectrum-level and 

campaign-level metadata by user and by institute. Logical inconsistency within the 

USGS Spectral Library metadata was identified by entropy analysis which showed 

that vegetation spectroscopy metadata is being populated by users in a very 

different manner from non-vegetation metadata.  

 

The methods and algorithms used in these test cases for quality and completeness 

assessment could be used on any field spectroscopy metadataset, given that in the 

special case of semantic and syntactic errors, a reference metadata dictionary is 

available for identifying such errors.  This kind of analysis would serve database 

designers, standards organizations, and the field spectroscopy community in 

identifying areas where users are not educated on which metadata are critical, and 

in identifying systematic problems with metadata policies.  

 

5.5 Conclusions 

Metadata quality and completeness measures for field spectroscopy can be defined 

using numerous criteria.  In order to be useful for data mining, they must be 

informative for users who will make decisions on the usefulness of the data for their 

application/purpose. Field spectroscopy metadata completeness can be defined as a 

two-fold measure consisting of: a) compliance with the core metadataset and 

application-specific metadata (presented in Chapters 3 and 4); and, b) compliance 

with the standards of the data infrastructure in which they are stored. Metadata 
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quality can be defined in terms of  (but not limited to) logical consistency, lineage, 

semantic and syntactic error rates,  compliance with a quality standard, quality 

assurance by a recognized authority, reputational authority of the data owners/data 

creators.  

 

Publicly available datasets are underperforming on these quality and completeness 

measures. The two test cases examined, SPECCHIO and the USGS Spectral Library, 

neither have quality assurance metadata, nor do they align to any considerable 

degree with the proposed core metadataset (SPECCHIO at 18% and USGS at 7.7%). 

Lineage metadata was consistently negligible or absent for both datasets, and an 

examination of the USGS Spectral Library revealed logical inconsistencies in the 

metadata being populated by the users, as well as semantic and syntactic errors. 

Reputational authority associated with SPECCHIO could be established using 

completeness measures by user and institute. 

 

The metadata quality and completeness measures presented here can be easily 

implemented for wide-scale assessment of metadatasets. They were developed with 

a focus on the users’ needs in discovering metadata and assessing it as suitable for 

their purposed, an underlying principle currently lacking in existing metadata 

standards (Goodchild, 2007). Adopting these metadata quality and completeness 

measures as a standard can be of great service to the field spectroscopy community. 

They are built on a foundation of a metadataset established as critical by the field 

spectroscopy community and have incorporated additional elements of metadata 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

159 

quality parameters that serve to enhance the discoverability and interoperability of 

datasets.  

 

Given that the spectral libraries examined in this chapter are state-of-the-art for 

publicly available field spectroscopy datasets, their shortcomings identified here 

highlight the urgency with which metadata policies, database design and user 

education need to be addressed in the context of quality assured metadata for 

discovery, interoperability, and sharing. 
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Chapter 6 Issues to adoption of a field spectroscopy metadata 
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6.1 Introduction 

This chapter addresses research question #4, ‘What are the issues related to 

adoption of the proposed field spectroscopy metadata standard?’ It integrates the 

outcomes from the three preceding research questions, and the lessons learned 

from other disciplines in their respective metadata practices, into a set of 

recommendations for adoption and implementation of a field spectroscopy 

metadata standard. These recommendations apply to both the field spectroscopy 

community and in the wider scope of IT infrastructure for storing and sharing field 

spectroscopy metadata in data warehouses and big data environments. The 

recommendations are divided into two main sections: approaches to community 

adoption of the standard, and integration of standardized metadatasets into data 

sharing platforms. The recommendations are summarized in Table 6.4 at the 

conclusion of Section 6.3. 

 

6.2 Recognizing obstacles to community adoption 

6.2.1 Identifying obstacles that must be addressed 

Implementation of a standard consisting of the core metadataset (proposed in 

Chapter 3), the application-specific metadata (proposed in Chapter 4), and extended 

metadata modules (proposed in Chapter 4) requires, first of all,  acceptance and 

adoption by the field spectroscopy community.  The community in this context 

encompasses the field operators, instrument providers, scientists and associated 

data creators who create the initial metadata set, the data owners, managers and 
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stakeholders, and the organizations and advisory bodies responsible for formally 

recognizing and recommending the standard.  

 

The adoption of, and compliance to, metadata standards has encountered difficulties 

in both the geospatial and non-geospatial disciplines (Wayne, 2001; Barton et al., 

2003; Brownfield and Oliver, 2003; Green et al., 2005; Palmer et al., 2007; Devillers 

et al., 2010; Qin et al., 2012;  Hendler, 2013).  These difficulties can arise from causes 

that include a lack of knowledge within the community about the importance of 

metadata,  logistical obstacles to recording metadata, no clear objective or purpose 

for metadata collection, and a lack of IT infrastructure (software and hardware) for 

supporting and enforcing the standard. Obstacles to creating metadata can exist in 

the field while collecting the spectral measurements, and in the period after the field 

spectroscopy campaign is complete when the metadata is uploaded to a local or 

central data repository.  

 

6.2.2 Logistical obstacles in field spectroscopy 

Respondents to the metadata survey presented in Chapter 3 and scientists 

participating in the workshops described in Chapter 4, identified logistical obstacles 

to documenting metadata in the field. These obstacles have implications for creating 

a metadataset that is as complete as possible, and therefore, impact a dataset’s 

relevance, longevity and re-use. For example, the marine environment presents 

unique challenges for measuring objects and documenting variables that influence 

the measurements. These variables can include water turbidity, wave lensing, and 
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the inherent difficulty of having the resources on hand, such as paper or electronic 

devices (laptop, tablet, mobile phone) to record the metadata in water or near water 

environments. Marine scientists have been creative in using data from photos to 

document metadata retrospectively, such as sample properties (size and colour of 

samples, underwater conditions).  

 

Metadata relevant for all applications, such as those pertaining to instrument 

information in the core metadataset, can also include metadata that are not feasible 

to document concurrently with the spectral measurements in their entirety due to 

constraints of time during the campaign. These metadata elements may include 

instrument serial number, manufacturer, instrument housing (for extreme weather 

conditions or non-terrestrial campaigns), the degree to which an instrument has 

been customized for a particular application and whether it is a prototype, and 

sensor behaviour affected by manufacturer design.  

 

As an example, PANalytical Boulder (formerly ASD) supplies a device known as a 

‘Scrambler’ for its FieldSpec models to compensate for spectral discontinuities due 

to non-uniformity of field-of-view across the sensor bank fibreoptics. Documenting 

information about the Scrambler will help users of the data to know 1) that the 

FieldSpec models do not have uniform field-of-view and 2) whether the field 

operators compensated for this appropriately when taking spectral measurements. It 

will ultimately help a data user to determine whether they wish to use a dataset 

generated under these conditions. While it is impossible to account for every 

combination of instrument, environment, and sampling strategy variables, the core 
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metadataset presented in Chapter 3, the application-specific metadatasets 

presented in Chapter 4, and the protocol module for specifying sampling strategies 

in the hybrid model also presented in Chapter 4 are as comprehensive as possible in 

addressing the range of variables inherent to field practice. The protocol module 

allows field operators to document details about field methods that are not explicitly 

specified in the core or application-specific metadatasets.  

 

6.2.3 Lessons learned from others 

Compliance tests for data in the USGS Spectral Library and SPECCHIO database 

against the internal metadata policies for these databases show inconsistent and 

occasionally low compliance by data producers. Reasons for this can only be 

speculated upon, but may include a lack of metadata on the part of the data 

producer, data producers choosing not to populate the metadata fields, and/or a 

lack of understanding among data producers about the importance of documenting 

metadata. Additional reasons for low compliance can arise from limitations of the 

user interface for populating metadata fields, or the metadata policy itself being ill 

suited to accommodate the spectrum of metadata that could be provided by the 

data producer.  Overwhelming standards, requirements of excessive time and 

resources, and few perceived benefits and incentives have been identified as 

obstacles to adherence to geospatial metadata policies (Wayne, 2001). 

 

Finding the right balance between enough metadata to assist users or applications to 

find relevant data and not overdefining the specification to make it brittle and 
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unwieldy is a challenge metadata developers are just beginning to take on (Hendler, 

2013). Creation of metadata within geospatial science in general is a time-consuming 

task, with the most successful applications of metadata being related to 

discoverability of datasets based on keywords (Devillers et al., 2010).  As an example 

of an adopted standard with geospatial community, CSDGM (Content Standard for 

Digital Geospatial Metadata) is generally used in its truncated format, rather than 

implemented as a full and extensive schema (Qin et al., 2012). Extrapolating this to 

the field spectroscopy standard, compliance can be reasonably predicted to be less 

than complete (i.e. less than 100%).  

 

Implementation of metadata standards in other disciplines has revealed that 

complete compliance is neither possible nor is it necessarily a sensible goal, given 

the time and resources required for complete compliance. For example, in online 

learning applications, the generation of adequate metadata for resource discovery 

appears to be universally problematic.  In a trial project to create a metadata 

repository for digital resources using a 15-element metadata standard (Brownfield 

and Oliver, 2003) uncompliant datasets resulted from: a lack of skill among the 

metadata creators to describe datasets; a limited set of keywords to describe 

contact; and a lack of controlled vocabulary for metadata creators to use.  In an 

analysis of the adoption of metadata standards within the learning object 

repositories and open e-Print archives, lack of compliance was attributed to factors 

including metadata creators not understanding the purpose or value of metadata, 

nor the context of their datasets (Barton et al., 2003). Within the ecological 

community, ‘good’ metadata is not the cultural norm as research data is not typically 
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published or shared (Green et al., 2005). In the library science community, an 

institution's adoption of, and level of compliance to, a metadata standard is affected 

by the choices of its peer institutions, and whether the standard is suitable for their 

information archiving systems; local metadata practices were found to conflict with 

standards designed to increase interoperability (Palmer et al., 2007).  

 

6.2.4 A way forward for overcoming obstacles 

A general solution to overcoming potential compliance problems for a field 

spectroscopy metadata standard is to encourage good practice, and not impose 

onerous and time-consuming requirements that could discourage the community 

from adhering to the proposed standard. Good practice can be supported through 

specific activities and community behaviour supportive of a metadata standard.  

 

These include: 

• metadata prioritization (§6.3.1) 

• allocating the responsibility of metadata creation to more than one party (§6.3.2) 

• identifying the role of metadata in a user’s decision making process (§6.3.3)  

• building software tools and information systems supportive of standard 

compliant metadata (§6.3.4) 

• education initiatives for the community (§6.3.5) 

• certification of datasets (§6.3.6) 

• additional approaches (§6.3.7)  

The following sections elaborate on these practices.  



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

168 

6.3 Approaches to community adoption of a field spectroscopy metadata standard 

6.3.1 Metadata prioritization 
 
Metadata prioritization, or preference of certain categories over others, is a common 

behaviour among metadata creators (Stvilia et al., 2004; Heath et al., 2005; Liolios et 

al., 2012). The reasons for this include logistical constraints, personal preference, 

and complacency. The core metadataset, within the proposed field spectroscopy 

metadata standard, has addressed the need for a truncated format of the standard 

by identifying the priority metadata, i.e., the minimum and most essential metadata 

parameters required for a given field spectroscopy dataset. Likewise, the critical 

metadata elements of the application-specific metadatasets serve the same purpose 

for the coral, tree crown, and soil application areas.    

 

Additionally, metadata creators in field spectroscopy applications can prioritize 

metadata that should be documented in the field over that which can be populated 

retrospectively. This would balance the need for complete metadatasets with the 

constraints of time and conditions under which the measurements are being taken.  

For example, numerous instruments encode instrument and signal properties 

information within their native files that can then be exported as metadata to a local 

or central database or other data repository. Other metadata parameters, including 

local weather information, or environmental conditions such as tide information, 

which are components of the core metadataset and application-specific 

metadatasets respectively, can also be documented post-campaign. A metadata 

creator could specify that these types of metadata are available upon request, or 

available through a third party when they make a dataset available for sharing.  
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6.3.2 Allocation of responsibility for metadata creation 
 
Allocating responsibility for creating metadata to multiple parties reduces the 

individual workload for metadata documentation and ensures that distinct 

categories of metadata (calibration, field protocol, security and access rights, project 

information) are the responsibility of those best qualified to document those 

categories. Coordinated metadata stewardship is one of many recommended best 

practices for data governance within organizations (DAMA, 2010; Digital Curation 

Centre, 2010; ISO/IEC, 2012; USGS, 2013b; ANDS, 2014; MIT Libraries, 2014).  

