

NEUTRAL POINT VOLTAGE CONTROL

OF NEUTRAL POINT CLAMPED

CONVERTERS

A thesis submitted in fulfilment of the requirements for

the degree of Doctorate of Philosophy

Zaki Mohzani

B. Eng. (Hons)

School of Electrical and Computer Engineering

College of Science, Engineering and Health

RMIT University, Australia

March 2014

 COPYRIGHT NOTICE

iii

COPYRIGHT NOTICE

In return for freely distributing this PhD thesis, I kindly request that each time

another copy of this work (either in electronic or printed form) gets passed to another

entity, that the name, affiliation and email address of the new recipient be emailed to

myself at:

 zaki.mohzani@gmail.com

This thesis may not be placed electronically where public download access is

available without prior authorisation from the author.

Kind regards,

Zaki Mohzani

COPYRIGHT NOTICE

iv

 DECLARATION

v

DECLARATION

I certify that except where due acknowledgement has been made, the work is that of

the author alone; the work has not been submitted previously, in whole or in part, to

qualify for any other academic award; the content of the thesis is the result of work

which has been carried out since the official commencement date of the approved

research program; and, any editorial work, paid or unpaid, carried out by a third party

is acknowledged.

Zaki Mohzani

31 March 2014

E00787
Typewritten Text

E00787
Typewritten Text

DECLARATION

vi

 ACKNOWLEDGEMENTS

vii

ACKNOWLEDGEMENTS

Thank you to Prof. Grahame Holmes, Dr. Brendan McGrath, Mohzani Wahab and

Dalilah Matharsha, Dinesh Segaran, Wang Kong, Reza Davoodnezhad, Carlos A.

Texeira, Stewart Parker, Kavita Balasubramaniam and the fast food giants for their

guidance, support and love.

