
 

 

NEUTRAL POINT VOLTAGE CONTROL 

OF NEUTRAL POINT CLAMPED 

CONVERTERS 

 

 

 

 

 

A thesis submitted in fulfilment of the requirements for 

the degree of Doctorate of Philosophy 

 

 
 

 

 

Zaki Mohzani 

 

B. Eng. (Hons) 
 

 

 

 

 

 

School of Electrical and Computer Engineering 

 

College of Science, Engineering and Health 

 

RMIT University, Australia 

 

March 2014 
 

  



 



 COPYRIGHT NOTICE 

iii 

COPYRIGHT NOTICE 

In return for freely distributing this PhD thesis, I kindly request that each time 

another copy of this work (either in electronic or printed form) gets passed to another 

entity, that the name, affiliation and email address of the new recipient be emailed to 

myself at: 

    zaki.mohzani@gmail.com 

 

This thesis may not be placed electronically where public download access is 

available without prior authorisation from the author. 

Kind regards, 

 

Zaki Mohzani 

  



COPYRIGHT NOTICE 

iv 

 

 



 DECLARATION 

v 

DECLARATION 

I certify that except where due acknowledgement has been made, the work is that of 

the author alone; the work has not been submitted previously, in whole or in part, to 

qualify for any other academic award; the content of the thesis is the result of work 

which has been carried out since the official commencement date of the approved 

research program; and, any editorial work, paid or unpaid, carried out by a third party 

is acknowledged.  

 

Zaki Mohzani 

31 March 2014 

  

E00787
Typewritten Text

E00787
Typewritten Text



DECLARATION 

vi 

 

 

  



 ACKNOWLEDGEMENTS 

vii 

ACKNOWLEDGEMENTS 

Thank you to Prof. Grahame Holmes, Dr. Brendan McGrath, Mohzani Wahab and 

Dalilah Matharsha, Dinesh Segaran, Wang Kong, Reza Davoodnezhad, Carlos A. 

Texeira, Stewart Parker, Kavita Balasubramaniam and the fast food giants for their 

guidance, support and love. 

  



 

viii 

 

  



 TABLE OF CONTENTS 

ix 

TABLE OF CONTENTS 

Copyright Notice .................................................................................................... iii 

Declaration .............................................................................................................. v 

Acknowledgements ............................................................................................... vii 

Table of Contents ................................................................................................... ix 

List of Figures ....................................................................................................... xv 

List of Tables ...................................................................................................... xxiii 

List of Symbols ................................................................................................... xxv 

Glossary of Terms ............................................................................................. xxvii 

Publications ........................................................................................................ xxix 

Abstract .............................................................................................................. xxxi 

1 INTRODUCTION .............................................................................................. 1 

1.1 Background ............................................................................................... 1 

1.2 Aim of the Research .................................................................................. 3 

1.3 Structure of Thesis .................................................................................... 4 

1.4 Identification of Original Contribution ..................................................... 5 

2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL 

STRATEGIES .................................................................................................... 7 

2.1 Fundamentals of NPC Converters ............................................................. 7 

2.2 Early NPC Publications ............................................................................. 9 

2.3 Neutral Point Voltage Deviation Problem .............................................. 12 

2.4 Impact of Space Vectors on the NP Voltage ........................................... 14 

2.5 Early Neutral Point (NP) Control Strategies (1990 to 1997) .................. 15 

2.6 Further Neutral Point (NP) Control Strategies (1997 Onwards) ............. 16 

2.6.1 Calculation of the Duty of the Redundant States for SPWM......... 16 

2.6.2 Calculation of the Duty of the Redundant States for SVM ............ 17 

2.6.3 Limitation of Redundant State Control .......................................... 18 

2.6.4 New Developments in Traditional Modulation Schemes .............. 18 

2.6.5 Natural Balancing........................................................................... 20 

2.6.6 Shift Towards Unconventional Modulation Schemes.................... 20 

2.7 Existing Comparisons of NP Control Performance ................................ 24 

2.8 Issues in the Literature ............................................................................ 25 

2.9 Conclusion ............................................................................................... 26 



TABLE OF CONTENTS 

x 

3 FUNDAMENTALS OF ACTIVE NP CONTROL .......................................... 27 

3.1 NP Currents Produced by Space Vectors ................................................ 27 

3.1.1 Medium Vectors – The Source of NP Current Disturbance ........... 28 

3.1.2 Small Vectors – The Source of NP Current Control ...................... 29 

3.2 NP Natural Control Limits ...................................................................... 31 

3.2.1 Effect of Modulation Depth ........................................................... 32 

3.2.2 Effect of Load Power Factor Angle ............................................... 33 

3.2.3 Cumulative Effect .......................................................................... 34 

3.3 Extending NP Controllability Beyond the Natural Limits ...................... 34 

3.4 Vector Selection Analysis of Existing NP Control Strategies ................ 39 

3.5 Strategies to be Compared in Chapter 4 .................................................. 46 

3.6 Summary ................................................................................................. 47 

4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES............. 49 

4.1 Methodology ........................................................................................... 49 

4.2 Performance Metrics ............................................................................... 51 

4.2.1 Steady-state NP Ripple ................................................................... 51 

4.2.2 Measure of Output Distortion - NWTHD ...................................... 51 

4.2.3 NP Dynamic Control Performance ................................................ 52 

4.3 Simulation System ................................................................................... 52 

4.4 Investigation Results ............................................................................... 53 

4.4.1 High DC link Capacitance Case (4200µF) ..................................... 53 

4.4.2 Low DC link Capacitance Case (840µF) ....................................... 60 

4.5 Active Strategy Recommendation ........................................................... 65 

4.6 Summary ................................................................................................. 66 

5 NATURAL BALANCING OF A NPC PHASE LEG ...................................... 67 

5.1 NP Voltage Variation with NPC Phase Leg Switching Commands ....... 67 

5.2 Double Fourier Representation of NPC PD Modulation ......................... 71 

5.3 Reduction of NPC Natural Balance Solution to Linear Form ................. 73 

5.4 Natural Balancing Response and Balance Booster Contribution ............ 74 

5.5 Design of Balance Booster ...................................................................... 78 

5.6 Natural Balance Time Domain Simulation ............................................. 80 

5.7 Summary ................................................................................................. 84 

6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS ......... 85 

6.1 Modelling the Three-phase NPC [82] ..................................................... 85 



 TABLE OF CONTENTS 

xi 

6.1.1 Modelling the NP Change when  tVn  is Floating (Case 1 

(ZL-F) & 3 (ZL-F, BB-F)) ............................................................. 87 

6.1.2 Modelling the NP Change when  tVn  is Connected to a DC 

link (Case 6 (ZL-F, BB-VDC)) ..................................................... 90 

6.1.3 Application of the Superposition of Phase Leg Models to 

obtain D.E.s for the Different Cases of a 3-Phase NPC 

Converter. ...................................................................................... 91 

6.2 Matching Balance Booster Filter Losses. ................................................ 95 

6.3 Analytically Calculated Natural Balancing Performance of 3-Phase 

NPC Converter ........................................................................................ 96 

6.4 Experimental Results ............................................................................ 102 

6.4.1 Experimental Results for 3-Wire Load, 3-Phase NPC (Cases 

1 (ZL-F) & 3 (ZL-F, BB-F)) ........................................................ 103 

6.4.2 Experimental Results for 4-Wire Load, 3-Phase NPC (Case 2 

(ZL-NP)) ...................................................................................... 108 

6.4.3 Experimental Results for High-Loss Balance Booster with 

Floating Neutral Load .................................................................. 112 

6.5 Experimental Verification of Natural Balancing with CSVPWM ........ 112 

6.6 Summary ............................................................................................... 117 

7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION ................. 119 

7.1 CSVPWM with Feedforward DC Link Compensation ......................... 120 

7.2 Influence of CSVPWM DC Link Compensation on Natural 

Balancing ............................................................................................... 122 

7.2.1 Generalised Harmonic Analysis of NP Voltage Control ............. 122 

7.2.2 Evaluation of NP Control Gains for CSVPWM with DC Link 

Compensation .............................................................................. 124 

7.3 Experimental Verification ..................................................................... 132 

7.4 Simulation Comparison with Active NP Balancing Controllers ........... 134 

7.5 Summary ............................................................................................... 140 

8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE 

COMPARISON .............................................................................................. 141 

8.1 Simulation Environment ....................................................................... 141 

8.1.1 NP Controller Gain Selection Considerations.............................. 144 



TABLE OF CONTENTS 

xii 

8.2 Implementation - SPWM+P .................................................................. 145 

8.2.1 Duty Cycle Calculation / Modulation. ......................................... 145 

8.2.2 State Redundancy Calculation Method - 1k  & 2k . ....................... 145 

8.3 Implementation - SPWM+Song [17] .................................................... 146 

8.4 Implementation - CSVPWM+P ............................................................ 148 

8.4.1 Duty Calculation / Modulation ..................................................... 148 

8.4.2 State Redundancy Calculation Method - 1k  & 2k . ....................... 149 

8.5 Implementation - Yamanaka SVM ........................................................ 149 

8.5.1 Duty Calculation / Modulation ..................................................... 149 

8.5.2 Verification of the Simulation Implementation ........................... 151 

8.6 Implementation of NTVV ..................................................................... 155 

8.6.1 Duty Calculation / Modulation ..................................................... 155 

8.6.2 State Redundancy Calculation Method - 1k  & 2k . ....................... 155 

8.6.3 Verification of Simulation Implementation ................................. 157 

8.7 Implementation of ONTVV .................................................................. 159 

8.7.1 Duty Calculation / Modulation ..................................................... 159 

8.7.2 State Redundancy Calculation Method - 1k  & 2k . ....................... 159 

8.8 Summary ............................................................................................... 160 

9 EXPERIMENTAL SYSTEM ......................................................................... 161 

9.1 Overview of the Experimental System .................................................. 161 

9.2 Power Stage ........................................................................................... 162 

9.3 Controller Boards .................................................................................. 165 

9.4 Communications .................................................................................... 173 

9.5 Load Bank ............................................................................................. 174 

9.6 Balance Booster ..................................................................................... 176 

9.7 Experimental Verification using the Preferred Active Strategy: 

CSVPWM+P ......................................................................................... 177 

10 CONCLUSION AND FUTURE WORK ....................................................... 181 

10.1 Summary of Work ................................................................................. 181 

10.1.2 Categorisation of Active Control Strategies ................................. 182 

10.1.3 Quantitative Comparison of Practical Strategies ......................... 182 

10.1.4 Derivation of the Natural Balancing Mechanism ......................... 183 



 TABLE OF CONTENTS 

xiii 

10.1.5 The Characterisation of Natural Balancing Performance with 

Balance Booster for Three-phase Converters and their 

Variants ........................................................................................ 183 

10.1.6 Harmonic Modelling of the Combination of ‘Passive’ NP 

Control and DC Bus Link Voltage compensation using 

CSVPWM. ................................................................................... 183 

10.2 Suggestions for Future work ................................................................. 184 

10.2.1 Carrier-based Equivalent of Yamanaka’s SVM ........................... 184 

10.2.2 Comparison involving Common-mode Currents ......................... 184 

10.2.3 Derivation of Stable Combined Balance-booster-assisted 

‘Active’ NP Controller ................................................................ 185 

10.2.4 Model Predictive Control ............................................................. 185 

10.2.5 Model Predictive Control with Balance boosters......................... 185 

10.2.6 Optimised Balance-booster Design .............................................. 186 

10.2.7 n-phase NPC ................................................................................ 186 

10.3 Summary ............................................................................................... 186 

 

  



TABLE OF CONTENTS 

xiv 

  



 LIST OF FIGURES 

xv 

LIST OF FIGURES 

Figure 1.1: Topology for 3-phase Neutral Point Clamped converter. .......................... 2 

Figure 2.1: Topology for 3-level NPC converter. ........................................................ 7 

Figure 2.2: Space Vector diagram of the NPC converter. ............................................ 8 

Figure 2.3: Dipolar PWM. M=0.7 .............................................................................. 10 

Figure 2.4: Phase Disposition (PD) modulation (top) and Phase leg a output of 

unipolar form (bottom) M=1.0. ............................................................... 11 

Figure 2.5: Demonstration of NP problems encountered with a Current controller 

application with a NPC converter e.g. motor drive. ................................ 13 

Figure 2.6: Space Vector diagram for Sector 1. The reference vector, VREF is 

within subsector 2. .................................................................................. 14 

Figure 2.7: Reference waveforms for CSVPWM for 3-level systems. M=0.7 .......... 19 

Figure 2.8: Space Vector diagram for Sector 1. The reference vector, VREF is 

within subsector 1. .................................................................................. 20 

Figure 2.9: SV diagram for SVM – Medium vector elimination for Sector 1. .......... 21 

Figure 2.10: SVM for Nearest Three Virtual Vector (NTVV) for Sector 1. ............. 22 

Figure 3.1: Space Vector diagram for the NPC. ........................................................ 28 

Figure 3.2: Space Vector diagram for Sector 1. ......................................................... 30 

Figure 3.3: Approximate Medium and Small vector duty cycle variation versus 

modulation depth [20]. ............................................................................ 33 

Figure 3.4: Maximisation of NP disturbance and loss of NP control as load 

power factor angle increases. .................................................................. 33 

Figure 3.5: Time domain signals across Sector 1. Top: VSI Modulation 

references. Middle: 3-phase load current with a load p.f. angle of 5 

degrees. Bottom: 3-phase load current with a load p.f. angle of 85 

degrees. .................................................................................................... 35 

Figure 3.6: Time domain signals across a switching cycle when reference angle 

is 30 degrees. Top: VSI Modulation references. Middle: 3-phase load 

current with a load p.f. angle of 5 degrees. Bottom: 3-phase load 

current with a load p.f. angle of 85 degrees. ........................................... 36 

Figure 3.7: Region of NP controllability (black). Figure obtained from [20]. .......... 37 

Figure 3.8: Space Vector diagram for Sector 1. The reference vector, VREF is 

within subsector 2. .................................................................................. 41 



LIST OF FIGURES 

xvi 

Figure 3.9: SVM for Nearest Three Virtual Vector (NTVV) for Sector 1. ................ 43 

Figure 3.10: SV diagram for Medium vector elimination for Sector 1. ..................... 46 

Figure 4.1: Maximum NP deviation versus Modulation depth for load power 

factor angle of 1 degree during steady state operation. ........................... 54 

Figure 4.2: Maximum NP deviation versus Modulation depth for load power 

factor angle of 45 degree during steady state operation. ......................... 54 

Figure 4.3: Maximum NP deviation versus Modulation depth for load power 

factor angle of 85 degree during steady state operation.. ........................ 55 

Figure 4.4: NWTHD versus Modulation depth for load p.f. angle of 1 degree. ........ 56 

Figure 4.5: NWTHD versus Modulation depth for load p.f. angle of 45 degree. ...... 56 

Figure 4.6: NWTHD versus Modulation depth for load p.f, angle of 85 degrees. ..... 57 

Figure 4.7: NP control performance versus Modulation depth for load power 

factor angle of 1 degree. .......................................................................... 58 

Figure 4.8: NP control performance versus Modulation depth for load power 

factor angle of 45 degree. ........................................................................ 58 

Figure 4.9: NP control performance versus Modulation depth for load power 

factor angle of 85 degree. ........................................................................ 59 

Figure 4.10: Maximum NP deviation versus Modulation depth for load power 

factor angle of 1 degree during steady state operation. ........................... 61 

Figure 4.11: Maximum NP deviation versus Modulation depth for load power 

factor angle of 45 degree during steady state operation. ......................... 61 

Figure 4.12: Maximum NP deviation versus Modulation depth for load power 

factor angle of 85 degree during steady state operation. ......................... 62 

Figure 4.13: NWTHD versus Modulation depth for load power factor angle of 1 

degree. ..................................................................................................... 62 

Figure 4.14: NWTHD versus Modulation depth for load power factor angle of 

45 degree. ................................................................................................ 63 

Figure 4.15: NWTHD versus Modulation depth for load power factor angle of 

85 degrees. ............................................................................................... 63 

Figure 4.16: NP control performance versus Modulation depth for load power 

factor angle of 1 degree. .......................................................................... 64 

Figure 4.17: NP control performance versus Modulation depth for load power 

factor angle of 45 degree. ........................................................................ 64 



 LIST OF FIGURES 

xvii 

Figure 4.18: NP control performance versus Modulation depth for load power 

factor angle of 85 degree. ........................................................................ 65 

Figure 5.1: Topology for a NPC phase leg. nV  is connected to NPV  to form the 

half-bridge topology. ............................................................................... 67 

Figure 5.2: Phase Disposition (PD) modulation strategy. The lower diagram 

shows the ‘a’ switching signals and phase output voltage. ..................... 71 

Figure 5.3: Harmonic spectra of Hmn. M=0.9, fsw = 2000Hz, fo = 50Hz .................... 76 

Figure 5.4: Harmonic spectra of Fmn. M=0.9, fsw = 2000Hz, fo = 50Hz .................... 76 

Figure 5.5: Harmonic spectra of phase voltage without and with 20% NP 

unbalance, M=0.9, fs = 2000Hz, fo = 50Hz ............................................. 77 

Figure 5.6: Topology for a NPC phase leg with a RLC network / balance booster 

placed in parallel to the load. .................................................................. 78 

Figure 5.7: Load and balance-booster impedance magnitude versus frequency. ...... 79 

Figure 5.8: Load and balance-booster impedance phase angle versus frequency. ..... 79 

Figure 5.9: PSIM Simulation Schematic for Natural Balance Investigation. ............ 80 

Figure 5.10: Neutral Point voltage of simulation against models derived for 

Configuration A. M=0.5, fo = 100Hz ...................................................... 82 

Figure 5.11: Neutral Point voltage of simulation against models derived for 

Configuration B without balance booster. M=1.0, fo = 50Hz ................. 82 

Figure 5.12: Neutral Point voltage of simulation against models derived for 

Configuration B with balance booster. M=1.0, fo = 50Hz ...................... 82 

Figure 5.13: Fmn harmonics for Configuration A. M=0.5, fo = 100Hz. ..................... 83 

Figure 5.14: Fmn harmonics for Configuration B. M=1.0, fo = 50Hz ......................... 83 

Figure 6.1: 3-phase NPC converter with and without different balance booster 

placement configurations . ...................................................................... 86 

Figure 6.2: Balance booster currents versus modulation depth. ................................ 97 

Figure 6.3: Balance booster power loss versus modulation depth. ............................ 97 

Figure 6.4: Natural balancing time constant versus modulation depth. ..................... 98 

Figure 6.5: Natural balancing time constant versus fundamental frequency. .......... 100 

Figure 6.6: Natural balancing time constant versus capacitor size, C. .................... 100 

Figure 6.7: Natural balancing time constant versus load power factor angle. ......... 101 

Figure 6.8: Natural balancing time constant versus load magnitude. ...................... 101 



LIST OF FIGURES 

xviii 

Figure 6.9: Experimental NPC - Switched Phase Leg Voltage, Case 1 (ZL-F) & 

3 (ZL-F, BB-F) (M=0.9) ....................................................................... 104 

Figure 6.10: Experimental NPC - Switched Line to Line voltage, Case 1 (ZL-F) 

& 3 (ZL-F, BB-F) (M=0.9) ................................................................... 104 

Figure 6.11: Experimental NPC - Switch and Phase leg currents for floating 

neutral load with balance booster, Case 3 (ZL-F, BB-F) (M=0.9) ........ 105 

Figure 6.12: Experimental NPC – steady state NP voltage for floating neutral 

load without balance booster, Case 1 (ZL-F) & 3 (ZL-F, BB-F) 

(M=0.9) ................................................................................................. 105 

Figure 6.13: Experimental natural balance response with a floating neutral load 

and without a balance booster, Case 1 (ZL-F) (M=0.9). ....................... 106 

Figure 6.14: Combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each 

individual harmonic (1/tau) without a balance booster filter, Case 1 

(ZL-F). ................................................................................................... 106 

Figure 6.15: Experimental natural balance response with floating neutral load 

and  balance booster filter, Case 3 (ZL-F, BB-F) (M=0.9). .................. 107 

Figure 6.16: The combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each 

individual harmonic (1/tau) with a balance booster filter, Case 1 (ZL-

F). .......................................................................................................... 107 

Figure 6.17: Experimental NPC - Switched Phase Leg Voltage, Case 2 (ZL-NP) 

(M=0.9) ................................................................................................. 109 

Figure 6.18: Experimental NPC - Switched line to line voltage, Case 2 (ZL-NP) 

(M=0.9) ................................................................................................. 109 

Figure 6.19: Experimental NPC - Switch and Phase leg currents for 4-wire load 

without balance booster, Case 2 (ZL-NP) (M=0.9) ............................... 110 

Figure 6.20: Experimental NPC – Steady state NP voltage for 4-wire load 

without balance booster, Case 2 (ZL-NP) (M=0.9) ............................... 110 

Figure 6.21: Experimental natural balance response with 4-wire load without 

balance booster filter, Case 2 (ZL-NP) (M=0.9). .................................. 111 

Figure 6.22: The combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each 

individual harmonic or (1/tau) for a 4-wire load, Case 2 (ZL-NP). ...... 111 

Figure 6.23: Experimental natural balance response with floating neutral load 

with high loss balance booster filter, Case 3 (ZL-F, BB-F) (M=0.9). ... 113 



 LIST OF FIGURES 

xix 

Figure 6.24: Experimental NPC - Switch and Phase leg currents for floating 

neutral load with high loss balance booster, Case 3 (ZL-F, BB-F) 

(M=0.9) ................................................................................................. 113 

Figure 6.25: Experimental Phase Leg Voltage (M=0.9) .......................................... 115 

Figure 6.26: Experimental Switched Line to Line Voltage (M=0.9) ....................... 115 

Figure 6.27: Switch and Phase leg currents for 3-phase NPC (M=0.9) ................... 116 

Figure 6.28: Experimental NP voltage of the NPC converter (M=0.9) ................... 116 

Figure 6.29: Balancing performance of CSVPWM for Case 3 (ZL-F, BB-F) 

(M=0.9) ................................................................................................. 117 

Figure 7.1: NPC Modulation references for CSVPWM with DC link 

compensation with 0% unbalance. (M=0.9) ......................................... 121 

Figure 7.2: Block diagram implementation of DC link compensation for NPC 

[86] ........................................................................................................ 121 

Figure 7.3: Modulation references for CSVPWM with DC link compensation 

with 50% unbalance. (M=0.9) ............................................................... 121 

Figure 7.4: Magnitudes of harmonics co-efficients mnF  and mnH  with  0% NP 

voltage unbalance. (M=0.9) .................................................................. 126 

Figure 7.5: Magnitudes of harmonics co-efficients mnF  and mnH  with  20% NP 

voltage unbalance. (M=0.9) .................................................................. 126 

Figure 7.6: Harmonic plot of mnmn HF .  and 
2

mnF  with 0% unbalance. (M=0.9) ....... 127 

Figure 7.7: Harmonic plot of mnmn HF .  and 
2

mnF  with 20% unbalance. (M=0.9) ..... 127 

Figure 7.8: 
2

mnmn FK  and mnmnmn HFK .  without balance booster,  0% NP 

voltage unbalance. M=0.9. .................................................................... 129 

Figure 7.9: 
2

mnmn FK  and mnmnmn HFK .  without balance booster,  20% NP 

voltage unbalance, M=0.9. .................................................................... 129 

Figure 7.10: 
2

mnmnFK  and mnmnmn HFK .  with balance booster,  0% NP 

voltage unbalance. M=0.9. .................................................................... 130 

Figure 7.11: 
2

mnmnFK  and mnmnmn HFK .  with balance booster,  20% NP 

voltage unbalance, M=0.9. .................................................................... 130 

Figure 7.12: Balancing performance of various natural balancing schemes, 

M=0.9. ................................................................................................... 132 



LIST OF FIGURES 

xx 

Figure 7.13: Balancing performance of various natural balancing schemes, 

M=0.1 .................................................................................................... 132 

Figure 7.14: Neutral Point balancing for CSVPWM with DC link compensation 

with RL load only, M=0.9. .................................................................... 133 

Figure 7.15: Neutral Point balancing for CSVPWM with DC link compensation 

with RL load and balance booster filter, M=0.9.................................... 133 

Figure 7.16: Maximum NP deviation versus Modulation depth for load power 

factor angle of 1 degree during steady state operation. ......................... 135 

Figure 7.17: Maximum NP deviation versus Modulation depth for load power 

factor angle of 45 degree during steady state operation. ....................... 135 

Figure 7.18: Maximum NP deviation versus Modulation depth for load power 

factor angle of 85 degree during steady state operation. ....................... 136 

Figure 7.19: NWTHD versus Modulation depth for load power factor angle of 1 

degree. ................................................................................................... 137 

Figure 7.20: NWTHD versus Modulation depth for load power factor angle of 

45 degree. .............................................................................................. 137 

Figure 7.21: NWTHD versus Modulation depth for load power factor angle of 

85 degrees. ............................................................................................. 138 

Figure 7.22: NP control performance versus Modulation depth for load power 

factor angle of 1 degree. ........................................................................ 139 

Figure 7.23: NP control performance versus Modulation depth for load power 

factor angle of 45 degree. ...................................................................... 139 

Figure 7.24: NP control performance versus Modulation depth for load power 

factor angle of 85 degree. ...................................................................... 140 

Figure 8.1: PSIM simulation (topology) .................................................................. 142 

Figure 8.2: PSIM simulation (control) ..................................................................... 143 

Figure 8.3: Phase Disposition (PD) modulation (top) and Phase leg A output of 

unipolar form (bottom) M=1.0. ............................................................. 145 

Figure 8.4: Reference waveforms for CSVPWM for 3-level systems. M=0.7 ........ 148 

Figure 8.5: PWM for Yamanaka’s SVM. Image obtained from [8] ........................ 152 

Figure 8.6: Modification of load to match author’s setup for Yamanaka SVM. 

10000 ohm resistor is required for current source to be use within 

this simulation. ...................................................................................... 153 

Figure 8.7: Thesis simulation results for Yamanaka’s SVM. .................................. 154 



 LIST OF FIGURES 

xxi 

Figure 8.8: Balancing performance at different modulation depths for author’s 

implementation of Yamanaka’s SVM. Image obtained from [8] ......... 154 

Figure 8.9: Result of transformation of SPWM references to NTVV references 

obtained from [68] ................................................................................. 155 

Figure 8.10: Simulation of NTVV balancing performance at different 

modulation depths. ................................................................................ 158 

Figure 8.11: Benchmarking simulation results for different modulation depths. 

Image obtained from [69] for comparison purposes. ............................ 158 

Figure 9.1: Photo of the experimental NPC converter, power supply and loads. .... 161 

Figure 9.2: Close up of experimental NPC converter. ............................................. 163 

Figure 9.3: Power stage design of the converter. ..................................................... 164 

Figure 9.4: One of the 4 capacitors used as the DC link within the converter......... 166 

Figure 9.5: Two DC sources in series using Magna XR250-24. ............................. 166 

Figure 9.6: Semikron module consisting of 2 IGBT switches with anti-parallel 

diodes. ................................................................................................... 167 

Figure 9.7: CPT’s Generalised Integrated Inverter Board (CPT-GIIB). .................. 168 

Figure 9.8: Controller board wiring for Master GIIB. ............................................. 169 

Figure 9.9: Controller board wiring for Slave GIIB 1. ............................................ 170 

Figure 9.10: Controller board wiring for Slave GIIB 2. .......................................... 171 

Figure 9.11: CPT-DA2810 on top of CPT-Mini2810. ............................................. 172 

Figure 9.12: CPT-DA2810. ...................................................................................... 172 

Figure 9.13: RMIT lab resistive load bank. ............................................................. 175 

Figure 9.14: Inductive load bank. ............................................................................ 175 

Figure 9.15: Dyne high frequency inductors............................................................ 176 

Figure 9.16: Top view of the enclosure of the capacitors for balance booster. ....... 177 

Figure 9.17: Bottom view of the enclosure of the capacitors for balance booster. .. 177 

Figure 9.18: NP control performance of CSVPWM with Proportional controller 

at M=0.9, fs=5000 Hz. ........................................................................... 178 

Figure 9.19: Line current B during the NP control action transient. M=0.9, 

fs=5000 Hz. ............................................................................................ 179 

Figure 9.20: Line-to-line voltage during the NP control action. M=0.9, fs=5000 

Hz. ......................................................................................................... 179 

Figure A.1: NTV-based strategies PSIM simulation (topology) ............................. 196 

Figure A.2: NTV-based strategies PSIM simulation (control) ................................ 197 



LIST OF FIGURES 

xxii 

Figure A.3: Yamanaka’s SVM PSIM simulation (topology) ................................... 204 

Figure A.4: Yamanaka’s SVM PSIM simulation (control) ...................................... 205 

Figure A.5: NTVV’s PSIM simulation (topology) .................................................. 219 

Figure A.6: NTVV’s PSIM simulation (control) ..................................................... 220 

Figure A.7: ONTVV’s PSIM simulation (topology) ............................................... 228 

Figure A.8: ONTVV’s PSIM simulation (control) .................................................. 229 

Figure A.9: Song’s SPWM’s PSIM simulation (topology) ...................................... 237 

Figure A.10: Song’s SPWM’s PSIM simulation (control) ...................................... 238 

Figure A.11: Balance booster-based strategies’ PSIM simulation (topology) ......... 245 

 

 

 

  



 LIST OF TABLES 

xxiii 

LIST OF TABLES 

Table 2-1: Phase leg output voltages and associated switching commands ................ 8 

Table 2-2: Converter parameters for NP drift demonstration .................................... 12 

Table 2-3: SVM Vector Classification with NP current for Sector 1. ....................... 14 

Table 2-4: NTVV’s Virtual Vector Composition for Sector 1. ................................. 22 

Table 3-1: NP current draw for SVM medium vector. .............................................. 29 

Table 3-2: NTV SVM – (1 SV / 2 RS) / SPWM / CSVPWM ................................... 41 

Table 3-3: NTV SVM – (2 SV / 4 RS) ...................................................................... 42 

Table 3-4: NTV SVM – (2 SV / 4 RS) – Reduced Medium Vector .......................... 43 

Table 3-5: Medium Vector Reduction ....................................................................... 44 

Table 3-6: Dipolar PWM ........................................................................................... 45 

Table 3-7: Medium Vector Elimination ..................................................................... 46 

Table 3-8: Strategies to be compared. ........................................................................ 47 

Table 4-1: NPC converter parameters. ....................................................................... 50 

Table 4-2: Switching frequency of the various strategies. ......................................... 50 

Table 5-1: Phase leg output voltages and associated switching commands .............. 70 

Table 5-2: Parameters for phase leg’s balancing simulations. ................................... 81 

Table 6-1: Variations of the 3-phase NPC converter. ................................................ 87 

Table 6-2: 3-phase NPC converter parameters for balancing simulations. ................ 96 

Table 6-3: Numerical values for significant harmonics shown in Figure 6.14 ........ 108 

Table 6-4: Numerical values for significant harmonics shown in Figure 6.16. ....... 108 

Table 6-5: Numerical values for significant harmonics shown in Figure 6.22 ........ 112 

Table 7-1: Parameters of the NPC converter. .......................................................... 125 

Table 7-2: Evaluation of NP D.E. balancing gains at M=0.9. ................................. 128 

Table 7-3: Evaluation of NP D.E. balancing gains at M=0.1. ................................. 128 

Table 8-1: Converter parameters for Yamanaka SVM validation ........................... 152 

Table 8-2: Converter parameters for NTVV validation ........................................... 157 

Table 9-1: NPC converter parameters. ..................................................................... 178 

 

  



 

xxiv 

  



 LIST OF SYMBOLS 

xxv 

LIST OF SYMBOLS 

    DC voltage bus 

         Time domain phase current 

   Current reference in time domain 

    Phase current phase   and   

     Phase current phase  ,  , and   

NPi  NP current 

)(RMSIBB
 RMS equivalent of the sum of balance booster 

currents 

BBi  Harmonic current produced by a balance booster 

  Total inductive load of converter 

BBL  Balance booster’s inductance 

   Proportional gain 

  Output voltage levels of a multilevel converter 

  Total resistive load of converter 

BBR  Balance booster’s resistance 

   PWM gate signal of switch   

  Carrier period 

     Stationary three phase quantities 

         
        Common mode voltage offset 

VNP Neutral Point voltage 

VREF Reference vector in SVM 

   Integrator time constant  

   Fundamental reference frequency in rad/s 

   Cross over frequency of forward path loop gain in 

rad/s 

ZL Load impedance 

ZBB Balance booster impedance 
  



 

xxvi 

 

 

 

  



 GLOSSARY OF TERMS 

xxvii 

GLOSSARY OF TERMS 

AC Alternating Current 

ADC Analog Digital Converter 

AFE Active Front End 

APOD Alternative Phase Opposition Disposition 

BB Balance Booster 

CPLD Complex Programmable Logic Device 

CPT-DA2810 Creative Power Technology DSP Process Card 

CPT-Mini2810 Creative Power Technology DSP Controller Card 

CS-GIIB 
Creative Power Technology General Integrated 

Inverter Card 

CSV Centred Space Vector 

CSVPWM Centred Space Vector Pulse Width Modulation 

DAC Digital to Analog Converter 

DC Direct Current 

DIGIO Digital Input / Output 

DLL Dynamic Link Library 

DPWM Discontinous Pulse Width Modulation 

DSP Digital Signal Processor 

DTC Direct Torque Control 

FF Feed Forward 

FFT Fast Fourier Transform 

FPGA Field-Programmable Gate Array 

GTO Gate Turn Off Thyristor 

I/O Input / Output 

IGBT  Insulated Gate Bipolar Transistor 

IGCT Integrated Gate-Commutated Thyristor 

KCL Kirchoff Current Law 

KVL Kirchoff Voltage Law 

MiniBus Bus Structure for DSP Auxiliary Cards 

MPC Model Predictive Control 

NP Neutral Point 

NPC Neutral Point Clamped 

NTV Nearest Three Vectors 

NTVV Nearest Three Virtual Vectors 

NWTHD Normalised Weighted Total Harmonic Distortion 

ONTVV Optimal Nearest Three Virtual Vectors 

P+Resonant Proportional plus Resonant Regulator 

PCB Printed Circuit Board 

PD Phase Disposition 

PEBB Power Electronics Building Block 

PI Proportional plus Integral Regulator 

 



GLOSSARY OF TERMS 

xxviii 

PLL Phase Locked Loop 

POD Phase Opposition Disposition 

PSCPWM Phase Shifted Carrier Pulse Width Modulation 

PSIM 
Power electronics simulation software by 

Powersim Inc 

PWM Pulse Width Modulation 

R-L Resistive Inductive 

R-L-C Resistive Inductive Capacitive 

RMS Root Mean Square 

RS-232 Serial Interface 

RSS Radial State Space Vector Modulation 

SHEPWM Selective Harmonic Elimination PWM 

SHRPWM Selective Harmonic Reduction PWM 

SISO Single Input Single Output 

SPI Serial Peripheral Interface Bus 

SPWM Sinusoidal PWM 

STATCOM Static Synchronous Compensator 

SV Space Vector 

SVM Space Vector Modulation 

THD Total Harmonic Distortion 

UPS Un-Interruptible Power Supply 

VSC Voltage Source Converter 

VSI Voltage Source Inverter 
 

 

 



 PUBLICATIONS 

xxix 

PUBLICATIONS 

Several parts of the work presented in this thesis have been published by the author 

during the course the research. These publications are listed below: 

1. Z. Mohzani, B. P. McGrath, and D. G. Holmes, “Natural Balancing of the 

Neutral Point Voltage for a 3-Phase NPC Multilevel Converter,” IECON 

2011. 

2. Z. Mohzani, B. P. McGrath, and D. G. Holmes, “DC-link Feedforward 

Compensation as NP controller for 3-phase NPC Converter,” IPEMC 2012 

3. B. P. McGrath, D. G. Holmes, and Z. Mohzani “A Generalised Natural 

Balance Model And Balance Booster Filter Design For Three Level 

Neutral Point Clamped Converters,” ECCE 2014, submitted 21/01/2014. 

 

  



PUBLICATIONS 

xxx 

 

  



 ABSTRACT 

xxxi 

ABSTRACT 

The ever increasing consumption of electricity requires the development of electrical 

conversion systems of higher voltage and power ratings. Such requirements 

combined with new stricter power quality regulations are difficult to meet with 

conventional 2-level converters due to their high voltage semiconductor switches 

having slow switching speeds that cause a poor harmonic performance.  

Multilevel converters are an elegant alternative to address this problem. Existing 

semiconductor switches are arranged in series strings to increase the overall voltage 

rating of the converter whilst ensuring that each semiconductor switch is not exposed 

to voltages in excess of its rating. The multiple levels in the converter output enable 

the synthesis of switched AC waveforms that more closely resemble the target AC, 

therefore substantially improving its harmonic performance. 

Amongst the major multilevel converter topologies, the simplest multilevel 

topology in terms of construction and reliability is the 3-level Neutral Point Clamped 

(NPC) converter. However, the 3
rd

 voltage level, also known as the Neutral Point 

(NP), can deviate from its ideal value during transient events and certain operating 

conditions such as high modulation depth and low load power factor angles. Such a 

voltage deviation exposes the semiconductor switches to voltages above their limits 

which can lead to converter failure. Three methods of controlling the deviation have 

been introduced i.e. active modulation control, natural balancing and additional 

hardware. The former is most commonly used in the industry due to its simple 

implementation and lossless nature. In contrast, the latter methods are not well 

established and they generally have poor adoption. Over the years, a number of 

active modulation control strategies have been proposed which offer different 

degrees of performance in terms of harmonics and NP control capability. However, 

there is little consensus within the literature as to which strategy offers the best 

performance, nor is there a guide to the differences between the strategies, and which 

strategy is better suited to any particular application.  

This thesis begins by presenting a literature review which details the major 

developments in active modulation NP control methods chronologically. After 

highlighting a large number of published strategies but only a relatively low number 

of comparison studies, a common theoretical framework is then developed that 

identifies the primary causes of NP unbalance and the control mechanisms that are 
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available for active NP voltage control. Based on this understanding, the thesis then 

groups common strategies and discusses their mechanisms to enhance NP control. 

This understanding is however qualitative in nature. A simulation study across a 

number of operating conditions is then performed to quantify the differences in 

performance of the different groups i.e. NP control performance, maximum NP 

ripple and harmonic output. The results show that the traditional and also the 

simplest method of NP control (CSVPWM+P) offers the best NP control 

performance. However, this strategy requires a substantial DC link capacitance to 

reduce its harmonic distortion. 

Next, the thesis explores natural NP balancing. It begins by modelling the natural 

balancing process of a single-phase leg. More complex converter structures are then 

modelled by superposition of multiple phase leg models. With this understanding of 

how the natural NP balance mechanism works, the thesis progresses to explore the 

dependence of natural balancing on load magnitude by reducing this magnitude at 

the switching frequency using a RLC filter, to increase the balancing performance. 

Various connection alternatives for this RLC filter on a 3-phase converter are then 

investigated, taking into account their relative balancing performance and losses. 

Recognising from the modelling process that natural NP balancing depends on the 

harmonics of the modulator, the thesis now proceeds to explore whether natural 

balancing can be enhanced by modulation adaptation. Feedforward compensation of 

unbalanced DC bus voltages is identified as a promising alternative, and its 

contribution to natural balancing within a CSVPWM strategy is then explored. Since 

the natural balance model can accommodate both load and modulation modifications, 

this combined method is implemented for 2 balance booster configurations.  

Finally, a comparison is made between the active and natural NP balance 

methods, to identify that while the traditional CSVPWM+P active method achieves 

the fastest balancing response, it does require a high DC link capacitance to produce 

an acceptable harmonic performance. On the other hand, the next fastest solution i.e. 

combined Feedforward compensation & natural balancing, achieves an ideal 

harmonic performance, at the cost however of a lower NP control performance.  

The results of this thesis have been validated on an experimental 3-phase NPC 

converter. 
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1 INTRODUCTION 

1.1 Background 

Virtually every industry uses some form of electrical and electronic equipment. 

However, there is no universal form of electrical supply that meets the requirements 

of every possible application in the world. For example, consumer electronics require 

a low voltage supply to energise low-power digital semiconductor devices. On the 

other hand, high power applications such as motor drives and HVDC systems require 

much higher voltages to reduce the size of the converters and also to reduce I
2
R 

losses. In all cases, it is common to see electrical and electronic equipment bundled 

with a power conversion system that converts the available electrical supply to a 

form that is more suitable for its use. In recent decades, there has been a rapid 

adoption of power electronic conversion equipment in place of traditional electro-

mechanical conversion systems. This can primarily be credited to the rapid 

development of semiconductor devices since the 1960s. Power electronic conversion 

is more efficient than electro-mechanical conversion, has a higher power to weight 

ratio, and is also more flexible.  

The standard power electronic conversion topology, the 2-level converter, is 

limited by the voltage blocking capability of the semiconductor switches that it uses 

[1][2][3]. This results in a finite limit on the power rating that 2-level converters can 

achieve. To go past this limit, 2-level converters have to employ a series connection 

of devices to increase their voltage rating. However, this method requires equal 

distribution of the voltage exposed to each individual switch which is difficult to 

achieve and usually requires additional hardware. Multilevel converters are an 

attractive alternative because they limit the voltage exposed to each switch without 

needing significant additional hardware. They achieve this by arranging the switches 

and DC sources (or capacitors) of the converter along with optional diodes so as to 

clamp the voltage exposed to the switches. A further positive benefit of these 

converters is their multilevel (3 or more levels) switched output voltages that more 

closely resemble the target AC waveform, thus making them harmonically superior 

to 2-level converters. 

Three major multilevel converter topologies can be found within the literature. 

They are the diode clamped converter, flying capacitor converter and the cascaded 

H-bridge converter [4]. Of the three topologies, the neutral point clamped (NPC) or 
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3-level diode clamped converter has gained the highest usage within the industry due 

to its single DC bus requirement and simple construction [5]. 

The Neutral Point Clamped converter is shown in Figure 1.1. However, this 

topology’s region of operation can be limited by fluctuations of the intermediate 

voltage level, also known as the Neutral Point (NP). Ideally, the Neutral Point 

voltage is the mid-point of the DC bus, but this voltage can deviate during both 

steady state and transient operation. In steady state, the load charges/discharges the 

NP in a manner that causes a 3 times fundamental frequency ripple. During transient 

events, the converter can charge/discharge the NP to cause a drift towards either bus 

voltage. This occurs during motor drive start/stop, grid frequency deviation etc. 

These deviations can produce excessive voltage stresses on the semiconductor 

switches and may consequently cause converter failure. 

Three forms of NP control have been introduced to address this issue. Active 

modulation control of the NP current is a well established method of controlling the 

NP voltage. Many approaches have been proposed in this area since the introduction 

of the NPC topology 30 years ago [6]-[31]. However, despite this work it still can be 

difficult to assess the benefits and tradeoffs of the various strategies that have been 

reported. 

Two other methods of controlling the NP voltage are additional hardware, and 

natural balancing [32][33][34]. Additional hardware methods use extra components 
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Figure 1.1: Topology for 3-phase Neutral Point Clamped converter. 
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such as transformers and DC/DC converters. This method has largely been dismissed 

in the literature since it increases both the size and cost of the converter. Natural 

balancing is a phenomenon where the NP voltage returns to the ideal value during 

steady state operation. Research into natural balancing has been very limited and it is 

not often used due to poor understanding of its mechanism, limited quantification of 

its performance and also its losses when a balance booster is added [32]. 

1.2 Aim of the Research 

This thesis addresses the following research questions relating to the control of the 

NP voltage of a NPC converter in two stages: 

Stage 1 consolidates existing knowledge into a coherent understanding of NP 

voltage control, to address the following fundamental research questions: 

a) How does NP ripple / drift affect voltage quality? 

NP control performance will dictate NP ripple and drift magnitudes. As a 

result, it is important to identify the magnitude of NP unbalance that will 

degrade a converter’s output. 

b) What are the differences between modulation strategies? Is there a tradeoff 

between a modulation strategy and its NP controller? 

This thesis will examine the differences between various active NP control 

modulation strategies. A comprehensive analysis of active strategies, 

suited to a large range of applications, is conducted so as to compare their 

performance in terms of NP control performance, steady state NP 

deviation and harmonic production. 

Stage 2 then extends this knowledge base with a comprehensive analysis of 

natural balancing, to identify the best possible NP control strategy by comparing 

natural balancing against active balancing strategies. It does so by addressing the 

following research questions 

c) What is the mechanism behind natural balancing? 

This thesis will model the natural balancing mechanism. The model will 

provide a thorough understanding of its operation and a prediction of its 

control performance. It will then be used to answer question e). 

d) Is there possibility of improving natural balancing with adaptation of the 

primary modulation processes? 
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The thesis will explore if natural balancing can be improved with 

particular modulation alternatives. 

e) What is the performance difference between active NP control using 

modulation strategies, and natural balancing with as much enhancement as 

is possible? 

The performance of all the strategies investigated will be compared and 

evaluated. 

1.3 Structure of Thesis 

This thesis is divided into three main sections. The first section is a combined 

literature review and critical analysis of active NP control strategies. The second 

section guides the reader through the modelling of the natural balancing mechanism 

of the 3-phase NPC converter topology and its variants. The third section is a 

discussion of enhancing natural balancing solution with modulation variations. 

Finally a discussion of future work for this field of research is presented. The 

breakdown of work presented in each chapter is as follows: 

Chapter 1 (this chapter) provides the context and overview for the research 

performed. It then presents the research questions followed by the thesis structure. 

Chapter 2 presents the literature review for the thesis topic. Firstly, it summarises 

NPC modulation strategies. Next, it details chronologically the development of NP 

control within the active and natural balancing schemes. Finally, it discusses the 

issues within the literature and the challenge in comparing NP balancing strategies. 

Chapter 3 presents the fundamentals of NP control. It shows the sources of 

control and disturbance of NP current, the limits of NP control and their dependence 

on operating conditions. Next, it shows the method of overcoming these limits and 

their side effects. Finally, the chapter revisits active NP balancing strategies within 

the literature to classify their performance. 

Chapter 4 quantitatively compares the active NP control strategies chosen in 

Chapter 3 to explore their differences. It also discusses the practical issues of 

implementing the quantitative comparison. 

Chapter 5 explores natural NP balancing for the NPC converter. A new harmonic 

model is derived based on techniques previously developed for the Flying Capacitor 

converter. An analysis of the results from the model is presented. Next, the operating 

mechanism of a balance booster is presented followed by simulation verification. 
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Chapter 6 applies the modular model of a NPC phase leg to a 3-phase NPC 

converter. Analysis of the converter’s operation (and its variants) over a number of 

operating points are then presented. An experimental converter is used to validate the 

developed model, and confirm that the performance enhancing balance booster is an 

effective way of improving the NP voltage balancing process. The results show that 

most applications can benefit from a ‘floating balance booster’ configuration. 

Chapter 7 explores a framework that enhances the natural balancing process to 

achieve better performance, and identifies that Feedforward DC bus compensation 

based modulation is an attractive candidate to explore. Next, a numerical analysis of 

the harmonics behind the combined Feedforward-balance booster method is 

presented. Finally the chapter compares the combined solution’s performance against 

‘active’ methods, and shows that the combined method is excellent in particular for 

low capacitance applications. 

Chapter 8 details the implementations of the strategies that are compared in this 

thesis, along with simulation verification to validate their implementations. 

Chapter 9 describes the experimental system used to validate the results of the 

analysis presented in this thesis. 

Chapter 10 reviews the results of the whole thesis work, and identifies how NP 

balancing strategies can be selected for particular applications and operating 

conditions. It then concludes by presenting recommendations for future work for this 

field of research. 

1.4 Identification of Original Contribution  

The work in this thesis explores the best practical methods to regulate the Neutral 

Point of a NPC converter. For clarity, it is useful to highlight the major contributions 

achieved. 

The first contribution is an exploration of the fundamentals of NP control and its 

limits, followed by a clear description of how these limits can be overcome and with 

what penalty. It shows that all NP control strategies are limited by the same 

fundamentals and eventually degrade to a 2-level converter-like behaviour, or move 

to a middle ground that is undesirable due to higher switching losses.  

The second contribution is a quantitative comparison between the state of the art 

of the various NP balancing strategies over a number of operating conditions. The 
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results show that Centered Space Vector PWM (CSVPWM) with a Proportional or 

FeedForward controller is the best choice for most applications. It also identifies that: 

 Virtual Vector-based strategies are harmonically worse than 2-level converters. 

 CSVPWM produces less NP voltage ripple than Sinusoidal PWM (SPWM). 

 CSVPWM and SPWM have a very similar NP control performance. 

 Yamanaka’s SVM [8] is only faster than CSVPWM+P in controlling the NP 

voltage at extremely low load power factor angles. 

The third contribution is the precise modelling of natural balancing for the 3-

phase NPC converter. The result allows the mechanism of natural balancing to be 

better understood and shows how it is increased through the use of balance boosters. 

With this model, critical conditions can be identified for which a balance booster 

should be designed. The model also precisely predicts the balancing dynamics and 

energy losses within the balance booster filter. 

The fourth contribution is the demonstration of combining natural balancing with 

Feedforward DC Bus compensation for the NPC modulator, to get a significantly 

improved balancing performance. This combined strategy is excellent for converter 

systems with small DC link capacitors as it achieves the fast performance of ‘active’ 

strategies while mitigating the harmonic degradation that is the result of high NP 

ripple that is inevitable with low value DC link capacitances.  
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2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES 

This chapter will chronologically present the development of the NPC converter 

and its associated NP control. It will first outline the structure and modulation of the 

NPC converter before reviewing the NP control attempts that have been published 

within the literature. Finally, it will identify the issues encountered from the literature 

review and reflect on how the limited comparison of NP strategies that is available 

complicates the process of assessing the advantages and disadvantages of the various 

strategies.  

2.1 Fundamentals of NPC Converters 

The topology of the NPC converter shown in Figure 2.1 was first introduced by 

Nabae in 1981 [35]. It is preferred over a two level converter with series connected 

switches because of its ability to limit the switches’ blocking voltage without 

requiring additional circuitry, achieving a doubling of the volt-amp rating of the 

converter while using conventional switches. An additional benefit is the improved 

harmonic output of its three-level phase leg output voltage waveform [26]. 

The positive and negative buses are linked through two capacitors, tC  and bC  

placed in series. The midpoint of the capacitors is the Neutral Point (NP), with a 

voltage NPV  relative to earth. The NPC converter is made of three phase legs, each 

consisting of 4 semiconductor switches and 2 diodes which are connected back to the 

 

Figure 2.1: Topology for 3-level NPC converter. 
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Neutral Point (NP). The switches are controlled by two binary-valued switching 

functions,      1,0, ,2,1 tStS xx
 where 0 and 1 correspond to OFF and ON states. The 

switching function xS ,1  controls the first and third semiconductor switches as a 

complementary pair where the third switch is labelled 
xS ,1

 and  cbax ,, . A second 

switching signal controls the second and fourth switch as a complementary pair 

labelled as xS ,2  and 
xS ,2

 respectively. The states of these switches determine the 

output voltage,  tVx  of each phase leg as shown in Table 2-1 where DCV  represents 

half of the DC bus voltage. 

The 3 phase legs of the converter produce 3
3
 = 27 switching states. These states if 

translated to the 2 dimensional alpha-beta coordinate system through the following 

Clarke transform [36]: 

Table 2-1: Phase leg output voltages and associated switching commands 

S1,x(t) S2,x(t) Vx(t) INP,x(t) 

0 0 -VDC 0 

0 1 VNP(t) Ix(t) 

1 0 Not Applicable Not Applicable 

1 1 VDC 0 
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 (2.1)  

result in 19 Space Vectors (SV) with varying magnitudes and angles as shown in 

Figure 2.2 (previous page). The SVs repeat every 60 degrees and can be split into 6 

sectors. The voltages of each phase leg are denoted by 2, 1 and 0, corresponding to

DCV , 0 V and DCV  respectively. 

2.2 Early NPC Publications  

The early publications surrounding the NPC converter were concerned with the 

modulation techniques for high-power motor drive applications i.e. the determination 

of the switching states and their duration in order to produce the required switched 3-

level output voltage. The three-level output of the NPC converter allowed for the 

reduction of the torque pulsations when compared to a 2-level converter. Thus, many 

of the existing motor drive control techniques for 2-level converters were adapted to 

the NPC converter, most of which required current control. 

Many examples can be found for direct torque control (DTC) or hysteresis control 

of the NPC converter [26]. When hysteresis control is not used, many authors 

focused on the technique called ‘optimal PWM’, which is in fact Selective Harmonic 

Elimination PWM (SHEPWM), which calculates exact switching transitions in order 

to eliminate low order harmonics such as the 5
th

 and 7
th

 harmonic [35][37]. The 

advantage of this modulation technique was its low number of switching transitions 

per fundamental cycle and thus lower switching losses. (The losses were large 

because of the usage of Gate Turn Off Thyristor (GTO) devices which have slow 

switching speeds [38].) 

Other authors, utilising sine-triangular carrier PWM (SPWM) and Space Vector 

Modulation (SVM), were mostly concerned with adapting the modulation process in 

order to satisfy the minimum conduction times of the GTO switches. SVM strategies 

were adapted easily because they select the nearest three vectors (NTV) surrounding 

the reference vector. 
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To summarise the basic steps behind Space Vector Modulation (SVM), it firstly 

determines the location of the reference vector, REFV . The reference vector will lie 

within one of the 24 triangles (see Figure 2.2) which identifies the nearest three 

vectors (NTV) and thus the switching states that it should use. A vector 

decomposition utilising the nearest 3 vectors then is conducted to determine their 

duty cycles within a sampling time. Lastly, SVM rearranges the switching states to 

ensure minimal switching transitions. 

The first developments in SPWM relate to the Dipolar PWM technique, 

introduced in [39]. Figure 2.3 shows how it compares two references against a 

common triangular carrier that spans across DCV  and DCV  for a single phase leg, 

which causes its output  to traverse all three levels within a switching cycle. It was 

originally developed in [39] to counteract the narrow pulses of SPWM, thus avoiding 

the inability of SPWM to meet minimum conduction times of GTO switches at low 

modulation depths. A benefit of this strategy is the low NP ripple it produces for low 

frequency operation [14]. Dipolar PWM is harmonically at a disadvantage as shown 

in [13] because if the reference waveform is in the positive half cycle, Dipolar PWM 

has to produce more than the necessary positive voltage to compensate for any 

negative voltage that it produces every switching cycle. [40] contradicts this by 

showing that Dipolar PWM can produce lower distortion at the lower half of the 

 
Figure 2.3: Dipolar PWM. M=0.7 
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modulation range. This can be attributed to the high number of switching transitions 

used by Dipolar PWM under these conditions. In terms of harmonics, most Dipolar 

PWM authors tend to produce a 3-level line-to-line voltage output which is 

suboptimal compared to the desired 5-level line-to-line that could be produced by the 

NPC inverter [14].  

The second, and currently today’s conventional SPWM strategy, Unipolar PWM 

improves upon Dipolar by producing only 2 levels within a switching cycle as shown 

in Figure 2.4. This approach is easier than SVM, as the technique compares the 3-

phase voltage references against 2 level-shifted carriers [27][41][42]. When the 

reference is above both the carriers, it chooses +VDC. When it is in between the 

carriers, it chooses the NP voltage and finally when it is below both carriers, it 

chooses –VDC. This carrier arrangement is known as Phase Disposition (PD). 

Research in [43] has shown that it is superior to other carrier arrangements that 

alternate the polarity of the carriers e.g. APOD and POD. As a result, it has become 

the standard carrier arrangement for NPC converters. 

Other authors have proposed non-PWM techniques i.e. square wave modulation 

or 8-step modulation in order to reduce high switching losses when operating at high 

switching frequency [44]. 

 
Figure 2.4: Phase Disposition (PD) modulation (top) and Phase leg a output of 

unipolar form (bottom) M=1.0. 



2.3   NEUTRAL POINT VOLTAGE DEVIATION PROBLEM 

12 

2.3 Neutral Point Voltage Deviation Problem 

Figure 2.5 demonstrates the NP voltage deviation problem when a current 

controller is applied to a NPC converter. For illustrative purposes, the DC link 

capacitance of the converter has been reduced to show a large NP ripple. The 

parameters of this simulation are given in Table 2-2. 

Figure 2.5 has 3 graphs. The top graph displays the commanded frequency of the 

current controller. The middle graph shows the NP voltage and the line-to-neutral 

voltage for phase leg A. Note that the 3-level output has the middle level varying 

according to the voltage of the NP. The bottom graph shows the load current 

produced by the converter. 

Within this figure, 3 situations are presented. In between 0 and 0.02 seconds, the 

NP is forced to the ideal value of 0 volts via a solid ground connection. This results 

in the perfect 3-level line-to-neutral voltage output. At 0.02 seconds, a practical 

converter situation is forced by disconnecting the NP from ground to allow the NP to 

float. The NP voltage then starts to produce a 150 Hz ripple component which is 

intrinsic to the way NP currents are produced by a NPC phase leg controlled by 

traditional PWM (further explained in Chapter 3). At 0.05 seconds, a transient event 

is induced where the current controller tries to reverse the frequency of the load 

current from 50 to -50 Hz. During this process, the NP experiences a drift to the 

negative DC bus voltage, thus potentially causing improper operation and even 

converter failure. 

In this case, the transient frequency change led to an unbalanced operation which 

then causes the NP voltage drift. However, this is not the only form of unbalance that 

can cause NP drift, as several studies have shown that effects such as: unbalanced 

loads, different parasitic elements between phase legs caused by the physical 

converter construction, unbalanced controller operation, transients in motor drives,   

Table 2-2: Converter parameters for NP drift demonstration 

Name Modulation  Strategy 

DC bus voltage 360 V 

DC link capacitance 168 uF 

Load resistance 3.56 ohms 

Load inductance 11.34 mH 

Peak current reference magnitude 20 A 

Switching frequency 2000 Hz 
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Figure 2.5: Demonstration of NP problems encountered with a Current controller 

application with a NPC converter e.g. motor drive. 
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unbalanced switching times of the switches etc., can all cause steady state NP drift 

[8][45][46]. Chapter 3 identifies that energy unbalance caused by the instrinsic 

nature of the NP current created by switching the NPC phase leg using 

uncompensated PWM, is the primary cause of steady state NP drift from these 

effects, Chapter 3 also provides more clarification about the processes of ripple and 

drift, and their influence on NP variation away from a balanced state. 

2.4 Impact of Space Vectors on the NP Voltage 

The selection of the switching states by the modulation strategies presented above 

does not consider the effect the switching strategy has on the NP current and voltage. 

This issue will now be explored. Sector 1 from the Space Vector diagram Figure 2.2 
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Figure 2.6: Space Vector diagram for Sector 1. The reference vector, VREF is within 

subsector 2. 

Table 2-3: SVM Vector Classification with NP current for Sector 1. 

Vector Type and Number State (SA SB SC) INP 

Zero 

222 0 

111 0 

000 0 

Small 1 
211 -IA 

100 IA 

Small 2 
221 IC 

110 -IC 

Medium 210 IB 

Large 1 200 0 

Large 2 220 0 
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denotes the region between 0 and 60 degrees, as shown in Figure 2.6. The six space 

vectors in this region can be classified into groups of zero, small, medium and large 

space vectors, as detailed in Table 2-3, together with their switching state. This table 

also identifies the NP current caused by each of these switching states. Note that the 

small and medium vectors connect one or two of the phase legs to the NP and since 

the load then draws current from this node, it affects the NP voltage. The zero and 

large vectors do not connect to the NP and thus do not cause any NP currents. 

Further consideration identifies that the medium vector produces NP current in 

only one direction whereas the two states of a small vector produce NP current in 

opposite directions. These are called ‘redundant states’ because they produce the 

same line-to-line voltage, and so either one of the states can be used in isolation or 

used together by the modulation process. 

2.5 Early Neutral Point (NP) Control Strategies (1990 to 1997) 

Almost a decade after the introduction of the NPC converter, the Neutral Point 

(NP) control problem was first mentioned in [41]. The author stated that the NP drift 

occurs during “dynamic changes of the inverter’s load”. Since the load draws current 

from the NP when its phase leg is connected to it, the author proposed to connect the 

load to the neutral only if its load current will reduce the NP drift. However, this 

causes the phase leg to produce two-level switching and thus poor harmonic 

performance [27]. 

In 1991, two simultaneous publications introduced the NTV SVM strategy that 

recognises the existence of redundant states which produce the same line-to-line 

voltage but have opposite effects on the NP current and thus the NP voltage. This 

improved on the previous NP control technique as it has the ability to control the NP 

voltage whilst maintaining superior harmonic quality by obeying the NTV principle. 

The authors did not specify the method of determining the duty cycle of the 2 

redundant states [21][22], and similar work was presented in [47]. 

At the same time, a similar method was introduced by Steinke for (Unipolar) 

SPWM where a common-mode offset of a fixed value is added to control the NP 

voltage [27]. It was not until a year later that Ogasawara showed that the common-

mode or zero-sequence offset addition to all three modulation references actually 

controls the duty cycle of the redundant states, and that it does not have to be of a 

fixed magnitude as suggested by Steinke [45]. Ogasawara calculated the zero-
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sequence offset based on the operating conditions of the converter. Next, he showed 

that limited control occurs at high modulation depths because of the small duty cycle 

of the redundant states. Therefore, a 3 times fundamental NP voltage ripple can be 

observed during a fundamental cycle of the NPC converter [45]. 