 

Past implementations of metadata management systems have yielded similar 

recommendations. Assigning panels of participating scientists to facilitate exchange 

of metadata between scientists in the field and data managers at data centers, as 

proposed for the US JGOFS (Joint Global Ocean Flux Study), permits collection of  

missing metadata and maintains quality control (Glover et al., 2006). Sharing 

metadata expertise and identifying meta-tagging experts also ensures consistency 

across datasets (Brownfield and Oliver, 2003).  To illustrate this point, information 

specialists have demonstrated a better understanding of the purpose of metadata 

and generate more complete metadatasets than non-information specialists but 

have difficulty with contextual aspects of the metadata (Barton et al., 2003). 

 

Extrapolating this to field spectroscopy, as an example of a dataset generated for 

vegetation campaign, those with the knowledge of instrument calibration activities 

would be responsible for calibration metadata, vegetation specialists would be 

responsible for populating vegetation sample metadata in the field, and non-domain 
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specific metadata relating to provenance and security and access rights would be 

assigned to IT specialists and legal administrators respectively. Table 6.1 is one 

possible example of the allocation of responsibility for different modules within the 

proposed metadata standard for a tree crown reflectance metadataset.   

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6.1 One example of allocation of responsibility for metadata documentation 
for a tree crown reflectance metadataset 

  Metadata 
module Examples of metadata included Parties assigned 

responsibility 

Core 
metadataset 

Instrument model, manufacturer name, spectral bandwidth, 
etc. Instrument manufacturer 

All other core 
metadata 

viewing geometry, illumination information, 
hyperspectral signal properties, location 
information, etc. 

Field operators 

Application-
specific 

metadata 

Target 
properties tree species, tree crown size, DBH, etc. Field operators 

  
  
  

Ancillary 

Project 
information about the research context and 
purpose, experiment design, funding and 
sponsorship 

Principal investigator 

Protocol 

documentation of (or references to) the 
sampling and field protocols used in the 
collection of the field data, such as those for 
hyperspectral ground calibration, leaf sampling, 
underwater coral sampling 

Principal investigator/Field 
operators 

Citations 

relevant literature, publications, reports, journal 
articles, etc.  cited in the metadataset or 
specifications about how the dataset itself 
should be cited externally 

Principal investigator 

Dataset 

broad-scope information that describes the 
entire dataset and includes  title of the dataset, 
metadata standard name and version,  revision 
history, keywords, purpose, and other general 
descriptors, for the main purpose of cataloguing 
and discoverability 

Data managers 

Resource 

information about the 
creators/owners/distributors of the data, lineage 
information, and contact information for the 
data resources 

Data managers 

Access 
access rights to groups or particular users, 
information about copyrights, trademarks, 
licenses, sequestered/classified datasets 

Data owners/Legal 
administrators 

Applications 

databases/datawarehouses/online repositories 
where the data can be accessed, and software 
recommended for viewing or analyzing the 
associated dataset 

Data owners/Data managers 

Quality  
reports, indices, and assurances on the 
completeness, quality, and logical consistency of 
the metadata 

Metadata certification 
authorities 
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Instrument manufacturers could be required to supply a minimum set of instrument 

related metadata as specified by the proposed core metadataset, and accordingly, 

the output data files could be certified as compliant with the proposed field 

spectroscopy metadata standard. Digital camera manufacturers, for example, 

comply with EXIF standard for photo metadata (Williams, 2012), discussed in more 

detail in Section 2.3.    Data managers (individuals in the role of custodian of data 

ultimately responsible for its stewardship and quality management within an 

information sharing system) would be allocated responsibility for more high-level 

metadata pertaining to the dataset itself.  Metadata quality parameters could 

include input from other experts in the field of research (e.g., ecologists, soil 

scientists) to provide measures of external consistency with other datasets with 

metrics for how well concepts or classes in a given dataset relate to another (Comber 

et al., 2007). It would be the responsibility of the data stakeholders (principal 

investigator, data owners, data managers, etc.)  to coordinate the stewardship of the 

metadata modules. The modules include those presented in the hybrid model 

discussed in Chapter 4. The example given allocates responsibility to roles and not to 

individuals (i.e. it is possible in some cases that one individual may be both the 

principal investigator and the field operator).  

 

6.3.3 Identifying the role of metadata in data users’ decision making processes 

6.3.3.1 Metadata and fitness-for-use 

Understanding how a data user evaluates metadata, and the purpose for which data 

was collected and used allows data creators within the field spectroscopy 
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community to decide for themselves the extent to which they reasonably need to 

apply the proposed metadata standard to their datasets. This is a vital step in 

prioritizing metadata elements that are necessary for a metadataset to be 

considered compliant, by both data creators and data users for a given application. 

Consider the multiple cases for which a metadataset may be created and used. In the 

simplest case, a spectral signature may be collected for use as a reference signature 

in a data library, with a minimal set of associated metadata documenting the sample 

name, and wavelengths used, such as the signatures and metadata in the USGS 

spectral library. A more extensive metadataset would be required for signatures 

used in end-member retrieval, and validation and calibration activities. Each method 

of analysis requires different levels of metadata completeness, and accepts different 

error thresholds. A more formal investigation of the effect of fitness-for-use on 

expectations for completeness was investigated with two expert panels.  

 

6.3.3.2 Field spectroscopy scientists and metadata quality 

A prototype metadata quality analysis tool was created for user feedback from the 

field spectroscopy scientific panel at the TERN ACEAS ‘Bio-optical data: Best practice 

and legacy datasets’ workshop in Brisbane in 2012 and at the Geospatial Science 

Research Symposium Spectral Libraries workshop in Melbourne in 2012. The 

prototype was proof-of-concept software to demonstrate that metadata quality 

analytics could be implemented as a user-friendly application to assess metadatasets 

imported from databases and data libraries. The tool generated a metadata 

completeness and quality report for individual spectrum metadatasets obtained 
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from SPECCHIO, the DLR Spectral Archive, and the USGS Spectral Library. Some of 

the data was simulated (error counts, quality schema) in cases where this data was 

unavailable from the source datasets, or to obtain variability in quality statistics for 

illustrative purposes.   Quality and completeness indices were also generated to give 

a snapshot assessment of a given metadataset. Core functions of the metadata 

quality analysis tool are outlined in Table 6.2.   

 

Table 6.2 Details of each core function in the prototype metadata quality analysis 
tool  
 

The tool was demonstrated to both panels, with the intention of determining if the 

core functions would be useful to the scientists. The second panel (Geospatial 

Function Details 

completeness report 
provides completeness measures (in percentage 
compliance) on the core metadataset and database-
native metadata 

completeness index 
derived from the completeness report as a linear 
combination of populated metadata with larger 
weighting given to the core metadataset 

quality report 
provides a list of semantic and syntactic errors (as 
percentage occurrence in the metadataset) and 
presence of quality assurance flags 

quality measure derived from the completeness report as a linear 
combination of weighted quality parameters  

categorical ranking  
(optimal or suboptimal) 

* Optimal = presence of quality assurance flag and 
quality measure ≥95 and completeness index ≥ 75 
 
* Suboptimal = no quality assurance flag or quality 
measure<95 or completeness index <75 

quality schema import 
user-adjustable specification where pre-defined 
quality and completeness thresholds can be imported 
from other metadata standards 

metadata completeness 
threshold 

user-adjustable specification where the completeness 
threshold can be one of the following: 
* complete in all parameters 
* complete only in core metadataset 
* complete in compliance with a specific standard 

quality assurance specification 
user-adjustable specification where quality index can 
include or exclude requirement for a quality assurance 
flag 
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Research Science Symposium Spectral Libraries Workshop in Melbourne, 2012) was 

asked an additional question: ‘if no quality assurance were available for a 

metadataset, under what conditions (number of syntax and semantic errors, for 

example) would you accept or reject a metadataset?’ A discussion followed. Each 

participant in the panel was encouraged to provide an opinion on which functions 

they found useful and why. The group feedback is outlined in Table 6.3. 

 

 

 

 

 

 

 

 

 
 
 
Table 6.3 Panel feedback obtained for each of the main functions of the prototype 
metadata quality analysis tool 
 

Both panels found the majority of the functions useful, particularly the completeness 

and quality reports which provided a listing of statistics on compliance with specific 

metadata categories, presence of errors, and presence of quality assurance flags in 

the metadata. The consensus in the second panel was that data users want to make 

decisions for themselves in determining whether a given metadataset is useful for 

their purpose and are therefore reluctant to rely on indices such as a categorical 

Function Panel feedback (is this useful?) 

completeness report yes; statistics referring to specific 
parameters are useful 

completeness index 
yes; given that an explanation of how it is 
derived and the associated completeness 
report is available 

quality report yes; statistics referring to specific 
parameters are useful 

quality measure no; users should make this decision for 
themselves 

categorical ranking (optimal or suboptimal) no; users should make this decision for 
themselves 

quality schema import yes 

metadata completeness threshold yes 

quality assurance specification yes 
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ranking or quality measure for metadata quality. This is particularly relevant in cases 

where the user may assign a different weighting to the parameters that comprise a 

quality or completeness index. Panel respondents stated that they would choose to 

use suboptimal metadata (high number of semantic errors, or high degree of 

incompleteness for example) if the data is rare or unique and/or necessary for their 

application – for example, if it is the only dataset in existence meeting their criteria. 

Respondents emphasized that the reputation of the data creators also played a role 

in whether they would choose to use data where the metadata may be incomplete. 

Users may also choose a dataset whose metadataset is incomplete if they were 

aware that requisite metadata may be obtained retrospectively (such as instrument 

properties, which a data creator might not load into a spectral database but can 

provide to other scientists if requested).  

 

6.3.3.3 Metadata and metadata quality as an aid to decision making 

Any data discovery tool or quality or completeness assessment must empower a user 

with enough information about the metadata to make a judgement about whether 

the dataset is useful to them (Section 2.6.2).  It is important to consider that the 

metadata, and any quantitative or qualitative assessments of it must serve to aid, 

not hinder, the decision making process. It has been previously documented that 

completeness of datasets can be considered a prerequisite to appropriateness (Sicilia 

et al., 2005), and this concept can be extended to metadatasets, as evaluated by 

data users. User-oriented metadata relating to quality measures should provide 

suitable information to enable users to understand the limitations of analysis for a 
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given dataset, and potentially, linking uncertainty with the quality assessments 

(Comber et al., 2007).  Methods of quality assessment of metadatasets are discussed 

in more detail in Section 2.6.  

  

The use and interpretation of quality information have been shown (Watts et al., 

2009) to be affected by the type of user, the context of the inquiry, and the amount 

of information supplied to the data users, among other factors. Supplying a data user 

with quality metadata along with its associated dataset results in different decisions 

being made by the data user than when using the underlying information alone.  

 

A study of information systems professionals and their use of data quality 

information in decision making revealed that the level of expertise, and domain of 

expertise, had an effect on the degree to which they relied on data quality indicators 

to make decisions about the information in a dataset (Ballou et al., 2003). For 

example, experts used data quality indicators more often than non-experts; there 

was less consensus among expert data users in the choices made based on data 

quality indicators;   those without domain-specific experience made greater use of 

the data quality indicators, with the suggestion that domain-specific experience may 

inhibit use of data quality indicators when making decisions;  and information 

systems managers, who decide which datasets are suitable for databases and 

datawarehouses,   benefit most from data quality indicators (Ballou et al., 2003).  

 

The results of these studies suggest that several considerations must be taken into 

account when creating and provisioning metadata with the flexibility for multiple 
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purposes – these include addressing the needs and expertise of a broad range of 

data users, and supplying metadata (both the raw metadataset and quality and 

completeness assessments) in a suitable format for interpretation and usability. 

Section 6.3.6 discusses quality assurance certificates that can be issued for field 

spectroscopy metadatasets, in tandem with the raw metadatasets, that include a 

range of quality indicators designed to accommodate the needs of and non-expert 

data users across domains.  