viii

 TABLE OF CONTENTS

ix

TABLE OF CONTENTS

Copyright Notice .. iii

Declaration .. v

Acknowledgements ... vii

Table of Contents ... ix

List of Figures ... xv

List of Tables .. xxiii

List of Symbols ... xxv

Glossary of Terms ... xxvii

Publications .. xxix

Abstract .. xxxi

1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Aim of the Research .. 3

1.3 Structure of Thesis .. 4

1.4 Identification of Original Contribution ... 5

2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL

STRATEGIES .. 7

2.1 Fundamentals of NPC Converters ... 7

2.2 Early NPC Publications ... 9

2.3 Neutral Point Voltage Deviation Problem .. 12

2.4 Impact of Space Vectors on the NP Voltage ... 14

2.5 Early Neutral Point (NP) Control Strategies (1990 to 1997) 15

2.6 Further Neutral Point (NP) Control Strategies (1997 Onwards) 16

2.6.1 Calculation of the Duty of the Redundant States for SPWM......... 16

2.6.2 Calculation of the Duty of the Redundant States for SVM 17

2.6.3 Limitation of Redundant State Control .. 18

2.6.4 New Developments in Traditional Modulation Schemes 18

2.6.5 Natural Balancing... 20

2.6.6 Shift Towards Unconventional Modulation Schemes.................... 20

2.7 Existing Comparisons of NP Control Performance 24

2.8 Issues in the Literature .. 25

2.9 Conclusion ... 26

TABLE OF CONTENTS

x

3 FUNDAMENTALS OF ACTIVE NP CONTROL .. 27

3.1 NP Currents Produced by Space Vectors .. 27

3.1.1 Medium Vectors – The Source of NP Current Disturbance 28

3.1.2 Small Vectors – The Source of NP Current Control 29

3.2 NP Natural Control Limits .. 31

3.2.1 Effect of Modulation Depth ... 32

3.2.2 Effect of Load Power Factor Angle ... 33

3.2.3 Cumulative Effect .. 34

3.3 Extending NP Controllability Beyond the Natural Limits 34

3.4 Vector Selection Analysis of Existing NP Control Strategies 39

3.5 Strategies to be Compared in Chapter 4 .. 46

3.6 Summary ... 47

4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES............. 49

4.1 Methodology ... 49

4.2 Performance Metrics ... 51

4.2.1 Steady-state NP Ripple ... 51

4.2.2 Measure of Output Distortion - NWTHD 51

4.2.3 NP Dynamic Control Performance .. 52

4.3 Simulation System ... 52

4.4 Investigation Results ... 53

4.4.1 High DC link Capacitance Case (4200µF) 53

4.4.2 Low DC link Capacitance Case (840µF) 60

4.5 Active Strategy Recommendation ... 65

4.6 Summary ... 66

5 NATURAL BALANCING OF A NPC PHASE LEG 67

5.1 NP Voltage Variation with NPC Phase Leg Switching Commands 67

5.2 Double Fourier Representation of NPC PD Modulation 71

5.3 Reduction of NPC Natural Balance Solution to Linear Form 73

5.4 Natural Balancing Response and Balance Booster Contribution 74

5.5 Design of Balance Booster .. 78

5.6 Natural Balance Time Domain Simulation ... 80

5.7 Summary ... 84

6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS 85

6.1 Modelling the Three-phase NPC [82] ... 85

 TABLE OF CONTENTS

xi

6.1.1 Modelling the NP Change when tVn is Floating (Case 1

(ZL-F) & 3 (ZL-F, BB-F)) ... 87

6.1.2 Modelling the NP Change when tVn is Connected to a DC

link (Case 6 (ZL-F, BB-VDC)) ... 90

6.1.3 Application of the Superposition of Phase Leg Models to

obtain D.E.s for the Different Cases of a 3-Phase NPC

Converter. .. 91

6.2 Matching Balance Booster Filter Losses. .. 95

6.3 Analytically Calculated Natural Balancing Performance of 3-Phase

NPC Converter .. 96

6.4 Experimental Results .. 102

6.4.1 Experimental Results for 3-Wire Load, 3-Phase NPC (Cases

1 (ZL-F) & 3 (ZL-F, BB-F)) .. 103

6.4.2 Experimental Results for 4-Wire Load, 3-Phase NPC (Case 2

(ZL-NP)) .. 108

6.4.3 Experimental Results for High-Loss Balance Booster with

Floating Neutral Load .. 112

6.5 Experimental Verification of Natural Balancing with CSVPWM 112

6.6 Summary ... 117

7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION 119

7.1 CSVPWM with Feedforward DC Link Compensation 120

7.2 Influence of CSVPWM DC Link Compensation on Natural

Balancing ... 122

7.2.1 Generalised Harmonic Analysis of NP Voltage Control 122

7.2.2 Evaluation of NP Control Gains for CSVPWM with DC Link

Compensation .. 124

7.3 Experimental Verification ... 132

7.4 Simulation Comparison with Active NP Balancing Controllers 134

7.5 Summary ... 140

8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE

COMPARISON .. 141

8.1 Simulation Environment ... 141

8.1.1 NP Controller Gain Selection Considerations.............................. 144

TABLE OF CONTENTS

xii

8.2 Implementation - SPWM+P .. 145

8.2.1 Duty Cycle Calculation / Modulation. ... 145

8.2.2 State Redundancy Calculation Method - 1k & 2k 145

8.3 Implementation - SPWM+Song [17] .. 146

8.4 Implementation - CSVPWM+P .. 148

8.4.1 Duty Calculation / Modulation ... 148

8.4.2 State Redundancy Calculation Method - 1k & 2k 149

8.5 Implementation - Yamanaka SVM .. 149

8.5.1 Duty Calculation / Modulation ... 149

8.5.2 Verification of the Simulation Implementation 151

8.6 Implementation of NTVV ... 155

8.6.1 Duty Calculation / Modulation ... 155

8.6.2 State Redundancy Calculation Method - 1k & 2k 155

8.6.3 Verification of Simulation Implementation 157

8.7 Implementation of ONTVV .. 159

8.7.1 Duty Calculation / Modulation ... 159

8.7.2 State Redundancy Calculation Method - 1k & 2k 159

8.8 Summary ... 160

9 EXPERIMENTAL SYSTEM ... 161

9.1 Overview of the Experimental System .. 161

9.2 Power Stage ... 162

9.3 Controller Boards .. 165

9.4 Communications .. 173

9.5 Load Bank ... 174

9.6 Balance Booster ... 176

9.7 Experimental Verification using the Preferred Active Strategy:

CSVPWM+P ... 177

10 CONCLUSION AND FUTURE WORK ... 181

10.1 Summary of Work ... 181

10.1.2 Categorisation of Active Control Strategies 182

10.1.3 Quantitative Comparison of Practical Strategies 182

10.1.4 Derivation of the Natural Balancing Mechanism 183

 TABLE OF CONTENTS

xiii

10.1.5 The Characterisation of Natural Balancing Performance with

Balance Booster for Three-phase Converters and their

Variants .. 183

10.1.6 Harmonic Modelling of the Combination of ‘Passive’ NP

Control and DC Bus Link Voltage compensation using

CSVPWM. ... 183

10.2 Suggestions for Future work ... 184

10.2.1 Carrier-based Equivalent of Yamanaka’s SVM 184

10.2.2 Comparison involving Common-mode Currents 184

10.2.3 Derivation of Stable Combined Balance-booster-assisted

‘Active’ NP Controller .. 185

10.2.4 Model Predictive Control ... 185

10.2.5 Model Predictive Control with Balance boosters......................... 185

10.2.6 Optimised Balance-booster Design .. 186

10.2.7 n-phase NPC .. 186

10.3 Summary ... 186

TABLE OF CONTENTS

xiv

 LIST OF FIGURES

xv

LIST OF FIGURES

Figure 1.1: Topology for 3-phase Neutral Point Clamped converter. 2

Figure 2.1: Topology for 3-level NPC converter. .. 7

Figure 2.2: Space Vector diagram of the NPC converter. .. 8

Figure 2.3: Dipolar PWM. M=0.7 .. 10

Figure 2.4: Phase Disposition (PD) modulation (top) and Phase leg a output of

unipolar form (bottom) M=1.0. ... 11

Figure 2.5: Demonstration of NP problems encountered with a Current controller

application with a NPC converter e.g. motor drive. 13

Figure 2.6: Space Vector diagram for Sector 1. The reference vector, VREF is

within subsector 2. .. 14

Figure 2.7: Reference waveforms for CSVPWM for 3-level systems. M=0.7 19

Figure 2.8: Space Vector diagram for Sector 1. The reference vector, VREF is

within subsector 1. .. 20

Figure 2.9: SV diagram for SVM – Medium vector elimination for Sector 1. 21

Figure 2.10: SVM for Nearest Three Virtual Vector (NTVV) for Sector 1. 22

Figure 3.1: Space Vector diagram for the NPC. .. 28

Figure 3.2: Space Vector diagram for Sector 1. ... 30

Figure 3.3: Approximate Medium and Small vector duty cycle variation versus

modulation depth [20]. .. 33

Figure 3.4: Maximisation of NP disturbance and loss of NP control as load

power factor angle increases. .. 33

Figure 3.5: Time domain signals across Sector 1. Top: VSI Modulation

references. Middle: 3-phase load current with a load p.f. angle of 5

degrees. Bottom: 3-phase load current with a load p.f. angle of 85

degrees. .. 35

Figure 3.6: Time domain signals across a switching cycle when reference angle

is 30 degrees. Top: VSI Modulation references. Middle: 3-phase load

current with a load p.f. angle of 5 degrees. Bottom: 3-phase load

current with a load p.f. angle of 85 degrees. ... 36

Figure 3.7: Region of NP controllability (black). Figure obtained from [20]. 37

Figure 3.8: Space Vector diagram for Sector 1. The reference vector, VREF is

within subsector 2. .. 41

LIST OF FIGURES

xvi

Figure 3.9: SVM for Nearest Three Virtual Vector (NTVV) for Sector 1. 43

Figure 3.10: SV diagram for Medium vector elimination for Sector 1. 46

Figure 4.1: Maximum NP deviation versus Modulation depth for load power

factor angle of 1 degree during steady state operation. 54

Figure 4.2: Maximum NP deviation versus Modulation depth for load power

factor angle of 45 degree during steady state operation. 54

Figure 4.3: Maximum NP deviation versus Modulation depth for load power

factor angle of 85 degree during steady state operation.. 55

Figure 4.4: NWTHD versus Modulation depth for load p.f. angle of 1 degree. 56

Figure 4.5: NWTHD versus Modulation depth for load p.f. angle of 45 degree. 56

Figure 4.6: NWTHD versus Modulation depth for load p.f, angle of 85 degrees. 57

Figure 4.7: NP control performance versus Modulation depth for load power

factor angle of 1 degree. .. 58

Figure 4.8: NP control performance versus Modulation depth for load power

factor angle of 45 degree. .. 58

Figure 4.9: NP control performance versus Modulation depth for load power

factor angle of 85 degree. .. 59

Figure 4.10: Maximum NP deviation versus Modulation depth for load power

factor angle of 1 degree during steady state operation. 61

Figure 4.11: Maximum NP deviation versus Modulation depth for load power

factor angle of 45 degree during steady state operation. 61

Figure 4.12: Maximum NP deviation versus Modulation depth for load power

factor angle of 85 degree during steady state operation. 62

Figure 4.13: NWTHD versus Modulation depth for load power factor angle of 1

degree. ... 62

Figure 4.14: NWTHD versus Modulation depth for load power factor angle of

45 degree. .. 63

Figure 4.15: NWTHD versus Modulation depth for load power factor angle of

85 degrees. ... 63

Figure 4.16: NP control performance versus Modulation depth for load power

factor angle of 1 degree. .. 64

Figure 4.17: NP control performance versus Modulation depth for load power

factor angle of 45 degree. .. 64

 LIST OF FIGURES

xvii

Figure 4.18: NP control performance versus Modulation depth for load power

factor angle of 85 degree. .. 65

Figure 5.1: Topology for a NPC phase leg. nV is connected to NPV to form the

half-bridge topology. ... 67

Figure 5.2: Phase Disposition (PD) modulation strategy. The lower diagram

shows the ‘a’ switching signals and phase output voltage. 71

Figure 5.3: Harmonic spectra of Hmn. M=0.9, fsw = 2000Hz, fo = 50Hz 76

Figure 5.4: Harmonic spectra of Fmn. M=0.9, fsw = 2000Hz, fo = 50Hz 76

Figure 5.5: Harmonic spectra of phase voltage without and with 20% NP

unbalance, M=0.9, fs = 2000Hz, fo = 50Hz ... 77

Figure 5.6: Topology for a NPC phase leg with a RLC network / balance booster

placed in parallel to the load. .. 78

Figure 5.7: Load and balance-booster impedance magnitude versus frequency. 79

Figure 5.8: Load and balance-booster impedance phase angle versus frequency. 79

Figure 5.9: PSIM Simulation Schematic for Natural Balance Investigation. 80

Figure 5.10: Neutral Point voltage of simulation against models derived for

Configuration A. M=0.5, fo = 100Hz .. 82

Figure 5.11: Neutral Point voltage of simulation against models derived for

Configuration B without balance booster. M=1.0, fo = 50Hz 82

Figure 5.12: Neutral Point voltage of simulation against models derived for

Configuration B with balance booster. M=1.0, fo = 50Hz 82

Figure 5.13: Fmn harmonics for Configuration A. M=0.5, fo = 100Hz. 83

Figure 5.14: Fmn harmonics for Configuration B. M=1.0, fo = 50Hz 83

Figure 6.1: 3-phase NPC converter with and without different balance booster

placement configurations . .. 86

Figure 6.2: Balance booster currents versus modulation depth. 97

Figure 6.3: Balance booster power loss versus modulation depth. 97

Figure 6.4: Natural balancing time constant versus modulation depth. 98

Figure 6.5: Natural balancing time constant versus fundamental frequency. 100

Figure 6.6: Natural balancing time constant versus capacitor size, C. 100

Figure 6.7: Natural balancing time constant versus load power factor angle. 101

Figure 6.8: Natural balancing time constant versus load magnitude. 101

LIST OF FIGURES

xviii

Figure 6.9: Experimental NPC - Switched Phase Leg Voltage, Case 1 (ZL-F) &

3 (ZL-F, BB-F) (M=0.9) ... 104

Figure 6.10: Experimental NPC - Switched Line to Line voltage, Case 1 (ZL-F)

& 3 (ZL-F, BB-F) (M=0.9) ... 104

Figure 6.11: Experimental NPC - Switch and Phase leg currents for floating

neutral load with balance booster, Case 3 (ZL-F, BB-F) (M=0.9) 105

Figure 6.12: Experimental NPC – steady state NP voltage for floating neutral

load without balance booster, Case 1 (ZL-F) & 3 (ZL-F, BB-F)

(M=0.9) ... 105

Figure 6.13: Experimental natural balance response with a floating neutral load

and without a balance booster, Case 1 (ZL-F) (M=0.9). 106

Figure 6.14: Combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each

individual harmonic (1/tau) without a balance booster filter, Case 1

(ZL-F). ... 106

Figure 6.15: Experimental natural balance response with floating neutral load

and balance booster filter, Case 3 (ZL-F, BB-F) (M=0.9). 107

Figure 6.16: The combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each

individual harmonic (1/tau) with a balance booster filter, Case 1 (ZL-

F). .. 107

Figure 6.17: Experimental NPC - Switched Phase Leg Voltage, Case 2 (ZL-NP)

(M=0.9) ... 109

Figure 6.18: Experimental NPC - Switched line to line voltage, Case 2 (ZL-NP)

(M=0.9) ... 109

Figure 6.19: Experimental NPC - Switch and Phase leg currents for 4-wire load

without balance booster, Case 2 (ZL-NP) (M=0.9) 110

Figure 6.20: Experimental NPC – Steady state NP voltage for 4-wire load

without balance booster, Case 2 (ZL-NP) (M=0.9) 110

Figure 6.21: Experimental natural balance response with 4-wire load without

balance booster filter, Case 2 (ZL-NP) (M=0.9). 111

Figure 6.22: The combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each

individual harmonic or (1/tau) for a 4-wire load, Case 2 (ZL-NP). 111

Figure 6.23: Experimental natural balance response with floating neutral load

with high loss balance booster filter, Case 3 (ZL-F, BB-F) (M=0.9). ... 113

 LIST OF FIGURES

xix

Figure 6.24: Experimental NPC - Switch and Phase leg currents for floating

neutral load with high loss balance booster, Case 3 (ZL-F, BB-F)

(M=0.9) ... 113

Figure 6.25: Experimental Phase Leg Voltage (M=0.9) .. 115

Figure 6.26: Experimental Switched Line to Line Voltage (M=0.9) 115

Figure 6.27: Switch and Phase leg currents for 3-phase NPC (M=0.9) 116

Figure 6.28: Experimental NP voltage of the NPC converter (M=0.9) 116

Figure 6.29: Balancing performance of CSVPWM for Case 3 (ZL-F, BB-F)

(M=0.9) ... 117

Figure 7.1: NPC Modulation references for CSVPWM with DC link

compensation with 0% unbalance. (M=0.9) ... 121

Figure 7.2: Block diagram implementation of DC link compensation for NPC

[86] .. 121

Figure 7.3: Modulation references for CSVPWM with DC link compensation

with 50% unbalance. (M=0.9) ... 121

Figure 7.4: Magnitudes of harmonics co-efficients mnF and mnH with 0% NP

voltage unbalance. (M=0.9) .. 126

Figure 7.5: Magnitudes of harmonics co-efficients mnF and mnH with 20% NP

voltage unbalance. (M=0.9) .. 126

Figure 7.6: Harmonic plot of mnmn HF . and
2

mnF with 0% unbalance. (M=0.9) 127

Figure 7.7: Harmonic plot of mnmn HF . and
2

mnF with 20% unbalance. (M=0.9) 127

Figure 7.8:
2

mnmn FK and mnmnmn HFK . without balance booster, 0% NP

voltage unbalance. M=0.9. .. 129

Figure 7.9:
2

mnmn FK and mnmnmn HFK . without balance booster, 20% NP

voltage unbalance, M=0.9. .. 129

Figure 7.10:
2

mnmnFK and mnmnmn HFK . with balance booster, 0% NP

voltage unbalance. M=0.9. .. 130

Figure 7.11:
2

mnmnFK and mnmnmn HFK . with balance booster, 20% NP

voltage unbalance, M=0.9. .. 130

Figure 7.12: Balancing performance of various natural balancing schemes,

M=0.9. ... 132

LIST OF FIGURES

xx

Figure 7.13: Balancing performance of various natural balancing schemes,

M=0.1 .. 132

Figure 7.14: Neutral Point balancing for CSVPWM with DC link compensation

with RL load only, M=0.9. .. 133

Figure 7.15: Neutral Point balancing for CSVPWM with DC link compensation

with RL load and balance booster filter, M=0.9.................................... 133

Figure 7.16: Maximum NP deviation versus Modulation depth for load power

factor angle of 1 degree during steady state operation. 135

Figure 7.17: Maximum NP deviation versus Modulation depth for load power

factor angle of 45 degree during steady state operation. 135

Figure 7.18: Maximum NP deviation versus Modulation depth for load power

factor angle of 85 degree during steady state operation. 136

Figure 7.19: NWTHD versus Modulation depth for load power factor angle of 1

degree. ... 137

Figure 7.20: NWTHD versus Modulation depth for load power factor angle of

45 degree. .. 137

Figure 7.21: NWTHD versus Modulation depth for load power factor angle of

85 degrees. ... 138

Figure 7.22: NP control performance versus Modulation depth for load power

factor angle of 1 degree. .. 139

Figure 7.23: NP control performance versus Modulation depth for load power

factor angle of 45 degree. .. 139

Figure 7.24: NP control performance versus Modulation depth for load power

factor angle of 85 degree. .. 140

Figure 8.1: PSIM simulation (topology) .. 142

Figure 8.2: PSIM simulation (control) ... 143

Figure 8.3: Phase Disposition (PD) modulation (top) and Phase leg A output of

unipolar form (bottom) M=1.0. ... 145

Figure 8.4: Reference waveforms for CSVPWM for 3-level systems. M=0.7 148

Figure 8.5: PWM for Yamanaka’s SVM. Image obtained from [8] 152

Figure 8.6: Modification of load to match author’s setup for Yamanaka SVM.

10000 ohm resistor is required for current source to be use within

this simulation. .. 153

Figure 8.7: Thesis simulation results for Yamanaka’s SVM. 154

 LIST OF FIGURES

xxi

Figure 8.8: Balancing performance at different modulation depths for author’s

implementation of Yamanaka’s SVM. Image obtained from [8] 154

Figure 8.9: Result of transformation of SPWM references to NTVV references

obtained from [68] ... 155

Figure 8.10: Simulation of NTVV balancing performance at different

modulation depths. .. 158

Figure 8.11: Benchmarking simulation results for different modulation depths.

Image obtained from [69] for comparison purposes. 158

Figure 9.1: Photo of the experimental NPC converter, power supply and loads. 161

Figure 9.2: Close up of experimental NPC converter. ... 163

Figure 9.3: Power stage design of the converter. ... 164

Figure 9.4: One of the 4 capacitors used as the DC link within the converter......... 166

Figure 9.5: Two DC sources in series using Magna XR250-24. 166

Figure 9.6: Semikron module consisting of 2 IGBT switches with anti-parallel

diodes. ... 167

Figure 9.7: CPT’s Generalised Integrated Inverter Board (CPT-GIIB). 168

Figure 9.8: Controller board wiring for Master GIIB. ... 169

Figure 9.9: Controller board wiring for Slave GIIB 1. .. 170

Figure 9.10: Controller board wiring for Slave GIIB 2. .. 171

Figure 9.11: CPT-DA2810 on top of CPT-Mini2810. ... 172

Figure 9.12: CPT-DA2810. .. 172

Figure 9.13: RMIT lab resistive load bank. ... 175

Figure 9.14: Inductive load bank. .. 175

Figure 9.15: Dyne high frequency inductors.. 176

Figure 9.16: Top view of the enclosure of the capacitors for balance booster. 177

Figure 9.17: Bottom view of the enclosure of the capacitors for balance booster. .. 177