Soon after, many authors were updating their modulation strategies to incorporate 

the NP control technique of utilising redundant states while trying to satisfy the 

minimum commutation times for GTO devices. An example is the hysteresis 

controller, where instead of varying the duty cycle of the redundant state, it chooses 

one of the two redundant states depending on the polarity of the load current and the 

state of the NP voltage. This can be said to be ‘hysteresis’ NP control [48].  

A common feature amongst all the SVM based papers is the recognition that the 

redundant states do not affect the NP voltage if they are switched equally and NP 

deviations only occur because of the medium vector – i.e. the switching state that 

connects the three phases to the three different voltage levels. Another common issue 

is that the calculation of the ratio between the redundant states (or the duty cycle 

split) is often not clearly identified and thus NP control performance cannot be 

readily compared across the different publications. 

2.6 Further Neutral Point (NP) Control Strategies (1997 Onwards) 

Several branches of development occurred during this period and are presented 

within their corresponding subsections. 

2.6.1 Calculation of the Duty of the Redundant States for SPWM 

After a long period with little new development in the NP voltage control area, 

Newton & Sumner mathematically modelled the NP current of the NPC converter at 

the fundamental frequency level and designed a PI controller to determine the zero-

sequence offset addition for SPWM . The model was used to detail the NP control 

limits. Similar mathematical work was conducted in [6] albeit with a P or PI 

controller instead. The author stated that zero average NP current is achieved when 

no common-mode is added to SPWM. No comparison was made to previous 

strategies. This is partly because the previous SVM strategies did not detail their 

method of calculating the duty cycle split between the redundant states. 

An alternative to this simple approach of addressing a non-linear control problem 

with P/PI controllers, is the optimal calculation of the zero-sequence offset. Initially 
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presented by Ogasawara, the method calculates the zero-sequence offset based on the 

converter operating parameters [45]. Song identified a mistake in Ogasawara’s 

assumptions about the post-zero-sequence offset addition and rectified it [49]. This is 

because Ogasawara’s algorithm is dependent upon the sign of the voltage references 

to determine the NP current and Ogasawara did not realise that the addition of a zero-

offset sequence may cause a change in the sign of the voltage references. Song’s 

method recalculates the signs to ensure that the NP current was drawn in the correct 

direction. A number of other authors wrote similar algorithms that further consider 

the non-linearity of the problem [50]. The methods used include fuzzy logic or other 

statistical quantitative methods e.g. neutral networks [31]. Neither publication 

compares their performance against more conventional methods. In [51] the authors 

proposed adding a 3
rd

 harmonic offset depending on load power factor angle; but 

again its effectiveness is not quantified. 

2.6.2 Calculation of the Duty of the Redundant States for SVM 

Within the SVM group, the following calculation methods have been presented. 

Earlier strategies implemented hysteresis control where only one of the redundant 

states of the controllable small vector is switched depending on the value of NPV  (1
st
 

method in [52]). This is the easiest strategy for SVM implementations. 

Other authors have used P/PI/P+R controllers to calculate the duty cycle split 

[53][54]. However, information regarding gain calculation is one of the greatest 

deficits within the literature. The bandwidth of the controller dictates whether the 

linear controllers operate at the fundamental frequency or at the switching frequency 

level. A disadvantage of this method is that it simplifies the problem of calculating 

the appropriate value of the duty cycle split, since it is a complex calculation that 

depends on operating conditions and the load value. These calculations are called 

‘Optimal calculation’. The duty cycle split is usually calculated such that 0NPI  (2
nd

 

method in [52], 2
nd

 method in [55], 2
nd

 and 3
rd

 method in [56]). Other related 

implementations are non-minimal switching transition (1
st
 method in [55]), (1

st
 

method in [56]) and synchronous optimal SVM [56]. Regardless of the NP control 

calculation method, the limited NP control performance at high modulation depths 

and low load power factor angles does not change as will be discussed in the next 

section. 
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2.6.3 Limitation of Redundant State Control 

The authors in [24] conducted an analysis which presented the limited control 

ability of the redundant state method. It showed that the NP voltage will drift when 

either one of the following conditions occur: 2
nd

 order harmonic currents, non-linear 

load currents and highly reactive currents flow in the load circuit. It was mentioned 

in [24] that an infinite increase in DC link capacitance cannot counteract this drift. 

Another analysis [57] showed a limited control region for redundant states. The 

analysis was conducted in the d-q frame and considered the use of additional 

redundant states when possible. Note that these additional redundant states require 

additional switching transitions and do not conform to traditional SVM / SPWM 

strategies. Therefore, this analysis is not applicable to most of the literature described 

thus far [58]. Pou et al. reiterated the work of Kyota et al. in order to derive 

calculations for the appropriate capacitor size for the NPC converter [52]. 

2.6.4 New Developments in Traditional Modulation Schemes 

In [59], the authors showed that SPWM can achieve the performance of SVM by 

adding a non-linear common-mode offset. This enables the simple SPWM 

implementation to achieve the same harmonic performance as SVM and also high 

DC link utilisation. In [60] the authors then extended the work to show that the best 

harmonic performance results from centering the intermediate vectors. In other 

words, an equal split between the duties of the redundant states. This strategy was 

termed Centered Space Vector PWM (CSVPWM) and is shown in Figure 2.7 which 

shows how the addition of a non-linear common mode signal to the original 3-phase 

references produces the CSVPWM references [61]. CSVPWM shares the exact same 

mechanism of NP control as SPWM: zero-sequence offset addition. These works 

show that SPWM and SVM/CSVPWM only differ in terms of duty cycle split 

between the redundant states. 

In terms of harmonic performance for a given constant loss, Bruckner showed that 

SVM / CSVPWM is superior to Discontinuous PWM [62]. The loss of a switching 

state results in greater harmonic distortion. 

Although research into CSVPWM is limited, methods for the calculation of the 

duty cycle of the redundant states are not. The easiest method is hysteresis 

(maximum possible +ve or –ve) [63]. Due to its equivalence to SVM, the optimal 
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calculation presented in [63] can be used. The P/PI controller strategy developed for 

PD is yet to be published for CSVPWM, however it is easily applicable to 

CSVPWM. One advantage of the P/PI method is that it does not require current 

measurements, only knowledge of the direction of power flow. 

On another front, several authors have produced SVM strategies that achieve 

excellent harmonic performance by compensating for the NP fluctuation during 

modulation. They are referred to in the literature primarily as ‘Feedforward 

modulation’ and less commonly as DC link compensation. They come in the 

following forms: SVM with a NP controller [11][64], SPWM with a NP controller 

 
(a) Reference waveforms 

 
(b) Common-mode offset 

 
(c) Final reference waveform 

Figure 2.7: Reference waveforms for CSVPWM for 3-level systems. M=0.7 
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[12], and SPWM without a NP controller [65]. Feedforward for CSVPWM has yet to 

be published. 

Recently introduced was the first NP controller for SHEPWM [9]. In order to 

ensure good harmonic performance, the switching transitions are adjusted slightly to 

control the NP current. As a result, it has a slow NP control performance. 

2.6.5 Natural Balancing 

The Neutral Point (NP) may naturally balance even if no NP controller is used. 

This phenomenon was first analysed by Mouton [32], in the frequency domain. 

Mouton then proposed the installation of a tuned RLC balance booster network in 

order to increase the balancing performance. The analysis was repeated for the POD 

modulation strategy in [33], although as stated earlier in the previous section, this 

strategy is inferior to PD modulation [43]. Experimental results that model the 

natural balancing mechanism were shown in [34]. 

2.6.6 Shift Towards Unconventional Modulation Schemes 

2.6.6.1 Control of Additional Redundant States 

In order to overcome the NP control limits of the redundant states, Yamanaka et 

al. analysed the conventional SVM strategy as shown in Figure 2.8 (0 to 60 degrees) 

and showed that while 2 small vectors exist, only the redundant states of one of these 
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Figure 2.8: Space Vector diagram for Sector 1. The reference vector, VREF is within 

subsector 1. 
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small vectors are utilised. He demonstrated that it is possible to use 2 small vectors 

when the reference vector is within subtriangle 2 and 4. As a result, this strategy 

reduces NP imbalance faster than SPWM in the middle range of the modulation 

depth [8]. A disadvantage of this strategy is the additional switching state and thus 

losses that are incurred. Unfortunately, unlike other SVM strategies, there is no 

equivalent carrier-based PWM implementation to encourage the use of this strategy. 

2.6.6.2 Medium Vector Elimination 

The NP control limitation analysis showed that the redundant states were 

compensating for the medium vector, mediumV  (refer to Figure 2.8) and that the control 

limit is reached when the medium vector duty cycle is greater than the duty cycle of 

the redundant states. This is true at high modulation depths. Consequently, strategies 

presented by Gupta [58] and Bendre’s Radial State Space-Vector (RSS) [7] avoid the 

medium vector, similar to Steinke’s rough implementation in 1992. The updated SV 

diagram is shown in Figure 2.9. [58][7].  

2.6.6.3 Virtual Vectors - Zero Average NP current SVM 

Another set of authors had a similar idea, however they replaced vectors that 

could potentially produce NP currents with virtual vectors that do not. The earliest 

form of this idea can be found in [66]. The most prominent modulation strategy from 

this group is called the Nearest Three Virtual Vector (NTVV) developed by 
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Figure 2.9: SV diagram for SVM – Medium vector elimination for Sector 1. 
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Busquets-Monge [67] which was then translated to a PWM implementation by Pou 

[68]. Its Space Vector diagram is shown in Figure 2.10. As shown in the figure and 

listed in Table 2-4, the virtual vectors are a weighted combination of real vectors 

which when switched together on average produce a net-zero NP current. This 

technique causes an increase in the switching frequency by 1.333.  

As it guarantees average zero NP current, this strategy will never perturb the NP 

for any load condition including non-linear loads. An advantage marketed by this 

strategy is the ability to minimise the size of the bus capacitors. However, any 

unbalance before converter operation will be preserved. Thus, a NP control algorithm 

is required. An optimal controller for NP control was developed by Zaragoza [69]. 

Due to THD concerns, Busquets-Monge [70]-[71] developed Optimised NTVV 

(ONTVV) which reduced the THD produced, however with little comparison with 

the performance of conventional carrier-based Sinusoidal PWM (SPWM). No 

optimal NP controller has ever been developed for the ONTVV strategy. Rather, a 

2
nd

 order offset controller is used [70]. There is no material in the literature on how to 

tune or design the controller. 
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Figure 2.10: SVM for Nearest Three Virtual Vector (NTVV) for Sector 1. 

Table 2-4: NTVV’s Virtual Vector Composition for Sector 1. 

Virtual vector Actual states NP current 

1SmallVirtualV  
100211

2

1

2

1
VV     0

2

1
 AA II  

2SmallVirtualV  
110221

2

1

2

1
VV     0

2

1
 CC II  

MediumVirtualV  
221210100

3

1

3

1

3

1
VVV     0
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1
 CBA III  
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In [70], Busquets-Monge et al compared ONTVV, NTVV and SPWM with 

Song’s controller. The comparison is made at a 30 degree load power factor angle 

and at a low modulation depth, where the medium vector is utilised less. Therefore, 

this test avoids the conditions that cause high harmonic distortion and should not be 

used for a general comparison as it is favourable to ONTVV. 

2.6.6.4 Control of Additional Redundant States with Reduced Medium Vector 

Usage 

Ustuntepe [30] proposed an extension to Yamanaka’s strategy (Section 2.6.6.1) by 

introducing a virtual medium vector which is a combination of the large vectors. 

Like Yamanaka, this strategy uses redundant state control throughout its operation 

and only uses the virtual medium vector when it identifies that the redundant states 

cannot compensate for the real medium vector. Instead of not switching the medium 

vector, some of the medium vector duty cycle is allocated to the virtual medium 

vector [30]. This grants Yamanaka’s strategy full NP control. A major drawback of 

this technique is its high number switching transitions i.e. 6 per half switching cycle. 

2.6.6.5 Hybrid Strategies 

The hybrid strategies usually implement a combination of two or more of the 

previously described strategies depending on the operating conditions of the 

converter e.g. load power factor angle. This is because a particular strategy might 

have an advantage for a particular operating region, whereas another is ineffective.  

An example would be to use conventional SVM in the region where it can control 

the NP for its superior THD output quality. When it is in an undesirable load 

condition i.e. high modulation depths and low load power factor angles, NTVV is 

then used [16][72]. Similarly, another example would be SPWM (unipolar in nature) 

changing to Dipolar PWM for the same reason [14][73]. Another reason is to use 

SPWM for high fundamental frequency operation and Dipolar PWM for low 

fundamental frequency operation. 

2.6.6.6 Predictive Controllers 

Due to the fact that early researchers were adapting proven Carrier PWM and 

SVM strategies to the 3-level NPC converter, NP control has always been regarded 

as a post-modulation task until the invention of Model Predictive Control (MPC).   
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Recently, greater progress has been made in Model Predictive Control (MPC) 

because it eliminates the unnecessary switching transitions that have to occur within 

a switching cycle in SPWM and SVM. Its development is driven for low switching 

losses in high power applications [74][75]. 

MPC also allows flexibility when tackling multiple variable problems such as 

multilevel converter control. MPC, unlike PWM strategies, is not constrained to 

specific switching sequences and thus allows the modulator to use states that are out 

of the usual sequences at any instant in order to produce greater NP current if the NP 

voltage control was more critical than the other objectives e.g. output quality at that 

point in time. 

Existing literature has shown that MPC for the NPC converter requires a balanced 

tradeoff between NP control performance and harmonic output quality of the 

converter. An example can be seen in the Predictive Feedforward SVM implemented 

in [76]. The results in the paper show that the controller avoids the medium vector 

thus producing more 3-level line-to-line switching patterns similar to the Dipolar 

strategy. This is due to the MPC controller reacting to the low DC link capacitance of 

the system and producing 2-level converter operation in order to prevent perturbation 

of the NP potential.  

2.7 Existing Comparisons of NP Control Performance 

This section will list the results of existing comparisons within the literature 

which could help to identify the best NP controller. It will show that these results 

when collectively put together do not provide a coherent perspective for easy 

comparison.  

In [77], Wang describes the back to back NPC topology and its control. This 

publication is not a comparison, but it does mention that hysteresis NP control, where 

one of the redundant states is selected with 100% duty cycle, can overcompensate 

when compared to linear control which varies the duty cycle split between the 

redundant states. It also mentions that NP control requires current polarity detection 

and that high accuracy is necessary for good performance, requiring high bandwidth 

current transducers such as in Yamanaka’s strategy detailed in Section 2.6.6 [77]. 

In [52], Pou et al. compared hysteresis to linear control of the NP voltage for NTV 

SVM. They showed how the ‘hysteresis’ method is faster at controlling the NP 
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voltage. However, as with most of the previous authors, they did not detail the 

algorithm used for calculating the duty cycle split for the linear controller. 

In [8], Yamanaka et al. compared his modified NTV SVM against traditional 

NTV SVM where his modified strategy showed improved NP control dynamic 

performance within the middle range of modulation depths. However, no comparison 

of the harmonics produced by these strategies was conducted. 

In [72], Jiang et al. mentioned that Total Harmonic Distortion (THD) is higher for 

NTVV compared to SPWM, but without detailing the operating condition. The 

authors did not quantify the degradation in distortion and they didn’t consider 

ONTVV. 

In [69], Zaragoza et al. demonstrate that NTVV does not produce any NP voltage 

deviation compared to NTV SVM. In [78], Busquets-Monge et al. compares NTVV 

to NTV in terms of THD performance however, the THD is calculated up to 40 times 

the switching frequency, which dilutes the importance of lower order harmonics. 

Also, their analysis showed that conventional NTV SVM has lower switching losses 

compared to NTVV. In [70], Busquets-Monge et al. showed that ONTVV produced 

lower harmonics compared to NTVV. Then, the authors showed that the harmonic 

performance of ONTVV is similar to SPWM with Song’s controller.  

In [13], Behera et al. shows that Dipolar modulation produces higher THD than 

both SPWM PD and POD. In [40], Fukuda et al. compared a number of SPWM 

strategies to 2 Dipolar PWM strategies and concluded that PD SPWM is the best 

approach at medium to high modulation depths, and a specific dipolar method is 

better at low modulation depths. 

In [10], Dong-Hyun Kim et al. conducts comparisons between various 

discontinuous modulation schemes against continuous schemes, similar to the work 

conducted in [62]. In addition, the authors show the NP currents generated by each 

scheme. Continuous schemes produce more NP current than discontinuous schemes 

at low load power factor conditions. However, the authors did not translate these 

results into NP voltage deviation. Also, no active control is mentioned. 

2.8 Issues in the Literature 

These comparisons do not provide a comprehensive guide as to the NP control 

performance, which is to be expected for the different strategies since most of the 

individual comparisons are conducted at different loading conditions. Hence there 
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are multiple issues that need to be addressed to decide on the best NP controller for 

any particular context. They are:  

a) Existing Comparisons have Limited Criteria 

Analysis of the literature shows that the various NP control strategies address 

the issues of their predecessors at the cost of incurring other disadvantages. As 

such, a comparison should monitor switching losses, harmonic performance, NP 

ripple and NP dynamic performance. Yet, many of the comparisons lack detail 

in this area.  

b) Comparisons of NP Performance Are Not Conducted with Equal Load Currents 

The next chapter will demonstrate how NP control performance is dependent 

upon the DC link voltage (modulation depth) and load current. As a result, a 

reader cannot usefully compare the results of different publications unless equal 

loading conditions are used. 

c) Usage of Total Harmonic Distortion as a Measurement 

Real-world loads are usually inductive, and hence are sensitive to lower order 

rather than higher order harmonics (i.e. a natural low pass filtering 

characteristic). As a result, Normalised Weighted THD comparisons which give 

greater weighting to low order harmonics should be used, instead of THD which 

can be manipulated so that a modulation scheme producing mostly low order 

harmonics can have the same THD result as another modulation scheme that 

produces mostly high order harmonics [61]. 

2.9 Conclusion 

This chapter has presented the large variety of NP control strategies, and the 

limited comparison between them, that is available within the literature. The 

difficulty of assessing modulation strategies is confirmed by the small section on this 

issue in a recent NPC survey paper [5]. 

Although the literature has identified how strategies derive their higher NP control 

performance, which is by either utilising more redundant states or reducing the 

medium vector, the description fails to give a clear picture of the inner workings of 

these strategies and their side effects. Hence, Chapter 3 will now re-explore the 

fundamentals of NP control. This understanding shows that vector selection is both 

the source of NP voltage disturbance, and also the basis of NP control capability.  

  



 3   FUNDAMENTALS OF ACTIVE NP CONTROL 

27 

3 FUNDAMENTALS OF ACTIVE NP CONTROL 

This chapter revisits the fundamentals of NP control, analysing how the vectors 

selected by any modulation strategy are both the disturbance source for NP voltage 

variations and the control solution. Using this analysis, the chapter then explores the 

limits of NP control, the options available to overcome these limits and their 

implications on NP ripple and drift, switching frequency and losses, harmonic 

distortion, and implementation complexity. 

From this understanding, it can be identified how all NP control strategies are 

intrinsically constrained by these fundamental limits. The chapter then shows that 

attempts to achieve NP control beyond these limits cause a degradation from the 

ideal 3-level operation to a 2-level converter-like operation, passing through a middle 

ground that requires additional switching events. As a result, any new NP control 

strategy can have its performance and position within the spectrum predicted 

qualitatively by simply observing its vector selection. 

Finally, the vector selection of all major existing strategies is assessed to 

determine where they operate within the spectrum of possibilities mentioned above. 

This analysis also serves as a method of reducing the number of strategies to be 

compared quantitatively, the results of which are then presented in Chapter 4. 

3.1 NP Currents Produced by Space Vectors 

Section 2.4 has identified how the space vectors used by the modulation strategies 

of a NPC modulator dictate the currents that enter/leave the Neutral Point (NP). 

These vectors can be categorised as: zero, small, medium and large, and are 

reproduced and shown in Figure 3.1, along with the NP current injection that they 

produce. This figure shows that the zero and large vectors do not inject any NP 

current because none of the phase legs are connected to the NP. In contrast, the 

opposite is true for the small and medium vectors and hence they inject non-zero NP 

currents. The small vectors each possess 2 redundant states which connect one 

particular phase current to the NP, but with opposite polarity. For example, within 

sector 1 of Figure 3.1, the states 211 (i.e. +VDC, 0, 0) and 100 (i.e. 0, -VDC, -VDC) 

have the same line-to-line voltage, yet they inject the opposite NP currents: –IA and 

IA respectively. On the other hand, the medium vector in Sector 1 only has one state 

210 (i.e. +VDC, 0, -VDC) which injects NP currents in only one direction i.e. IB. 
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3.1.1 Medium Vectors – The Source of NP Current Disturbance 

During the course of a fundamental cycle, a NPC modulator operating above the 

middle of the modulation range will use the 6 medium vectors (These medium 

vectors are listed in Table 3-1). From Table 3-1, an anticlock-wise AC reference 

traversal from Sector 1 to 6 will connect the NP to the following phase currents in 

turn IB, IA, IC, IB, IA, IC. This will cause a series of charge/discharge cycles for the 

mid-point of the DC link. For steady state operation with a constant magnitude and 

frequency reference, the traversal around the sectors averages to a net zero NP 

current, i.e. if Sector 1 charges the NP with IB , then Sector 2 will discharge the NP 

with IA , followed by Sector 3 charging the NP with IC , and then Sector 4 will 

discharge the NP with IB. Hence the NP charging/discharging current IB in Sector 1 is 

negated by the reverse charging current IB in Sector 4 (time displaced by 180 

degrees), resulting in a net zero NP discharging/charging effect. Similar cancellation 

occurs for the other phase currents, creating a 6 times charging/discharging cycle per 

Sector 1
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Sector 2

Sector 5

Sector 3

Sector 4

220 (0)

210 (I
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(IB) 010
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(0) 000
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Figure 3.1: Space Vector diagram for the NPC.  
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fundamental rotation which causes a 3 times fundamental ripple in the NP voltage. 

The magnitude of this ripple is dependent on the NP current injected and the size of 

the DC link capacitance. The NP current injected (either charge/discharge) per sector 

is dependent on the duration of the medium vector and magnitude and the power 

factor of the load current that is associated with each medium vector. Hence, the 

maximal NP disturbance occurs at the modulation depth where the medium vector 

usage is maximal (i.e. a high modulation depth), for particular load power factors. 

Since the medium vector is essential to produce a 3-level voltage output, these 

undesired NP current injection cycles and the resultant 3 times fundamental NP 

ripple are an intrinsic property of the NPC converter and cannot be eliminated. The 

ripple can however be reduced either passively by increasing the DC link capacitance 

of the NPC, or actively through active NP compensation i.e. manipulation of the 

modulation process.  

During a transient event, the modulation process no longer necessarily allocates 

an equal distribution of time to the 6 sectors and their corresponding medium vector 

usage. For example, if a modulator holds longer at Sector 1 during a transient, the NP 

will be connected to IB for a prolonged period over a large number of switching 

cycles. This results in a constant charging of the NP voltage towards the +ve bus OR 

discharging of the NP voltage towards the -ve bus, depending on the polarity of the 

load current IB. In contrast to steady state ripple mitigation, an increase of DC link 

capacitance cannot eliminate this drift, but can only reduce its rate. An active control 

strategy is therefore essential if transient drift is to be compensated. 

3.1.2 Small Vectors – The Source of NP Current Control 

Each of the 6 sectors for a NPC inverter as shown in Figure 3.1 include 2 small 

vectors. Each small vector has 2 redundant switching states, each of which connect 

the NP to a particular phase current but with opposing current polarity. Figure 3.2 

Table 3-1: NP current draw for SVM medium vector. 

Sector number State (SA SB SC) INP 

1 210 IB 

2 120 IA 

3 021 IC 

4 012 IB 

5 102 IA 

6 201 IC 
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shows this relationship for Sector 1, the 2 small vectors that it includes and their 

associated redundant states. It can be seen that small vector 1 connects the NP to 

phase current IA while small vector 2 connects the NP to phase current IC. 

Hence a NP voltage control strategy can control the total injected NP current by 

measuring the polarities of the phase currents, and then selecting between the two 

alternative redundant states (per small vector) to compensate for the middle vector 

NP injection and achieve an overall zero current injection. Thus these small vectors 

are the mechanism for ‘active’ NP control capability. 

However, the number of controllable small vectors can vary depending on the 

modulation strategy used. Although in principle a modulation strategy can choose 

any available vector within the sector to reproduce a desired volt second reference, 

current state of the art modulation strategies target to use only 3 vectors to reduce the 

number of switching events. This typically results in only 1 or 2 controllable small 

vectors depending on where the reference vector is within the space vector 

framework. 

Figure 3.2 illustrates this issue by breaking each major space vector sector into 4 

subsectors. Subsectors 2 and 4 have 2 small vectors, and hence 4 redundant states to 

control, whereas subsectors 1 and 3 only have 1 small vector, and hence only 2 

redundant states to control. This difference in the number of available redundant 

states can result in a variable switching frequency at medium to high modulation 

depths. For example, a state of the modulation strategy that aims to maximise the use 
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100 ( IA)

221 ( I
C
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110 (-IC)

220 (0)
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200 (0)

222(0)

111(0)

000(0)

VSmall 1
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2

1

3
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Figure 3.2: Space Vector diagram for Sector 1.  
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of small vectors, can switch through 4 states in subsector 1, 5 states in subsector 2, 

and 4 states again in subsector 3. This variation from 4 to 5 to 4 states as the 

modulation reference traverses across subsectors 1 to 3 causes a variable switching 

frequency. 

NOTE: this process does not occur if a strategy forces a constant switching 

frequency by either forfeiting control of both small vectors (i.e. controlling only 1 

small vector) to switch through 4 states only in every subsector, OR by introducing 

an additional extra state to force 5 switching states for every subsector. 

3.2 NP Natural Control Limits 

The NP voltage is controllable when the small vectors’ NP current contributions 

are greater than the medium vector’s NP current contributions throughout the cycle 

of the NPC converter’s operation. The contributions of both vector types vary 

depending on: 

a) The modulation depth, which affects the amount of space vector selection and 

b) The load power factor angle, which affects the instantaneous magnitude of 

the phase currents at the time they are selected to inject current into the NP. 

To illustrate, a NP injection calculation will be conducted over one switching 

cycle ST  within Sector 1. The net NP current per switching cycle is the sum of the 

product of each vector’s duty cycle 
state

tyoed
 
by the current that the vector connects to 

the NP, given by:  

….

BmediumCsmallCsmallAsmallAsmall
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(3.1)  

As expected, only the small and medium vectors affect the NP current. Notice that 

each small vector has 2 terms, one for each redundant state. The total time spent in 

these states should be equal to the required duration of the small vector regardless of 

how this duration is split across the redundant states, viz: 

   
xxx

smallsmallsmall
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smallsmallsmall

ddd

ddd
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(3.2)  

where ‘xxx’ superscript defines the all the redundant states belonging to a particular 

vector. Each small vector’s duty cycle split ratio is now defined through the 
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parameter xk  where 10  xk  and where  2,1x  identifies the corresponding small 

vector that xk  is associated with. Hence the redundant states’ durations as a fraction 

of the small vector’s total duty cycle is:  
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(3.3)  

These equations when substituted into Eqn. (3.1), result in an injected NP current 

expression that is more common within the literature [20][8], i.e.: 

….     BmediumC

xxx

smallA

xxx

smallNP IdIdkIdkI  210

2211 1221  (3.4)  

In this form, it is clear that a NP controller can only manipulate the parameters 1k  

and 2k to compensate for the medium vector’s NP current contribution, and in fact 

this is the primary mechanism that is employed by every reported NP control 

strategy. Note also that the effect of the small vectors on the NP voltage is negligible 

when 1k  and 2k  are set to 0.5, since this represents equal switching of the redundant 

vectors and thus equal NP current contribution in both directions. 

Equation (3.4) also shows that the NP current is highly dependent on the duty 

cycles of the vectors and the magnitude of the currents that are associated with these 

vectors. The following 2 subsections will elaborate further on these issues. 

3.2.1 Effect of Modulation Depth 

The modulation depth dictates the magnitude of the space vector duty cycles. It is 

desirable to have the small vectors’ duty cycles to be greater than the medium 

vector’s duty cycle regardless of the modulation depth to be able to maintain full 

control of the NP. However, in reality, as the modulation depth increases from 0.0 to 

0.5 to 1.0, the duty cycles vary as shown in Figure 3.3 for a 30° voltage phasor. As 

shown in [20], this figure can be obtained by vector decomposition of the target 

reference into its nearest three space vectors as the reference rotates. It shows that 

maximal control is achieved in the middle of the modulation range (0.5) and is lost as 

the modulation depth increases up to 1.0. 
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3.2.2 Effect of Load Power Factor Angle 

The effect of the load power factor angle on NP control has been thoroughly 

explored in the d-q frame in reference [79], and is best demonstrated by observing 

the phase currents at both low and high load power factor angles. 

Figure 3.4 shows the space vectors of sector 1 as illustrative. The figure shows 

two extreme conditions for the load power factor angle. At 0
 
degree load power 

factor angle, the currents that the small vectors command i.e. IA and IC are in phase 

with their voltage space vectors and hence their dot product is maximised. However, 

the current BI  used by the NP disturbing medium vector has its vector orthogonal to

MediumV , and thus there is no source for disturbance at this load power factor angle. 

However, the opposite effect occurs at a 90 degree load power factor angle where the 

small space vectors are orthogonal to the currents that they control (IA and IC) and the 

NP disturbing medium vector is in phase with its current vector. This analysis 

dSmall 1/2

dMedium

Duty

Modulation Depth
1

Max

 
Figure 3.3: Approximate Medium and Small vector duty cycle variation versus 

modulation depth [20]. 
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Figure 3.4: Maximisation of NP disturbance and loss of NP control as load power 

factor angle increases. 
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suggests that a 90 degree load power factor angle is a worst case condition for NP 

control, which is in fact the case [20]. 

A numerical assessment is conducted to demonstrate this effect in the time 

domain. Figure 3.5 shows the voltage references and phase currents for two load 

power factor angle conditions: 5 degree and 85 degree. The figure shows the voltage 

and current values for Sector 1 where the reference vector lies between 0 and 60 

degrees. The best view is when the medium vector is at its maximal duty cycle i.e. 30 

degrees. This view is provided in Figure 3.6. The simulations were conducted with a 

modulation depth of 0.7 which corresponds to triangle #2 in the SV plot (Figure 3.2). 

The medium vector is associated with the load current IB whereas the small vectors 

are associated with the load currents of the other phases, IA and IC.. For both load 

conditions, the vectors used are identical however, the magnitude of their associated 

currents differ. When the load power factor angle is close to 0 degrees, the load 

currents associated with the small vectors (IA and IC) are near their peaks, while the 

disturbing load current (IB) is at the zero crossing. Thus, regardless of the usage of 

the medium vector, IB is small and will not affect the NP voltage significantly. 

However, this is no longer true when the load power factor angle is near 90 degrees. 

The disturbing load current (IB) is maximal whereas the controllable currents are 

around half of their peak value. As a result, the small vectors’ NP current 

contributions are diminished when compared to the disturbance caused by the 

medium vector when operating at this high load power factor angle. 

3.2.3 Cumulative Effect 

These limitations have been calculated in the d-q frame and their result is shown 

in Figure 3.7 [20]. The NP voltage is fully controllable below a 0.55 modulation 

depth. Above this level, the controllability region is limited by a linear relationship 

with respect to the modulation depth and the system load power factor angle. 

3.3 Extending NP Controllability Beyond the Natural Limits 

Beyond the limits described in the Section 3.2, the only way to make the small 

vectors’ NP current contributions greater than the medium vector’s NP current 

contribution is for the modulator to reduce the medium vector’s NP current 

contribution. This can only be achieved by reducing its duty cycle, which is a 

fundamental change in the space vector selection principles, as will now be explored. 
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Figure 3.5: Time domain signals across Sector 1. Top: VSI Modulation references. 

Middle: 3-phase load current with a load p.f. angle of 5 degrees. Bottom: 3-phase 

load current with a load p.f. angle of 85 degrees. 
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Figure 3.6: Time domain signals across a switching cycle when reference angle is 30 

degrees. Top: VSI Modulation references. Middle: 3-phase load current with a load 

p.f. angle of 5 degrees. Bottom: 3-phase load current with a load p.f. angle of 85 

degrees. 
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Recall that the first aim of any modulator is to recreate the target output voltage 

by switching the available space vectors so that the average volt-second contribution 

from these vectors over each switching cycle matches the target reference. Hence if 

the medium vector usage is to be reduced, a NPC modulator has to use the large 

vectors to replicate the effect of the medium vector. This means 2 large vectors are 

required to recreate the volt-seconds of the medium vector. 

There are significant implications to this change in vector selection. Before these 

implications are explored, it should be noted that in principle there are 3 possible 

modes of operation for varying the usage of the medium vector, as follows: 

i. Least control: The duty cycle of the medium vector is not modified. 

ii. Full control: This is the extreme where no medium vector is used. The 

NPC modulator reverts to 2-level VSI type operation with the 2-level zero 

vector replaced by a 3-level small vector. 

iii. Medium control: This is the middle region between these two extremes 

where the shift between uncontrollability to controllability occurs by some 

degree of large vector substitution for the medium vectors. 

The implications of this change in vector selection for each mode of operation are: 

 NP ripple and drift : The reduction of the medium vector usage results in a 

reduced level of NP current injection. This reduces the magnitude of the 

steady-state NP voltage ripple and also slows the rate of change when NP 

 
Figure 3.7: Region of NP controllability (black). Figure obtained from [20]. 
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drift occurs. If the medium vector is totally eliminated, the NP voltage 

ripple will be negligible and no drift will occur. 

 Modulation harmonic distortion: This distortion is caused by 2 factors. 

The first factor is because the small vectors’ redundant state duration splits 

are not equal i.e. 5.0, 21 kk when operating up to maximal NP 

compensation. In fact the values of 1k and 2k will be at the extreme values 

of 0 and 1 as they reach the limit of their NP control influence. Although 

not directly analogous, this operation is similar to forcing 2-level SPWM 

to operate in the discontinuous PWM mode, which is well known to 

increase the WHTD of a 2-level modulated VSI. It is also against the 

guidelines of the harmonically superior Centered Space Vector PWM 

(CSVPWM) which identifies that the redundant duty cycle split should be 

equal for the best possible WTHD result [59][60].  

The second distortion factor is because the modulator no longer utilises 

the Nearest Three Vectors (NTV) as the medium vector usage reduces. 

This is because the reduction of the medium vector’s duty cycle has to be 

compensated by large vector usage in order to produce the same volt-

second average as required by the modulator. Hence, the modulator will 

now have to use 3-5 vectors which is against optimal harmonic production 

practices [61]. Also, the fact that it has to rely on the large vectors causes 

the harmonic performance to tend towards a 2-level VSI in any case. 

 Switching frequency: Since the modulator no longer operates according to 

the NTV principle, the number of switching transitions has to increase. 

Even without a reduction of the medium vector, the usage of 2 small 

vectors alone will cause variable frequency operation. Then, as the number 

and type of selected vectors change, this further increases the variability of 

the switching frequency, with an outcome that is highly dependent on the 

modulation strategy used. When the medium vector is totally eliminated, 

the modulation reverts back to a 2-level mode that uses a small vector 

rather than the zero vector, and this can cause a different switching 

frequency yet again. 

 Controllability: Controllability is only guaranteed when the small vector’s 

NP current injection can be greater than the medium vector’s contribution. 
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The process of loss of NP control for the ‘Least Control’ mode has been 

explained in Section 3.2. Controllability of the extreme ‘full control’ mode 

of operation is of course guaranteed because the medium vector is fully 

eliminated. In the middle mode of operation, the NP controllability of a 

particular modulation strategy is dependent on the method of duty cycle 

calculation, which may or may not keep the small vector’s NP current 

contribution greater than the medium vector’s contribution Hence, the 

conditions of controllability loss in this region is non-deterministic and 

highly dependent on the NP control strategy. 

 NP Control Speed: A modulation strategy may reduce the medium 

vector’s duty cycle by a small amount to ensure controllability or in other 

words, operate just at the edge of controllability. This may be due to the 

strategy’s requirement of maintaining good harmonic performance. 

On the other hand, a modulation strategy may arbitrarily reduce the 

medium vector usage by a large amount at the cost of operating closer to a 

2-level VSI. The result is a variation in the residue of the small vectors’ 

NP compensation minus the medium vector’s contribution. The magnitude 

of this residue is important in determining the speed or ability by which a 

modulation strategy can reduce an unexpected NP drift caused by a 

transient event. 

3.4 Vector Selection Analysis of Existing NP Control Strategies 

All reported NP control strategies can be analysed using the general principles of 

NP control identified above, and thus placed between the limits of ‘least control’ and 

‘full control’. In fact by analysing the vector selection and duty cycle calculation of 

these strategies, it can be shown that they only really differ in terms of: 

a) Number of small vectors controlled/utilised. As will shortly be illustrated, 

strategies may use only one small vector instead of 2 small vectors simply 

because of the way they are implemented. 

b) Different levels of reduction in the usage of the medium vector. 

c) Duty cycle calculation of the vectors. 

d) Methodology of calculating the duty cycle split of the redundant vectors, 1k  

and 2k . A large number of publications can be attributed to this issue. 
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Furthermore, for every duty cycle calculation method that has been proposed, 

there are sets of papers published that demonstrate the application of either a 

simple hysteresis controller, linear controllers or optimal calculation-based 

controllers to this method. 

The vector selection of a NP control strategy can be identified by either observing 

the simulation output of the converter and/or by understanding its mathematical 

implementation as presented within the strategy’s original publication. This is simple 

to achieve for SVM because SVM strategies will always explicitly specify the 

vectors to be chosen, their duty cycle calculation method, and also the sequence of 

the states of their vectors. Unfortunately, the same is not true for carrier-based 

strategies, since their published results generally do not give a good indication of 

their vector selection. As a result, simulations are required to identify these vector 

selection patterns. Within these simulations, controller gains (if they exist as part of 

the NP control strategy) can be set to either achieve maximal NP control or as 

specified by the publication’s  recommendations. 

To illustrate these concepts, the vector selections of the various modulation and 

NP control strategies identified in the literature review in Chapter 2 will now be 

explored. This exploration will firstly consider the ‘least control’ strategies that 

incorporate full medium vector usage, and will then show how additional NP control 

capability is gained by progressing towards a ‘full control’ strategy with essentially 

no medium vector usage. 

The most widely used NPC modulation strategy is conventional NTV SVM and 

its carrier-based approximate equivalent Phase Disposition PWM (PD or SPWM). 

An exact carrier-based equivalent can be obtained by implementing CSVPWM [61]. 

These strategies offer a ‘least control’ NP management capability. (Note that while 

simple SPWM also falls into this ‘least control’ category, only CSVPWM produces a 

modulation result that is directly equivalent to NTV SVM.)[60] 

To illustrate the vectors selected by NTV SVM, Figure 3.8 shows the SV plot 

when a reference vector is placed in subsector 2, where the NP disturbing medium 

vector, mediumV  is heavily used. The strategy chooses the nearest three vectors (NTV) 

around this reference vector, as shown in Table 3-2. Note how the sequence of states 

is arranged in such a manner as to minimise switching losses, shown only for the first 

half of the switching cycle since it is mirrored in the second half to minimise 



 3   FUNDAMENTALS OF ACTIVE NP CONTROL 

41 

switching transitions. Note also the abbreviations used for the vector types of:. sm1 

→ small 1, med → medium and lrg → large. 

From this vector selection, it is clear that NTV SVM, and its matching carrier 

strategies SPWM and CSVPWM, use the two redundant states (211 and 100) of 

small vector 1, which injects AI
 into the NP, but only one redundant state (110) of 

small vector 2, which injects CI . Hence these strategies only have one NP 

controllable small vector (small vector 1) which can have its redundant state 

alternatives varied by changing 1k . Thus NP control using these modulation strategies 

is a ‘least control’ strategy because: 

a) It becomes uncontrollable as the medium vector’s duty cycle becomes 

greater than small vector 1’s duty cycle and the medium vector NP 

injection cannot be fully compensated. 

b) the other small vector (small vector 2) is not controllable and also becomes 

Table 3-2: NTV SVM – (1 SV / 2 RS) / SPWM / CSVPWM 

State 1 2  3  4    
Vector Sm1 Med Sm2 Sm1    
Duty 11 smdk  

medd  
2smd   

1
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k     
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Figure 3.8: Space Vector diagram for Sector 1. The reference vector, VREF is within 

subsector 2. 
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an additional source of disturbance at high load power factor angles [8]. 

However, one benefit of this strategy is that it only uses 4 switching states. 

A clever remedy to this uncontrolled second small vector was published as 

Yamanaka’s NTV SVM [8] strategy. The strategy converts the uncontrollable second 

small vector into a controllable small vector by adding the redundant state of the 

second vector whenever possible, as shown in Table 3-3.  

Here, the state 221 from the second small vector was added and hence the second 

small vector and its current, CI , are now controllable through the parameter 2k . As a 

result, this strategy has an improved performance compared to the previously 

mentioned ‘least control’ strategy, since it only becomes uncontrollable as the 

medium vector’s duty cycle becomes greater than both small vectors’ duty cycles. 

This increases its NP controllable region to the middle of the modulation range. 

However, it does create a variable switching frequency as discussed in Section 3.3, 

since subsector 2 has 5 switching states whereas subsectors 1 and 3 have only 4 

switching states, as shown in Figure 3.8. 

To move beyond the natural limitations of these two NP control alternatives, the 

medium vector’s duty cycle now has to be reduced. As this happens, the large vector 

duty cycles must increase in order to satisfy the modulator volt-second production 

requirement. The strategy proposed by Ustuntepe [30] is a progression of 

Yamanaka’s approach that achieves this target, by calculating the controllability 

condition i.e. if the small vector’s NP current injection is smaller than the medium 

vector’s NP current injection, the medium vector’s duty cycle is reallocated to the 

large vectors. The vector selection process is shown in Table 3-4.  

The difference between Table 3-3 and Table 3-4 is the additional 2 states for the 

large vectors (200 and 220). If the load conditions dictates a controllable situation, 

this strategy does not require the large vectors ( 0, 21 lrglrg dd ) and it reverts back to 

Table 3-3: NTV SVM – (2 SV / 4 RS) 

State 1 2  3  4 5   
Vector Sm2 Sm1 Med Sm2 Sm1   
Duty 22 smdk

 11 smdk
 medd   

2

21

smd

k   

1

11

smd

k    

Phase 
output 

221 211 210 110 100   

NP 
current 

CI  AI  
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CI  
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Yamanaka’s vector selection i.e. Table 3-3. But Table 3-4 also shows that this 

modulation strategy is no longer NTV and hence the inverter harmonic output will 

degrade, particularly during uncontrollable NP conditions. It also shows that the 

strategy has a high number of switching cycles and will most likely have a highly 

variable switching frequency, particularly as load conditions vary. 

A significant feature of this strategy is that its calculation method ONLY reduces 

the medium vector’s duty cycle by the minimum amount required to maintain 

controllability. In other words, it tries to maximise its usage of the medium vector 

and minimise its dependence on the large vectors. Hence, it tries its best to produce a 

good harmonic output and yet be fully controllable at the same time. 

Another well known approach that reduces the medium vector’s duty is the 

Nearest Three Virtual Vectors (NTVV) strategy [67]. Unlike Ustuntepe’s strategy, 

this approach is based on virtual vectors that produce an on-average zero NP current, 

As a result, its medium vector duty cycle reduction is pre-determined. Its SV diagram 

is shown in Figure 3.9, where two virtual vectors can be seen that are created as 

 

0.5 (211+100)

0.5 (221+110)

220

0.3333(100+210+221)

200

222

111

000

VVirtual Small 1

VVirtual Small 2

VZero

VVirtual Medium

VLarge 1

VLarge 2

VREF

2

1

3

4

5

 
Figure 3.9: SVM for Nearest Three Virtual Vector (NTVV) for Sector 1. 

Table 3-4: NTV SVM – (2 SV / 4 RS) – Reduced Medium Vector 

State 1 2  3  4 5 6  7 
Vector Sm1 Sm2 Lrg2 Med Lrg1 Sm1 Sm2 

Duty 11 smdk
 22 smdk

 2lrgd  
medd  1lrgd   
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smd

k

 

 

2

21

smd

k

 
Phase 
output 

211 221 220 210 200 100 110 

NP 
current 

AI  CI  0 
BI  0 

AI  
CI  

 



3.4   VECTOR SELECTION ANALYSIS OF EXISTING NP CONTROL STRATEGIES 

44 

combinations of other real space vectors. For example, the virtual medium vector is a 

combination of 33% of the following switching states 100, 210 and 221 which 

corresponds to NP currents AI , BI  and CI . The equal sum of the three phase current  

injection into the NP node sums to a zero NP overall current injection. Similarly, the 

virtual small vectors are equal contributions of their redundant states, thus equal and 

opposite NP currents are injected into the NP node, again resulting in a zero NP 

current overall.The vectors selected by this strategy are shown Table 3-5. 

Unfortunately, the introduction of the virtual vectors cause the SV map to change. 

The virtual medium vector is shorter and causes the reference vector to be placed in 

subsector 1 which is not the worst case operating mode for NTVV. (Subsector 2 is 

the worst operating mode because it switches through both the small vectors (100 

and 221), the medium (210) and large vectors (220 and 200) simultaneously.) Table 

3-5 shows that the vector selection in subsector 1 no longer abides by the NTV rule, 

hence its harmonic performance must suffer. Furthermore, unlike previous strategies, 

this strategy’s NP control methodology is not apparent by if one observes its space 

vector selection and duty calculation. It varies the sinusoidal reference of one of the 

phase legs which in turn varies the duty cycles of small vector 2, small vector 1 and 

medium vector simultaneously [69]. 

The notable feature of this strategy is that it maintains constant switching 

frequency with only 5 states per switching cycle. However, the strategy’s 

predetermined medium vector duty cycle reduction is insensitive to load conditions 

and does not focus on maximising harmonic performance. Hence it would be 

anticipated that it will have a degraded harmonic performance. One variant of this 

strategy is known as Optimised NTVV (ONTVV), which tries to achieve better 

harmonic performance by varying the amount that the medium vector duty cycle is 

reduced. But this strategy requires knowledge of the load current power factor angle. 

Another strategy that reduces the medium vector duty cycle is Dipolar PWM [39]. 

Table 3-5: Medium Vector Reduction 

State 1 2  3  4 5   
Vector Sm2 Sm1 Med Lrg1 Sm1   
Duty 221d

 211d  210d  200d  
100d    

Phase 
output 

221 211 210 200 100   

NP 
current 

CI  AI  
BI  0 

AI    
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Table 3-6 presents the space vectors selected by this modulation strategy. Immediate 

observation suggests that this strategy is very similar to that of Ustuntepe’s, but only 

one redundant state from each small vector is used. In principle, Dipolar PWM 

assumes that one of the small vectors is more significant than the other and that a 

common-mode addition can control both the redundant states of both small vectors. 

But in practice, the actual NP control mechanism exercised by Dipolar PWM, either 

by changing the distance between the two reference waveforms or by adding a zero-

sequence offset, serves to only change the distribution of duty cycle between 
2smalld , 

2arg eld , mediumd , 
1arg eld  and 

1smalld .  

In fact this analysis highlights that Dipolar PWM does not have a clear NP control 

methodology, and also highlights a major limitation of carrier-based design whereby 

mistakes in the analysis of an NP control strategy’s ability to achieve a target 

outcome can easily occur [14]. This is particularly important for hybrid NP control 

strategies, where the entire strategy can be compromised if one particular sub-

strategy is ineffective. Note also that all medium vector duty cycle reduction 

techniques achieve additional NP controllability at the expense of higher switching 

frequency, poor harmonic production or both. 

Finally, Table 3-7 shows the vector selection for the extreme fully controllable NP 

strategy i.e. medium vector elimination. Figure 3.10 shows its corresponding SV 

map. Essentially, this strategy tries to implement NTV without using the medium 

vector. Its notable features are: 

a) It is heavily dependent on the use of large vectors, leading to a 2-level 

converter type harmonic output performance. 

b) Phase leg B (in sector 1) experiences a full DC bus switching transition 

between states 200 and 220. This loses a major benefit of a multilevel 

converter, which is the dynamic voltage blocking capability and half DC 

bus voltage protection of the semiconductor switches of the converter. 

Table 3-6: Dipolar PWM 

State 1 2  3  4 5 6  7 
Vector Zero Sm2 Lrg2 Med Lrg1 Sm1 Zero 

Duty 

zerod

x)1( 
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c) The strategy has a constant switching frequency with 5 switching 

transitions per switching cycle as opposed to 3 transitions for the ‘least 

control’ strategy. 

Hence this strategy also has some significant disadvantages.  

3.5 Strategies to be Compared in Chapter 4 

Using the qualitative analysis principles presented in this chapter, the following 

NP control strategies can be identified as sub-optimal, and will now be eliminated 

from further comparison. They are: 

a) Ustuntepe (SVM – 2 Small Vector / 4 Redundant States with Medium 

Vector Reduction). Although it should be the best compromise strategy for 

the NPC converter, it will not be considered further because the high 

number of switching transitions involved with this approach is 

unacceptable for high power applications. 
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Figure 3.10: SV diagram for Medium vector elimination for Sector 1. 

Table 3-7: Medium Vector Elimination 

State 1 2  3  4    
Vector Sm1 Lrg1 Lrg2 Sm1    

Duty 11 smdk
 1lrgd  2lrgd   

1

11

smd

k     

Phase 
output 

211 200 220 100    

NP 
current 
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b) Dipolar PWM - This strategy will not be considered for future comparison 

because of its uncertain and unstrategic nature in controlling the NP 

current and voltage. It is also harmonically inferior to other strategies. 

c) Hybrid Strategies – these strategies change their operation between 

alternative NP control approaches depending on modulation and load 

conditions. Hence their performance can be identified by considering the 

originating strategies that are combined in the Hybrid formulation. 

d) Medium Vector Elimination – The loss of the dynamic voltage blocking 

capability is considered to be a major disadvantage for these strategies, 

especially in high power applications. Secondly, the performance of this 

extreme strategy is similar to an ideal 2-level converter which is already 

well known in the literature. 

 

Table 3-8 identifies the strategies that will therefore be quantitatively investigated 

in the next chapter. The comparison will attempt to explore the dynamic NP control 

performance, maximum steady-state NP ripple and steady-state harmonic output 

distortion. 

3.6 Summary 

This chapter has qualitatively investigated the fundamentals of NP control. It has 

shown how the intrinsic limits of NP control are due to the small vectors being 

unable to compensate for the medium vector NP current injection. These limits occur 

at higher modulation depths and low load power factor angles. In order to maintain 

Table 3-8: Strategies to be compared. 

Strategy Group Duty Calculation 1k  & 2k calculation Label in figures 

NTV SVM – 1SV/2RS / 

CSVPWM / SPWM 

SPWM  

Proportional SPWM+P 

Song’s analytical zero-

offset calculation 
SPWM+Song 

SVM / CSVPWM  Proportional CSVPWM+P 

NTV SVM – 2SV/4RS Yamanaka’s Yamanaka’s Yamanaka SVM 

SVM – Medium Vector 

Reduction 

NTVV  
Zaragoza’s optimal 

calculation 
NTVV 

ONTVV  
Second order controller ( 

PI was used) 
ONTVV 
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controllability beyond these limits, the medium vector’s usage then has to be reduced 

and replaced with large vectors. As a result, the pursuit of a greater range NP control 

for the NPC converter pushes the converter from ideal 3-level modulation towards 

performing closer to a 2-level converter. There is a middle ground where the medium 

vector is reduced just enough to maintain controllability, however the analysis of 

existing strategies (SVM – 2SV/4RS with Medium Vector Reduction) has shown that 

this advantage is achieved at the cost of a high number of additional switching 

transitions and as a result is not feasible for high power applications. 

Finally, established NP control strategies were analysed by observing their vector 

selection and arranged according to their expected NP control performance. A 

number of strategies were then eliminated from further consideration because of their 

identified disadvantages. This qualitative analysis however cannot quantify the 

tradeoff that would be observed if one was to consider the Medium Vector Reduction 

strategy compared to the conventional NTV SVM be it 1 or 2 Small Space Vector 

control. As a result, a quantitative simulation comparison is now required, and will 

be presented in the next chapter.  
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4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES 

Chapter 3 has shown that the benefit of improved dynamic NP control performance 

and hence lower NP ripple comes with the drawbacks of increased switching 

frequency and a breakaway from the harmonically-optimal NTV vector selection 

principle. This makes a qualitative assessment of these control strategies difficult 

because the harmonic distortion produced by a strategy depends simultaneously on 

both NP ripple and space vector (and redundant state) selection. In other words, a 

strategy that strives to minimise its NP ripple may choose space vectors that may 

produce high harmonic output distortion. Besides the issue of harmonic quality, the 

qualitative assessment also does not indicate the effectiveness or magnitude of the 

increase in dynamic NP control performance for a given change in space vector 

selection. As a result, a quantitative simulation-based assessment is required to assess 

both the effectiveness of changes in space vector selection and the tradeoff in terms 

of harmonic distortions. 

This chapter will devise and execute such a quantitative assessment of the 

strategies presented in Table 3-8 in order to explore their harmonic performance, NP 

ripple magnitude and dynamic NP control performance.  

4.1 Methodology 

Dynamic NP control performance of a NPC converter is affected by its DC link 

capacitance size, load magnitude and angle, modulation depth, and finally the 

modulation strategy’s space vector selection. Besides affecting the dynamic NP 

control performance of a converter, a strategy’s space vector selection can also affect 

the switching frequency of the converter, the NP ripple observed, and the harmonic 

distortion produced at its line-to-line output voltage. 

This quantitative assessment will simulate a NPC converter with the parameters 

listed in Table 4-1. It will then manipulate the factors that affect dynamic NP control 

performance by: 

 Varying the modulation depth continuously from 0.00 to 1.15. 

 Setting the load power factor angle to the 3 points: 1º, 45 º and 85 º. 

 Repeating the assessment at 2 DC link capacitance levels: 4200 and 840 

µF. The 2 different capacitance levels are intended to highlight the 

dependency of harmonic output distortion on both space vector selection 

and NP ripple. 
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The simulation is used to observe the following modes of converter operation: 

 Steady-state mode will measure the maximum NP ripple produced by a 

strategy, and the resulting harmonic distortion assessed using a NWTHD 

calculation method (defined in the next section).  

 Transient mode will measure the time it takes a strategy to reduce a NP 

unbalance from an initial perturbation level to a minimum acceptable 

deviation level (e.g. 20% to 5% and 25% to 6% of half the DC bus voltage, 

DCV
 for 4200 and 840 µF DC link capacitance, respectively).  

Each strategy produces a different switching frequency, since the switching 

frequency is dependent firstly on the strategy’s space vector selection, and secondly, 

on whether the converter is exercising maximum NP control, which may cause pulse 

dropping or Discontinuous PWM. For example, the most conventional NTV-based 

strategy will always use 3 vectors and switch through 4 switching states, with 2 of 

these states belonging to a particular small space vector. However, when maximal 

NP control is required, especially in regions beyond the natural NP control limit as 

mentioned in Section 3.2, one of these 2 redundant states will be fully used and 

hence the NTV-strategy will use only 3 switching states. This drop in switching 

frequency must be accounted for. In this thesis the assessment process varies the 

switching frequency for each strategy to guarantee that an equal number of switching 

transitions also occur in the regions where pulse dropping doesn’t occur (i.e. between 

0% to 70% of the modulation depth). These switching frequencies are listed in Table 

Table 4-1: NPC converter parameters. 

Parameter Values 

Nominal DC link 360 V 

Capacitor size 
4200 µF (Case A) 

840 µF (Case B) 

Load magnitude 17.76 

Load Resistance 
Dependent on load power factor angle of simulation 

Load Inductance 

Fundamental Frequency (fo) 50 

Table 4-2: Switching frequency of the various strategies. 

Switching frequency of NPC (fs) Value (Hz) 

CSVPWM and SPWM variants 4000 

NTVV variants 3000 

Yamanaka SVM 2000 & 3000 
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4-2.  

Inherently, this comparison is suited to strategies that produce a fixed number of 

switching transitions per switching cycle. However, this comparison includes the 

variable switching frequency strategy: Yamanaka SVM. This strategy produces a 

high number of switching transitions at low modulation depths compared to other 

strategies. As a result, two simulation traces are shown for this strategy for the low 

and high modulation depth ranges. 

In order to compare these strategies to solutions that are usually used in industry, 

two reference strategies are included for comparison with the state of the art. They 

are used for NWTHD harmonic distortion plots but not for the NP voltage deviation 

as these reference cases do not have any NP deviation as such. They are the ideal 2-

level and 3-level CSVPWM strategies. The latter case has its NP voltage fixed at 0V 

to ensure that the only distortion mechanism is the vector selection process. These 

reference cases are known to produce minimal harmonic distortion for 2-level and 3-

level converters in ideal cases. These are labelled within the figures as ‘Ideal 2L 

CSVPWM’ and ‘Ideal 3L CSVPWM’. 

4.2 Performance Metrics 

4.2.1 Steady-state NP Ripple 

The steady-state NP ripple (defined in this thesis as peak value) is measured in 

order to determine the effect NP ripple has on the converter’s output harmonics. It is 

also measured to highlight strategies that produce high NP voltage ripple, since this 

may be unacceptable for applications with limited voltage headroom where the 

likelihood of a switch overvoltage and thus converter damage is increased. Voltages 

are measured in absolute terms, but can be readily converted to per-unit quantities by 

scaling them by half of the DC link voltage, (i.e. 180V for this simulation 

comparison). 

4.2.2 Measure of Output Distortion - NWTHD 

Harmonic distortion is measured as Normalised Weighted Total Harmonic 

Distortion (NWTHD). The calculation depends on the spectrum of the switched 

output line-to-line voltage of the converter, according to [80]: 
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where 1V  is the fundamental harmonic magnitude, M  is the modulation depth, and nV
 

is the magnitude of the n
th

 harmonic of the fundamental.  

4.2.3 NP Dynamic Control Performance 

The NP control performance of the various NP control strategies is compared 

according to the time it takes to reduce the NP unbalance from an initial level of NP 

voltage deviation to a target minimum acceptable level. For the large DC link 

capacitance values, these levels are 20% and 5% of half the DC bus voltage, DCV , 

while for the small DC link capacitance value these levels are 25% and 6% of half 

the DC bus voltage, DCV . Different initial conditions are used in order to ensure that 

the time required to complete a simulation run is kept to manageable levels, since the 

time constants for the large DC link capacitance are an order of magnitude slower 

than for the small DC link capacitance case. 

4.3 Simulation System 

Details of the simulation system used for this investigation are presented in 

Chapter 8. 
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4.4 Investigation Results 

4.4.1 High DC link Capacitance Case (4200µF) 

4.4.1.1 Steady-State Operating Mode 

Figure 4.1, Figure 4.2, and Figure 4.3 show how an increase in the load power 

factor angle causes an increase in the NP ripple of NTV-based strategies i.e. SPWM, 

CSVPWM (equivalent to NTV SVM), and Yamanaka. The increase generally occurs 

above a 0.6 modulation depth as the limits of NP control are reached. A comparison 

of the magnitude of NP ripple between Figure 4.2, and Figure 4.3 shows the increase 

in load power factor angle causes greater NP current disturbance and hence greater 

NP deviation. 

In terms of redundant state calculation methods, the SPWM+Song method seems 

to maintain the lowest NP ripple, unlike the simple P linear controller. Figure 4.2 

highlights this very well, showing how the SPWM+Song strategy experiences a 

dramatic increase in NP ripple as it reaches its NP control limits.  

Strategies that reduce the medium vector duty cycle usage i.e. NTVV and 

ONTVV show excellent control of the NP ripple, even with greater power factor load 

power factor angles. This is because the reduced medium vector usage leads to a 

lower NP current disturbance injection. 

Figure 4.4, Figure 4.5, and Figure 4.6 show the measured harmonic output 

distortion of the various strategies for all 3 load power factor angles.  

Overall, the results show that NTV-based strategies produce low harmonic 

distortion but this result degrades as the load’s power factor angle increases. 

Interestingly, the medium vector duty cycle reducing strategies i.e. NTVV and 

ONTVV produce greater harmonic distortions to the point of surpassing the 

reference ideal 2-level CSVPWM converter. This is despite the fact that Figure 4.2 

and Figure 4.3 demonstrate that NTVV and ONTVV produce the lowest NP ripple. 

This asserts the importance of considering the THD produced by both the modulation 

process and the NP deviation rather than either performance criteria alone. 

NTV-based strategies are not exempt from this effect. The NTV-based strategies 

favour one redundant state more than another when NP control limits are reached.   
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Figure 4.1: Maximum NP deviation versus Modulation depth for load power factor 

angle of 1 degree during steady state operation. 
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Figure 4.2: Maximum NP deviation versus Modulation depth for load power factor 

angle of 45 degree during steady state operation. 
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This causes them to operate in Discontinuous PWM mode. Note that the maximum 

NP ripple experienced in Figure 4.2 is only 0.5% (1/180V) of the DC link. Hence, 

some of the distortion must be caused by the NTV-based strategies favouring one 

redundant state over another. 

NTVV and ONTVV’s dramatic rise in harmonic distortion from the medium to 

high modulation depths is due to large reductions in the usage of the medium vector 

duty cycle and its greater reliance on the large vectors. All 3 figures show that 

NTVV produces the same harmonic output regardless of the load power factor angle 

whereas ONTVV produce lower harmonic outputs at lower power factor angles. 