 

6.3.4 Building standard-enabling software tools and information systems  

6.3.4.1 The need for standard-enabling software and information systems 

Building software tools and data sharing systems that support and endorse standard-

compliant metadata for field spectroscopy, while meeting users’ needs, is an 

additional effort towards good practice. Studies of scientific data collection 

management have shown that preferred systems are initiated by scientists respected 

among their community where domain knowledge is a prerequisite for proper 

management and documentation of datasets by scientists and researchers 

(Anderson, 2004).  Therefore, building standard-compliant or standard-enabling 

information systems with direct input from the field spectroscopy community is an 

enticement for field spectroscopy researchers to produce and publish good 

metadatasets. This approach also helps to prevent implementation of data sharing 

systems that are not optimal for metadata creators (Palmer et al., 2007).  It is 

essential too that the metadata be formatted in a manner that is useful and 

informative for data users. 
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6.3.4.2 Software tools 

The provision of software tools to guide metadata creators through the process of 

creating high quality metadatasets is a small and relatively simple step towards 

standard-compliant metadata.  For example, USGS has an online metadata validation 

service that accepts text, XML, and SGML metadata files and returns a report 

identifying discrepancies with the FGDC metadata standard (USGS, 2013a). Metadata 

editors such as Morpho for EML and Metavist for the Biological Data Profile 

metadata standard are also available to the public for download (Huettmann, 2009). 

Similar small-scale applications could be made available online for field spectroscopy 

research centers and institutes to validate their metadatasets before releasing them 

for distribution.  

 

In a larger context, distribution portals, data discovery tools and metadata 

clearinghouses must be sufficiently robust in design to accommodate the needs of 

multiple users. Experts and non-experts alike must be provisioned with sufficient 

metadata and information for domain and non-domain-specific applications. Expert 

field spectroscopy data users (e.g. a scientist with 15 years experience in research), 

who is searching for data for a specific application, (e.g. spectral signatures for 

sensor calibration activities) can be predicted to rely to some degree on a quality and 

completeness report but also bypass it to access the raw metadataset and 

underlying dataset decide for themselves if they wish to use a dataset. A non-expert 

user (e.g. an undergraduate student searching for an exemplar leaf reflectance 

signature for a university assignment) can be predicted in most cases to ignore 

altogether any quality completeness information and rely only on the most basic 
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metadata parameters to choose a dataset, such as the species of leaf and the em 

wavelengths. Scientists analysing large numbers of spectra or geospatial information 

data managers need to be supplied with quality and completeness reports for quality 

control of distributed datasets, as this may be the only information they use (or have 

the time to use) on which to base decisions for accepting or rejecting datasets in 

bulk.  

 

6.3.4.3 Useful and informative metadata formats 

A secondary consideration for distributing and sharing metadata is that it is delivered 

in a suitable format for interpretability and usefulness. Balance must be also be 

maintained between providing informative summaries and overwhelming the data 

user with metadata. Volume does not necessarily imply information, and in a poorly 

designed data discoverability tool, a user may be subject to a tidal wave of 

‘metacrap’ (Doctorow, 2001, p. 1) with limited ability to discern its value or 

applicability.   

 

The completeness and quality measures provide a summary description of the 

metadata; in the case where a data user wishes to bypass the completeness measure 

in their decision making process, they can view the raw metadataset to decide 

whether it is complete enough or of suitable quality for their purpose.  This hybrid 

approach of  supplying the data user with metadata summaries and description (e.g. 

completeness and quality measures through an automated process) along with the 

metadataset itself to provide manual assessment, is perhaps the most empowering 
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for the data user because it gives them both a macro and micro view of the 

metadata. This enables efficient use of the data user’s time in the search process by 

enabling quick decisions to be made with a macro-level metadata assessment,  and 

providing the user with further information to engage in a personalized assessment 

of completeness at the micro-level if they  choose. It has been proposed that 

visualization methods to exhibit patterns of incompleteness in metadatasets can be 

a useful tool for a data user to determine whether a metadataset is sufficiently 

complete in the categories relevant to their purpose for use (Daas et al., 2010).   

 

Automated assessments of completeness and quality of metadatasets are likely to 

be more commonplace with time. This is the case especially in future 

implementations of larger and more complex information processing and sharing 

systems (more advanced than the spectral libraries and databases currently in 

operation) where field spectroscopy datasets can be used in system-automated 

processes to create ‘synthetically-derived’ data products (i.e. created with no human 

intervention) for large-scale distribution. 

 

Metadata that includes quality assessments must also be designed and presented in 

a manner that is useful to a data user. Within geospatial applications especially, data 

quality parameters must make it possible for the user to link the data quality 

statement to the quality of the results potentially derived from a dataset (Frank, 

1998).  By extension, the same principle of utility can be applied to metadata quality 

parameters.  Quality scores and indices are perhaps the most basic way of 

presenting quality information. However, scores alone meet limitations and 
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challenges, especially in the case of intercomparing datasets and determining 

normative quality scores so that quality information can be made understandable for 

a user (Daas et al., 2010).  

 

There are alternative ways of presenting quality information. The field spectroscopy 

metadata quality assessment tool presented to the expert panels in Section 6.3.3.2 

metadata quality offers a template for supplying metadata quality information, but is 

not necessarily comprehensive in terms of the kind of information that data users 

may useful.  Quality assessment ideally integrates contextual and objective quality 

assessment processes (Watts et al., 2009).  

 

Examples of the types of contextual and non-contextual quality assessments 

implemented in other disciplines include the LTER Network Information System, 

which  assigns five categories (0-4) to datasets based on how well they meet the 

needs of specific data products (Michener and Jones, 2012); crowd-sourced record-

per-record basis data quality assessment of chemical compounds within ChemSpider 

(Williams et al., 2012);  manual, automated, and global quality assessments (using 

domain-specific expertise) of datasets within OpenTox, an online platform for the 

discovery and exchange of toxicity data  (Fu et al., 2011); and assessments of the 

scientific impact of datasets archived by NASA’s ORNL (Oak Ridge National 

Laboratory) DAAC (Distributed Active Archive Center for Biogeochemical Dynamics) 

(NASA, 2014). Although not all of these are directly related to metadata quality for 

field spectroscopy, they are examples of the many ways in which quality information 

can be expressed and presented to users, as an alternative to relying on indices or 
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qualitative descriptions alone. Designers of future data sharing systems for field 

spectroscopy datasets and metadata benefit from exploring the range of possibilities 

for producing useful quality assessments to data users.  

 

6.3.4.4 Standard-supportive information systems 
 
For field spectroscopy scientists to participate in the mainstream IT environment of 

large-scale data distribution, complete and high-quality metadata (enforced in part 

by the proposed field spectroscopy metadata standard) is essential. Integrating the 

field spectroscopy metadata standard within large-scale information systems 

requires, first of all, addressing data management concepts around which a 

recommendation can be formulated.  

 

In order for a metadata standard to facilitate the exchange, discoverability, and 

promote the extended life cycle of a dataset, the IT infrastructure must exist to 

support it.  The IT infrastructure can consist of the data stores, data access services, 

and the organizations responsible for maintaining them. An IT infrastructure also 

serves to ensure some quality control over the creation, ownership, and 

management of metadata. Data stores (including spectral libraries, databases, 

datawarehouses, and other data repositories within big data platforms) facilitate the 

discovery and distribution of metadata and its associated datasets. Their potential 

for making datasets visible to users through search engines and other discovery tools 

is maximized when metadata-rich, standards-compliant datasets exist for 

discoverability. IT infrastructure can be defined at the institutional, government, and 

discipline-specific level (ANDS, 2013). They vary primarily in size of the network, 
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number of support personnel assigned to it, and the degree to which they promote 

collaboration across institutions (more commonly found within the government and 

discipline-specific infrastructures).  

 

In order to determine the ways forward for integrating standards-compliant 

metadatasets within large-scale IT infrastructure, first it is important to examine the 

data archiving structures currently being used to store field spectroscopy data 

metadata, and the larger and more complex structures within which they can be 

stored in the future. Figure 6.1 illustrates the evolution of data archiving structures 

for field spectroscopy datasets by their data volume and infrastructure complexity.  

 

Spectral Libraries 

Publicly available spectral libraries such as NASA’s ASTER Spectral Library and the 

USGS Digital Spectral Library offer downloadable data for a broad range of 

hyperspectral signatures in the form of image files of plots and descriptive text for 

each signature. Although comprehensive and easily navigable, these libraries are the  

 

 

 

 

 

 

 

Figure 6.1 Archiving structures (existing and potential) for field spectroscopy data 
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 most static of the data archiving models and do not support the hierarchical 

dependencies of metadata components for field spectroscopy metadata.   

 

Spectral Databases 

In a database data is structured, updated, and edited by database management 

software and can store almost anything digital including textual information, videos, 

and images. An example is a geodatabase that stores information such as satellite 

images and digital elevation data for users to access, analyze, and model through a 

front-end application (such as a GIS).  It can be used by a single user or installed as an 

enterprise application for many users.  Hyperspectral databases created in the last 

few years include SPECCHIO, the DLR Spectral Archive and Hyperspectral.info.  

SPECCHIO offers more sophisticated capabilities for storing, retrieving, and analyzing 

hyperspectral data than a spectral library. SPECCHIO is a MySQL database with a Java 

client application for automated metadata retrieval, metadata editing and 

instrumentation administration, as well as reports, with support for multiple 

spectroradiometer file formats (Hueni and Kneubühler, 2010). SPECCHIO provides 

efficient storing and reporting mechanisms for hyperspectral and field spectroscopy 

metadata input by its users.  

 

In practical application,   large-scale data sharing platforms do not use standalone 

databases as a direct and single source of data (Ponniah, 2007; Harrington, 2009). 

This is because large-volume transactions are restricted by the operating system and 

speed and bandwidth of network connections between the databases. Also, 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

185 

scalability is dependent upon the computer where a given database instance is 

installed, as well as the operating system and infrastructure resources.  Therefore, it 

is more useful to examine the implications of metadata within more complex data 

archiving architectures.  

 

Datawarehouses 

A datawarehouse is a specialized datastore model that provides a single-point 

interface for data mining. It can be defined as a “complete intelligent data storage 

and information delivery or distribution solution enabling users to customize the 

flow of information through their organization” (Ouyang and Wang, 2008). It 

aggregates data from multiple databases and in varying formats to a single point of 

access for a large population of users. Downstream data transactions are affected by 

the metadata at the data sources. Figure 6.2 illustrates the data flow through a data 

warehouse.  

 

The datawarehouse is presented here as a proposed model for efficient and quality 

controlled distribution of large volumes of field spectroscopy data and metadata.  A 

datawarehousing model does not yet exist for field spectroscopy datasets. In the 

context of field spectroscopy metadata, a datawarehousing model would serve the 

remote sensing community by providing a central interface for field spectroscopy 

data and metadata from a pool of databases and spectral libraries. Independent 

from hardware or operating system platforms, datawarehousing software can run on 

multiple servers for superior performance (Ponniah, 2001). By definition 

datawarehousing encourages collaboration between communities of users, in itself a 
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strong incentive for adoption of common standards for data and metadata 

exchange.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Overview of data flow within a datawarehousing infrastructure 
Source: (Mailvaganam, 2007) 
 

 

The cloud 

Cloud computing is a large networked environment of shared software, databases, 

and other computing resources from a variety of architectures. The focus is on 

providing services to users who are not required to have a vested interest in the 

implementation or the management of the data (Hartig, 2009). Challenges including 

security and trustworthiness have been indentified for geospatial data users using 

cloud services, since these are magnified within the cloud environment (Yang et al., 

2011). Because of limited standardization and consequently, no mechanism for 
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quality assurance for field spectroscopy datasets, cloud computing at this time is not 

a suitable candidate as a one-size-fits all data sharing solution for field spectroscopy 

data users. However, the potential for cloud computing for future distribution of 

field spectroscopy datasets is discussed in more detail in Section 6.4.  

 

Existing scientific data sharing platforms 

There are several IT infrastructure models that have been adopted for the sharing 

and distribution of scientific research in general and for geospatial data specifically. 

Since members across the field spectroscopy community are increasingly engaging 

each other on an international platform, government-level and discipline-specific IT 

infrastructure models are the preferred models to examine here.  

 

For example, NASA's Global Change Master Directory is a public metadata inventory 

of a broad spectrum of Earth science data and more specifically, authoring tools, 

data discovery, and metadata transformation and conversion tools in accordance 

with ISO, FGD, ESRI, Dublin Core, ANZLIC standards for geospatial metadata (NASA, 

2013b). iVEC (Interactive Virtual Environments Centre) is a joint venture among 

partners including CSIRO and Australian universities to provide supercomputing and 

data storage services to researchers across Australia and enable data discoverability 

through rich metadata cataloguing (iVEC, 2013).  NOAA's National Coastal 

Development Center hosts MerMAid (Metadata Enterprise Resource Management 

Aid), a platform-independent application that provides an online service to build 

databases to generate, manage, and publish metadata in accordance within FGDC 

standards, EML, and MARC (MAchine-Readable Cataloging) (NOAA, 2013b).  LTER 
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(Long-Term Ecological Research) is a network of  researchers and agencies including 

USDA Forest Service and Agricultural Research Services, NASA, USGS,  the US 

Environmental Protection Agency, providing public-access ecological data compliant 

to EML metadata standards (LTER, 2013).  