Figure 9.18: NP control performance of CSVPWM with Proportional controller

at M=0.9, fs=5000 Hz. ... 178

Figure 9.19: Line current B during the NP control action transient. M=0.9,

fs=5000 Hz. .. 179

Figure 9.20: Line-to-line voltage during the NP control action. M=0.9, fs=5000

Hz. ... 179

Figure A.1: NTV-based strategies PSIM simulation (topology) 196

Figure A.2: NTV-based strategies PSIM simulation (control) 197

LIST OF FIGURES

xxii

Figure A.3: Yamanaka’s SVM PSIM simulation (topology) 204

Figure A.4: Yamanaka’s SVM PSIM simulation (control) 205

Figure A.5: NTVV’s PSIM simulation (topology) .. 219

Figure A.6: NTVV’s PSIM simulation (control) ... 220

Figure A.7: ONTVV’s PSIM simulation (topology) ... 228

Figure A.8: ONTVV’s PSIM simulation (control) .. 229

Figure A.9: Song’s SPWM’s PSIM simulation (topology) 237

Figure A.10: Song’s SPWM’s PSIM simulation (control) 238

Figure A.11: Balance booster-based strategies’ PSIM simulation (topology) 245

 LIST OF TABLES

xxiii

LIST OF TABLES

Table 2-1: Phase leg output voltages and associated switching commands 8

Table 2-2: Converter parameters for NP drift demonstration 12

Table 2-3: SVM Vector Classification with NP current for Sector 1. 14

Table 2-4: NTVV’s Virtual Vector Composition for Sector 1. 22

Table 3-1: NP current draw for SVM medium vector. .. 29

Table 3-2: NTV SVM – (1 SV / 2 RS) / SPWM / CSVPWM 41

Table 3-3: NTV SVM – (2 SV / 4 RS) .. 42

Table 3-4: NTV SVM – (2 SV / 4 RS) – Reduced Medium Vector 43

Table 3-5: Medium Vector Reduction ... 44

Table 3-6: Dipolar PWM ... 45

Table 3-7: Medium Vector Elimination ... 46

Table 3-8: Strategies to be compared. .. 47

Table 4-1: NPC converter parameters. ... 50

Table 4-2: Switching frequency of the various strategies. ... 50

Table 5-1: Phase leg output voltages and associated switching commands 70

Table 5-2: Parameters for phase leg’s balancing simulations. 81

Table 6-1: Variations of the 3-phase NPC converter. .. 87

Table 6-2: 3-phase NPC converter parameters for balancing simulations. 96

Table 6-3: Numerical values for significant harmonics shown in Figure 6.14 108

Table 6-4: Numerical values for significant harmonics shown in Figure 6.16. 108

Table 6-5: Numerical values for significant harmonics shown in Figure 6.22 112

Table 7-1: Parameters of the NPC converter. .. 125

Table 7-2: Evaluation of NP D.E. balancing gains at M=0.9. 128

Table 7-3: Evaluation of NP D.E. balancing gains at M=0.1. 128

Table 8-1: Converter parameters for Yamanaka SVM validation 152

Table 8-2: Converter parameters for NTVV validation ... 157

Table 9-1: NPC converter parameters. ... 178

xxiv

 LIST OF SYMBOLS

xxv

LIST OF SYMBOLS

 DC voltage bus

 Time domain phase current

 Current reference in time domain

 Phase current phase and

 Phase current phase , , and

NPi NP current

)(RMSIBB
 RMS equivalent of the sum of balance booster

currents

BBi Harmonic current produced by a balance booster

 Total inductive load of converter

BBL Balance booster’s inductance

 Proportional gain

 Output voltage levels of a multilevel converter

 Total resistive load of converter

BBR Balance booster’s resistance

 PWM gate signal of switch

 Carrier period

 Stationary three phase quantities

 Common mode voltage offset

VNP Neutral Point voltage

VREF Reference vector in SVM

 Integrator time constant

 Fundamental reference frequency in rad/s

 Cross over frequency of forward path loop gain in

rad/s

ZL Load impedance

ZBB Balance booster impedance

xxvi

 GLOSSARY OF TERMS

xxvii

GLOSSARY OF TERMS

AC Alternating Current

ADC Analog Digital Converter

AFE Active Front End

APOD Alternative Phase Opposition Disposition

BB Balance Booster

CPLD Complex Programmable Logic Device

CPT-DA2810 Creative Power Technology DSP Process Card

CPT-Mini2810 Creative Power Technology DSP Controller Card

CS-GIIB
Creative Power Technology General Integrated

Inverter Card

CSV Centred Space Vector

CSVPWM Centred Space Vector Pulse Width Modulation

DAC Digital to Analog Converter

DC Direct Current

DIGIO Digital Input / Output

DLL Dynamic Link Library

DPWM Discontinous Pulse Width Modulation

DSP Digital Signal Processor

DTC Direct Torque Control

FF Feed Forward

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

GTO Gate Turn Off Thyristor

I/O Input / Output

IGBT Insulated Gate Bipolar Transistor

IGCT Integrated Gate-Commutated Thyristor

KCL Kirchoff Current Law

KVL Kirchoff Voltage Law

MiniBus Bus Structure for DSP Auxiliary Cards

MPC Model Predictive Control

NP Neutral Point

NPC Neutral Point Clamped

NTV Nearest Three Vectors

NTVV Nearest Three Virtual Vectors

NWTHD Normalised Weighted Total Harmonic Distortion

ONTVV Optimal Nearest Three Virtual Vectors

P+Resonant Proportional plus Resonant Regulator

PCB Printed Circuit Board

PD Phase Disposition

PEBB Power Electronics Building Block

PI Proportional plus Integral Regulator

GLOSSARY OF TERMS

xxviii

PLL Phase Locked Loop

POD Phase Opposition Disposition

PSCPWM Phase Shifted Carrier Pulse Width Modulation

PSIM
Power electronics simulation software by

Powersim Inc

PWM Pulse Width Modulation

R-L Resistive Inductive

R-L-C Resistive Inductive Capacitive

RMS Root Mean Square

RS-232 Serial Interface

RSS Radial State Space Vector Modulation

SHEPWM Selective Harmonic Elimination PWM

SHRPWM Selective Harmonic Reduction PWM

SISO Single Input Single Output

SPI Serial Peripheral Interface Bus

SPWM Sinusoidal PWM

STATCOM Static Synchronous Compensator

SV Space Vector

SVM Space Vector Modulation

THD Total Harmonic Distortion

UPS Un-Interruptible Power Supply

VSC Voltage Source Converter

VSI Voltage Source Inverter

 PUBLICATIONS

xxix

PUBLICATIONS

Several parts of the work presented in this thesis have been published by the author

during the course the research. These publications are listed below:

1. Z. Mohzani, B. P. McGrath, and D. G. Holmes, “Natural Balancing of the

Neutral Point Voltage for a 3-Phase NPC Multilevel Converter,” IECON

2011.

2. Z. Mohzani, B. P. McGrath, and D. G. Holmes, “DC-link Feedforward

Compensation as NP controller for 3-phase NPC Converter,” IPEMC 2012

3. B. P. McGrath, D. G. Holmes, and Z. Mohzani “A Generalised Natural

Balance Model And Balance Booster Filter Design For Three Level

Neutral Point Clamped Converters,” ECCE 2014, submitted 21/01/2014.

PUBLICATIONS

xxx

 ABSTRACT

xxxi

ABSTRACT

The ever increasing consumption of electricity requires the development of electrical

conversion systems of higher voltage and power ratings. Such requirements

combined with new stricter power quality regulations are difficult to meet with

conventional 2-level converters due to their high voltage semiconductor switches

having slow switching speeds that cause a poor harmonic performance.

Multilevel converters are an elegant alternative to address this problem. Existing

semiconductor switches are arranged in series strings to increase the overall voltage

rating of the converter whilst ensuring that each semiconductor switch is not exposed

to voltages in excess of its rating. The multiple levels in the converter output enable

the synthesis of switched AC waveforms that more closely resemble the target AC,

therefore substantially improving its harmonic performance.

Amongst the major multilevel converter topologies, the simplest multilevel

topology in terms of construction and reliability is the 3-level Neutral Point Clamped

(NPC) converter. However, the 3
rd

 voltage level, also known as the Neutral Point

(NP), can deviate from its ideal value during transient events and certain operating

conditions such as high modulation depth and low load power factor angles. Such a

voltage deviation exposes the semiconductor switches to voltages above their limits

which can lead to converter failure. Three methods of controlling the deviation have

been introduced i.e. active modulation control, natural balancing and additional

hardware. The former is most commonly used in the industry due to its simple

implementation and lossless nature. In contrast, the latter methods are not well

established and they generally have poor adoption. Over the years, a number of

active modulation control strategies have been proposed which offer different

degrees of performance in terms of harmonics and NP control capability. However,

there is little consensus within the literature as to which strategy offers the best

performance, nor is there a guide to the differences between the strategies, and which

strategy is better suited to any particular application.

This thesis begins by presenting a literature review which details the major

developments in active modulation NP control methods chronologically. After

highlighting a large number of published strategies but only a relatively low number

of comparison studies, a common theoretical framework is then developed that

identifies the primary causes of NP unbalance and the control mechanisms that are

ABSTRACT

xxxii

available for active NP voltage control. Based on this understanding, the thesis then

groups common strategies and discusses their mechanisms to enhance NP control.

This understanding is however qualitative in nature. A simulation study across a

number of operating conditions is then performed to quantify the differences in

performance of the different groups i.e. NP control performance, maximum NP

ripple and harmonic output. The results show that the traditional and also the

simplest method of NP control (CSVPWM+P) offers the best NP control

performance. However, this strategy requires a substantial DC link capacitance to

reduce its harmonic distortion.

Next, the thesis explores natural NP balancing. It begins by modelling the natural

balancing process of a single-phase leg. More complex converter structures are then

modelled by superposition of multiple phase leg models. With this understanding of

how the natural NP balance mechanism works, the thesis progresses to explore the

dependence of natural balancing on load magnitude by reducing this magnitude at

the switching frequency using a RLC filter, to increase the balancing performance.

Various connection alternatives for this RLC filter on a 3-phase converter are then

investigated, taking into account their relative balancing performance and losses.

Recognising from the modelling process that natural NP balancing depends on the

harmonics of the modulator, the thesis now proceeds to explore whether natural

balancing can be enhanced by modulation adaptation. Feedforward compensation of

unbalanced DC bus voltages is identified as a promising alternative, and its

contribution to natural balancing within a CSVPWM strategy is then explored. Since

the natural balance model can accommodate both load and modulation modifications,

this combined method is implemented for 2 balance booster configurations.

Finally, a comparison is made between the active and natural NP balance

methods, to identify that while the traditional CSVPWM+P active method achieves

the fastest balancing response, it does require a high DC link capacitance to produce

an acceptable harmonic performance. On the other hand, the next fastest solution i.e.

combined Feedforward compensation & natural balancing, achieves an ideal

harmonic performance, at the cost however of a lower NP control performance.

The results of this thesis have been validated on an experimental 3-phase NPC

converter.

 1 INTRODUCTION

1

1 INTRODUCTION

1.1 Background

Virtually every industry uses some form of electrical and electronic equipment.

However, there is no universal form of electrical supply that meets the requirements

of every possible application in the world. For example, consumer electronics require

a low voltage supply to energise low-power digital semiconductor devices. On the

other hand, high power applications such as motor drives and HVDC systems require

much higher voltages to reduce the size of the converters and also to reduce I
2
R

losses. In all cases, it is common to see electrical and electronic equipment bundled

with a power conversion system that converts the available electrical supply to a

form that is more suitable for its use. In recent decades, there has been a rapid

adoption of power electronic conversion equipment in place of traditional electro-

mechanical conversion systems. This can primarily be credited to the rapid

development of semiconductor devices since the 1960s. Power electronic conversion

is more efficient than electro-mechanical conversion, has a higher power to weight

ratio, and is also more flexible.

The standard power electronic conversion topology, the 2-level converter, is

limited by the voltage blocking capability of the semiconductor switches that it uses

[1][2][3]. This results in a finite limit on the power rating that 2-level converters can

achieve. To go past this limit, 2-level converters have to employ a series connection

of devices to increase their voltage rating. However, this method requires equal

distribution of the voltage exposed to each individual switch which is difficult to

achieve and usually requires additional hardware. Multilevel converters are an

attractive alternative because they limit the voltage exposed to each switch without

needing significant additional hardware. They achieve this by arranging the switches

and DC sources (or capacitors) of the converter along with optional diodes so as to

clamp the voltage exposed to the switches. A further positive benefit of these

converters is their multilevel (3 or more levels) switched output voltages that more

closely resemble the target AC waveform, thus making them harmonically superior

to 2-level converters.

Three major multilevel converter topologies can be found within the literature.

They are the diode clamped converter, flying capacitor converter and the cascaded

H-bridge converter [4]. Of the three topologies, the neutral point clamped (NPC) or

1.1 BACKGROUND

2

3-level diode clamped converter has gained the highest usage within the industry due

to its single DC bus requirement and simple construction [5].

The Neutral Point Clamped converter is shown in Figure 1.1. However, this

topology’s region of operation can be limited by fluctuations of the intermediate

voltage level, also known as the Neutral Point (NP). Ideally, the Neutral Point

voltage is the mid-point of the DC bus, but this voltage can deviate during both

steady state and transient operation. In steady state, the load charges/discharges the

NP in a manner that causes a 3 times fundamental frequency ripple. During transient

events, the converter can charge/discharge the NP to cause a drift towards either bus

voltage. This occurs during motor drive start/stop, grid frequency deviation etc.

These deviations can produce excessive voltage stresses on the semiconductor

switches and may consequently cause converter failure.

Three forms of NP control have been introduced to address this issue. Active

modulation control of the NP current is a well established method of controlling the

NP voltage. Many approaches have been proposed in this area since the introduction

of the NPC topology 30 years ago [6]-[31]. However, despite this work it still can be

difficult to assess the benefits and tradeoffs of the various strategies that have been

reported.

Two other methods of controlling the NP voltage are additional hardware, and

natural balancing [32][33][34]. Additional hardware methods use extra components

VDC

S1,a

S2,a

S1,a

S2,a

Ct

Cb

iNP

VDC

VNP

S1,b

S2,b

S1,b

S2,b

S1,c

S2,c

S1,c

S2,c

ZL

Vn

Ix

Figure 1.1: Topology for 3-phase Neutral Point Clamped converter.

 1 INTRODUCTION

3

such as transformers and DC/DC converters. This method has largely been dismissed

in the literature since it increases both the size and cost of the converter. Natural

balancing is a phenomenon where the NP voltage returns to the ideal value during

steady state operation. Research into natural balancing has been very limited and it is

not often used due to poor understanding of its mechanism, limited quantification of

its performance and also its losses when a balance booster is added [32].

1.2 Aim of the Research

This thesis addresses the following research questions relating to the control of the

NP voltage of a NPC converter in two stages:

Stage 1 consolidates existing knowledge into a coherent understanding of NP

voltage control, to address the following fundamental research questions:

a) How does NP ripple / drift affect voltage quality?

NP control performance will dictate NP ripple and drift magnitudes. As a

result, it is important to identify the magnitude of NP unbalance that will

degrade a converter’s output.

b) What are the differences between modulation strategies? Is there a tradeoff

between a modulation strategy and its NP controller?

This thesis will examine the differences between various active NP control

modulation strategies. A comprehensive analysis of active strategies,

suited to a large range of applications, is conducted so as to compare their

performance in terms of NP control performance, steady state NP

deviation and harmonic production.

Stage 2 then extends this knowledge base with a comprehensive analysis of

natural balancing, to identify the best possible NP control strategy by comparing

natural balancing against active balancing strategies. It does so by addressing the

following research questions

c) What is the mechanism behind natural balancing?

This thesis will model the natural balancing mechanism. The model will

provide a thorough understanding of its operation and a prediction of its

control performance. It will then be used to answer question e).

d) Is there possibility of improving natural balancing with adaptation of the

primary modulation processes?

1.3 STRUCTURE OF THESIS

4

The thesis will explore if natural balancing can be improved with

particular modulation alternatives.

e) What is the performance difference between active NP control using

modulation strategies, and natural balancing with as much enhancement as

is possible?

The performance of all the strategies investigated will be compared and

evaluated.

1.3 Structure of Thesis

This thesis is divided into three main sections. The first section is a combined

literature review and critical analysis of active NP control strategies. The second

section guides the reader through the modelling of the natural balancing mechanism

of the 3-phase NPC converter topology and its variants. The third section is a

discussion of enhancing natural balancing solution with modulation variations.

Finally a discussion of future work for this field of research is presented. The

breakdown of work presented in each chapter is as follows:

Chapter 1 (this chapter) provides the context and overview for the research

performed. It then presents the research questions followed by the thesis structure.