ONTVV achieves this by increasing its medium vector duty cycle usage for these 

power factor conditions.  

The results for unity power factor (1
o
 load angle) indicate that NTVV produces 

high levels of harmonic distortion at low modulation depth ranges. This is due to the 

fact that the optimal NP controller for NTVV is designed for reactive loads. To 

illustrate, the ‘NTVV w/o controller’ result is presented to show how this strategy 

produces harmonic distortion levels similar to other load power factor angles at low 

modulation depths when the optimal calculation NP controller is disabled.  
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Figure 4.3: Maximum NP deviation versus Modulation depth for load power factor 

angle of 85 degree during steady state operation.. 
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Figure 4.4: NWTHD versus Modulation depth for load p.f. angle of 1 degree. 
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Figure 4.5: NWTHD versus Modulation depth for load p.f. angle of 45 degree. 
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The figures also indicate the difference that centering of the redundant states i.e. 

CSVPWM, has on producing better quality harmonic outputs versus non-centering 

i.e. SPWM. 

Although Yamanaka’s SVM has a variable switching frequency and uses an extra 

redundant state, the results show it has good harmonic performance similar to 3-level 

CSVPWM. This is because it follows the NTV principle of duty cycle calculation. 

4.4.1.2 Transient Operating Mode 

Figure 4.7, Figure 4.8, and Figure 4.9 show the dynamic NP control performance 

of the various strategies. The test measures the time taken for the strategies to reduce 

a 20% NP voltage unbalance to under 5%. 

Figure 4.7 and Figure 4.8 shows that NTV-based strategies are the fastest at 

reducing the unbalance. This is because these strategies have a greater small vector 

duty cycle when compared to the Virtual Vector strategies. All the NTV-based 

strategies achieve the same level of performance because they all have the same 

small vector duty cycles. This duty cycle is almost always allocated to only one of 

the redundant states to maximise NP control.  
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Figure 4.6: NWTHD versus Modulation depth for load p.f, angle of 85 degrees. 
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Figure 4.7: NP control performance versus Modulation depth for load power factor 

angle of 1 degree. 
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Figure 4.8: NP control performance versus Modulation depth for load power factor 

angle of 45 degree. 
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Figure 4.8 shows this difference where the optimal (SPWM+Song) calculation 

method is slower than linear controller. 

NTVV shows that its dynamic NP control performance increases as the load’s 

power factor angle increases. However, the slow result in Figure 4.7 for the NTVV 

strategy is again a result of the NP controller response breaking down under resistive 

load conditions. However, Figure 4.9 shows that it is the fastest strategy for reactive 

loads. The reason behind the slower performance of NTV-based strategies is because 

the small vectors have to compensate for the greater NP current disturbance injection 

caused by the medium vector for highly reactive loads. On the other hand, NTVV 

has a low utilisation of the medium vector hence lowering the NP current disturbance 

injected and relying less on the small vectors to compensate for it. 

ONTVV shows that its NP control performance degrades as the load power factor 

angle increases. This is because the linear NP controller for ONTVV has a weak 

control response implemented using only a static limiter. Note that ONTVV does not 

have an optimal NP calculation method. 

A comparison between Figure 4.7 and Figure 4.8 against Figure 4.9 shows that the 

NTV-based strategies with 1 controllable small space vector (with the exception of 
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Figure 4.9: NP control performance versus Modulation depth for load power factor 

angle of 85 degree. 
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SPWM+Song) have the same dynamic NP control performance, however at a slower 

rate, at 85 degrees load power factor angle. This is because the other small vector is 

now acting as a source of disturbance. 

Yamanaka’s SVM with its ability to control the 2 small vectors is unaffected as it 

produces a control performance that is similar to that of NTV-based strategies when 

operating at lower power factor loads. 

4.4.2 Low DC link Capacitance Case (840µF) 

This section reduces the capacitance by a factor of 5 to assess the impact the NP 

ripple has on THD output levels and dynamic NP control performance. 

4.4.2.1 Steady-State Operating Mode 

Figure 4.10, Figure 4.11, and Figure 4.12 show the NP ripple produced by the 

various strategies for the 3 load power factor angles. Note that the axis scales have 

been increased to reflect the greater NP ripple. Next, Figure 4.13, Figure 4.14, and 

Figure 4.15 show the harmonic output quality of the various strategies for the 3 load 

power factor angles. 

The figures show that the NP ripple of the various strategies occupy the same 

relative positions when compared to the high DC link capacitor case, but are scaled 

by a factor of 5. This is as expected since their NP current injections have not 

changed because their load phase currents are matched for both scenarios. All that 

has changed is that the capacitance has been reduced by a factor of 5. 

Figure 4.13 to Figure 4.15 show results that scale quite differently. The results 

show that NTV-based strategies are not significantly different with resistive loads. 

However, as the loads become more reactive, the increased NP ripple causes THD 

levels to move closer to 2-level converters. As a result, any NPC converter built with 

NTV-based modulation strategies must have adequate DC link capacitance. Figure 

4.15 shows that most NTV-based strategies with 1 small vector control show very 

similar THD curves because they produce Discontinuous PWM patterns. This is 

because they are at their maximum NP control capabilities.  

On the other hand, NTVV and ONTVV do not show any change in their THD 

performance as their NP ripple has not changed dramatically. 
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Figure 4.10: Maximum NP deviation versus Modulation depth for load power 

factor angle of 1 degree during steady state operation. 
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Figure 4.11: Maximum NP deviation versus Modulation depth for load power 

factor angle of 45 degree during steady state operation. 
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Figure 4.12: Maximum NP deviation versus Modulation depth for load power factor 

angle of 85 degree during steady state operation. 
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Figure 4.13: NWTHD versus Modulation depth for load power factor angle of 1 

degree. 
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Figure 4.14: NWTHD versus Modulation depth for load power factor angle of 45 

degree. 
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Figure 4.15: NWTHD versus Modulation depth for load power factor angle of 85 

degrees. 
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Figure 4.16: NP control performance versus Modulation depth for load power factor 

angle of 1 degree. 
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Figure 4.17: NP control performance versus Modulation depth for load power factor 

angle of 45 degree. 
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4.4.2.2 Transient Operating Mode 

Figure 4.16, Figure 4.17, and Figure 4.18 show the dynamic NP control 

performance of the various strategies. The test measures the time taken for the 

strategies to reduce a 25% NP voltage unbalance to under 6%. 

As with the case of steady-state results, the relative performance of the various 

strategies are the same. Note however the axis scales have changed. The times to 

reduce the unbalance are much less due to the lower capacitance. 

4.5 Active Strategy Recommendation 

As expected, the NTV-based SVM or its equivalent CSVPWM with a 

Proportional controller (CSVPWM+P) gives the best carrier-based PWM harmonic 

and high overall NP control performance. It is adequate for most applications. 

Another benefit of SPWM/CSVPWM+P is that it does not require current 

measurement. However the power flow direction is required in order to set the 

correct polarity of the NP controller gains. 
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Figure 4.18: NP control performance versus Modulation depth for load power factor 

angle of 85 degree. 
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A further increase in NP control performance at high load power factor angles is 

attainable by using the NTV-based 2 small vector control (Yamanaka’s SVM) 

however the variable switching frequency nature of the strategy and the requirement 

to program a Space Vector Modulator (SVM) must be taken into account.  

While the Virtual Vectors variants (i.e. NTVV and ONTVV) control the NP 

voltage quite well, the harmonic performance of these strategies are worse than a 2-

level converter. Hence 2-level operation of the 3-level NPC converter utilising 2-

level CSVPWM is preferable under these conditions when compared to (O)NTVV.  

Finally, these results identify that the NTV-based strategies i.e. NTV SVM 

1SV/2RS and NTV SVM 2SV/4RS, achieve a better performance than any other 

strategy provided that sufficient DC link capacitance is used to ensure reduction of 

the harmonic distortion that is caused by both the active NP control mechanism and 

the NP ripple mechanism. 

4.6  Summary 

This chapter has analysed the performance of various NPC converter modulation 

strategies and demonstrated the tradeoff between increased harmonics, switching 

losses and implementation complexity when further NP control performance is 

demanded.  

Simulation results show that NTV-based strategies, especially conventional SVM 

/ CSVPWM with a P controller, are the best for most applications. They also confirm 

that the Yamanaka SVM strategy does not provide significant additional 

performance at the 1 and 45 degree load power factor angle conditions. However, the 

result of its extra implementation complexity is beneficial at the extreme load power 

factor angle of 90 degrees. As a result, applications that work in this region will 

benefit from using this strategy.  

Regardless of the strategy chosen, the THD and transient control response have 

shown that adequate DC link capacitance must be provided in order to ensure 

reduction of the harmonic distortion that is caused by both the active NP control and 

the NP ripple mechanisms.  

NTVV produces harmonic levels greater than a 2-level converter in the regions 

where most of the converters would run. It also has shown that ONTVV performs 

similarly to NTVV as the load power factor angle increases. However, neither 

strategy compares well to the NTV-based variants.  
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5 NATURAL BALANCING OF A NPC PHASE LEG 

The previous two chapters have explored various strategies for active manipulation 

of the modulation of a NPC converter to control the NP voltage, comparing their 

performance in terms of harmonic distortion caused by NP fluctuation, non-optimal 

space vector utilisation, and speed of unbalance recovery. An alternative approach to 

control the NP voltage of a NPC converter is ‘natural balancing’, which can 

potentially keep the NP voltage at its ideal (zero) value without requiring 

modifications to the modulation switching patterns. However, natural balancing is 

not yet fully understood [32], and its static and dynamic NP voltage control 

capability has never been compared to the more common ‘active’ methods.  

This chapter fully explores the fundamental principles of natural balancing of a 

NPC converter. It begins by developing a mathematical model of NP voltage 

variation as a function of the converter switching processes, and then uses harmonic 

substitution of the modulation signals to resolve non-linearities within the model. 

This results in a simple first-order differential equation that describes the natural 

balancing response very accurately. The outcome of this modelling then allows the 

use of natural balancing to be evaluated as a possible substitute for (or at least to 

enhance) the existing better established ‘active’ NP voltage control strategies. 

5.1 NP Voltage Variation with NPC Phase Leg Switching Commands 

Figure 5.1 shows the structure of a NPC half-bridge phase-leg. As identified in 

VDC
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S2

S1

S2

Ct

Cb

iNP

VDC

VNP

ZL

Vn

Io
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Figure 5.1: Topology for a NPC phase leg. nV  is connected to NPV  to form the half-

bridge topology. 
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previous chapters, the converter DC bus supply is split using two series connected 

DC capacitors that share the DC bus voltage. The mid-point of these capacitors is the 

converter Neutral Point (NP) voltage, labelled as  tVNP in Figure 5.1. The NPC half-

bridge phase leg has 4 switches, and 2 diodes that connect to the Neutral Point. These 

diodes provide voltage blocking to ensure that the switches do not experience 

excessive voltage stresses that could lead to their failure. 

For the analysis in this chapter, the phase leg output voltage  tVo  feeds a load 

impedance LZ  that has its return connection tied to  tVNP  to complete the current 

return path. Note that this connection will be rearranged in Chapter 6 to consider 

more general three phase NPC structures. 

To begin modelling the natural NP voltage balancing process, a relationship 

between the capacitor voltages    tVtV CbCt ,  and neutral point current,  tI NP  is 

required. Figure 5.1 identifies that the neutral point current flowing out of the middle 

point of the DC  bus capacitors can be determined using KCL, as follows:  

                        tItItI CbCtNP   (5.1)  

The capacitor currents are related to their voltages by the following equations: 

                    
dt

dV
CtI Ct

tCt   
(5.2)  

                    
dt

dV
CtI Cb

bCb   
(5.3)  

These voltages in turn can be related using Kirchoff’s voltage law around the mesh 

containing the DC bus voltage and the top and bottom capacitor voltages, resulting 

in: 

                      tVVtV NPDCCt   (5.4)  

                      tVVtV NPDCCb   (5.5)  

Substituting Eqns. (5.2) to (5.5) into Eqn. (5.1) identifies that the time-derivative 

of the NP voltage directly drives the NP current according to: 

                          tVV
dt

d
CtVV

dt

d
CtI NPDCbNPDCtNP   

(5.6)  

Equation (5.6) can now be simplified by assuming that the DC bus voltage is 

constant and that the two DC bus capacitors have equal capacitance, i.e. CCC bt 

, to give:  
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dt

dV
C

dt

dV
CCtI NPNP

btNP 2  
(5.7)  

Using Kirchoff’s current law again on the right hand side of the NP node, the NP 

current  tI NP  
must always match the outgoing current flowing through the clamping 

diodes, minus the load current returning from the external load connection, i.e. 

 tIo . Now, if the phase leg switching device states are defined by  tS1  and  tS2 , 

where  tSx  can only have two states; either ON or OFF denoted by the number 1 

and 0 respectively, current can only flow through the clamping diodes when 

  01 tS and   12 tS . This is because when     121  tStS , the load current is 

supplied from the upper positive DC bus, when     021  tStS  the load current is 

supplied from the lower negative DC bus, and the switch combination 

    0,1 21  tStS creates an open circuit output state that is not allowed for a NPC 

converter. 

With this logic definition, the NP current can be characterised as a function of 

switching signals and the load current as:  

                   
        

      tItStS

tItItStStI

o

ooNP





1

)(

12

12
 

(5.8)  

Substituting Eqn. (5.8) into Eqn. (5.7) results in a differential equation that relates 

the NP voltage to the converter output load current and the phase leg switching states 

according to:  

                         tItStS
Cdt

dV
o

NP  1
2

1
12

 
(5.9)  

In turn, the phase leg output current depends on the voltage applied across the R-L 

load (note that any type of load impedance is applicable here, as will be used later 

with a Balance Boost impedance load when the model is in its harmonic form). 

Hence applying Ohm’s law:  

                            tVtI
dt

d
LRtVtI

dt

d
LRtV NPoLLnoLLo 

















  

(5.10)  

where the load voltage point  tVn  is identified as a generalised node voltage for 

later use in Chapter 6, and as the Neutral Point voltage in this chapter to reflect the 

way in which the load current is returned to the phase leg, i.e.:  

                      tVtV NPn   (5.11)  
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Rearranging the second form of Eqn. (5.10) for the load current results in: 

                         tVtV

dt

d
LR

tI NPo

LL

o 












1

 
(5.12)  

Finally, substituting Eqn. (5.12) into Eqn. (5.9) produces a differential equation 

for the NP voltage that only includes the switched phase leg output voltage  tVo  as 

an independent variable, viz:  

                      tVtV

dt

d
LR

tStS
Cdt

dV
NPo

LL

NP 












1

1
2

1
12  

(5.13)  

The three possible values of the phase leg output voltage  tVo  with respect to the 

DC bus are given by Table 5-1 below. Using this table, the phase leg voltage can be 

expressed mathematically as 

                              tVtStSVtStStV NPDCo 1221 1)(   (5.14)  

where  tS1  and  tS2  are the switching states of the four phase leg switches as 

defined earlier. Note that DCV  represents half the DC bus voltage in the usual way. 

Substituting the phase leg output voltage expression (5.14) into Eqn. (5.13) 

creates a differential equation that defines the change in the NP voltage of the NPC 

converter solely as a function of the phase leg switch modulation signals.  

    
 

              tVtVtStSVtStS

dtdLR
tStS

Cdt

dV

NPNPDC

LL

NP








1221

12

1

1
1

2

1

 

(5.15)  

Eqn. (5.15) is non-linear, since it includes a multiplication of the phase leg 

switching signals and the derivative R-L load term. However previous work that has 

analysed the natural balancing characteristics of a Flying Capacitor converter 

resolved this complexity by replacing the time domain switching functions with 

Table 5-1: Phase leg output voltages and associated switching commands 

S1(t) S2(t) Vo(t) INP(t) 

0 0 -VDC 0 - Io(t) 

0 1 VNP(t) Io(t) - Io(t) 

1 0 Not Applicable Not Applicable 

1 1 VDC 0 - Io(t) 
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equivalent harmonic components derived using Double Fourier analysis, to create a 

linear voltage balance model [81]. A similar approach will now be applied to the 

NPC converter to achieve the same level of simplification.  

5.2 Double Fourier Representation of NPC PD Modulation 

Irrespective of the modulation strategy used for the NPC phase leg, any PWM 

switching signal produced by a periodic reference waveform can be represented by 

the Double Fourier series given by [61]: 
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 (5.16)  

where c  and o , c  and o are the carrier and reference frequencies and phase 

shifts respectively. The coefficients mnA  are the harmonic magnitudes of the 

baseband, carrier and sideband harmonics, and are found through evaluation of the 

Double Fourier integral.  

For the specific case of PD modulation for a NPC converter shown in Figure 5.2, 

the harmonic coefficients for  tS1  are determined in [61] as follows:  

                   MA
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Figure 5.2: Phase Disposition (PD) modulation strategy. The lower diagram shows 

the ‘a’ switching signals and phase output voltage. 
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(5.20)  

where M is the modulation depth and m and n are the coefficients of the carrier and 

the fundamental frequency.  

The harmonic coefficients for  tS2  can be obtained by adding 180 degrees to 

both the values of carrier and fundamental phase offset of  tS1  i.e.  1801S

cc   

and  1801S

o o
 , and adding an offset of 2 to the DC coefficient of  tS1 , to give: 
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(5.21)  

where    20000  AD     0101 AD   (5.22)  

      nn AnD 00 cos          mnmn AnmD  cos  (5.23)  

Using these solutions, the switching sum and difference terms in Eqn. (5.15), 

namely     112  tStS  and     121  tStS  can now be expressed as a set of  

harmonic components with co-efficients given by:  

          omnmn ntFtStS   cos112  (5.24)  

where   mnmnmn ADF  , ocmn nm     (5.25)  

and           omnmn ntHtStS   cos121  (5.26)  

where   mnmnmn ADH  , ocmn nm    (5.27)  

Note that the -1 constant term within the sum and difference switching functions 

can be readily incorporated into their DC harmonic components. For example, for the 

switching function (5.24), 00F  is made equal to:  

                   1000000  ADF  (5.28)  
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Also, the carrier phase shift c  in Eqn. (5.16) can be set to zero without any loss of 

generality because any NPC topology that is controlled by PD modulation will use 

the same carrier waveforms for all phase legs. 

5.3 Reduction of NPC Natural Balance Solution to Linear Form 

In phasor form, the load impedance at mn  is given by: 

                   mnj
mnLmnmnmnmnL eZLjRZ

 ,,   (5.29)  

Substituting Eqn. (5.24) to (5.27) and Eqn. (5.29) into Eqn. (5.15), and solving 

using AC phasor arithmetic, gives after some manipulation for each switching 

harmonic, the differential equation of: 

 
 

      tVntFVntH

nt
Z

F

Cdt

tdV

NPomnmnDComnmn

mnomn

mnL

mnmnNP









coscos

cos
2

1

,

,

 (5.30)  

Equation (5.30) can be simplified by recognising that its cosine multiplications 

produce both DC and double harmonic frequency terms. Since it is only the low 

frequency deviation of  tVNP  that is of interest, the double frequency terms in (5.30) 

can be neglected, yielding:  

          tVFVHF
ZCdt

dV
NPmnDCmnmnmn

mnL

mnNP 2

,

,
cos

1

4

1
   (5.31)  

This equation can be simplified by recognising that the harmonic coefficients of 

the open-loop PD modulation process are orthogonal, and hence their cross product 

is zero, i.e. 

                   
  

    01cos2222




nmAAD

ADADHF

mnmnmn

mnmnmnmnmnmn   (5.32)  

With this simplification, Eqn. (5.31) reduces to: 
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 (5.33)  

which is a simple first order linear differential equation that links the change in the 

NP centre point voltage  tVNP  caused by a particular harmonic mn  to the magnitude 

of this centre point voltage, via a single time constant. The combined effect on the 
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NP voltage of all harmonics created by the phase leg switching processes can then be 

determined by summing (5.33) over all switching harmonics, to give: 

         tVtV
dt

dV

dt

dV
NP

NPm n

NP

mnNPm n

mnNPNP



11

1 ,1

,
   

















 (5.34)  

Eqn. (5.34) shows how the natural transient response of the centre point voltage of 

a NPC converter is determined by a simple first order differential equation with a 

time constant that is determined by the parallel summation of the time constants for 

the significant harmonics created by the modulation process at any particular 

modulation depth M. The magnitudes of each of these harmonic time constants are 

each inversely proportional to the magnitude of the converter switching harmonic 

terms, and directly proportional to the load impedance magnitude, at their particular 

frequency. Furthermore, since there is no offset term in this differential equation, the 

centre point voltage of a NPC converter must naturally balance to a final value of 0V 

(i.e. midway between the two DC bus voltages), with a time constant of NP . 

From this analysis, it can be seen that the NPC converter natural balancing time 

constant is determined ONLY by the magnitude of the switching harmonics created 

by the PD PWM process (i.e. mnF  explained in the next section), and the load 

impedance magnitude at these harmonic frequencies (i.e. 
mnLZ ,

). It is not affected by 

DC bus voltage fluctuations, device voltage drops and other similar second order 

factors that might in the first place have been expected to have some influence. 

5.4 Natural Balancing Response and Balance Booster Contribution  

Equation (5.34) has identified that the natural balancing response of a NPC 

converter is determined by the summation of the inverse of the time constants 

associated with each harmonic frequency created by the modulation processes. 

Hence achieving a significant reduction in any one of these harmonic time constants 

will substantially increase the magnitude of the inverse summation result, and thus 

significantly improve the overall balancing response of the converter. Equation 

(5.33) has identified that the magnitude of each harmonic time constant component is 

inversely proportional to the square of the harmonic co-efficient mnF  divided by the 

load impedance at that harmonic frequency. Furthermore the power factor angle of 

the load impedance mn  at that frequency must be near to unity, so that   1cos mn . 

Thus to determine the natural balance time constant of a particular NPC system, it is 
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necessary to firstly identify at what frequencies mnF  has significant values, and then 

to determine the load impedance magnitude and angle at these frequencies. 

For optimum PD modulation of a NPC converter, the harmonic co-efficients of 

the PWM process are explicitly determined by the target fundamental magnitude 

(modulation index M) and frequency. Consequently there is no opportunity to vary 

the magnitude of the mnF  components to improve the converter’s natural balance 

response while still achieving the same fundamental output.  

Figure 5.3 and Figure 5.4 show values for both the mnH  and the mnF  harmonic co-

efficients for a particular converter operating condition. These co-efficients are in 

fact interesting in their own right, since they identify the DCV  and NPV  voltage 

contribution to the inverter output voltage through the switched phase leg, as follows: 

From Eqn. (5.14):  

                          tVtStSVtStStV NPDCo 1221 1)(   (5.35)  

while from Eqns. (5.24) and (5.26) 
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(5.36)  

Substituting (5.36) into (5.35) gives, neglecting the summation of the harmonics: 

                    omnNPmnomnDCmno nttVFntVHtV   coscos)(  (5.37)  

which clearly identifies the harmonic components of the output voltage that derive 

from the (constant) DC link voltage, and the additional output voltage harmonic 

components that derive from the (variable) NP voltage. Figure 5.3 and Figure 5.4 

confirm this understanding, where the harmonic spectra for mnH  shown in Figure 5.3 

has the anticipated zero baseband distortion, large carrier component and decaying 

sidebands that are expected from PD modulation. In contrast, the spectra for mnF  

shown in Figure 5.4 has significant decaying baseband harmonic components, plus 

additional interleaved carrier sideband components. From this spectra it is clear that a 

varying NP voltage will significantly increase the overall output distortion of a NPC 

converter, as was identified in Chapter 4 in relation to active balancing strategies, 

and that only the ideal condition of 0NPV  will achieve the theoretical harmonic 

performance predicted by PD PWM of a NPC converter. Figure 5.5 confirms this 

understanding, showing the phase leg output voltage spectra for the ideal condition 
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of no NP unbalance voltage, and a 20% NP unbalance condition. The addition of the 

unwanted mnF  components into the output voltage for the unbalanced NP voltage 

condition can be clearly seen. 
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Figure 5.3: Harmonic spectra of Hmn. M=0.9, fsw = 2000Hz, fo = 50Hz 
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Figure 5.4: Harmonic spectra of Fmn. M=0.9, fsw = 2000Hz, fo = 50Hz 
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From Figure 5.4 also, it is clear that the load impedance magnitude and phase angle 

must be small either near the fundamental output frequency, or near the carrier 

frequency, since these are the only regions where the mnF  harmonic co-efficients 

which have a significant magnitude. However, the load impedance will generally be 

determined by the external load system, and furthermore may vary its impedance as 

load conditions change. Also, a typical inductive load will always have a magnitude 

that continuously increases with frequency. Hence an additional load impedance is 

required to make natural balancing an effective NP control strategy. 

Figure 5.6 shows how this can be done by placing a “balance-booster” RLC notch 

filter in parallel with the load that is tuned to the carrier frequency of the converter, 

as proposed by Mouton [32]. Figure 5.7 and Figure 5.8 show an example load, 

balance booster and load+balance-booster impedance magnitude and phase as a 

function of harmonic frequency, where a dramatic reduction in impedance 

magnitude, with a corresponding load phase angle of zero, can be seen at the first 

carrier harmonic frequency of 2000 Hz (the designed carrier frequency). 
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Figure 5.5: Harmonic spectra of phase voltage without and with 20% NP unbalance, 

M=0.9, fs = 2000Hz, fo = 50Hz 
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5.5 Design of Balance Booster 

The effect of the balance-booster can be included in the harmonic natural balance 

model in two ways. Firstly, the load term can be modified by calculating a new load 

impedance as a function of frequency using a parallel combination of the R-L load 

and the RLC network, viz:  
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 (5.38)  

However, this approach is cumbersome, and does not provide particularly useful 

insight into the influence of the balance-booster impedance on natural balancing. 

A better approach is to introduce a second phase leg model where Eqn. (5.33) is 

recalculated separately with ONLY a balance booster load. The result of this new 

phase leg is then added to the original R-L load model as a superposition of 2 NPC 

phase leg models, each with different load impedances. The resultant differential 

equation describing the natural response of NPV  is:  
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(5.39)  

and allows the natural balancing time constants of the R-L load and the RLC 
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Figure 5.6: Topology for a NPC phase leg with a RLC network / balance booster 

placed in parallel to the load. 
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balance-booster filter to be clearly separately identified. In principle, the balance- 

booster filter creates a low impedance in the switching frequency region and thus a 

flow of harmonic currents,  mnBBi   that increase the natural balancing action. The 

magnitude of these currents can be readily calculated as follows:  

                    
 mnBB

mno
mnBB

Z

V
i






)(
  

(5.40)  

Unfortunately, not all of the harmonic currents contribute to the balancing 

process, since (5.37) has identified that the converter output voltage contains both 

mnF  and mnH  harmonic components. As identified earlier in Section 5.4, only the 

mnF  components contribute to the balancing process and disappear as   0tVNP . 

The mnH  components on the other hand are always present in the output voltage, and 

cause steady state carrier group harmonic currents to always flow through the 

balance-booster impedance, with a resultant power loss in the filter resistance.  

The ideal balancing impedance solution to avoid this penalty would be a set of 

very narrow bandwidth notch filters that only interact with the mnF  harmonic 

components, but this is very difficult to achieve in practice. A more practical method 
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Figure 5.7: Load and balance-booster impedance magnitude versus frequency. 
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Figure 5.8: Load and balance-booster impedance phase angle versus frequency. 
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may be to disconnect the balance-booster filter during steady state operation when 

the NP voltage is zero. Balance-booster power losses and other such practical issues 

will be discussed further in Chapter 7.  

5.6 Natural Balance Time Domain Simulation  

The theoretical NP natural balancing concepts were verified using a detailed time 

domain simulation with the PSIM 9.0.3 simulation package, as shown in Figure 5.9. 

Note that the node labelled ‘BUS’ is used to tie the load return connection to the NP 

of the converter. Table 5-2 shows the parameters of the simulation for the two 

operating configurations that are presented here, viz: Configuration A operates with 

half the modulation depth and double the fundamental frequency of Configuration B.  

Figure 5.10 shows natural balance response of the converter Neutral Point voltage 

for operating configuration A, returning to zero quite quickly after an initial 

unbalance offset condition. There is an almost exact match between the time domain 

simulation solution, a numerical calculation of the non-linear switched differential 

Eqn. (5.15), and the linearised first order harmonic solution of Eqn. (5.39), which 

validates the analysis of this chapter. 

A similar comparison result is shown in Figure 5.11 for operating configuration B, 

where once again there is an almost exact match between the three analysis 

 

Figure 5.9: PSIM Simulation Schematic for Natural Balance Investigation. 
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approaches. However, the natural balancing response for configuration B is much 

slower, taking more than 1.2 seconds to reach a steady state NP condition. This 

slower response is directly a result of the different operating conditions for 

configuration B, where the increased modulation index significantly reduces the 

number and magnitude of the mnF  harmonic components that drive the natural 

balance response, as shown in Figure 5.13 and Figure 5.14. 

Figure 5.12 shows the dramatic improvement in natural balancing that is achieved 

for configuration B when a balance-booster filter is installed. However, there is a 

penalty of an increased NP voltage ripple because of the additional carrier group 

frequency harmonic currents that now flow continuously through the balance-booster 

filter even when the NP voltage is zero.Experimental results to support these 

simulation validations will be presented in the next chapter for a three phase NPC. 

Table 5-2: Parameters for phase leg’s balancing simulations. 

Parameter 
Value 

(Config A) 

Value 

(Config B) 

Nominal DC link (V) 100 

Capacitor size (µF) 4200 

Load Resistance (ohms) 1 

Load Inductance (mH) 2e-3 

Modulation depth 0.5 1 

Fundamental Frequency (fo) (Hz) 100 50 

Carrier Frequency (fc) (Hz) 5000 

Number of carriers considered, m 3 

Number of sidebands considered, n 20 

Balance Booster Resistance, RBB 2.3 

Balance Booster Capacitance 992µH 

Balance Booster Inductance 970mH 
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Figure 5.10: Neutral Point voltage of simulation against models derived for 

Configuration A. M=0.5, fo = 100Hz 

 
Figure 5.11: Neutral Point voltage of simulation against models derived for 

Configuration B without balance booster. M=1.0, fo = 50Hz 

 
Figure 5.12: Neutral Point voltage of simulation against models derived for 

Configuration B with balance booster. M=1.0, fo = 50Hz 
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Figure 5.13: Fmn harmonics for Configuration A. M=0.5, fo = 100Hz. 
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Figure 5.14: Fmn harmonics for Configuration B. M=1.0, fo = 50Hz 



5.7   SUMMARY 

84 

5.7 Summary 

This chapter has modelled the natural balancing mechanism of a NPC phase leg. 

The resulting model is a simple summation of harmonic time constants that only 

depend on the harmonics of the modulation process and the phase leg load 

impedance. The natural balancing process is caused by the unbalanced NP voltage 

producing harmonic currents which generate self-eliminating currents that return the 

NP to its balanced state. These currents, and hence the balancing response, can be 

enhanced by a balance-booster output filter, tuned to the carrier group frequencies. 

The modelling concepts have been verified through simulation and analytical 

solutions, and are readily extended to three phase converters, as will be presented in 

the next chapter. 
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6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS 

Chapter 5 has developed a linear model that predicts the balancing performance of a 

NPC phase leg, achieved by combining a non-linear transient circuit model of the 

NPC converter with a Double Fourier series representation of the converter switching 

functions. The chapter also showed how additional balance booster elements can be 

modelled, either through modification of the load term directly or by superposition of 

multiple phase leg models to account for the primary load and the additional balance 

booster elements. 

This chapter now extends these concepts to demonstrate how a three phase NPC 

converter can be broken up into individual phase leg models which can then be 

superimposed to predict the behaviour of the overall converter. The design of balance 

booster filters is then explored to consider which topological configuration results in 

the best balancing performance, and to also assess the overall power loss of the 

balance booster in these different configurations. This investigation is confirmed by 

detailed simulation and experimental verification of the concepts. 

6.1 Modelling the Three-phase NPC [82] 

The physical construction and modulation of a 3-phase NPC converter has been 

thoroughly introduced in Chapters 2 and 3, and hence is not repeated here. However, 

the 3-phase NPC converter load has several possible topological options because 

there are several approaches available to connect the 3-phase load’s neutral point, 

LnV ,
, and the neutral point, BBnV , , of the balance booster filter (if it is used).  

Various configurations of the 3-phase converter are shown in Figure 6.1 and 

summarised in Table 6-1. Case 1 (ZL-F) is the ‘standard’ NPC converter 

configuration with a simple ‘3-wire’ load that has a floating neutral. Case 3 (ZL-F, 

BB-F) extends Case 1 (ZL-F) with the addition of a balance booster. Case 2 (ZL-NP) 

is a 4-wire configuration typically used in Flexible AC Transmission Systems 

(FACTS). In this configuration the load’s neutral is connected to the NP of the 

converter. It is also known as ‘4
th

 wire to NP’ [83][84]. Case 4 (ZL-NP, BB-NP) 

extends Case 2 (ZL-NP) by adding a balance booster that has its 4
th

 wire also 

connected to the NP. Cases 5 (ZL-F, BB-NP) and 6 (ZL-F, BB-VDC) are extensions 

of Case 1 (ZL-F) with balance booster filters that are connected to the NP and the 

negative rail of the DC link respectively. 
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In Chapter 5 it was demonstrated that the principle of superposition can be applied 

to model the natural balancing process for a NPC converter. This superposition 

approach will now be applied to the three phase topologies shown in Figure 6.1. The 

development of a natural balance model for any particular topological configuration 

proceeds by superposing individual phase leg natural balance models which account 

for the (a,b,c) phase legs, and also the load and balance booster filter configurations. 

In this way the generic phase leg natural balance model developed in Chapter 5 can 

be used, with minor modifications required to account for the different phase leg 

modulation phase shifts, as well as the different load and filter connection 
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Figure 6.1: 3-phase NPC converter with and without different balance booster 

placement configurations . 
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arrangements. 

Common to all the variations is the fundamental reference phase shift of 120
0
 and 

240
0
 in the phases b and c. Also, before the superposition of the phase leg models to 

obtain the overall D.E.s for each case in Figure 6.1 can proceed, it is first necessary 

to derive the phase leg models when nV  is:  

a) the floating neutral of a 3-phase load for Cases 1 (ZL-F) and 3 (ZL-F, BB-F) 

(Section 6.1.1), and 

b) connected to the negative DC rail for Case 6 (ZL-F, BB-VDC) in (Section 

6.1.2). 

6.1.1 Modelling the NP Change when  tVn  is Floating (Case 1 (ZL-F) & 3 (ZL-F, 

BB-F)) 

A floating 3-phase wye-connected load means the phase leg models are no longer 

independent because  tVn  now depends on the switched voltages of the three phase 

legs,  tVa ,  tVb  and  tVc . Also care must be exercised in modelling each NPC 

phase leg to keep the phase legs separate. Hence for this analysis, the variables 

associated with a particular phase leg will be labelled with the subscripts },,{ cbax . 

This section will now model the NPC phase leg A, recognising that the model of 

the other phase legs are just an adaptation of this model. The first variation from 

Chapter 5 that is required is to adjust the neutral point current, since the load current 

no longer returns to the NP. Hence the NP current summation of Eqn. (5.8) becomes  

                         tItStSti aaaaNP  ,1,2, )(  (6.1)  

Table 6-1: Variations of the 3-phase NPC converter. 

Case Load. Balance Booster 

1 (ZL-F) floating NP Not used 

2 (ZL-NP) 4
th

 wire to NP Not used 

3 (ZL-F, BB-F) floating NP floating NP 

4 (ZL-NP, BB-NP) 4
th

 wire to NP 4
th

 wire to NP 

5 (ZL-F, BB-NP) floating NP 4
th

 wire to NP 

6 (ZL-F, BB-VDC) floating NP 4
th

 wire to DC rail 
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The subscript notation of this equation is for the NP current component attributed to 

phase leg A, and its value is dependent upon the switching states for this phase leg 

and its load current. Substituting Eqn. (6.1) into Eqn. (5.7) from Chapter 5 thus leads 

to the revised NP voltage D.E. for the contribution of phase leg A of : 

                         tItStS
C

i
Cdt

dV
aaaaNP

aNP
 ,1,2,

,

2

1

2

1
  

(6.2)  

The phase A load current  tIa  is dependent upon the switched voltage of phase 

leg A and the 3-phase load’s floating neutral, nV  . This floating neutral voltage is the 

average of the 3 switched phase leg voltages and can be described by: 

                           tVtVtVtV cban 
3

1
 (6.3)  

Ohm’s law then gives the phase A current relationship of: 
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(6.4)  

The switched output voltage for a NPC inverter phase leg were established in 

Chapter 5 as the sum and difference of the individual switching functions in Eqn. 

(5.14), and hence can be simply rewritten here for each of the three phase legs as 

                                tVtStSVtStStV NPxxDCxxx ,1,2,2,1 1   (6.5)  

Substituting Eqn. (6.5) into the load current equation, Eqn. (6.4), and then into the 

per-phase D.E., Eqn. (6.2), results in the following NP voltage transient circuit model 

for the contribution of the phase leg A current: 
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 (6.6)  

This result is more complex than the transient relationship derived in Chapter 5 

because it has switching functions from all three phase legs. However the switching 
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functions are still very similar to Eqns. (5.24) and (5.26), differing essentially only 

because of the loss of the ‘-1’ in the difference expression. Of course the switching 

functions also have different fundamental reference offset values depending on 

which phase leg they are associated with, but this is not difficult to accommodate in 

the detailed evaluation. Using the “x” subscript phase leg notation, the switching 

sum and difference expressions in Eqn. (6.6) thus develop from Eqns. (5.24) and 

(5.26) to become: 

                         xmnmnxx ntFtStS   cos,1,2
 (6.7)  

where   mnmnmn ADF  ,  ocmn nm    (6.8)  

and 

                         xmnmnxx ntHtStS   cos1,2,1
 (6.9)  

 where   mnmnmn DAH  ,  ocmn nm    (6.10)  

Substitution of these Double Fourier representations, Eqns. (6.7) and (6.9) into 

Eqn. (6.6) results in the following individual harmonic D.E for the phase A current: 
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 (6.11)  

The cosine multiplications in Eqn. (6.11) produce both DC and double harmonic 

frequency terms, but since again only the low frequency deviation of  tVNP  is of 

interest, the double frequency terms in Eqn. (6.11) can be neglected once more, to 

give, after some manipulation:  
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(6.12)  

From Chapter 5, Eqn. (5.32) identified that mnF  and mnH  harmonics are 

orthogonal. Thus  Eqn. (6.12) simplifies to a result that is only dependent on mnF  

harmonics, i.e. 
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 (6.13)  

This is the first order D.E. for the NP voltage variation caused by phase leg A of a 

NPC inverter feeding into a 3-phase floating wye load. A similar relationship can be 

readily developed for the other two phase legs using the same approach, to give 
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 (6.15)  

The overall NP voltage variation caused by all three phase legs feeding into a 3-

phase floating wye load is then given by the superposition of Eqns. (6.13), (6.14) and 

(6.15). 

6.1.2 Modelling the NP Change when  tVn  is Connected to a DC link (Case 6 (ZL-

F, BB-VDC)) 

For Case 6 (ZL-F, BB-VDC), the neutral of the balance booster filter, BBnV , , is 

connected to the DC link instead of the NP voltage. This causes two changes, viz: 

a) The filter current no longer returns to the NP node. As a result, Eqn. (5.8) 

becomes:  

                         tItStSti oNP  12)(  (6.16)  

where once again the switching function has lost the ‘-1’ term. 

b) The filter load current is now dependent upon the difference between the 

switched voltage and the negative DC link potential. Eqn. (5.12) therefore 

adapts to become:  
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(6.17)  

A similar modelling process is again used where the filter current, Eqn. (6.17), is 

substituted into the switched NP current equation, Eqn. (6.16), which is then 

substituted into the D.E. relating the NP current to the NP voltage, Eqn. (5.7), to 

produce the following transient circuit model: 
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(6.18)  

This resulting D.E. again differs from those in Chapter 5 by the removal of the ‘-1’ 

term in both switching functions, thus causing a change in DC term of both of mnF  

and mnH  harmonics. The new forms of Eqn. (5.24) and (5.26) are:  

                         omnmn ntFtStS   cos12  (6.19)  

where   mnmnmn ADF  ,  ocmn nm    (6.20)  

and 

                         omnmn ntHtStS   cos21  (6.21)  

 where   mnmnmn DAH  ,  ocmn nm    (6.22)  

Eqn. (5.33) can again be used to model the NPC phase leg when the balance booster 

filter is connected to the lower DC link by removing the DC offset within mnF  and 

mnH  harmonics. Note also that the connection of nV  to the top DC rail results in a 

different change in the DC term of mnH harmonics. However, the end result is similar 

and will not be explored further in this chapter. 

6.1.3 Application of the Superposition of Phase Leg Models to obtain D.E.s for the 

Different Cases of a 3-Phase NPC Converter. 

The differential equation for the topological cases shown in Table 6-1 can be 

obtained by applying the superposition principle as shown below for the various 

cases: 
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Case 1 (ZL-F): The phase legs of this case are connected to a floating 3-phase wye-

connected load. As a result, the overall D.E. uses the summation of 3 ‘floating load’ 

phase leg models derived from Section 6.1.1 (denoted by the subscript ‘flt’), viz: 
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 (6.23)  

where each phase leg’s D.E. is a summation of individual D.E.s representing each 

particular harmonic frequency. Their evaluation results in time constants for every 

harmonic of: 
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 (6.24)  

The time constants are then summed across all the harmonic frequencies and phase 

legs to derive a final time constant. Note that if the phase leg’s load elements are 

identical, the balancing time constants produced will be the same. Hence the analysis 

process can be simplified by multiplying the result of one phase leg by 3, viz: 
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 (6.25)  

 

Case 2 (ZL-NP): The phase legs of this case are connected to the NP. As a result, the 

overall D.E. uses the ‘NP’ phase leg model derived from Chapter 5 (denoted by the 

subscript ‘4w’), and summed across the phases, to give: 
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 (6.26)  

 

Case 3 (ZL-F, BB-F): The phase legs of this case are connected to a floating 3-phase 

wye-connected load along with a floating 3-phase wye-connected balance booster. 

As a result, the overall D.E. superpositions are: a) the ‘floating load’ phase leg model 
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derived from Section 6.1.1 with a RL load and b) the same ‘floating load’ model with 

only a balance booster, viz: 
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Case 4 (ZL-NP, BB-NP): In this case a 4
th

 wire is used to connect the star-points of 

the load and balance booster to the NP. As a result, the overall D.E. superpositions 

are: 

a) the ‘NP’ phase leg model derived from Chapter 5 with a RL load ( LZZ  ) and 

b) the same ‘NP’ model with only a balance booster ( BBZZ  ), viz: 
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Case 5 (ZL-F, BB-NP): The phase legs of this case are connected to a floating 3-

phase wye-connected load along with a 3-phase wye-connected balance booster with 

its neutral connected to the NP. As a result, the overall D.E. superpositions are: 
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a) the ‘floating load’ phase leg model from Section 6.1.1 with a RL load ( LZZ  ) 

and 

b) the ‘NP’ model with only a balance booster from Chapter 5 ( BBZZ  ), viz: 
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Case 6 (ZL-F, BB-VDC): The phase legs of this case are connected to a floating 3-

phase wye-connected load along with a 3-phase wye-connected balance booster with 

its neutral connected to the lower DC rail. As a result, the overall D.E. superpositions 

are:  

a) the ‘floating load’ phase leg model derived from Section 6.1.1 for the RL load and 

b) the DC-link-connected balance booster (denoted by the subscript ‘DC’) from 

Section 6.1.2 for the balance booster ( BBZZ  ), viz: 
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6.2 Matching Balance Booster Filter Losses. 

The above analytical model now allows the natural balancing performance of the 

3-phase topology variants to be explored in terms of modulation depth, carrier 

frequency, fundamental frequency, load power factor angle and load magnitude. The 

nominal parameters for the 3-phase NPC investigated are listed in Table 6-2. The 

design of the balance boosters has been presented earlier in Section 5.5 where the 

inductance, L, and capacitance, C, parameters were varied to achieve resonance at 

the switching frequency of the converter, while the resistance, R of the balance 

booster was varied according to the performance desired. 

However, before proceeding with this analysis, the balance booster losses for the 

alternative configurations of a floating neutral and a DC linked balance booster 

impedance need to be matched, to provide a consistent baseline for the balancing 

comparison. These losses were balanced by iteratively varying the balance booster’s 

resistance, BBR  and then numerically evaluating the balance booster currents to 

determine the balance booster power loss.  

The balance booster RMS currents were calculated by evaluating: 
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where the balance booster currents,  mnBBi   at a particular harmonic frequency, mn  

are dependent on the topology, and are defined as: 

a) Floating Neutral,  
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b) Linked Balance Boosters i.e. 4-wire and balance booster linked to the DC link. 
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Table 6-2 shows the results of these calculations by specifying the resistance of 

the balance boosters for each case. Figure 6.2 shows the resulting balance booster 

currents per phase leg as a function of converter modulation depth for the same filter 

loss. From this figure, it can be seen that the ‘4-wire’ linked configurations requires 

less balance booster currents for the same power loss. This means the ‘4-wire’ is a 

more lossy topology and hence a higher resistance is required to equalise its losses. A 

lossier balance booster will generally improve balancing performance, however 
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further numerical studies are required to determine the best ‘balancing 

performance/watt’ or ‘balancing performance/efficiency loss’. For example, 

eventually, there is a tradeoff point where the semiconductor size has to be increased 

to accommodate the higher balancing currents caused by a lossier balance booster. 

Using the parameters listed in Table 6-2, the apparent power, S, of the RL load 

was calculated as 2215 VA. The balance booster filters were then targeted to 

consume less than 5% of the load (as a reasonable choice). Consequently, they were 

required to consume less than 130W, and their resistances were set accordingly. 

Figure 6.3 shows the overall balance booster losses for the 3-phase NPC converter 

with resistances set as per Table 6-2, as a function of converter modulation depth. 

With the losses of the two alternative balance booster arrangements now equalised as 

shown in Figure 6.3 the investigation of the natural balancing performance of the 

various load alternatives in Figure 6.1 can proceed. 

6.3 Analytically Calculated Natural Balancing Performance of 3-Phase NPC 

Converter  

Figure 6.4 shows how the natural balancing time constant varies with modulation 

depth for all the load alternatives listed in Figure 6.1, where a larger time constant 

represents a poorer natural balancing response (note also the log scale on the vertical 

axis). From these results it can be seen that the most common ‘3-wire’ load (Case 1 

(ZL-F)) for a 3-phase converter has the slowest balancing response. If the load’s 

Table 6-2: 3-phase NPC converter parameters for balancing simulations. 

Parameter Value 

Nominal DC link 360 V 

Capacitor size 4200 µF 

Load Resistance 11 ohms 

Load Inductance 44.4 mH 

Fundamental Frequency (fo) 50 Hz 

Carrier Frequency (fc) 5000 Hz 

Balance Booster Resistance 

13.8  ohms (Floating) 

138  ohms (4-wire & DC linked) 

15.1  ohms (experimental Floating) 

Balance Booster Inductance 992µH 

Balance Booster Capacitance 970nF 

Total number of carriers considered, m 3 

Total number of sidebands considered, n 20 

Modulation depth 0.9 
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neutral point, LnV ,  is available and can be connected to the converter’s NP node 

(Case 2 (ZL-NP)), the natural balancing response increases by more than an order of 

magnitude.  

  

 

Figure 6.2: Balance booster currents versus modulation depth. 

 

Figure 6.3: Balance booster power loss versus modulation depth. 
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Alternatively, if the load’s neutral point is unavailable, for loads such as motors, a 

balance booster with a floating neutral can be used (Case 3 (ZL-F, BB-F)) to achieve 

a similar improvement in balancing response, albeit with a reduced benefit at 

modulation depths above 0.7. The performance at higher modulation depths can be 

also be improved by connecting both the load’s and balance booster’s neutral point to 

the converter’s NP (Case 4 (ZL-NP, BB-NP)). However, the improvement over Case 

2 (ZL-NP) is small, because the load impedance magnitude is already small relative 

to the balance booster’s impedance, thus rendering the balance booster less effective. 

Alternatively, only the balance booster’s NP can be either connected to the 

converter’s NP (Case 5 (ZL-F, BB-NP)) or either of the DC rails (Case 6 (ZL-F, BB-

VDC)), to gain a moderate improvement in balancing performance (both alternatives 

have a mathematically identical response).  

Note that in all cases, the balancing performance degrades at very low modulation 

depths. This is because low modulation depths produce low voltages and hence low 

balancing currents. Thus there is little restorative force available to return the NP 

voltage to zero. Furthermore it should be remembered that the balance booster 

resistance for Case 3 (ZL-F, BB-F) has a significantly smaller resistance to maintain 
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Figure 6.4: Natural balancing time constant versus modulation depth. 
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a matching power loss. This smaller resistance is what makes this filter configuration 

as effective as a neutral point connected topology, despite the reduced harmonic 

currents that are available to naturally balance the NP voltage with a floating neutral 

load. 

Figure 6.5 shows the change in natural balancing behaviour as the fundamental 

frequency increases. In general, balancing performance reduces with the increase of 

the fundamental frequency, as the load impedance increases and the balancing 

harmonic currents reduce accordingly. However, it can been seen from Figure 6.5 

how the response of load topologies with a balance booster filter flattens to a 

constant value, as the balance booster filter contribution takes over from the primary 

load impedance contribution as the fundamental frequency increases. 

Figure 6.6 shows how the natural balancing time constant varies linearly with 

capacitor size regardless of the load/balance booster topology. This result is expected 

since the balancing differential equation response of a phase leg e.g. Eqn. (5.33) is 

inversely proportional to the capacitance of the DC link bus. 

Figure 6.7 shows the effect of load power factor angle on the converter’s natural 

balancing performance. As the load power factor angle increases, the natural 

balancing response of the floating neutral load (Case 1 (ZL-F)) deteriorates, 

asymptotically decreasing to no benefit at all (i.e. an infinite time constant) as the 

load power factor angle approaches 90 degrees. This degradation is substantially 

mitigated by installing a balance booster filter, irrespective of whether its neutral is 

floating or connected to the converter NP (Cases 3 (ZL-F, BB-F), 5 (ZL-F, BB-NP) 

and 6 (ZL-F, BB-VDC)), because the balance booster filter provides a relatively 

constant NP restoring force independently of the load power factor.   

However, when the load neutral point is connected to the NP (Cases 2 (ZL-NP) and 4 

(ZL-NP, BB-NP)), the natural balancing response improves with increasing load 

power factor, because the neutral point connection of the load allows baseband 

common mode currents to flow back into the converter NP. The model presented in 

this thesis breaks down for power factor angles above 70 degrees for this load 

combination and its results should be discarded. This is because actual balancing 

response is a damped 2
nd

 order response because of resonance between the load 

(inductive) impedance and the converter’s DC bus capacitors. The first order model 

developed in this thesis is incapable of adequately modelling a 2
nd

 order response 

near to its resonance region where the damping decreases. 
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Figure 6.5: Natural balancing time constant versus fundamental frequency. 
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Figure 6.6: Natural balancing time constant versus capacitor size, C. 
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Figure 6.7: Natural balancing time constant versus load power factor angle. 
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Figure 6.8: Natural balancing time constant versus load magnitude. 
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Finally, Figure 6.8 shows how the natural balancing time constant varies with load 

magnitude. The relationship is initially linear, until the load impedance becomes 

larger than the balance booster filter impedance (where this filter is included).  

Beyond this point, the balancing/impedance relationship flattens to a flat line.  

In general, a ‘4-wire’ load where load/balance booster’s neutral is connected to 

the converter’s NP (Cases 2 (ZL-NP) and 4 (ZL-NP, BB-NP)) provides the fastest 

balancing performance, provided this connection is allowable for the application. 

Otherwise, a balance booster filter connected in parallel with the load with a floating 

neutral (Case 3 (ZL-F, BB-F)) provides the next best balancing performance, 

providing the filter resistance is sized to have the same power losses as its NP 

connected counterpart. 

6.4 Experimental Results  

The natural balancing concepts and simulation results presented in this chapter 

were confirmed on an experimental NPC converter with the parameters listed in 

Table 6-2. The system is described in Chapter 9 and was operated in open loop 

constant voltage mode using PD modulation. Two load configurations were 

experimentally investigated, being  

a) a ‘3-wire’ load with floating neutral, initially without a balance booster (Case 1 

(ZL-F)), and subsequently with a balance booster (Case 3 (ZL-F, BB-F)). 

b) a ‘4-wire’ load with neutral returned to NP, without the balance booster (Case 2 

(ZL-NP)). This alternative was chosen because the low power balance booster 

does not provide much improvement in balancing performance (i.e. Case 4 (ZL-

NP, BB-NP)’s calculated performance as presented in Section 6.3). 

The experimental balance booster was tuned to 5100 Hz, just off centre from the first 

carrier group harmonics at 5000 Hz.  

The natural balancing response was tested by connecting a resistance between the 

NP and the lower DC bus voltage rail to create an unbalanced voltage across the bus 

capacitors as a starting point. The balancing response was then initiated by removing 

the resistance from the circuit. 
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6.4.1 Experimental Results for 3-Wire Load, 3-Phase NPC (Cases 1 (ZL-F) & 3 (ZL-

F, BB-F)) 

Figure 6.9 to Figure 6.12 show the NPC converter voltages and currents under 

steady state continuous operation for Cases 1 & 3. Figure 6.9 shows the switched 

output voltage of one phase leg of the inverter, where the expected three switched 

voltage levels can be clearly seen. Figure 6.10 shows the switched line-to-line output 

voltage, with the characteristic 5 level switched voltage pattern produced by PD 

modulation of a NPC converter. Figure 6.11 shows the current flowing out of one 

switched phase leg, together with the three load phase currents. The additional 

harmonic currents flowing through the switch because of the balance booster filter 

load can be clearly seen in this result. Figure 6.12 shows the residual steady state 

triplen ripple in the NP caused by the modulation strategy, which cannot be 

eliminated by the natural balancing strategy. 

Figure 6.13 shows the resultant natural balancing response for a floating neutral 

load without a balance booster filter (Case 1 (ZL-F)), while Figure 6.15 shows the 

matching response with a floating neutral balance booster filter (Case 3 (ZL-F, BB-

F)). In both cases there is a very close match between theory, simulation and 

experimental results. The results also confirm the extremely long natural balancing 

time constant of the floating neutral load without the balancing filter, with the bus 

capacitor voltages taking nearly 10 seconds to restore to a balanced condition. This 

response is unacceptably slow for most practical applications. On the other hand, the 

inclusion of the balancing filter, has improved the natural balance response to less 

than 1.5 seconds, which is a much more attractive result.  

Figure 6.14 and Figure 6.16 show the inverse time constants for each of the 

individual harmonics for Case 1 (ZL-F) and Case 3 (ZL-F, BB-F). Matching numeric 

values are listed in Table 6-3 and Table 6-4. These time constants are calculated by 

evaluating Eqn. (6.13) across all three phase legs for each individual harmonic. It can 

clearly be seen from Figure 6.14 how natural balancing depends only on the main R-

L load, since the only significant inverse time constants are in the baseband harmonic 

region. In contrast, as shown in Figure 6.16, the balance booster creates additional 

inverse time constants near to the switching frequency. The overall time constants 

determined by summing the individual harmonic inverse time constants match well 

with the experimental results, as also shown in Table 6-3 and Table 6-4. 
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Figure 6.9: Experimental NPC - Switched Phase Leg Voltage, Case 1 (ZL-F) & 3 

(ZL-F, BB-F) (M=0.9) 

 
Figure 6.10: Experimental NPC - Switched Line to Line voltage, Case 1 (ZL-F) & 

3 (ZL-F, BB-F) (M=0.9) 
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Figure 6.11: Experimental NPC - Switch and Phase leg currents for floating neutral 

load with balance booster, Case 3 (ZL-F, BB-F) (M=0.9) 

 
Figure 6.12: Experimental NPC – steady state NP voltage for floating neutral load 

without balance booster, Case 1 (ZL-F) & 3 (ZL-F, BB-F) (M=0.9) 
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Figure 6.13: Experimental natural balance response with a floating neutral load and 

without a balance booster, Case 1 (ZL-F) (M=0.9). 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-4

10
-3

10
-2

10
-1

10
0

The (dV/dt) = 1/tau of individual harmonics

 

Figure 6.14: Combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each individual 

harmonic (1/tau) without a balance booster filter, Case 1 (ZL-F). 
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Figure 6.15: Experimental natural balance response with floating neutral load and  

balance booster filter, Case 3 (ZL-F, BB-F) (M=0.9). 
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Figure 6.16: The combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each 

individual harmonic (1/tau) with a balance booster filter, Case 1 (ZL-F). 
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6.4.2 Experimental Results for 4-Wire Load, 3-Phase NPC (Case 2 (ZL-NP)) 

Figure 6.17 to Figure 6.22 show matching experimental results for the 4-wire load 

with the neutral connected back to the NP point (Case 2 (ZL-NP)). The switched 

voltage waveforms in Figure 6.17 and Figure 6.18 are the same as for Cases 1 (ZL-F) 

& 3 (ZL-F, BB-F), reflecting that the same open loop PD modulation strategy has 

been used. Figure 6.19 shows the phase load currents and the harmonic current that 

returns through the 4
th

 wire to the NP. This harmonic current is the primary natural 

balancing driver. Figure 6.20 shows a similar unavoidable level of NP voltage ripple 

as before. 

The very fast balancing response of Case 2 (ZL-NP) can be seen in Figure 6.21, 

where the unbalanced voltage is reduced within 0.25s. Note that this balancing 

response is now so strong that the initial unbalance voltage deviates to only -9V with 

the same unbalancing resistor as before. Figure 6.22 and Table 6-5 identify the 

individual harmonic balancing time constants, where it can be seen that the 4-wire 

connection creates a very strong DC balancing component which dominates the 

balancing response of this load connection and explains its excellent performance. 

The overall calculated time constant again matches well with the experimental result, 

as listed in as listed in Table 6-5. 

 

Table 6-3: Numerical values for significant harmonics shown in Figure 6.14 

Harmonic frequency Magnitude (1/tau) Time constant, tau (s) 

100 0.3187  

200 0.003545  

Sum of harmonics 0.322245 3.103 

 

Table 6-4: Numerical values for significant harmonics shown in Figure 6.16. 

Harmonic frequency Magnitude (1/tau) Time constant, tau (s) 

100 0.3188  

200 0.003568  

4750 0.004844  

4950 0.7516  

5050 0.7655  

5250 0.005311  

Sum of harmonics 1.9108 0.5233 
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Figure 6.17: Experimental NPC - Switched Phase Leg Voltage, Case 2 (ZL-NP) 

(M=0.9) 

 
Figure 6.18: Experimental NPC - Switched line to line voltage, Case 2 (ZL-NP) 

(M=0.9) 
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Figure 6.19: Experimental NPC - Switch and Phase leg currents for 4-wire load 

without balance booster, Case 2 (ZL-NP) (M=0.9) 

 

Figure 6.20: Experimental NPC – Steady state NP voltage for 4-wire load without 

balance booster, Case 2 (ZL-NP) (M=0.9) 
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Figure 6.21: Experimental natural balance response with 4-wire load without balance 

booster filter, Case 2 (ZL-NP) (M=0.9). 
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Figure 6.22: The combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each 

individual harmonic or (1/tau) for a 4-wire load, Case 2 (ZL-NP). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

-8

-6

-4

-2

0

2

N
e
u
tr

a
l 
P

o
in

t 
V

o
lt
a
g
e
 (

V
)

Time (s)

 

 

Experimental

Simulation

Analytical



6.5   EXPERIMENTAL VERIFICATION OF NATURAL BALANCING WITH CSVPWM 

112 

6.4.3 Experimental Results for High-Loss Balance Booster with Floating Neutral 

Load 

An additional experiment was conducted with a high-loss balance booster for 

Case 3 (ZL-F, BB-F), where the balance booster’s resistance, RBB was set to 2.3 

ohms. The results are shown in Figure 6.23 and Figure 6.24. Figure 6.23 now shows 

the very fast balancing response of 0.2 seconds. However, the disadvantage of this 

booster filter design is shown in Figure 6.24 where the significant balance booster 

harmonic currents that flow from the switched phase leg substantially overshadow 

the 3-phase load currents. These large currents are simply due to the low balance 

booster resistance.  

6.5 Experimental Verification of Natural Balancing with CSVPWM  

It is well known that CSVPWM and SVM causes the neutral of the 3-phase load, 

LnV ,  to oscillate at 3 times the fundamental frequency with respect to the positive and 

negative DC bus voltages, in order to obtain a 15 per cent increase in the modulation 

depth [61]. Consequently, a 4-wire load configuration such as Case 2 (ZL-NP) & 4 

(ZL-NP, BB-NP)cannot be used with CSVPWM because the 4
th

 wire connection will 

prevent this triplen oscillation. However, CSVPWM should be compatible with 

Cases 1 (ZL-F), 3 (ZL-F, BB-F), 5 (ZL-F, BB-NP) and 6 (ZL-F, BB-VDC), since 

these load configurations all have a load with a floating neutral.  

To confirm this expectation, further experimental tests were conducted for Case 3 

(ZL-F, BB-F) when the NPC inverter was modulated with CSVPWM. Figure 6.25 to 

Figure 6.29 show the results. Note that a theoretical analytical solution was not 

derived for this modulation strategy because of the additional complexity of the 

harmonic solution. 