 

These IT infrastructure models share the following characteristics: a network of 

distributed data centers incorporating research from multiple disciplines; IT support 

and administrative personnel with knowledge of common data management 

protocols; a history of engagement with the public, industry, and research agencies; 

and necessary funding  for the hardware, software, and personnel resources 

required for long-term data storage and distribution. These models are currently 

suited to accommodate field spectroscopy metadatasets adhering to the proposed 

metadata standard. Integrating field spectroscopy metadatasets need not be a 

challenging task given that the data stakeholders have an understanding of the value 

of storing and sharing their data on such a platform, and that they have the desire to 

make their datasets available.  

 

Future integrations of spectral information systems such as the proposed GEOSS 

(Global Earth Observation System of Systems) (Group on Earth Observations, 2013) 

would greatly benefit from adherence to international metadata standards, and with 

this is mind, according standardizations should be pursued with alacrity; existing 

systems should be upgraded accordingly, once such standards have been defined 

and/or recognized.  With the support of the proposed field spectroscopy metadata 

standard, these systems could be adapted to incorporate existing spectroscopy 
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databases (SPECCHIO, DLR Spectral Archive) and spectral libraries (USGS Digital 

Spectral Library). Figure 6.3 illustrates how field spectroscopy metadata would flow 

through the GEOSS. 

 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 6.3 An adapted GEOSS data model illustrating the flow of field spectroscopy 
metadata through the GEOSS data infrastructure integrated with current archives 
 

6.3.5 Educating the community about the importance of metadata 

Having established the needs of field spectroscopy scientists for metadata, the 

importance of metadata needs to be framed within the broader context of large-

volume data storage and exchange to assist in community support for a metadata 

standard and its subsequent adoption.  
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Promoting support for the standard can be accomplished through educational 

efforts and promotion at national and international events, similar to those utilized 

by agencies and organizations within the geospatial community. NOAA’s NCDDC 

(National Coastal Data Development Center) provides outreach programs and online 

training for individual researchers and organizations to understand how to create 

and utilize metadata for their datasets (NOAA, 2013c). DataONE (Data Observation 

Network for Earth), an international consortium of geospatial data providers, is 

engaged in projects for data management training for online data dissemination 

(DataONE, 2013). iVEC regularly hosts 'Data Clinics', and data management 

workshops to educate researchers about procedures, tools and practices for sharing 

data and making it discoverable within the IVEC infrastructure (iVEC, 2013). EDiNA 

(University of Edinburgh national data centre) facilitates workshops for using their 

GoGeo geospatial data portal and creating metadata within the ISO 19115, INSPIRE, 

UK GEMINI 2.1, and UK AGMAP 2.1 guidelines for spatial data (EDiNA, 2013). Similar 

workshops, in the theme of the previous events discussed in Chapter 4, can be 

developed for the field spectroscopy community with the involvement of data 

stakeholders and data producers.  

 

Research in ecoinformatics has revealed that adoption of metadata standards and 

principles of good informatics practice requires that scientists be made aware of 

informatics tools, how to use them, and that  funding agencies that are stakeholders 

need to demonstrate a long-term commitment for data repositories through 

encouragement of data sharing and stewardship (Michener and Jones, 2012). In 

general, highlighting organizational and individual benefits, providing training, 
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publishing organizational efforts, and building administrative support are ways of 

changing community culture (Wayne, 2005). Introducing a metadata standard to the 

field spectroscopy community that encompasses a larger metadataset than 

researchers are currently using can reasonably be expected to entail some 

challenges. Following the models and tools of agencies responsible for issuing 

metadata standards may aid in successful wide-ranging implementation of the 

proposed metadata standard presented in this research.  

 

6.3.6 Certification of metadatasets 

Certification of metadatasets is important in their quality assurance as they are 

exchanged and disseminated widely throughout datawarehouses and other archiving 

and data sharing systems.  Certification confirms to the data user that a given 

metadataset adheres (either partially or completely) to the field spectroscopy 

metadata standard. It also limits duplication of data generation efforts and 

eliminates risk of legal liability (Joshi and Joshi, 2013).  Overall it provides data users 

with the confidence that a metadataset is reliable and suitable for a certain purpose.  

Certification can occur on two levels – quality assurance of the metadataset itself, 

and of the repository managing the metadata. The field spectroscopy metadata 

standard can exist as a hybrid model (Chapter 4) that incorporates modules (dataset, 

resource, access information) from existing metadata standards to include 

information about the source of the metadata (data producers, data owners, data 

repository), revision history (number and type of edits, who made them, and when), 

and access information (legal, copyright, security, or privacy rights and restrictions). 
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Establishing reputational authority of data producers and data repositories is 

available through automated metrics as discussed in Chapter 5.  

 

There are few formal certifications for geospatial metadata itself, and none for field 

spectroscopy metadata. There are, however, methods for certifying or providing 

reports on compliance to standards for geospatial data and software within the 

geospatial community. OGC provides compliance testing with the mandate to 

increase system interoperability for database, server, client software and encoding 

schemas with an annual license fee for certification (OGC, 2012). They provide a 

listing of all OGC-certified companies and software as well as those that have 

implemented OGC specifications (but have not been certified) on their website.  

ESRI's ArcGIS suite of software provides a metadata validator for compliance to XML 

schemas for standards specified by the user (ESRI, 2013). USGS also has an online 

metadata validation tool (USGS, 2013a) referred to earlier.   

 

Certification for field spectroscopy metadatasets would need to be carried out either 

by a geospatial advisory body (FGDC, ISO, OGC) that has endorsed the field 

spectroscopy standard or an agency or a team of recognized experts within the field 

spectroscopy community with the reputational authority to do so. This could take 

several forms, whether as a simple quality assurance flag present in the attached 

metadata, or as a full certificate with information about the certifying body, date of 

certification, and all standards it complies to. Table 6.4 is a hypothetical example of a 

quality assurance certificate provided for a metadataset obtained from a spectral 

database.  
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Table 6.4 Hypothetical example of a quality assurance certificate for a metadataset 
downloaded from a spectral database 
 

While not comprehensive in all the quality and completeness parameters that are 

provided in the field spectroscopy standard (this could be provided in separate 

reports for the data users), Table 6.4 is illustrative of the most relevant information 

in a quality assurance certificate.  It includes information about organizations that 

have certified the metadataset, levels of compliance to given standards, quality 

Certification Details Metadataset X 

Certificates 

Standard: ISO 19XXX  
Compliance level: fully compliant 
Certificate expiry: 01-01-201x 
Certifier: Abcd Efgh 
Email: Abcdefgh@agency1.com 
 
Standard: Field Spectroscopy Metadata Standard  
Compliance level: fully compliant 
Certificate expiry: 05-05-201x 
Certifier: Jklm Nopq 
Email : jklmnopq@agency2.com 

Quality Assurance 

 
Assurer: Dr. Spectral Investigator 
Date of assurance : 01-01-201x 
Level of internal quality compliance: 2 
Institute: Spectral Investigations, Inc. 
Address: 45 Investigation Suite, Spectral City, Rainbow 8888 
Email : spectral.investigator@spectralinvestigations.org 

Lineage 

Database user: DB User 
Institute: Spectral Databases, Inc. 
Address: 25 Spectral Databases Suite 52, Database City, Binary 1001 
Email: db.user@spectraldatabases.com 
 
Metadataset producer: Field Spectroscopy Scientist 
Institute: Field Spectroscopy University 
Address: 88 Field Spectroscopy Drive, Spectral City, Rainbow 8888 
Email: fieldspectroscopy.scientest@fsu.edu 
 
Metadataset owner: Spectral Databases, Inc. 
Address: 44 Spectral Database Drive, Spectralville, Democratic Republic of Signatures, w8w 8w8 
Email: equireies@sd.com 
 
Metadataset creation date: 01-01-20xx 
 
Revision history:  
01-01-20xx Viewing geometry updated 
01-01-20xx  Database user information updated 
01-01-20xx Project information details deleted 

Quality Parameters 
Investigated Logical consistency, semantic/syntactic errors, reputational authority,  completeness 

Quality Report Available for download 

 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

194 

assurance, lineage information, and quality parameters that were assessed.  Such a 

certificate provides information for the data user to help them decide whether the 

dataset meets their criteria for a given application, and data managers to decide 

whether such datasets are of suitable quality for their data archiving and sharing 

systems. It is vital that in the life cycle of a metadataset, its certification occurs 

before distribution through clearinghouses and other online portals (i.e. no later 

than within the domain of datawarehouses) to maintain quality control. 

 

Alternately, following the OGC model, field spectroscopy datawarehouses and 

archiving systems that choose to implement the proposed standard could 

themselves be certified, with the implication that all metadatasets they store, 

generate, and distribute are automatically compliant with the standard.  The field 

spectroscopy metadata standard includes provisions for quality and completeness 

reporting where automated metrics, implemented by way of algorithms including 

database crawls, can be used to establish reputational authority of both the data 

producers and the spectral library itself (discussed in more detail in Chapter 5).  

 
 

6.3.7 Additional approaches 
 
Additional approaches have been suggested with the aim of encouraging metadata 

creators both within geospatial science and in other disciplines to adopt metadata 

standards. These include emphasizing the cost and benefit of metadata creation, and 

the consequences of using unsuitable metadatasets (Barton et al., 2003) and  relying 

on experts (information systems specialists, statisticians, risk analysts) other than 
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geospatial researchers themselves to determine formulas and complex scenarios for 

strengths, weaknesses, and opportunities in the metadata creation process (Devillers 

et al., 2010). 

 

Implementing a standards-supportive publication process for scholarly research, 

where documentation of datasets in the literature is coupled with research 

standards has been proposed for the genomics community (Garrity et al., 2008).  A 

standards-supportive publication process should become a more prominent 

objective with time as increasingly more scientific data originates in digital form, so 

opportunities must be exploited to leverage the common digital properties of 

scientific data and information (Anderson, 2004).  However, focus should be 

concentrated initially on those activities that require the most direct engagement 

with metadata creators and the metadata creation process for promoting a 

standards-supportive culture. Investing in low-quality metadata that fails to 

accurately and comprehensively describe its associated dataset has proven fatal to 

'mega-science' initiatives due to large maintenance costs, lost potential associated 

with poor metadata, and the global use of such datasets (Huettmann, 2009), so it is 

incumbent upon researchers and data distributors to adopt a culture of valuing and 

creating the best possible metadata.  

 

Information management projects and similar initiatives within geospatial science, 

and other scientific applications have revealed that good practice is difficult to 

achieve, but identifying obstacles to good practice is an important first step.  Only 

then can an adoption strategy be implemented that addresses the needs of field 
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spectroscopy community scientists and provides the tools, resources, and IT 

infrastructure possible for the whole community to participate. To enable good 

metadata practice, the field spectroscopy community should focus initially on the 

recommendations summarized in Table 6.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Table 6.5 Strategy for adopting, implementing, and integrating a metadata 
standard for the field spectroscopy community 
 

Priority designations provide guidance on those areas that require preliminary focus, 

and have been detailed in the preceding sections.  They are a synthesis of inputs 

RECOMMENDATION RATIONALE/EXAMPLES PRIORITY 

1 Metadata prioritization 
p. 168 

Prioritizing metadata that is  
a) essential (core metadataset, critical elements 
of the application-specific metadatasets) 
b) and/or  can be documented concurrently with 
field data collection (e.g. viewing geometry) 

versus metadata that can be documented retrospectively  
for achieving the most complete metadatasets possible 

Primary 

2 
Collaborative 

stewardship of metadata 
pp. 169-171 

Assigning of responsibility of creating and maintaining 
metadata to multiple individuals and stakeholder  
(researchers, IT specialists, data managers) according to 
their domain of expertise 

Primary 

3 
Identifying a purpose for 
metadata collection and 

use 
pp. 171-177 

Allows metadata creators the flexibility to set thresholds for 
quality and completeness within domain and purpose-
specific contexts 

Primary 

4 
Standards-compliant 
software tools and 

information systems 
pp. 177-179 

Data sharing systems and metadata editors that enable and 
enforce creation and distribution of metadatasets compliant 
with the field spectroscopy metadata standard 

Primary 

5 
Metadata completeness 
and quality assessments 

pp. 179-182 

Metadata completeness and quality reports provisioned with 
datasets to aid decision making for data users; a minimum 
of completeness metrics for the field spectroscopy core 
metadataset is required 

Primary 

6 
IT infrastructure and 

management 
pp. 182-189 

Data distribution system that provision quality-controlled 
discoverability and distribution of field spectroscopy 
metadatasets 

Primary 

7 Education initiatives 
pp. 189-191 

Workshops and training programs for researchers and field 
spectroscopy data stakeholders Primary 

8 Metadata certification 
pp. 191-194 

Assigns a level of quality assurance to metadatasets with a 
range of quality indicators to accommodate a range of data 
users 

Primary 

9 Cost-benefit analyses 
p. 194 

Demonstrates to the field spectroscopy community the 
impact, benefits, and losses associated with variable quality 
metadata 

Secondary 

10 
Standards-supportive 
publication protocols 

p. 195 

Couples research publications with metadata-compliant 
datasets; promotes improved metadata capture and 
completeness of metadatasets, traceability of data-derived 
results, and evaluation of scientific impact of datasets 

Secondary 
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derived from the field spectroscopy expert panel workshops and from studies in 

other disciplines elaborated upon earlier. 