Chapter 2 presents the literature review for the thesis topic. Firstly, it summarises

NPC modulation strategies. Next, it details chronologically the development of NP

control within the active and natural balancing schemes. Finally, it discusses the

issues within the literature and the challenge in comparing NP balancing strategies.

Chapter 3 presents the fundamentals of NP control. It shows the sources of

control and disturbance of NP current, the limits of NP control and their dependence

on operating conditions. Next, it shows the method of overcoming these limits and

their side effects. Finally, the chapter revisits active NP balancing strategies within

the literature to classify their performance.

Chapter 4 quantitatively compares the active NP control strategies chosen in

Chapter 3 to explore their differences. It also discusses the practical issues of

implementing the quantitative comparison.

Chapter 5 explores natural NP balancing for the NPC converter. A new harmonic

model is derived based on techniques previously developed for the Flying Capacitor

converter. An analysis of the results from the model is presented. Next, the operating

mechanism of a balance booster is presented followed by simulation verification.

 1 INTRODUCTION

5

Chapter 6 applies the modular model of a NPC phase leg to a 3-phase NPC

converter. Analysis of the converter’s operation (and its variants) over a number of

operating points are then presented. An experimental converter is used to validate the

developed model, and confirm that the performance enhancing balance booster is an

effective way of improving the NP voltage balancing process. The results show that

most applications can benefit from a ‘floating balance booster’ configuration.

Chapter 7 explores a framework that enhances the natural balancing process to

achieve better performance, and identifies that Feedforward DC bus compensation

based modulation is an attractive candidate to explore. Next, a numerical analysis of

the harmonics behind the combined Feedforward-balance booster method is

presented. Finally the chapter compares the combined solution’s performance against

‘active’ methods, and shows that the combined method is excellent in particular for

low capacitance applications.

Chapter 8 details the implementations of the strategies that are compared in this

thesis, along with simulation verification to validate their implementations.

Chapter 9 describes the experimental system used to validate the results of the

analysis presented in this thesis.

Chapter 10 reviews the results of the whole thesis work, and identifies how NP

balancing strategies can be selected for particular applications and operating

conditions. It then concludes by presenting recommendations for future work for this

field of research.

1.4 Identification of Original Contribution

The work in this thesis explores the best practical methods to regulate the Neutral

Point of a NPC converter. For clarity, it is useful to highlight the major contributions

achieved.

The first contribution is an exploration of the fundamentals of NP control and its

limits, followed by a clear description of how these limits can be overcome and with

what penalty. It shows that all NP control strategies are limited by the same

fundamentals and eventually degrade to a 2-level converter-like behaviour, or move

to a middle ground that is undesirable due to higher switching losses.

The second contribution is a quantitative comparison between the state of the art

of the various NP balancing strategies over a number of operating conditions. The

1.4 IDENTIFICATION OF ORIGINAL CONTRIBUTION

6

results show that Centered Space Vector PWM (CSVPWM) with a Proportional or

FeedForward controller is the best choice for most applications. It also identifies that:

 Virtual Vector-based strategies are harmonically worse than 2-level converters.

 CSVPWM produces less NP voltage ripple than Sinusoidal PWM (SPWM).

 CSVPWM and SPWM have a very similar NP control performance.

 Yamanaka’s SVM [8] is only faster than CSVPWM+P in controlling the NP

voltage at extremely low load power factor angles.

The third contribution is the precise modelling of natural balancing for the 3-

phase NPC converter. The result allows the mechanism of natural balancing to be

better understood and shows how it is increased through the use of balance boosters.

With this model, critical conditions can be identified for which a balance booster

should be designed. The model also precisely predicts the balancing dynamics and

energy losses within the balance booster filter.

The fourth contribution is the demonstration of combining natural balancing with

Feedforward DC Bus compensation for the NPC modulator, to get a significantly

improved balancing performance. This combined strategy is excellent for converter

systems with small DC link capacitors as it achieves the fast performance of ‘active’

strategies while mitigating the harmonic degradation that is the result of high NP

ripple that is inevitable with low value DC link capacitances.

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

7

2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

This chapter will chronologically present the development of the NPC converter

and its associated NP control. It will first outline the structure and modulation of the

NPC converter before reviewing the NP control attempts that have been published

within the literature. Finally, it will identify the issues encountered from the literature

review and reflect on how the limited comparison of NP strategies that is available

complicates the process of assessing the advantages and disadvantages of the various

strategies.

2.1 Fundamentals of NPC Converters

The topology of the NPC converter shown in Figure 2.1 was first introduced by

Nabae in 1981 [35]. It is preferred over a two level converter with series connected

switches because of its ability to limit the switches’ blocking voltage without

requiring additional circuitry, achieving a doubling of the volt-amp rating of the

converter while using conventional switches. An additional benefit is the improved

harmonic output of its three-level phase leg output voltage waveform [26].

The positive and negative buses are linked through two capacitors, tC and bC

placed in series. The midpoint of the capacitors is the Neutral Point (NP), with a

voltage NPV relative to earth. The NPC converter is made of three phase legs, each

consisting of 4 semiconductor switches and 2 diodes which are connected back to the

Figure 2.1: Topology for 3-level NPC converter.

VDC

S1,a

S2,a

S1,a

S2,a

Ct

Cb

iNP

VDC

VNP

S1,b

S2,b

S1,b

S2,b

S1,c

S2,c

S1,c

S2,c

ZL

Vn

Ix

Va Vb Vc

2.1 FUNDAMENTALS OF NPC CONVERTERS

8

Neutral Point (NP). The switches are controlled by two binary-valued switching

functions, 1,0, ,2,1 tStS xx
 where 0 and 1 correspond to OFF and ON states. The

switching function xS ,1 controls the first and third semiconductor switches as a

complementary pair where the third switch is labelled
xS ,1

 and cbax ,, . A second

switching signal controls the second and fourth switch as a complementary pair

labelled as xS ,2 and
xS ,2

 respectively. The states of these switches determine the

output voltage, tVx of each phase leg as shown in Table 2-1 where DCV represents

half of the DC bus voltage.

The 3 phase legs of the converter produce 3
3
 = 27 switching states. These states if

translated to the 2 dimensional alpha-beta coordinate system through the following

Clarke transform [36]:

Table 2-1: Phase leg output voltages and associated switching commands

S1,x(t) S2,x(t) Vx(t) INP,x(t)

0 0 -VDC 0

0 1 VNP(t) Ix(t)

1 0 Not Applicable Not Applicable

1 1 VDC 0

Sector 1

Sector 6

Sector 2

Sector 5

Sector 3

Sector 4

220

210

200022

020 120

102 202
002

012 201

211

100

212

101

112

001

122

011

121

010

221

110

222

111

000

021

beta

alpha

Figure 2.2: Space Vector diagram of the NPC converter.

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

9

c

b

a

f

f

f

f

f

f

2

2

2

2

2

2

2

3

2

3
0

2

1

2

1
1

3

2

0

 (2.1)

result in 19 Space Vectors (SV) with varying magnitudes and angles as shown in

Figure 2.2 (previous page). The SVs repeat every 60 degrees and can be split into 6

sectors. The voltages of each phase leg are denoted by 2, 1 and 0, corresponding to

DCV , 0 V and DCV respectively.

2.2 Early NPC Publications

The early publications surrounding the NPC converter were concerned with the

modulation techniques for high-power motor drive applications i.e. the determination

of the switching states and their duration in order to produce the required switched 3-

level output voltage. The three-level output of the NPC converter allowed for the

reduction of the torque pulsations when compared to a 2-level converter. Thus, many

of the existing motor drive control techniques for 2-level converters were adapted to

the NPC converter, most of which required current control.

Many examples can be found for direct torque control (DTC) or hysteresis control

of the NPC converter [26]. When hysteresis control is not used, many authors

focused on the technique called ‘optimal PWM’, which is in fact Selective Harmonic

Elimination PWM (SHEPWM), which calculates exact switching transitions in order

to eliminate low order harmonics such as the 5
th

 and 7
th

 harmonic [35][37]. The

advantage of this modulation technique was its low number of switching transitions

per fundamental cycle and thus lower switching losses. (The losses were large

because of the usage of Gate Turn Off Thyristor (GTO) devices which have slow

switching speeds [38].)

Other authors, utilising sine-triangular carrier PWM (SPWM) and Space Vector

Modulation (SVM), were mostly concerned with adapting the modulation process in

order to satisfy the minimum conduction times of the GTO switches. SVM strategies

were adapted easily because they select the nearest three vectors (NTV) surrounding

the reference vector.

2.2 EARLY NPC PUBLICATIONS

10

To summarise the basic steps behind Space Vector Modulation (SVM), it firstly

determines the location of the reference vector, REFV . The reference vector will lie

within one of the 24 triangles (see Figure 2.2) which identifies the nearest three

vectors (NTV) and thus the switching states that it should use. A vector

decomposition utilising the nearest 3 vectors then is conducted to determine their

duty cycles within a sampling time. Lastly, SVM rearranges the switching states to

ensure minimal switching transitions.

The first developments in SPWM relate to the Dipolar PWM technique,

introduced in [39]. Figure 2.3 shows how it compares two references against a

common triangular carrier that spans across DCV and DCV for a single phase leg,

which causes its output to traverse all three levels within a switching cycle. It was

originally developed in [39] to counteract the narrow pulses of SPWM, thus avoiding

the inability of SPWM to meet minimum conduction times of GTO switches at low

modulation depths. A benefit of this strategy is the low NP ripple it produces for low

frequency operation [14]. Dipolar PWM is harmonically at a disadvantage as shown

in [13] because if the reference waveform is in the positive half cycle, Dipolar PWM

has to produce more than the necessary positive voltage to compensate for any

negative voltage that it produces every switching cycle. [40] contradicts this by

showing that Dipolar PWM can produce lower distortion at the lower half of the

Figure 2.3: Dipolar PWM. M=0.7

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

11

modulation range. This can be attributed to the high number of switching transitions

used by Dipolar PWM under these conditions. In terms of harmonics, most Dipolar

PWM authors tend to produce a 3-level line-to-line voltage output which is

suboptimal compared to the desired 5-level line-to-line that could be produced by the

NPC inverter [14].

The second, and currently today’s conventional SPWM strategy, Unipolar PWM

improves upon Dipolar by producing only 2 levels within a switching cycle as shown

in Figure 2.4. This approach is easier than SVM, as the technique compares the 3-

phase voltage references against 2 level-shifted carriers [27][41][42]. When the

reference is above both the carriers, it chooses +VDC. When it is in between the

carriers, it chooses the NP voltage and finally when it is below both carriers, it

chooses –VDC. This carrier arrangement is known as Phase Disposition (PD).

Research in [43] has shown that it is superior to other carrier arrangements that

alternate the polarity of the carriers e.g. APOD and POD. As a result, it has become

the standard carrier arrangement for NPC converters.

Other authors have proposed non-PWM techniques i.e. square wave modulation

or 8-step modulation in order to reduce high switching losses when operating at high

switching frequency [44].

Figure 2.4: Phase Disposition (PD) modulation (top) and Phase leg a output of

unipolar form (bottom) M=1.0.

2.3 NEUTRAL POINT VOLTAGE DEVIATION PROBLEM

12

2.3 Neutral Point Voltage Deviation Problem

Figure 2.5 demonstrates the NP voltage deviation problem when a current

controller is applied to a NPC converter. For illustrative purposes, the DC link

capacitance of the converter has been reduced to show a large NP ripple. The

parameters of this simulation are given in Table 2-2.

Figure 2.5 has 3 graphs. The top graph displays the commanded frequency of the

current controller. The middle graph shows the NP voltage and the line-to-neutral

voltage for phase leg A. Note that the 3-level output has the middle level varying

according to the voltage of the NP. The bottom graph shows the load current

produced by the converter.

Within this figure, 3 situations are presented. In between 0 and 0.02 seconds, the

NP is forced to the ideal value of 0 volts via a solid ground connection. This results

in the perfect 3-level line-to-neutral voltage output. At 0.02 seconds, a practical

converter situation is forced by disconnecting the NP from ground to allow the NP to

float. The NP voltage then starts to produce a 150 Hz ripple component which is

intrinsic to the way NP currents are produced by a NPC phase leg controlled by

traditional PWM (further explained in Chapter 3). At 0.05 seconds, a transient event

is induced where the current controller tries to reverse the frequency of the load

current from 50 to -50 Hz. During this process, the NP experiences a drift to the

negative DC bus voltage, thus potentially causing improper operation and even

converter failure.

In this case, the transient frequency change led to an unbalanced operation which

then causes the NP voltage drift. However, this is not the only form of unbalance that

can cause NP drift, as several studies have shown that effects such as: unbalanced

loads, different parasitic elements between phase legs caused by the physical

converter construction, unbalanced controller operation, transients in motor drives,

Table 2-2: Converter parameters for NP drift demonstration

Name Modulation Strategy

DC bus voltage 360 V

DC link capacitance 168 uF

Load resistance 3.56 ohms

Load inductance 11.34 mH

Peak current reference magnitude 20 A

Switching frequency 2000 Hz

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

13

Figure 2.5: Demonstration of NP problems encountered with a Current controller

application with a NPC converter e.g. motor drive.

2.4 IMPACT OF SPACE VECTORS ON THE NP VOLTAGE

14

unbalanced switching times of the switches etc., can all cause steady state NP drift

[8][45][46]. Chapter 3 identifies that energy unbalance caused by the instrinsic

nature of the NP current created by switching the NPC phase leg using

uncompensated PWM, is the primary cause of steady state NP drift from these

effects, Chapter 3 also provides more clarification about the processes of ripple and

drift, and their influence on NP variation away from a balanced state.

2.4 Impact of Space Vectors on the NP Voltage

The selection of the switching states by the modulation strategies presented above

does not consider the effect the switching strategy has on the NP current and voltage.