 

  

Table 6-5: Numerical values for significant harmonics shown in Figure 6.22 

Harmonic frequency Magnitude (1/tau) Time constant, tau (s) 

0 10.66  

100 0.3187  

Sum of harmonics 10.9813 0.09106 
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Figure 6.23: Experimental natural balance response with floating neutral load with 

high loss balance booster filter, Case 3 (ZL-F, BB-F) (M=0.9). 

 

Figure 6.24: Experimental NPC - Switch and Phase leg currents for floating neutral 

load with high loss balance booster, Case 3 (ZL-F, BB-F) (M=0.9) 
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Figure 6.25 and Figure 6.26 show the phase leg and line-to-line switched output 

voltages of the inverter, which are very similar to those of direct PD modulation as 

shown earlier. Indeed, the differences between PD PWM and CSVPWM are very 

slight, and usually cannot be identified from the time domain switched waveforms. 

Figure 6.27 shows the switched phase leg output current and the load currents, which 

are also very similar to those shown previously for Case 3 (ZL-F, BB-F) in Figure 

6.11. Once again, this is entirely expected since the switching harmonics for 

CSVPWM are essentially the same as for direct PD, differing only slightly in 

magnitude. Figure 6.28 shows the unavoidable residual triplen NP ripple for 

CSVPWM, which is also much the same as before.  

Figure 6.29 is the more interesting result, showing the natural balancing response 

for CSVPWM with a floating neutral balance booster filter. The settling time has 

now reduced to about 1.1 seconds, in contrast to the result for PD PWM of 1.6 

seconds shown in Figure 6.15 with the same load situation. This improvement is 

directly because of the changes in switching harmonic magnitudes caused by 

CSVPWM, which slightly increase the harmonic currents flowing through the 

balance booster filter, and hence improve the natural balancing response for this 

modulation strategy.  So, in summary, CSVPWM is compatible with 3-wire floating 

neutral loads only, and has a faster balancing performance than PD PWM when 

integrated with the same balance booster filter.  
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Figure 6.25: Experimental Phase Leg Voltage (M=0.9) 

 

Figure 6.26: Experimental Switched Line to Line Voltage (M=0.9) 
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Figure 6.27: Switch and Phase leg currents for 3-phase NPC (M=0.9) 

 

Figure 6.28: Experimental NP voltage of the NPC converter (M=0.9) 
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6.6 Summary 

This chapter has used superposition of the NPC phase-leg model to successfully 

predict the balancing performance of 3-phase converter and its variants, with and 

without a balance booster filter. The results have been experimentally verified. The 

model shows a very poor natural balancing performance as the load power factor 

angle approaches 90 degrees with only a load connected, but this result can be 

significantly improved by including a balance booster filter. A further improved 

balancing response can also be achieved by connecting the load’s or/and balance 

booster’s neutral node to the converter neutral point. Note also that there is no 

difference between connecting the balance booster’s neutral to either the NP or one 

of the DC link buses. 

Note that unbalanced loads can also produce natural balancing, since they are 

identical to the 4-wire case except that the three loads have different balancing time 

constants. Alternatively, they be analysed as three single-phase configurations. 

The chapter concludes by exploring the natural balancing response of CSVPWM , 

identifying that it is only compatible with a 3-wire load configuration, but does 

achieve an improved natural balancing response compared to PD modulation when a 

balance booster filter is used. 

 
Figure 6.29: Balancing performance of CSVPWM for Case 3 (ZL-F, BB-F) 

(M=0.9) 
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7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION 

Chapters 4 to 6 of this thesis have examined the performance of both active and 

passive (natural balancing) NP control strategies. The results presented in these 

chapters show that while the natural balancing response can be quite strong with a 

balance booster filter, it is still typically slower than what can be achieved with an 

active balancing strategy. However, both strategies have their advantages and 

disadvantages. For example, active balancing strategies perform worse at low power 

factor loads and with smaller DC link capacitances, whereas the passive balancing 

response is much less affected by such parameters since it is primarily driven by the 

switching voltage harmonics (particularly when a balance booster filter is added).  

A further issue associated with NP control is that irrespective of the NP control 

strategy that is used, there will always be some degree of cyclic NP voltage 

disturbance in any practical system. This disturbance can range from NP fluctuation  

at the primary switching frequency, to low frequency variations caused by the 

medium space vector usage. Preferably, such variations should be accommodated by 

the modulation strategy to minimise output voltage distortion because of unbalanced 

DC link voltages. 

Recent work has shown how NP voltage variations can be accommodated by 

rescaling the PWM reference signals to instantaneously take account of unbalanced 

DC link voltages [85][12][86][87]. Of these schemes, the last three are vector 

modulation approaches that vary the available modulation vector magnitudes to 

match the DC link voltages, and then apply these vectors to achieve NP control in 

their particular ways. Hence they are not relevant to passive NP balancing. However, 

ref [85] describes a means of varying the references for SPWM to compensate for 

unbalanced DC link voltages. This chapter now explores how this SPWM 

compensation strategy can be adapted to suit CSVPWM and then used to improve 

the natural NP voltage balancing process itself. The resulting performance is then 

compared against the performance of the active NP balancing strategies presented in 

Chapter 4, to show that under many conditions, natural NP balancing can achieve a 

performance that is very similar to active NP balancing. 
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7.1 CSVPWM with Feedforward DC Link Compensation 

Centered Space Vector PWM (CSVPWM) extends SPWM to replicate the 

modulation produced by a centered space vector modulator. It achieves this by 

adding a non-linear zero-offset [59], as shown in Figure 7.1. 

The process of generating the CSVPWM offset for a 3-level system is as follows: 

Initially, the sinusoidal references are generated identically to SPWM: 
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(7.1)  

Then, according to [59], the 2-level CSVPWM offset is calculated and applied, viz: 

            CBACBAshift VVVVVVV ,,min,,max5.00.1   (7.2)  
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 (7.3)  

where max() and min() functions find the maximum and minimum of their three 

arguments respectively. The references  ''' ,, CBA VVV  are applicable to a 2-level 

converter, but they do not produce the required equal duty cycle split when applied to 

a 3-level converter. To solve this an additional offset calculation and is employed as 

follows. Firstly, shifted phase voltages are calculated: 
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 (7.4)  

where mod is the remainder after division process. This result is used to calculate the 

additional zero sequence required, as: 

            ''''''''''''
_ ,,min,,max5.05.0 CBACBAshiftadd VVVVVVV   (7.5)  

The final reference waveform sent to the modulator is defined as: 

        

shiftaddC
ref

C

shiftaddB
ref
B

shiftaddA
ref
A

VVV

VVV

VVV

_
'

_
'

_
'







 (7.6)  

 



 7   PASSIVE NP CONTROL WITH DC LINK COMPENSATION 

121 

Using CSVPWM as defined in this way, the balancing properties of DC link 

compensation will now be explored. 

From Figure 7.1, it can be seen how the zero crossing transitions of the CSVPWM 

references transit across the NP zero voltage of the converter when the DC link 

voltages are balanced. When the DC link voltages become unbalanced, ref [85] 

 
Figure 7.1: NPC Modulation references for CSVPWM with DC link compensation 

with 0% unbalance. (M=0.9) 
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Figure 7.2: Block diagram implementation of DC link compensation for NPC [86] 

 

 
Figure 7.3: Modulation references for CSVPWM with DC link compensation with 

50% unbalance. (M=0.9) 
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proposes how the modulation process should be adjusted by the algorithm shown in 

Figure 7.2, by level shifting the references to unipolar values, scaling them by the 

unbalanced DC link voltages, and shifting them back to bipolar values for the carrier 

comparison. Figure 7.3 shows how this strategy changes the CSVPWM references 

for a 50% voltage unbalance between the upper and lower bus capacitors (upper 

capacitor voltage is higher). From this figure, it can be seen how the zero crossing 

transitions of the references are now well into the upper modulation region, and how 

this region now modulates for much more than 50% of the fundamental cycle. It can 

also be seen how the lower voltage region reference has significantly increased offset 

steps, which reflect the rescaling of this part of the reference to attempt to better use 

the available modulation capability of the reduced lower voltage region. 

7.2 Influence of CSVPWM DC Link Compensation on Natural Balancing 

7.2.1 Generalised Harmonic Analysis of NP Voltage Control  

The 3-phase NPC model derived in the previous chapter will now be used to 

investigate the implications for natural NP balancing using the DC link compensated 

CSVPWM. In principle, the following analysis could be applied to any of the load 

variations shown in Figure 6.1, but in practice only wye load combinations with a 

floating neutral are viable for CSVPWM because of the triplen baseband harmonics 

that this modulation strategy introduces. Case 3 (ZL-F, BB-F) for the balance booster 

filter connection is then chosen because this has been identified as the most effective 

natural balancing filter connection in Chapter 6, once the filter resistance is adjusted 

for matching power loss for the different connection alternatives. 

Adapting from (6.23), the overall natural NP balancing relationship for a wye 

connected load driven from a three phase NPC is given by   
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ax m n

nmxNPtotalNP

dt

tdV

dt

tdV
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,,,_
 (7.7)  

where x is the phase leg label and the individual harmonic D.E. is defined according 

to (results for phase leg a shown, the other phase legs can be readily derived by 

adjusting subscript labels) (note that this equation is the same as Eqn. (6.12) and is 

simply repeated here for reference): 
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where mnF  and mnH  are the magnitudes of the harmonic representations of the sum 

and difference of the phase leg switching signals as defined in Eqns. (6.7) and (6.9), 

i.e.     tStS xx ,1,2   and     1,2,1  tStS xx
. 

The DC link capacitance C, load impedance at a particular harmonic frequency, 

and the associated cosine terms in the first part of Eqn. (7.8), can now be equated to a 

fixed constant 
mnaK ,

for each particular harmonic frequency ocmn nm   , 

creating the reduced version of: 

                   
 

  tVFVHFK
dt

tdV
NPmnDCmnmnmna

mnaNP


2

,

,,
.  (7.9)  

which identifies that the derivative of the NP voltage contributed by phase leg a is 

determined by the harmonic co-efficient product term mnmn HF . times the DC link 

voltage DCV , and the harmonic co-efficient product term 
2

mnF  times the deviation of 

the neutral point voltage away from zero  tVNP  (recall that the nominal value of 

 tVNP  is zero). Note that the alternative balance booster filter arrangements shown 

in Figure 6.1 only cause the value of 
mnaK ,

 to change, and do not affect the primary 

relationships between mnF , mnH ,
 

 tVNP and DCV .  

Similar expressions can be developed for the matching contributions of phase legs 

‘b’ and ‘c’ to the derivative of the NP voltage, so that across all three phases, the NP 

overall voltage derivative can be expressed as 

                    tVV
dt

dV
NPDC

NP    (7.10)  

where the gain coefficients   and   are the summation of the harmonic co-

efficient product terms across all three phase legs, viz: 
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Equation (7.9) identifies that the derivative of the NP voltage is controlled by mnF  

and mnH  harmonic representations of the modulation sum and difference signals, 

    tStS xx ,1,2   and     1,2,1  tStS xx
 multiplied by the DC bus voltage term, DCV  

and the NP voltage term,  tVNP , respectively. This result shows that NP voltage 

control (i.e. a non-zero derivative) can be achieved either by the multiplication of 

mnmn HF .  with DCV  , or 
2

mnF  with  tVNP . Of these two alternatives, the first product 

term is likely to be more significant, since  tVV NPDC  , and provides a harmonic 

explanation for the way in which “active” NP balancing strategies operate – they 

continually change the value of mnmn HF . depending on the NP voltage error and 

hence drive the error back to zero. On the other hand, the second product term in 

Eqn. (7.9) identifies the natural balancing process, where any unbalanced NP voltage 

(i.e.   0tVNP ) creates a derivative term that naturally reduces this unbalance.  

Furthermore, regardless of how any particular modulation or NP control strategy 

manipulates the values of mnmn HF .  to achieve a balanced NP voltage, adding a 

balance booster will always reduce the load magnitude and angle in Eqn. (7.8) thus 

increasing the constant term, mnaK ,  and the   and   gains in Eqn. (7.10).  

7.2.2 Evaluation of NP Control Gains for CSVPWM with DC Link Compensation 

Unlike the work presented in Chapters 5 and 6, where an analytical form of the 

phase leg switching signals can be obtained for PD PWM, it is much more difficult 

to derive analytical solutions for the phase leg switching signals,  tS x,1  and  tS x,2  

when the DC link voltages are not constant.  Hence in this chapter, the time varying 

switching signals from a detailed simulation are processed using a Fast Fourier 

Transformation (FFT) evaluation, to determine values of mnF  and mnH  at various 

operating points. Table 7-1 shows the parameters of the NPC used for this simulation 

investigation, which are the same as has been used in previous chapters.  

Figure 7.4 and Figure 7.5 show the numerical evaluation of the mnF  and mnH  

harmonic summations for CSVPWM generated phase leg switching functions 

representing mnF  and mnH  with 0% and 20% NP unbalance respectively. The red 

crosses within these figures identify harmonics with negative values magnitudes, to 
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allow productive and counterproductive harmonic product terms to be recognised. 

(Unproductive product terms will have a negative product value for mnmn HF . . These 

terms make a positive derivative contribution to Eqn. (7.10) and thus drive the NP 

voltage away from balance.) Figure 7.5 shows the presence of significant additional 

baseband and sideband harmonic components for both mnF  and mnH , caused by 

incomplete harmonic cancellation between the positive and negative half cycle PWM 

comparison processes because of the adaptation of the modulation references to 

accommodate the unbalanced DC link voltages. 

Figure 7.6 and Figure 7.7 show the product result of mnmn HF .  and 
2

mnF  with 0% 

and 20% NP unbalance respectively, and a modulation depth of M=0.9. Figure 7.6 

confirms that as identified in Section 5.3, Eqn. (5.32), the orthogonal cross-product 

mnmn HF . is essentially zero for balanced DC link voltages, but develops significant 

harmonic components as the link voltages unbalance, as shown in Figure 7.7. 

Furthermore, some of these cross product terms are negative as identified by the red 

crosses in Figure 7.7, creating an unbalancing NP driving force as noted above. In 

contrast, the 
2

mnF  product terms are essentially unchanged without and with NP 

voltage unbalance, identifying these terms as providing a relatively constant natural 

balancing NP restorative force determined primarily by the NP voltage error itself.  

 

Table 7-1: Parameters of the NPC converter. 

Parameter Value 

Nominal DC link 360 V 

Capacitor size 4200 µF 

Load Resistance 11 ohms 

Load Inductance 44.4 mH 

Fundamental Frequency (fo) 50 

Carrier Frequency (fc) 5000 

Balance Booster Resistance 15.1 ohms 

Balance Booster Inductance 992µH 

Balance Booster Capacitance 970nF 

Total number of carriers considered, m 3 

Total number of sidebands considered, n 20 

Modulation depth 0.9 
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Figure 7.4: Magnitudes of harmonics co-efficients mnF  and mnH  with  

0% NP voltage unbalance. (M=0.9) 

 
Figure 7.5: Magnitudes of harmonics co-efficients mnF  and mnH  with  

20% NP voltage unbalance. (M=0.9) 
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Figure 7.6: Harmonic plot of mnmn HF .  and 
2

mnF  with 0% unbalance. (M=0.9) 
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Figure 7.7: Harmonic plot of mnmn HF .  and 
2

mnF  with 20% unbalance. (M=0.9) 
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Figure 7.8 to Figure 7.11 show the effect of a balance booster filter on the NP 

balancing gains. Figure 7.8 and Figure 7.9 show the scaling effect of the load 

impedance on the gain co-efficient components mn  and mn  as the harmonic 

frequency increases. As could be anticipated, the increasing inductive load 

impedance with frequency rapidly rolls off the magnitude of the gain co-efficient 

harmonic terms, so that only the baseband harmonics make a significant contribution 

to the NP balancing process. In contrast, as shown in Figure 7.10 and Figure 7.11, 

the low impedance of the balance booster filter at the first carrier group harmonic 

frequencies creates significant gain co-efficient components at these frequencies, 

which would be expected to significantly improve the NP balancing process as a 

consequence. 

Table 7-2 and Table 7-3 shows these effects on the overall   and  gains for the 

NP balancing D.E. Eqn. (7.10), for the two modulation depths of M=0.9 and M=0.1. 

From Table 7-2 it can be seen how the active balancing gain   increases at high 

modulation depths as the NP voltage unbalance increases, even without the presence 

of a balance booster filter. In fact, the table shows that the balance booster filter  

Table 7-2: Evaluation of NP D.E. balancing gains at M=0.9. 

  
M = 0.9 

 
  DC link comp. DC link comp. and balance booster 

% unbalance VNP     dt

dVNP

 

    
dt

dVNP  

20.00% -36 0.423 
-0.177 82.5 0.235 -2.605 136.0 

15.00% -27 0.320 -0.161 61.9 0.183 -2.558 102.0 

10.00% -18 0.221 -0.147 42.4 0.129 -2.523 68.6 

5.00% -9 0.123 -0.137 23.3 0.069 -2.504 35.0 

0.00% 0 0.024 -0.133 4.4 0.005 -2.495 0.8 

 

Table 7-3: Evaluation of NP D.E. balancing gains at M=0.1. 

  
M = 0.1 

 
  DC link comp. DC link comp. and balance booster 

% unbalance VNP     dt

dVNP

 

    
dt

dVNP  

20.00% -36 0.042 
-0.042 9.1 0.164 -0.164 35.3 

15.00% -27 0.046 -0.046 9.6 0.198 -0.198 40.9 

10.00% -18 0.048 -0.045 9.4 0.222 -0.232 44.2 

5.00% -9 0.035 -0.021 6.4 0.167 -0.247 32.2 

0.00% 0 0.000 -0.001 0.0 -0.005 -0.238 -0.9 
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Figure 7.8: 
2

mnmn FK  and mnmnmn HFK .  without balance booster,  

0% NP voltage unbalance. M=0.9. 
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Figure 7.9: 
2

mnmn FK  and mnmnmn HFK .  without balance booster,  

20% NP voltage unbalance, M=0.9. 
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Figure 7.10: 
2

mnmnFK  and mnmnmn HFK .  with balance booster,  

0% NP voltage unbalance. M=0.9. 

 

Figure 7.11: 
2

mnmnFK  and mnmnmn HFK .  with balance booster,  

20% NP voltage unbalance, M=0.9. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f 

c
h
a
n
g
e
 (

1
/s

)
-K*FFmn  - 0% unbalance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f 

c
h
a
n
g
e
 (

1
/s

)

-K*FHmn  - 0% unbalance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f 

c
h
a
n
g
e
 (

1
/s

)

-K*FFmn  - 20% unbalance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f 

c
h
a
n
g
e
 (

1
/s

)

-K*FHmn  - 20% unbalance



 7   PASSIVE NP CONTROL WITH DC LINK COMPENSATION 

131 

actually reduces the active balancing gain under these conditions, because several of 

the additional carrier group harmonic gain co-efficients mn  are counterproductive as 

shown by the sign of the mnmnmn HFK .  terms in Figure 7.11 (note that as presented 

in this figure, a positive co-efficient term is unproductive). In contrast, the natural 

balancing gain  is essentially constant irrespective of the NP voltage unbalance, 

and simply increases with the presence of the balance booster filter as could be 

expected. 

Table 7-3 shows matching results for the D.E balancing gains at the low 

modulation depth of M=0.1. Without the balance booster filter, the influence of the 

active balancing gain   is very small, and in this case it is significantly improved by 

the addition of the balance booster filter. Once again the natural balancing gain  is 

constant irrespective of the NP voltage unbalance, but in this case the benefit of the 

balance booster filter in increasing the natural balancing gain is less.  

Table 7-2 and Table 7-3 also list the overall 
dt

dV mnxNP ,,   restoring driving force for 

the nominal DC link bus voltages and the various listed levels of NP unbalance 

ranging from 0% to 20%. From these results, it can be seen that the overall restoring 

balance force increases with the level of NP voltage unbalance, and is also 

significantly increased when a balance booster filter is added to the load. 

Furthermore, since a substantial part of this restoring force comes from the active 

balancing response of the unbalanced harmonics created by the DC Link 

compensation strategy for CSVPWM, it could be expected that the balancing 

response for this system will be significantly better than for the simple passive 

balancing response presented in Chapter 6.   

Figure 7.12 and Figure 7.13 show the resulting NP voltage balancing response for 

the various combinations of natural balancing only, natural balancing with a balance 

booster filter, and these two alternatives with the addition of DC link compensation 

included into the CSVPWM algorithm. The improvement with DC link 

compensation is clear, with a slightly faster settling time at a high modulation depth 

(the DC link compensation provides most of the restoring force for this condition, 

with the balance booster filter adding a small benefit) and a much faster settling time 

at a low modulation depth (where the combination of DC link compensation and a 

balance booster filter is much more effective than either alternative individually).  
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7.3 Experimental Verification 

The same experimental system as was used for the results presented in Chapter 6 

was used to verify the improved natural balancing response achieved by including 

DC link compensation into the CSVPWM algorithm. Figure 7.14 and Figure 7.15 

show the resulting balancing responses for a modulation depth of M=0.9 without and 

with a balance booster filter. The excellent match achieved between simulation and 

experiment fully confirms the analysis and understanding presented in this chapter. 

 
Figure 7.12: Balancing performance of various natural balancing schemes, M=0.9. 

0 1 2 3 4 5 6 7 8 9 10
-30

-25

-20

-15

-10

-5

0

5

Time (s)

Simulation comparison at M=0.1

Natural

Balance booster

DC link comp.

Balance booster + DC link comp.

 
Figure 7.13: Balancing performance of various natural balancing schemes, M=0.1 
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Figure 7.14: Neutral Point balancing for CSVPWM with DC link compensation 

with RL load only, M=0.9. 

 
Figure 7.15: Neutral Point balancing for CSVPWM with DC link compensation 

with RL load and balance booster filter, M=0.9 
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7.4 Simulation Comparison with Active NP Balancing Controllers 

To complete this chapter, the natural balancing performance of CSVPWM with 

the various combinations of a balance booster filter and DC link voltage 

compensation, is now compared against the best “active” strategies that were 

explored in Chapter 4. The same methodology and operating conditions as were 

presented in Chapter 4 will be used, except that the DC link capacitance is reduced 

by a factor of 5 to increase the steady NP voltage ripple, and hence the output voltage 

distortion if compensation is not included into the balancing algorithm (as is the case 

for the active NP balancing strategies). The various natural balancing strategies 

identified from this chapter are: 

a) CSVPWM+FF – Feedforward 

b) CSVPWM+NB – Natural balancing (Case 1 (ZL-F)) 

c) CSVPWM+FBB – Floating Balance Booster (Case 3 (ZL-F, BB-F)) 

d) CSVPWM+LBB – Linked Balance Booster (Case 5 (ZL-F, BB-NP) / Case 

6 (ZL-F, BB-VDC)) 

e) CSVPWM+FF+FBB – Combined Feedforward-Floating Balance Booster 

f) CSVPWM+FF+LBB – Combined Feedforward-Linked Balance Booster 

Figure 7.16, Figure 7.17, and Figure 7.18 show the NP ripple produced by the 

various strategies for three load power factor angles. For all these load power factor 

angles, the NP ripple produced by CSVPWM with passive damping strategies is very 

similar to the ‘active’ strategies that belong to NTV-based / ‘least control’ group. 

This is entirely expected because the passive strategies and these active strategies all 

use same modulation strategy - CSVPWM. 

Figure 7.19, Figure 7.20, and Figure 7.21 shows the harmonic performance 

(NWTHD) of the various NP balancing strategies at 1, 45 and 85 degree load power 

factor angles respectively. From these results it can be seen that: 

a) Feedforward-based CSVPWM has the best harmonic performance of all the 

NP strategies evaluated, and in fact matches the ideal performance of 

CSVPWM despite the NP ripple voltage that is present. Once again, this 

result is to be expected, since the primary purpose of DC link compensation 

for CSVPWM is to eliminate any output voltage distortion that may be 

caused by operating with unbalanced DC link voltages. 
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Figure 7.16: Maximum NP deviation versus Modulation depth for load power 

factor angle of 1 degree during steady state operation. 
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Figure 7.17: Maximum NP deviation versus Modulation depth for load power 

factor angle of 45 degree during steady state operation. 
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b) Non-Feedforward based strategies show an increasing level of NWTHD as 

the load power factor angle increases. This is also to be expected because 

these strategies do not compensate for the increasing NP voltage ripple that 

occurs as the load power factor reduces, as shown in Figure 7.16 , Figure 7.17  

and Figure 7.18. 

c) Both ‘active’ CSVPWM+P and CSVPWM+NB strategies create a similar 

level of NP ripple However, the active CSVPWM+P method produces a 

greater harmonic distortion at lower power factor loads, because it reduces to 

Discontinuous PWM (DPWM) under these conditions. 

Figure 7.22, Figure 7.23 and Figure 7.24 shows the NP balancing time constant of 

both active and passive strategies for load power factor angles of 1, 45 and 85 degree 

respectively. Overall, the performance of the ‘passive’ strategies is generally still 

slower than their active strategy counterparts, reflecting the fact that they have no 

direct objective to reduce the NP unbalance. Closer analysis of these results also 

identifies a few more specific features: 
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Figure 7.18: Maximum NP deviation versus Modulation depth for load power 

factor angle of 85 degree during steady state operation. 
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Figure 7.19: NWTHD versus Modulation depth for load power factor angle of 1 

degree. 
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Figure 7.20: NWTHD versus Modulation depth for load power factor angle of 45 

degree. 
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a) Natural balancing (CSVPWM+NB) and CSVPWM with Linked BB 

(CSVPWM+LBB) is the slowest and 2
nd

 slowest strategy. Both their 

performances get worse as the load power factor angle increases. 

b) The third slowest strategy is standalone Feedforward CSVPWM 

(CSVPWM+FF) is 10 times slower than CSVPWM+P at a 1 degree load 

power factor angle. Furthermore its performance further worsens as the 

load power factor angle is increased. 

c) The fourth slowest strategy is CSVPWM with a floating balance booster 

filter (CSVPWM+FBB). It is also around 10 to 15 times slower than active 

CSVPWM+P at 1 and 45 degree load power factor angles. However, at an 

85 degree load power factor angle, its performance is faster than 

CSVPWM+P. The faster Yamanaka’s result should treated with some 

caution as it requires the designer to program the strategy in SVM. 

d) For all load power factor angles, the combined feedforward and balance 

booster configurations are faster than their individual constituents. In fact, 

combined Feedforward-Floating BB (CSVPWM+FF+FBB) is the fastest 

of all the strategies presented in Chapters 5-7, and is quite competitive to   
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Figure 7.21: NWTHD versus Modulation depth for load power factor angle of 85 

degrees. 
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Figure 7.22: NP control performance versus Modulation depth for load power factor 

angle of 1 degree. 
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Figure 7.23: NP control performance versus Modulation depth for load power factor 

angle of 45 degree. 
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active balancing strategies at low to medium modulation ranges and at 1 

and 45 degree load power factor angles. At an 85 degree load power factor 

angle, its performance becomes better than CSVPWM+P. This is 

particularly attractive because it does not produce any harmonic distortion 

for this performance. 

7.5 Summary 

This chapter has shown how passive NP balancing including a balance booster 

filter, can be combined with DC Link Compensation using the CSVPWM strategy, to 

create a passive NP balancing response that is quite comparable with active NP 

balancing controllers under a useful range of operating conditions. One particular 

benefit of this strategy is the excellent NP balancing performance that it achieves at 

low modulation depths or at low load currents. It also provides very low levels of 

harmonic distortion, but still with a quite acceptable level of NP dynamic control 

performance, for systems with low DC link capacitances. 
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Figure 7.24: NP control performance versus Modulation depth for load power factor 

angle of 85 degree. 
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8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE 

COMPARISON 

Simulation models of NPC converters have been developed in this thesis to achieve 

two objectives. The first of these is to enable a fair comparative evaluation of the 

numerous active NP balancing strategies to be conducted, as detailed in Chapter 4, 

while the second is to validate the theoretical natural balance models developed in 

Chapters 5 to 7. The purpose of this chapter is to describe the simulation models that 

were developed to achieve these objectives.  

For the comparative evaluation of active balancing strategies presented in Chapter 

4, a critical issue was to ensure that the simulation models produced results that were 

consistent with the established literature. This chapter will briefly outline the steps 

that were adopted to achieve this, and in particular includes: 

 A description of how the vector duty cycle calculation method (i.e. the base 

modulation process) was implemented.  

 A description of the implementation of the vector redundancy calculation 

process (i.e. the determination of the 1k  and 2k  parameters).  

 Results showing the simulated performance of a particular strategy against the 

original author’s own results for the same conditions as presented in the 

published paper.  

8.1 Simulation Environment 

All of the NPC converter simulation models developed in this thesis utilised the 

PSIM power electronics simulator. Figure 8.1 and Figure 8.2 show PSIM schematics 

for the primary power stage and the modulator/controller respectively (note that each 

schematic is constrained within the same *.psim model file).  

The power stage of the NPC converter consists of three phase legs, each of which 

uses four IGBT switching devices arranged as complementary switch pairs and two 

NP clamping diodes. The DC link is constructed from two separate DC sources (with 

a mid-point ground connection), and a capacitive divider is then used to form the NP 

node. A third DC source connected between the negative rail and the NP node 

through a controlled ideal switch enables an initial unbalanced NP voltage to be set 

so that the NP controller dynamic response can be observed. The converter feeds a 

three phase RL load, and all phase currents, phase voltages and the DC link capacitor 

voltages are measured with sensors for control purposes.  
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Figure 8.1: PSIM simulation (topology) 
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Figure 8.2: PSIM simulation (control) 
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Figure 8.2 shows the architecture of the controller utilised in the simulation. On 

the left hand side of the schematic is a (DLL) control block with 20 input and 20 

output pins. This block includes a Dynamic Linked Library (DLL) file which is 

programmed with the same C-source code as the DSP micro-controller used in the 

experimental NPC converter. This ensures that the simulation model developed will 

replicate the same functional behaviour as the experimental system. All modulation 

calculations are conducted with floating-point numbers within the DLL, and current 

and voltage sensor inputs to the DLL enable all closed loop NP regulatory functions 

to also be programmed in the DLL source code. Finally the DLL also includes the 

code to drive the switch on the DC bus which is responsible for the initial NP voltage 

unbalance condition.  

To the right of the DLL function block are three sets of dual comparators which 

are used to implement the PD modulation process. These function blocks are 

bypassed if a SVM strategy is implemented as the switches would be directly 

controlled by the DLL in this case. The implementation of the PD modulator utilises 

two carrier waveforms, one occupying the upper band with the second occupying the 

lower band. These carrier waveforms are fed into the three sets of dual comparators, 

which are also fed with the phase-leg reference waveforms from the DLL. The 

comparator outputs then feed into a set of logic inverters and switch drivers to 

generate the four gate drive signals for each phase leg.  

To ensure that all the modulation and NP control strategies are compared on a fair 

and equivalent basis, only the control section of each PSIM model is changed, with 

the loading and converter supply conditions matched for each scenario. The primary 

changes to the simulation model therefore occur within the DLL function block. 

8.1.1 NP Controller Gain Selection Considerations. 

One of the key issues that arose from the literature review of active NP control 

strategies is that many of the reported techniques do not describe methodologies to 

select the controller gains or parameters (e.g. the proportional and/or integral gain 

constants of the linear NP voltage regulators). Only the SPWM and SVM strategies 

have quantitative methods (i.e. ‘optimal’ methods) which specify exactly how the 

gains should be designed. To ensure that the comparative evaluation of NP 

controllers is fair the strategy that has been adopted in this thesis is to select 

controller gain constants that maximise the dynamic response of each NP regulator.  
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8.2 Implementation - SPWM+P 

8.2.1 Duty Cycle Calculation / Modulation. 

SPWM is implemented by comparing three phase waveforms against a double 

triangular carrier arrangement as shown in Figure 8.3. As discussion in Section 8.1, 

the basic PSIM model already includes the base PD modulator implemented with 

dual carrier/comparator function blocks, and as such all the DLL must generate is the 

three phase reference waveforms, viz.: 
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(8.1)  

where M is the modulation depth where 0.10  M . 

8.2.2 State Redundancy Calculation Method - 1k  & 2k . 

As discussed in Chapter 3, the SPWM method with an NP controller can only 

control 1 small vector within a switching cycle by varying the split-ratio (i.e. 1k  and

2k ) of the redundant switching states for that particular small vector. This control 

action is achieved via the addition of a common-mode / zero-sequence-offset to the 

three phase reference waveforms. This zero-sequence is generated using a high gain 

 
Figure 8.3: Phase Disposition (PD) modulation (top) and Phase leg A output of 

unipolar form (bottom) M=1.0. 
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proportional (P) controller [6] according to: 

        Offset = K * (Vtop capacitor – Vbottom capacitor) (8.2)  

where K is the controller gain constant, which is set to 0.1 in this thesis. Note that 

this system will not produce dynamic instability, despite the high gain, because a 

dynamic limiter is used. This is achieved by first identifying upper and lower offset 

limits, defined by:  

        Max_limit =  min(1.0- AV , 1.0- BV , 1.0- CV ) (8.3)  

        Min_limit = -min(1.0+ AV , 1.0+ BV , 1.0+ CV ) (8.4)  

The desired offset defined by the proportional controller is then limited in 

accordance with the following pseudo-code: 

 

if ( Offset > Max_limit) 

 limited_Offset = Max_limit 

else if ( Offset < Min_limit) 

 limited_Offset = Min_limit 

else 

 limited_Offset = Offset; 

 

Finally, the limited offset is added to all three reference waveforms, according to: 
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(8.5)  

8.3 Implementation - SPWM+Song [17] 

This strategy employs the same PD modulator as detailed in Section 8.2.1, with 

the only difference being the methodology used to determine the split ratio of the 

redundant states of the controllable small vector. As with the SPWM+P controller, a 

zero-sequence injection strategy is used, with the zero-sequence determined as 

follows: 

1) The first step is to calculate the average NP current that would be required to 

eliminate the NP voltage unbalance, based on the measured difference 

between the upper and lower capacitor voltages, according to: 
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2) The second step is to calculate an initial test zero-sequence offset, defined as: 
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3) Verify and Revise 

It is now required to test whether the addition of this offset to the three voltage 

references will cause the sign of any one reference to change. This is achieved 

by first calculating  CBAmid VVVmidv ,, . 

Then if    midtstmid vvsignvsign  )(0 , the offset is valid, otherwise the offset 

calculation must be revised. 

4) Revision 

To revise the offset calculation, first identify midv , change its sign, and then 

repeat the offset calculation defined in step 2. 

5) Saturation limit of the offset 0v : 

As in other zero-sequence offset based strategies, a limit has to be applied to 

ensure that overmodulation does not occur. This is done as follows: 

if (   1,,max0  CBA vvvv   

   CBA vvvv ,,max10   

else if (   1,,max0  CBA vvvv   

   CBA vvvv ,,max10   

6) Final application of the offset 0v : 
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8.4 Implementation - CSVPWM+P 

8.4.1 Duty Calculation / Modulation 

CSVPWM extends SPWM to replicate the modulation produced by a centered 

space vector modulator. It achieves this by adding a non-linear zero-offset [59], as 

shown in Figure 8.4 

The process of generating the CSVPWM offset for a 3-level system is as follows: 

Initially, the sinusoidal references are generated identically to SPWM: 
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Then, according to [59], the 2-level CSVPWM offset is calculated and applied, viz: 

            CBACBAshift VVVVVVV ,,min,,max5.00.1   (8.11)  
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shiftBB
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 (8.12)  

where max() and min() functions find the maximum and minimum of their three 

arguments respectively. The references  ''' ,, CBA VVV  are applicable to a 2-level 

converter, but they do not produce the required equal duty cycle split when applied to 

 
Figure 8.4: Reference waveforms for CSVPWM for 3-level systems. M=0.7 
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a 3-level converter. To solve this an additional offset calculation and is employed as 

follows. Firstly, shifted phase voltages are calculated: 
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 (8.13)  

where mod is the remainder after division process. This result is used to calculate the 

additional zero sequence required, as: 

            ''''''''''''
_ ,,min,,max5.05.0 CBACBAshiftadd VVVVVVV   (8.14)  

The final reference waveform sent to the modulator is defined below: 
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8.4.2 State Redundancy Calculation Method - 1k  & 2k . 

As with SPWM, the CSVPWM method only has 1 small vector that can be 

controlled by utilising dual redundant switching states with a duty cycle split ratio 

defined by the constants 1k  and 2k . Hence the same proportional controller approach 

defined in Section 8.2.2. For the sake of brevity this control algorithm will not be 

repeated here, but for CSVPWM the calculation process follows the same procedure 

albeit based on the PWM reference set  ref
C

ref
B

ref
A VVV ,,  as opposed to  CBA VVV ,, . 

8.5 Implementation - Yamanaka SVM 

8.5.1 Duty Calculation / Modulation 

As with any SVM strategy, the first step requires the identification of the location 

of the reference vector. Since the SV diagram of Yamanaka’s SVM is identical to 

those of conventional SVM (see Figure 2.2), a simplifying technique such as  ,  

coordinate to g,h coordinate transformation can be used [88], as was done in this 

thesis. With this strategy, the following steps are followed with the full simulation 

code provided in Appendix A.1.5.3: 

1) Firstly, the sector where the reference vector lies in is identified. It is simply 

obtained by dividing the reference vector’s angle by 60 degrees and adding 

one to the result. 
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2) Nearest Three Vector determination 

Next, the reference vector is converted from  ,  to gh coordinates in order 

to determine which of the 4 subsectors it lies within. The process is detailed in 

[88]. The result of this transformation gives the nearest three vectors and their 

duty cycles. 

3) State Redundancy Calculation Method - 1k  & 2k . 

Yamanaka recommends equating the two redundant split vectors i.e. 

21 kk   and the optimal calculation of 1k  is based on the following equation: 
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where  Rix  and  Riy  are the phase currents associated to small vector 1 and 

2 respectively. They are a function of R, the sector where the reference vector 

resides.  Riz  is the phase current for the medium vector. 1smallt , 2smallt  and 

mediumt  are the time during a switching cycle for the each of the vectors. *
ni  is 

the reference NP current that is commanded. 

A major issue with the paper is that Yamanaka left the reader to determine 

the value of *
ni . Obviously in steady state, a value of 0 is ideal however during 

transients, it is dependent upon the converter’s parameters. Yamanaka set this 

to the peak output current value, which is then reduced instantly to zero once 

the unbalance is eliminated. 

In this thesis this approach is replicated by commanding the maximum 

possible NP current, by explicitly setting k to 1 or 0 depending on the 

unbalance. Pseudo-code to implement this is as follows: 

if ( 1.0NPV  ) 

 NPVk *15.0   

else 

 1k  

This method forces k  to the extreme value to obtain maximum 

performance when the NP unbalance is greater than 5V. 

4) Maximisation of NP control based on current polarity 

The current controlled by each small vector changes depending the sector that 

the reference vector is located within (e.g. in the first sector {0
0
 to 60

0
} the 
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small vectors can control IA and IC, whereas in the second sector {60
0
 to 120

0
} 

the small vectors can control IB and IC – see Figure 3.2). This is accounted for 

by assigning the calculated duty cycle split ratio, k , to either 1k  or 2k  , based 

on the sector and also the sign of the relevant phase current since this 

determines whether the NP current will either reinforce or subtract from the 

current NP voltage disturbance. This step is essential to obtain maximum 

performance at high load power factor angles. 

5) Switching sequence determination 

Each possible switching sequence has been manually coded, based on both the 

sector and sub-region that the reference vector is located, and also accounting 

for the vector reversal in the next half-carrier equivalent switching cycle. This 

approach ensures that each possible variation in sequence has been correctly 

catered for, and the only input required is the variation to the duty cycle split 

ratio determined in accordance with steps 3 and 4.  

The end result of this process is the replication of the sequences required by 

Yamanaka’s SVM as shown in Figure 8.5. Within the picture, 4 sequences 

representing 4 subsectors are shown. In each sequence, the vector notations ‘ap’, 

‘an’, ‘bp’, ‘bn’ denote the redundant states of the small vector. ‘a’ and ‘b’ denote the 

large vectors whereas the medium vector is denoted by ‘c’. 

8.5.2 Verification of the Simulation Implementation 

The conditions within the authors’ paper were replicated in this simulation [8]. 

The parameters are listed in Table 8-1. A current source was used in the author’s 

simulation and the worse case load power factor angle (i.e. 90
0
) was specified. As a 

result the power stage of the simulation within this thesis was changed to match the 

author’s paper as shown in Figure 8.6 

The simulation results are shown in Figure 8.7 The figure shows how the NP 

controller attempts to reduce the NP drift (initially set to 10V) at the beginning of the 

simulation run. The dynamic features of the NP recovery shows an identical 

performance to that reported by Yamanaka et al. as shown in Figure 8.8 This 

validates this thesis’s implementation of the SVM strategy proposed by Yamanaka et 

al. and provides confidence that the comparative performance reported in Chapter 4 

is valid and correct. 
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Table 8-1: Converter parameters for Yamanaka SVM validation 

Name Modulation  Strategy 

DC bus voltage 560 V 

DC link capacitance 4500 uF 

Load frequency 50 Hz 

Load magnitude 10 A 

Load power factor angle 90 degrees 

Switching frequency 3000 Hz 

 

 

 
Figure 8.5: PWM for Yamanaka’s SVM. Image obtained from [8] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This image has been removed from the digital edition of this 
thesis in order to comply with copyright statutes. 

 
Please refer to Fig. 4 from ref. [8] 
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Figure 8.6: Modification of load to match author’s setup for Yamanaka SVM. 10000 

ohm resistor is required for current source to be use within this simulation. 
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Figure 8.7: Thesis simulation results for Yamanaka’s SVM. 

 
 
 
 
 
 
 
 
 
 
 

This image has been removed from the digital edition of this thesis in order to comply with 
copyright statutes. 

 
Please refer to Fig. 10 from ref. [8] 

 

 

 

 

 

Figure 8.8: Balancing performance at different modulation depths for author’s 

implementation of Yamanaka’s SVM. Image obtained from [8] 
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8.6 Implementation of NTVV 

8.6.1 Duty Calculation / Modulation 

The carrier-based version of NTVV has been implemented in this thesis, since it 

has now been demonstrated to be equivalent to an explicit space vector formulation 

[68]. The process translates SPWM references to two references; one each for the top 

and bottom carrier. The references are calculated based on the typical 3-phase 

references cba VVV ,, , as defined according to Eqns (8.17) and (8.18), with the 

resulting reference waveforms shown in Figure 8.9.  

        
 
2

,,min cbax
xp

VVVV
V


  (8.17)  
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,,max cbax
xn

VVVV
V


  (8.18)  

where  cbax ,, . 

8.6.2 State Redundancy Calculation Method - 1k  & 2k . 

The process to determine the duty cycle split ratio parameters proceeds as follows:  

1) Firstly, the required current to discharge the unbalance is calculated according 

to: 
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  (8.19)  

where C  is the parallel combination of the DC bus capacitance, CbV  and CtV  

 
 

Figure 8.9: Result of transformation of SPWM references to NTVV references 

obtained from [68] 

 
 
 
 
 
 
 

This image has been removed from the digital edition of this thesis in order to comply 
with copyright statutes. 

 
Please refer to Fig. 4 from ref. [68] 
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are the voltages of the bottom and top capacitors respectively, and sT  

represents the sampling period. 

2) Next the duty cycles which represent the fraction of time each phase is 

connected to the NP must be calculated to enable the determination of the 

required zero-sequence offsets. These duty cycles are based on the two 

reference waveforms defined in Eqns. (8.17) and (8.18) according to: 
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3) The required zero-sequence offsets can then be calculated based on the duty 

cycle information, the NP voltage error, the target NP current and the top and 

bottom reference waveforms, according to: 
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where cba iii ,,  are the phase leg currents. 

4) The actual offset applied must be limited to prevent further NP imbalance 

from occurring. This condition occurs when xpxn VV 1 . Hence the following 

algorithm is used to limit the actual offset used: 

if ( 0.0_ offxv ) 

  limit =  xpxn VV 15.0  

  if ( offxv _ > limit ) offxv _ = limit 

else 

  top_limit = xpV  

  bot_limit = xnV  

  limit = -min(top_limit,bot_limit) 

  if ( offxv _ < limit ) offxv _ = limit 

end 
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5) Note that the three offsets are not applied simultaneously. Zaragoza applies 

the offsets when both phase leg references are non-zero in order to prevent 

additional unwanted switching transitions.  shows that this region of operation 

occurs in two locations for phase leg A i.e. 60
0
 to 120

0
 and 240

0
 to 300

0
. As a 

result, the algorithm applies the following offsets: 

if (eq. ref. vector angle is between 60
0
 → 120

0
 and 240

0
 → 300

0
) 

 offaapap vVV _  

offaanan vVV _  

if (eq. ref. vector angle is between 0
0
 → 60

0
 and 180

0
 → 240

0
) 

 offbbpbp vVV _
 

 

offbbnbn vVV _  

if (eq. ref. vector angle is between 120
0
 → 180

0
 and 300

0
 → 360

0
) 

 offccpcp vVV _  

 offccncn vVV _  

8.6.3 Verification of Simulation Implementation 

The parameters of NTVV are replicated within this simulation and their values are 

listed in Table 8-2. The results of the simulation are shown in Figure 8.10. The 

results correlate well with those from the authors as shown in Figure 8.11. 

Table 8-2: Converter parameters for NTVV validation 

Name Modulation  Strategy 

DC bus voltage 1200 V 

DC link capacitance 1100 uF 

Switching frequency 5000 Hz 

Load frequency 50 Hz 

Load resistance 10 ohms 

Load inductance 12 mH 

Load configuration Wye 

Modulation index 0.8 
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Figure 8.10: Simulation of NTVV balancing performance at different modulation 

depths. 

 

 

 

 

 

 

This image has been removed from the digital edition of this thesis in order to comply with 
copyright statutes. 

 
Please refer to Fig. 8 from ref. [69] 

 

 

 

Figure 8.11: Benchmarking simulation results for different modulation depths. Image 

obtained from [69] for comparison purposes.  
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8.7 Implementation of ONTVV 

8.7.1 Duty Calculation / Modulation 

This modulation strategy is very similar to NTVV and as defined in [19]. The 

strategy executes the following steps: 

1) Region of operation identification. 

2) Approximation of medium vector usage scaling based on region. 

3) Calculation of duty cycles in d-q-0 domain. 

4) Translation from d-q-0 domain to a-b-c references. 

The steps are outlined explicitly in their paper and detailed in Appendix A.1.5.7. 

8.7.2 State Redundancy Calculation Method - 1k  & 2k . 

The method of NP control for ONTVV is described in [71]. The NP controller is a 

second order system, because the authors state within their paper that ‘This 

compensator must have a low-pass characteristic, in order to only react to 

perturbations in the dc-link voltage balance with frequencies lower than the 

switching frequency.’ The output of this controller is then limited through a static 

limiter.  

Unfortunately, the information presented in this paper describes the 2
nd

 order 

controller qualitatively and without parameters nor design rules. As such there is 

insufficient information presented to enable the reader to replicate the documented 

performance within this paper. In this thesis the following approach has been applied 

to overcome this short-fall of information: 

1) Given the absence of information on tuning the parameters of the 2
nd

 order 

compensator, a PI controller has been used instead, with gains selected to be 

Kp = 0.01 and Ki = 0.001. These are relatively small gain values but were  

selected based on the observation of the offset was produced by the ONTVV’s 

NP controller in simulation. [Note :For PI controller gains set well above these 

values additional NP imbalance can result, and the output harmonic 

performance degrade because the static limiter proposed by the authors in [71] 

does not take into account the possibility of overmodulation.] 

2) The output of this compensator is then passed through a static limiter where 

the thresholds are set at [-0.1 and 0.1]. 
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3) Since the offset can be applied to either reference waveform per phase leg. An 

algorithm recommended by the paper is used and it is not repeated due to its 

clearly defined nature. 

8.8 Summary 

This chapter has detailed the implementation of the various NPC converter 

modulation and NP control strategies in the PSIM simulation environment. These 

simulation models were used to perform the comparative evaluation of the different 

NP regulation approaches in Chapter 4, and to validate the natural balancing 

responses throughout the remainder of the thesis. Selected benchmarking simulation 

results have been presented to provide confidence and validation of the simulation 

models developed. 
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9 EXPERIMENTAL SYSTEM 

The natural balance models developed in Chapters 5 and 6, and the enhanced natural 

balance NP controller of Chapter 7, have been validated in two ways. The first 

validation is by comparing the analytical models with the full-switched simulation 

models described in Chapter 8. The second is by comparing simulation results 

against experimentally measured time-domain NP balancing responses obtained 

using a prototype NPC converter. This experimental verification is a critical aspect of 

this thesis since it ensures that all pertinent factors of the theoretical models of the 

natural balancing process that may impact on the NP voltage response, have been 

properly accounted for. This chapter describes the experimental system that was 

developed to obtain the experimental results presented throughout this thesis. 

9.1 Overview of the Experimental System 

Figure 9.1 shows a photo of the overall experimental arrangement used in this 

investigation, including the NPC converter (centre of the work-bench), two series-

connected DC power supplies (bottom of the image) and three phase resistive loads 

and filter networks (to the right of the image). The mid-point of the series connected 

DC supplies creates a virtual earth potential to which the NP voltage can be 

 
Figure 9.1: Photo of the experimental NPC converter, power supply and loads. 



9.2   POWER STAGE 

162 

measured. An additional load bank (shown under the main work-bench) is used in 

conjunction with a static switch to create the initial NP voltage unbalance. The load 

bank to the upper-most right is the primary converter load, with the series connected 

inductor to its’ immediate left. The load bank to the lower right is used for the 

balance booster (note that this is significantly over-rated for this purpose). On the 

lower right portion of the diagram is the balance booster placed with parallel to the 

R-L load where the load bank is used to emulate the balance booster’s resistance. In 

front of it are the inductors and capacitors that make up the other parts of the balance 

booster, tuned at the switching frequency. 

Figure 9.2 shows a close up of the experimental 3-phase NPC converter. The next 

sections of this chapter will now discuss the different groups of components that 

make up this 3-phase Active NPC converter. 

9.2 Power Stage 

The power stage of the converter was built in the lab. It uses an active NPC 

topology as shown in Figure 9.3. From this diagram, three alternatives are available 

to feed the DC input side of the converter.  

a) Rectified 3-phase supply. The diode rectifier used is Semikron SKD 82/12. 

b) One DC source connected across the nodes: BUS_TOP and BUS_BOT. 

c) Two DC sources in series connected across the nodes BUS_TOP and 

BUS_BOT. The node BUS_MID may or may not be connected to the mid-

point of the two DC sources depending on the requirements of the user. If the 

user requires a 3-level source, the mid-point of the DC source has to be 

connected to BUS_MID. A 2-level source would mean the disconnection of 

this point. 

The design decisions made in this thesis for the DC input to the power stage were: 

a) DC sources were chosen over a rectified 3-phase supply because this allows 

short circuit currents to be limited. 

b) A two DC sources configuration were chosen over a single DC source 

because: 

a. This thesis follows the convention used in [62] to formulate the 

mathematical expressions of PWM signals and their Double Fourier 

expressions. These expressions assume 2 DC sources. These structure 

is used in Chapter 5 onwards to model the NPC phase leg(s). 
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b. NP voltage deviation is easy to measure electrically when it is 

measured w.r.t. to its ideal value i.e. the mid-point of the DC sources. 

Both DC sources are set to produce the exact same voltage. 

 

 

Figure 9.2: Close up of experimental NPC converter. 
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Figure 9.3: Power stage design of the converter. 
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Figure 9.4 shows the capacitors used in this system: Nippon Chemi-con KMH 

105
o
C 400V 2200uF . Although only 2 capacitors are shown in Figure 9.3, there are 

actually 4 physical capacitors; each capacitor in Figure 9.3 represents 2 units of 

Nippon Chemicon KMH placed in parallel thus doubling the capacitance between the 

NP midpoint and each bus to a nominal 4400uF. However, time constant tests 

conducted on the experimental converter identified that the effective capacitance to 

each bus was actually 4200uF instead of 4400uF capacitance, and so this value was 

used for all theoretical analysis and simulation investigations.  

Since the capacitors are rated at 400V, the DC sources are set to 180V each, 

making a total converter rated voltage of 360 V. This voltage was set as the highest 

safe voltage that the converter could operate taking into account the fact that a 

unstable NP controller could drift the NP to either DC bus voltage. This would 

expose the capacitors to a maximum of only 360 V , i.e. 40 V below their rating. 

Figure 9.5 shows the DC source supplies connected in series and used in the 

experiment. They are Magna Power Electronics XR250-24. Each DC source can 

supply a maximum of 250V with a current limit of 10A thus limiting the maximum 

power of the converter to 2 x 180 V x 10 A = 3600 W. 

The output of the NPC converter is formed by 3 NPC phase legs. Figure 9.3 

shows each phase leg is made up of 3 units of SEMIKRON’s SKM75GB123, shown 

in Figure 9.6. Each module has 2 IGBT switches coupled with anti-parallel diodes, 

and are rated to 1200 V and 75 A. A PCB board was used to connect the modules to 

form the NPC phase legs, with the snubber circuitry included on-board. 

Close observation of Figure 9.3 shows that one of the modules in each phase leg 

has its two IGBT gates shorted to their emitters to prevent them turning on. This is 

because this converter has 6 switches per phase leg to be able to operated as an 

Active NPC. However only 4 switches are required for this Passive NPC system. The 

extra module purely provides the diodes used to connect the phase legs to the NP. 

9.3 Controller Boards 

The power stage was controlled by three Creative Power Technologies (CPT) 

GIIB boards as shown in the bottom part of Figure 9.2. A master-slave structure was 

used to coordinate the control efforts of the 3 boards. The middle GIIB board within 

the figure was made to be the Master as it minimised the cable length to the Slaves. 
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Figure 9.4: One of the 4 capacitors used as the DC link within the converter. 

 
Figure 9.5: Two DC sources in series using Magna XR250-24. 
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Figure 9.7 shows a detailed view of the GIIB board, identifying the various circuit 

sections. The gate driver outputs were connected to the IGBTs according to the net 

labels shown in Figure 9.3, Figure 9.8, Figure 9.9 and Figure 9.10.  

Since the CPT-GIIB and other CPT products were initially designed to operate 

with an earlier version controller card and not a CPT-DA2810 which has a newer 

Texas Instrument DSP, a interposing CPT-Mini2810 board is required to interface 

the CPT-DA2810 and CPT-GIIB. This card uses an Altera CPLD to route signals 

between the CPT-DA2810 and various parts of the CPT-IIB power board, including  

clock, gate driver signals, MINIBUS, digital data (e.g. SPI), and protection signals. 

Additional features of the board are deadband generation for one 2 gate drivers / one 

phase leg and hysteresis signal generation. The CPT-Mini2810 is controlled by the 

CPT-DA2810 through SPI signals. Figure 9.11 shows the CPT-DA2810 assembled 

with onto CPT-Mini2810 board, while Figure 9.12 shows an individual CPT-

DA2810 board.  

 

 
Figure 9.6: Semikron module consisting of 2 IGBT switches with anti-parallel 

diodes. 
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Figure 9.7: CPT’s Generalised Integrated Inverter Board (CPT-GIIB).  
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Figure 9.8: Controller board wiring for Master GIIB. 
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Figure 9.9: Controller board wiring for Slave GIIB 1. 
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Figure 9.10: Controller board wiring for Slave GIIB 2. 
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The CPLD on the CPT-Mini2810 was reprogrammed for this thesis to provide a 

SPI communications channel in between the 3 CPT-DA2810 boards. This involved 

controlling the direction of the bidirectional SPI communications. 2 pins are 

necessary to indicate the direction of SPI data (towards/away the DSP) and the mode 

of the DSP (Master/Slave). The sequence of operation of the three GIIBs is as 

follows: 

  

 

 
Figure 9.11: CPT-DA2810 on top of CPT-Mini2810. 

 

 
Figure 9.12: CPT-DA2810. 
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Step # MASTER GIIB SLAVE GIIB 

1 Turn ON 

2 Initialise DSP variables 

3 Set DSP’s SPI module to MASTER mode 

4 Set control pins to ensure CPLD only communicates with DSP 

5 Initialise / Configure CPLD 

6 
Set DSP’s SPI module to MASTER 

mode 

Set DSP’s SPI module to SLAVE 

mode 

7 
Set CPLD’s control pins to send 

data from DSP to output buffer pins 

Set CPLD’s control pins to receive 

data from input buffer pins to DSP 

8 Send synchronisation pulse 
Receive synchronisation pulse and 

realign PWM carrier. 

9 Calculate value of PWM signals Do nothing 

10 
Transmit data if it has been 1 

second after turning on DSP 
Receive data 

11 Set value of PWM compare logic. 

12 Continously repeat steps 8 to 11. 

 

9.4 Communications 

The communication between MASTER and SLAVE GIIBs were conducted 

through a shielded ribbon cable. The following signals were transmitted: 

MASTER pin Communication direction SLAVE pin 

Synchronisation (GPIO) → Capture port 

SPI CLOCK → SPI CLOCK 

SPI DATA → SPI DATA 

SPI Chip Select ?* SPI Chip Select 

Slave error (2 pins for 2 

slaves) 
← 

Converter fault (1 pin for 

each GIIB) 

* GPIO is General Purpose Input/Output. 

* Chip select is controlled manually by the DSP and CPLD. 
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The shielded ribbon cable is connected to the Digital I/O connector of each GIIB. 

The pins of the Digital I/O are partially controlled by the CPLD. The CPLD has been 

modified to route the synchronisation and SPI communications.  

The MASTER sends the following SPI data at 7.5 Mhz; byte 0 is the first byte 

transmitted: 

Byte 0 – Status bit where the bit 0 designates whether the SLAVE GIIB should 

enable switching. 

Byte 1 – Upper 8-bits of the 16-bit COMPARE value for SLAVE 1’s switches S1 

and S3. 

Byte 2 – Lower 8-bits of the 16-bit COMPARE value for SLAVE 1’s switches S1 

and S3. 

Byte 3 – Upper 8-bits of the 16-bit COMPARE value for SLAVE 1’s switches S2 

and S4. 

Byte 4 – Lower 8-bits of the 16-bit COMPARE value for SLAVE 1’s switches S2 

and S4. 

Byte 5 – Upper 8-bits of the 16-bit COMPARE value for SLAVE 2’s switches S1 

and S3. 

Byte 6 – Lower 8-bits of the 16-bit COMPARE value for SLAVE 2’s switches S1 

and S3. 

Byte 7 – Upper 8-bits of the 16-bit COMPARE value for SLAVE 2’s switches S2 

and S4. 

Byte 8 – Lower 8-bits of the 16-bit COMPARE value for SLAVE 2’s switches S2 

and S4. 

Byte 9 – Checksum. Its value is the lower 8-bit of the result of the sum of byte 0 to 

byte 8. 

9.5 Load Bank 

The equipment used to form the R-L load is shown in Figure 9.13 and Figure 

9.14. The specification of the RMIT resistive load bank is 240V, 5.25kW per phase. 

The loads can be varied in steps by turning parallel loads on and off using switches 

on the front panel of the load bank. 

The 240V, 10A 3-leg 3-phase inductors are made by IRONCORE 

TRANSFORMERS PTY. LTD. Their multiple taps offer 80mH, 64mH, 40mH and 

16mH alternative inductances. 
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Figure 9.13: RMIT lab resistive load bank. 

 

Figure 9.14: Inductive load bank. 
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9.6 Balance Booster 

The equipment used to form the balance booster is shown in Figure 9.13 (a second 

matching load bank), Figure 9.15 and Figure 9.16. Figure 9.15 shows the high 

frequency 20mH inductor, rated at 12A per coil. This unit has multiple taps allowing 

various inductances to be set using up to 10 coils. For this work, Figure 9.15 shows 

the wiring configuration used to get the required inductance of 1mH. 

Figure 9.16 and Figure 9.17 show the high-frequency WIMA MKS 4 1.0 uF 630V 

capacitors used for the balance booster filter, mounted in a plastic enclosure. 

The Dyne inductors were placed in series with the WIMA capacitors and the each 

phase of the load bank, to form the RLC balance booster. The combined resistance of 

the inductor and capacitor gives the experimental resistance of 2.3 ohms, determined 

using a spectrum analyser.  

  

 
Figure 9.15: Dyne high frequency inductors. 
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9.7 Experimental Verification using the Preferred Active Strategy: 

CSVPWM+P 

The operation of the experimental system was confirmed by comparing it against 

the results of the simulation of a NPC converter using CSVPWM with Proportional 

controller. The operational parameters for the simulation and experimental converter 

were made identical of course for this test, with parameters as given in Table 9-1.  

 
Figure 9.16: Top view of the enclosure of the capacitors for balance booster. 

 
Figure 9.17: Bottom view of the enclosure of the capacitors for balance booster. 
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Figure 9.18 to Figure 9.20 demonstrate the close match of the experimental and 

simulation results during a transient event, confirming the validity of the simulation 

model and its excellent correlation with physical reality. Note in particular in Figure 

9.20 how the line-to-line voltage of the converter recovers to a much better looking 

symmetrical waveform as the NP unbalance reduces during the test. 

This close match between simulation and experiment gives strong confidence that 

the simulation results presented in the earlier chapters are in fact reasonable and 

physically achievable. 