 

6.4 Current and future opportunities for field spectroscopy datasets 

6.4.1 Big data and the cloud 

All IT infrastructures will at some point need to prepare for the challenges of 

operating as a ‘big data’ environment. A relatively new data conceptualization, big 

data is characterized by its volume (e.g. banking transactions for national financial 

institutions, traffic flow sensor data), velocity (generated quickly over short windows 

of time or continuously, such as GPS tracks), and variability (e.g. text, images, raw 

feeds from satellite-based sensors) (Dumbill, 2012).  Big data is expected to continue 

to increase in all three of these dimensions.  In 2005, it was estimated that the global 

digital data inventory was 130 exabytes; in 2010, 1,277 exabytes, and in 2015, it is 

predicted to be 7,910 exabytes (‘No end in sight’, 2011). Recognizing and addressing 

these trends and challenges is an opportunity for field spectroscopy scientists to take 

an active role in future-proofing their datasets and ensuring that their data will be 

distributed in a quality-controlled manner.  

 

Traditional data infrastructures are ill suited to handle the storage and processing of 

big data. Cloud computing has been proposed as a suitable architecture because it 

does not rely on a single party or organization to fund and maintain the 

infrastructure (software and hardware). The option of sharing resources is an 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

198 

attractive one considering that in 2020, the number of servers (virtual and physical) 

around the world is predicted to increase 10-fold, the amount of data management 

by data centers will increase 50-fold, and the number of files they will have to 

process will increase at least 75-fold, and almost 20% of information will be 

‘touched’ by the cloud by 2015 somewhere in a byte's journey from the data creator 

to its destination (‘No end in sight’, 2011).  

 

Implications for maintaining integrity of metadata are magnified in the big data 

environment. For example, it is possible to increase the value of searches and rapid 

data retrieval for scientific data discovery by bundling original datasets and their 

associated publications in the search results; however, intuitive, user-centric 

interfaces must be developed to resolve semantic ambiguities between disciplines to 

facilitate this kind of discovery (Tolle et al., 2011). This breed of intelligent searching 

is only possible with metadata-rich datasets, standardized metadata that is 

interoperable on a broad scale, and with platforms and search engines that facilitate 

visibility to source data repositories. Provenance metadata plays a crucial role in 

tracing the evolution of a datasets in big data environments (Buneman, 2013), and is 

of special significance in research applications where it is necessary to know the 

source of a dataset, who created it, and any changes that have been made to it.  The 

impetus for new and evolving metadata standards to meet these challenges grows 

stronger with the proliferation of datasets in the public sphere and the demands by 

data users to access them.  
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6.4.2 Towards an integrated model 

There exist data exchange networks among the geospatial community that are 

evolving towards an integrated datawarehousing, cloud-based, big data model. 

Among these are:  

• EOSDIS (Earth Observing System Data Information System), a network of data 

centers, metadata repositories,  middleware providers and directory services for 

NASA’s Earth science data (Kuo, 2010)  

• GALEON (Geo-interface for Atmosphere, Land, Earth, and Ocean netCDF) 

Interoperability Experiment, an OGC initiative to specify standard interfaces for 

interoperability between data sets used by GIS communities and those used by 

Earth scientists (Domenico et al., 2006) 

• TERN (Terrestrial Ecosystem Research Network) an Australian initiative to 

coordinate a  national data network with quality assured observational data from 

the terrestrial domain 

• EUFAR (European Facility for Airborne Research), a transnational initiative to 

create databases and streamlined data exchange standards for airborne 

hyperspectral research  (EUFAR, 2009) 

 

These data exchange initiatives demonstrate both the necessity and feasibility of 

defining and streamlining protocols and IT infrastructure for creating a new 

generation of advanced data repositories with a centralized interface for a broad 

range of users, including field spectroscopy scientists. Leveraging the capabilities of 

these systems enables field spectroscopy scientists to share their datasets with a 

wide audience of users in a quality controlled environment. However, it is incumbent 
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upon the field spectroscopy community to actively participate in the design and 

implementation of such systems, which includes supporting the proposed field 

spectroscopy metadata standard for maximizing the discoverability and quality 

assurance of their datasets.  

 

6.5 Conclusions 
 
Field spectroscopy scientists, and lessons learned from other disciplines, have 

provided valuable insight into how to proceed with the adoption, implementation, 

and integration of a field spectroscopy metadata standard. Community adoption of 

new standards in other disciplines has proven difficult. A simple approach to good 

practice (not perfect practice) is best, beginning with the recognition that obstacles 

exist, and will persist. However, many of these obstacles can be overcome by 

adopting the strategy for community adoption presented in this chapter.   

 

Prioritizing metadata that can be documented concurrently with field data collection 

balances the need for complete metadatasets with the constraints of time and 

conditions under which the measurements are being taken, and is an important step 

towards achieving the most complete metadatasets possible. Allocating stewardship 

of metadata to multiple parties reduces individual workload for metadata 

documentation and ensures that distinct categories of metadata (calibration, field 

protocol, security and access rights, project information) are the responsibility of 

those with the relevant expertise.  
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Establishing a purpose for metadata collection and use allows metadata creators the 

flexibility to set thresholds for quality and completeness within domain and purpose-

specific contexts. Metadata completeness and quality reports provisioned with 

datasets aids decision making for data users across domains and with varying levels 

of expertise.  A minimum requirement of completeness metrics for the field 

spectroscopy core metadataset provisioned with each dataset is recommended.  

 

Educational efforts (workshops, training programs) and promotion of the field 

spectroscopy metadata standard at national and international events helps research 

and data stakeholders to understand the value and specific activities of good 

metadata practice. Certification confirms to the data user that a given metadataset 

adheres (either partially or completely) to the proposed field spectroscopy metadata 

standard. Certification of metadatasets is important in their quality assurance as 

they are exchanged and disseminated throughout datawarehouses and other 

archiving and data sharing systems. 

 

In order to facilitate the exchange, discoverability, and life cycle of dataset and their 

associated metadata, the IT infrastructure must exist to support it.  The IT 

infrastructure can consist of the data stores, data access services, and the 

organizations responsible for maintaining them, and serves to ensure some quality 

control over the creation, ownership, and management of metadata. 
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Chapter 7 Conclusions 
 

7.1 Introduction 

This thesis has proposed the core components of a metadata standard for field 

spectroscopy. The metadata standard was built through engagement with subject 

matter experts and aims to increase the discoverability, reliability, quality, and life 

cycle of field spectroscopy datasets for wide-scale data exchange. The main 

components of the metadata standard are a core metadataset for all applications, an 

extended metadataset for specific applications, and additional modules imported 

from existing standards to enhance robustness and interoperability.  Weaknesses in 

existing metadata standards both within geospatial science and related disciplines 

were examined, and metrics tailored for analysing field spectroscopy metadata 

quality and completeness parameters were presented, both at the level of individual 

records and at the level of a spectral library as a whole. Recommendations focused 

on overcoming obstacles to a formal adoption of the standard by the field 

spectroscopy community and steps forward for its integration into data warehouses 

and big data platforms.  

 

This chapter presents an overview of the results of research questions in the 

preceding chapters, and the recommendations for adoption and implementation of a 

field spectroscopy metadata standard. As a result of conducting the research,  the 

following outcomes were produced: i) a proposed core metadataset for all field 

spectroscopy applications (Chapter 3); ii) an extended metadataset for three specific 

applications (Chapter 4); iii) a hybrid metadata standard incorporating modules from 
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existing modules for increased robustness (Chapter 4);  iv) methods and metrics for 

evaluating metadata completeness and quality in spectral libraries (Chapter 5); and, 

v) recommendations for adoption and integration of the proposed metadata 

standard (Chapter 6). 

 

7.1.1 Research question 1: What are the key elements of a core metadataset for all 

field spectroscopy applications? 

An international panel of experts was surveyed for their opinion on the metadata 

that must be documented for field campaigns to ensure that all the information for 

maximizing the integrity of the dataset and ensuring legacy potential for long-term 

sharing and interoperability with other datasets is captured.  The survey respondents 

helped to identify a core metadataset critical to all field spectroscopy applications, as 

well as recommend additional metadata to increase the versatility of a metadataset, 

both for application-specific metadata and generic campaign metadata.  

 
The survey established that a core metadataset must include ‘Viewing Geometry’, 

‘Location Information’, ‘General Target and Sampling Information’, ‘Illumination 

Information’, ‘Instrument’, ‘Reference Standards’, ‘Calibration’, ‘Hyperspectral Signal 

Properties’, ‘Atmospheric Conditions’, and ‘General Project Information’ and at least 

one application-specific metadata category, depending on the type of target being 

sampled. The inclusion of additional categories, relating to both generic and 

application-specific metadata, serve to enhance the robustness of the dataset. The 

composition of each category is a factor of those metadata fields that were clearly 

identified as critical (through binomial analysis in the ‘Calibration’ category, for 
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example) and those that are more difficult to designate.  Overall, the results from 

the binomial and scale measurement testing prompt two important questions: i) 

whose opinion among the experts can be used as a basis for designating a metadata 

field as critical, and supported by what rationale?; ii) Is fitness-for-purpose an 

additional dynamic that must be accounted for when designing a metadata 

standard? This was discussed in more detail in Section 6.3.3, which addressed the 

importance of identifying a clear purpose for metadata collection.  

 

Consensus was highest among experts within the same field, and within categories 

most closely related to their area of knowledge. This was illustrated by expert groups 

such as marine scientists who showed lower variance in response and higher overall 

criticality rankings in the ‘Marine and Estuarine Environmental Conditions’ metadata 

category than did their non-marine counterparts in the same category. The trend for 

consensus amongst all categories, measured using the intraclass correlation 

coefficient, demonstrated that application-specific metadata with smaller but more 

specialized groups of experts have the highest level of agreement between 

respondents on the criticality rankings for each field.   

 

The survey results and subsequent analysis provided answers to the problem of 

identifying critical field spectroscopy metadata with the following data: i) metadata 

categories that have the highest overall criticality rankings;  ii) metadata fields that 

can be easily identified as critical to all campaigns; iii) metadata fields that are 

identified ‘critical’/’useful’/’legacy potential’/’NA’ most frequently; iv) the impact of 

group membership on determination of what is critical in a given metadata category; 
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v) consensus trends among groups in both generic and application-specific metadata 

categories.  

 

7.1.2 Research question 2: Is additional metadata required for specific field 

spectroscopy applications and to support interoperability with other metadata 

standards? 

Three user communities within field spectroscopy were identified and interviewed to 

help identify key metadata for three target applications – tree crown, soil, and 

underwater coral. Three metadatasets were created, with descriptions and rationale 

for each metadata element, optionality rankings, and preferred data formats.  

Consensus within the tree crown group was lowest on which metadata should be 

included in their metadataset, based on the argument that knowledge of what the 

dataset will be used for determines the metadata elements that are required. It was 

established that some parameters are difficult to obtain in situ and can only be 

populated retrospectively. It was also established that campaigns for each target 

application have unique logistics and considerations for carrying out spectral 

measurement, as illustrated best with the underwater coral targets, which are 

carried out under conditions and in environments exceptional to marine campaigns. 