This issue will now be explored. Sector 1 from the Space Vector diagram Figure 2.2

211

100

221

110

220

210

200

222

111

000

VSmall 1

VSmall 2

VZero

VMedium

VLarge 1

VLarge 2

VREF

2

1

3

4

Figure 2.6: Space Vector diagram for Sector 1. The reference vector, VREF is within

subsector 2.

Table 2-3: SVM Vector Classification with NP current for Sector 1.

Vector Type and Number State (SA SB SC) INP

Zero

222 0

111 0

000 0

Small 1
211 -IA

100 IA

Small 2
221 IC

110 -IC

Medium 210 IB

Large 1 200 0

Large 2 220 0

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

15

denotes the region between 0 and 60 degrees, as shown in Figure 2.6. The six space

vectors in this region can be classified into groups of zero, small, medium and large

space vectors, as detailed in Table 2-3, together with their switching state. This table

also identifies the NP current caused by each of these switching states. Note that the

small and medium vectors connect one or two of the phase legs to the NP and since

the load then draws current from this node, it affects the NP voltage. The zero and

large vectors do not connect to the NP and thus do not cause any NP currents.

Further consideration identifies that the medium vector produces NP current in

only one direction whereas the two states of a small vector produce NP current in

opposite directions. These are called ‘redundant states’ because they produce the

same line-to-line voltage, and so either one of the states can be used in isolation or

used together by the modulation process.

2.5 Early Neutral Point (NP) Control Strategies (1990 to 1997)

Almost a decade after the introduction of the NPC converter, the Neutral Point

(NP) control problem was first mentioned in [41]. The author stated that the NP drift

occurs during “dynamic changes of the inverter’s load”. Since the load draws current

from the NP when its phase leg is connected to it, the author proposed to connect the

load to the neutral only if its load current will reduce the NP drift. However, this

causes the phase leg to produce two-level switching and thus poor harmonic

performance [27].

In 1991, two simultaneous publications introduced the NTV SVM strategy that

recognises the existence of redundant states which produce the same line-to-line

voltage but have opposite effects on the NP current and thus the NP voltage. This

improved on the previous NP control technique as it has the ability to control the NP

voltage whilst maintaining superior harmonic quality by obeying the NTV principle.

The authors did not specify the method of determining the duty cycle of the 2

redundant states [21][22], and similar work was presented in [47].

At the same time, a similar method was introduced by Steinke for (Unipolar)

SPWM where a common-mode offset of a fixed value is added to control the NP

voltage [27]. It was not until a year later that Ogasawara showed that the common-

mode or zero-sequence offset addition to all three modulation references actually

controls the duty cycle of the redundant states, and that it does not have to be of a

fixed magnitude as suggested by Steinke [45]. Ogasawara calculated the zero-

2.6 FURTHER NEUTRAL POINT (NP) CONTROL STRATEGIES (1997 ONWARDS)

16

sequence offset based on the operating conditions of the converter. Next, he showed

that limited control occurs at high modulation depths because of the small duty cycle

of the redundant states. Therefore, a 3 times fundamental NP voltage ripple can be

observed during a fundamental cycle of the NPC converter [45].

Soon after, many authors were updating their modulation strategies to incorporate

the NP control technique of utilising redundant states while trying to satisfy the

minimum commutation times for GTO devices. An example is the hysteresis

controller, where instead of varying the duty cycle of the redundant state, it chooses

one of the two redundant states depending on the polarity of the load current and the

state of the NP voltage. This can be said to be ‘hysteresis’ NP control [48].

A common feature amongst all the SVM based papers is the recognition that the

redundant states do not affect the NP voltage if they are switched equally and NP

deviations only occur because of the medium vector – i.e. the switching state that

connects the three phases to the three different voltage levels. Another common issue

is that the calculation of the ratio between the redundant states (or the duty cycle

split) is often not clearly identified and thus NP control performance cannot be

readily compared across the different publications.

2.6 Further Neutral Point (NP) Control Strategies (1997 Onwards)

Several branches of development occurred during this period and are presented

within their corresponding subsections.

2.6.1 Calculation of the Duty of the Redundant States for SPWM

After a long period with little new development in the NP voltage control area,

Newton & Sumner mathematically modelled the NP current of the NPC converter at

the fundamental frequency level and designed a PI controller to determine the zero-

sequence offset addition for SPWM . The model was used to detail the NP control

limits. Similar mathematical work was conducted in [6] albeit with a P or PI

controller instead. The author stated that zero average NP current is achieved when

no common-mode is added to SPWM. No comparison was made to previous

strategies. This is partly because the previous SVM strategies did not detail their

method of calculating the duty cycle split between the redundant states.

An alternative to this simple approach of addressing a non-linear control problem

with P/PI controllers, is the optimal calculation of the zero-sequence offset. Initially

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

17

presented by Ogasawara, the method calculates the zero-sequence offset based on the

converter operating parameters [45]. Song identified a mistake in Ogasawara’s

assumptions about the post-zero-sequence offset addition and rectified it [49]. This is

because Ogasawara’s algorithm is dependent upon the sign of the voltage references

to determine the NP current and Ogasawara did not realise that the addition of a zero-

offset sequence may cause a change in the sign of the voltage references. Song’s

method recalculates the signs to ensure that the NP current was drawn in the correct

direction. A number of other authors wrote similar algorithms that further consider

the non-linearity of the problem [50]. The methods used include fuzzy logic or other

statistical quantitative methods e.g. neutral networks [31]. Neither publication

compares their performance against more conventional methods. In [51] the authors

proposed adding a 3
rd

 harmonic offset depending on load power factor angle; but

again its effectiveness is not quantified.

2.6.2 Calculation of the Duty of the Redundant States for SVM

Within the SVM group, the following calculation methods have been presented.

Earlier strategies implemented hysteresis control where only one of the redundant

states of the controllable small vector is switched depending on the value of NPV (1
st

method in [52]). This is the easiest strategy for SVM implementations.

Other authors have used P/PI/P+R controllers to calculate the duty cycle split

[53][54]. However, information regarding gain calculation is one of the greatest

deficits within the literature. The bandwidth of the controller dictates whether the

linear controllers operate at the fundamental frequency or at the switching frequency

level. A disadvantage of this method is that it simplifies the problem of calculating

the appropriate value of the duty cycle split, since it is a complex calculation that

depends on operating conditions and the load value. These calculations are called

‘Optimal calculation’. The duty cycle split is usually calculated such that 0NPI (2
nd

method in [52], 2
nd

 method in [55], 2
nd

 and 3
rd

 method in [56]). Other related

implementations are non-minimal switching transition (1
st
 method in [55]), (1

st

method in [56]) and synchronous optimal SVM [56]. Regardless of the NP control

calculation method, the limited NP control performance at high modulation depths

and low load power factor angles does not change as will be discussed in the next

section.

2.6 FURTHER NEUTRAL POINT (NP) CONTROL STRATEGIES (1997 ONWARDS)

18

2.6.3 Limitation of Redundant State Control

The authors in [24] conducted an analysis which presented the limited control

ability of the redundant state method. It showed that the NP voltage will drift when

either one of the following conditions occur: 2
nd

 order harmonic currents, non-linear

load currents and highly reactive currents flow in the load circuit. It was mentioned

in [24] that an infinite increase in DC link capacitance cannot counteract this drift.

Another analysis [57] showed a limited control region for redundant states. The

analysis was conducted in the d-q frame and considered the use of additional

redundant states when possible. Note that these additional redundant states require

additional switching transitions and do not conform to traditional SVM / SPWM

strategies. Therefore, this analysis is not applicable to most of the literature described

thus far [58]. Pou et al. reiterated the work of Kyota et al. in order to derive

calculations for the appropriate capacitor size for the NPC converter [52].

2.6.4 New Developments in Traditional Modulation Schemes

In [59], the authors showed that SPWM can achieve the performance of SVM by

adding a non-linear common-mode offset. This enables the simple SPWM

implementation to achieve the same harmonic performance as SVM and also high

DC link utilisation. In [60] the authors then extended the work to show that the best

harmonic performance results from centering the intermediate vectors. In other

words, an equal split between the duties of the redundant states. This strategy was

termed Centered Space Vector PWM (CSVPWM) and is shown in Figure 2.7 which

shows how the addition of a non-linear common mode signal to the original 3-phase

references produces the CSVPWM references [61]. CSVPWM shares the exact same

mechanism of NP control as SPWM: zero-sequence offset addition. These works

show that SPWM and SVM/CSVPWM only differ in terms of duty cycle split

between the redundant states.

In terms of harmonic performance for a given constant loss, Bruckner showed that

SVM / CSVPWM is superior to Discontinuous PWM [62]. The loss of a switching

state results in greater harmonic distortion.

Although research into CSVPWM is limited, methods for the calculation of the

duty cycle of the redundant states are not. The easiest method is hysteresis

(maximum possible +ve or –ve) [63]. Due to its equivalence to SVM, the optimal

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

19

calculation presented in [63] can be used. The P/PI controller strategy developed for

PD is yet to be published for CSVPWM, however it is easily applicable to

CSVPWM. One advantage of the P/PI method is that it does not require current

measurements, only knowledge of the direction of power flow.

On another front, several authors have produced SVM strategies that achieve

excellent harmonic performance by compensating for the NP fluctuation during

modulation. They are referred to in the literature primarily as ‘Feedforward

modulation’ and less commonly as DC link compensation. They come in the

following forms: SVM with a NP controller [11][64], SPWM with a NP controller

(a) Reference waveforms

(b) Common-mode offset

(c) Final reference waveform

Figure 2.7: Reference waveforms for CSVPWM for 3-level systems. M=0.7

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-1

-0.5

0

0.5

1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-1

-0.5

0

0.5

1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-1

-0.5

0

0.5

1

Time(s)

2.6 FURTHER NEUTRAL POINT (NP) CONTROL STRATEGIES (1997 ONWARDS)

20

[12], and SPWM without a NP controller [65]. Feedforward for CSVPWM has yet to

be published.

Recently introduced was the first NP controller for SHEPWM [9]. In order to

ensure good harmonic performance, the switching transitions are adjusted slightly to

control the NP current. As a result, it has a slow NP control performance.

2.6.5 Natural Balancing

The Neutral Point (NP) may naturally balance even if no NP controller is used.

This phenomenon was first analysed by Mouton [32], in the frequency domain.

Mouton then proposed the installation of a tuned RLC balance booster network in

order to increase the balancing performance. The analysis was repeated for the POD

modulation strategy in [33], although as stated earlier in the previous section, this

strategy is inferior to PD modulation [43]. Experimental results that model the

natural balancing mechanism were shown in [34].

2.6.6 Shift Towards Unconventional Modulation Schemes

2.6.6.1 Control of Additional Redundant States

In order to overcome the NP control limits of the redundant states, Yamanaka et

al. analysed the conventional SVM strategy as shown in Figure 2.8 (0 to 60 degrees)

and showed that while 2 small vectors exist, only the redundant states of one of these

211

100

221

110

220

210

200

222

111

000

VSmall 1

VSmall 2

VZero

VMedium

VLarge 1

VLarge 2

VREF

2

1

3

4

Figure 2.8: Space Vector diagram for Sector 1. The reference vector, VREF is within

subsector 1.

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

21

small vectors are utilised. He demonstrated that it is possible to use 2 small vectors

when the reference vector is within subtriangle 2 and 4. As a result, this strategy

reduces NP imbalance faster than SPWM in the middle range of the modulation

depth [8]. A disadvantage of this strategy is the additional switching state and thus

losses that are incurred. Unfortunately, unlike other SVM strategies, there is no

equivalent carrier-based PWM implementation to encourage the use of this strategy.

2.6.6.2 Medium Vector Elimination

The NP control limitation analysis showed that the redundant states were

compensating for the medium vector, mediumV (refer to Figure 2.8) and that the control

limit is reached when the medium vector duty cycle is greater than the duty cycle of

the redundant states. This is true at high modulation depths. Consequently, strategies

presented by Gupta [58] and Bendre’s Radial State Space-Vector (RSS) [7] avoid the

medium vector, similar to Steinke’s rough implementation in 1992. The updated SV

diagram is shown in Figure 2.9. [58][7].

2.6.6.3 Virtual Vectors - Zero Average NP current SVM

Another set of authors had a similar idea, however they replaced vectors that

could potentially produce NP currents with virtual vectors that do not. The earliest

form of this idea can be found in [66]. The most prominent modulation strategy from

this group is called the Nearest Three Virtual Vector (NTVV) developed by

211

100

221

110

220

200

222

111

000

VSmall 1

VSmall 2

VZero
VLarge 1

VLarge 2

VREF
1

3

4

Figure 2.9: SV diagram for SVM – Medium vector elimination for Sector 1.

2.6 FURTHER NEUTRAL POINT (NP) CONTROL STRATEGIES (1997 ONWARDS)

22

Busquets-Monge [67] which was then translated to a PWM implementation by Pou

[68]. Its Space Vector diagram is shown in Figure 2.10. As shown in the figure and

listed in Table 2-4, the virtual vectors are a weighted combination of real vectors

which when switched together on average produce a net-zero NP current. This

technique causes an increase in the switching frequency by 1.333.

As it guarantees average zero NP current, this strategy will never perturb the NP

for any load condition including non-linear loads. An advantage marketed by this

strategy is the ability to minimise the size of the bus capacitors. However, any

unbalance before converter operation will be preserved. Thus, a NP control algorithm

is required. An optimal controller for NP control was developed by Zaragoza [69].