 

  

Table 9-1: NPC converter parameters. 

Parameter Value 

Nominal DC link 360 V 

Capacitor size 4200 µF 

Load Resistance 11 ohms 

Load Inductance 44.4 mH 

Fundamental Frequency (fo) 50 Hz 

Switching frequency 5000 Hz 

 
Figure 9.18: NP control performance of CSVPWM with Proportional controller at 

M=0.9, fs=5000 Hz. 
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Figure 9.19: Line current B during the NP control action transient. M=0.9, fs=5000 

Hz. 

 

Figure 9.20: Line-to-line voltage during the NP control action. M=0.9, fs=5000 Hz. 
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10 CONCLUSION AND FUTURE WORK 

One major concern for a Neutral Point Clamped (NPC) converter is drift of the 

central Neutral Point (NP) voltage away from zero, particularly if it drifts to voltage 

levels that can cause semiconductor failure. This drift occurs during both steady state 

and transient operation and NP control is essential to manage it in any practical NPC 

application. Three NP control methodologies are available. The most popular is 

direct  control of NP currents using modulation strategies, termed ‘active’ control. A 

major challenge is the large amount of literature covering this concept. The next 

methodology is the old and expensive method of using ‘additional hardware’. The 

third alternative, ‘natural balancing’, is the least explored and understood. 

This thesis has categorised and compared different ‘active’ control strategies to 

identify that the CSVPWM with Proportional is usually the best choice for most 

applications. Next, it explored the ‘passive’ method and the different load 

configurations that are possible for the 3-phase NPC converter. An analysis of an 

enhanced ‘passive’ balancing strategy in combination with Feedforward DC Link 

compensation is also presented. Finally, this chapter summaries the results from the 

previous chapters and proposes a list of future research areas to pursue. 

10.1 Summary of Work 

10.1.1.1 Fundamentals of NP control and Analysis of Existing ‘Active’ NP Control 

Strategies 

Chapter 3 has presented the fundamentals of NP control and its limiting 

conditions. In particular it has shown that an increase in NP control performance 

requires a reduction of the NP disturbing mediumV  vector which causes multiple side-

effects, and usually degrades the converter’s operation to that of a 2-level converter 

at maximum control action. In between ideal 3-level operation and the 2-level-like 

operation is a middle ground that incurs an increase in implementation complexity, 

switching transitions and creates poorer harmonic distortion. 

Based on the analysis presented in this thesis, any NP control strategy can be 

classified by observing its vector selection. This analysis also reveals disadvantages 

of the various strategies. Dipolar PWM was shown to have an unclear NP control 

strategy, thus being unpractical and consequently neglected for comparison in 

Chapter 4. Ustepente SVM, which offers the best compromise between NP control 
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performance and harmonic degradation, was eliminated due to its high number of 

switching transitions. Medium Vector Elimination is also eliminated because it 

causes double switching transitions, and in any case degrades to a performance that 

is similar to 2-level converters. 

10.1.2 Categorisation of Active Control Strategies 

The analysis of a strategy’s vector selection reveals its NP control methodology. 

Hence, strategies that share similar vector selection can be grouped. The differences 

within a group lie in two factors. The first is how it calculates the duty cycles for all 

the vectors. The second is how it calculates the split of the small vectors’ duty cycles 

across the redundant states. As a result of this understanding, this thesis has 

contributed to a coherent classification of NP control strategies. 

10.1.3 Quantitative Comparison of Practical Strategies 

The qualitative analysis presented in Chapter 3 does not provide a good indicator 

of the precise performance differences between various NP strategies. A 

quantification of their various attributes is required to identify the ‘best’ strategy. 

The research has conducted a detailed comparison to quantify the harmonic 

performance, NP control performance and NP deviation in the search for the most 

practical NP control strategy for the NPC converter. A list of carrier-based strategies 

including ones that have been translated from their SVM form were compared. A 

SVM strategy (Yamanaka SVM) from a group that is expected to produce a good 

balance between harmonic distortion and NP control performance was also included. 

The results show that the Centered Space Vector (CSV) PWM, a carrier-based 

equivalent of conventional Nearest Three Vector (NTV) SVM, combined with a 

proportional controller zero-offset addition, provides excellent performance in high 

DC link capacitance converters while being simple to implement. It works well 

except for regions of high modulation depth and low load power factor angle, where 

the Yamanaka SVM strategy offers better performance whilst still maintaining good 

harmonic performance. However, this strategy does not perform better than 

CSVPWM with a proportional controller for other regions. The Virtual Vectors 

method also offers exceptional NP control performance in these conditions however 

its harmonic performance is worse than a 2-level converter. It also is not able to 

perform better than CSVPWM at other conditions. 
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Unsurprisingly, both the CSVPWM and SPWM strategy i.e. Phase Disposition 

(PD), have the same NP control performance although this is not reported within the 

literature. However, SPWM should be only recommended for applications where the 

neutral of the load does not float i.e. grid-based 4-wire converters. This is because 

SPWM causes more distortion than CSVPWM for the same amount of NP ripple. 

10.1.4 Derivation of the Natural Balancing Mechanism 

This thesis has modelled the NPC converter’s phase leg and shows how a tuned 

RLC network placed in parallel with the load, also known as a balance booster, can 

be used to increase its balancing performance. Simulation results were used to verify 

the validity of the model. The balance booster’s performance varies linearly with the 

amount of energy consumed. Thus, a high performance balance booster may reduce 

the efficiency of a converter. 

10.1.5 The Characterisation of Natural Balancing Performance with Balance Booster 

for Three-phase Converters and their Variants 

The phase leg model developed in Chapter 5 was then extended to model 3-phase 

variants of the NPC converter, and it was found that the natural balancing 

performance is typically three times faster than that of a single phase leg, even with a 

floating load. The inclusion of an additional balance booster filter also further 

increases the balancing performance by a considerable amount.  

The chapter also compares various topological variations of the balance booster 

network, identifying that a floating neutral filter connection gives the better natural 

balancing response when the floating neutral and NP connected filters are matched 

on a power loss basis. It concludes by exploring the variation in natural balancing 

performance as various operating parameters are changed.  

10.1.6 Harmonic Modelling of the Combination of ‘Passive’ NP Control and DC 

Bus Link Voltage compensation using CSVPWM. 

Chapter 7 demonstrated that the driving forces for NP balancing come from two 

sources – a strong ‘active’ driving force deriving from the product of the unbalanced 

modulation harmonics and the main DC link voltage DCV , and weaker ‘passive’ 

natural driving force deriving also from the product of the balanced modulation 
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harmonics and the NP voltage deviation NPV . From this understanding, it was 

recognised and confirmed that combining a balance booster filter with the additional 

unbalanced harmonic distortion created by DC Link Compensation integrated into 

CSVPWM, significantly improved the natural NP balancing response. The resulting 

system  almost matches the balancing performance of many direct active strategies at 

all load power factor angles. In particular it provides an excellent NP control 

performance midway between Yamanaka’s SVM, the fastest active method for an 85 

degree load power factor angle, and CSVPWM+P, the second fastest active method, 

while still maintaining an ideal 3-level THD output. This result is something that 

most active controllers cannot achieve. 

This new mathematical modelling approach opens up a new area of research for 

NP controllers which incorporate a balance booster to improve their NP balancing 

performance. 

10.2 Suggestions for Future work 

10.2.1 Carrier-based Equivalent of Yamanaka’s SVM 

Yamanaka’s SVM offers the best harmonic performance and NP control 

performance at the cost of variable switching frequency and high switching losses at 

low modulation depth. The latter problem can be eliminated by reducing the 

unnecessary switching transitions at low modulation depth. A carrier-based 

equivalent of Yamanaka’s SVM is available in the form of ‘1-phase dipolar 2-phase 

unipolar’ hybrid carrier-based modulation.  

The difficulty is the analytical calculation required in order to choose the phase 

leg that will perform dipolar modulation and the amount of offset between the 

references within dipolar modulation. Nonetheless, the calculation can be translated 

from the SVM to carrier-based form. 

10.2.2 Comparison involving Common-mode Currents 

High-frequency switched common-mode currents produced by the NPC converter 

can cause premature failure of motor bearings and also insulation of long cables. 

Unfortunately, there is little consistancy in measuring common-mode current in the 

literature, and as a result it has not been included in the comparisons conducted 

within this thesis. This is important because CSVPWM/SVM is known to inject 
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common-mode in order to increase the modulation depth of the converter. Also, NP 

controllers adjust the split of redundant states to control the NP current, and this is 

effectively changing the common-mode currents too. As a result, an investigation is 

required to not only understand these effects but to also compare the common-mode 

voltages and currents produced by the different active NP balancing strategies. 

10.2.3 Derivation of Stable Combined Balance-booster-assisted ‘Active’ NP 

Controller 

This thesis has developed an analysis tool that can be used to explore new active 

strategies to take advantage of the balance boosters in order to achieve high-

efficiency and improved performance NP control. One major advantage of this 

approach is the ability to control the NP voltage in the regions where ‘active’ 

controllers fail. 

10.2.4 Model Predictive Control 

This thesis has shown that any NP control strategy will lie in between the ‘least 

control’ solution and the ‘full control’ solution. This is especially true for the Model 

Predictive Control method. However, it has an added advantage to existing NP 

control i.e. it is well suited to this multi-variable problem whereas existing NP 

control solutions are not. Thus, it can better find an optimal point of operation. 

Another advantage is that MPC can adapt its operation depending on whether 

there is a transient event or not. During steady state, it can operate in a ‘least control’ 

mode to maximise harmonic performance. When a transient event occurs, the 

converter can shift into a mode in between the middle mode and ‘full control’ mode 

(depending on the severity of the NP drift) to counteract any NP drifts. This ability to 

temporarily sacrifice quality is a good advantage to minimise converter overdesign. 

10.2.5 Model Predictive Control with Balance boosters 

The harmonic model framework can assist a designer to produce ‘active’ MPC 

strategies that can be tailored to work with the balance booster to produce very high 

performance NP controllers. This could be achieved by adapting the modulation 

strategy in such a manner as to deliberately produce harmonics of the correct polarity 

in order to reduce the NP unbalance.  
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10.2.6 Optimised Balance-booster Design 

A major drawback of a balance booster on a 3-phase NPC converter is the high 

energy loss produced in order to obtain high balancing performance. This loss is 

apparent during steady-state operation when the NP is balanced. This is because the 

balance booster also interacts with the balanced harmonics produced by the Phase 

Disposition modulation technique, which is undesirable. A high performance balance 

booster has a low resistance and causes large balance booster currents and losses. On 

the other hand, a low performance filter has a high resistance causing small balance 

booster currents and losses. There are 2 solutions: 

Firstly, an extremely narrow notch filter could be produced acting like a comb 

filter that only interacts with the harmonics produced by NP unbalance. The result 

would be a filter that only consumes energy when an unbalance occurs. The physical 

construction of these extremely narrow notch filters can be produced by cascading 

filters to derive n-order filters.  

Secondly, variable loss performance could be obtained by varying the resistance 

of the RLC network. Switching multiple resistors in parallel can produce stepwise 

changes in resistance. However the several switches and resistors required could be 

costly. An alternative could be to use semiconductors operating in the linear region, 

acting as a variable resistor. 

10.2.7 n-phase NPC 

Chapter 6.1 has illustrated the ability to model a NPC converter with 3 phase legs 

each having a common modulation signals phase shifted by 120 degrees. It has also 

shown that the superposition technique can be used to simulate phase legs having 

different load and balance booster configuration. This approach could be extended to 

an arbitrary number of phase legs with each phase leg having different modulation 

switching signals and different load and balance booster topologies. 

10.3 Summary 

The NP drift problem occurs as a result of modulation, topological structure, 

physical construction and load asymmetries. Various modulation-based NP current 

control strategies, termed ‘active’ control, have been proposed but few comparisons 

have been conducted between them.  
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This thesis has analysed different ‘active’ strategies, to identify CSVPWM with 

Proportional zero-offset control as the most attractive alternative due to its simple 

implementation and high performance. A higher performance at the cost of higher 

implementation complexity can be found using Yamanaka’s SVM implementation, 

however its performance advantage is only observable for low load power factor 

angle applications.  

The thesis work then showed that an NPC converter with low DC link capacitance 

/ high NP ripple is best paired with a Feedforward / DC link compensation PWM 

strategy coupled with a balance booster filter. This combination provides a NP 

control performance that is only slightly less than CSVPWM with Proportional 

controller while providing an improved harmonic performance because the latter 

solution’s harmonic performance can degrade to 2-level converter levels.  

Finally, the natural balancing harmonic analysis strategy presented in this thesis 

opens up a new research area for providing extremely fast NP controllers by adding 

balance booster filters to other control strategies. 
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APPENDIX A SIMULATION SOFTWARE 

This section will detail the software code used to conduct simulations of the various 

‘active’ strategies. The following section will group together code from MATLAB 

and PSIM used to simulate a particular strategy. 

A. 1 MATLAB scripts to run simulations in Chapter 4 

Common to all the modulation strategies tested are these high-level MATLAB 

scripts. These scripts run a PSIM simulation file containing the topology and 

modulation strategy. They store the results of the PSIM simulation and reiterate the 

process across the whole modulation range. 

 

A.1.1 MATLAB script – steady state NP deviation and NWTHD harmonic 

calculation 

This MATLAB script is to repeat the PSIM simulations across the whole range of 

modulation depth while the NPC converter operates in steady state where NP is 

allowed to float. As such, it will vary at 3 times the fundamental frequency for 

conventional carrier-based PWM strategies. The resulting output voltage will contain 

this NP variation and it is used for the NWTHD calculations. 

clc 

clear 

  

%% Power converter simu settings calculator 

  

load_angle = 1; 

 

Z = 11 + 1j*2*pi*50*44.4e-3; 

R = abs(Z) * cosd(load_angle); 

X = abs(Z) * sind(load_angle) ; 

L = X / (2*pi*50); 

Load_R = R 

Load_L = L 

  

res = 40 % number of points in THD curve 

step_M = 1/res; 

vec_M = step_M:step_M:1;;  

vec_M(size(vec_M,2)) = vec_M(size(vec_M,2)) - 0.001; 

%vec_M = vec_M(find(vec_M == 0.5)); 

  

%% Automator 

% Outer loop to cycle through the Ms 

% Inner loop to increment frequencies until we find the required number of 

% transitions. 

for j=1:length(vec_M)   % cycle through M 

    %% User-changable system variables 

    M = vec_M(j) * sqrt(4/3); 
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    fc = 3950; 

    Tstop_unb = 0; 

  

    n_transitions = 0; 

    i = 1; 

%    while (n_transitions < 165) % increment frequencies 

        %% PSIM simulation preparation 

        ipath = [cd,'\','a.psimsch']; 

        %ipath = ['a.sch']; 

        ipath = ['"',ipath,'"']; % because there are spaces 

        opath = [cd,'\','a.txt']; 

        %opath = ['a.txt']; 

        opath = ['"',opath,'"']; % because there are spaces 

        M_s = sprintf('%g',M); 

        fc_s = sprintf('%g',fc); 

        Load_L_s = sprintf('%g',Load_L); 

        Load_R_s = sprintf('%g',Load_R); 

        load_angle_s = sprintf('%g',load_angle); 

        Tstop_unb_s = sprintf('%g',Tstop_unb); 

        variable1 = [' -v "M=',M_s,'" ']; 

        variable2 = [' -v "fc=',fc_s,'" ']; 

        variable3 = [' -v "Load_L=',Load_L_s,'" ']; 

        variable4 = [' -v "Load_R=',Load_R_s,'" ']; 

        variable5 = [' -v "Tstop_unb=',Tstop_unb_s,'" ']; 

        cmd = ['"C:\Program Files (x86)\Powersim\PSIM9.0.3\PsimCmd.exe" -i ',... 

            ipath,' -o ',opath, variable1, variable2, variable3,... 

            variable4, variable5]; 

  

        %% PSIM simulation execution 

        tic 

        disp(['Starting PSIM simulation  M=', M_s, ' fc=', fc_s]) 

        dos(cmd); 

        toc 

  

  

        %% Post PSIM simulation 

  

        % Load data 

        tic 

        disp('## txt2mat'); 

        data = txt2mat('a.txt','InfoLevel',0); 

        toc 

  

        % Truncate the data for one fundamental cycle 

        % starting from 0.05 seconds 

        z_t_step = data(1,1); 

        z_n_elements = 0.02 / z_t_step; 

        z_n_start = 0.3 / z_t_step; 

        z_n_end = z_n_start+z_n_elements-1; 

        z_t_start = z_n_start * z_t_step; 

        z_t_end = z_n_end * z_t_step; 

  

        data = data(z_n_start:z_n_end,:); 

  

        % Pick off parts of the data 

        disp('## picking data'); 

        Carrier = data(:,3); 

        Transitions = data(:,27); 

        Vab = data(:,13); 

        NP_V = data(:,16); 

  

        % # of carrier edges 

        disp('## carrierCount'); 

        [pos, neg] = carrierCount(Carrier); 

  

        % Error checking 

        if (pos ~= neg) 
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            ME = MException('A', ... 

               'Check please'); 

            throw(ME); 

        end 

  

        if (pos ~= fc/50) 

            ME = MException('A', ... 

               'Check please'); 

            throw(ME); 

        end 

  

        % # of transitions 

        n_transitions = Transitions(length(Transitions)) - Transitions(1); 

  

        n_transitions = round(n_transitions); 

         

        disp('## wthdCalc'); 

        wthd = wthdCalc(Vab); 

        nwthd = wthd*M; 

  

        fprintf(1,'\n'); 

        disp(['fc=', fc_s, ' n=', sprintf('%g',n_transitions), ' wthd=' sprintf('%g',wthd)]);  

        fprintf(1,'\n'); 

     

    result(j,1) = M; 

    result(j,2:6) = [ fc n_transitions wthd nwthd max(abs(NP_V)) ]; 

    j = j + 1; 

end 

  

result = sortrows(result,1) 

disp('Game over, yeah!') 

 

csvwrite('result.csv',result); 

 

A.1.2 MATLAB script – Dynamic NP performance test 

This MATLAB script is to repeat the PSIM simulations across the whole range of 

modulation depth while the NPC converter reduces the NP unbalance from 20% to 

5% of VDC, half the DC bus voltage. The initial NP unbalance is set using a DC bus 

voltage and then disconnected once the load currents reach steady-state values. The 

PSIM simulation time is 1second for both 1 degree and 45 degree load angle. 5 

seconds is used for 90 degree load angle. 

clc 

clear 

  

%% Power converter simu settings calculator 

  

load_angle = 1; 

  

Z = 11 + 1j*2*pi*50*44.4e-3; 

R = abs(Z) * cosd(load_angle); 

X = abs(Z) * sind(load_angle) ; 

L = X / (2*pi*50); 

Load_R = R 

Load_L = L 

  

res = 40 % number of points in THD curve 

step_M = 1/res; 

vec_M = step_M:step_M:1;  



192   SIMULATION SOFTWARE 

192 

vec_M(size(vec_M,2)) = vec_M(size(vec_M,2)) - 0.001; 

%vec_M = vec_M(find(vec_M <= 0.95)); 

%vec_M = vec_M(find(vec_M <= 0.051)); 

  

%% Automator 

% Outer loop to cycle through the Ms 

% Inner loop to increment frequencies until we find the required number of 

% transitions. 

for j=1:length(vec_M)   % cycle through M 

    %% User-changable system variables 

    M = vec_M(j) * sqrt(4/3); 

    fc = 3950; 

    Tstop_unb = 0.02; 

  

    n_transitions = 0; 

    i = 1; 

%    while (n_transitions < 165) % increment frequencies 

        %% PSIM simulation preparation 

        ipath = [cd,'\','a.psimsch']; 

        %ipath = ['a.sch']; 

        ipath = ['"',ipath,'"']; % because there are spaces 

        opath = [cd,'\','a.txt']; 

        %opath = ['a.txt']; 

        opath = ['"',opath,'"']; % because there are spaces 

        M_s = sprintf('%g',M); 

        fc_s = sprintf('%g',fc); 

        Load_L_s = sprintf('%g',Load_L); 

        Load_R_s = sprintf('%g',Load_R); 

        load_angle_s = sprintf('%g',load_angle); 

        Tstop_unb_s = sprintf('%g',Tstop_unb); 

        variable1 = [' -v "M=',M_s,'" ']; 

        variable2 = [' -v "fc=',fc_s,'" ']; 

        variable3 = [' -v "Load_L=',Load_L_s,'" ']; 

        variable4 = [' -v "Load_R=',Load_R_s,'" ']; 

        variable5 = [' -v "Tstop_unb=',Tstop_unb_s,'" ']; 

        cmd = ['"C:\Program Files (x86)\Powersim\PSIM9.0.3\PsimCmd.exe" -i ',... 

            ipath,' -o ',opath, variable1, variable2, variable3,... 

            variable4, variable5]; 

  

        %% PSIM simulation execution 

        tic 

        disp(['Starting PSIM simulation  M=', M_s, ' fc=', fc_s]) 

        dos(cmd); 

        toc 

  

  

        %% Post PSIM simulation 

  

        % Load data 

        tic 

        disp('## txt2mat'); 

        data = txt2mat('a.txt','InfoLevel',0); 

        toc 

  

        % Truncate the data for one fundamental cycle 

        % starting from 0.05 seconds 

        z_t_step = data(1,1); 

%         z_n_elements = 0.02 / z_t_step; 

%         z_n_start = 0.3 / z_t_step; 

%         z_n_end = z_n_start+z_n_elements-1; 

%         z_t_start = z_n_start * z_t_step; 

%         z_t_end = z_n_end * z_t_step; 

%  

%         data = data(z_n_start:z_n_end,:); 

  

        % Pick off parts of the data 

        disp('## picking data'); 
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        Carrier = data(:,3); 

        Transitions = data(:,27); 

        Vab = data(:,13); 

        NP_V = data(:,16); 

  

         % # of carrier edges 

         disp('## carrierCount'); 

         [pos, neg] = carrierCount(Carrier); 

  

         % Error checking 

         if (pos ~= neg) 

             ME = MException('A', ... 

                'Check please'); 

             throw(ME); 

         end 

  

         if (pos ~= fc/50) 

             ME = MException('A', ... 

                'Check please'); 

             throw(ME); 

         end 

  

        % # of transitions 

        n_transitions = Transitions(length(Transitions)) - Transitions(1); 

  

        n_transitions = round(n_transitions); 

         

        disp('## wthdCalc'); 

        wthd = wthdCalc(Vab); 

        nwthd = wthd*M; 

  

        % tfinal 

        tfinal_percent = 0.04; 

        outside = find ( abs(NP_V) > tfinal_percent*225); 

        tfinal = outside(size(outside,1))*z_t_step; 

        tfinal = tfinal - Tstop_unb; 

         

        fprintf(1,'\n'); 

        disp(['fc=', fc_s, ' n=', sprintf('%g',n_transitions), ' wthd=' sprintf('%g',wthd)]);  

        fprintf(1,'\n'); 

      

    result(j,1) = M; 

    result(j,2:7) = [ fc n_transitions wthd nwthd max(abs(NP_V)) tfinal]; 

    j = j + 1; 

end 

  

result = sortrows(result,1) 

disp('Game over, yeah!') 

  

csvwrite('result.csv', result) 

A.1.3 Supporting MATLAB script – txt2mat 

The ‘txt2mat’ MATLAB script is used to read comma-separated values (CSV) 

files quickly. A copy of the script can be found at 

http://www.mathworks.com/matlabcentral/fileexchange/18430-txt2mat . 

 

http://www.mathworks.com/matlabcentral/fileexchange/18430-txt2mat


194   SIMULATION SOFTWARE 

194 

A.1.4 Supporting MATLAB script – wthdCalc 

The ‘wthdCalc’ MATLAB function is used to calculate the weighted THD of the 

data presented to it.  

function wthd = wthdCalc(data) 

  

fo=50; % fundamental frequency 

fc=5000; % carrier frequency 

harmax=240; % the number of harmonics you want to take into account 

cycles=1; % the number of cycles your data contains  

  

  

spectrum = abs(fft(data));        % - V_load contains the data in question 

swfreq = fc;                        % - fc is the carrier frequency 

                                    % - cycles must be the number of cycles 

                                    %   of the 50Hz sine wave 

                                    % - harmax must be the maximum harmonic 

                                    %   of interest 

  

  

  

for i = 1:harmax*cycles, 

  if (fo ~= 0), 

      harmag(i*2-1) = spectrum(i)/spectrum(cycles+1); 

  else, 

      harmag(i*2-1) = spectrum(i)/spectrum(1); 

  end, 

  

  if (harmag(i*2-1) < 1.e-4), harmag(i*2-1) = 1.e-4; end, 

  harmag(i*2) = 1.e-4; 

  

  if (fo ~= 0), 

      harm(i*2-1) = (2*i-1)*fo/cycles; 

      harm(i*2) = (2*i)*fo/cycles; 

  else, 

      harm(i*2-1) = (2*i-1)*fi/cycles; 

      harm(i*2) = (2*i)*fi/cycles; 

  end, 

end 

  

thd = 0; 

wthd = 0; 

if (fo ~= 0), 

  for i=cycles+2: harmax*cycles+1, 

    thd = thd + spectrum(i)^2; 

    wthd = wthd + (spectrum(i)*cycles/(i-1))^2; 

  end, 

  thd = 100*sqrt(thd)/spectrum(cycles+1); 

  wthd = 100*sqrt(wthd)/spectrum(cycles+1); 

else, 

  for i=2: harmax*cycles+1, 

    thd = thd + spectrum(i)^2; 

    wthd = wthd + (spectrum(i)*cycles/(i-1))^2; 

  end, 

  thd = 100*sqrt(thd)/spectrum(1); 

  wthd = 100*sqrt(wthd)/spectrum(1); 

end 
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A.1.5 PSIM files 

The MATLAB scripts presented in the previous section is used to control the 

PSIM files presented here. The PSIM simulation software contains the topology of 

the NPC converter and the control logic of the modulation strategy. The PSIM files 

are also accompanied by DLLs compiled with Visual Studio 2010 Express which 

contain C code implementing the modulation strategy’s calculations. 

A.1.5.1 Multi-modulation code (SPWM, CSVPWM with either Proportional or 

Feedforward controller) 

This PSIM file is a configurable file which can either produce SPWM or 

CSVPWM modulation signals. It can then be coupled with either a zero-offset 

Proportional or Feedforward NP controller. Both can also be used at the same time. 

The choice of strategy is controlled by setting the variables  

a) IN_SAMP_EN – Enables asymmetric sampling if set to 1. Else, natural 

sampling is used. 

b) IN_CSV_EN – Enables CSVPWM if set to 1.  

c) IN_KP_OFFSET_EN – Enables Proportional zero-offset control if set to 1. 

d) IN_FF_EN – Enables Feedforward if set to 1. 
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Figure A.1: NTV-based strategies PSIM simulation (topology) 
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Figure A.2: NTV-based strategies PSIM simulation (control) 
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A.1.5.2 Code 

The following lists the C used within each PSIM block 

A.1.5.2.1  Level determination 

This code is part of the PSIM’s C simplified block 

if ( x1 > 0.5 && x2 > 0.5) 

    y1 = 1.0; 

else if (x1 > -0.5 && x2 > 0.5) 

    y1 = 0.0; 

else 

    y1 = -1.0; 

A.1.5.2.2 Transition counter 

This code is a DLL used in PSIM to ensure the correct number of cycles are 

captured for any THD calculation. DLL is compiled with Microsoft Visual Studio 

2010 Express. 

/* 

    This transition counter assumes that the input is constructed in such a 

    way that the difference between 2 voltage buses in absolute number is 1.0. 

 

    E.g. for a 3-level inverter, the levels are 1 , 0 , -1 that corresponds to        Vdc, 0, -Vdc 

 

    Thus, if the phase leg travels from Vdc to -Vdc, the divider should be 

    set to Vdc. This produces 1.0 to -1.0, and since the distance between 

    1.0 and -1.0 is 2.0, there is 2 transitions. 

*/ 

 

 

#include <math.h> 

 

 

int round(double i) 

{ 

    if ( i >= floor(i) + 0.5) 

        return (int) ceil(i); 

    else 

        return (int) floor(i); 

} 

 

 

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out) 

{ 

    // Define "sum" as "static" in order to retain its value 

    static double first_run=0.0; 

    static int prev, c; 

    static int transition=0; 

    double a,b,divider; 

     

    a = in[0]; 

    divider = in[1]; 

 

    b = a / divider; 

 

    c = round(b); 

 

    if (t == delt) 

    { 
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        transition = 0; 

    } 

    else if (prev != c) 

    { 

        transition += ( prev-c ); 

    } 

 

    prev = c; 

    //out[0] = round(a); 

    out[0] = transition; 

} 

 

A.1.5.2.3 Modulator (x.dll) 

This code is a DLL used in PSIM to execute modulation calculations. The DLL is 

compiled with Microsoft Visual Studio 2010 Express. 

/* 

    Zaki Mohzani 

    27th Nov 2010 

     

    Combined SPWM and CSVPWM 

    with Proportional or/and Feedforward 

*/ 

 

 

#include <math.h> 

 

// function prototypes 

double max(double a, double b, double c); 

double min(double a, double b, double c); 

double rads (double angle); 

 

// defines 

#define TRUE 1 

#define FALSE 0 

#define CONST_PI 3.14159265 

 

// input output aliases 

#define IN_FLOW            in[ 0] 

#define IN_SW_PERIOD    in[ 1] 

#define IN_VLINE_A        in[ 2] 

#define IN_VLINE_B        in[ 3] 

#define IN_VLINE_C        in[ 4] 

#define IN_IA            in[ 5] 

#define IN_IB            in[ 6] 

#define IN_IC            in[ 7] 

#define IN_VCAP1        in[ 8] 

#define IN_VCAP2        in[ 9] 

#define IN_STRATEGY        in[10] 

#define IN_M            in[11] 

#define IN_KP_BENDRE    in[12] 

#define IN_STOP_UNB        in[13] 

#define IN_FFVDC        in[14] 

#define IN_SAMP_EN        in[15] 

#define IN_CSV_EN        in[16] 

#define IN_KP_0FFSET_EN in[17] 

#define IN_FF_EN        in[18] 

 

 

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out) 

{ 

    // For PSIM 

    static double prev_flow = 0.0; 
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    static double sw_period; 

 

    // For Controller 

//    static double sw_period = 0.0; 

//    static int error = 0; 

//    static double buffer_out[11]; 

 

    static double SQRT3; 

    static int i; 

    static double DC_BUS,delta_NP, 

        omega,angle,Deg120, 

        Ref_Va,Ref_Vb,Ref_Vc, 

        I,P,FF,PI, 

        vo_max,vo_min, 

        limited_offset, 

        Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset, 

        a,b,c, 

        ap,bp,cp, 

        offset,offsetp, 

        VDC, 

        v1n,v2n,v3n, 

        vdcff, 

        RVa_top, RVa_bot, 

        RVb_top, RVb_bot, 

        RVc_top, RVc_bot; 

    static double bout[20]; 

 

/*----------------------------------------------- 

Initialisation of Controller simulator 

void init_of_2810() 

-----------------------------------------------*/ 

    if ( t == delt ) 

    { 

        sw_period = IN_SW_PERIOD; 

         

        SQRT3=sqrt(3); 

         

        I = 0.0; 

        P = 0.0; 

    } 

 

 

/*----------------------------------------------- 

Start of Controller simulator 

void start_of_2810() 

-----------------------------------------------*/ 

 

 

    // check if we have an overflow / underflow condition 

    if ( (IN_SAMP_EN == 0.0) || (prev_flow ==  0.0 && IN_FLOW != 0.0) ) 

    { 

         

        for (i=0;i<20;i++) 

            out[i] = bout[i]; 

 

        DC_BUS = IN_VCAP1 + IN_VCAP2; 

        if ( t > IN_STOP_UNB)  

            delta_NP = IN_VCAP1 - IN_VCAP2; // Upper - Lower 

        else 

            delta_NP = IN_VCAP1 - (IN_VCAP2+0.1*DC_BUS); // Upper - Lower 

 

        omega = 2*CONST_PI*50; 

        angle = omega*t; 

        Deg120 = (2.0/3.0)*CONST_PI; 

 

        // Generate centered Refs 

        a = IN_M*cos(angle); 
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        b = IN_M*cos(angle - Deg120); 

        c = IN_M*cos(angle + Deg120); 

     

        if ( IN_CSV_EN == 1.0) 

        { 

            offset = - ( max(a,b,c) + min(a,b,c) )/2; 

 

            VDC = 1.0; 

            ap = fmod(a + offset + VDC, VDC); 

            bp = fmod(b + offset + VDC, VDC); 

            cp = fmod(c + offset + VDC, VDC); 

 

            offsetp = VDC/2 - ( max(ap,bp,cp) + min(ap,bp,cp) )/2; 

 

            Ref_Va = a + offset + offsetp; 

            Ref_Vb = b + offset + offsetp; 

            Ref_Vc = c + offset + offsetp; 

        } 

        else 

        { 

            Ref_Va = a; 

            Ref_Vb = b; 

            Ref_Vc = c; 

        } 

         

 

        // NP Controller 

 

        if (IN_KP_0FFSET_EN == 1.0) 

        { 

            //I += IN_KI_BENDRE * deltaNP * sw_period/2; 

            P = IN_KP_BENDRE * delta_NP; 

            FF = 0; 

            //PI = P + I; 

 

            // Calculate limits 

            vo_max = min(1.0-Ref_Va, 1.0-Ref_Vb, 1.0-Ref_Vc); 

            vo_min = -1.0*min(1.0+Ref_Va, 1.0+Ref_Vb, 1.0+Ref_Vc); 

 

            if (P>vo_max)        limited_offset = vo_max; 

            else if (P<vo_min)    limited_offset = vo_min; 

            else                limited_offset = P; 

        } 

        else 

        { 

            limited_offset = 0.0; 

        } 

 

        Ref_Va_offset = Ref_Va + limited_offset; 

        Ref_Vb_offset = Ref_Vb + limited_offset; 

        Ref_Vc_offset = Ref_Vc + limited_offset; 

 

        if (IN_FF_EN == 1.0) 

        { 

            v3n = 0; 

            v2n = v3n + IN_VCAP2; 

            v1n = v2n + IN_VCAP1; 

 

            vdcff = IN_FFVDC; 

            RVa_top = ( Ref_Va_offset+1 - v2n/vdcff ) / ( v1n/vdcff - v2n/vdcff ); 

            RVa_bot = ( Ref_Va_offset+1 - v3n/vdcff ) / ( v2n/vdcff - v3n/vdcff ); 

            RVb_top = ( Ref_Vb_offset+1 - v2n/vdcff ) / ( v1n/vdcff - v2n/vdcff ); 

            RVb_bot = ( Ref_Vb_offset+1 - v3n/vdcff ) / ( v2n/vdcff - v3n/vdcff ); 

            RVc_top = ( Ref_Vc_offset+1 - v2n/vdcff ) / ( v1n/vdcff - v2n/vdcff ); 

            RVc_bot = ( Ref_Vc_offset+1 - v3n/vdcff ) / ( v2n/vdcff - v3n/vdcff ); 

 

            // Accomodate the normal PD carrier arrangement 
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            RVa_bot -= 1.0; 

            RVb_bot -= 1.0; 

            RVc_bot -= 1.0; 

        } 

        else 

        { 

            RVa_top = Ref_Va_offset; 

            RVa_bot = Ref_Va_offset; 

            RVb_top = Ref_Vb_offset; 

            RVb_bot = Ref_Vb_offset; 

            RVc_top = Ref_Vc_offset; 

            RVc_bot = Ref_Vc_offset; 

 

        } 

 

        bout[ 0] = Ref_Va; 

        bout[ 1] = Ref_Vb; 

        bout[ 2] = Ref_Vc; 

        bout[ 3] = limited_offset; 

        bout[ 4] = Ref_Va_offset; 

        bout[ 5] = Ref_Vb_offset; 

        bout[ 6] = Ref_Vc_offset; 

        bout[ 7] = RVa_top; 

        bout[ 8] = RVa_bot; 

        bout[ 9] = RVb_top; 

        bout[10] = RVb_bot; 

        bout[11] = RVc_top; 

        bout[12] = RVc_bot; 

 

        // Disable asymmetric sampling 

        if (IN_SAMP_EN == 0.0) 

        { 

            for (i=0;i<20;i++) 

                out[i] = bout[i]; 

        } 

    } 

 

/*----------------------------------------------- 

End of Controller simulator 

void end_of_2810() 

-----------------------------------------------*/ 

 

    // FOR PSIM: remember this iteration 

    prev_flow = IN_FLOW; 

} 

 

double max(double a, double b, double c) 

{ 

    if ( a >= b ) 

    {    // a is greater 

        if ( a >= c ) 

            return a; 

        else 

            return c; 

    } 

     

    if ( a <= b ) 

    {    // b is greater 

        if ( b >= c ) 

            return b; 

        else 

            return c; 

    } 

 

    return 100.0; 

 

} 
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double min(double a, double b, double c) 

{ 

    if ( a <= b ) 

    {    // a is smaller 

        if ( a <= c ) 

            return a; 

        else 

            return c; 

    } 

 

    if ( b <= a ) 

    {    // b is smaller 

        if ( b <= c ) 

            return b; 

        else 

            return c; 

    } 

 

    return 100.0; 

} 

 

double rads (double angle) 

{ 

    return CONST_PI * (angle / 180.0); 

} 
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A.1.5.3 Yamanaka SVM 

 

Figure A.3: Yamanaka’s SVM PSIM simulation (topology) 
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Figure A.4: Yamanaka’s SVM PSIM simulation (control)  
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A.1.5.4 Code 

The following lists the C used within each PSIM block 

A.1.5.4.1 Alpha control block 

This code is used in the simplified C code block. The code functions to calculate 

the action of the NP controller. 

if ( x1 > -5 ) 

    y1 = 0.5 - 0.1*x1; 

else 

    y1 = 1; 

A.1.5.4.2 Modulator (x.dll) 

This code is a DLL used in PSIM to execute modulation calculations. The DLL is 

compiled with Microsoft Visual Studio 2010 Express. 

/* 

31/12/2011 

 

Yamanaka SVM 

 

Verified 

- Sector 1 , Subsector 4 

- Sector 2 , Subsector 4 

- Sector 3 , Subsector 4 

- Sector 4 , Subsector 4 

- Sector 5 , Subsector 4 

- Sector 6 , Subsector 4 

 

- Sector 1 , Subsector 1 

- Sector 2 , Subsector 1 

- Sector 3 , Subsector 1 

- Sector 4 , Subsector 1 

- Sector 5 , Subsector 1 

- Sector 6 , Subsector 1 

 

- Sector 1 , Subsector 3 

- Sector 2 , Subsector 3 

- Sector 3 , Subsector 3 

- Sector 4 , Subsector 3 

- Sector 5 , Subsector 3 

- Sector 6 , Subsector 3 

 

- Sector 1 , Subsector 2 

- Sector 2 , Subsector 2 

- Sector 3 , Subsector 2 

- Sector 4 , Subsector 2 

- Sector 5 , Subsector 2 

- Sector 6 , Subsector 2 

 

Sequence and duty cycles are correct. 

 

*/ 

 

#include <math.h> 

 

// function prototypes 

void output_to_phase_legs(double *out, int seq); 

int vec_to_no_of_states(double *vec); 
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void vec_to_states(double *vec, int *states); 

int sw_count(int s1, int s2); 

double rads (double angle); 

double vecs_to_sector(double *vec_uu, double *vec_ul, double *vec_lu, double *vec_ll); 

 

// defines 

#define TRUE 1 

#define FALSE 0 

#define PI 3.14159265 

 

// input output aliases 

#define IN_FLOW            in[0] 

#define IN_M            in[1] 

#define IN_ANGLE        in[2] 

#define IN_FSWITCHING    in[3] 

#define IN_IA            in[4] 

#define IN_IB            in[5] 

#define IN_IC            in[6] 

#define IN_ALPHA        in[7] 

 

#define OUT_A_UP        out[10] 

#define OUT_A_LOW        out[11] 

#define OUT_B_UP        out[12] 

#define OUT_B_LOW        out[13] 

#define OUT_C_UP        out[14] 

#define OUT_C_LOW        out[15] 

 

 

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out) 

{ 

    // Define "sum" as "static" in order to retain its value 

    static double prev_flow=0.0; 

    //static int under_over=0; 

 

    static double sw_period=0.0; 

    static int error=0; 

 

    static double M; 

    static double ref_angle=0.0; 

    static double ref_ab[2]; 

    static double ref_gh[2]; 

    static double vec_ul[2]; 

    static double vec_lu[2]; 

    static double vec_uu[2]; 

    static double vec_ll[2]; 

    static int duplicates; 

 

    static double *vec1, *vec2, *vec3; 

    static double d1,d2,d3; 

    static double t1,t2,t3; 

    static double final_duty[4]; 

 

    int nX1=0; 

    int nX2=0; 

    int nX3=0; 

 

    double *Xtmp; 

    double Dtmp; 

     

 

    static int states1[4]; 

    static int states2[4]; 

    static int states3[4]; 

    static int seq[7]; 

    int sw_transitions; 

     

    static double prev_vector[]={1,0}; 
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    static int prev_state=100; 

 

    static double sector = -1.0; 

    static double subsector = -1.0; 

 

    static double alphaC,alpha1,alpha2; 

    static double dsmall_1, dsmall_2, dlarge_1, dlarge_2, dmedium, dzero; 

    static double d[7], ds1p, ds1n, ds2p, ds2n; 

    static double Ix, Iy; 

    static double y[12]; 

    static double tmp; 

 

    int lowest, best_i, best_j, reversed; 

    int i,j; 

 

    static int fail = 0; 

 

    // check if we have an overflow / underflow condition 

    if (prev_flow ==  0.0 && IN_FLOW != 0.0) 

    { 

 

    // FOR PSIM ONLY 

        sw_period = 1 / IN_FSWITCHING; 

     

    // Simulate DSP controller from this point onwards 

    // only now should we do sampling and calculation 

         

 

    /* 

        Step 1 

        Calculate sector 

    */ 

    sector = 1+(((int)IN_ANGLE)/60); 

 

    if (sector == -1.0) fail = 1; 

 

    if (fail == 1) return; 

 

    /* 

        Step 2 

        Calculate subsector 

    */ 

 

    // Take the reference and convert it into the alpha & beta coordinates 

        M = IN_M; 

        M *= 2.0;// Times 2 to scale according to the size of the large vectors. 

        ref_angle = rads(IN_ANGLE-60*(sector-1)); 

        ref_ab[0] = M * cos(ref_angle); 

        ref_ab[1] = M * sin(ref_angle); 

 

    // Convert the ref from alpha & beta to g & h  

        ref_gh[0] = 1*ref_ab[0] + -1/sqrt(3) * ref_ab[1];  

        ref_gh[1] = 2/sqrt(3) * ref_ab[1]; 

 

 

        duplicates = TRUE; 

        while ( duplicates == TRUE ) 

        { 

            // Do the rounding process to identify the vectors we require 

            vec_ul[0] = ceil(ref_gh[0]); 

            vec_ul[1] = floor(ref_gh[1]); 

 

            vec_lu[0] = floor(ref_gh[0]); 

            vec_lu[1] = ceil(ref_gh[1]); 

         

            vec_uu[0] = ceil(ref_gh[0]); 

            vec_uu[1] = ceil(ref_gh[1]); 
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            vec_ll[0] = floor(ref_gh[0]); 

            vec_ll[1] = floor(ref_gh[1]); 

 

            if (  (vec_uu[0] ==  vec_ul[0]) && (vec_uu[1] ==  vec_ul[1])  ) 

            { 

                ref_gh[0] += 0.000001; 

                ref_gh[1] += 0.000001; 

            } 

            else if (  (vec_uu[0] ==  vec_lu[0]) && (vec_uu[1] ==  vec_lu[1])  )  

            { 

                ref_gh[0] += 0.000001; 

                ref_gh[1] += 0.000001; 

            } 

            else duplicates = FALSE; 

        } 

 

        // Determine first 2 vectors and duty cycles 

        vec1 = vec_ul; 

        vec2 = vec_lu; 

 

    // Determine the third vector and duty cycle 

        if ( (ref_gh[0] + ref_gh[1] - vec_ul[0] - vec_ul[1]) >= 0) 

        { 

            vec3 = vec_uu; 

            d1 = vec_uu[1] - ref_gh[1]; 

            d2 = vec_uu[0] - ref_gh[0]; 

            d3 = 1 - d1 - d2; 

        } 

        else 

        { 

            vec3 = vec_ll; 

            d1 = ref_gh[0] - vec_ll[0]; 

            d2 = ref_gh[1] - vec_ll[1]; 

            d3 = 1 - d1 - d2; 

        } 

 

        out[0] = vec1[0]; 

        out[1] = vec1[1]; 

        out[2] = vec2[0]; 

        out[3] = vec2[1]; 

        out[4] = vec3[0]; 

        out[5] = vec3[1]; 

 

            if ( vec1[0] == 1.0 && vec1[1] == 0.0 &&  

                 vec2[0] == 0.0 && vec2[1] == 1.0 && 

                 vec3[0] == 0.0 && vec3[1] == 0.0 ) 

            subsector =  4.0; 

        else if ( vec1[0] == 2.0 && vec1[1] == 0.0 &&  

                  vec2[0] == 1.0 && vec2[1] == 1.0 && 

                  vec3[0] == 1.0 && vec3[1] == 0.0 ) 

            subsector =  1.0; 

        else if ( vec1[0] == 1.0 && vec1[1] == 0.0 &&  

                  vec2[0] == 0.0 && vec2[1] == 1.0 && 

                  vec3[0] == 1.0 && vec3[1] == 1.0 ) 

            subsector =  2.0; 

        else if ( vec1[0] == 1.0 && vec1[1] == 1.0 &&  

                  vec2[0] == 0.0 && vec2[1] == 2.0 && 

                  vec3[0] == 0.0 && vec3[1] == 1.0 ) 

            subsector =  3.0; 

        else 

            subsector = -1.0; 

 

         

    /* 

        Step 3 

        Calculate common alpha 
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    */ 

        alphaC = IN_ALPHA; 

         

        if (alphaC >= 1.0) 

            alphaC = 1.0; 

        else if (alphaC <= 0.0) 

            alphaC = 0.0; 

 

    /* 

        Step 4 

        Calculate vectors and sequence and timing 

    */ 

             if (subsector == 1.0) 

        { 

            dsmall_1 = d3; 

            dsmall_2 =  0; 

            dlarge_1 = d1; 

            dlarge_2 =  0; 

            dmedium  = d2; 

            dzero    =  0; 

        } 

        else if (subsector == 2.0) 

        { 

            dsmall_1 = d1; 

            dsmall_2 = d2; 

            dlarge_1 =  0; 

            dlarge_2 =  0; 

            dmedium  = d3; 

            dzero    =  0; 

        } 

        else if (subsector == 3.0) 

        { 

            dsmall_1 =  0; 

            dsmall_2 = d3; 

            dlarge_1 =  0; 

            dlarge_2 = d2; 

            dmedium  = d1; 

            dzero    =  0; 

        } 

        else if (subsector == 4.0) 

        { 

            dsmall_1 = d1; 

            dsmall_2 = d2; 

            dlarge_1 =  0; 

            dlarge_2 =  0; 

            dmedium  =  0; 

            dzero    = d3; 

        } 

 

        // Calculate the individual alphas 

 

             if (sector == 1.0)    { Ix = IN_IA; Iy = IN_IC; }  

        else if (sector == 2.0) { Ix = IN_IB; Iy = IN_IC; } 

        else if (sector == 3.0) { Ix = IN_IB; Iy = IN_IA; } 

        else if (sector == 4.0) { Ix = IN_IC; Iy = IN_IA; } 

        else if (sector == 5.0) { Ix = IN_IC; Iy = IN_IB; } 

        else if (sector == 6.0) { Ix = IN_IA; Iy = IN_IB; } 

 

        if ( Ix >= 0.0 ) 

            alpha1 = alphaC; 

        else  

            alpha1 = (1.0-alphaC); 

 

        if ( Iy >= 0.0 ) 

            alpha2 = (1.0-alphaC); 

        else 

            alpha2 = alphaC; 
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        // Because I implemented it my way where my definition for small vector 1 is always at the 0 degree mark 

        // and small vector 2 is always at the 60 degree mark\ 

        // Yet Yamanaka didnt so I have to swap it every 120 degrees 

        if ((sector==2.0)||(sector==4.0)||(sector==6.0)) 

        { 

            tmp = alpha1; 

            alpha1 = alpha2; 

            alpha2 = tmp; 

        } 

 

        ds1p = alpha1*dsmall_1; 

        ds1n = dsmall_1 - ds1p; 

 

        ds2p = alpha2*dsmall_2; 

        ds2n = dsmall_2 - ds2p; 

 

 

             if (subsector == 1.0) 

        { 

                 if (sector == 1.0) 

            { 

                seq[0] = 211; d[0] = ds1p; //small 1p 

                seq[1] = 210; d[1] = dmedium; 

                seq[2] = 200; d[2] = dlarge_1; 

                seq[3] = 100; d[3] = ds1n; 

            } 

            else if (sector == 2.0) 

            { 

                seq[0] = 221; d[0] = ds1p; 

                seq[1] = 220; d[1] = dlarge_1; 

                seq[2] = 120; d[2] = dmedium; 

                seq[3] = 110; d[3] = ds1n; 

            } 

            else if (sector == 3.0) 

            { 

                seq[0] = 121; d[0] = ds1p; 

                seq[1] =  21; d[1] = dmedium; 

                seq[2] =  20; d[2] = dlarge_1; 

                seq[3] =  10; d[3] = ds1n; 

            } 

            else if (sector == 4.0) 

            { 

                seq[0] = 122; d[0] = ds1p; 

                seq[1] =  22; d[1] = dlarge_1; 

                seq[2] =  12; d[2] = dmedium; 

                seq[3] =  11; d[3] = ds1n; 

            } 

            else if (sector == 5.0) 

            { 

                seq[0] = 112; d[0] = ds1p; 

                seq[1] = 102; d[1] = dmedium; 

                seq[2] =   2; d[2] = dlarge_1; 

                seq[3] =   1; d[3] = ds1n; 

            } 

            else if (sector == 6.0) 

            { 

                seq[0] = 212; d[0] = ds1p; 

                seq[1] = 202; d[1] = dlarge_1; 

                seq[2] = 201; d[2] = dmedium; 

                seq[3] = 101; d[3] = ds1n; 

            } 

        } 

        else if (subsector == 2.0) 

        { 

                 if (sector == 1.0) 

            { 



212   SIMULATION SOFTWARE 

212 

                seq[0] = 221; d[0] = ds2p; 

                seq[1] = 211; d[1] = ds1p; 

                seq[2] = 210; d[2] = dmedium; 

                seq[3] = 110; d[3] = ds2n; 

                seq[4] = 100; d[4] = ds1n; 

            } 

            else if (sector == 2.0) 

            { 

                seq[0] = 221; d[0] = ds1p; 

                seq[1] = 121; d[1] = ds2p; 

                seq[2] = 120; d[2] = dmedium; 

                seq[3] = 110; d[3] = ds1n; 

                seq[4] =  10; d[4] = ds2n; 

            } 

            else if (sector == 3.0) 

            { 

                seq[0] = 122; d[0] = ds2p;    

                seq[1] = 121; d[1] = ds1p;    

                seq[2] =  21; d[2] = dmedium; 

                seq[3] =  11; d[3] = ds2n;    

                seq[4] =  10; d[4] = ds1n;    

            } 

            else if (sector == 4.0) 

            { 

                seq[0] = 122; d[0] = ds1p;    

                seq[1] = 112; d[1] = ds2p;    

                seq[2] =  12; d[2] = dmedium; 

                seq[3] =  11; d[3] = ds1n;    

                seq[4] =   1; d[4] = ds2n;    

            } 

            else if (sector == 5.0) 

            { 

                seq[0] = 212; d[0] = ds2p;    

                seq[1] = 112; d[1] = ds1p;    

                seq[2] = 102; d[2] = dmedium; 

                seq[3] = 101; d[3] = ds2n;    

                seq[4] =   1; d[4] = ds1n;    

            } 

            else if (sector == 6.0) 

            { 

                seq[0] = 212; d[0] = ds1p;    

                seq[1] = 211; d[1] = ds2p;    

                seq[2] = 201; d[2] = dmedium; 

                seq[3] = 101; d[3] = ds1n;    

                seq[4] = 100; d[4] = ds2n;    

            } 

        } 

        else if (subsector == 3.0) 

        { 

                 if (sector == 1.0) 

            { 

                seq[0] = 221; d[0] = ds2p; 

                seq[1] = 220; d[1] = dlarge_2; 

                seq[2] = 210; d[2] = dmedium; 

                seq[3] = 110; d[3] = ds2n; 

            } 

            else if (sector == 2.0) 

            { 

                seq[0] = 121; d[0] = ds2p;     

                seq[1] = 120; d[1] = dmedium; 

                seq[2] =  20; d[2] = dlarge_2;  

                seq[3] =  10; d[3] = ds2n;     

            } 

            else if (sector == 3.0) 

            { 

                seq[0] = 122; d[0] = ds2p;     

                seq[1] =  22; d[1] = dlarge_2; 
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                seq[2] =  21; d[2] = dmedium;  

                seq[3] =  11; d[3] = ds2n;     

            } 

            else if (sector == 4.0) 

            { 

                seq[0] = 112; d[0] = ds2p;     

                seq[1] =  12; d[1] = dmedium;  

                seq[2] =   2; d[2] = dlarge_2; 

                seq[3] =   1; d[3] = ds2n;     

            } 

            else if (sector == 5.0) 

            { 

                seq[0] = 212; d[0] = ds2p;     

                seq[1] = 202; d[1] = dlarge_2; 

                seq[2] = 102; d[2] = dmedium;  

                seq[3] = 101; d[3] = ds2n;     

            } 

            else if (sector == 6.0) 

            { 

                seq[0] = 211; d[0] = ds2p;     

                seq[1] = 201; d[1] = dmedium;  

                seq[2] = 200; d[2] = dlarge_2; 

                seq[3] = 100; d[3] = ds2n;     

            } 

        } 

        else if (subsector == 4.0) 

        { 

                 if (sector == 1.0) 

            { 

                seq[0] = 222; d[0] = dzero/3.0; 

                seq[1] = 221; d[1] = ds2p; 

                seq[2] = 211; d[2] = ds1p; 

                seq[3] = 111; d[3] = dzero/3.0; 

                seq[4] = 110; d[4] = ds2n; 

                seq[5] = 100; d[5] = ds1n; 

                seq[6] =   0; d[6] = dzero/3.0; 

            } 

            else if (sector == 2.0) 

            { 

                seq[0] = 222; d[0] = dzero/3.0; 

                seq[1] = 221; d[1] = ds1p;      

                seq[2] = 121; d[2] = ds2p;      

                seq[3] = 111; d[3] = dzero/3.0; 

                seq[4] = 110; d[4] = ds1n;      

                seq[5] =  10; d[5] = ds2n;      

                seq[6] =   0; d[6] = dzero/3.0; 

            } 

            else if (sector == 3.0) 

            { 

                seq[0] = 222; d[0] = dzero/3.0; 

                seq[1] = 122; d[1] = ds2p;      

                seq[2] = 121; d[2] = ds1p;      

                seq[3] = 111; d[3] = dzero/3.0; 

                seq[4] =  11; d[4] = ds2n;      

                seq[5] =  10; d[5] = ds1n;      

                seq[6] =   0; d[6] = dzero/3.0; 

            } 

            else if (sector == 4.0) 

            { 

                seq[0] = 222; d[0] = dzero/3.0; 

                seq[1] = 122; d[1] = ds1p;      

                seq[2] = 112; d[2] = ds2p;      

                seq[3] = 111; d[3] = dzero/3.0; 

                seq[4] =  11; d[4] = ds1n;      

                seq[5] =   1; d[5] = ds2n;      

                seq[6] =   0; d[6] = dzero/3.0; 

            } 
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            else if (sector == 5.0) 

            { 

                seq[0] = 222; d[0] = dzero/3.0; 

                seq[1] = 212; d[1] = ds2p;      

                seq[2] = 112; d[2] = ds1p;      

                seq[3] = 111; d[3] = dzero/3.0; 

                seq[4] = 101; d[4] = ds2n;      

                seq[5] =   1; d[5] = ds1n;      

                seq[6] =   0; d[6] = dzero/3.0; 

            } 

            else if (sector == 6.0) 

            { 

                seq[0] = 222; d[0] = dzero/3.0; 

                seq[1] = 212; d[1] = ds1p;      

                seq[2] = 211; d[2] = ds2p;      

                seq[3] = 111; d[3] = dzero/3.0; 

                seq[4] = 101; d[4] = ds1n;      

                seq[5] = 100; d[5] = ds2n;      

                seq[6] =   0; d[6] = dzero/3.0; 

            } 

        } 

 

 

        // Translate the duty to time 

         

             if (subsector == 1.0) 

        { 

            /*  

                | seq[0] | seq[1] | seq[2] | seq[3] | seq[2] | seq[1] | seq[0] | 

                t  ->  y[0] ->  y[1] ->  y[2] ->  y[3] ->  y[4] ->  y[5] 

            */ 

                y[0] = t    + 0.5*d[0]*sw_period; 

                y[1] = y[0] + 0.5*d[1]*sw_period; 

                y[2] = y[1] + 0.5*d[2]*sw_period; 

                y[3] = y[2] + 1.0*d[3]*sw_period; 

                y[4] = y[3] + 0.5*d[2]*sw_period; 

                y[5] = y[4] + 0.5*d[1]*sw_period; 

        } 

        else if (subsector == 3.0) 

        { 

            /*  

                | seq[0] | seq[1] | seq[2] | seq[3] | seq[2] | seq[1] | seq[0] | 

                t  ->  y[0] ->  y[1] ->  y[2] ->  y[3] ->  y[4] ->  y[5] 

            */ 

                y[0] = t + 0.5*d[0]*sw_period; 

                y[1] = y[0] + 0.5*d[1]*sw_period; 

                y[2] = y[1] + 0.5*d[2]*sw_period; 

                y[3] = y[2] + 1.0*d[3]*sw_period; 

                y[4] = y[3] + 0.5*d[2]*sw_period; 

                y[5] = y[4] + 0.5*d[1]*sw_period;         

        } 

        else if (subsector == 2.0) 

        {                          

            /*  

                | seq[0] | seq[1] | seq[2] | seq[3] | seq[4] | seq[3] | seq[2] | seq[1] | seq[0] | 

                t  ->  y[0] ->  y[1] ->  y[2] ->  y[3] ->  y[4] ->  y[5] ->  y[6] ->  y[7] 

            */ 

                y[0] = t + 0.5*d[0]*sw_period; 

                y[1] = y[0] + 0.5*d[1]*sw_period; 

                y[2] = y[1] + 0.5*d[2]*sw_period; 

                y[3] = y[2] + 0.5*d[3]*sw_period; 

                y[4] = y[3] + 1.0*d[4]*sw_period; 

                y[5] = y[4] + 0.5*d[3]*sw_period;                 

                y[6] = y[5] + 0.5*d[2]*sw_period; 

                y[7] = y[6] + 0.5*d[1]*sw_period; 

        }                          

        else if (subsector == 4.0) 
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        {                          

            /*  

                | seq[0] | seq[1] | seq[2] | seq[3] | seq[4] | seq[5] | seq[6] | seq[5] | seq[4] | seq[3] | seq[2] | seq[1] | seq[0] 

                t  ->  y[0] ->  y[1] ->  y[2] ->  y[3] ->  y[4] ->  y[5] ->  y[6] ->  y[7] ->  y[8] ->  y[9] -> y[10] -> y[11] 

            */ 

                y[0] = t + 0.5*d[0]*sw_period; 

                y[1] = y[0] + 0.5*d[1]*sw_period; 

                y[2] = y[1] + 0.5*d[2]*sw_period; 

                y[3] = y[2] + 0.5*d[3]*sw_period; 

                y[4] = y[3] + 0.5*d[4]*sw_period; 

                y[5] = y[4] + 0.5*d[5]*sw_period;                 

                y[6] = y[5] + 1.0*d[6]*sw_period; 

                y[7] = y[6] + 0.5*d[5]*sw_period;         

                y[8] = y[7] + 0.5*d[4]*sw_period; 

                y[9] = y[8] + 0.5*d[3]*sw_period; 

                y[10] = y[9] + 0.5*d[2]*sw_period; 

                y[11] = y[10] + 0.5*d[1]*sw_period; 

        }                       

 

        //out[6] = vec_ll[0]; 

        //out[7] = vec_ll[1]; 

        //out[0] = vec1[0]; 

        //out[1] = vec1[1]; 

        //out[2] = vec2[0]; 

        //out[3] = vec2[1]; 

        //out[4] = vec3[0]; 

        //out[5] = vec3[1]; 

        out[6] = seq[0]; 

        out[7] = seq[1]; 

        out[8] = seq[2]; 

        out[9] = seq[3]; 

        out[16] = sector; 

        out[17] = subsector; 

        out[18] = d[0]; 

        out[19] = d[1]; 

        out[20] = d[2]; 

        out[21] = d[3]; 

 

    } 

 

    // FOR PSIM: remember this iteration 

    prev_flow = IN_FLOW; 

     

    if ((subsector == 1.0) || (subsector == 3.0)) 

    { 

        if ( t <= y[0] )                output_to_phase_legs(out, seq[0]); 

        if ( t > y[0] && t <= y[1] )    output_to_phase_legs(out, seq[1]); 

        if ( t > y[1] && t <= y[2] )    output_to_phase_legs(out, seq[2]); 

        if ( t > y[2] && t <= y[3] )    output_to_phase_legs(out, seq[3]); 

        if ( t > y[3] && t <= y[4] )    output_to_phase_legs(out, seq[2]); 

        if ( t > y[4] && t <= y[5] )    output_to_phase_legs(out, seq[1]); 

        if ( t > y[5] )                    output_to_phase_legs(out, seq[0]);     

    } 

    else if (subsector == 2.0) 

    { 

        if ( t <= y[0] )                output_to_phase_legs(out, seq[0]); 

        if ( t > y[0] && t <= y[1] )    output_to_phase_legs(out, seq[1]); 

        if ( t > y[1] && t <= y[2] )    output_to_phase_legs(out, seq[2]); 

        if ( t > y[2] && t <= y[3] )    output_to_phase_legs(out, seq[3]); 

        if ( t > y[3] && t <= y[4] )    output_to_phase_legs(out, seq[4]); 

        if ( t > y[4] && t <= y[5] )    output_to_phase_legs(out, seq[3]); 

        if ( t > y[5] && t <= y[6] )    output_to_phase_legs(out, seq[2]); 

        if ( t > y[6] && t <= y[7] )    output_to_phase_legs(out, seq[1]); 

        if ( t > y[7] )                    output_to_phase_legs(out, seq[0]);     

    } 

    else if (subsector == 4.0) 

    { 
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        if ( t <= y[ 0] )               output_to_phase_legs(out, seq[0]); 

        if ( t > y[ 0] && t <= y[ 1] )    output_to_phase_legs(out, seq[1]); 

        if ( t > y[ 1] && t <= y[ 2] )    output_to_phase_legs(out, seq[2]); 

        if ( t > y[ 2] && t <= y[ 3] )    output_to_phase_legs(out, seq[3]); 

        if ( t > y[ 3] && t <= y[ 4] )    output_to_phase_legs(out, seq[4]); 

        if ( t > y[ 4] && t <= y[ 5] )    output_to_phase_legs(out, seq[5]); 

        if ( t > y[ 5] && t <= y[ 6] )    output_to_phase_legs(out, seq[6]); 

        if ( t > y[ 6] && t <= y[ 7] )    output_to_phase_legs(out, seq[5]); 

        if ( t > y[ 7] && t <= y[ 8] )    output_to_phase_legs(out, seq[4]); 

        if ( t > y[ 8] && t <= y[ 9] )    output_to_phase_legs(out, seq[3]); 

        if ( t > y[ 9] && t <= y[10] )    output_to_phase_legs(out, seq[2]); 

        if ( t > y[10] && t <= y[11] )    output_to_phase_legs(out, seq[1]); 

        if ( t > y[11] )                output_to_phase_legs(out, seq[0]);     

    } 

} 

 

void output_to_phase_legs(double *out, int seq) 

{ 

    int a,b,c; 

    a = abs(    seq/100                ); 

    b = abs(    (seq - 100*a)/10    ); 

    c = abs(    seq - 100*a - 10*b    ); 

 

    switch (a) 

    { 

        case 2:  

            OUT_A_UP = 1;  

            OUT_A_LOW = 1;  

            break; 

        case 1:  

            OUT_A_UP = 0;  

            OUT_A_LOW = 1; 

            break; 

        case 0:  

            OUT_A_UP = 0; 

            OUT_A_LOW = 0; 

            break; 

    } 

 

    switch (b) 

    { 

        case 2:  

            OUT_B_UP = 1; 

            OUT_B_LOW = 1; 

            break; 

        case 1:  

            OUT_B_UP = 0;  

            OUT_B_LOW = 1; 

            break; 

        case 0:  

            OUT_B_UP = 0; 

            OUT_B_LOW = 0; 

            break; 

    } 

 

    switch (c) 

    { 

        case 2:  

            OUT_C_UP = 1;  

            OUT_C_LOW = 1; 

            break; 

        case 1:  

            OUT_C_UP = 0; 

            OUT_C_LOW = 1; 

            break; 

        case 0:  

            OUT_C_UP = 0;  
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            OUT_C_LOW = 0; 

            break; 

    } 

} 

 

int vec_to_no_of_states(double *vec) 

{ 

    int g = (int) vec[0]; 

    int h = (int) vec[1]; 

    int n; 

 

    // null 

    if (g == 0 && h == 0) n = 3; 

    // smalls 

    else if (g ==  1 && h ==  0) n = 2; 

    else if (g ==  0 && h ==  1) n = 2; 

    else if (g == -1 && h ==  1) n = 2; 

    else if (g == -1 && h ==  0) n = 2; 

    else if (g ==  0 && h == -1) n = 2; 

    else if (g ==  1 && h == -1) n = 2; 

    // medium 

    else if (g ==  1 && h ==  1) n = 1; 

    else if (g == -1 && h ==  2) n = 1; 

    else if (g == -2 && h ==  1) n = 1; 

    else if (g == -1 && h == -1) n = 1; 

    else if (g ==  1 && h == -2) n = 1; 

    else if (g ==  2 && h == -1) n = 1; 

    // large 

    else if (g ==  2 && h ==  0) n = 1; 

    else if (g ==  0 && h ==  2) n = 1; 

    else if (g == -2 && h ==  2) n = 1; 

    else if (g == -2 && h ==  0) n = 1; 

    else if (g ==  0 && h == -2) n = 1; 

    else if (g ==  2 && h == -2) n = 1; 

    else n = 0; // error 

 

    return n; 

} 

 

void vec_to_states(double *vec, int *states) 

{ 

    // C compiler didn't like the idea of 010. 