Metadata requirements were presented for three application domains: tree crown, 

soil, and underwater coral reflectance studies.   

 

Seven metadata standards, selected as being representative of standards within 

geospatial science and information science were examined for their suitability in 
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accommodating the proposed field spectroscopy metadatasets.  These were the 

Dublin Core 1.1, Access to Biological Collections Data Schema 2.06, Ecological 

Metadata Language 2.1.1, Darwin Core, Content Standard for Digital GeoSpatial 

Metadata (Remote Sensing Extension), Content Standard for Digital GeoSpatial 

Metadata (Shoreline Metadata Profile) and ANZLIC Metadata Profile 1.1 (Geographic 

dataset core) standards.  The results show they consistently fail to accommodate the 

needs of both field spectroscopy scientists in general as well as the three user 

communities (tree crown, soil, marine). Mappings of metadata fields from each 

standard to the field spectroscopy metadatasets were, on average, 22% of the core 

metadataset, 31% tree crown, 3% soil, and 19% of the coral target metadatasets. 

Flexibility analysis revealed that the less prescriptive or explicit an existing standard 

is, the more likely it is to capture a larger amount of information in the field 

spectroscopy metadatasets. Additional modules and parameters from these 

standards were proposed for inclusion in a field spectroscopy metadata standard for 

increased robustness.  

 

By building upon the knowledge of scientists in ecology, marine science, the physical 

sciences and data governance experts who helped to develop existing geospatial 

standards, a hybrid standard was proposed. Elements describing and documenting 

the dataset, resources, access, applications, data quality, citations, and protocols can 

enrich a field spectroscopy standard and make it adaptable to multiple data 

infrastructures.    
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7.1.3 Research question 3: What are the criteria for measuring the quality and 

completeness of field spectroscopy metadata in a spectral archive?  

Conventional methods for measuring quality and completeness of metadata were 

scrutinized against the special requirements of field spectroscopy datasets. Two 

spectral libraries and their metadata policies were evaluated as test cases for their 

compliance with the needs of field spectroscopy scientists.   

 
 
Metadata quality and completeness measures for field spectroscopy can be defined 

by multiple parameters and using a range of metrics.  In order to be useful for data 

mining, they must be informative for users who will make decisions on the fitness of 

the data for their purpose. Field spectroscopy metadata completeness can be 

defined as a two-fold measure consisting of a) compliance with the core metadataset 

and application-specific metadata presented in Chapters 3 and 4; and b) compliance 

with the standards of the data infrastructure in which they are stored. Metadata 

quality for field spectroscopy metadata can be defined in terms of  (but not limited 

to) logical consistency, lineage, semantic and syntactic error rates,  compliance with 

a quality standard, quality assurance by a recognized authority, and reputational 

authority of the data owners/data creators.  

 

Publicly available datasets are underperforming on these quality and completeness 

measures. The two test cases examined, SPECCHIO and USGS Spectral Library, have 

neither quality assurance metadata, nor do they comply to any considerable degree 

with the core metadataset (SPECCHIO at 18% and USGS at 7.7%). Lineage metadata 

is consistently minimal or absent for both libraries, and an examination of the USGS 
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Spectral Library revealed logical inconsistencies in the metadata being populated by 

the users, as well as semantic and syntactic errors. Reputational authority can be 

established in SPECCHIO using completeness measures by user and institute. 

 

7.1.4 Research question 4: What are the issues related to adoption of the proposed 

field spectroscopy metadata standard? 

A synthesis of results from this research, field spectroscopy scientists and lessons 

learned from other disciplines have provided valuable input on how to proceed with 

the adoption, implementation, and integration of a field spectroscopy metadata 

standard. Recommendations are divided into two main sections: community 

adoption of the standard and integration of standardized metadatasets into data 

sharing platforms. Primary steps forward for promoting good metadata practice 

among field spectroscopy scientists include approaches to prioritization of metadata, 

collaborative stewardship of metadata, quality assurance, identifying a purpose for 

metadata collection and use, metadata completeness and quality assessments, 

education initiatives, and building IT infrastructure to enable distribution of 

standard-supportive datasets. 

 

7.2 Final words 

Much potential exists for adapting and improving current geospatial data exchange 

environments for the unique requirements of the field spectroscopy community. 

Before widespread adoption can proceed, user needs for quality assurance must be 

formally recognized, and a standard adopted by the field spectroscopy community 
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and geospatial data advisory bodies and data management agencies. A collaborative 

and innovative spirit can bring great benefits to international efforts for providing 

the data sharing capabilities and quality control for the field spectroscopy 

community.   The importance of creating a metadata standard can be summarized by 

participant feedback from the field spectroscopy metadata survey, “Congratulations 

for your effort in this work ... It is of great interest to find out about commonalities 

and create a minimum standard set of metadata for all occasions” (Rasaiah, 2011).  
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Appendix A Field Spectroscopy Metadata Survey 
(Questions and Results) 
 

Appendix A.1 Survey Questions 
 
This section contains all questions submitted to the expert panel participating on the 

online field spectroscopy metadata survey (a total of 25 pages, including the 

introduction to the survey and an explanation of the criticality rankings).  
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Appendix A.2 Survey Results 
 
This section presents criticality ranking results for all metadata categories in the 

online field spectroscopy metadata survey. 

Figure A.1 Instrument (n=79)   
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Figure A.2 Calibration (n=68)  
 
 
 
 
 
 
 
 
 
 
Author Biographies 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.3 Reference standards (n=79)  
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Figure A.4 Hyperspectral signal properties (n=73) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.5 Illumination information (n=75)  
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Figure A.6 Viewing geometry (n=74) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.7 Environment information (n=72) 
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Figure A.8 Atmospheric conditions (n=74) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.9 General project information (n=73) 
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Figure A.10 Location information (n=74) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.11 General target and sampling (n=74)   
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Figure A.12 Vegetation campaign (n=59) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.13 Woodland and forest (n=50)  
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Figure A.14 Agriculture (n=52) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.15 Soil (n=50)   
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Figure A.16 Mineral exploration (n=43) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.17 Snow (n=31) 
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Figure A.18 Urban environments (n=41) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.19 Marine and estuarine (n=44)  
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Figure A.20 Underwater substratum target (n=40) 
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Appendix B Spectral Library Workshop Outcomes 
This section presents the attendees of the spectral library workshops that served to 

inform the research in Chapters 4, 5, 6, the application-specific metadatasets derived 

from the workshops, and the mappings from the seven examined metadata 

standards to the Core metadataset and the application-specific metadataset.  

 

Appendix B.1 
This section presents the attendees of the spectral libraries workshops held in 

Australia in 2012.  

 

 
 
 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Table B.1 Attendees of the TERN ACEAS ‘Bio-optical data: Best practice and legacy 
datasets’ workshop, held June 18-22 2012 in Brisbane, Australia, led by Dr. Tim 
Malthus  
 
 
  

Name Institution Role / Expertise 

Tim Malthus  CSIRO Division of Land and Water, Canberra PI, field spectroscopy, calibration and validation 

John Gamon University of Alberta, Canada Convenor of SpecNet community 

Phil Townsend University of Wisconsin, USA Vegetation spectroscopy 

Chris MacLellan  NERC Field Spectroscopy Facility, University of Edinburgh, 
UK Calibration and validation 

Andy Hueni RSL, University of Zurich, Switzerland Writer of SPECCHIO software 

Alfredo Huete  University of Technology Sydney Spectroscopy for phenological studies 

Laurie Chisholm  University of Wollongong Field spectroscopy 

Simon Jones Royal Melbourne Institute of Technology Vegetation spectroscopy 

Stuart Phinn University of Queensland Terrestrial and aquatic spectroscopy 

Cindy Ong CSIRO Earth Science and Resource Engineering, Perth Geological and mineral spectroscopy 

Barbara Rasaiah  Royal Melbourne Institute of Technology  Metadata and informatics (PhD student) 

Chris Roelfsema University of Queensland Aquatic spectroscopy 

Lola Suarez  Royal Melbourne Institute of Technology Remote sensing of vegetation 

Rebecca Trevithick Department of Science, Information Technology, 
Innovation and the Arts, Queensland Informatics and data archiving 

Matthew Wyatt  IVEC, Western Australia Metadata and informatics 

Carlos Aya Intersect, NSW Senior IT developer 
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Table B.2 Attendees of the Spectral Libraries Workshop, Held December 10 2012 in 
Melbourne, Australia, hosted by RMIT University and led by Barbara Rasaiah 
 
 
 
 

Name Institution Role / Expertise 

Chris Bellman  RMIT University Photogrammetry 

Laurie Chisolm University of Wollongong Field spectroscopy 

Robert Hewson  RMIT University Remote sensing of vegetation 

Andy Hueni  RSL, University of Zurich, Switzerland Writer of SPECCHIO software 

Simon Jones RMIT University Vegetation spectroscopy 

Barbara Rasaiah  RMIT University Metadata and informatics (PhD student) 

Mariela Soto-
Berelov  RMIT University Remote sensing of land use change 

Lola Suarez  RMIT University Remote sensing of vegetation 

Rebecca 
Trevithick  

Department of Science, Information Technology, 
Innovation and the Arts, Queensland Informatics and data archiving 

Phil Wilkes RMIT University Remote sensing of vegetation (PhD 
student) 

Will Woodgate RMIT University Remote sensing of vegetation (PhD 
student) 
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Appendix B.2 
This section presents the application-specific metadatasets discussed in Chapter 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table B.3 Comprehensive list of the metadata elements (critical and optional) in 
the tree crown reflectance metadataset  
 
 
 
 

METADATA FIELD REASON FOR INCLUSION / COMMENTS OPTIONALITY EXAMPLE DATA TYPE 

Collected within 1 week 
of aerial campaign 

Minimizes any detectable changes in leaf 
phenology (this can be reference via a 

protocol citation) 
Critical yes text 

Position in canopy 
Corresponds to visible canopy in an aerial 

hyperspectral campaign (this can be 
reference via a protocol citation) 

Critical Emergent leaves on 
top third of canopy text 

Illuminated leaves  (this can be reference via a protocol citation) Critical Yes text 

Target or scale (single 
leaf, branches, mature 

leaves, etc.)  

Ensures consistent phenological state for all 
samples and sufficient leaf size for 

integrating sphere measurement  (this can 
be reference via a protocol citation) 

Critical yes Boolean 

Tree species   Critical Eucalyptus aquatica text 
Healthy leaves (absent of 
fungal or pest infection) 

Permits most accurate leaf chemical analysis 
and spectral measurement Optional yes Boolean 

Tree ID Used for correspondence to sample bags and 
spectra files  Optional 5885 text 

Tag trees with marker Permits correspondence to aerial/satellite 
imagery Optional yes Boolean 

Tree DBH  
Trunk diameter at chest height (cm) / 

Provides additional information about tree 
properties and health 

Optional 80cm numeric 

Tree height 
Height of tree (m) / Provides additional 
information about tree properties and 

health 
Optional 55m numeric 

Approx crown Ø Approximation of tree crown diameter (m) Optional 8m numeric 

E/C/I crown position in the field with respect to 
the surrounding tree crowns Optional E text 

% cover estimated percentage of the leaf fractional 
cover in the crown Optional 25% numeric 
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Table B.3 (continued) Comprehensive list of the metadata elements (critical and 
optional) in the tree crown reflectance metadataset  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Store first set of 50g 
samples in air-sealed bag 
with moisturized tissue 

For spectral analysis; prevents moisture loss Optional yes Boolean 

Store second set of 50g 
samples in air-sealed bag 
and store in dry ice (N2O) 

For additional chemical analysis  Optional yes Boolean 

 Wet weight  weight measure the same day the leaves are 
collected from the tree (g) Optional 5g numeric 

Dry weight weight of the same leaves measured after 
drying them in the oven (g) Optional 3.8g numeric 

 Leaf area Area corresponding to the same leaves 
computed from the scanned image (cm2) Optional 8.5cm2 numeric 

SLA Specific leaf area, calculated as (Wet 
weight/Leaf area) in g/cm2 Optional 0.6g/cm2 numeric 

Photo of samples, bough, 
and canopy Visual record of samples Optional photo # or name  text 

Obtain a total of X 
samples per tree   Optional 5 samples per tree text 
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Table B.4 Comprehensive list of the metadata elements (critical and optional) in 
the soil reflectance metadataset  
 
 
 