Due to THD concerns, Busquets-Monge [70]-[71] developed Optimised NTVV

(ONTVV) which reduced the THD produced, however with little comparison with

the performance of conventional carrier-based Sinusoidal PWM (SPWM). No

optimal NP controller has ever been developed for the ONTVV strategy. Rather, a

2
nd

 order offset controller is used [70]. There is no material in the literature on how to

tune or design the controller.

0.5 (211+100)

0.5 (221+110)

220

0.3333(100+210+221)

200

222

111

000

VVirtual Small 1

VVirtual Small 2

VZero

VVirtual Medium

VLarge 1

VLarge 2

VREF

2

1

3

4

5

Figure 2.10: SVM for Nearest Three Virtual Vector (NTVV) for Sector 1.

Table 2-4: NTVV’s Virtual Vector Composition for Sector 1.

Virtual vector Actual states NP current

1SmallVirtualV
100211

2

1

2

1
VV 0

2

1
 AA II

2SmallVirtualV
110221

2

1

2

1
VV 0

2

1
 CC II

MediumVirtualV
221210100

3

1

3

1

3

1
VVV 0

3

1
 CBA III

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

23

In [70], Busquets-Monge et al compared ONTVV, NTVV and SPWM with

Song’s controller. The comparison is made at a 30 degree load power factor angle

and at a low modulation depth, where the medium vector is utilised less. Therefore,

this test avoids the conditions that cause high harmonic distortion and should not be

used for a general comparison as it is favourable to ONTVV.

2.6.6.4 Control of Additional Redundant States with Reduced Medium Vector

Usage

Ustuntepe [30] proposed an extension to Yamanaka’s strategy (Section 2.6.6.1) by

introducing a virtual medium vector which is a combination of the large vectors.

Like Yamanaka, this strategy uses redundant state control throughout its operation

and only uses the virtual medium vector when it identifies that the redundant states

cannot compensate for the real medium vector. Instead of not switching the medium

vector, some of the medium vector duty cycle is allocated to the virtual medium

vector [30]. This grants Yamanaka’s strategy full NP control. A major drawback of

this technique is its high number switching transitions i.e. 6 per half switching cycle.

2.6.6.5 Hybrid Strategies

The hybrid strategies usually implement a combination of two or more of the

previously described strategies depending on the operating conditions of the

converter e.g. load power factor angle. This is because a particular strategy might

have an advantage for a particular operating region, whereas another is ineffective.

An example would be to use conventional SVM in the region where it can control

the NP for its superior THD output quality. When it is in an undesirable load

condition i.e. high modulation depths and low load power factor angles, NTVV is

then used [16][72]. Similarly, another example would be SPWM (unipolar in nature)

changing to Dipolar PWM for the same reason [14][73]. Another reason is to use

SPWM for high fundamental frequency operation and Dipolar PWM for low

fundamental frequency operation.

2.6.6.6 Predictive Controllers

Due to the fact that early researchers were adapting proven Carrier PWM and

SVM strategies to the 3-level NPC converter, NP control has always been regarded

as a post-modulation task until the invention of Model Predictive Control (MPC).

2.7 EXISTING COMPARISONS OF NP CONTROL PERFORMANCE

24

Recently, greater progress has been made in Model Predictive Control (MPC)

because it eliminates the unnecessary switching transitions that have to occur within

a switching cycle in SPWM and SVM. Its development is driven for low switching

losses in high power applications [74][75].

MPC also allows flexibility when tackling multiple variable problems such as

multilevel converter control. MPC, unlike PWM strategies, is not constrained to

specific switching sequences and thus allows the modulator to use states that are out

of the usual sequences at any instant in order to produce greater NP current if the NP

voltage control was more critical than the other objectives e.g. output quality at that

point in time.

Existing literature has shown that MPC for the NPC converter requires a balanced

tradeoff between NP control performance and harmonic output quality of the

converter. An example can be seen in the Predictive Feedforward SVM implemented

in [76]. The results in the paper show that the controller avoids the medium vector

thus producing more 3-level line-to-line switching patterns similar to the Dipolar

strategy. This is due to the MPC controller reacting to the low DC link capacitance of

the system and producing 2-level converter operation in order to prevent perturbation

of the NP potential.

2.7 Existing Comparisons of NP Control Performance

This section will list the results of existing comparisons within the literature

which could help to identify the best NP controller. It will show that these results

when collectively put together do not provide a coherent perspective for easy

comparison.

In [77], Wang describes the back to back NPC topology and its control. This

publication is not a comparison, but it does mention that hysteresis NP control, where

one of the redundant states is selected with 100% duty cycle, can overcompensate

when compared to linear control which varies the duty cycle split between the

redundant states. It also mentions that NP control requires current polarity detection

and that high accuracy is necessary for good performance, requiring high bandwidth

current transducers such as in Yamanaka’s strategy detailed in Section 2.6.6 [77].

In [52], Pou et al. compared hysteresis to linear control of the NP voltage for NTV

SVM. They showed how the ‘hysteresis’ method is faster at controlling the NP

 2 REVIEW OF NEUTRAL POINT DRIFT AND CONTROL STRATEGIES

25

voltage. However, as with most of the previous authors, they did not detail the

algorithm used for calculating the duty cycle split for the linear controller.

In [8], Yamanaka et al. compared his modified NTV SVM against traditional

NTV SVM where his modified strategy showed improved NP control dynamic

performance within the middle range of modulation depths. However, no comparison

of the harmonics produced by these strategies was conducted.

In [72], Jiang et al. mentioned that Total Harmonic Distortion (THD) is higher for

NTVV compared to SPWM, but without detailing the operating condition. The

authors did not quantify the degradation in distortion and they didn’t consider

ONTVV.

In [69], Zaragoza et al. demonstrate that NTVV does not produce any NP voltage

deviation compared to NTV SVM. In [78], Busquets-Monge et al. compares NTVV

to NTV in terms of THD performance however, the THD is calculated up to 40 times

the switching frequency, which dilutes the importance of lower order harmonics.

Also, their analysis showed that conventional NTV SVM has lower switching losses

compared to NTVV. In [70], Busquets-Monge et al. showed that ONTVV produced

lower harmonics compared to NTVV. Then, the authors showed that the harmonic

performance of ONTVV is similar to SPWM with Song’s controller.

In [13], Behera et al. shows that Dipolar modulation produces higher THD than

both SPWM PD and POD. In [40], Fukuda et al. compared a number of SPWM

strategies to 2 Dipolar PWM strategies and concluded that PD SPWM is the best

approach at medium to high modulation depths, and a specific dipolar method is

better at low modulation depths.

In [10], Dong-Hyun Kim et al. conducts comparisons between various

discontinuous modulation schemes against continuous schemes, similar to the work

conducted in [62]. In addition, the authors show the NP currents generated by each

scheme. Continuous schemes produce more NP current than discontinuous schemes

at low load power factor conditions. However, the authors did not translate these

results into NP voltage deviation. Also, no active control is mentioned.

2.8 Issues in the Literature

These comparisons do not provide a comprehensive guide as to the NP control

performance, which is to be expected for the different strategies since most of the

individual comparisons are conducted at different loading conditions. Hence there

2.9 CONCLUSION

26

are multiple issues that need to be addressed to decide on the best NP controller for

any particular context. They are:

a) Existing Comparisons have Limited Criteria

Analysis of the literature shows that the various NP control strategies address

the issues of their predecessors at the cost of incurring other disadvantages. As

such, a comparison should monitor switching losses, harmonic performance, NP

ripple and NP dynamic performance. Yet, many of the comparisons lack detail

in this area.

b) Comparisons of NP Performance Are Not Conducted with Equal Load Currents

The next chapter will demonstrate how NP control performance is dependent

upon the DC link voltage (modulation depth) and load current. As a result, a

reader cannot usefully compare the results of different publications unless equal

loading conditions are used.

c) Usage of Total Harmonic Distortion as a Measurement

Real-world loads are usually inductive, and hence are sensitive to lower order

rather than higher order harmonics (i.e. a natural low pass filtering

characteristic). As a result, Normalised Weighted THD comparisons which give

greater weighting to low order harmonics should be used, instead of THD which

can be manipulated so that a modulation scheme producing mostly low order

harmonics can have the same THD result as another modulation scheme that

produces mostly high order harmonics [61].

2.9 Conclusion

This chapter has presented the large variety of NP control strategies, and the

limited comparison between them, that is available within the literature. The

difficulty of assessing modulation strategies is confirmed by the small section on this

issue in a recent NPC survey paper [5].

Although the literature has identified how strategies derive their higher NP control

performance, which is by either utilising more redundant states or reducing the

medium vector, the description fails to give a clear picture of the inner workings of

these strategies and their side effects. Hence, Chapter 3 will now re-explore the

fundamentals of NP control. This understanding shows that vector selection is both

the source of NP voltage disturbance, and also the basis of NP control capability.

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

27

3 FUNDAMENTALS OF ACTIVE NP CONTROL

This chapter revisits the fundamentals of NP control, analysing how the vectors

selected by any modulation strategy are both the disturbance source for NP voltage

variations and the control solution. Using this analysis, the chapter then explores the

limits of NP control, the options available to overcome these limits and their

implications on NP ripple and drift, switching frequency and losses, harmonic

distortion, and implementation complexity.

From this understanding, it can be identified how all NP control strategies are

intrinsically constrained by these fundamental limits. The chapter then shows that

attempts to achieve NP control beyond these limits cause a degradation from the

ideal 3-level operation to a 2-level converter-like operation, passing through a middle

ground that requires additional switching events. As a result, any new NP control

strategy can have its performance and position within the spectrum predicted

qualitatively by simply observing its vector selection.

Finally, the vector selection of all major existing strategies is assessed to

determine where they operate within the spectrum of possibilities mentioned above.

This analysis also serves as a method of reducing the number of strategies to be

compared quantitatively, the results of which are then presented in Chapter 4.

3.1 NP Currents Produced by Space Vectors

Section 2.4 has identified how the space vectors used by the modulation strategies

of a NPC modulator dictate the currents that enter/leave the Neutral Point (NP).

These vectors can be categorised as: zero, small, medium and large, and are

reproduced and shown in Figure 3.1, along with the NP current injection that they

produce. This figure shows that the zero and large vectors do not inject any NP

current because none of the phase legs are connected to the NP. In contrast, the

opposite is true for the small and medium vectors and hence they inject non-zero NP

currents. The small vectors each possess 2 redundant states which connect one

particular phase current to the NP, but with opposite polarity. For example, within

sector 1 of Figure 3.1, the states 211 (i.e. +VDC, 0, 0) and 100 (i.e. 0, -VDC, -VDC)

have the same line-to-line voltage, yet they inject the opposite NP currents: –IA and

IA respectively. On the other hand, the medium vector in Sector 1 only has one state

210 (i.e. +VDC, 0, -VDC) which injects NP currents in only one direction i.e. IB.

3.1 NP CURRENTS PRODUCED BY SPACE VECTORS

28

3.1.1 Medium Vectors – The Source of NP Current Disturbance

During the course of a fundamental cycle, a NPC modulator operating above the

middle of the modulation range will use the 6 medium vectors (These medium

vectors are listed in Table 3-1). From Table 3-1, an anticlock-wise AC reference

traversal from Sector 1 to 6 will connect the NP to the following phase currents in

turn IB, IA, IC, IB, IA, IC. This will cause a series of charge/discharge cycles for the

mid-point of the DC link. For steady state operation with a constant magnitude and

frequency reference, the traversal around the sectors averages to a net zero NP

current, i.e. if Sector 1 charges the NP with IB , then Sector 2 will discharge the NP

with IA , followed by Sector 3 charging the NP with IC , and then Sector 4 will

discharge the NP with IB. Hence the NP charging/discharging current IB in Sector 1 is

negated by the reverse charging current IB in Sector 4 (time displaced by 180

degrees), resulting in a net zero NP discharging/charging effect. Similar cancellation

occurs for the other phase currents, creating a 6 times charging/discharging cycle per

Sector 1

Sector 6

Sector 2

Sector 5

Sector 3

Sector 4

220 (0)

210 (I
B
)

200 (0)(0) 022

020 (0) 120 (IA)

102 (IA) (0) 202
(0) 002

(IB) 012 201 (IC)

211 (-IA)

100 (IA)

212 (IB)

101 (-IB)

112 (-IC)

001 (IC)

(IA) 122

(-IA) 011

(-IB) 121

(IB) 010

221 (IC)

110 (-IC)

(0) 222

(0) 111

(0) 000

(IC) 021

Figure 3.1: Space Vector diagram for the NPC.

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

29

fundamental rotation which causes a 3 times fundamental ripple in the NP voltage.

The magnitude of this ripple is dependent on the NP current injected and the size of

the DC link capacitance. The NP current injected (either charge/discharge) per sector

is dependent on the duration of the medium vector and magnitude and the power

factor of the load current that is associated with each medium vector. Hence, the

maximal NP disturbance occurs at the modulation depth where the medium vector

usage is maximal (i.e. a high modulation depth), for particular load power factors.

Since the medium vector is essential to produce a 3-level voltage output, these

undesired NP current injection cycles and the resultant 3 times fundamental NP

ripple are an intrinsic property of the NPC converter and cannot be eliminated. The

ripple can however be reduced either passively by increasing the DC link capacitance

of the NPC, or actively through active NP compensation i.e. manipulation of the

modulation process.

During a transient event, the modulation process no longer necessarily allocates

an equal distribution of time to the 6 sectors and their corresponding medium vector

usage. For example, if a modulator holds longer at Sector 1 during a transient, the NP

will be connected to IB for a prolonged period over a large number of switching

cycles. This results in a constant charging of the NP voltage towards the +ve bus OR

discharging of the NP voltage towards the -ve bus, depending on the polarity of the

load current IB. In contrast to steady state ripple mitigation, an increase of DC link

capacitance cannot eliminate this drift, but can only reduce its rate. An active control

strategy is therefore essential if transient drift is to be compensated.