    // It wanted it to just be 10 

 

 

    int g = (int) vec[0]; 

    int h = (int) vec[1]; 

 

    // null 

    if (g == 0 && h == 0) 

    { 

        states[0] = 3; 

        states[1] = 000; states[2] = 111; states[3] = 222; 

    } 

 

    // smalls 

    else if (g ==  1 && h ==  0) { states[0] = 2; states[1] = 100; states[2] = 211; } 

    else if (g ==  0 && h ==  1) { states[0] = 2; states[1] = 110; states[2] = 221; } 

    else if (g == -1 && h ==  1) { states[0] = 2; states[1] = 121; states[2] =  10; } 

    else if (g == -1 && h ==  0) { states[0] = 2; states[1] = 122; states[2] =  11; } 

    else if (g ==  0 && h == -1) { states[0] = 2; states[1] = 112; states[2] =   1; } 

    else if (g ==  1 && h == -1) { states[0] = 2; states[1] = 101; states[2] = 212; } 

 

    // medium 

    else if (g ==  1 && h ==  1) { states[0] = 1; states[1] = 210; } 

    else if (g == -1 && h ==  2) { states[0] = 1; states[1] = 120; } 

    else if (g == -2 && h ==  1) { states[0] = 1; states[1] =  21; } 
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    else if (g == -1 && h == -1) { states[0] = 1; states[1] =  12; } 

    else if (g ==  1 && h == -2) { states[0] = 1; states[1] = 102; } 

    else if (g ==  2 && h == -1) { states[0] = 1; states[1] = 201; } 

    // large 

    else if (g ==  2 && h ==  0) { states[0] = 1; states[1] = 200; } 

    else if (g ==  0 && h ==  2) { states[0] = 1; states[1] = 220; } 

    else if (g == -2 && h ==  2) { states[0] = 1; states[1] =  20; } 

    else if (g == -2 && h ==  0) { states[0] = 1; states[1] =  22; } 

    else if (g ==  0 && h == -2) { states[0] = 1; states[1] = 002; } 

    else if (g ==  2 && h == -2) { states[0] = 1; states[1] = 202; } 

    else { states[0] = 0; } // error 

} 

 

int sw_count(int x1, int x2) 

{ 

    int na1,nb1,nc1; 

    int na2,nb2,nc2; 

    int count; 

 

    count = 100; 

 

    na1 = x1/100; 

    nb1 = (x1 - 100*na1)/10; 

    nc1 = x1 - 100*na1 - 10*nb1; 

 

    na2 = x2/100; 

    nb2 = (x2 - 100*na2)/10; 

    nc2 = x2 - 100*na2 - 10*nb2; 

    count = abs(na1 - na2) + abs(nb1 - nb2) + abs(nc1 - nc2); 

 

    return count; 

} 

 

double rads (double angle) 

{ 

    return PI * (angle / 180.0); 

} 

 

double vecs_to_sector(double *vec_uu, double *vec_ul, double *vec_lu, double *vec_ll) 

{ 

    if ( vec_uu[0] == 1.0 && vec_uu[1] == 1.0 &&  

         vec_ul[0] == 1.0 && vec_ul[1] == 0.0 && 

         vec_lu[0] == 0.0 && vec_lu[1] == 1.0 && 

         vec_ll[0] == 0.0 && vec_ll[1] == 1.0) 

        return 4.0; 

    else if ( vec_uu[0] == 2.0 && vec_uu[1] == 1.0 &&  

              vec_ul[0] == 2.0 && vec_ul[1] == 0.0 && 

              vec_lu[0] == 1.0 && vec_lu[1] == 1.0 ) 

        return 1.0; 

    else if ( vec_uu[0] == 1.0 && vec_uu[1] == 1.0 &&  

              vec_ul[0] == 1.0 && vec_ul[1] == 0.0 && 

              vec_lu[0] == 0.0 && vec_lu[1] == 1.0 && 

              vec_ll[0] == 0.0 && vec_ll[1] == 0.0 ) 

        return 2.0; 

    else if ( vec_uu[0] == 1.0 && vec_uu[1] == 2.0 &&  

              vec_ul[0] == 1.0 && vec_ul[1] == 1.0 && 

              vec_lu[0] == 0.0 && vec_lu[1] == 2.0 ) 

        return 3.0; 

    else 

        return -1.0; 

} 
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A.1.5.5 NTVV 

 

Figure A.5: NTVV’s PSIM simulation (topology) 
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Figure A.6: NTVV’s PSIM simulation (control)  
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A.1.5.6 Code 

The following lists the C used within each PSIM block 

A.1.5.6.1 Modulator (x.dll) 

This code is a DLL used in PSIM to execute modulation calculations. The DLL is 

compiled with Microsoft Visual Studio 2010 Express. 

 

/* 

    Zaki Mohzani 

    27th Nov 2010 

     

    PLL in C code 

*/ 

 

 

#include <math.h> 

 

// function prototypes 

double max(double a, double b, double c); 

double min(double a, double b, double c); 

double rads (double angle); 

double sgn(double a); 

 

// defines 

#define TRUE 1 

#define FALSE 0 

#define CONST_PI 3.14159265 

 

// input output aliases 

#define IN_FLOW            in[ 0] 

#define IN_SW_PERIOD    in[ 1] 

#define IN_VLINE_A        in[ 2] 

#define IN_VLINE_B        in[ 3] 

#define IN_VLINE_C        in[ 4] 

#define IN_IA            in[ 5] 

#define IN_IB            in[ 6] 

#define IN_IC            in[ 7] 

#define IN_VCAP1        in[ 8] 

#define IN_VCAP2        in[ 9] 

#define IN_STRATEGY        in[10] 

#define IN_M            in[11] 

#define IN_KP_BENDRE    in[12] 

#define IN_STOP_UNB        in[13] 

#define IN_C            in[14] 

#define IN_KP            in[15] 

#define IN_KI            in[16] 

 

 

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out) 

{ 

    // For PSIM 

    static double prev_flow = 0.0; 

    static double sw_period; 

 

    // For Controller 

//    static double sw_period = 0.0; 

//    static int error = 0; 

//    static double buffer_out[11]; 

 

    static double SQRT3; 

    static int i; 
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    static double DC_BUS,delta_NP, 

        omega,angle,angle_deg,Deg120,Deg30, 

        Ref_Va,Ref_Vb,Ref_Vc, 

        I,P,FF,PI, 

        vo_max,vo_min, 

        limited_offset, 

        Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset, 

        a,b,c, 

        ap,bp,cp, 

        offset,offsetp, 

        VDC, 

        Ref_Va_top, Ref_Va_bot, 

        Ref_Vb_top,    Ref_Vb_bot, 

        Ref_Vc_top,    Ref_Vc_bot, 

        Ref_Va_top_offset, Ref_Va_bot_offset, 

        Ref_Vb_top_offset, Ref_Vb_bot_offset, 

        Ref_Vc_top_offset, Ref_Vc_bot_offset, 

        vap, vbp, vcp, 

        van, vbn, vcn, 

        da,db,dc, 

        va_offset, vb_offset, vc_offset, 

        M_tmp, 

        I_NP_ref, 

        limit,top_limit,bot_limit; 

    static double bout[20]; 

 

/*----------------------------------------------- 

Initialisation of Controller simulator 

void init_of_2810() 

-----------------------------------------------*/ 

    if ( t == delt ) 

    { 

        sw_period = IN_SW_PERIOD; 

         

        SQRT3=sqrt(3); 

         

        I = 0.0; 

        P = 0.0; 

    } 

 

 

/*----------------------------------------------- 

Start of Controller simulator 

void start_of_2810() 

-----------------------------------------------*/ 

 

    // check if we have an overflow / underflow condition 

    if (prev_flow ==  0.0 && IN_FLOW != 0.0) 

    { 

         

        for (i=0;i<20;i++) 

            out[i] = bout[i]; 

 

        DC_BUS = IN_VCAP1 + IN_VCAP2; 

        if ( t > IN_STOP_UNB)  

            delta_NP = IN_VCAP1 - IN_VCAP2; // Upper - Lower 

        else 

            delta_NP = IN_VCAP1 - (IN_VCAP2+0.2*DC_BUS); // Upper - Lower 

 

        // Paper wants Lower - Upper 

        delta_NP = -delta_NP; 

 

        omega = 2*CONST_PI*50; 

        angle = omega*t; 

        Deg120 = (2.0/3.0)*CONST_PI; 

        Deg30 = CONST_PI/6; 
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        angle_deg = angle * (180/CONST_PI); 

 

        while (angle_deg>=360) 

            angle_deg -= 360; 

 

        // Generate Refs 

 

        vap = 0; vbp = 0; vcp = 0; 

        van = 0; vbn = 0; vcn = 0; 

 

        M_tmp = IN_M; 

 

        a = M_tmp * cos(angle); 

        b = M_tmp * cos(angle - Deg120); 

        c = M_tmp * cos(angle + Deg120); 

         

        vap = 0.5*(a - min(a,b,c)); 

        van = 0.5*(a - max(a,b,c)); 

        vbp = 0.5*(b - min(a,b,c)); 

        vbn = 0.5*(b - max(a,b,c)); 

        vcp = 0.5*(c - min(a,b,c)); 

        vcn = 0.5*(c - max(a,b,c)); 

         

 

        Ref_Va_top = vap; 

        Ref_Va_bot = van; 

        Ref_Vb_top = vbp; 

        Ref_Vb_bot = vbn; 

        Ref_Vc_top = vcp; 

        Ref_Vc_bot = vcn; 

 

 

        if (sw_period == 0.0) 

            sw_period = 0.0000001; 

        I_NP_ref = IN_C*delta_NP/sw_period; 

         

        da = fabs(van - vap + 1); 

        db = fabs(vbn - vbp + 1); 

        dc = fabs(vcn - vcp + 1); 

 

        va_offset = I_NP_ref*fabs(van-vap+1); 

        va_offset = va_offset / (-db*IN_IB-dc*IN_IC); 

        va_offset = 0.5*fabs(va_offset); 

        va_offset = -1 * sgn(delta_NP*IN_IA)*va_offset; 

 

        vb_offset = I_NP_ref*fabs(vbn-vbp+1); 

        vb_offset = vb_offset / (-da*IN_IA-dc*IN_IC); 

        vb_offset = 0.5*fabs(vb_offset); 

        vb_offset = -1 * sgn(delta_NP*IN_IB)*vb_offset; 

 

        vc_offset = I_NP_ref*fabs(vcn-vcp+1); 

        vc_offset = vc_offset / (-da*IN_IA-db*IN_IB); 

        vc_offset = 0.5*fabs(vc_offset); 

        vc_offset = -1 * sgn(delta_NP*IN_IC)*vc_offset; 

 

 

        Ref_Va_top_offset = Ref_Va_top; //+ limited_offset; 

        Ref_Va_bot_offset = Ref_Va_bot; //+ limited_offset; 

        Ref_Vb_top_offset = Ref_Vb_top; //+ limited_offset; 

        Ref_Vb_bot_offset = Ref_Vb_bot; //+ limited_offset; 

        Ref_Vc_top_offset = Ref_Vc_top; //+ limited_offset; 

        Ref_Vc_bot_offset = Ref_Vc_bot; //+ limited_offset; 

 

 

        if ( 60.0 <= angle_deg && angle_deg <= 120.0 ) 

        { 

            // Apply to phase A 
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            if( va_offset > 0.0 ) 

            { 

                limit = ((van+1)-vap)/2.0; 

                 

                if (va_offset > limit) 

                    va_offset = limit; 

            } 

            else 

            { 

                top_limit = vap-0; 

                bot_limit = 0-van; 

 

                limit = -min(top_limit,bot_limit,1); 

 

                if (va_offset < limit) 

                    va_offset = limit; 

            } 

            limited_offset = va_offset; 

            Ref_Va_top_offset = Ref_Va_top + va_offset; 

            Ref_Va_bot_offset = Ref_Va_bot - va_offset; 

        } 

 

        if ( 240.0 <= angle_deg && angle_deg <= 300.0 ) 

        { 

            // Apply to phase A 

            if( va_offset > 0.0 ) 

            { 

                limit = ((van+1)-vap)/2.0; 

                 

                if (va_offset > limit) 

                    va_offset = limit; 

            } 

            else 

            { 

                top_limit = vap-0; 

                bot_limit = 0-van; 

 

                limit = -min(top_limit,bot_limit,1); 

 

                if (va_offset < limit) 

                    va_offset = limit; 

            } 

            limited_offset = va_offset; 

            Ref_Va_top_offset = Ref_Va_top + va_offset; 

            Ref_Va_bot_offset = Ref_Va_bot - va_offset; 

        } 

 

        if ( 180.0 <= angle_deg && angle_deg <= 240.0 ) 

        { 

            // Apply to phase B 

            if( vb_offset > 0.0 ) 

            { 

                limit = ((vbn+1)-vbp)/2.0; 

                 

                if (vb_offset > limit) 

                    vb_offset = limit; 

            } 

            else 

            { 

                top_limit = vbp-0; 

                bot_limit = 0-vbn; 

 

                limit = -min(top_limit,bot_limit,1); 

 

                if (vb_offset < limit) 

                    vb_offset = limit; 

            } 
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            limited_offset = vb_offset; 

            Ref_Vb_top_offset = Ref_Vb_top + vb_offset; 

            Ref_Vb_bot_offset = Ref_Vb_bot - vb_offset; 

        } 

 

        if ( 0.0 <= angle_deg && angle_deg <= 60.0 ) 

        { 

            // Apply to phase B 

            if( vb_offset > 0.0 ) 

            { 

                limit = ((vbn+1)-vbp)/2.0; 

                 

                if (vb_offset > limit) 

                    vb_offset = limit; 

            } 

            else 

            { 

                top_limit = vbp-0; 

                bot_limit = 0-vbn; 

 

                limit = -min(top_limit,bot_limit,1); 

 

                if (vb_offset < limit) 

                    vb_offset = limit; 

            } 

            limited_offset = vb_offset; 

            Ref_Vb_top_offset = Ref_Vb_top + vb_offset; 

            Ref_Vb_bot_offset = Ref_Vb_bot - vb_offset; 

        } 

 

        if ( 300.0 <= angle_deg && angle_deg <= 360.0 ) 

        { 

            // Apply to phase C 

            if( vc_offset > 0.0 ) 

            { 

                limit = ((vcn+1)-vcp)/2.0; 

                 

                if (vc_offset > limit) 

                    vc_offset = limit; 

            } 

            else 

            { 

                top_limit = vcp-0; 

                bot_limit = 0-vcn; 

 

                limit = -min(top_limit,bot_limit,1); 

 

                if (vc_offset < limit) 

                    vc_offset = limit; 

            } 

            limited_offset = vc_offset; 

            Ref_Vc_top_offset = Ref_Vc_top + vc_offset; 

            Ref_Vc_bot_offset = Ref_Vc_bot - vc_offset; 

        } 

 

        if ( 120.0 <= angle_deg && angle_deg <= 180.0 ) 

        { 

            // Apply to phase C 

            if( vc_offset > 0.0 ) 

            { 

                limit = ((vcn+1)-vcp)/2.0; 

                 

                if (vc_offset > limit) 

                    vc_offset = limit; 

            } 

            else 

            { 
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                top_limit = vcp-0; 

                bot_limit = 0-vcn; 

 

                limit = -min(top_limit,bot_limit,1); 

 

                if (vc_offset < limit) 

                    vc_offset = limit; 

            } 

            limited_offset = vc_offset; 

            Ref_Vc_top_offset = Ref_Vc_top + vc_offset; 

            Ref_Vc_bot_offset = Ref_Vc_bot - vc_offset; 

        } 

 

        bout[ 0] = Ref_Va_top; 

        bout[ 1] = Ref_Va_bot; 

        bout[ 2] = Ref_Vb_top; 

        bout[ 3] = Ref_Vb_bot; 

        bout[ 4] = Ref_Vc_top; 

        bout[ 5] = Ref_Vc_bot; 

        bout[ 6] = limited_offset; 

        bout[ 7] = Ref_Va_top_offset; 

        bout[ 8] = Ref_Va_bot_offset; 

        bout[ 9] = Ref_Vb_top_offset; 

        bout[10] = Ref_Vb_bot_offset; 

        bout[11] = Ref_Vc_top_offset; 

        bout[12] = Ref_Vc_bot_offset; 

    } 

 

/*----------------------------------------------- 

End of Controller simulator 

void end_of_2810() 

-----------------------------------------------*/ 

 

    // FOR PSIM: remember this iteration 

    prev_flow = IN_FLOW; 

} 

 

 

double max(double a, double b, double c) 

{ 

    if ( a >= b ) 

    {    // a is greater 

        if ( a >= c ) 

            return a; 

        else 

            return c; 

    } 

     

    if ( a <= b ) 

    {    // b is greater 

        if ( b >= c ) 

            return b; 

        else 

            return c; 

    } 

 

    return 100.0; 

 

} 

 

double min(double a, double b, double c) 

{ 

    if ( a <= b ) 

    {    // a is smaller 

        if ( a <= c ) 

            return a; 

        else 
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            return c; 

    } 

 

    if ( b <= a ) 

    {    // b is smaller 

        if ( b <= c ) 

            return b; 

        else 

            return c; 

    } 

 

    return 100.0; 

} 

 

double rads (double angle) 

{ 

    return CONST_PI * (angle / 180.0); 

} 

 

double sgn(double a) 

{ 

    if (a >= 0.0) 

        return 1; 

    else 

        return -1; 

} 
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A.1.5.7 ONTVV 

 

Figure A.7: ONTVV’s PSIM simulation (topology) 
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Figure A.8: ONTVV’s PSIM simulation (control) 
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A.1.5.8 Code 

The following lists the C used within each PSIM block 

A.1.5.8.1 Modulator (x.dll) 

This code is a DLL used in PSIM to execute modulation calculations. The DLL is 

compiled with Microsoft Visual Studio 2010 Express. 

 

/* 

    Zaki Mohzani 

    27th Nov 2010 

     

    PLL in C code 

*/ 

 

 

#include <math.h> 

 

// function prototypes 

double max(double a, double b, double c); 

double min(double a, double b, double c); 

double rads (double angle); 

 

// defines 

#define TRUE 1 

#define FALSE 0 

#define CONST_PI 3.14159265 

 

// input output aliases 

#define IN_FLOW            in[ 0] 

#define IN_SW_PERIOD    in[ 1] 

#define IN_VLINE_A        in[ 2] 

#define IN_VLINE_B        in[ 3] 

#define IN_VLINE_C        in[ 4] 

#define IN_IA            in[ 5] 

#define IN_IB            in[ 6] 

#define IN_IC            in[ 7] 

#define IN_VCAP1        in[ 8] 

#define IN_VCAP2        in[ 9] 

#define IN_STRATEGY        in[10] 

#define IN_M            in[11] 

#define IN_STOP_UNB        in[12] 

#define IN_KP_NP        in[13] 

#define IN_KI_NP        in[14] 

#define IN_LOAD_ANGLE    in[15] 

 

 

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out) 

{ 

    // For PSIM 

    static double prev_flow = 0.0; 

    static double sw_period; 

 

    // For Controller 

//    static double sw_period = 0.0; 

//    static int error = 0; 

//    static double buffer_out[11]; 

 

    static double SQRT3; 

    static int i; 

    static double DC_BUS,delta_NP, 

        omega,angle,angle_deg,Deg120,Deg30, 
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        Ref_Va,Ref_Vb,Ref_Vc, 

        I,P,FF,PI, 

        vo_max,vo_min, 

        limited_offset, 

        Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset, 

        a,b,c, 

        ap,bp,cp, 

        offset,offsetp, 

        VDC, 

        Ref_Va_top, Ref_Va_bot, 

        Ref_Vb_top,    Ref_Vb_bot, 

        Ref_Vc_top,    Ref_Vc_bot, 

        Ref_Va_top_offset, Ref_Va_bot_offset, 

        Ref_Vb_top_offset, Ref_Vb_bot_offset, 

        Ref_Vc_top_offset, Ref_Vc_bot_offset, 

        M_tmp; 

    static double 

        load_angle,    abs_load_angle, 

        region, K, 

        dpd, dpq, dp0, 

        dnd, dnq, dn0, 

        dap, dbp, dcp, 

        dan, dbn, dcn, 

        doffset, 

        dpap, dpbp, dpcp, 

        dpan, dpbn, dpcn, 

        denum,wt,L, 

        overmodulation; 

    static double bout[20]; 

 

/*----------------------------------------------- 

Initialisation of Controller simulator 

void init_of_2810() 

-----------------------------------------------*/ 

    if ( t == delt ) 

    { 

        sw_period = IN_SW_PERIOD; 

         

        SQRT3=sqrt(3); 

         

        I = 0.0; 

        P = 0.0; 

    } 

 

 

/*----------------------------------------------- 

Start of Controller simulator 

void start_of_2810() 

-----------------------------------------------*/ 

 

    // check if we have an overflow / underflow condition 

    if (prev_flow ==  0.0 && IN_FLOW != 0.0) 

    { 

         

        for (i=0;i<20;i++) 

            out[i] = bout[i]; 

 

        DC_BUS = IN_VCAP1 + IN_VCAP2; 

        if ( t > IN_STOP_UNB)  

            delta_NP = IN_VCAP1 - IN_VCAP2; // Upper - Lower 

        else 

            delta_NP = IN_VCAP1 - (IN_VCAP2+0.1*DC_BUS); // Upper - Lower 

 

        delta_NP = delta_NP/2.0; 

 

        omega = 2*CONST_PI*50; 

        angle = omega*t; 
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        Deg120 = (2.0/3.0)*CONST_PI; 

        Deg30 = CONST_PI/6; 

 

        angle_deg = angle * (180/CONST_PI); 

 

        while (angle_deg>=360) 

            angle_deg -= 360; 

 

         

        M_tmp = IN_M / sqrt(4.0/3.0); 

 

/*///////////////////////////////////////////////////////////////////////////// 

        Generate Refs 

/////////////////////////////////////////////////////////////////////////////*/ 

 

        // Find the region of K based on M and load angle 

        load_angle = IN_LOAD_ANGLE * (CONST_PI/180); // input is in degrees 

        abs_load_angle = fabs(load_angle); 

 

#define REGION_A 1.0 

#define REGION_B 2.0 

#define REGION_C 3.0 

 

        if ( M_tmp <= 0.5 ) 

        { 

            region = REGION_A; 

        } 

         

        else if (M_tmp <= (0.75 + 0.213*(1-sin(abs_load_angle)))) 

        { 

            region = REGION_B; 

        } 

        else 

        { 

            region = REGION_C; 

        }         

 

        //out[0] = 0.75 + 0.213*(1-sin(abs_load_angle)); 

        //out[1] = region; 

 

        // Calculate K 

        if ( region == REGION_A ) 

            K = 0.25 * M_tmp*M_tmp * cos(load_angle); 

        else if ( region == REGION_B ) 

            K = 0.25 * M_tmp * (1 - abs_load_angle/(CONST_PI/2)); 

        else 

            K = 1.53 * (1-M_tmp) * (1-sin(abs_load_angle)) / (abs_load_angle+0.24); 

 

        // Calculate dpq, dpd 

        dpq = -K * sin(3*angle); 

        dpd = tan(load_angle) * dpq + M_tmp/sqrt(2.0); 

 

        // Calculate dnd, dnq 

        dnd = dpd - sqrt(2.0) * M_tmp; 

        dnq = dpq; 

 

        // Calculate dp0 

        if ( 0.0 <= angle_deg && angle_deg <= 120.0 ) 

            dp0 = sqrt(2.0) * (-dpd*cos(angle+Deg120) + dpq*sin(angle+Deg120)); 

        else if ( 120.0 < angle_deg && angle_deg <= 240.0 ) 

            dp0 = sqrt(2.0) * (-dpd*cos(angle) + dpq*sin(angle)); 

        else if ( 240.0 < angle_deg && angle_deg <= 360.0 ) 

            dp0 = sqrt(2.0) * (-dpd*cos(angle-Deg120) + dpq*sin(angle-Deg120)); 

         

        // Calculate dn0 

        if ( 0.0 <= angle_deg && angle_deg <= 60.0) 

            dn0 = sqrt(2.0) * (-dnd*cos(angle) + dnq*sin(angle)); 
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        else if ( 60.0 < angle_deg && angle_deg <= 180.0 ) 

            dn0 = sqrt(2.0) * (-dnd*cos(angle-Deg120) + dnq*sin(angle-Deg120)); 

        else if ( 180.0 < angle_deg && angle_deg <= 300.0 ) 

            dn0 = sqrt(2.0) * (-dnd*cos(angle+Deg120) + dnq*sin(angle+Deg120)); 

        else if ( 300.0 < angle_deg && angle_deg <= 360.0 ) 

            dn0 = sqrt(2.0) * (-dnd*cos(angle) + dnq*sin(angle)); 

 

        //out[0] = dpd; 

        //out[1] = dpq; 

        //out[2] = dp0; 

 

        //out[3] = dnd; 

        //out[4] = dnq; 

        //out[5] = dn0; 

 

        denum = sin(2*Deg120) - 2*sin(Deg120); 

        L = 1.0/sqrt(2.0); 

        wt = angle; 

 

        // Calculate dap 

        dap = dpq*(cos(Deg120 - wt) - cos(Deg120 + wt)) - dpd*(sin(Deg120 - wt) + sin(Deg120 + wt)) + 

dp0*sin(2*Deg120)/L; 

        dap = (sqrt(3.0/2.0)) / denum * dap; 

 

        dbp = dpd*(sin(Deg120 + wt) - sin(wt)) + dpq*(cos(Deg120 + wt) - cos(wt)) - dp0*sin(Deg120)/L; 

        dbp = (sqrt(3.0/2.0)) / denum * dbp; 

 

        dcp = dpd*(sin(wt) + sin(Deg120 - wt)) + dpq*(cos(wt) - cos(Deg120 - wt)) - dp0*sin(Deg120)/L; 

        dcp = (sqrt(3.0/2.0)) / denum * dcp; 

 

        dan = dnq*(cos(Deg120 - wt) - cos(Deg120 + wt)) - dnd*(sin(Deg120 - wt) + sin(Deg120 + wt)) + 

dn0*sin(2*Deg120)/L; 

        dan = (sqrt(3.0/2.0)) / denum * dan; 

 

        dbn = dnq*(cos(Deg120 + wt) - cos(wt)) + dnd*(sin(Deg120 + wt) - sin(wt)) - dn0*sin(Deg120)/L; 

        dbn = (sqrt(3.0/2.0)) / denum * dbn; 

 

        dcn = dnq*(cos(wt) - cos(Deg120 - wt)) + dnd*(sin(wt) + sin(Deg120 - wt)) - dn0*sin(Deg120)/L; 

        dcn = (sqrt(3.0/2.0)) / denum * dcn; 

 

        Ref_Va_top = dap; 

        Ref_Va_bot = -dan; 

        Ref_Vb_top = dbp; 

        Ref_Vb_bot = -dbn; 

        Ref_Vc_top = dcp; 

        Ref_Vc_bot = -dcn; 

 

        bout[ 0] = Ref_Va_top; 

        bout[ 1] = Ref_Va_bot; 

        bout[ 2] = Ref_Vb_top; 

        bout[ 3] = Ref_Vb_bot; 

        bout[ 4] = Ref_Vc_top; 

        bout[ 5] = Ref_Vc_bot; 

 

/*///////////////////////////////////////////////////////////////////////////// 

        NP Control 

/////////////////////////////////////////////////////////////////////////////*/ 

 

        I += IN_KI_NP * delta_NP * sw_period/2; 

        P = IN_KP_NP * delta_NP; 

        FF = 0; 

        PI = P + I; 

 

        doffset = PI; 

         

        if (doffset > 0.1) 

            doffset = 0.1; 
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        if (doffset < -0.1) 

            doffset = -0.1; 

 

        // Phase A 

        if (doffset >= 0)  

        { 

            if (dan > doffset)  

            { 

                dpan = dan - doffset; 

                dpap = dap; 

            } 

            else 

            { 

                dpan = 0; 

                dpap = dap + (doffset - dan); 

            } 

        } 

        else  

        { 

            if (dap > fabs(doffset)) 

            { 

                dpap = dap - fabs(doffset); 

                dpan = dan; 

            } 

            else  

            { 

                dpap = 0; 

                dpan = dan + (fabs(doffset) - dap); 

            } 

        } 

 

 

        // Phase B 

        if (doffset >= 0)  

        { 

            if (dbn > doffset)  

            { 

                dpbn = dbn - doffset; 

                dpbp = dbp; 

            } 

            else 

            { 

                dpbn = 0; 

                dpbp = dbp + (doffset - dbn); 

            } 

        } 

        else  

        { 

            if (dbp > fabs(doffset)) 

            { 

                dpbp = dbp - fabs(doffset); 

                dpbn = dbn; 

            } 

            else  

            { 

                dpbp = 0; 

                dpbn = dbn + (fabs(doffset) - dbp); 

            } 

        } 

 

 

        // Phase C 

        if (doffset >= 0)  

        { 

            if (dcn > doffset)  

            { 
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                dpcn = dcn - doffset; 

                dpcp = dcp; 

            } 

            else 

            { 

                dpcn = 0; 

                dpcp = dcp + (doffset - dcn); 

            } 

        } 

        else  

        { 

            if (dcp > fabs(doffset)) 

            { 

                dpcp = dcp - fabs(doffset); 

                dpcn = dcn; 

            } 

            else  

            { 

                dpcp = 0; 

                dpcn = dcn + (fabs(doffset) - dcp); 

            } 

        } 

 

        overmodulation = 0; 

         

        if (dpap>1.0 || dpbp>1.0 || dpcp>1.0) overmodulation = 1; 

        if (dpan>1.0 || dpbn>1.0 || dpcn>1.0) overmodulation = 1; 

 

        Ref_Va_top_offset = dpap; 

        Ref_Va_bot_offset = -dpan; 

        Ref_Vb_top_offset = dpbp; 

        Ref_Vb_bot_offset = -dpbn; 

        Ref_Vc_top_offset = dpcp; 

        Ref_Vc_bot_offset = -dpcn; 

 

        bout[ 6] = doffset; 

        bout[ 7] = Ref_Va_top_offset; 

        bout[ 8] = Ref_Va_bot_offset; 

        bout[ 9] = Ref_Vb_top_offset; 

        bout[10] = Ref_Vb_bot_offset; 

        bout[11] = Ref_Vc_top_offset; 

        bout[12] = Ref_Vc_bot_offset; 

        bout[13] = overmodulation; 

    } 

 

/*----------------------------------------------- 

End of Controller simulator 

void end_of_2810() 

-----------------------------------------------*/ 

 

    // FOR PSIM: remember this iteration 

    prev_flow = IN_FLOW; 

} 

 

 

double max(double a, double b, double c) 

{ 

    if ( a >= b ) 

    {    // a is greater 

        if ( a >= c ) 

            return a; 

        else 

            return c; 

    } 

     

    if ( a <= b ) 

    {    // b is greater 



236   SIMULATION SOFTWARE 

236 

        if ( b >= c ) 

            return b; 

        else 

            return c; 

    } 

 

    return 100.0; 

 

} 

 

double min(double a, double b, double c) 

{ 

    if ( a <= b ) 

    {    // a is smaller 

        if ( a <= c ) 

            return a; 

        else 

            return c; 

    } 

 

    if ( b <= a ) 

    {    // b is smaller 

        if ( b <= c ) 

            return b; 

        else 

            return c; 

    } 

 

    return 100.0; 

} 

 

double rads (double angle) 

{ 

    return CONST_PI * (angle / 180.0); 

} 

  



SIMULATION SOFTWARE  237 

237 

A.1.5.9 Song PWM 

 

Figure A.9: Song’s SPWM’s PSIM simulation (topology)  
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Figure A.10: Song’s SPWM’s PSIM simulation (control)  
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A.1.5.10 Code 

The following lists the C used within each PSIM block 

A.1.5.10.1 Modulator (x.dll) 

This code is a DLL used in PSIM to execute modulation calculations. The DLL is 

compiled with Microsoft Visual Studio 2010 Express. 

 

/* 

    Zaki Mohzani 

    27th Nov 2010 

     

    PLL in C code 

*/ 

 

 

#include <math.h> 

 

// function prototypes 

double max(double a, double b, double c); 

double min(double a, double b, double c); 

double rads (double angle); 

double sgn(double a); 

double mid(double a, double b, double c); 

double midPH(double a, double b, double c); 

 

// defines 

#define TRUE 1 

#define FALSE 0 

#define CONST_PI 3.14159265 

 

// input output aliases 

#define IN_FLOW            in[ 0] 

#define IN_SW_PERIOD    in[ 1] 

#define IN_VLINE_A        in[ 2] 

#define IN_VLINE_B        in[ 3] 

#define IN_VLINE_C        in[ 4] 

#define IN_IA            in[ 5] 

#define IN_IB            in[ 6] 

#define IN_IC            in[ 7] 

#define IN_VCAP1        in[ 8] 

#define IN_VCAP2        in[ 9] 

#define IN_STRATEGY        in[10] 

#define IN_M            in[11] 

#define IN_KP_BENDRE    in[12] 

#define IN_STOP_UNB        in[13] 

#define IN_CAP            in[14] 

#define IN_T_EN_CONT    in[15] 

#define IN_KI            in[16] 

 

// Internal usage defines 

#define PhA        1 

#define PhB        2 

#define PhC        3 

 

 

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out) 

{ 

    // For PSIM 

    static double prev_flow = 0.0; 

    static double sw_period; 
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    // For Controller 

//    static double sw_period = 0.0; 

//    static int error = 0; 

//    static double buffer_out[11]; 

 

    static double SQRT3; 

    static int i; 

    static double DC_BUS,delta_NP, 

        omega,angle,Deg120, 

        Ref_Va,Ref_Vb,Ref_Vc, 

        I,P,FF,PI, 

        vo_max,vo_min, 

        limited_offset, 

        Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset, 

        a,b,c, 

        a1,b1,c1, 

        ap,bp,cp, 

        offset,offsetp, 

        VDC; 

    static double iNPcon,sgn_a,sgn_b,sgn_c, 

        offset_tst,denum_offset_tst, 

        middle, middlePh, 

        tst_rslt,error, 

        vmax,vmin; 

    static double bout[20]; 

 

/*----------------------------------------------- 

Initialisation of Controller simulator 

void init_of_2810() 

-----------------------------------------------*/ 

    if ( t == delt ) 

    { 

        sw_period = IN_SW_PERIOD; 

         

        SQRT3=sqrt(3); 

         

        I = 0.0; 

        P = 0.0; 

    } 

 

 

/*----------------------------------------------- 

Start of Controller simulator 

void start_of_2810() 

-----------------------------------------------*/ 

 

    // check if we have an overflow / underflow condition 

    if (prev_flow ==  0.0 && IN_FLOW != 0.0) 

    { 

         

        for (i=0;i<20;i++) 

            out[i] = bout[i]; 

 

        DC_BUS = IN_VCAP1 + IN_VCAP2; 

        if ( t > IN_STOP_UNB)  

            delta_NP = IN_VCAP1 - IN_VCAP2; // Upper - Lower 

        else 

            delta_NP = IN_VCAP1 - (IN_VCAP2+0.1*DC_BUS); // Upper - Lower 

         

        omega = 2*CONST_PI*50; 

        angle = omega*t; 

        Deg120 = (2.0/3.0)*CONST_PI; 

 

         

        iNPcon = -IN_CAP*delta_NP/(sw_period); // /2); 

 

        // Generate centered Refs 
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        a1 = IN_M*cos(angle); 

        b1 = IN_M*cos(angle - Deg120); 

        c1 = IN_M*cos(angle + Deg120); 

     

        sgn_a = sgn(a1); sgn_b = sgn(b1); sgn_c = sgn(c1); 

         

        offset_tst = -iNPcon - (sgn_a*a1*IN_IA + sgn_b*b1*IN_IB + sgn_c*c1*IN_IC); 

        denum_offset_tst = (sgn_a*IN_IA + sgn_b*IN_IB + sgn_c*IN_IC); 

         

         

        //if (denum_offset_tst == 0.0) 

        //    denum_offset_tst = 0.0000000001; 

        offset_tst = offset_tst / denum_offset_tst; 

 

        middle = mid(a1,b1,c1); 

        middlePh = midPH(a1,b1,c1); 

 

        tst_rslt = 0; 

        offset = 0; 

        if (sgn(middle) == sgn(middle + offset_tst)) 

        { 

            tst_rslt = 1; 

            offset = offset_tst; 

        } 

 

        if ((sgn(middle) == -sgn(middle + offset_tst))) 

        { 

 

            tst_rslt = -1; 

 

            // Revise calculation 

            if (middlePh == PhA) sgn_a = -sgn_a; 

            if (middlePh == PhB) sgn_b = -sgn_b; 

            if (middlePh == PhC) sgn_c = -sgn_c; 

 

            offset_tst = -iNPcon - (sgn_a*a1*IN_IA + sgn_b*b1*IN_IB + sgn_c*c1*IN_IC); 

            denum_offset_tst = (sgn_a*IN_IA + sgn_b*IN_IB + sgn_c*IN_IC); 

            //if (denum_offset_tst == 0.0) 

            //    denum_offset_tst = 0.0000000001; 

            offset = offset_tst / denum_offset_tst; 

        } 

 

 

        if (middlePh < 0 || tst_rslt == 0) 

            error = 1; 

         

        Ref_Va = a1;// + offset; 

        Ref_Vb = b1;// + offset; 

        Ref_Vc = c1;// + offset; 

 

        // Restriction of v0 

        vmax = max(a1,b1,c1); 

        vmin = min(a1,b1,c1); 

 

        if ( (offset+vmax) >  1.0 ) offset =  1 - vmax; 

        if ( (offset+vmin) < -1.0 ) offset = -1 - vmin; 

 

        //I += IN_KI_BENDRE * deltaNP * sw_period/2; 

        //P = IN_KP_BENDRE * delta_NP; 

        //FF = 0; 

        //PI = P + I; 

 

        // Calculate limits 

        //vo_max = min(1.0-Ref_Va, 1.0-Ref_Vb, 1.0-Ref_Vc); 

        //vo_min = -1.0*min(1.0+Ref_Va, 1.0+Ref_Vb, 1.0+Ref_Vc); 

 

        //if (P>vo_max)        limited_offset = vo_max; 
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        //else if (P<vo_min)    limited_offset = vo_min; 

        //else                limited_offset = P; 

 

        if ( t > IN_T_EN_CONT)  

            limited_offset = offset; 

        else 

            limited_offset = 0; 

 

        Ref_Va_offset = Ref_Va + limited_offset; 

        Ref_Vb_offset = Ref_Vb + limited_offset; 

        Ref_Vc_offset = Ref_Vc + limited_offset; 

 

        bout[ 0] = Ref_Va; 

        bout[ 1] = Ref_Vb; 

        bout[ 2] = Ref_Vc; 

        bout[ 3] = limited_offset; 

        bout[ 4] = Ref_Va_offset; 

        bout[ 5] = Ref_Vb_offset; 

        bout[ 6] = Ref_Vc_offset; 

        bout[ 7] = sgn(a); 

        bout[ 8] = mid(a1,b1,c1); 

        bout[ 9] = tst_rslt; 

        bout[10] = middlePh; 

        bout[11] = error; 

        bout[12] = denum_offset_tst; 

        bout[13] = sgn_a; 

        bout[14] = sgn_b; 

        bout[15] = sgn_c; 

    } 

 

/*----------------------------------------------- 

End of Controller simulator 

void end_of_2810() 

-----------------------------------------------*/ 

 

    // FOR PSIM: remember this iteration 

    prev_flow = IN_FLOW; 

} 

 

double max(double a, double b, double c) 

{ 

    if ( a >= b ) 

    {    // a is greater 

        if ( a >= c ) 

            return a; 

        else 

            return c; 

    } 

     

    if ( a <= b ) 

    {    // b is greater 

        if ( b >= c ) 

            return b; 

        else 

            return c; 

    } 

 

    return 100.0; 

 

} 

 

double min(double a, double b, double c) 

{ 

    if ( a <= b ) 

    {    // a is smaller 

        if ( a <= c ) 

            return a; 
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        else 

            return c; 

    } 

 

    if ( b <= a ) 

    {    // b is smaller 

        if ( b <= c ) 

            return b; 

        else 

            return c; 

    } 

 

    return 100.0; 

} 

 

double rads (double angle) 

{ 

    return CONST_PI * (angle / 180.0); 

} 

 

double sgn(double a) 

{ 

    if (a >= 0.0) 

        return 1; 

    else 

        return -1; 

} 

 

double mid(double a, double b, double c) 

{ 

 

 

    if ( a > b && a > c ) // a is max 

    { 

        // its either b or c 

        if ( b > c ) 

            return b; 

        else 

            return c; 

    } 

 

    if ( b > a && b > c ) // b is max 

    { 

        // its either a or c 

        if ( a > c ) 

            return a; 

        else 

            return c; 

    } 

 

    if ( c > a && c > b ) // c is max 

    { 

        // its either a or b 

        if ( a > b ) 

            return a; 

        else 

            return b; 

    } 

 

    return -100.0; 

} 

 

double midPH(double a, double b, double c) 

{ 

 

 

    if ( a > b && a > c ) // a is max 
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    { 

        // its either b or c 

        if ( b > c ) 

            return PhB; 

        else 

            return PhC; 

    } 

 

    if ( b > a && b > c ) // b is max 

    { 

        // its either a or c 

        if ( a > c ) 

            return PhA; 

        else 

            return PhC; 

    } 

 

    if ( c > a && c > b ) // c is max 

    { 

        // its either a or b 

        if ( a > b ) 

            return PhA; 

        else 

            return PhB; 

    } 

 

    return -3; 

} 

 

 

} 

A.1.5.11 Strategies using Balance booster  

The usage of balance booster only requires the removal of any NP controller. The 

simplest method is to set the Proportional gain of a zero-offset addition controller to 

0. Then the balance booster is placed in the PSIM file as shown below: 
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Figure A.11: Balance booster-based strategies’ PSIM simulation (topology) 
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APPENDIX B EXPERIMENTAL SOFTWARE  

Code Composer 4 is used to program the Texas Instrument TMSC240F2810 DSP. 

The code below is used to implement the different modulation strategies. 

B. 1 Common library files 

B.1.1 CPT libraries 

Creative Power Technologies C library are used to provide low-level hardware 

support. They are not listed here in the thesis. 

B.1.2 cas_cpld.h 

This library is used to provide functions to control the CPLD which is partly 

responsible for communications between the three CPT-GIIB boards. 

#define ADD_EVB 0xCA 

#define ADD_MAS_SLAVE 0xCC 

#define ADD_TX_RX 0xCE 

#define ADD_SWAP_PWM34 0xDC 

#define ADD_CAS_ENABLE 0xDE 

 

void CAS_init(); 

void CAS_enable(); 

void CAS_disable(); 

void CAS_master_mode(); 

void CAS_slave_mode(); 

void CAS_tx_mode(); 

void CAS_rx_mode(); 

void CAS_SWAP_PWM34_ENABLE(); 

void CAS_SWAP_PWM34_DISABLE(); 

void CAS_reset_pin(); 

B.1.3 cas_cpld.c 

// processor standard include files 

#include <DSP281x_Device.h> 

#include <DSP281x_Examples.h> 

 

// board standard include files 

//#include <lib_da2810.h> 

#include <lib_mini2810.h> 

#include <lib_cpld.h> 

#include <dac_ad56.h> 

#include <lib_giib.h> 

 

#include "cas_cpld.h" 

 

 

extern int16 wait, tmp2, SPI_TRASH; 

 

void CAS_init() 

{    

    cpld_write(ADD_SPECIAL,0x01);  // special function = 1 

    cpld_write(ADD_GPIO,0x00);  // set gpios to input 

    CPLD.SCIBMODE.bit.SPD = 1; 
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    cpld_write(ADD_SCIBMODE, CPLD.SCIBMODE.all); 

 

    // Enable the pins to control BIDIR SPI 

    EALLOW;     

    GpioMuxRegs.GPFMUX.bit.CANRXA_GPIOF7 = 0;    // disabled 

    GpioMuxRegs.GPDMUX.bit.T2CTRIP_SOCA_GPIOD1 = 0;    //disabled 

    GpioMuxRegs.GPFDIR.bit.GPIOF7 = 1; 

    GpioMuxRegs.GPDDIR.bit.GPIOD1 = 1; 

    EDIS;     

 

} 

 

void CAS_enable() 

{ 

    GpioDataRegs.GPFSET.all = BIT7; 

} 

 

void CAS_disable() 

{ 

    GpioDataRegs.GPFCLEAR.all = BIT7; 

} 

 

void CAS_master_mode() 

{ 

    CAS_disable(); 

    cpld_write(ADD_MAS_SLAVE,0x01); 

} 

 

void CAS_slave_mode() 

{ 

    CAS_disable(); 

    cpld_write(ADD_MAS_SLAVE,0x00); 

} 

 

void CAS_tx_mode() 

{         

    SET_TP11(); 

} 

 

void CAS_rx_mode() 

{ 

    CLEAR_TP11(); 

} 

 

void CAS_SWAP_PWM34_ENABLE() 

{ 

    CAS_disable(); 

    cpld_write(ADD_EVACOMCON,0x19);  // 0001 1001 assuming PWM outputs were enabled. 

} 

 

void CAS_SWAP_PWM34_DISABLE(){ 

    CAS_disable(); 

    cpld_write(ADD_EVACOMCON,0x01);  // 0000 0001 assuming PWM outputs were enabled. 

} 

 

void CAS_reset_pin() 

{ 

    int wait; 

 

    GpioDataRegs.GPDSET.all = BIT1; 

    for(wait = 0; wait < 3; wait++); 

    GpioDataRegs.GPDCLEAR.all = BIT1; 

} 
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B.1.4 main.h 

/** 

\file 

\brief Main system definitions 

 

\par Developed By: 

    Creative Power Technologies, (C) Copyright 2009 

\author A.McIver 

\par History: 

\li    23/04/09 AM - initial creation 

*/ 

 

 

/* ========================================================================= 

__Definitions() 

============================================================================ */ 

 

#define __SQRT2                    1.4142135624 

#define __SQRT3                    1.7320508075 

#define __PI                    3.1415926535 

 

#define SYSCLK_OUT                (150e6) 

#define    HSPCLK                    (SYSCLK_OUT) 

#define LSPCLK                    (SYSCLK_OUT/4) 

 

 

/* ========================================================================= 

__State_Simple_Definitions() 

============================================================================ */ 

 

/** Simple State Machine Type */ 

 typedef void (* funcPtr)(void); 

typedef struct 

{ 

    funcPtr f; 

    unsigned int call_count; 

    unsigned char first; 

} type_state; 

 

 

/* Simple State Handling Macros */ 

#define SS_NEXT(_s_,_f_)        { _s_.f = (funcPtr)_f_; \ 

                                  _s_.call_count = 0; \ 

                                  _s_.first = 1; } 

#define SS_IS_FIRST(_s_)        (_s_.first == 1) 

#define SS_DONE(_s_)            { _s_.first = 0; } 

#define SS_DO(_s_)                    { _s_.call_count++; \ 

                                  ((*(_s_.f))()); } 

#define SS_IS_PRESENT(_s_,_f_)    (_s_.f == (funcPtr)_f_) 

 

 

/* ========================================================================= 

__Grab_Code_Definitions() 

============================================================================ */ 

/**/ 

#define GRAB_INCLUDE 

 

#ifdef GRAB_INCLUDE 

// grab array size 

#define GRAB_LENGTH                200 

#define GRAB_WIDTH                6 

 

// modes 

#define GRAB_GO                    0 

#define GRAB_WAIT                1 
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#define GRAB_TRIGGER            2 

#define GRAB_STOPPED            3 

#define GRAB_SHOW                4 

 

// macros 

#define GrabStart()                grab_mode = GRAB_TRIGGER; 

#define GrabStop()                grab_mode = GRAB_STOPPED; 

#define GrabRun()                    grab_mode = GRAB_GO; 

#define GrabShow()                grab_mode = GRAB_SHOW; 

 

#define GrabClear()                { grab_mode = GRAB_WAIT; \ 

                                                      grab_index = 0; } 

 

#define GrabTriggered()        (grab_mode == GRAB_TRIGGER) 

#define GrabRunning()            (grab_mode == GRAB_GO) 

#define GrabStopped()            (grab_mode == GRAB_STOPPED) 

#define GrabAvail()                (grab_mode >= GRAB_STOPPED) 

#define GrabShowTrigger()    (grab_mode == GRAB_SHOW) 

 

#define GrabStore(_loc_,_data_)    grab_array[grab_index][_loc_] = _data_; 

 

#define GrabStep()                { grab_index++; \ 

                                  if (grab_index >= GRAB_LENGTH) \ 

                                      grab_mode = GRAB_STOPPED; } 

 

// variables 

extern int16 

    grab_mode, 

    grab_index, 

    grab_array[GRAB_LENGTH][GRAB_WIDTH]; 

 

// functions 

void GrabDisplay(int16 index); 

void GrabInit(void); 

 

#endif 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

 

void print_help(void); 

 

B.1.5 main.c 

/** 

\file 

\brief System software for the DA-2810 Demo code 

 

 

\par Developed By: 

    Creative Power Technologies, (C) Copyright 2009 

\author A.McIver 

\par History: 

\li    23/04/09 AM - initial creation 

*/ 

 

// compiler standard include files 

#include <stdlib.h> 

#include <stdio.h> 

 

// processor standard include files 

#include <DSP281x_Device.h> 

#include <DSP281x_Examples.h> 

 

 

// board standard include files 
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//#include <lib_da2810.h> 

#include <lib_mini2810.h> 

#include <lib_cpld.h> 

#include <lib_giib.h> 

 

// common project include files 

//#define AD5624 

#define DAC_SHIFT 4 

#include <dac_ad56.h> 

 

// common project include files 

 

// local include files 

#include "main.h" 

#include "conio.h" 

#include "vsi.h" 

 

 

/*  ========================================================================= 

__Definitions() 

============================================================================ */ 

#define LCD_CTRL            (ADD_MINICS2_BASE+MINIBUS_MA1) 

#define TRUE        1 

#define FALSE        0 

 

/* ========================================================================= 

__Typedefs() 

============================================================================ */ 

 

/// Time related flag type 

/** This structure holds flags used in background timing. */ 

typedef struct 

{ 

    Uint16 

        msec:1,        ///< millisecond flag 

        msec10:1,    ///< 10ms flag 

        sec0_1:1,    ///< tenth of a second flag 

        sec:1,        ///< second flag 

        sec5:1; 

} type_time_flag; 

 

 

/* ========================================================================= 

__Variables() 

============================================================================ */ 

 

#ifndef BUILD_RAM 

// These are defined by the linker (see F2812.cmd) 

extern Uint16 RamfuncsLoadStart; 

extern Uint16 RamfuncsLoadEnd; 

extern Uint16 RamfuncsRunStart; 

#endif 

 

// Background variables 

Uint16 

    quit = 0;                ///< exit flag 

 

/// timing variable 

type_time_flag 

    time = 

    { 

        0,0,0,0 // flags 

    }; 

 

Uint32 

    idle_count = 0,                ///< count of idle time in the background 

    idle_count_old = 0,            ///< previous count of idle time 
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    idle_diff = 0;                ///< change in idle time btwn low speed tasks 

 

char 

    str[40];                // string for displays 

 

extern signed int     

    ZX_time; 

     

     

extern int16 

    loop_back_character;     

 

 

 

/* ========================================================================= 

__Serial_input_variable() 

============================================================================ */ 

int mod_depth_serial =0;                //In 2810 modulation depth go from 0 to 1000 (0-100%) 

int step_mod_depth_serial = 100; 

int final_mod_depth_serial = 0; 

int mod_depth_max = MOD_DEPTH_MAX; 

 

double mod_f_freq_serial = INIT_FF;                    //Fundamental modulation frequency in Hz 

double step_f_freq_serial = 0.5; 

double mod_f_freq_max = 100.0; 

 

Uint16 sw_freq_serial = 15000; 

Uint16 step_sw_freq_serial = 50; 

 

#define KP_INIT 0 

#define TINT_INIT 0 

 

double  

    real_Kp_serial = KP_INIT, 

    real_Tint_serial = TINT_INIT; 

     

long  

    step_at_phase_serial = 0; 

 

int  

    step_enable_flag = FALSE, 

    step_direction = 1; 

 

extern int16 

    ctrl_latch; 

/* ========================================================================= 

__Local_Function_Prototypes() 

============================================================================ */ 

 

/* 1 second interrupt for display */ 

interrupt void isr_cpu_timer0(void); 

 

/// display operating info 

void com_display(void); 

 

/* process keyboard input */ 

void com_keyboard(void); 

 

 

void init_dac1_mini(void); 

 

 

/* ========================================================================= 

__Grab_Variables() 

============================================================================ */ 

 

#ifdef GRAB_INCLUDE 
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//#pragma DATA_SECTION(grab_array, "bss_grab") 

int16 

    grab_mode = GRAB_STOPPED, 

    grab_index, 

    grab_array[GRAB_LENGTH][GRAB_WIDTH]; 

#endif 

 

 

/*============================================================================= 

zaki_defines() 

=============================================================================*/ 

 

#include <math.h> 

#define TABLE_SIZE 400 

#define PI    3.14159265359 

int zphase,zphase_step; 

 

extern int16 transmission_en; 

void put_bin(unsigned int num); 

void PREVENT_BUFFER_OVERRUN(void); 

 

int16 master_slave_mode = 0; 

int16 Unit_number = 0; 

extern unsigned int failures; 

void zaki_vsi_init(void); 

void sine_table_gen(float *start, int table_size); 

float sine_table[TABLE_SIZE]; 

extern Uint16 is_switching; 

extern float mod_depth; 

extern Uint16 gtransmit; 

int16 cause_unbalance=0; 

/* ========================================================================= */ 

/* Main */ 

/* ========================================================================= */ 

/* Idle time benchmark: 

\li Ram based program with only bios interrupt and an empty main loop gives an 

idle_diff of 4.69M (4,685,900) 

\li 23/03/09 V1.02 1.23M with no modbus running 

*/ 

 

void main(void) 

{ 

    static int i = 0; 

    int date = 0; 

    Uint32 waste_time = 0; 

    Uint16 count; 

 

    // Zaki's addition 

    Uint16 read_no = 0; 

    static int j = 0; 

    double k; 

    float y; 

    int yint; 

 

     

// Disable CPU interrupts 

    DINT; 

// Initialise DSP for PCB 

    lib_mini2810_init(150/*MHz*/,37500/*kHz*/,150000/*kHz*/,LIB_EVAENCLK 

        |LIB_EVBENCLK|LIB_ADCENCLK|LIB_SCIAENCLK|LIB_SCIBENCLK|LIB_MCBSPENCLK); 

 

// Initialize the PIE control registers to their default state. 

    InitPieCtrl(); 

// Disable CPU interrupts and clear all CPU interrupt flags: 

    IER = 0x0000; 

    IFR = 0x0000; 

// Initialize the PIE vector table with pointers to the shell Interrupt 



254  EXPERIMENTAL SOFTWARE 

254 

// Service Routines (ISR). 

// This will populate the entire table, even if the interrupt 

// is not used in this example.  This is useful for debug purposes. 

// The shell ISR routines are found in DSP281x_DefaultIsr.c. 

// This function is found in DSP281x_PieVect.c. 

    InitPieVectTable(); 

 

#ifndef BUILD_RAM 

// Copy time critical code and Flash setup code to RAM 

// The  RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart 

// symbols are created by the linker. Refer to the F2810.cmd file. 

    MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart); 

 

// Call Flash Initialization to setup flash waitstates 

// This function must reside in RAM 

    InitFlash(); 

#endif 

 

    InitAdc(); 

    InitCpuTimers(); 

 

// Initialise COM port 

bios_init(9600L); 

 

// Configure CPU-Timer 0 to interrupt every millisecond: 

// 150MHz CPU Freq, 1ms Period (in uSeconds) 

ConfigCpuTimer(&CpuTimer0, 150.0/*MHz*/, 1000.0/*us*/); 

StartCpuTimer0(); 

 

// Interrupts that are used in this example are re-mapped to 

// ISR functions found within this file. 