METADATA FIELD REASON FOR INCLUSION / 
COMMENTS OPTIONALITY EXAMPLE DATA TYPE 

Description   Critical ferri-soil text 

Sample #   Critical 1 text 

Name Can be extracted from a taxonomic 
list / soil series name Critical calcic orthid text 

Weight can be used to describe wet or dry 
weight Critical dry weight to 

moisture  numeric 

Volume derived from soil cans Critical 134.5 cm3 numeric 

Mineral bulk density    also can be designated 'soil bulk 
density' Critical msd/vd  numeric 

Particle density   Critical 265g/cm3 numeric 

Order   Critical Aridisol text 

Type   Critical loam text 

Horizon   Critical A' text 

Grain size   Critical 3 parts numeric 

Texture sand/silt/clay Critical sieving text 

Surface roughness necessary for BRDF/erosion 
calculations Critical 0.025 numeric 

Colour  MUNSELL units/ colour chips can 
be used Critical 10 YR 6/4 alphanumeric 

Level surface/rough/inclined aspect should be included Critical 10˚ or 10`0 numeric 

Moisture content gravimetric or volumetric Critical 57% numeric 

Humus content   Critical 3.40% numeric 

Nitrogen content   Critical 20 ppm numeric 

Clay content   Critical 20% numeric 

Sand content   Critical 5% numeric 

Silt content   Critical 5% numeric 

pH in H20   Critical 7.0pH numeric 

Water retention (field capacity)   Critical   numeric 

Wilting point   Critical 0.44 cm3/cm3 numeric 

Total alkalinity   Critical 10 mg L-1 numeric 

Conductivity   Critical 8 dS/m numeric 

Porosity   Critical 0.45 numeric 

Contamination 
(none/mining/agriculture/etc)   Critical mining text 

Sample source 
(pond/lake/marsh/bedrock/etc)   Optional pond text 

Lower plastic limit   Optional 10 numeric 

Upper plastic limit   Optional 12 numeric 

pH in CaCl2   Optional 6.3 pH numeric 

pH buffering capacity   Optional 1250 LBC numeric 

Scintillometer reading   Optional 75 c/s numeric 

Loss on ignition (carbon 
content) this is a redundant field Optional 30% numeric 
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Table B.5 Comprehensive list of the metadata elements (critical and optional) in 
the underwater coral reflectance metadataset  

METADATA FIELD REASON FOR INCLUSION / COMMENTS OPTIONALITY EXAMPLE DATA 
TYPE 

GPS coordinates 

Permits referencing to aerial/satellite/other 
campaigns; Difficult to do in situ; done on 

the dive site; Coordinates, datum + 
projection can be determined from Google 

Earth 

Critical x,y,z numeric 

Location description (in 
situ/on boat/in lab) 

Critical to quantifying environmental 
factors to spectral measurement Critical  Lab/boat/in situ text 

Reference to photo of local 
relevant environment + 
target 

Provides additional visual data where 
recording additional metadata of target and 

environment is not possible or feasible 
Critical photo # or 

filename  text 

Depth From lowest astronomical tide  Critical  18 m numeric 

Tide conditions H or L Input for determining true depth relative to 
datum and wave lensing effects Critical 6:36 PM time 

Wave height and period 
(for reflectance measures) 

Input for determining true depth relative to 
datum and wave lensing effects Critical 0.25 m numeric 

Wind speed Critical in severe conditions Critical 5 kn numeric 

Wind direction Critical in severe conditions Critical  Ssw  text 

Distance from 
bottom/substrate 

Critical if 3D structure present (seagrass, 
branching coral) Critical 20 m numeric 

Substratum height 
Input parameter for determining upwelling 
radiance/ background reflectance affecting 

spectral measurements 
Critical 4 m numeric 

Height of sensor from 
surface Critical for water column profiles Critical 1.75 m numeric 

Depth of sensor from 
surface Critical for water column profiles Critical 7 m numeric 

Distance of operator from 
sensor 

Only applies if there is presence of shading 
from operator's body Critical 0.25 m numeric 

CDOM spectral slope Coloured dissolved organic matter; critical 
for water column profiles Critical  -S value numeric 

CDOM concentration Coloured dissolved organic matter; critical 
for water column profiles Critical  A 440 nm numeric 

Detritus concentration Critical for water column profiles Critical 1200 µg C•l -1 numeric 

Phytoplankton 
species/classes Critical for water column profiles Critical Gymnodinium spp. text 

Target ID Code identifier/tag for sample Critical Name code text 

Type  Qualitative descriptor of target type Critical Coral algae etc. text 

Species or name Coral species Critical Diploria strigosa text 

Density of growth Quantitative measure of density of target Critical 2.94 g cm-3 text 

Bulb intensity Input parameter for downwelling radiance 
calculation Optional 100 W numeric 

Light spectrum Range of irradiance spectrum Optional VIS/NIR text 

Wave lensing 
Can’t be measured in situ; 

Optional yes/no boolean 
Will know this from wave height data 

Natural canopy shading Only in seagrass, branching corals Optional seagrass shadowing text 

Artificial  canopy effect 

Shadowing with diver’s body to eliminate 
influences (e.g. Wave lensing) If 

measurement is from a boat, then boat may 
shade 

Optional shadowing of target 
from diver text 
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Table B.5 (continued) Comprehensive list of the metadata elements (critical and 
optional) in the underwater coral reflectance metadataset  

Size (diameter) Size of target Optional 30 cm numeric 

Homogeneity/heterogeneity Qualitative description of degree of 
homogeneity of target being sampled Optional homogeneous text 

Homogeneity/heterogeneity 
(photo) Attached photo can be used as a reference Optional photo # or 

filename  text 

Presence of epiphytes Useful for endmember analysis of spectral 
measurements Optional Numerous 

epiphytes text 

Presence of 
epiphytes(photo) Attached photo can be used as a reference Optional photo # or 

filename  text 

Benthic microalgae 
(absence/presence) 

Useful for endmember analysis of spectral 
measurements Optional Chla sampling text 

Slope 
Input parameter for determining upwelling 
radiance/ background reflectance affecting 

spectral measurements 
Optional 5% numeric 

Strike 
Input parameter for determining upwelling 
radiance/ background reflectance affecting 

spectral measurements 
Optional 25˚ numeric 
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Appendix B.3 
This section provides tables of mappings from the seven standards to the proposed  

Core metadataset, and the critical elements of the tree crown, soil, and underwater 

coral reflectance metadatasets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table B.6 Mappings from Access to Biological Collections Data Schema 2.06 to the 
Core metadataset  
 

Core Metadataset  ABCD v2 

Instrument 
    

Instrument operator /DataSets/DataSet/Units/Unit/Gathering/Agents/GatheringAgent/Person/FullName 

Viewing 
Geometry 

Distance from target 

/DataSets/DataSet/Units/Unit/Gathering/Method 

Distance from 
ground/background 
Area of target in field of view 
Illumination zenith angle 
Illumination azimuth angle 
Sensor zenith angle 
Sensor azimuth angle 

Project 
Information 

Relevant publication /DataSets/DataSet/Metadata/IPRStatements/Citations/Citation/Text 
Relevant websites /DataSets/DataSet/Units/Unit/Gathering/Project/Contact/URIs/URL 

Project participants 
/DataSets/DataSet/Units/Unit/Gathering/Project/Contact/Organisation/Name/Repre
sentation/Text 
/DataSets/DataSet/Units/Unit/Gathering/Agents/GatheringAgent/Person/FullName 

Acknowledgement text 
(sponsorship/affiliates/other) 

/DataSets/DataSet/Metadata/IPRStatements/Acknowledgements/Acknowledgement
/Text 

Name of experiment/Project /DataSets/DataSet/Units/Unit/Gathering/Project/ProjectTitle 

Date of experiment 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/DateText 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/DayNumberBegin 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/DayNumberEnd  

Location 
Information 

Location Description 
/DataSets/DataSet/Units/Unit/Gathering/NamedAreas/NamedArea 
/DataSets/DataSet/Units/Unit/Gathering/AreaDetail 
/DataSets/DataSet/Units/Unit/Gathering/LocalityText 

Referencing Datum /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/Coordi
natesLatLong/SpatialDatum 

Longitude /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/Coordi
natesLatLong/LongitudeDecimal  

Latitude /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/Coordi
natesLatLong/LatitudeDecimal  

Altitude 

/DataSets/DataSet/Units/Unit/Gathering/Altitude/MeasurementOrFactAtomised/Par
ameter 
/DataSets/DataSet/Units/Unit/Gathering/Altitude/MeasurementOrFactAtomised/Lo
werValue 
/DataSets/DataSet/Units/Unit/Gathering/Altitude/MeasurementOrFactAtomised/Up
perValue 
/DataSets/DataSet/Units/Unit/Gathering/Altitude/MeasurementOrFactAtomised/Uni
tOfMeasurement 

Coordinate source  /DataSets/DataSet/Units/Unit/Gathering/SiteCoordinateSets/SiteCoordinates/Coordi
nateMethod 
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Table B.6 (continued) Mappings from Access to Biological Collections Data Schema 
2.06 to the Core metadataset  
  

General 
Target and 
Sampling 

Information 

Target ID /DataSets/DataSet/Units/Unit/ObservationUnit/ObservationUnitIdentifiers/ObservationUnitId
entifier 

Target treatment 
/DataSets/DataSet/Units/Unit/SpecimenUnit/Preparations/Preparation/PreparationType    
/DataSets/DataSet/Units/Unit/SpecimenUnit/Preparations/Preparation/PreparationProcess     
/DataSets/DataSet/Units/Unit/SpecimenUnit/Preparations/Preparation/PreparationMaterials 

Field sampling design 
(transect, plot, 
other) 

/DataSets/DataSet/Units/Unit/Gathering/Method 
Plot type 
Plot 
dimensions/footprint 
Transect type 
Transect interval 

Time of sampling by 
instrument 

/DataSets/DataSet/Units/Unit/Gathering/DateTime/ISODateTimeBegin 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/TimeOfDayBegin 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/ISODateTimeEnd 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/TimeOfDayEnd 

Time of collection 
from field 

/DataSets/DataSet/Units/Unit/Gathering/SiteMeasurementsOrFacts/SiteMeasurementOrFact/
MeasurementOrFactAtomised/MeasurementDateTime 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/ISODateTimeBegin 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/ISODateTimeEnd 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/TimeOfDayBegin 
/DataSets/DataSet/Units/Unit/Gathering/DateTime/TimeOfDayEnd 

Target photograph 

/DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/ID 
/DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/FileURI 
/DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/Format 
/DataSets/DataSet/Units/Unit/MultiMediaObjects/MultiMediaObject/Comment 
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Table B.7 Mappings from ANZLIC Metadata Profile 1.1 (Geographic dataset core) to 
the Core metadataset  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Core Metadataset  ANZLIC Metadata Profile 1.1 

General 
Project 

Information 

    
Relevant websites On-line resource  

Project participants 
Dataset responsible party, Metadata contact individual name , 
Metadata contact organisation, Metadata contact position , 
Metadata contact role 

Name of experiment/Project Dataset title  

Date of experiment Dataset reference date  

Location 
Information 

Location Description Geographic location of the resource (by description)  

Longitude West longitude , East longitude, Geographic location of the 
dataset (by four coordinates or by description)  

Latitude South latitude , North latitude, Geographic location of the 
dataset (by four coordinates or by description)  

Altitude Vertical extent information for the dataset  
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Table B.8 Mappings from Darwin Core to the Core metadataset  
 

 

 

 
Table B.9 Mappings from Dublin Core 1.1 to the Core metadataset  
  

Core Metadataset  Darwin Core 

General 
Project 

Information 

Relevant publication bibliographicCitation, references, associatedReferences 

Project participants institutionID, institutionCode, ownerInstitutionCode, 
recordedBy 

Name of experiment/Project datasetName 

Date of experiment eventDate, startDayOfYear, endDayOfYear, year,  
month, day, verbatimEventDate 

Location 
Information 

Location Description habitat, locationRemarks, locality 

Referencing Datum verbatimSRS, geodeticDatum 

Longitude verbatimLongitude,decimalLongitude 

Latitude verbatimLatitude, decimalLatitude, 

Altitude verbatimElevation, minimumElevationInMeters, 
maximumElevationInMeters 

General 
Target and 
Sampling 
Information 

Description of target/sample occurrenceRemarks 

Target ID individualID, materialSampleID 

Target treatment preparations 

Time of sampling by instrument eventTime 

Total number of targets individualCount 

Time of collection from field eventTime 

Target photograph associatedMedia 

 