3.1.2 Small Vectors – The Source of NP Current Control

Each of the 6 sectors for a NPC inverter as shown in Figure 3.1 include 2 small

vectors. Each small vector has 2 redundant switching states, each of which connect

the NP to a particular phase current but with opposing current polarity. Figure 3.2

Table 3-1: NP current draw for SVM medium vector.

Sector number State (SA SB SC) INP

1 210 IB

2 120 IA

3 021 IC

4 012 IB

5 102 IA

6 201 IC

3.1 NP CURRENTS PRODUCED BY SPACE VECTORS

30

shows this relationship for Sector 1, the 2 small vectors that it includes and their

associated redundant states. It can be seen that small vector 1 connects the NP to

phase current IA while small vector 2 connects the NP to phase current IC.

Hence a NP voltage control strategy can control the total injected NP current by

measuring the polarities of the phase currents, and then selecting between the two

alternative redundant states (per small vector) to compensate for the middle vector

NP injection and achieve an overall zero current injection. Thus these small vectors

are the mechanism for ‘active’ NP control capability.

However, the number of controllable small vectors can vary depending on the

modulation strategy used. Although in principle a modulation strategy can choose

any available vector within the sector to reproduce a desired volt second reference,

current state of the art modulation strategies target to use only 3 vectors to reduce the

number of switching events. This typically results in only 1 or 2 controllable small

vectors depending on where the reference vector is within the space vector

framework.

Figure 3.2 illustrates this issue by breaking each major space vector sector into 4

subsectors. Subsectors 2 and 4 have 2 small vectors, and hence 4 redundant states to

control, whereas subsectors 1 and 3 only have 1 small vector, and hence only 2

redundant states to control. This difference in the number of available redundant

states can result in a variable switching frequency at medium to high modulation

depths. For example, a state of the modulation strategy that aims to maximise the use

211 (-IA)

100 (IA)

221 (I
C
)

110 (-IC)

220 (0)

210 (IB)

200 (0)

222(0)

111(0)

000(0)

VSmall 1

VSmall 2

VZero

VMedium

VLarge 1

VLarge 2

2

1

3

4

Sector 1

Figure 3.2: Space Vector diagram for Sector 1.

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

31

of small vectors, can switch through 4 states in subsector 1, 5 states in subsector 2,

and 4 states again in subsector 3. This variation from 4 to 5 to 4 states as the

modulation reference traverses across subsectors 1 to 3 causes a variable switching

frequency.

NOTE: this process does not occur if a strategy forces a constant switching

frequency by either forfeiting control of both small vectors (i.e. controlling only 1

small vector) to switch through 4 states only in every subsector, OR by introducing

an additional extra state to force 5 switching states for every subsector.

3.2 NP Natural Control Limits

The NP voltage is controllable when the small vectors’ NP current contributions

are greater than the medium vector’s NP current contributions throughout the cycle

of the NPC converter’s operation. The contributions of both vector types vary

depending on:

a) The modulation depth, which affects the amount of space vector selection and

b) The load power factor angle, which affects the instantaneous magnitude of

the phase currents at the time they are selected to inject current into the NP.

To illustrate, a NP injection calculation will be conducted over one switching

cycle ST within Sector 1. The net NP current per switching cycle is the sum of the

product of each vector’s duty cycle
state

tyoed

by the current that the vector connects to

the NP, given by:

….

BmediumCsmallCsmallAsmallAsmall

elelBmediumCsmall

CsmallAsmallAsmallzeroNP

IdIdIdIdId

ddIdId

IdIdIddI

210110

2

221

2

211

1

100

1

220

2arg

200

1arg

210110

2

221

2

211

1

100

1

222/111/000

00

0

(3.1)

As expected, only the small and medium vectors affect the NP current. Notice that

each small vector has 2 terms, one for each redundant state. The total time spent in

these states should be equal to the required duration of the small vector regardless of

how this duration is split across the redundant states, viz:

xxx

smallsmallsmall

xxx

smallsmallsmall

ddd

ddd

2

110

2

221

2

1

100

1

211

1

(3.2)

where ‘xxx’ superscript defines the all the redundant states belonging to a particular

vector. Each small vector’s duty cycle split ratio is now defined through the

3.2 NP NATURAL CONTROL LIMITS

32

parameter xk where 10 xk and where 2,1x identifies the corresponding small

vector that xk is associated with. Hence the redundant states’ durations as a fraction

of the small vector’s total duty cycle is:

 xxx

smallsmall

xxx

smallsmall

xxx

smallsmall

xxx

smallsmall

dkd

dkd

dkd

dkd

22

110

2

22

221

2

11

100

1

11

211

1

1

1

(3.3)

These equations when substituted into Eqn. (3.1), result in an injected NP current

expression that is more common within the literature [20][8], i.e.:

…. BmediumC

xxx

smallA

xxx

smallNP IdIdkIdkI 210

2211 1221 (3.4)

In this form, it is clear that a NP controller can only manipulate the parameters 1k

and 2k to compensate for the medium vector’s NP current contribution, and in fact

this is the primary mechanism that is employed by every reported NP control

strategy. Note also that the effect of the small vectors on the NP voltage is negligible

when 1k and 2k are set to 0.5, since this represents equal switching of the redundant

vectors and thus equal NP current contribution in both directions.

Equation (3.4) also shows that the NP current is highly dependent on the duty

cycles of the vectors and the magnitude of the currents that are associated with these

vectors. The following 2 subsections will elaborate further on these issues.

3.2.1 Effect of Modulation Depth

The modulation depth dictates the magnitude of the space vector duty cycles. It is

desirable to have the small vectors’ duty cycles to be greater than the medium

vector’s duty cycle regardless of the modulation depth to be able to maintain full

control of the NP. However, in reality, as the modulation depth increases from 0.0 to

0.5 to 1.0, the duty cycles vary as shown in Figure 3.3 for a 30° voltage phasor. As

shown in [20], this figure can be obtained by vector decomposition of the target

reference into its nearest three space vectors as the reference rotates. It shows that

maximal control is achieved in the middle of the modulation range (0.5) and is lost as

the modulation depth increases up to 1.0.

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

33

3.2.2 Effect of Load Power Factor Angle

The effect of the load power factor angle on NP control has been thoroughly

explored in the d-q frame in reference [79], and is best demonstrated by observing

the phase currents at both low and high load power factor angles.

Figure 3.4 shows the space vectors of sector 1 as illustrative. The figure shows

two extreme conditions for the load power factor angle. At 0

degree load power

factor angle, the currents that the small vectors command i.e. IA and IC are in phase

with their voltage space vectors and hence their dot product is maximised. However,

the current BI used by the NP disturbing medium vector has its vector orthogonal to

MediumV , and thus there is no source for disturbance at this load power factor angle.

However, the opposite effect occurs at a 90 degree load power factor angle where the

small space vectors are orthogonal to the currents that they control (IA and IC) and the

NP disturbing medium vector is in phase with its current vector. This analysis

dSmall 1/2

dMedium

Duty

Modulation Depth
1

Max

Figure 3.3: Approximate Medium and Small vector duty cycle variation versus

modulation depth [20].

Load angle = 0o

211[-IA]

100[IA]

221[I
C
]

110[-I
C
]

210[I
B
]

VSmall 1

VSmall 2

VMedium

I
A

I
B

IC

Load angle = 90o

211[-IA]

100[IA]

221[I
C
]

110[-I
C
]

210[I
B
]

VSmall 1

VSmall 2

VMedium

IA

I
B

I
C

Figure 3.4: Maximisation of NP disturbance and loss of NP control as load power

factor angle increases.

3.3 EXTENDING NP CONTROLLABILITY BEYOND THE NATURAL LIMITS

34

suggests that a 90 degree load power factor angle is a worst case condition for NP

control, which is in fact the case [20].

A numerical assessment is conducted to demonstrate this effect in the time

domain. Figure 3.5 shows the voltage references and phase currents for two load

power factor angle conditions: 5 degree and 85 degree. The figure shows the voltage

and current values for Sector 1 where the reference vector lies between 0 and 60

degrees. The best view is when the medium vector is at its maximal duty cycle i.e. 30

degrees. This view is provided in Figure 3.6. The simulations were conducted with a

modulation depth of 0.7 which corresponds to triangle #2 in the SV plot (Figure 3.2).

The medium vector is associated with the load current IB whereas the small vectors

are associated with the load currents of the other phases, IA and IC.. For both load

conditions, the vectors used are identical however, the magnitude of their associated

currents differ. When the load power factor angle is close to 0 degrees, the load

currents associated with the small vectors (IA and IC) are near their peaks, while the

disturbing load current (IB) is at the zero crossing. Thus, regardless of the usage of

the medium vector, IB is small and will not affect the NP voltage significantly.

However, this is no longer true when the load power factor angle is near 90 degrees.

The disturbing load current (IB) is maximal whereas the controllable currents are

around half of their peak value. As a result, the small vectors’ NP current

contributions are diminished when compared to the disturbance caused by the

medium vector when operating at this high load power factor angle.

3.2.3 Cumulative Effect

These limitations have been calculated in the d-q frame and their result is shown

in Figure 3.7 [20]. The NP voltage is fully controllable below a 0.55 modulation

depth. Above this level, the controllability region is limited by a linear relationship

with respect to the modulation depth and the system load power factor angle.

3.3 Extending NP Controllability Beyond the Natural Limits

Beyond the limits described in the Section 3.2, the only way to make the small

vectors’ NP current contributions greater than the medium vector’s NP current

contribution is for the modulator to reduce the medium vector’s NP current

contribution. This can only be achieved by reducing its duty cycle, which is a

fundamental change in the space vector selection principles, as will now be explored.

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

35

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

-1

-0.5

0

0.5

1

Time (s)

VSI Modulation References

Ref A Ref B Ref C

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

-8

-6

-4

-2

0

2

4

6

8

Time (s)

Load currents at 5 degree load angle

IA IB IC

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

-8

-6

-4

-2

0

2

4

6

8

Time (s)

Load currents at 85 degree load angle

IA IB IC

Figure 3.5: Time domain signals across Sector 1. Top: VSI Modulation references.

Middle: 3-phase load current with a load p.f. angle of 5 degrees. Bottom: 3-phase

load current with a load p.f. angle of 85 degrees.

3.3 EXTENDING NP CONTROLLABILITY BEYOND THE NATURAL LIMITS

36

1.9 1.95 2 2.05 2.1

x 10
-3

-1

-0.5

0

0.5

1

Time (s)

VSI Modulation References

Ref A Ref B Ref C

1.9 1.95 2 2.05 2.1

x 10
-3

-8

-6

-4

-2

0

2

4

6

8

Time (s)

Load currents at 5 degree load angle

IA IB IC

1.9 1.95 2 2.05 2.1

x 10
-3

-8

-6

-4

-2

0

2

4

6

8

Time (s)

Load currents at 85 degree load angle

IA IB IC

Figure 3.6: Time domain signals across a switching cycle when reference angle is 30

degrees. Top: VSI Modulation references. Middle: 3-phase load current with a load

p.f. angle of 5 degrees. Bottom: 3-phase load current with a load p.f. angle of 85

degrees.

110 210 211 211 210 110

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

37

Recall that the first aim of any modulator is to recreate the target output voltage

by switching the available space vectors so that the average volt-second contribution

from these vectors over each switching cycle matches the target reference. Hence if

the medium vector usage is to be reduced, a NPC modulator has to use the large

vectors to replicate the effect of the medium vector. This means 2 large vectors are

required to recreate the volt-seconds of the medium vector.

There are significant implications to this change in vector selection. Before these

implications are explored, it should be noted that in principle there are 3 possible

modes of operation for varying the usage of the medium vector, as follows:

i. Least control: The duty cycle of the medium vector is not modified.

ii. Full control: This is the extreme where no medium vector is used. The

NPC modulator reverts to 2-level VSI type operation with the 2-level zero

vector replaced by a 3-level small vector.

iii. Medium control: This is the middle region between these two extremes

where the shift between uncontrollability to controllability occurs by some

degree of large vector substitution for the medium vectors.

The implications of this change in vector selection for each mode of operation are:

 NP ripple and drift : The reduction of the medium vector usage results in a

reduced level of NP current injection. This reduces the magnitude of the

steady-state NP voltage ripple and also slows the rate of change when NP

Figure 3.7: Region of NP controllability (black). Figure obtained from [20].

This image has been removed from the digital edition of this
thesis in order to comply with copyright statutes.

Please refer to Fig. 9 from ref. [20]

3.3 EXTENDING NP CONTROLLABILITY BEYOND THE NATURAL LIMITS

38

drift occurs. If the medium vector is totally eliminated, the NP voltage

ripple will be negligible and no drift will occur.

 Modulation harmonic distortion: This distortion is caused by 2 factors.

The first factor is because the small vectors’ redundant state duration splits

are not equal i.e. 5.0, 21 kk when operating up to maximal NP

compensation. In fact the values of 1k and 2k will be at the extreme values

of 0 and 1 as they reach the limit of their NP control influence. Although

not directly analogous, this operation is similar to forcing 2-level SPWM

to operate in the discontinuous PWM mode, which is well known to

increase the WHTD of a 2-level modulated VSI. It is also against the

guidelines of the harmonically superior Centered Space Vector PWM

(CSVPWM) which identifies that the redundant duty cycle split should be

equal for the best possible WTHD result [59][60].

The second distortion factor is because the modulator no longer utilises

the Nearest Three Vectors (NTV) as the medium vector usage reduces.