    EALLOW;  // This is needed to write to EALLOW protected register 

    PieVectTable.TINT0 = &isr_cpu_timer0; 

    EDIS;    // This is needed to disable write to EALLOW protected registers 

 

    // Enable TINT0 in the PIE: Group 1 interrupt 7 

    PieCtrlRegs.PIEIER1.bit.INTx7 = 1; 

    IER |= M_INT1; // Enable CPU Interrupt 1 

    EnableInterrupts(); 

 

    // Initialise DAC before I do anything with normal SPI 

    init_dac1_mini(); 

     

    spi_init(MODE_CPLD);  

    cpld_reg_init(); 

    giib_init(); 

 

#ifdef GRAB_INCLUDE 

    GrabInit(); 

#endif 

 

/*  

    END OF CPT's INITIALISATION  

    LETS DO SOME WORK! 

    Zaki 4/10/2010     

*/ 

    for (j=0; j<=4000000000;j++) 

    { 

        if ( j == 4000000000-1) 

        put_str("\nlets roll\n"); 

    } 

 

    // This is must be done first  

    // before we set the SPI to SLAVE mode 

    CPLD.EVACOMCON.bit.ENA = 1; // CPLD: Enable EVA PWM outputs 

    cpld_write(ADD_EVACOMCON,CPLD.EVACOMCON.all);     
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    //SpiaRegs.SPICCR.bit.SPILBK = 1;                //Set SPI on loop back for testing 

      put_str("\nZaki\n");     

    //Read the DIP switch on GIIB to determine the unit number of the unit 

    Unit_number = ReadDigIn(); 

     

    /* Unit 0 is always the master module of the network responsible for sending sync pulse and master message */ 

    put_str("Unit number: "); 

    putxx(Unit_number); 

    put_str("\n"); 

     

    if(Unit_number == 0) 

    { 

        master_slave_mode = 1; 

        put_str("MASTER"); 

    } 

    else 

    { 

        master_slave_mode = 0; 

        put_str("SLAVE"); 

    } 

    put_str("\n"); 

     

    // Force DIGIN5-6 to CAP1-2 

    CPLD.CAPQEP.bit.CP = 1; 

    cpld_write(ADD_CAPQEP,CPLD.CAPQEP.all); 

     

    /*  

    NOTE:  

    The code below assumes that SPISTE is not connected 

    or 3-wire SPI. 

    The slave's SPISTE is driven low permanently so that 

    SPI comms work. 

    Please ensure that there is no bus contention. 

    */  

    EALLOW; 

    //Enable test pins on EVA 

    GpioMuxRegs.GPAMUX.bit.T1PWM_GPIOA6 = 0;    // disabled 

    GpioMuxRegs.GPAMUX.bit.T2PWM_GPIOA7 = 0;    //disabled 

    GpioMuxRegs.GPADIR.bit.GPIOA6 = 1; 

    GpioMuxRegs.GPADIR.bit.GPIOA7 = 1; 

     

    //Enable test pin on EVB 

    GpioMuxRegs.GPBMUX.bit.T3PWM_GPIOB6 = 0; 

    GpioMuxRegs.GPBMUX.bit.T4PWM_GPIOB7 = 0; 

    GpioMuxRegs.GPBDIR.bit.GPIOB6 = 1; 

    GpioMuxRegs.GPBDIR.bit.GPIOB7 = 1; 

    EDIS; 

     

    CAS_init(); 

 

    if (master_slave_mode == 0) 

    {         

        CAS_slave_mode(); 

        CAS_rx_mode(); 

    } 

    else 

    { 

        CAS_master_mode(); 

        CAS_tx_mode(); 

    } 

 

 

    DISABLE_CPLD(); 

 

    EALLOW; 

    GpioDataRegs.GPFDAT.bit.GPIOF3 = 0; 
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    GpioMuxRegs.GPFMUX.bit.SPISTEA_GPIOF3 = 0; 

    GpioMuxRegs.GPFDIR.bit.GPIOF3 = 1; 

    EDIS; 

         

    if (master_slave_mode == 0) 

        // Set SPI to slave mode 

        SpiaRegs.SPICTL.bit.MASTER_SLAVE = 0; 

     

    // 3rd DIGIO socket pin is fault 

    // Routed to master through NPC SPI Comms board 

    EALLOW; 

    GpioDataRegs.GPBDAT.bit.GPIOB2 = 0; 

    GpioMuxRegs.GPBMUX.bit.PWM9_GPIOB2 = 0; 

    GpioMuxRegs.GPBDIR.bit.GPIOB2 = 1; 

    EDIS;     

                     

    sine_table_gen(sine_table, TABLE_SIZE); 

 

    CAS_enable(); 

 

    vsi_disable(); 

     

    if (master_slave_mode == 1) 

    { 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("DSP Initialisation complete\n\n"); 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("This system will automatically synchronise\n"); 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("provided NPC SPI Comm's board is used.\n"); 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("1. Ensure SPI cables are connected\n"); 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("2. Ensure slaves are correctly receiving\n"); 

        PREVENT_BUFFER_OVERRUN(); 

    } 

    else 

    { 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("DSP Initialisation complete\n\n"); 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("This system will automatically synchronise\n"); 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("provided NPC SPI Comm's board is used.\n"); 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("1. Ensure SPI cables are connected\n"); 

        PREVENT_BUFFER_OVERRUN(); 

        put_str("2. Ensure slaves are correctly receiving\n"); 

        PREVENT_BUFFER_OVERRUN(); 

    } 

 

    zaki_vsi_init();     

 

/* 

void main_loop(void) 

*/ 

    while(quit == 0) 

    { 

 

         

        com_keyboard(); // process keypresses 

 

        if (time.msec != 0) // millisecond events 

        { 

            time.msec = 0; 

            vsi_state_machine(); 
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        } 

        else if (time.msec10 != 0) // ten millisecond events 

        { 

            time.msec10 = 0; 

        } 

        else if (time.sec0_1 != 0) // tenth of second events 

        { 

            time.sec0_1 = 0; 

            if(GrabShowTrigger() && i < GRAB_LENGTH){ 

                GrabDisplay(i); 

                i++; 

            } 

            else if(GrabShowTrigger() && i == GRAB_LENGTH){ 

                GrabStop(); 

                i = 0; 

            } 

        } 

        else if (time.sec != 0) // one second events 

        { 

            time.sec = 0; 

            idle_diff = idle_count - idle_count_old; 

            idle_count_old = idle_count; 

            com_display(); // one second display 

        } 

        else if (time.sec5 != 0){            //five second events 

            time.sec5 = 0; 

            if(step_enable_flag == TRUE){             

                if(step_direction == 1){        //Stepping the reference to final value 

                    step_direction = 0; 

                    step_ref_setup(step_at_phase_serial, final_mod_depth_serial); 

                } 

                else{                                                //Stepping the reference to initial value 

                    step_direction = 1; 

                    step_ref_setup(step_at_phase_serial, mod_depth_serial); 

                }                 

            }     

        } 

        else // low priority events 

        { 

            idle_count++; 

        } 

    } /* end while quit == 0 */ 

 

//    DISABLE_PWM(); 

    EvaRegs.T1CON.bit.TENABLE = 0; 

    EvaRegs.ACTRA.all = 0x0000; 

    DINT; 

} /* end main */ 

 

 

/* ========================================================================= 

__Local_Functions() 

============================================================================ */ 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

Display operating information out COM1. 

 

\author A.McIver 

\par History: 

\li    22/06/05 AM - initial creation 

 

\param[in] mode Select whether to start a new display option 

*/ 

void com_display(void) 

{ 

    Uint16 
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        status; 

 

    //If system is displaying grab data do nothing otherwise display normal status stuff 

    if(GrabShowTrigger()){     

    } 

    else{ 

         

        if(master_slave_mode ==1){ 

            put_str("M"); 

        } 

        else{ 

            put_str("S"); 

        } 

        putu(Unit_number); 

        put_str(" "); 

         

        if (is_switching == 1) 

            put_str(" En"); 

        else 

            put_str("Dis"); 

        put_str(" "); 

 

        put_str("M "); 

        putdbl(mod_depth,2); 

        put_str(" "); 

         

        put_str("F "); 

        putu(failures); 

        put_str(" "); 

         

        put_str("FFRX "); 

        putu(0x1F & (SpiaRegs.SPIFFRX.all >> 8)); 

        put_str(" "); 

         

        put_str("D "); 

        //putu(detected_faults); 

        put_str(" "); 

         

        put_str("Grab mode: "); 

        putu(grab_mode); 

        put_str(" "); 

 

        put_str("Grab index: "); 

        putu(grab_index); 

        put_str(" ");         

         

        put_str("\n"); 

    } 

} /* end com_display */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/* void com_keyboard 

Parameters: none 

Returns: nothing 

Description: Process characters from COM0. 

Notes: 

History: 

    22/06/05 AM - initial creation 

\li 27/11/07 PM - added in testing of the digital I/O 

*/ 

void com_keyboard(void) 

{ 

 

    char c; 

    Uint16    next = 0; 

    Uint16  original = 0; 
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    // ZAKI 

    Uint16 a; 

    static Uint16 b=0; 

    // ZAKI 

 

//    put_str("KEY"); 

    if (Kbhit()) 

    { 

        c = get_char(); 

        switch (c) 

        { 

//            case 'q': quit = 1; 

//            break; 

 

/* Template 

            case 'a': 

                put_str("Letter a\n"); 

            break;     

*/                 

            case 'u': 

                if(cause_unbalance)    cause_unbalance = 0; 

                else                cause_unbalance = 1; 

            break; 

            case 'e': 

                put_str("Enabled VSI\n"); 

                vsi_enable(); 

            break; 

            case 'd': 

                put_str("Disabled VSI\n"); 

                vsi_disable(); 

            break; 

            case '+': 

                mod_depth += 0.01; 

                if (mod_depth < 0.0) 

                    mod_depth = 0.0; 

            break; 

            case '-': 

                mod_depth -= 0.01; 

                if (mod_depth < 0.0) 

                    mod_depth = 0.0; 

            break; 

            case 'T': 

                put_str("    Transmitting\n"); 

                gtransmit = 1; 

            break; 

            case 't': 

                put_str("NOT Transmitting\n"); 

                gtransmit = 0; 

            break;                             

            //Setting switching frequency 

            case '>': 

                if((sw_freq_serial+10*step_sw_freq_serial) < 20000){ sw_freq_serial +=10*step_sw_freq_serial;} 

                else{    sw_freq_serial = 20000;    } 

            break; 

            case '<': 

                if((sw_freq_serial-10*step_sw_freq_serial) > 50){ sw_freq_serial -=10*step_sw_freq_serial;} 

                else{    sw_freq_serial = 50;} 

            break;                     

            case '.': 

                if((sw_freq_serial+step_sw_freq_serial) < 20000){ sw_freq_serial +=step_sw_freq_serial;} 

                else{    sw_freq_serial = 20000;    } 

            break; 

            case ',': 

                if((sw_freq_serial-step_sw_freq_serial) > 50){ sw_freq_serial -=step_sw_freq_serial;} 

                else{    sw_freq_serial = 50;} 

            break; 
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#ifdef GRAB_INCLUDE 

            case '1': /* grab interrupt data */ 

                GrabClear(); 

                GrabStart(); 

                GrabRun(); 

            break; 

            case '2': 

                GrabShow(); 

            break; 

            case '3': /* stop grab display */ 

                GrabClear(); 

            break; 

#endif 

     

        } 

    } 

} /* end com_keyboard */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

1 second CPU timer interrupt. 

 

\author A.McIver 

\par History: 

\li    22/06/05 AM - initial creation (derived from k:startup.c) 

*/ 

#ifndef BUILD_RAM 

#pragma CODE_SECTION(isr_cpu_timer0, "ramfuncs"); 

#endif 

interrupt void isr_cpu_timer0(void) 

{ 

    static struct 

    { 

        Uint16 

            msec, 

            msec10, 

            msec100, 

            sec; 

    } i_count = 

    { 

        0, 0, 0, 0 

    }; 

 

    /*for (ii=0; ii<WD_TIMER_MAX; ii++) 

    { 

        if (wd_timer[ii] > 0) 

            wd_timer[ii]--; 

    }*/ 

    i_count.msec++; 

    if (i_count.msec >= 10) 

    { 

        i_count.msec = 0; 

        i_count.msec10++; 

        if (i_count.msec10 >= 10) 

        { 

            i_count.msec10 = 0; 

            i_count.msec100++; 

            if (i_count.msec100 >= 10) 

            { 

                i_count.msec100 = 0; 

                i_count.sec++; 

                if(i_count.sec >= 5){ 

                    time.sec5 = 1; 

                } 

                time.sec = 1; 
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            } 

            time.sec0_1 = 1; 

        } 

        time.msec10 = 1; 

    } 

    time.msec = 1; 

 

    // Acknowledge this interrupt to receive more interrupts from group 1 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 

} /* end isr_cpu_timer0 */ 

 

 

/* ========================================================================= 

__Exported_Functions() 

============================================================================ */ 

 

 

/* ========================================================================= 

__Grab_Functions() 

============================================================================ */ 

#ifdef GRAB_INCLUDE 

 

void GrabInit(void) 

{ 

    Uint16 

        i,j; 

 

    for (i=0; i<GRAB_LENGTH; i++) 

    { 

        for (j=0; j<GRAB_WIDTH; j++) 

        { 

            grab_array[i][j] = 0; 

        } 

    } 

    GrabClear(); 

} 

 

/* call with index == 0xFFFF for title line 

else index = 0..GRAB_LENGTH-1 for data */ 

void GrabDisplay(int16 index) 

{ 

    Uint16 

        i; 

 

    if (index == 0xFFFF) 

    { 

        put_str("\nindex"); 

        for (i=0; i<GRAB_WIDTH; i++) 

        { 

            put_str("\tg"); 

            put_d(i); 

        } 

    } 

    else 

    { 

        put_d(index); 

        put_char(','); 

        for (i=0; i<GRAB_WIDTH; i++) 

        { 

            //put_char(''); 

            put_d(grab_array[index][i]); 

            put_char(','); 

        } 

    } 

    put_str("\n"); 

} 
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#endif 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

 

void print_help(void) 

{ 

/*    put_str("\th\thelp\n"); 

    put_str("\tq\tquit\n"); 

    put_str("\te/d\tenable/disable switching\n"); 

    put_str("\ti/m\treference magnitude increase/decrease\n"); 

    put_str("\tl/j\tref freq increase/decrease\n"); 

    put_str("\t>/<\tswitching freq increase/decrease\n"); 

    put_str("\tt/T\tintegral reset time slow/fast increase\n"); 

    put_str("\tv/V\tintegral reset time slow/fast decrease\n"); 

  put_str("\tr/R\tproportional constant slow/fast increase\n"); 

    put_str("\tc/C\tproportional constant slow/fast decrease\n"); 

    //puts("\tg\tto enable grab code and print grab data\n"); 

    put_str("\tu/b\tincrease/decrease magnitude of step change in reference\n"); 

    put_str("\ta/s\tincrease/decrease phase where step is applied\n");  

    put_str("\tp\tenable/disable step change in reference every 5 sec\n"); 

    put_str("\tf\tenable/disable feed forward\n"); 

    put_str("\t0\tDC current regulator (using leg A&B)\n"); 

    put_str("\t1\tSingle phase PI regulator mode (using leg A&B)\n");     

    put_str("\t2\tSingle phase PI regulator mode (using leg A&B) with back EMF\n"); 

    put_str("\t3\tSingle phase PR regulator mode (using leg A&B) with back EMF\n"); 

    put_str("\t4\t3 phase PI regulator mode \n"); 

    put_str("\t5\t3 phase PI regulator mode with back EMF\n"); 

    put_str("\t6\t3 phase DQ regulator mode with back EMF\n"); 

    put_str("\t7\t3 phase PR regulator mode with back EMF\n"); 

    */ 

} /* end print_help */ 

 

 

 

 

/*Reza DAC initialization function */ 

void init_dac1_mini(void) 

{ 

    // Set SPI mode 

    spi_init(MODE_DAC); 

    // Initialise DAC 

    dac_init(); 

    // Set internal reference 

    dac_set_ref(DAC_MODULE_D1,DAC_INT_REF); 

    // Power up DAC 

    dac_power_down(DAC_MODULE_D1,0x0F); 

    // Write to half voltage 

    dac_write(DAC_MODULE_D1,DAC_WRn_UPDn,DAC_ADDR_ALL,2047);      

     

    //set up for fast dac code 

 

    //GpioDataRegs.GPDCLEAR.all = nDAC1; 

/*    GpioDataRegs.GPASET.all = OC_SPI_EN; 

    GpioDataRegs.GPASET.all = M_nS; 

    GpioDataRegs.GPDCLEAR.all = nDAC1; 

    spi_putc(DAC_WRn_UPDn|DAC_ADDR_ALL);    //set up dac for dac  

*/ 

    //dac_write_FAST(DAC_MODULE_D1,DAC_WRn_UPDn,DAC_ADDR_ALL,2047);  

} 

 

 

void put_bin(unsigned int num) 

{ 

    put_char(num & 0x01); 

} 

 

void PREVENT_BUFFER_OVERRUN(void) 

{ 
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    int i; 

    int j; 

    for (i=0;i<1000;i++) 

    { 

        for(j=0;j<500;j++); 

    } 

} 

 

void sine_table_gen(float *start, int table_size) 

{ 

    int i; 

     

    for (i=0;i<table_size;i++) 

    { 

        start[i] = sin(2.0*PI*(float)i/(float)table_size); 

    } 

} 

 

B.1.6 vsi.h 

/** 

\file 

\brief VSI definitions 

 

\par Developed By: 

    Creative Power Technologies, (C) Copyright 2009 

\author A.McIver 

\par History: 

\li    23/04/09 AM - initial creation 

*/ 

 

 

/* ========================================================================= */ 

/* Definitions */ 

/* ========================================================================= */ 

/// ADC sampling and VSI switching freq in Hz (initial value) 

#define SW_FREQ                5000.0 

 

#define MAX_SW_FREQ        20000.0 

#define MIN_SW_FREQ        2000.0 

 

#define INIT_FF                0.0                //Initial fundamental frequency 

 

/// Boot ROM sine table size for VSI and DFT 

#define ROM_TABLE_SIZE        512 

/// Boot ROM sine table peak magnitude for VSI and DFT 

#define ROM_TABLE_PEAK        16384 

 

/// Maximum fundamental frequency 

#define F_FREQ_MAX                100.0 

/// Minimum fundamental frequency 

#define F_FREQ_MIN                0.1 

 

/// Carrier timer half period in clock ticks 

#define PERIOD_2                (Uint16)(HSPCLK/SW_FREQ)/2.0 

 

/// Carrier timer period in clock ticks 

#define PERIOD                    (Uint16)(PERIOD_2*2) 

/// Maximum VSI switching time in clock ticks 

//#define MAX_TIME                (int16)(PERIOD_2-6) 

 

 

 

/** @name VSI Status bit definitions */ 

//@{ 
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#define VSI_RUNNING        0x0001    ///< VSI is running 

#define VSI_SETTLED        0x0002    ///< set when target reached 

#define VSI_FAULT        0x0004    ///< set when fault present in VSI system 

//@} 

 

/** @name Fault Codes */ 

//@{ 

#define FAULT_VSI_IAC_OL        0x0001 

#define FAULT_VSI_IAC_OC        0x0002 

#define FAULT_VSI_VDC_OV        0x0004 

#define FAULT_VSI_VDC_UV        0x0008 

#define FAULT_VSI_PDPINT        0x0010 

#define FAULT_VSI_SPI            0x0020 

//@} 

 

/// Maximum modulation depth in tenths of a percent 

#define MOD_DEPTH_MAX            20000 

 

 

/* ========================================================================= 

__Exported_Variables() 

============================================================================ */ 

 

typedef long long signed int    int64; 

 

 

/* ========================================================================= 

__Function_Prototypes() 

============================================================================ */ 

 

/// Core interrupt initialisation 

void vsi_init(void); 

 

/// Core interrupt VSI state machine for background processing 

void vsi_state_machine(void); 

 

 

/// Enables vsi switching (assuming no faults) 

void vsi_enable(void); 

 

/// Disable vsi switching 

void vsi_disable(void); 

 

/// Set the target output modulation depths in tenths of a percent 

void vsi_set_mod(Uint16 m); 

 

/// Set the target output modulation depths in tenths of a percent immediately bypassing ramping function 

/// Used to create step change in reference 

void vsi_set_mod_immediate(Uint16 m); 

 

/// Returns the target output modulation depths in tenths of a percent 

Uint16 vsi_get_mod(void); 

 

/// Set the target output frequency in Hz 

double vsi_set_freq(double f); 

 

/// Returns the VSI fundamental frequency 

double vsi_get_freq(void); 

 

/// Returns the status of the VSI 

Uint16 vsi_get_status(void); 

 

/// Report what faults are present in the VSI 

Uint16 vsi_get_faults(void); 

 

/// Clear some detected faults and re-check. 

void vsi_clear_faults(void); 
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//    Print the current state of the state machine 

void get_state(void); 

 

/* Retrieve filtered and scaled analog measurements. */ 

//Uint16 vsi_get_vdc(void); /* returns V */ 

//Uint16 vsi_get_vout(Uint16 scale); /* returns scaled Vout */ 

//Uint16 vsi_get_iout(Uint16 scale); /* returns scaled Aout */ 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

 

B. 2 CSVPWM with Feedforward 

B.2.1 vsi.c 

/** 

\file 

\brief VSI Interrupt Service Routine 

 

This file contains the code for the core interrupt routine for the CVT system. 

This interrupt is the central system for the signal generation and 

measurement. The carrier timer for the VSI generation also triggers the 

internal ADC conversion at the peak of the carrier. The end of conversion then 

triggers this interrupt. Its tasks are: 

 

- Read internal ADC results 

- Perform internal analog averaging and RMS calculations 

- Update VSI phase and switching times 

 

\par Developed By: 

    Creative Power Technologies, (C) Copyright 2009 

\author A.McIver 

\par History: 

\li    23/04/09 AM - initial creation 

*/ 

 

 

// compiler standard include files 

#include <math.h> 

 

// processor standard include files 

#include <DSP281x_Device.h> 

#include <DSP281x_Examples.h> 

 

//#include <lib_da2810.h> 

#include <lib_mini2810.h> 

#include <lib_cpld.h> 

#include <lib_giib.h> 

 

// common project include files 

//#define AD5624 

#define DAC_SHIFT 4 

#include <dac_ad56.h> 

 

// local include files 

#include "main.h" 

#include "conio.h" 

#include "vsi.h" 

#include "curreg.h" 

#include "cas.h" 

 

 

 

/* ========================================================================= 
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__Definitions() 

============================================================================ */ 

 

 

 

/// Shift from internal modulation depth scaling 

#define MOD_SHIFT                14 

 

/* the phase is scaled so that one fundamental is 2^32 counts. */ 

//#define PHASE_STEP_SC_D            (65536.0*65536.0/SW_FREQ)                //Synchronous switching 

sampling freq 

#define PHASE_STEP_SC_D            (65536.0*65536.0/SW_FREQ)            //Asynchronous switching sampling 

#define PHASE_STEP                (Uint32)(PHASE_STEP_SC_D*F_FREQ_MIN) 

 

/// ADC calibration time 

#define ADC_CAL_TIME            0.1 // seconds 

#define ADC_COUNT_CAL            (Uint16)(ADC_CAL_TIME * SW_FREQ) 

 

/// DC averaging time 

#define ADC_DC_TIME                0.1 // seconds 

#define ADC_COUNT_DC            (Uint16)(ADC_DC_TIME * SW_FREQ) 

 

#define    ADC_REAL_SC                1 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/// RMS scaling 

#define ADC_RMS_PS            4 

 

#define GRAB_INCLUDE 

 

#define ON                     1 

#define OFF                 0 

 

 

/* ========================================================================= 

__Macros() 

============================================================================ */ 

 

/// Disable VSI switching 

#define VSI_DISABLE()        EvaRegs.ACTRA.all = 0x0000 

 

/// Enable VSI switching 

//#define VSI_ENABLE()        EvaRegs.ACTRA.all = 0x0066; 

#define VSI_ENABLE() EvaRegs.ACTRA.all = 0x0999 

 

/// Enable VSI for single phase operation 

#define VSI_ENABLE_1P()        EvaRegs.ACTRA.all = 0x0066 

    //    output pin 1 CMPR1 - active high 

    //    output pin 2 CMPR1 - active low 

    //    output pin 3 CMPR2 - active high 

    //    output pin 4 CMPR2 - active low 

    //    output pin 5 force low 

    //    output pin 6 force low 

     

/// Turn low side devices on full for charge pump starting 

#define VSI_GATE_CHARGE()    EvaRegs.ACTRA.all = 0x00CC 

 

} 

 

 

 

/* ========================================================================= 

__Types() 

============================================================================ */ 

 

/// Internal ADC channel type 

/** This structure hold variables relating to a single ADC channel. These 
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variables are used for filtering, averaging, and scaling of this analog 

quantity. */ 

typedef struct 

{ 

    int16 

        raw, ///< raw ADC result from last sampling 

        filt; ///< decaying average fast filter of raw data 

    int32 

        rms_sum, ///< interrupt level sum of data 

        rms_sum_bak, ///< background copy of sum for averaging 

        dc_sum, ///< interrupt level sum 

        dc_sum_bak; ///< background copy of sum for processing 

    double 

        real; ///< background averaged and scaled measurement 

} type_adc_ch; 

 

/// Internal ADC storage type 

/** This structure holds all the analog channels and some related variables 

for the averaging and other processing of the analog inputs. There are also 

virtual channels for quantities directly calculated from the analog inputs. 

The vout and iout channels are for DC measurements of the VSI outputs when it 

is producing a DC output. */ 

typedef struct 

{ 

    Uint16 

        count_cal, ///< counter for low speed calibration summation 

        count_rms, ///< counter for full fund. period for RMS calculations 

        count_rms_bak, ///< background copy of RMS counter 

        count_dc, ///< counter for DC averaging 

        count_dc_bak, ///< background copy of DC counter 

        flag_cal, ///< flag set to trigger background calibration averaging 

        flag_rms, ///< flag set to trigger background RMS averaging 

        flag_dc; ///< flag set to trigger background DC averaging 

    type_adc_ch 

        A0, ///< ADC channel A0 

//        A1, ///< ADC channel A1 

//        A2, ///< ADC channel A2 

//        A3, ///< ADC channel A3 

//        A4, ///< ADC channel A4 

//        A5, ///< ADC channel A5 

        B0, ///< ADC channel B0 

//        B1, ///< ADC channel B1 

//        B2, ///< ADC channel B2 

        Vdc1,//        B3, ///< ADC channel B3 

//        B4, ///< ADC channel B4 

//        B5, ///< ADC channel B5 

        yHA, ///< bank A high reference 

        yLA, ///< bank A low reference 

        yHB, ///< bank B high reference 

        yLB; ///< bank B low reference 

} type_adc_int; 

 

 

/* ========================================================================= 

__Variables() 

============================================================================ */ 

 

// state machine level variables 

Uint16 

    vsi_status = 0,            /// Status of VSI system 

    int_count = 0, 

    is_switching = 0,        // flag set if PWM switching is active 

    vsi_counter = 0;        // counter for timing VSI regulation events 

 

//Timer period and switching frequency related variable 

//Initialized to default value as set by #define values at top of this file 

Uint16 
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    period_2 = PERIOD_2, //sw_freq = SW_FREQ, 

    period = PERIOD; 

Uint32 

    PHASE_STEP_SC = PHASE_STEP_SC_D    ; 

 

/// Maximum VSI switching time in clock ticks 

int16  

    MAX_TIME    =    (int16)(PERIOD_2-6) ; 

     

int16 

    V_Asat=0, V_Bsat=0, V_Csat=0; 

 

double  

    Ref_freq_float = INIT_FF;     

     

// PWM Timer interrupt variables 

 

// Boot ROM sine table starts at 0x003FF000 and has 641 entries of 32 bit sine 

// values making up one and a quarter periods (plus one entry). For 16 bit 

// values, use just the high word of the 32 bit entry. Peak value is 0x40000000 

// WYK note: Sin table contain 1024 entire with peak value of +-16384 

int16 

    *sin_table = (int16 *)0x003FF000, // pointer to sine table in boot ROM 

    *cos_table = (int16 *)0x003FF100, // pointer to cos table in boot ROM 

    phase_offset,            // round off amount from sine lookup 

    val_diff,                // interpolation temp variable 

    val_lo,                    // interpolation temp variable 

    sin_val,                // interpolated sine table value 

    cos_val,                // interpolated cosine table value 

    sin_PI_on_3_val, 

    sin_PI_on_6_val, 

    sin_4PI_on_3_val, 

    cos_PI_on_3_val, 

    DC_val; 

         

Uint32 

    phase_step = PHASE_STEP,// change in phase angle each interrupt 

    phase = 0L;                // running phase angle  (2^32 == 360degrees) 

 

//Calculate phase offset to initialized phase value to enable reading of sin table to generate various differernt 

trignometrey lookup needed 

Uint32 

    phase_sin = (long)65536.0*0.0* 65536.0, 

    phase_sin_PI_on_3 = (long) 65536.0*(1.0/6.0) * 65536.0, 

    phase_sin_PI_on_6 = (long)65536.0*(1.0/12.0) * 65536.0, 

    phase_sin_2PI_on_3 = (long) 65536.0/3.0 * 65536.0, 

    phase_sin_4PI_on_3 = (long) 65536.0*(2.0/3.0) * 65536.0, 

    phase_cos = (long) 65536.0*(0.25) * 65536.0, 

    phase_cos_PI_on_3 = (long) 65536.0*(0.25+1.0/6.0) * 65536.0; 

 

Uint16                // index into sine look-up table (phase >> 22), this give a 10 bit number which can be used to 

read sin table 

    index = 0, 

    index_sin = 0, 

    index_sin_PI_on_3 = 0, 

    index_sin_PI_on_6 = 0, 

    index_sin_4PI_on_3 = 0, 

    index_cos = 0, 

    index_cos_PI_on_3 = 0; 

 

 

     

int16 

    V_A,                      // demanded voltages 

    t_A,                    // switching times 

    t_B, 

    t_C, 
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    Voff,                    //3rd harmonic offset 

    mod_targ = 0,            // target modulation depth 

    mod_ref = 0;            // background reference mod depth 

 

/// fault variables 

Uint16 

    detected_faults = 0;    // bits set for faults detected (possibly cleared) 

 

 

/** @name Internal ADC Variables */ 

//@{ 

type_adc_int 

    adc_int = 

    { 

        0, // count_cal 

        0, // count_rms 

        0, // count_rms_bak 

        0, // count_dc 

        0, // count_dc_bak 

        0, // flag_cal 

        0, // flag_rms 

        0, // flag_dc 

        {  0, // raw 

           0, // filt 

           0L, // rms_sum 

           0L, // rms_sum_bak 

           0L, // dc_sum 

           0L, // dc_sum_bak 

           0.0 // real 

        }, // #A0 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A1 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A2 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A3 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A4 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A5 

        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B0 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B1 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B2 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B3 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B4 

//        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B5 

        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yHA 

        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yLA 

        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yHB 

        { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yLB 

    }; 

 

// ADC calibration variables 

int16 

    cal_gainA = 1<<14,        // calibration gain factor for A channel 

    cal_gainB = 1<<14,        // calibration gain factor for B channel 

    cal_offsetA = 0,        // calibration offset for A channel 

    cal_offsetB = 0;        // calibration offset for B channel 

double 

    cal_gain_A, cal_gain_B, 

    cal_offset_A, cal_offset_B; 

//@} 

 

//ADC value holder 

int16 

    I_res_A, 

    I_res_B, 

    VAC_A,                //Voltage measuremnet of phase A of grid to natural 

    VAC_B,                //Voltage measuremnet of phase B of grid to natural 

    Vdc; 
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//Reference mode for current regulator 

int16 refMode = SINGLE_AC_OL; 

 

signed int I_ref_Peak_AB = 0; 

 

//Control loop variables 

//Stationary frame PI regulator internal variables 

int16 

    I_ref_A = 0, 

    I_ref_B = 0; 

int32 

    err_i_prop_A=0, 

    err_i_int_now_A=0, 

    err_i_int_total_A=0; 

int32 

    err_i_prop_B=0, 

    err_i_int_now_B=0, 

    err_i_int_total_B=0; 

     

int16 

    Error_I_A, 

    Error_I_B, 

    Command_A,                    //Controller output variable  

    Command_B;                    //Controller output variable 

 

 

 

//Controller tuning in integer form used by controller calculation 

int16 

    Kp_i = 0,                    //Proportional constant in ADC count and timer count 

    Ki_i = 0,                    //Integral constant in ADC count and timer count 

    MODMAX = 8191,        //Maximum modulation index 100% modulation 

    ADC_offset = ADC_OFFSET, 

    // add_phase is the size of step jump in phase, the extra_phase should be added to  

    // the phase for reading the sintable, as it is a record of all the step change in phase 

    // requested so far 

    add_phase = 0; 

 

//Delta transform variables 

double  

    delta, one_on_delta, w_c, w_0, Ts; 

//S domain transfer function of P+Resonant controller 

//Function of form H(s) = (bs_0*s^2 + bs_1*s + bs_2)/(as_0*s^2 + as_1*s + as_0) 

double 

    bs_0, bs_1, bs_2, as_0, as_1, as_2; 

//Z domain transfer function of P+Resonant controller 

//Function of form H(z) = (bz_0 + bz_1*z^-1 +bz_0*z^-2)/(az_0 + az_1*z^-1 +az_0*z^-2) 

double 

    bz_0, bz_1, bz_2, az_0, az_1, az_2;     

//Delta domain transfer function of P+Resonant controller in floating point form 

//Function of form H(d) = (beta_0_f + beta_1_f*d^-1 + beta_2_f*d^-2)/(1 + alpha_1_f*d^-1 + alpha_2_f*d^-2) 

double  

    alpha_1_f, alpha_2_f, beta_0_f, beta_1_f, beta_2_f;     

int16  

    beta_0, beta_1, beta_2, alpha_0, alpha_1, alpha_2; 

double  

    Ki_i_f, Kp_i_f; 

//Interal variables for phase A of P+R controller 

long  

    Error_I_L_A=0; 

int 

    s0_1_fp_A = 0, s0_0_fp_A = 0, 

    s1_1_fp_A = 0, s1_0_fp_A = 0, 

    s2_1_fp_A = 0, s2_0_fp_A = 0; 

long 

    branch1_A=0, branch2_A=0, branch3_A=0, branch4_A=0, branch5_A=0; 
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Uint16 

    togg = 0, 

    sw = 0, Inom, 

    step_tog=0;                    //Toggle channel 2 of Dig IO for step change in reference 

 

//Interface variables used to recieve controller loop parameters from background 

//Controller loop turning parameters in real floating pointer number from background 

double 

    real_KP        =KP_INIT, 

    real_TINT =TINT_INIT;     

 

//For step change in reference in AC reference modes 

int16 count_from_zero_for_step = 0; 

int16 new_mod_targ = 0; 

int16 step_ref_request = 0; 

int16 step_phase_request = 0; 

int16 prev_sin_table_sign = 0; 

int16 step_0_ref_A = 0; 

 

//Feedforward + bus compensation related variables 

int FFenable = DISABLE;                                        //Feedforward status 

long FF_amount_A = 0; 

long FF_amount_B = 0; 

long ZERO = 0; 

int count_per_A = ADC_I1_SC_SCALED;                    //Scaled version of Amp per count used in calculation 

int VBUS = 0;                    //DC bus voltage 

int cond = 0; 

int one_on_vbus =0; 

int inverse_INOM = (int)((1.0/(float)I_NOM)*(long)(1l<<16)); 

int DAC_out = 0; 

int fundament_frequency = 0;                //Fundamental frequency multiple by 256 

//int inverse_bus_v_array[BUS_ARRAY_SIZE];                    //Array contain the inverse of bus voltage multiple 

by a constant for bus compensation calculation 

 

/* Zero crossing variables */ 

unsigned int  

    in_sync, 

    ZX_in_sync, 

    ZX_state, 

    ZX_count, 

    ZX_seen, 

    ZX_cycles, 

    ZX_sum; 

signed int     

    ZX_time, 

    ZX_time_phase, 

    ZX_phase_scale, 

    ZX_phase_err, 

    ZX_err_sum; 

int phase_trim = 0; 

 

extern int16 Unit_number; 

extern int16 cause_unbalance; 

 

/* ========================================================================= 

__Local_Function_Prototypes() 

============================================================================ */ 

 

/// ADC and VSI interrupt 

interrupt void isr_adc(void); 

 

/// Gate fault (PDPINT) interrupt 

interrupt void isr_gate_fault(void); 

 

/// Calibrates the adc for gain and offset using the reference inputs. 

void calibrate_adc(void); 
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/// Scales the RMS summations to real volts and amps 

void scale_adc_rms(void); 

 

/// Scales the DC summations to real volts and amps 

void scale_adc_dc(void); 

 

// Timer 1 underflow interrupt 

//interrupt void isr_T1UF(void); 

 

// Timer 1 period interrupt 

//interrupt void isr_T1P(void); 

 

// Capture port interrupt 

interrupt void isr_CAP1(void); 

interrupt void isr_CAP2(void); 

 

interrupt void isr_T2P(void); 

interrupt void isr_SPIRX(void); 

 

interrupt void isr_pwm(void); 

interrupt void isr_pwm2(void); 

 

interrupt void isr_T1CINT(void); 

 

int transmission_en;        // ZAKI 

 

/* vsi state machine state functions */ 

void 

    st_vsi_init(void),        // initialises CFPP regulator 

    st_vsi_stop(void),        // waiting for start trigger 

    st_vsi_gate_charge(void), // delay to charge the high side gate drivers 

    st_vsi_ramp(void),        // ramping to target mod depth 

    st_vsi_run(void),        // maintaining target mod depth 

    st_vsi_fault(void);        // delay after faults are cleared 

 

/* ========================================================================= */ 

/* State Machine Variable */ 

/* ========================================================================= */ 

 

type_state 

    vsi_state = 

    { 

        &st_vsi_init, 

        1 

    }; 

 

 

/* ========================================================================= 

__Exported_ADC_Functions() 

============================================================================ */ 

 

/** 

 

This function initialises the ADC and VSI interrupt module. It sets the 

internal ADC to sample the DA-2810 analog inputs and timer1 to generate a PWM 

carrier and the event manager A to generate the VSI switching. It also 

initialises all the relevant variables and sets up the interrupt service 

routines. 

 

This functions initialises the ADC unit to: 

- Trigger a conversion sequence from timer 1 overflow 

- Convert the appropriate ADC channels 

 

Result registers as follows: 

- ADCRESULT0 = ADCINA0 

- ADCRESULT1 = ADCINB0 
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- ADCRESULT2 = ADCINA1 

- ADCRESULT3 = ADCINB1 

- ADCRESULT4 = ADCINA2 

- ADCRESULT5 = ADCINB2 

- ADCRESULT6 = ADCINA3 

- ADCRESULT7 = ADCINB3 

- ADCRESULT8 = ADCINA4 

- ADCRESULT9 = ADCINB4 

- ADCRESULT10 = ADCINA5 

- ADCRESULT11 = ADCINB6 

- ADCRESULT12 = ADCINA6 yHA 

- ADCRESULT13 = ADCINB6    yHB 

- ADCRESULT14 = ADCINA7 yLA 

- ADCRESULT15 = ADCINB7 yLB 

 

It initialises the Evant Manager A unit to: 

- drive PWM1-4 as PWM pins not GPIO 

- a 0.48ns deadtime between the high and low side pins 

- Timer 1 as an up/down counter for the PWM carrier 

 

It initialises the PIE unit to: 

- Take PDPINTA as a power stage interrupt 

- Use the internal ADC completion interrupt to trigger the main ISR 

 

\author A.McIver 

\par History: 

\li    12/10/07 AM - initial creation 

*/ 

void vsi_init(void) 

{ 

     

    DINT; 

     

    EALLOW; 

    PieVectTable.T1UFINT    = &isr_pwm2; 

    PieVectTable.T1PINT        = &isr_pwm2; 

    EDIS; 

     

     

    EvaRegs.EVAIMRA.bit.T1UFINT = 1; 

    EvaRegs.EVAIMRA.bit.T1PINT = 1; 

     

    // Enable T1UFINT in PIE: Group 2 interrupt 6.   

    PieCtrlRegs.PIEIER2.bit.INTx6 = 1; 

    // Enable T1PINT in PIE: Group 2 interrupt 4. 

    PieCtrlRegs.PIEIER2.bit.INTx4 = 1; 

     

    // Acknowledge interrupt to PIE 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;    

     

    IER |= M_INT2; 

 

     

    EINT;     

 

} /* end vsi_init */ 

 

/* 

 * After successfully initialising this DSP 

 * I'd like to follow the vsi_init format 

 */ 

void zaki_vsi_init(void) 

{ 

 

    EvaRegs.GPTCONA.all = 0x0000; 

    EvaRegs.EVAIMRA.all = 0x0000; 

    EvaRegs.EVAIFRA.all = BIT0;        // Resets PDPINTA FLAG 
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    EvaRegs.COMCONA.all = 0x0000; 

    EvaRegs.ACTRA.all = 0x0000; 

 

// Set up ISRs 

    EALLOW; 

    //PieVectTable.ADCINT = &isr_adc; 

    PieVectTable.PDPINTA = &isr_gate_fault; 

    PieVectTable.T1UFINT = &isr_pwm2; 

    PieVectTable.T1PINT = &isr_pwm2; 

 

    /* SPI interrupt test code */ 

    //PieVectTable.SPIRXINTA = &isr_SPIRX; 

    EDIS; 

 

 

    /*-------------------------------- 

    Set the GPIO MUX to enable the EVA 

    --------------------------------*/ 

    EALLOW; 

    GpioMuxRegs.GPAMUX.bit.PWM1_GPIOA0 = 1; 

    GpioMuxRegs.GPAMUX.bit.PWM2_GPIOA1 = 1; 

    GpioMuxRegs.GPAMUX.bit.PWM3_GPIOA2 = 1; 

    GpioMuxRegs.GPAMUX.bit.PWM4_GPIOA3 = 1; 

    GpioMuxRegs.GPAMUX.bit.PWM5_GPIOA4 = 1; 

    GpioMuxRegs.GPAMUX.bit.PWM6_GPIOA5 = 1; 

 

    //Enable test pins on EVA 

    GpioMuxRegs.GPAMUX.bit.T1PWM_GPIOA6 = 0;    // disabled 

    GpioMuxRegs.GPAMUX.bit.T2PWM_GPIOA7 = 0;    //disabled 

    GpioMuxRegs.GPADIR.bit.GPIOA6 = 1; 

    GpioMuxRegs.GPADIR.bit.GPIOA7 = 1; 

     

    //Enable test pin on EVB 

    GpioMuxRegs.GPBMUX.bit.T3PWM_GPIOB6 = 0; 

    GpioMuxRegs.GPBMUX.bit.T4PWM_GPIOB7 = 0; 

    GpioMuxRegs.GPBDIR.bit.GPIOB6 = 1; 

    GpioMuxRegs.GPBDIR.bit.GPIOB7 = 1; 

     

    //Enable PDPINTA 

    GpioMuxRegs.GPDMUX.all = BIT0; 

    GpioMuxRegs.GPDQUAL.bit.QUALPRD = 6; // 500ns qualification period 

 

    //Enable first pin of EVB as digout pins for outputing sync signal 

    GpioMuxRegs.GPBMUX.bit.PWM7_GPIOB0 = 0; 

    GpioMuxRegs.GPBDIR.bit.GPIOB0 = 1; 

    EDIS; 

 

    //Enabling Capture port pins 

    EALLOW; 

    GpioMuxRegs.GPAMUX.bit.CAP1Q1_GPIOA8 = 1; 

    GpioMuxRegs.GPAMUX.bit.CAP2Q2_GPIOA9 = 1; 

    EDIS; 

 

    /*------------------- 

    Capture port setting  

    -------------------*/ 

    EvaRegs.CAPCONA.all = 0x0000; 

//    EvaRegs.CAPCONA.bit.CAPRES = 0;                //Reset capture unit 

    EvaRegs.CAPCONA.bit.CAP12EN = 1;            //Enable capture port 1 and 2 

    EvaRegs.CAPCONA.bit.CAP1EDGE = 1;            //Detect rising edge in capture port 1 

    EvaRegs.CAPCONA.bit.CAP2EDGE = 1;            //Detect rising edge in capture port 2 

    EvaRegs.CAPCONA.bit.CAP12TSEL=0;            // GP timer selection for CAP1 and CAP2 

         

 

    EvaRegs.EVAIMRC.all = 0;                //Disable all capture port interrupt 

    EvaRegs.EVAIFRC.all = 0;                //Clearing interrupt flag for capture port 

//    EvaRegs.EVAIMRC.bit.CAP1INT = 1;        //Enabling capture port 1 interrupt 



EXPERIMENTAL SOFTWARE  275 

275 

//    EvaRegs.EVAIMRC.bit.CAP2INT = 1; 

 

 

    /*----------------- 

    Set up deadband 

    -----------------*/ 

    /*    DBT        DBTPS        time 

        9        2            0.48 

        9        3            0.96 

        9        4            1.92 

        12        3            1.28 

    */ 

     

    //1.8us deadtime 

     

    EvaRegs.DBTCONA.bit.DBT = 8; 

    EvaRegs.DBTCONA.bit.EDBT1 = 1; 

    EvaRegs.DBTCONA.bit.EDBT2 = 1; 

    EvaRegs.DBTCONA.bit.EDBT3 = 1; 

    EvaRegs.DBTCONA.bit.DBTPS = 6; 

 

     

    EvaRegs.CMPR1 = PERIOD_2; 

    EvaRegs.CMPR2 = PERIOD_2; 

    EvaRegs.CMPR3 = PERIOD_2; 

 

    // Setup and load COMCONA 

    EvaRegs.COMCONA.bit.CENABLE = 1;    // Enable compare operation 

    EvaRegs.COMCONA.bit.CLD = 1;        // Reload CMPRx on underflow and period match 

    EvaRegs.COMCONA.bit.SVENABLE = 0;    // Disable SV mode 

    EvaRegs.COMCONA.bit.ACTRLD = 2;        // Reload ACTR immediately 

//    EvaRegs.COMCONA.bit.ACTRLD = 1;        // Reload ACTR on underflow and period match 

    EvaRegs.COMCONA.bit.FCOMPOE = 1;    // Enable all outputs 

//    EvaRegs.COMCONA.bit.PDPINTASTATUS;    // Read-only 

//    EvaRegs.COMCONA.bit.FCMP3OE = 0;    // Hi-Z PWM5/6  

//    EvaRegs.COMCONA.bit.FCMP2OE = 0;    // Hi-Z PWM5/6 

//    EvaRegs.COMCONA.bit.FCMP1OE = 0;    // Hi-Z PWM5/6 

//    EvaRegs.COMCONA.bit.C3TRIPE = 0;    // C3TRIP disabled 

//    EvaRegs.COMCONA.bit.C2TRIPE = 0;    // C2TRIP disabled 

//    EvaRegs.COMCONA.bit.C1TRIPE = 0;    // C1TRIP disabled 

 

    /*---------------- 

    Set up Timer 1 

    ----------------*/ 

    EvaRegs.T1CON.all = 0x0000; 

    EvaRegs.T1CON.bit.FREE = 1;    // Not sure what this does yet 

    EvaRegs.T1CON.bit.SOFT = 1; // Not sure what this does yet 

    EvaRegs.T1CON.bit.TMODE = 1;            // Count up/down 

    EvaRegs.T1CON.bit.TPS = 0; 

    EvaRegs.T1CON.bit.TENABLE = 0; 

    EvaRegs.T1CON.bit.TCLKS10 = 0; 

    EvaRegs.T1CON.bit.TCLD10 = 1;            // Reload when CNT == 0 or Period 

    EvaRegs.T1CON.bit.TECMPR = 1;            // Enable Timer Compare 

 

    EvaRegs.T1PR = 0xFFFF; 

    EvaRegs.T1CMPR = 300; // 65535; 

    EvaRegs.T1CNT = 0; 

 

 

     

    /*---------------- 

    Set up Timer 2 

    ----------------*/ 

    EvaRegs.T2CON.all = 0x0000; 

    EvaRegs.T2CON.bit.FREE = 1;        // Not sure what this does yet 

    EvaRegs.T2CON.bit.SOFT = 1;     // Not sure what this does yet 

    EvaRegs.T2CON.bit.TMODE = 2;    // Count up 
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    EvaRegs.T2CON.bit.TPS = 0;        // Prescale by HSP/1 

    EvaRegs.T2CON.bit.T2SWT1 = 1;    // Use TENABLE bit of GP Timer 1 

    EvaRegs.T2CON.bit.TENABLE = 0;    // Enable timer 

    EvaRegs.T2CON.bit.TCLKS10 = 0;    // Internal clock source 

    EvaRegs.T2CON.bit.TCLD10 = 0;    // Reload when counter is 0 

    EvaRegs.T2CON.bit.TECMPR = 1;    // Enable timer compare operation 

    EvaRegs.T2CON.bit.SET1PR = 0;    // Use own period register 

     

    EvaRegs.T2PR = 0xFFFF; 

    EvaRegs.T2CMPR = 300; // 65535; 

    EvaRegs.T2CNT = 0; 

 

    /*------------------------- 

    Set the EVA GP CON register 

    -------------------------*/ 

//    EvaRegs.GPTCONA.bit.T2STAT; 

//    EvaRegs.GPTCONA.bit.T1STAT; 

//    EvaRegs.GPTCONA.bit.T2CTRIPE = 0;    // I'm not sure. Check CPT defaults please. 

//    EvaRegs.GPTCONA.bit.T1CTRIPE = 0;    // I'm not sure. Check CPT defaults please. 

    EvaRegs.GPTCONA.bit.T2TOADC = 2;    // Start ADC on Period match 

    EvaRegs.GPTCONA.bit.T1TOADC = 2;  // Start ADC on Period match 

    EvaRegs.GPTCONA.bit.TCMPOE = 1; 

//    EvaRegs.GPTCONA.bit.T2CMPOE = 1; 

//    EvaRegs.GPTCONA.bit.T1CMPOE = 1; 

 

    /* Zaki: The pins below are set to Active Low 

        So that I know when UF starts for masters and Slave */ 

    EvaRegs.GPTCONA.bit.T2PIN = 1;         

    EvaRegs.GPTCONA.bit.T1PIN = 1;     

     

 

     

// Set up ADC 

 

    AdcRegs.ADCMAXCONV.all = 0x0007;        //  Setup 8 conv's on SEQ1 

    AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;    // Setup ADCINA/B0 as 1st SEQ1 conv. 

    AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;    // Setup ADCINA/B1 as 2nd SEQ1 conv. 

    AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;    // Setup ADCINA/B0 as 3rd SEQ1 conv. 

    AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;    // Setup ADCINA/B1 as 4th SEQ1 conv. 

    AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4;    // Setup ADCINA/B0 as 5th SEQ1 conv. 

    AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5;    // Setup ADCINA/B6 as 6th SEQ1 conv. 

    AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6;    // Setup ADCINA/B0 as 7th SEQ1 conv. 

    AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7;    // Setup ADCINA/B7 as 8th SEQ1 conv. 

    AdcRegs.ADCTRL1.bit.ACQ_PS = 1;            // lengthen acq window size 

    AdcRegs.ADCTRL1.bit.SEQ_CASC = 1;        // cascaded sequencer mode 

    AdcRegs.ADCTRL2.bit.EVA_SOC_SEQ1 = 1;    // EV manager start 

    AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0;    // disable interrupt 

    AdcRegs.ADCTRL2.bit.INT_MOD_SEQ1 = 1;    // int at end of every SEQ1 

    AdcRegs.ADCTRL2.bit.INT_MOD_SEQ2 = 1; 

    AdcRegs.ADCTRL3.bit.SMODE_SEL = 1;        // simultaneous sampling mode 

    AdcRegs.ADCTRL3.bit.ADCCLKPS = 0x04;    // ADCLK = HSPCLK/8 (9.375MHz) 

 

 

// Enable interrupts 

    DINT; 

    EvaRegs.EVAIMRA.all = 0;                // disable all interrupts 

    // Enable PDPINTA: clear PDPINT flag and T1PINT flag 

    //EvaRegs.EVAIFRA.all = BIT0|BIT7; 

    EvaRegs.EVAIMRA.bit.PDPINTA = 1;            //Disable for testing WYK 2009/05/20 

    EvaRegs.EVAIFRA.bit.PDPINTA = 1; 

//    EvaRegs.EVAIFRA.all = BIT0|BIT7|BIT9|BIT8;                //PDPINTA, T1UFINT, T1PINT, T1CINTenabled 

    EvaRegs.EVAIMRA.bit.T1UFINT = 1; 

    EvaRegs.EVAIMRA.bit.T1PINT = 1; 

//    EvaRegs.EVAIMRA.bit.T1CINT = 1; 

//    EvaRegs.EVAIMRB.bit.T2PINT = 1; 

 

    // Enable PDPINTA in PIE: Group 1 interrupt 1 
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    PieCtrlRegs.PIEIER1.bit.INTx1 = 1; 

    // Enable ADC interrupt in PIE: Group 1 interrupt 6 

    //PieCtrlRegs.PIEIER1.bit.INTx6 = 1; 

    // Enable T1UFINT in PIE: Group 2 interrupt 6.   

    PieCtrlRegs.PIEIER2.bit.INTx6 = 1; 

    // Enable T1PINT in PIE: Group 2 interrupt 4. 

    PieCtrlRegs.PIEIER2.bit.INTx4 = 1; 

    // Enable T1CINT in PIE: Group 2 interrupt 5.  WYK 20091207 

    //PieCtrlRegs.PIEIER2.bit.INTx5 = 1;     

    // Enable CAPINT1 in PIE: Group 3 interrupt 5 

    //PieCtrlRegs.PIEIER3.bit.INTx5 = 1; 

    // Enable CAPINT2 in PIE: Group 3 interrupt 6 

    //PieCtrlRegs.PIEIER3.bit.INTx6 = 1; 

    // Enable T2PINT in PIE: Group 3 interrupt 1 

    //PieCtrlRegs.PIEIER3.bit.INTx1 = 1; 

 

    IER |= M_INT1 | M_INT2; // Enable CPU Interrupts 1,2,3,6 

    //IER |= M_INT1|M_INT2|M_INT3|M_INT6; // Enable CPU Interrupts 1,2,3,6 

    EINT; 

     

//    AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // clear interrupt flag 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;   // Acknowledge interrupt to PIE 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;   // Acknowledge interrupt to PIE 

//    PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;   // Acknowledge interrupt to PIE     

 

     

    // Zaki:  

    // Now, I want them both to have the same period. 

    // Max value of period_load is 32768. 

    EvaRegs.T1PR = PERIOD_2;                     

    EvaRegs.T2PR = PERIOD_2*2-1; 

    EvaRegs.T1CMPR = PERIOD_2/2; 

    EvaRegs.T2CMPR = PERIOD_2/2; 

    putxx(EvaRegs.T1CMPR); 

    putxx(EvaRegs.T2CMPR); 

    EvaRegs.T1CON.bit.TENABLE = 1; 

 

 

    // Initialise state machine 

//    vsi_state.first = 1; 

//    vsi_state.f = &st_vsi_init; 

} 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function is called from the main background loop once every millisecond. 

It performs all low speed tasks associated with running the core interrupt 

process, including: 

- checking for faults 

- calling the VSI state functions 

- calling internal analog scaling functions 

 

\author A.McIver 

\par History: 

\li    13/10/07 AM - derived from 25kVA:vsi:vsi.c 

*/ 

void vsi_state_machine(void) 

{ 

    //SS_DO(vsi_state); 

    if (adc_int.flag_rms != 0) // rms flag synched to VSI fundamental 

    { 

        adc_int.flag_rms = 0; 

        scale_adc_rms(); 

    } 

    else if (adc_int.flag_dc != 0) // ADC_DC_TIME flag 

    { 

        adc_int.flag_dc = 0; 

        scale_adc_dc(); 
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    } 

    else if (adc_int.flag_cal != 0) 

    { 

        adc_int.flag_cal = 0; 

        calibrate_adc(); 

    } 

} /* end vsi_state_machine */ 

 

 

/* ========================================================================= 

__Exported_VSI_Functions() 

============================================================================ */ 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function switches the VSI from the stopped state to a running state. 

 

\author A.McIver 

\par History: 

\li    13/10/07 AM - derived from 25kVA:vsi:vsi.c 

*/ 

void vsi_enable(void) 

{ 

    if (detected_faults == 0) 

        is_switching = 1; 

     

    EvaRegs.ACTRA.bit.CMP4ACT = 1; // Active high 

    EvaRegs.ACTRA.bit.CMP3ACT = 2; // Active low 

    EvaRegs.ACTRA.bit.CMP2ACT = 1; // Active high 

    EvaRegs.ACTRA.bit.CMP1ACT = 2; // Active low 

} /* end vsi_enable */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function switches the VSI from the running state to a stop state. 

 

The ramp down process has the side effect of resetting the reference to zero. 

 

\author A.McIver 

\par History: 

\li    13/10/07 AM - derived from 25kVA:vsi:vsi.c 

*/ 

void vsi_disable(void) 

{ 

    is_switching = 0; 

    EvaRegs.ACTRA.all = 0x0000; 

} /* end vsi_disable */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function sets the target output modulation depth. 

 

The target is passed in tenths of a percent, so a value of 1000 corresponds to 

100% modulation depth. 

 

\author A.McIver 

\par History: 

\li 24/04/09 AM - initial creation 

 

\param[in] m Target output modulation depth 

*/ 

void vsi_set_mod(Uint16 m) 

{ 

    int32 

        temp; 
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    if (m > MOD_DEPTH_MAX) 

    { 

        m = MOD_DEPTH_MAX; 

    } 

    temp = (((int32)m) << MOD_SHIFT) / ((int32)MOD_DEPTH_MAX); 

 

    mod_ref = (int16)temp; 

} /* end vsi_set_mod */ 

 

 

void vsi_set_mod_immediate(Uint16 m) 

{ 

    int32 

        temp; 

 

    if (m > MOD_DEPTH_MAX) 

    { 

        m = MOD_DEPTH_MAX; 

    } 

    temp = (((int32)m) << MOD_SHIFT) / ((int32)MOD_DEPTH_MAX); 

 

    mod_ref = (int16)temp; 

    mod_targ = mod_ref; 

    //Shift left of 1 introduce to deal with the fact that mod_targ 200% at full range 

    I_ref_Peak_AB = ((long)I_NOM*((long)mod_targ<<1))>>MOD_SHIFT; 

 

} /* end vsi_set_mod */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function returns the target output modulation depth. 

 

\author A.McIver 

\par History: 

\li 24/04/09 AM - initial creation 

 

\returns The VSI target output modulation depth in tenths of a percent 

*/ 

Uint16 vsi_get_mod(void) 

{ 

    int32 

        temp; 

 

    temp = ((int32)mod_ref * (int32)MOD_DEPTH_MAX + (1L<<(MOD_SHIFT-1)) ) 

                >> MOD_SHIFT; 

 

    return (Uint16)temp; 

} /* end vsi_get_mod */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

Set the target output frequency in Hz. 

 

\author A.McIver 

\par History: 

\li    12/10/07 AM - initial creation 

\li 04/03/08 AM - added return of new frequency 

 

\returns The new frequency in Hz 

 

\param[in] f Target fundamental frequency in Hz 

*/ 

double vsi_set_freq(double f) 

{ 
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    if (f == 0.0||refMode == DC_REF) // DC output 

    { 

        phase_step = 0L; 

        phase = 32768uL*65536uL; 

    } 

    else 

    { 

        if (f > F_FREQ_MAX) 

        { 

            f = F_FREQ_MAX; 

        } 

        else if (f < F_FREQ_MIN) 

        { 

            f = F_FREQ_MIN; 

        } 

 

        phase_step = (Uint32)(PHASE_STEP_SC * f + 0.5); // atomic load 

    } 

    Ref_freq_float = f; 

    return (double)phase_step/PHASE_STEP_SC; 

} /* end vsi_set_freq */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function returns the VSI fundamental frequency. 

 

\author A.McIver 

\par History: 

\li    19/06/08 AM - initial creation 

 

\returns The VSI fundamental frequency 

*/ 

double vsi_get_freq(void) 

{ 

    return (double)phase_step/PHASE_STEP_SC; 

} /* end vsi_get_freq */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function returns the status of the VSI output system. It returns 

- stopped or running 

- fault code 

- ramping or settled 

 

\author A.McIver 

\par History: 

\li    13/10/07 AM - derived from 25kVA:vsi:vsi.c 

 

\retval VSI_RUNNING VSI system switching with output 

\retval VSI_SETTLED Output has reached target 

\retval VSI_FAULT VSI system has detected a fault 

*/ 

Uint16 vsi_get_status(void) 

{ 

    return vsi_status; 

} /* end vsi_get_status */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function returns the fault word of the VSI module. 

 

\author A.McIver 

\par History: 

\li    04/03/08 AM - initial creation 
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\returns The present fault word 

*/ 

/// Report what faults are present in the VSI 

Uint16 vsi_get_faults(void) 

{ 

    return detected_faults; 

} /* end vsi_get_faults */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/* void vsi_clear_faults(void) 

Parameters: none 

Returns: nothing 

Description: Clear the detected faults. 