Core Metadataset  Dublin Core 

General 
Project 

Information 

Project participants Contributor 
Acknowledgement text 
(sponsorship/affiliates/other) Contributor 

Name of experiment/Project Title 
Date of experiment Date 

Location 
Information Location Description Coverage 
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Table B.10 Mappings from Ecological Metadata Language 2.1.1 to the Core 
metadataset 



Towards a metadata standard for field spectroscopy datasets Barbara Rasaiah 

282 

 

 

 

 

 

 

 

 

 

 

 

 

Table B.10 (continued) Mappings from Ecological Metadata Language 2.1.1 to the 
Core metadataset  
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Table B.10 (continued) Mappings from Ecological Metadata Language 2.1.1 to the 
Core metadataset  
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Table B.11 Mappings from FGDC Content Standard for Digital Geospatial Metadata 
(Remote Sensing Extension) to the Core metadataset  
 
 
 
 
 
 
 
 
 
 
Table B.12  Mappings from FGDC Content Standard for Digital Geospatial Metadata 
(Shoreline Metadata Profile) to the Core metadataset  
 
 
 
 
 
 
 
 
 

 

 

 

 

Core Metadataset  FGDC Remote Sensing Extension 

General 
Project 

Information 

    

Relevant publication Science_Paper (Description_Documentation module) 

Date of experiment Time_Period_of_Content (Identification_Information module) 

 

Core Metadataset  FGDC Marine Shoreline Extension 

Atmospheric 
Conditions Wind speed Wind Speed 

Location 
Information Location Description Description of Geographic Extent 
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Mappings to the soil reflectance metadataset* 

* No mappings were possible from ANZLIC Metadata Profile 1.1 (Geographic dataset 
core), Dublin Core 1.1,   FGDC Content Standard for Digital Geospatial Metadata 
(Remote Sensing Extension) or FGDC Content Standard for Digital Geospatial 
Metadata (Shoreline Metadata Profile) 
 

 

Table B.13 Mappings from Access to Biological Collections Data Schema 2.06 to the 
soil metadataset  
 

 

Table B.14 Mappings from Darwin Core to the soil reflectance metadataset  
 

 

 
Table B.15 Mappings from Ecological Metadata Language 2.1.1 to the soil 
reflectance metadataset  

 

Soil Reflectance Metadataset ABCD v2 

Sample # DataSets/DataSet/Units/Unit/ObservationUnit/ObservationUnitIdentifiers/Obse
rvationUnitIdentifier 

 

Soil Reflectance Metadataset Darwin Core 
Sample # individualID, materialSampleID 
Weight ObservedWeight 

 

Soil Reflectance Metadataset EML 2.1.1. 
Description Specimen  (coverage module) 
Sample # referencedEntityId (methods module) 
Name commonName  (coverage module) 
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Mappings to the tree crown reflectance metadataset* 

* No mappings were possible from ANZLIC Metadata Profile 1.1 (Geographic dataset 
core), Dublin Core 1.1,   FGDC Content Standard for Digital Geospatial Metadata 
(Remote Sensing Extension) or FGDC Content Standard for Digital Geospatial 
Metadata (Shoreline Metadata Profile) 
 

 

 

Table B.16 Mappings from Access to Biological Collections Data Schema 2.06 to the 
tree crown reflectance metadataset  
 
 
 

 

 

 
Table B.17 Mappings from Darwin Core to the tree crown reflectance metadataset  
 

 

 
Table B.18 Mappings from Ecological Metadata Language 2.1.1 
to the tree crown reflectance metadataset  
 
 
 

Tree Crown Reflectance Metadataset ABCD v2 
Collected within 1 week of aerial campaign  
(reference to protocol) 

/DataSets/DataSet/Metadata/IPRStatements/Citations/
Citation/Text 

Position in canopy  (reference to protocol) /DataSets/DataSet/Metadata/IPRStatements/Citations/
Citation/Text 

Illuminated leaves  (reference to protocol) /DataSets/DataSet/Metadata/IPRStatements/Citations/
Citation/Text 

Tree species 
/DataSets/DataSet/Units/Unit/SpecimenUnit/Nomencla
turalTypeDesignations/NomenclaturalTypeDesignation/
TypifiedName/FullScientificNameString 

 

Tree Crown Reflectance Metadataset Darwin Core 
Collected within 1 week of aerial campaign  
(reference to protocol) samplingProtocol, measurementMethod 

Position in canopy  (reference to protocol) samplingProtocol, measurementMethod 

Illuminated leaves  (reference to protocol) samplingProtocol, measurementMethod 

Mature, dark green leaves have been collected  
(reference to protocol) CollectingMethod, measurementMethod 

 

Tree Crown Reflectance Metadataset EML 2.1.1 
Collected within 1 week of aerial campaign 
(reference to protocol) citation (methods module) 
Position in canopy  (reference to protocol) citation (methods module) 
Illuminated leaves (reference to protocol) citation (methods module) 
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Mappings to the underwater coral reflectance metadataset* 

* No mappings were possible from Dublin Core or FGDC Content Standard for Digital 
Geospatial Metadata (Remote Sensing Extension) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table B.19 Mappings from Access to Biological Collections Data Schema 2.06 to the 
underwater coral reflectance metadataset  
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Table B.20 Mappings from ANZLIC Metadata Profile 1.1 (Geographic dataset 
core)to the underwater coral reflectance metadataset  
 
 
 

 

 

 

 
Table B.21 Mappings from Darwin Core to the underwater coral reflectance 
metadataset  
 

 

 

 

 

 
 
Table B.22 Mappings from Ecological Metadata Language 2.1.1 to the underwater 
coral reflectance metadataset  
  

Coral Reflectance Metadataset ANZLIC Metadata Profile 1.1 (Geographic dataset core) 

GPS coordinates West longitude, East longitude, South latitude, North 
latitude 

 

Coral Reflectance Metadataset Darwin Core 

Location description (in situ/on boat/in lab) locationRemarks 

GPS coordinates verbatimLatitude, verbatimLongitude, decimalLatitude, 
decimalLongitude 

Reference to photo of local relevant environment + 
target associatedMedia 

Depth 

verbatimDepth, minimumDepthInMeters, 
maximumDepthInMeters, 
minimumDistanceAboveSurfaceInMeters, 
maximumDistanceAboveSurfaceInMeters 

Phytoplankton species/classes specificEpithet 
Target ID individualID, materialSampleID 
Species or name specificEpithet 

 

Coral Reflectance Metadataset EML 2.1.1 

GPS coordinates 
longitude(spatialReference module),  name (angleUnits 
)(spatialReference module), value(spatialReference module), 
name (lengthUnits)(spatialReference module) 

Depth 

depthDatumName (spatialReference module)  
depthResolution (spatialReference module) 
depthDistanceUnits (spatialReference module)  
depthEncodingMethod (spatialReference module)  

Height of sensor from surface (if characterizing water 
column properties) 

methodStep, substep, sampling, qualityControl,  description 
(methods module), , proceduralStep (protocol module), 
protocol (protocol module) 

Depth of sensor from surface (if profiling water column) 
methodStep, substep, sampling, qualityControl, description 
(methods module), , proceduralStep (protocol module), 
protocol (protocol module) 

Distance from bottom/substrate 
methodStep, substep, sampling, qualityControl, description 
(methods module), , proceduralStep (protocol module), 
protocol (protocol module) 

Distance of operator from sensor 
methodStep, substep, sampling, qualityControl, description 
(methods module), proceduralStep (protocol module), 
protocol (protocol module) 

Target ID referencedEntityId(methods module) 
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Table B.23 Mappings from FGDC Content Standard for Digital Geospatial Metadata 
(Shoreline Metadata Profile) to the underwater coral reflectance metadataset  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Coral Reflectance Metadataset FGDC Marine Shoreline Extension 

Wave height and period (for reflectance measures) Wave Height 

Tide conditions H or L Time of Low Tide, Time of High Tide, Tidal Datum, Range of 
Tide 

Wind speed Wind Speed 

Wind direction Wind Direction 

 



 

Appendix C Metadata Mappings for SPECCHIO and USGS Spectral Library  
Mappings of metadata elements between the Core metadataset and the SPECCHIO and USGS Spectral Library metadatasets are shown here.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table C.1 Mappings between metadata elements in the Core metadataset and default SPECCHIO v. 2.2 metadata definitions 
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Table C.1 (continued) Mappings between metadata elements in the Core metadataset and default SPECCHIO v. 2.2 metadata definitions 



 

Note:  

Most of the hyperspectral signal properties data within the Core metadataset can be 

populated retrospectively within SPECCHIO via import of native instrument files, if 

the user choses to create new metadata fields to store this data.  As these metadata 

fields were not defined in the default metadataset supplied by SPECCHIO, they were 

not mapped.  

 

There are metadata fields defined within SPECCHIO that do not exist within the core 

metadataset and therefore were not mapped, and these include: campaign_id*, 

CampaignDescription, CampaignQualityComply, EnvironmentalConditionID*, 

ForeopticID*, IlluminationSourceID*, institute_id*, InstituteCity, InstituteCountry, 

InstituteDepartment, InstituteName, InstitutePOCode, InstituteStreetNo, 

InstituteStreet, InstrumentID*, LandCoverID*, MeasurementTypeID*, 

MeasurementUnitID*, NumberOfSpectra, PositionID*, QualityLevelID*, 

ReferenceID*, RequiredQualityLevelID*, SamplingEnvironmentID*, 

SamplingGeometryID*, SensorID*, SpecchioUserEmail, SpecchioUserInsitituteID*, 

SpecchioUserTitle, spectrum_id*, TargetHomogeneity, user_id*. 

 

*These metadata fields are internal database key identifiers for dependent fields 

(e.g.: SamplingGeometryID is the key identifier for all the viewing geometry 

metadata parameters dependent on it). In cases where the dependent fields could 

be mapped to the core metadataset, the key identifier was considered redundant 

and non-informative, and therefore not mapped.  

 

 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table C.2 Mappings between metadata elements in the Core metadataset and the USGS Spectral Library v. splib06a metadata template 
profiles 



 

Note:  

Instrument, Reference Standard, Calibration, Hyperspectral Signal Properties, 

Illumination Information, Viewing Geometry, Atmospheric Conditions categories in 

the Core metadataset could not me mapped to the USGS Spectral Library metadata 

template profiles  Only those elements in the remaining categories (General Project 

Information, Location Information, General Target Sampling Information) that could 

be mapped to are shown.  

 

There are metadata fields defined within the USGS Spectral Library  that do not exist 

within the core metadataset. These relate mostly to results of spectroscopic and 

chemical analysis of the samples and include: 

 

COMPOSITION (New Total) 

COMPOSITION Al2O3 (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION BaO (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION CaO (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION Cellulose 

COMPOSITION Chlorophyll_A 

COMPOSITION Chlorophyll_B 

COMPOSITION Cl (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION CO2 (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION Cr2O3 (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION F (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION Fe2O3 (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION FeO (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION H2O (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION H2O- (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION H2O+ (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION K2O (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION Li2O (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION Lignin 

COMPOSITION LOI (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION MgO (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION MnO (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION Na2O (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION NiO (Oxide ASCII, Amount, wt%, Oxide html) 
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COMPOSITION Nitrogen 

COMPOSITION NNO2 

COMPOSITION O=Cl,F,S (Oxide ASCII, Amount, wt%, #correction for Cl, F) 

COMPOSITION P2O5 (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION S (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION SiO2 (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION SO3 (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION SrO (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION TiO2 (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION Total 

COMPOSITION Total_Chlorophyll 

 COMPOSITION V2O3 (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION volatile 

COMPOSITION Water 

COMPOSITION YYO2 

COMPOSITION ZnO (Oxide ASCII, Amount, wt%, Oxide html) 

COMPOSITION_DISCUSSION 

COMPOSITION_TRACE 

COMPOSITIONAL_ANALYSIS_TYPE 

CURRENT_SAMPLE_LOCATION 

FORMULA_HTML 

LIB_SPECTRA 

LIB_SPECTRA_HED 

MICROSCOPIC_EXAMINATION 

SPECTRAL_PURITY (1_2_3_4_ # 1= 0.2-3, 2= 1.5-6, 3= 6-25, 4= 20-150) 

SPECTROSCOPIC_DISCUSSION 

TRACE_ELEMENT_ANALYSIS 

TRACE_ELEMENT_DISCUSSION 

ULTIMATE_SAMPLE_LOCATION 

XRD_ANALYSIS 
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