Notes: 

History: 

    13/10/05 AM - initial creation 

\li 28/04/08 AM - added event reporting 

*/ 

void vsi_clear_faults(void) 

{ 

    Uint16 

        i; 

 

    if (detected_faults & FAULT_VSI_PDPINT) 

    { 

        for (i=0; i<100; i++) 

            i++; // delay for fault to clear 

 

        EvaRegs.COMCONA.all = 0; 

        EvaRegs.COMCONA.all = 0xAA00; 

    } 

    detected_faults = 0; 

} /* end vsi_clear_faults */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/* Uint16 vsi_get_vdc(void) 

Parameters: none 

Returns: DC bus voltage in Volts 

Description: Retrieves filtered and scaled Vh measurements. 

Notes: 

History: 

    13/10/05 AM - initial creation 

*/ 

/* 

Function is commented out until scaling is set up 

 Uint16 vsi_get_vdc(void) 

{ 

    return (Uint16)(adc_int.vdc.real + 0.5); 

}*/ /* end vsi_get_vdc */ 

 

 

/* ========================================================================= */ 

/* Interrupt Routines */ 

/* ========================================================================= */ 

 

#ifndef BUILD_RAM 

#pragma CODE_SECTION(isr_adc, "ramfuncs"); 

#endif 

interrupt void isr_adc(void){ 

    SET_TP10();     

    EvaRegs.EVAIFRA.all = BIT7;                // clear interrupt flag 

    AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;        // clear interrupt flag 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;    // Acknowledge interrupt to PIE 

    //adc_ready_flag = 1; 
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    CLEAR_TP10(); 

 

} 

 

 

/** 

\fn interrupt void isr_adc(void) 

\brief Updates VSI and stores ADC results 

 

This interrupt is triggered by the completion of the internal ADC conversions. 

It then: 

- stores the internal ADC results 

- applies the internal ADC calibration factors 

- sums the calibration measurements 

- applies a fast decaying average filter to the analog signals 

- checks for fault conditions 

- performs low speed averaging and rms calculations on internal ADC quantities 

- updates phase angle 

- calculates switching times 

- loads compare registers with switching times 

- sets up analogs for next interrupt 

 

/*============================================================================= 

 * CSVPWM Helper functions 

 * ==========================================================================*/ 

inline float max(float a, float b, float c) 

{ 

    if ( a >= b ) 

    {    // a is greater 

        if ( a >= c ) 

            return a; 

        else 

            return c; 

    } 

    else 

    {    // b is greater 

        if ( b >= c ) 

            return b; 

        else 

            return c; 

    } 

} 

 

inline float min(float a, float b, float c) 

{ 

    if ( a <= b ) 

    {    // a is smaller 

        if ( a <= c ) 

            return a; 

        else 

            return c; 

    } 

    else 

    {    // b is smaller 

        if ( b <= c ) 

            return b; 

        else 

            return c; 

    } 

} 

/*============================================================================= 

zaki_defines() 

=============================================================================*/ 

#include <math.h> 

#define TABLE_SIZE 400 

#define PI    3.14159265359 

#define PHASE 0 
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#define PHASE_4PI3 (0.666667 * TABLE_SIZE) 

#define PHASE_STEP 2 

unsigned int failures=0; 

int rxfail = 0; 

extern int16 master_slave_mode; 

extern float sine_table[TABLE_SIZE]; 

extern int16 Unit_number; 

Uint16 status = 0xFF; 

Uint16 gtransmit; 

 

extern int sw_freq_serial; 

 

#define MOD_DEPTH 0.90 

float mod_depth = MOD_DEPTH; 

#define CYCLES_50HZ (2.0*SW_FREQ/50.0) 

/*===========================================================================*/ 

 

 

#ifndef BUILD_RAM 

#pragma CODE_SECTION(isr_pwm2, "ramfuncs"); 

#endif 

interrupt void isr_pwm2(void) 

{ 

    //Find out the direction which the timer is going, used to update timer 1 compare to 

    //get ADC to trigger at right point.   

    int timer1_dir = EvaRegs.GPTCONA.bit.T1STAT; 

    Uint16 i,j; 

    int wait = 0; 

     

    Uint16 CAP1_read; 

    int carrier, carrier_adjust; 

     

     

    Uint16 spibuf[15]; 

    Uint16 waste; 

    Uint16 checksum; 

     

    float ya,yb,yc; 

    float ap,bp,cp,offset,offsetp,VDC,Ref_Va,Ref_Vb,Ref_Vc, 

        P,vo_max,vo_min,limited_offset,Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset; 

    float delta_NP,Vdc_float,Vhigher_float,Vlower_float,useless,rmd_tmp, 

        v1n,v2n,v3n, 

        vdcff, 

        RVa_top, RVa_bot, 

        RVb_top, RVb_bot, 

        RVc_top, RVc_bot, 

        inv_denum_top,inv_denum_bot, 

        vdcff_Ref_Va_1,vdcff_Ref_Vb_1,vdcff_Ref_Vc_1; 

    int16 cmprtmp,cmprtmp2; 

     

    // Fixed 

    int32 F_Ref_Va,F_Ref_Vb,F_Ref_Vc; 

    int32 F_Vdc,F_Vhigher,F_Vlower; 

    int32 F_v1n,F_v2n,F_v3n; 

    int32 F_vdcff, F_inv_denum_top, F_inv_denum_bot; 

    int32 F_vdcff_Ref_Va_1,F_vdcff_Ref_Vb_1,F_vdcff_Ref_Vc_1; 

    int32 F_RVa_top,F_RVa_bot,F_RVb_top,F_RVb_bot,F_RVc_top,F_RVc_bot; 

    int32 F_holder; 

    // End Fixed 

 

    int16 ta,tb,tc; 

    int16 cmpratop, cmprabot, cmprbtop, cmprbbot, cmprctop, cmprcbot; 

    static Uint16 period_4 = PERIOD_2/2; 

    static Uint16 counter_50hz = 0; 

    static Uint16 phase = PHASE; 

    static Uint16 phase_n4PI3 = TABLE_SIZE - PHASE_4PI3; 

    static Uint16 phase_4PI3 = PHASE_4PI3;     
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    static Uint16 cmprval, prev_CMPR1_sat, CMPR1_sat, prev_CMPR2_sat, CMPR2_sat; 

    static Uint32 loop_no = 0; 

    static Uint16 sqwv_count = 0; 

    static Uint16 sqwv_period = 1; 

    static Uint16 sqwv_toggle = 0; 

    int16 Vdc, Vlower, Vhigher,deltaV; 

     

/*============================================================================== 

isr_pwm2_MASTER() 

==============================================================================*/ 

     

    if (master_slave_mode == 1) 

    { 

        // Code was copied from Wang. 

        // Master sends the sync pulse to synchronise the carriers 

        // Only sent at underflow. 

        if (timer1_dir == 1) 

        {     

            // Send the sync pulse through B4 

            SET_TP13(); 

            GpioDataRegs.GPBDAT.bit.GPIOB4 = 1; 

            GpioDataRegs.GPBDAT.bit.GPIOB5 = 1; 

            for (i=0;i<3;i++) 

                wait++; 

            CLEAR_TP13(); 

            GpioDataRegs.GPBDAT.bit.GPIOB4 = 0; 

            GpioDataRegs.GPBDAT.bit.GPIOB5 = 0;                 

            SET_TP12(); 

        } 

        else 

            CLEAR_TP12(); 

                         

         

/* 

void isr_pwm2_MASTER_read_adc() 

*/ 

 

        /* Read and scale ADC values */ 

        // Wait for ADC to be finished 

        while(AdcRegs.ADCST.bit.SEQ1_BSY); 

             

        // store ADC results 

        adc_int.Vdc1.raw = (AdcRegs.ADCRESULT7>>4); 

        // gain correction factor 

        // STEWARTS 

        adc_int.Vdc1.raw = (int16)( ((int32)adc_int.Vdc1.raw*(int32)cal_gainB) >> 14) - cal_offsetB - 

ADC_ZERO;         

        // WANGS 

        //adc_int.Vdc1.raw = (int16)((((int32)(adc_int.Vdc1.raw -ADC_ZERO -cal_offsetB))*(int32)cal_gainB) >> 

14); 

        //    Vdc = (int16)((((int32)(Vdc- ADC_OFFSET - cal_offsetB))*(int32)cal_gainB) >> 14);     

        // ZAKI 

        //adc_int.Vdc1.raw -= ADC_ZERO; 

        // GIIB's diff amp is inverted 

        adc_int.Vdc1.raw *= -1;  

 

        // store ADC results 

        adc_int.B0.raw = (AdcRegs.ADCRESULT1>>4); 

        // gain correction factor 

        adc_int.B0.raw = (int16)( ((int32)adc_int.B0.raw*(int32)cal_gainB) >> 14) - cal_offsetB - ADC_ZERO;         

        // GIIB's diff amp is inverted 

        adc_int.B0.raw *= -1;  

     

 

        // calibration from references 

        adc_int.yHA.dc_sum += (Uint32)(AdcRegs.ADCRESULT12>>4); 

        adc_int.yLA.dc_sum += (Uint32)(AdcRegs.ADCRESULT14>>4); 
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        adc_int.yHB.dc_sum += (Uint32)(AdcRegs.ADCRESULT13>>4); 

        adc_int.yLB.dc_sum += (Uint32)(AdcRegs.ADCRESULT15>>4); 

        adc_int.count_cal++; 

        if (adc_int.count_cal > ADC_COUNT_CAL) 

        { 

            adc_int.count_cal = 0; 

            adc_int.yHA.dc_sum_bak = adc_int.yHA.dc_sum; 

            adc_int.yLA.dc_sum_bak = adc_int.yLA.dc_sum; 

            adc_int.yHB.dc_sum_bak = adc_int.yHB.dc_sum; 

            adc_int.yLB.dc_sum_bak = adc_int.yLB.dc_sum; 

            adc_int.yHA.dc_sum = 0; 

            adc_int.yLA.dc_sum = 0; 

            adc_int.yHB.dc_sum = 0; 

            adc_int.yLB.dc_sum = 0; 

            adc_int.flag_cal = 1; 

        } 

     

        // Reinitialise for next ADC sequence 

        AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;            // Reset SEQ1 

 

        Vdc = adc_int.Vdc1.raw; 

        Vlower = adc_int.B0.raw; 

         

        /*=========================================================================== 

        Compare register calculations 

        ===========================================================================*/ 

        // Open loop 3-phase  

        // y range => -1.0 to 1.0 

        //y    = sin(2.0*PI*(float)phase/(float)TABLE_SIZE); 

        ya = mod_depth * sine_table[phase]; 

        yb = mod_depth * sine_table[phase_4PI3]; 

        yc = mod_depth * sine_table[phase_n4PI3];     //yc = 1.0 - ya - yb; 

        //yb = -ya; 

        //yc = -ya; 

     

        // 2-level switching     

        // y range => -0.5*period_2 to 0.5*period_2 

        //ya = ya * (float) period_4; 

        //yb = yb * (float) period_4; 

        //yc = yc * (float) period_4; 

 

        // CSVPWM 

        offset = - ( max(ya,yb,yc) + min(ya,yb,yc) )*0.5; 

 

        VDC = 1.0; 

//        ap = fmod(ya + offset + VDC, VDC); 

//        bp = fmod(yb + offset + VDC, VDC); 

//        cp = fmod(yc + offset + VDC, VDC); 

        rmd_tmp = ya + offset + VDC; 

        ap = rmd_tmp - ((int)rmd_tmp); 

        rmd_tmp = yb + offset + VDC; 

        bp = rmd_tmp - ((int)rmd_tmp); 

        rmd_tmp = yc + offset + VDC; 

        cp = rmd_tmp - ((int)rmd_tmp);  

 

         

        offsetp = 0.5 - ( max(ap,bp,cp) + min(ap,bp,cp) )*0.5; 

         

        Ref_Va = ya + offset + offsetp; 

        Ref_Vb = yb + offset + offsetp; 

        Ref_Vc = yc + offset + offsetp; 

         

        // FIXED POINT CALCS START HERE 

        // FORMAT int32 -> 16.16 fixed 

 

        F_Ref_Va = (int32)(Ref_Va*65536); 

        F_Ref_Vb = (int32)(Ref_Vb*65536); 
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        F_Ref_Vc = (int32)(Ref_Vc*65536); 

         

//        Vdc_float = Vdc*0.2673796791; 

        F_Vdc = (int32)Vdc*17523; 

         

//        Vlower_float = Vlower*0.272479564; 

        F_Vlower = (int32)Vlower*17857; 

         

//        if (cause_unbalance) Vlower_float += 36;  

        if (cause_unbalance) F_Vlower += (int32)36<<16; 

         

//        Vhigher_float = Vdc_float-Vlower_float; 

        F_Vhigher = F_Vdc-F_Vlower; 

 

 

//        delta_NP = Vhigher_float - Vlower_float; 

//        P = 0.1 * delta_NP; // NP CONTROLLER GAIN 

// 

//        // Calculate limits 

//        vo_max = min(1.0-Ref_Va, 1.0-Ref_Vb, 1.0-Ref_Vc); 

//        vo_min = -1.0*min(1.0+Ref_Va, 1.0+Ref_Vb, 1.0+Ref_Vc); 

// 

//        if (P>vo_max)        limited_offset = vo_max; 

//        else if (P<vo_min)    limited_offset = vo_min; 

//        else                limited_offset = P; 

// 

//        ya = Ref_Va + limited_offset; 

//        yb = Ref_Vb + limited_offset; 

//        yc = Ref_Vc + limited_offset; 

         

        // END OF CSVPWM 

         

        // DC BUS COMPENSATION 

//        v3n = 0; 

        F_v3n = 0; 

         

//        v2n = v3n + Vlower_float; 

        F_v2n = F_v3n + F_Vlower; 

         

//        v1n = v2n + Vhigher_float; 

        F_v1n = F_v2n + F_Vhigher; 

 

//        vdcff = Vdc_float; 

        F_vdcff = ((int64)F_Vdc * 32768)>>16; 

//        RVa_top = ( Ref_Va+1 - v2n/vdcff ) / ( v1n/vdcff - v2n/vdcff ); 

//        RVa_bot = ( Ref_Va+1 - v3n/vdcff ) / ( v2n/vdcff - v3n/vdcff ); 

//        RVb_top = ( Ref_Vb+1 - v2n/vdcff ) / ( v1n/vdcff - v2n/vdcff ); 

//        RVb_bot = ( Ref_Vb+1 - v3n/vdcff ) / ( v2n/vdcff - v3n/vdcff ); 

//        RVc_top = ( Ref_Vc+1 - v2n/vdcff ) / ( v1n/vdcff - v2n/vdcff ); 

//        RVc_bot = ( Ref_Vc+1 - v3n/vdcff ) / ( v2n/vdcff - v3n/vdcff ); 

         

//        inv_denum_top = 1.0/( v1n - v2n ); 

        F_inv_denum_top = ((int64)1<<32)/(F_v1n - F_v2n); //(int64)((1<<16 * 1<<16)/ (F_v1n - F_v2n)));  

          

//        inv_denum_bot = (1.0/( v2n - v3n )); 

        F_inv_denum_bot = ((int64)1<<32)/(F_v2n - F_v3n); 

 

//        vdcff_Ref_Va_1 = vdcff*(Ref_Va+1); 

        F_vdcff_Ref_Va_1 = ((int64)F_vdcff * (F_Ref_Va+65536))>>16; 

//        vdcff_Ref_Vb_1 = vdcff*(Ref_Vb+1); 

        F_vdcff_Ref_Vb_1 = ((int64)F_vdcff * (F_Ref_Vb+65536))>>16; 

//        vdcff_Ref_Vc_1 = vdcff*(Ref_Vc+1); 

        F_vdcff_Ref_Vc_1 = ((int64)F_vdcff * (F_Ref_Vc+65536))>>16; 

 

//        RVa_top = ( vdcff_Ref_Va_1 - v2n ) * inv_denum_top; 

        F_RVa_top = ((int64)(F_vdcff_Ref_Va_1 - F_v2n) * F_inv_denum_top)>>16; 

//        RVa_bot = ( vdcff_Ref_Va_1 - v3n ) * inv_denum_bot; 
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        F_RVa_bot = ((int64)(F_vdcff_Ref_Va_1 - F_v3n) * F_inv_denum_bot)>>16; 

//        RVb_top = ( vdcff_Ref_Vb_1 - v2n ) * inv_denum_top; 

        F_RVb_top = ((int64)(F_vdcff_Ref_Vb_1 - F_v2n) * F_inv_denum_top)>>16; 

//        RVb_bot = ( vdcff_Ref_Vb_1 - v3n ) * inv_denum_bot; 

        F_RVb_bot = ((int64)(F_vdcff_Ref_Vb_1 - F_v3n) * F_inv_denum_bot)>>16; 

//        RVc_top = ( vdcff_Ref_Vc_1 - v2n ) * inv_denum_top; 

        F_RVc_top = ((int64)(F_vdcff_Ref_Vc_1 - F_v2n) * F_inv_denum_top)>>16; 

//        RVc_bot = ( vdcff_Ref_Vc_1 - v3n ) * inv_denum_bot; 

        F_RVc_bot = ((int64)(F_vdcff_Ref_Vc_1 - F_v3n) * F_inv_denum_bot)>>16; 

        // END OF DC BUS COMPENSATION 

         

        // 3-level switching 

        // for CMPR1 => 0 to 1.0 => 0 to period_2 

        // for CMPR2 => -1.0 to 1 => -period_2 to 0 

//        ya = ya * (float) period_2; 

//        yb = yb * (float) period_2; 

//        yc = yc * (float) period_2; 

         

//        ta = (int) (ya*period_2); 

//        tb = (int) (yb*period_2); 

//        tc = (int) (yc*period_2); 

 

        if (F_RVb_top >= 65536) 

            cmprbtop = period_2; 

        else if(F_RVb_top <= -65536) 

            cmprbtop = 0; 

        else 

            cmprbtop = period_2*(F_RVb_top/65536.0); 

 

        if (F_RVb_bot >= 65536) 

            cmprbbot = period_2; 

        else if(F_RVb_bot <= -65536) 

            cmprbbot = 0; 

        else 

            cmprbbot = period_2*(F_RVb_bot/65536.0); 

 

        if (F_RVc_top >= 65536) 

            cmprctop = period_2; 

        else if(F_RVc_top <= -65536) 

            cmprctop = 0; 

        else 

            cmprctop = period_2*(F_RVc_top/65536.0); 

 

        if (F_RVc_bot >= 65536) 

            cmprcbot = period_2; 

        else if(F_RVc_bot <= -65536) 

            cmprcbot = 0; 

        else 

            cmprcbot = period_2*(F_RVc_bot/65536.0); 

             

        // END OF COMPARE REGISTER CALC 

 

/*=========================================================================== 

isr_pwm2_M2S_comms() 

Master to Slave SPI communications 

===========================================================================*/ 

        status = is_switching; 

 

        DISABLE_CPLD(); 

 

        spibuf[0] = (status);                //STATUS; 

        spibuf[1] = (cmprbtop)>>8;    //SLAVE1_TOPC_HI; 

        spibuf[2] = (cmprbtop);            //SLAVE1_TOPC_LO; 

        spibuf[3] = (cmprbbot)>>8;    //SLAVE1_BOTC_HI; 

        spibuf[4] = (cmprbbot);            //SLAVE1_BOTC_LO; 

        spibuf[5] = (cmprctop)>>8;    //SLAVE2_TOPC_HI; 

        spibuf[6] = (cmprctop);            //SLAVE2_TOPC_LO; 
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        spibuf[7] = (cmprcbot)>>8;    //SLAVE2_BOTC_HI; 

        spibuf[8] = (cmprcbot);            //SLAVE2_BOTC_LO; 

        checksum = 0; 

        for (i=0;i<9;i++) 

            checksum += spibuf[i] & 0x00FF; 

        checksum = checksum & 0x00FF; 

        spibuf[9] = checksum;            //CHECKSUM; 

         

        // gtransmit == 1) 

        if (loop_no > 30000) // 1.5 secs * 10kHz * 2 ISRs per cycle 

        {                                                     

            // ZAKI NPC Comms: Enable the external buffers 

            GpioDataRegs.GPBDAT.bit.GPIOB1 = 0; 

             

            for (i=0;i<9;i++) 

            { 

                SpiaRegs.SPITXBUF = spibuf[i] << 8; 

            } 

 

            SpiaRegs.SPITXBUF = checksum << 8; 

        }         

        // END OF MASTER TO SLAVE SPI COMMS 

         

 

// Calc ON time for A is done here to speed up the comms process 

        phase        += PHASE_STEP;        // BUG: AUTOMATE THIS 

        phase_4PI3    += PHASE_STEP;        // BUG: AUTOMATE THIS 

        phase_n4PI3    += PHASE_STEP;        // BUG: AUTOMATE THIS 

        if ( phase >= TABLE_SIZE ) 

            phase = 0; 

        if ( phase_4PI3 >= TABLE_SIZE ) 

            phase_4PI3 = 0; 

        if ( phase_n4PI3 >= TABLE_SIZE ) 

            phase_n4PI3 = 0; 

 

 

        if (F_RVa_top >= 65536) 

        { 

            cmpratop = period_2; 

            cmprtmp = 1; 

        } 

        else if(F_RVa_top <= -65536) 

        { 

            cmpratop = 0; 

            cmprtmp = 2; 

        } 

        else 

        { 

            cmpratop = period_2*(F_RVa_top/65536.0); 

            //cmpratop = (int64)((int64)(F_RVa_top)*(period_2<<16))>>32; 

            cmprtmp = 3; 

        } 

 

        if (F_RVa_bot >= 65536) 

            cmprabot = period_2; 

        else if(F_RVa_bot <= -65536) 

            cmprabot = 0; 

        else 

            cmprabot = period_2*(F_RVa_bot/65536.0); 

 

        // Threshold check for cmpra 

        if (cmpratop > (0.98*period_2)) 

            cmpratop = period_2; 

        else if (cmpratop < (0.02*period_2)) 

            cmpratop = 0; 

 

        if (cmprabot > (0.98*period_2)) 



EXPERIMENTAL SOFTWARE  289 

289 

            cmprabot = period_2; 

        else if (cmprabot < (0.02*period_2)) 

            cmprabot = 0; 

             

        // Calculate OFF time 

        // Assuming ACTR for CMPR1 is set active high 

        cmpratop = period_2-cmpratop; 

        cmprabot = period_2-cmprabot; 

 

 

 

/*================================== 

isr_pwm2_MASTER_missing_transition() 

Fixes DSP2810 Missing transition problem 

Please implement before setting EvaRegs.CMPRx 

==================================*/ 

 

        // Change line below for EvaRegs.CMPR1 

        cmprval = cmpratop; 

     

        prev_CMPR1_sat = CMPR1_sat; 

        if ( cmprval >= period_2) 

            CMPR1_sat = TRUE; 

        else 

            CMPR1_sat = FALSE; 

         

        if ( timer1_dir == 1 && prev_CMPR1_sat == FALSE && CMPR1_sat == TRUE ) 

        // Fix for entering saturation --->>> Case 3 & 6  

        // (please refer to the missing transition document by Zaki)  

        { 

            // Force the second transition 

            EvaRegs.CMPR1 = period_2-1; 

        } 

        else if ( timer1_dir == 1 && prev_CMPR1_sat == TRUE && CMPR1_sat == FALSE )  

        // Fix for leaving saturation --->>> Case 7 & 8 

        { 

            // Change from shadow CMPR to immediate CMPR 

            EvaRegs.COMCONA.bit.CLD = 2; 

            // Force the first transition 

            EvaRegs.CMPR1 = period_2-1; 

            // Change back to shadow mode 

            EvaRegs.COMCONA.bit.CLD = 1; 

            // Set CMPR for count down 

            EvaRegs.CMPR1 = cmprval; 

        } 

        else 

        // Normal 

        { 

            EvaRegs.CMPR1 = cmprval; 

        } 

 

     

        // Change line below for EvaRegs.CMPR2 

        cmprval = cmprabot; 

     

        prev_CMPR2_sat = CMPR2_sat; 

        if ( cmprval >= period_2) 

            CMPR2_sat = TRUE; 

        else 

            CMPR2_sat = FALSE; 

         

        if ( timer1_dir == 1 && prev_CMPR2_sat == FALSE && CMPR2_sat == TRUE ) 

        // Fix for entering saturation --->>> Case 3 & 6  

        // (please refer to the missing transition document by Zaki)  

        { 

            // Force the second transition 

            EvaRegs.CMPR2 = period_2-1; 
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        } 

        else if ( timer1_dir == 1 && prev_CMPR2_sat == TRUE && CMPR2_sat == FALSE )  

        // Fix for leaving saturation --->>> Case 7 & 8 

        { 

            // Change from shadow CMPR to immediate CMPR 

            EvaRegs.COMCONA.bit.CLD = 2; 

            // Force the first transition 

            EvaRegs.CMPR2 = period_2-1; 

            // Change back to shadow mode 

            EvaRegs.COMCONA.bit.CLD = 1; 

            // Set CMPR for count down 

            EvaRegs.CMPR2 = cmprval; 

        } 

        else 

        // Normal 

        { 

            EvaRegs.CMPR2 = cmprval; 

        } 

         

 

 

        /* ==== 

        fault() 

        =====*/ 

        if ( GpioDataRegs.GPBDAT.bit.GPIOB11 == 1 ) 

        { 

            vsi_disable(); 

            put_str("\nFail 1\n"); 

            // BUG : Please set it as fault 

                //isr_gate_fault(); 

        } 

        if ( GpioDataRegs.GPADAT.bit.GPIOA11 == 1 ) 

        { 

            vsi_disable(); 

            put_str("\nFail 2\n"); 

            // BUG : Please set it as fault 

                //isr_gate_fault(); 

        } 

         

         

    } 

    // END OF MASTER() 

     

/*============================================================================ 

isr_pwm2_SLAVE() 

==============================================================================*/ 

    if (master_slave_mode == 0) 

    { 

        //SET_TP11(); 

        if (timer1_dir == 1) 

        {     

            // Send the sync pulse through T1PWM 

            SET_TP13(); // GpioDataRegs.GPBDAT.bit.GPIOB0 = 1; 

            for (i=0;i<5;i++) 

                wait++; 

            CLEAR_TP13(); //GpioDataRegs.GPBDAT.bit.GPIOB0 = 0;                 

        } 

        // Slave tries to sync to the value in the capture port 

        if (timer1_dir == 0) 

        { 

            /* 

            CAP1_read = EvaRegs.CAP1FIFO; 

            Line above commented out because DIGIN5_5 is not going through the header correct 

            Could be a bus contention somewhere 

            */ 

            CAP1_read = EvaRegs.CAP2FIFO; 

            if (CAP1_read > period_2) 
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                carrier = CAP1_read - 2*period_2; 

            else 

                carrier= CAP1_read; 

             

            if(carrier < 60 ) 

            { 

                // We are lagging the master 

                // Reduce the period to catch up 

                carrier_adjust = -1; 

            } 

            else if (carrier > 65 ) 

            { 

                // We are leading the master 

                // Increase the period to catch up 

                carrier_adjust = 1; 

            } 

            else 

                carrier_adjust = 0; 

             

            // We want it to wobble around the original FSW 

            period_2 = PERIOD_2 + carrier_adjust; 

            period_4 = period_2/2; 

            period = period_2*2; 

            EvaRegs.T1PR = period_2;                     

            EvaRegs.T2PR = period_2*2-1;         

        }     

         

     

        /*====================================== 

        Clear SPI buffers so that the information 

        we are receiving is current. 

        Only for slave, but it doesn't matter for the master     

        ======================================*/ 

        //SpiaRegs.SPIFFRX.bit.RXFIFORESET = 0; 

        //SpiaRegs.SPIFFRX.bit.RXFIFORESET = 1; 

         

     

        /* 

            RECEIVING DATA FROM MASTER 

        */ 

        // Let the machines sync first before we wait for reliable info 

        if (loop_no > 60000) // 3 secs * 10kHz * 2 ISRs per cycle 

        { 

            // Wait until we receive the info 

        //    while ( (((SpiaRegs.SPIFFRX.all>>8)&0x1F) != 10) ) 

        //        wait++; 

        } 

             

        for (i=0;i<9;i++) 

        { 

            spibuf[i] = SpiaRegs.SPIRXBUF; 

        } 

         

        checksum = SpiaRegs.SPIRXBUF; 

         

        for (i=0;i<9;i++) 

        { 

            spibuf[i] = spibuf[i] & 0x00FF; 

        } 

         

        checksum = checksum & 0x00FF; 

         

         

        // Checksum check 

        j = 0; 

        for (i=0;i<9;i++) 

            j += spibuf[i] & 0x00FF;         
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        j = j & 0x00FF; 

         

        if ( j != checksum ) 

        { 

            failures++; 

            SET_TP10(); 

        } 

         

        // END OF RECEIVING FROM MASTER  

         

         

        /*====================================== 

        Extract the numbers and use em 

        ======================================*/ 

        //spibuf[1] = (period_4+tb)>>8;        //SLAVE1_TOPC_HI; 

        //spibuf[2] = (period_4+tb);        //SLAVE1_TOPC_LO;   

        //spibuf[3] = (period_4+tb)>>8;        //SLAVE1_BOTC_HI; 

        //spibuf[4] = (period_4+tb);        //SLAVE1_BOTC_LO; 

        //spibuf[5] = (period_4+tc)>>8;        //SLAVE2_TOPC_HI; 

        //spibuf[6] = (period_4+tc);        //SLAVE2_TOPC_LO; 

        //spibuf[7] = (period_4+tc)>>8;        //SLAVE2_BOTC_HI; 

        //spibuf[8] = (period_4+tc);        //SLAVE2_BOTC_LO; 

        status = spibuf[0];            //STATUS; 

         

        if ((status & 0x01) == 1) 

            vsi_enable(); 

        else 

            vsi_disable(); 

         

        if (Unit_number == 1) 

        { 

            cmprbtop = (spibuf[1] << 8) | spibuf[2]; 

            cmprbbot = (spibuf[3] << 8) | spibuf[4]; 

             

            // Thresholding 

            if (cmprbtop > (0.98*period_2)) 

                cmprbtop = period_2; 

            else if (cmprbtop < (0.02*period_2)) 

                cmprbtop = 0; 

                 

            if (cmprbbot > (0.98*period_2)) 

                cmprbbot = period_2; 

            else if (cmprbbot < (0.02*period_2)) 

                cmprbbot = 0; 

 

            // Calculate OFF time 

            // Assuming ACTR for CMPR1 is set active high 

            cmprbtop = period_2-cmprbtop; 

            cmprbbot = period_2-cmprbbot; 

        } 

         

        if (Unit_number == 2) 

        { 

            cmprctop = (spibuf[5] << 8) | spibuf[6]; 

            cmprcbot = (spibuf[7] << 8) | spibuf[8]; 

             

            // Thresholding 

            if (cmprctop > (0.98*period_2)) 

                cmprctop = period_2; 

            else if (cmprctop < (0.02*period_2)) 

                cmprctop = 0; 

                 

            if (cmprcbot > (0.90*period_2)) 

                cmprcbot = period_2; 

            else if (cmprcbot < (0.02*period_2)) 

                cmprcbot = 0; 
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            // Calculate OFF time 

            // Assuming ACTR for CMPR1 is set active high 

            cmprctop = period_2-cmprctop; 

            cmprcbot = period_2-cmprcbot; 

        }             

        // END OF EXTRACTING NUMBERS 

 

/*================================== 

isr_pwm2_SLAVE_missing_transition() 

Fixes DSP2810 Missing transition problem 

Please implement before setting EvaRegs.CMPRx 

==================================*/ 

 

        // Change line below for EvaRegs.CMPR1 

        if (Unit_number == 1) 

            cmprval = cmprbtop; 

        if (Unit_number == 2) 

            cmprval = cmprctop; 

        prev_CMPR1_sat = CMPR1_sat; 

        if ( cmprval >= period_2) 

            CMPR1_sat = TRUE; 

        else 

            CMPR1_sat = FALSE; 

         

        if ( timer1_dir == 1 && prev_CMPR1_sat == FALSE && CMPR1_sat == TRUE ) 

        // Fix for entering saturation --->>> Case 3 & 6  

        // (please refer to the missing transition document by Zaki)  

        { 

            // Force the second transition 

            EvaRegs.CMPR1 = period_2-1; 

        } 

        else if ( timer1_dir == 1 && prev_CMPR1_sat == TRUE && CMPR1_sat == FALSE )  

        // Fix for leaving saturation --->>> Case 7 & 8 

        { 

            // Change from shadow CMPR to immediate CMPR 

            EvaRegs.COMCONA.bit.CLD = 2; 

            // Force the first transition 

            EvaRegs.CMPR1 = period_2-1; 

            // Change back to shadow mode 

            EvaRegs.COMCONA.bit.CLD = 1; 

            // Set CMPR for count down 

            EvaRegs.CMPR1 = cmprval; 

        } 

        else 

        // Normal 

        { 

            EvaRegs.CMPR1 = cmprval; 

        } 

 

     

        // Change line below for EvaRegs.CMPR2 

        if (Unit_number == 1) 

            cmprval = cmprbbot; 

        if (Unit_number == 2) 

          cmprval = cmprcbot; 

           

        prev_CMPR2_sat = CMPR2_sat; 

        if ( cmprval >= period_2) 

            CMPR2_sat = TRUE; 

        else 

            CMPR2_sat = FALSE; 

         

        if ( timer1_dir == 1 && prev_CMPR2_sat == FALSE && CMPR2_sat == TRUE ) 

        // Fix for entering saturation --->>> Case 3 & 6  

        // (please refer to the missing transition document by Zaki)  

        { 

            // Force the second transition 
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            EvaRegs.CMPR2 = period_2-1; 

        } 

        else if ( timer1_dir == 1 && prev_CMPR2_sat == TRUE && CMPR2_sat == FALSE )  

        // Fix for leaving saturation --->>> Case 7 & 8 

        { 

            // Change from shadow CMPR to immediate CMPR 

            EvaRegs.COMCONA.bit.CLD = 2; 

            // Force the first transition 

            EvaRegs.CMPR2 = period_2-1; 

            // Change back to shadow mode 

            EvaRegs.COMCONA.bit.CLD = 1; 

            // Set CMPR for count down 

            EvaRegs.CMPR2 = cmprval; 

        } 

        else 

        // Normal 

        { 

            EvaRegs.CMPR2 = cmprval; 

        } 

 

         

        // SET PIN ON END OF ISR ROUTINE ON SLAVE 

        //SET_TP11();         

    } 

    // END OF isr_pwm2_SLAVE() 

         

    /*====================================== 

    50 Hz counter 

    ======================================*/ 

    counter_50hz++; 

    if (counter_50hz >= CYCLES_50HZ )    // 400 because this ISR runs at 20kHz 

    { 

        counter_50hz = 0; 

        if (master_slave_mode == 1) 

        { 

            SET_TP10(); 

            wait=0; 

            while(wait++ < 2); 

        } 

    }     

     

    // Set the CMPR values for next count up/down 

    if (timer1_dir == 1) 

    { 

        EvaRegs.T1CMPR = 0; 

    } 

    else 

    { 

        EvaRegs.T1CMPR = period_2-1; 

    } 

 

    // FOR AUTO SYNCHRONIZING 

    if (loop_no < 220000 ) // 11secs*2ISR/cycle*10000cycles 

        loop_no++; 

    else 

        ;    // Stop incrementing     

 

 

    if (GrabRunning()) 

    { 

        GrabStore(0, cmpratop ); 

        GrabStore(1, cmprabot ); 

        GrabStore(2, cmprbtop ); 

        GrabStore(3, cmprbbot ); 

        GrabStore(4, cmprctop ); 

        GrabStore(5, cmprcbot ); 

        GrabStep(); 
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    }         

 

    // Write to DAC 

     

 

     

    CLEAR_TP10();     // for 50 Hz counter 

    //CLEAR_TP11();    // for end of slave ISR  

     

    // Clear T1UFINT flag (BIT9) and T1PINT (BIT7) 

    EvaRegs.EVAIFRA.all = BIT9|BIT7;                // clear interrupt flag 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;    // Acknowledge interrupt to PIE 

} /* end isr_adc */ 

 

 

#ifndef BUILD_RAM 

#pragma CODE_SECTION(isr_T2P, "ramfuncs"); 

#endif 

interrupt void isr_T2P(void){ 

    /* 

    if(master_slave_mode == 1){ 

        SET_SYNC_PIN(); 

    } 

    */ 

    EvaRegs.EVAIFRB.all = BIT0;                        //Clear interrupt flag 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;    // Acknowledge interrupt to PIE 

}     

 

 

#ifndef BUILD_RAM 

#pragma CODE_SECTION(isr_T1CINT, "ramfuncs"); 

#endif 

interrupt void isr_T1CINT(void){ 

 

    SET_TP10(); 

    //loop_no++; 

    //timer1_cmp_flag = 1; 

    EvaRegs.EVAIFRA.all = BIT8;                        //Clear interrupt flag 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;    // Acknowledge interrupt to PIE 

    CLEAR_TP10(); 

}     

 

 

#ifndef BUILD_RAM 

#pragma CODE_SECTION(isr_CAP1, "ramfuncs"); 

#endif 

interrupt void isr_CAP1(void){ 

    //ZX_seen = TRUE; 

     

    //Read bottom of capture port FIFO, this causes the FIFO status to think the FIFO got 1 entry already,  

    //there it will trigger the interrupt next time there is an entry.  (Capture port trigger interrupt  

    //only when there are two entries in the FIFO 

 

 

    //ZX_seen = TRUE; 

    //Read bottom of capture port FIFO, this causes the FIFO status to think the FIFO got 1 entry already,  

    //there it will trigger the interrupt next time there is an entry.  (Capture port trigger interrupt  

    //only when there are two entries in the FIFO 

    //ZX_time = (period)-EvaRegs.CAP1FBOT;             

     

    ZX_time = EvaRegs.CAP1FBOT; 

    EvaRegs.EVAIFRC.all = BIT0;                        //Clear interrupt flag 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;    // Acknowledge interrupt to PIE 

} 

 

 

#ifndef BUILD_RAM 
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#pragma CODE_SECTION(isr_CAP2, "ramfuncs"); 

#endif 

interrupt void isr_CAP2(void){ 

    static int toggle = 0;     

    //ZX_seen = TRUE; 

    //Read bottom of capture port FIFO, this causes the FIFO status to think the FIFO got 1 entry already,  

    //there it will trigger the interrupt next time there is an entry.  (Capture port trigger interrupt  

    //only when there are two entries in the FIFO 

    if(toggle == 0){ 

        toggle = 1; 

    } 

    else if(toggle == 1){ 

        toggle = 0; 

    } 

     

    //ZX_time = (period)-EvaRegs.CAP2FBOT;             

     

    EvaRegs.EVAIFRC.all = BIT1;                        //Clear interrupt flag 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;    // Acknowledge interrupt to PIE 

} 

 

 

/* 

#ifndef BUILD_RAM 

#pragma CODE_SECTION(isr_SPIRX, "ramfuncs"); 

#endif 

interrupt void isr_SPIRX(void){ 

    static int i = 0; 

    if(i == 1){ 

        i = 0; 

    } 

    else{ 

        i = 1; 

    } 

    SpiaRegs.SPIFFRX.bit.RXFFINTCLR = 1;     // interrupt on 3 bytes in fifo 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP6;    // Acknowledge interrupt to PIE 

 

} 

*/ 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

Handles the PDPINT interrupt caused by a gate fault. 

 

\author A.McIver 

\par History: 

\li    02/05/07 AM - initial creation 

*/ 

#ifndef BUILD_RAM 

#pragma CODE_SECTION(isr_gate_fault, "ramfuncs"); 

#endif 

interrupt void isr_gate_fault(void) 

{ 

    is_switching = 0; 

    vsi_disable(); 

//    SET_TP12(); 

//    mod_targ = 0; 

    detected_faults |= FAULT_VSI_PDPINT; 

     

    // Notify the MASTER of fault 

    GpioDataRegs.GPBDAT.bit.GPIOB2 = 1; 

     

    put_str("\n GATE FAULT\n"); 

     

    // Acknowledge this interrupt to receive more interrupts from group 1 

    PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 

    EvaRegs.EVAIFRA.all = BIT0; 

} /* end isr_gate_fault */ 
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/* ========================================================================= 

__VSI_State_Functions() 

============================================================================ */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function initialises the VSI system. It resets the target modulation 

depth to zero. 

 

It is followed by the stop state. 

 

\author A.McIver 

\par History: 

\li    12/10/07 AM - initial creation 

*/ 

void st_vsi_init(void) 

{ 

    mod_ref = 0; 

    mod_targ = 0; 

    //SetSwFreq(sw_freq); 

 

    SS_NEXT(vsi_state,st_vsi_stop); 

} /* end st_vsi_init */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This is the state where the VSI is stopped. There is no switching. It waits 

for a start trigger. 

 

\author A.McIver 

\par History: 

\li    12/10/07 AM - initial creation 

*/ 

void st_vsi_stop(void) 

{ 

    if (SS_IS_FIRST(vsi_state)) 

    { 

        SS_DONE(vsi_state); 

        VSI_DISABLE(); 

        mod_targ = 0; 

        vsi_status &= ~(VSI_RUNNING|VSI_SETTLED); 

    } 

 

    if (detected_faults != 0) 

    { 

        SS_NEXT(vsi_state,st_vsi_fault); 

        return; 

    } 

 

    if (is_switching != 0) // start trigger 

    { 

        SS_NEXT(vsi_state,st_vsi_gate_charge); 

    } 

} /* end st_vsi_stop */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

In this state the VSI gates are enabled and the low side gates held on to 

charge the high side gate drivers. The next state is either the ramp state. 

 

\author A.McIver 

\par History: 
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\li    12/10/07 AM - initial creation 

*/ 

void st_vsi_gate_charge(void) 

{ 

    if (SS_IS_FIRST(vsi_state)) 

    { 

        SS_DONE(vsi_state); 

        vsi_counter = 0; 

        //VSI_GATE_CHARGE(); 

        vsi_status |= VSI_RUNNING; 

    } 

    if (detected_faults != 0) 

    { 

        SS_NEXT(vsi_state,st_vsi_fault); 

        return; 

    } 

    // check for stop signal 

    if (is_switching == 0) 

    { 

        SS_NEXT(vsi_state,st_vsi_stop); 

        return; 

    } 

    vsi_counter++; 

    if (vsi_counter > 200) 

    { 

        SS_NEXT(vsi_state,st_vsi_ramp); 

    } 

} /* end st_vsi_gate_charge */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This state ramps up the target modulation depth to match the reference set by 

the background. It only changes the target every 100ms and synchronises the 

change with a zero crossing to avoid step changes in the output. 

 

\author A.McIver 

\par History: 

\li    12/10/07 AM - initial creation 

\li 28/04/08 AM - added event reporting 

*/ 

void st_vsi_ramp(void) 

{ 

    if (SS_IS_FIRST(vsi_state)) 

    { 

        SS_DONE(vsi_state); 

        vsi_counter = 0; 

        if(refMode == DC_REF|| refMode == SINGLE_AC || refMode == SINGLE_AC_G || refMode == 

SINGLE_AC_PR){ 

            VSI_ENABLE_1P(); 

        } 

        else{ 

            VSI_ENABLE(); 

        } 

    } 

    if (detected_faults != 0) 

    { 

        SS_NEXT(vsi_state,st_vsi_fault); 

        return; 

    } 

    // check for stop signal 

    if (is_switching == 0) 

    { 

        SS_NEXT(vsi_state,st_vsi_stop); 

        return; 

    } 

    // check for target reached 
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    if (mod_targ == mod_ref) 

    { 

        SS_NEXT(vsi_state,st_vsi_run); 

        return; 

    } 

    // ramp reference towards target 

    if (mod_ref > mod_targ + 5) 

    { 

        mod_targ += 5; 

        //Shift left of 1 introduce to deal with the fact that mod_targ 200% at full range 

        I_ref_Peak_AB = ((long)I_NOM*((long)mod_targ<<1))>>MOD_SHIFT; 

    } 

    else if (mod_ref < mod_targ - 5) 

    { 

        mod_targ -= 5; 

        //Shift left of 1 introduce to deal with the fact that mod_targ 200% at full range 

        I_ref_Peak_AB = ((long)I_NOM*((long)mod_targ<<1))>>MOD_SHIFT; 

    } 

    else 

    { 

        mod_targ = mod_ref; 

        //Shift left of 1 introduce to deal with the fact that mod_targ 200% at full range 

        I_ref_Peak_AB = ((long)I_NOM*((long)mod_targ<<1))>>MOD_SHIFT;         

    } 

} /* end st_vsi_ramp */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This state has the VSI running with the target voltage constant. The output is 

now ready for measurements to begin. If the reference is changed then the 

operation moves back to the ramp state. 

 

\author A.McIver 

\par History: 

\li    12/10/07 AM - initial creation 

*/ 

void st_vsi_run(void) 

{ 

    if (SS_IS_FIRST(vsi_state)) 

    { 

        SS_DONE(vsi_state); 

        vsi_status |= VSI_SETTLED; 

    } 

    if (detected_faults != 0) 

    { 

        SS_NEXT(vsi_state,st_vsi_fault); 

        return; 

    } 

    // check for stop signal 

    if (is_switching == 0) 

    { 

        SS_NEXT(vsi_state,st_vsi_stop); 

    } 

    // check for changes in reference 

    if (mod_targ != mod_ref) 

    { 

        vsi_status &= ~VSI_SETTLED; 

        SS_NEXT(vsi_state,st_vsi_ramp); 

    } 

} /* end st_vsi_run */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/* void st_vsi_fault(void) 

Parameters: none 

Returns: nothing 
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Description: Delays for a while after faults are cleared. 

Notes: 

History: 

    03/11/05 AM - initial creation 

\li 04/03/08 AM - set vsi_status with fault bit 

\li 28/04/08 AM - added event reporting 

*/ 

void st_vsi_fault(void) 

{ 

    if (SS_IS_FIRST(vsi_state)) 

    { 

        SS_DONE(vsi_state); 

        VSI_DISABLE(); 

        vsi_counter = 0; 

        vsi_status |= VSI_FAULT; 

        vsi_status &= ~(VSI_RUNNING|VSI_SETTLED); 

        putxx(detected_faults); 

        put_str("->VSI faults\n"); 

    } 

    if (detected_faults == 0) 

        vsi_counter++; 

    else 

        vsi_counter = 0; 

    if (vsi_counter > 100) 

    { 

        vsi_status &= ~VSI_FAULT; 

        SS_NEXT(vsi_state,st_vsi_stop); 

    } 

} /* end st_vsi_fault */ 

 

 

/* ========================================================================= 

__Local_Functions() 

============================================================================ */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function is called every fundamental period to perform the RMS 

calculations and scale the analog quantities to Volts and Amps for use in the 

background. 

 

\author A.McIver 

\par History: 

\li    12/10/07 AM - derived from IR25kVA:vsi:adc_scale 

\li 21/08/08 AM - added VSI DC offset compensation 

\li 12/09/08 AM - added stop_count and moved to floating point data 

*/ 

void scale_adc_rms(void) 

{ 

    double 

        val, 

        temp; 

 

    // calculate A0 RMS quantity 

    temp = (double)adc_int.A0.dc_sum_bak/(double)adc_int.count_rms_bak; 

    val = (double)adc_int.A0.rms_sum_bak*(double)(1<<ADC_RMS_PS) 

                    / (double)adc_int.count_rms_bak - temp*temp; 

    if (val < 0.0) val = 0.0; 

    adc_int.A0.real = ADC_REAL_SC * sqrt(val); 

 

} /* end scale_adc_rms */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

This function is called every ADC_DC_TIME to perform the DC calculations and 
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scale the analog quantities to Volts and Amps for use in the background. 

 

\author A.McIver 

\par History: 

\li    12/10/07 AM - derived from IR25kVA:vsi:adc_scale 

*/ 

void scale_adc_dc(void) 

{ 

    double 

        val; 

 

    // calculate B0 DC quantity 

    val = (double)adc_int.B0.dc_sum_bak/(double)ADC_COUNT_DC; 

    adc_int.B0.real = ADC_REAL_SC * val; 

 

} /* end scale_adc_dc */ 

 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/** 

Calibrates the adc for gain and offset using the reference inputs. 

 

See spra989a.pdf for calibration details 

 

\author A.McIver 

\par History: 

\li    07/10/05 AM - initial creation 

*/ 

void calibrate_adc(void) 

{ 

//    char 

//        str[60]; 

    double 

        yHA = 0.0, 

        yLA, 

        yHB, 

        yLB; 

 

    yHA = (double)adc_int.yHA.dc_sum_bak/(double)ADC_COUNT_CAL; 

    yLA = (double)adc_int.yLA.dc_sum_bak/(double)ADC_COUNT_CAL; 

    yHB = (double)adc_int.yHB.dc_sum_bak/(double)ADC_COUNT_CAL; 

    yLB = (double)adc_int.yLB.dc_sum_bak/(double)ADC_COUNT_CAL; 

 

    cal_gain_A = (xH - xL)/(yHA - yLA); 

    cal_offset_A = yLA * cal_gain_A - xL; 

 

    cal_gain_B = (xH - xL)/(yHB - yLB); 

    cal_offset_B = yLB * cal_gain_B - xL; 

 

    // sanity check on gains 

    if (   ( (cal_gain_A > 0.94) && (cal_gain_A < 1.05) ) 

        && ( (cal_gain_B > 0.94) && (cal_gain_B < 1.05) ) 

        && ( (cal_offset_A > -80.0) && (cal_offset_A < 80.0) ) 

        && ( (cal_offset_B > -80.0) && (cal_offset_B < 80.0) ) ) 

    { 

        cal_gainA = (int16)(cal_gain_A*(double)(1<<14)); 

        cal_gainB = (int16)(cal_gain_B*(double)(1<<14)); 

        cal_offsetA = (int16)cal_offset_A; 

        cal_offsetB = (int16)cal_offset_B; 

    } 

//    sprintf(str,"cal:gA=%.3f,oA=%5.1f, gB=%.3f,oB=%5.1f\n",cal_gain_A, 

//                    cal_offset_A,cal_gain_B,cal_offset_B); 

//    put_str(str); 

} /* end calibrate_adc */ 

 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 
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void get_state(void){ 

    if(vsi_state.f == st_vsi_init){ 

        put_str("INIT "); 

    } 

    else if(vsi_state.f == st_vsi_stop){ 

        put_str("STOP "); 

    } 

    else if(vsi_state.f == st_vsi_gate_charge){ 

        put_str("GATE "); 

    } 

    else if(vsi_state.f == st_vsi_ramp){ 

        put_str("RAMP "); 

    } 

    else if(vsi_state.f == st_vsi_run){ 

        put_str("RUN  "); 

    } 

    else if(vsi_state.f == st_vsi_fault){ 

        put_str("FAU  "); 

    } 

 

} 

 

/* sets the switching frequency : returns switching frequency achieved */ 

/* fsw is in Hz */ 

int SetSwFreq(int fsw) 

{ 

    unsigned int half_period; 

     

    half_period = (unsigned int)((HSPCLK/4.0/fsw)); 

    //if (half_period > MAX_PER_2) half_period = MAX_PER_2; 

    //else if (half_period < MIN_PER_2) half_period = MIN_PER_2; 

     

    period_2 = half_period; 

    period = period_2*2; 

    //sw_freq = fsw;            /* Write new switching freq to global variable */ 

    MAX_TIME    =    (int16)(period_2-6) ; 

    //Recalculate phase advance speed for sin table read 

    PHASE_STEP_SC =    (65536.0*65536.0/(fsw*2.0)); 

    vsi_set_freq(Ref_freq_float); 

    //If switching frequency is changed re-calculate controller parameters 

    set_KI(); 

    set_KP(); 

    return (int)((HSPCLK/2/(long)half_period + 1)/2); 

} /* end SetSwFreq */ 

 

void step_toggle(int direction){ 

    if(direction == ON){ 

        step_tog = ON; 

    } 

    else if (direction == OFF){ 

        step_tog = OFF; 

    } 

} 

 

 

 

 

void set_KP_var(double KP){ 

    real_KP = KP; 

    set_KP(); 

} 

 

void set_TINT_var(double TINT){ 

    real_TINT = TINT; 

    set_KI(); 

} 
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void set_KP(void){ 

         

        //The division by 1<<PROP_DISCARD_BITS allow for the use of higher proportional constant 

        //then otherwise possible, there should not be significant loss to accuracy provided 

        //that the number for PROP_DISCARD_BITS is smallish, the calculation for lost of accuracy         

        //is listed in comment above 

         

        //All together shifted left by 13 , which is then multiple by error and shifted back right by 16 in the PI 

calculation 

        //leaving net shift of right by 3 after that calculation 

        //The period_2 multiplication with result of PI calculation to get Command then also introduce a shift by 3 

left, so it balance out, hence 

        //the need for multplication by 1<<13 in the PI constant calculation 

        //The division by I_NOM give kind of a effect of getting the multiplication with error to become a per unit 

number(i.e. below 1), that is scaled by  

        //power of 2, as this give a more useful no(bigger then 1)  The result then multiple by period_2 to give the 

required count 

        //Multiplicaiton by 65536 is there so that the number become 1 after shifted back by 16, otherwise the result 

of this calculation become smaller  

        //then 1, as the real_KP is a number that is rather small (i.e. in real scale, not 2^16 == 1 scale used in DSP 

calculations) 

        Kp_i = (real_KP*(double)1.0/(double)I_NOM)*(double)65536.0/(1l<<PROP_DISCARD_BITS)*(1l<<13); 

        set_PResonant(); 

} 

 

void set_KI(void){ 

    //Old controller form 

    //Ki_i = 

((double)1.0/((double)sw_freq*2.0)/real_TINT/(double)I_NOM)*(double)65536.0*(double)(1l<<13)/((double)(1

l<<INT_DISCARD_BITS)); 

    //Controller form in lecture 

    //Ki_i = 

((double)real_KP/((double)sw_freq*2.0)/real_TINT/(double)I_NOM)*(double)65536.0*(double)(1l<<13)/((doub

le)(1l<<INT_DISCARD_BITS)); 

    set_PResonant(); 

//    Ki_i = ((float)period*2/(float)sw_freq/real_TINT/(float)I_NOM)*(float)I_SCALE; 

 

} 

 

 

void set_ref_mode(unsigned int mode){ 

        refMode = mode; 

} 

 

int get_phase_step(void){ 

    return phase_step; 

} 

 

void step_ref_setup(unsigned long int phase, unsigned int req_new_mag){ 

    count_from_zero_for_step = phase / phase_step; 

    new_mod_targ = req_new_mag; 

    //mod_ref = new_mod_targ; 

    step_ref_request = 1; 

} 

 

void step_phase_setup(unsigned long int phase, unsigned int step_size){ 

    count_from_zero_for_step = phase / phase_step; 

    add_phase = step_size; 

    step_phase_request = 1; 

} 

 

 

 

void set_Feedforward(int status){ 

    FFenable = status; 

} 
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int get_Feedforward_status(void){ 

    return FFenable; 

} 

 

/* 

//Store in an array the inverse of bus voltage multiple by 2^13, these numbers are used in feed forward 

calculations 

//and bus compensation calculations 

//Multiplication by 2^13 is because the actual calculation for duty cycle contain a left shift by 3 which must 

//be taken into account. 

void inverse_bus_v_array_setup(void){ 

    int i = 0; 

    for(i=0; i<= BUS_ARRAY_SIZE; i++){ 

        inverse_bus_v_array[i] = (int)(((double)1/((double)(LOWER_BUS_V+i)))*(double)(1<<13)); 

    //    putd(inverse_bus_v_array[i]); puts(" "); 

 

    } 

} 

*/ 

 

/******************************************************************************************

******************************* 

* Function: set_PResonant 

* Use:  Calculate the fix point coefficient used in P+Resoant controller.  These coefficients are competitable with 

the 

*                function DELTA_FILTER_2ND_ORDER. 

*    Note: 

*    The P+Resonant transfer function implemented here is of the form: 

*    H{s} = Kp*(1 + (1/Tr)*(2*w_c*s)/(s^2 + 2*w_c*s + w_0^2)) 

* This transfer function is transformed into the following form: 

* H{s} = (bs_0*s^2 + bs_1*s + bs_0)/(as_0*s^2 + as_1*s + as_2) 

* with the varibles bs_0, bs_1, bs_0, as_0, as_1, as_2 being different coefficient of the transfer function, as define 

in code 

* This S domain transfer function is then transformed into a Z domain form in floating point using Tustin 

transfrom 

* H{z} = (bz_0 + bz_1*z^-2 + bz_2*z^-2)/(1 + az_1*z^-1 + az_2*z^-2) 

* Using conversion formula outline in P135 of Michael's thesis, the Z domain function is first transformed to 

delta domain form, 

* then converted to fix point. 

* Delta domain transfer function is of the form: 

* H{d}=(beta_0 + beta_1*d^-1 + beta_2*d^-2)/(1 + alpha_1*d^-1 + alpha_2*d^-2) 

*******************************************************************************************

*******************************/ 

void set_PResonant(void){ 

         

        Kp_i_f = real_KP; 

        Ki_i_f = 1/real_TINT; 

         

        //Variables for P+Resonant controller, used in both S to Z domain transform, and Z to Delta domain 

transform 

        delta = 1.0/((1<<LOG2_1_ON_DELTA)); 

        one_on_delta = 1/delta; 

        w_c = w_c_f * 2.0*PI; 

        w_0 = ((double)fundament_frequency/256.0)* 2.0*PI; 

        //Ts = 1.0/(sw_freq*2.0); 

         

        //Defining S domain transfer function of P+Resonant controller, the form of controller is: 

        //H(s) = (bs_0*s^2 + bs_1*s + bs_0)/(as_0*s^2 + as_1*s + as_2) 

        //Transfer function define in floating point form 

        bs_0 = Kp_i_f; 

        bs_1 = 2.0*(Ki_i_f*Kp_i_f+w_c*Kp_i_f); 

        bs_2 = Kp_i_f * w_0*w_0; 

         

        as_0 = 1.0; 

        as_1 = 2.0*w_c; 

        as_2 = w_0*w_0; 
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        //Defining Z domain transfer function of P+Resonant controller, the form of controller is: 

        //H(z) = (bz_0 + bz_1*z^-2 + bz_2*z^-2)/(1 + az_1*z^-1 + az_2*z^-2) 

        //The S to Z transform is done using Tustin transform 

        //Transfer function define in floating point form     

        az_0 = (4.0/(Ts*Ts)*as_0 + as_1 *2.0/Ts + as_2); 

                 

        bz_0 = (4.0/(Ts*Ts)*bs_0 + bs_1 * 2.0/Ts + bs_2)/az_0; 

        bz_1 = (2.0*bs_2 - bs_0 * 8.0/(Ts*Ts))/az_0; 

        bz_2 = (4.0/(Ts*Ts)*bs_0 - bs_1 * 2.0/Ts + bs_2)/az_0; 

         

        az_1 = (2*as_2 - as_0 * 8.0/(Ts*Ts))/az_0; 

        az_2 = (4.0/(Ts*Ts)*as_0 - as_1 *2.0/Ts + as_2)/az_0; 

         

        //Z to Delta domain transformation 

        beta_0_f = bz_0; 

        beta_1_f = (2.0*bz_0 + bz_1)/delta; 

        beta_2_f = (bz_0 + bz_1 + bz_2)/(delta * delta); 

             

        alpha_1_f = (2.0 + az_1)/delta; 

        alpha_2_f = (1.0 + az_1 + az_2)/(delta*delta); 

         

        //Delta transform from floating point to fix point     

        alpha_0 = 1<<LOG2_ALPHA_0; 

         

        beta_0 = beta_0_f * (double)alpha_0+0.5; 

        beta_1 = beta_1_f * (double)alpha_0+0.5; 

        beta_2 = beta_2_f * (double)alpha_0+0.5; 

 

        alpha_1 = alpha_1_f *  (double)alpha_0+0.5; 

        alpha_2 = alpha_2_f *  (double)alpha_0+0.5; 

 

} 

 

 

void set_RefMode(int mode){ 

    refMode = mode; 

} 

 

int get_Ref_mode(void){ 

    return refMode; 

} 

 

void display_ref_mode(void){ 

    if(refMode == DC_REF){ 

        put_str("DC PI "); 

    } 

    else if(refMode == SINGLE_AC){ 

        put_str("1P PI "); 

    } 

    else if(refMode == THREE_PHASE_PI){ 

        put_str("3P PI "); 

    } 

    else if(refMode == SINGLE_AC_G){ 

        put_str("1 PI G "); 

    } 

    else if(refMode == SINGLE_AC_OL){ 

        put_str("1P OL "); 

    } 

    else if(refMode == THREE_PHASE_DQ){ 

        put_str("3P DQ "); 

    } 

    else if(refMode == THREE_PHASE_PI_G){ 

        put_str("3P G  "); 

    } 

    else if(refMode == SINGLE_AC_PR){ 

        put_str("1P PR "); 
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    } 

    else if(refMode == THREE_PHASE_PR){ 

        put_str("3P PR "); 

    } 

    else if(refMode == THREE_PHASE_VF){ 

        put_str("3P VF "); 

    } 

    else if(refMode == SQUARE_WAVE){ 

        put_str("SQ WV "); 

    } 

    else if(refMode == THREE_PHASE_OL){ 

        put_str("3P OL "); 

    } 

    else if(refMode == PHASE_A){ 

        put_str("P_A "); 

    } 

    else if(refMode == PHASE_B){ 

        put_str("P_B "); 

    } 

    else if(refMode == PHASE_C){ 

        put_str("P_C "); 

    } 

} 
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