This is because the reduction of the medium vector’s duty cycle has to be

compensated by large vector usage in order to produce the same volt-

second average as required by the modulator. Hence, the modulator will

now have to use 3-5 vectors which is against optimal harmonic production

practices [61]. Also, the fact that it has to rely on the large vectors causes

the harmonic performance to tend towards a 2-level VSI in any case.

 Switching frequency: Since the modulator no longer operates according to

the NTV principle, the number of switching transitions has to increase.

Even without a reduction of the medium vector, the usage of 2 small

vectors alone will cause variable frequency operation. Then, as the number

and type of selected vectors change, this further increases the variability of

the switching frequency, with an outcome that is highly dependent on the

modulation strategy used. When the medium vector is totally eliminated,

the modulation reverts back to a 2-level mode that uses a small vector

rather than the zero vector, and this can cause a different switching

frequency yet again.

 Controllability: Controllability is only guaranteed when the small vector’s

NP current injection can be greater than the medium vector’s contribution.

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

39

The process of loss of NP control for the ‘Least Control’ mode has been

explained in Section 3.2. Controllability of the extreme ‘full control’ mode

of operation is of course guaranteed because the medium vector is fully

eliminated. In the middle mode of operation, the NP controllability of a

particular modulation strategy is dependent on the method of duty cycle

calculation, which may or may not keep the small vector’s NP current

contribution greater than the medium vector’s contribution Hence, the

conditions of controllability loss in this region is non-deterministic and

highly dependent on the NP control strategy.

 NP Control Speed: A modulation strategy may reduce the medium

vector’s duty cycle by a small amount to ensure controllability or in other

words, operate just at the edge of controllability. This may be due to the

strategy’s requirement of maintaining good harmonic performance.

On the other hand, a modulation strategy may arbitrarily reduce the

medium vector usage by a large amount at the cost of operating closer to a

2-level VSI. The result is a variation in the residue of the small vectors’

NP compensation minus the medium vector’s contribution. The magnitude

of this residue is important in determining the speed or ability by which a

modulation strategy can reduce an unexpected NP drift caused by a

transient event.

3.4 Vector Selection Analysis of Existing NP Control Strategies

All reported NP control strategies can be analysed using the general principles of

NP control identified above, and thus placed between the limits of ‘least control’ and

‘full control’. In fact by analysing the vector selection and duty cycle calculation of

these strategies, it can be shown that they only really differ in terms of:

a) Number of small vectors controlled/utilised. As will shortly be illustrated,

strategies may use only one small vector instead of 2 small vectors simply

because of the way they are implemented.

b) Different levels of reduction in the usage of the medium vector.

c) Duty cycle calculation of the vectors.

d) Methodology of calculating the duty cycle split of the redundant vectors, 1k

and 2k . A large number of publications can be attributed to this issue.

3.4 VECTOR SELECTION ANALYSIS OF EXISTING NP CONTROL STRATEGIES

40

Furthermore, for every duty cycle calculation method that has been proposed,

there are sets of papers published that demonstrate the application of either a

simple hysteresis controller, linear controllers or optimal calculation-based

controllers to this method.

The vector selection of a NP control strategy can be identified by either observing

the simulation output of the converter and/or by understanding its mathematical

implementation as presented within the strategy’s original publication. This is simple

to achieve for SVM because SVM strategies will always explicitly specify the

vectors to be chosen, their duty cycle calculation method, and also the sequence of

the states of their vectors. Unfortunately, the same is not true for carrier-based

strategies, since their published results generally do not give a good indication of

their vector selection. As a result, simulations are required to identify these vector

selection patterns. Within these simulations, controller gains (if they exist as part of

the NP control strategy) can be set to either achieve maximal NP control or as

specified by the publication’s recommendations.

To illustrate these concepts, the vector selections of the various modulation and

NP control strategies identified in the literature review in Chapter 2 will now be

explored. This exploration will firstly consider the ‘least control’ strategies that

incorporate full medium vector usage, and will then show how additional NP control

capability is gained by progressing towards a ‘full control’ strategy with essentially

no medium vector usage.

The most widely used NPC modulation strategy is conventional NTV SVM and

its carrier-based approximate equivalent Phase Disposition PWM (PD or SPWM).

An exact carrier-based equivalent can be obtained by implementing CSVPWM [61].

These strategies offer a ‘least control’ NP management capability. (Note that while

simple SPWM also falls into this ‘least control’ category, only CSVPWM produces a

modulation result that is directly equivalent to NTV SVM.)[60]

To illustrate the vectors selected by NTV SVM, Figure 3.8 shows the SV plot

when a reference vector is placed in subsector 2, where the NP disturbing medium

vector, mediumV is heavily used. The strategy chooses the nearest three vectors (NTV)

around this reference vector, as shown in Table 3-2. Note how the sequence of states

is arranged in such a manner as to minimise switching losses, shown only for the first

half of the switching cycle since it is mirrored in the second half to minimise

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

41

switching transitions. Note also the abbreviations used for the vector types of:. sm1

→ small 1, med → medium and lrg → large.

From this vector selection, it is clear that NTV SVM, and its matching carrier

strategies SPWM and CSVPWM, use the two redundant states (211 and 100) of

small vector 1, which injects AI
 into the NP, but only one redundant state (110) of

small vector 2, which injects CI . Hence these strategies only have one NP

controllable small vector (small vector 1) which can have its redundant state

alternatives varied by changing 1k . Thus NP control using these modulation strategies

is a ‘least control’ strategy because:

a) It becomes uncontrollable as the medium vector’s duty cycle becomes

greater than small vector 1’s duty cycle and the medium vector NP

injection cannot be fully compensated.

b) the other small vector (small vector 2) is not controllable and also becomes

Table 3-2: NTV SVM – (1 SV / 2 RS) / SPWM / CSVPWM

State 1 2 3 4
Vector Sm1 Med Sm2 Sm1
Duty 11 smdk

medd
2smd

1

11

smd

k

Phase
output

211 210 110 100

NP
current

AI
BI

CI
AI

211

100

221

110

220

210

200

222

111

000

VSmall 1

VSmall 2

VZero

VMedium

VLarge 1

VLarge 2

VREF

2

1

3

4

Figure 3.8: Space Vector diagram for Sector 1. The reference vector, VREF is within

subsector 2.

3.4 VECTOR SELECTION ANALYSIS OF EXISTING NP CONTROL STRATEGIES

42

an additional source of disturbance at high load power factor angles [8].

However, one benefit of this strategy is that it only uses 4 switching states.

A clever remedy to this uncontrolled second small vector was published as

Yamanaka’s NTV SVM [8] strategy. The strategy converts the uncontrollable second

small vector into a controllable small vector by adding the redundant state of the

second vector whenever possible, as shown in Table 3-3.

Here, the state 221 from the second small vector was added and hence the second

small vector and its current, CI , are now controllable through the parameter 2k . As a

result, this strategy has an improved performance compared to the previously

mentioned ‘least control’ strategy, since it only becomes uncontrollable as the

medium vector’s duty cycle becomes greater than both small vectors’ duty cycles.

This increases its NP controllable region to the middle of the modulation range.

However, it does create a variable switching frequency as discussed in Section 3.3,

since subsector 2 has 5 switching states whereas subsectors 1 and 3 have only 4

switching states, as shown in Figure 3.8.

To move beyond the natural limitations of these two NP control alternatives, the

medium vector’s duty cycle now has to be reduced. As this happens, the large vector

duty cycles must increase in order to satisfy the modulator volt-second production

requirement. The strategy proposed by Ustuntepe [30] is a progression of

Yamanaka’s approach that achieves this target, by calculating the controllability

condition i.e. if the small vector’s NP current injection is smaller than the medium

vector’s NP current injection, the medium vector’s duty cycle is reallocated to the

large vectors. The vector selection process is shown in Table 3-4.

The difference between Table 3-3 and Table 3-4 is the additional 2 states for the

large vectors (200 and 220). If the load conditions dictates a controllable situation,

this strategy does not require the large vectors (0, 21 lrglrg dd) and it reverts back to

Table 3-3: NTV SVM – (2 SV / 4 RS)

State 1 2 3 4 5
Vector Sm2 Sm1 Med Sm2 Sm1
Duty 22 smdk

 11 smdk
 medd

2

21

smd

k

1

11

smd

k

Phase
output

221 211 210 110 100

NP
current

CI AI
BI

CI
AI

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

43

Yamanaka’s vector selection i.e. Table 3-3. But Table 3-4 also shows that this

modulation strategy is no longer NTV and hence the inverter harmonic output will

degrade, particularly during uncontrollable NP conditions. It also shows that the

strategy has a high number of switching cycles and will most likely have a highly

variable switching frequency, particularly as load conditions vary.

A significant feature of this strategy is that its calculation method ONLY reduces

the medium vector’s duty cycle by the minimum amount required to maintain

controllability. In other words, it tries to maximise its usage of the medium vector

and minimise its dependence on the large vectors. Hence, it tries its best to produce a

good harmonic output and yet be fully controllable at the same time.

Another well known approach that reduces the medium vector’s duty is the

Nearest Three Virtual Vectors (NTVV) strategy [67]. Unlike Ustuntepe’s strategy,

this approach is based on virtual vectors that produce an on-average zero NP current,

As a result, its medium vector duty cycle reduction is pre-determined. Its SV diagram

is shown in Figure 3.9, where two virtual vectors can be seen that are created as

0.5 (211+100)

0.5 (221+110)

220

0.3333(100+210+221)

200

222

111

000

VVirtual Small 1

VVirtual Small 2

VZero

VVirtual Medium

VLarge 1

VLarge 2

VREF

2

1

3

4

5

Figure 3.9: SVM for Nearest Three Virtual Vector (NTVV) for Sector 1.

Table 3-4: NTV SVM – (2 SV / 4 RS) – Reduced Medium Vector

State 1 2 3 4 5 6 7
Vector Sm1 Sm2 Lrg2 Med Lrg1 Sm1 Sm2

Duty 11 smdk
 22 smdk

 2lrgd
medd 1lrgd

1

11

smd

k

2

21

smd

k

Phase
output

211 221 220 210 200 100 110

NP
current

AI CI 0
BI 0

AI
CI

3.4 VECTOR SELECTION ANALYSIS OF EXISTING NP CONTROL STRATEGIES

44

combinations of other real space vectors. For example, the virtual medium vector is a

combination of 33% of the following switching states 100, 210 and 221 which

corresponds to NP currents AI , BI and CI . The equal sum of the three phase current

injection into the NP node sums to a zero NP overall current injection. Similarly, the

virtual small vectors are equal contributions of their redundant states, thus equal and

opposite NP currents are injected into the NP node, again resulting in a zero NP

current overall.The vectors selected by this strategy are shown Table 3-5.

Unfortunately, the introduction of the virtual vectors cause the SV map to change.

The virtual medium vector is shorter and causes the reference vector to be placed in

subsector 1 which is not the worst case operating mode for NTVV. (Subsector 2 is

the worst operating mode because it switches through both the small vectors (100

and 221), the medium (210) and large vectors (220 and 200) simultaneously.) Table

3-5 shows that the vector selection in subsector 1 no longer abides by the NTV rule,

hence its harmonic performance must suffer. Furthermore, unlike previous strategies,

this strategy’s NP control methodology is not apparent by if one observes its space

vector selection and duty calculation. It varies the sinusoidal reference of one of the

phase legs which in turn varies the duty cycles of small vector 2, small vector 1 and

medium vector simultaneously [69].

The notable feature of this strategy is that it maintains constant switching

frequency with only 5 states per switching cycle. However, the strategy’s

predetermined medium vector duty cycle reduction is insensitive to load conditions

and does not focus on maximising harmonic performance. Hence it would be

anticipated that it will have a degraded harmonic performance. One variant of this

strategy is known as Optimised NTVV (ONTVV), which tries to achieve better

harmonic performance by varying the amount that the medium vector duty cycle is

reduced. But this strategy requires knowledge of the load current power factor angle.

Another strategy that reduces the medium vector duty cycle is Dipolar PWM [39].

Table 3-5: Medium Vector Reduction

State 1 2 3 4 5
Vector Sm2 Sm1 Med Lrg1 Sm1
Duty 221d

 211d 210d 200d
100d

Phase
output

221 211 210 200 100

NP
current

CI AI
BI 0

AI

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

45

Table 3-6 presents the space vectors selected by this modulation strategy. Immediate

observation suggests that this strategy is very similar to that of Ustuntepe’s, but only

one redundant state from each small vector is used. In principle, Dipolar PWM

assumes that one of the small vectors is more significant than the other and that a

common-mode addition can control both the redundant states of both small vectors.

But in practice, the actual NP control mechanism exercised by Dipolar PWM, either

by changing the distance between the two reference waveforms or by adding a zero-

sequence offset, serves to only change the distribution of duty cycle between
2smalld ,

2arg eld , mediumd ,
1arg eld and

1smalld .

In fact this analysis highlights that Dipolar PWM does not have a clear NP control

methodology, and also highlights a major limitation of carrier-based design whereby

mistakes in the analysis of an NP control strategy’s ability to achieve a target

outcome can easily occur [14]. This is particularly important for hybrid NP control

strategies, where the entire strategy can be compromised if one particular sub-

strategy is ineffective. Note also that all medium vector duty cycle reduction

techniques achieve additional NP controllability at the expense of higher switching

frequency, poor harmonic production or both.

Finally, Table 3-7 shows the vector selection for the extreme fully controllable NP

strategy i.e. medium vector elimination. Figure 3.10 shows its corresponding SV

map. Essentially, this strategy tries to implement NTV without using the medium

vector. Its notable features are:

a) It is heavily dependent on the use of large vectors, leading to a 2-level

converter type harmonic output performance.

b) Phase leg B (in sector 1) experiences a full DC bus switching transition

between states 200 and 220. This loses a major benefit of a multilevel

converter, which is the dynamic voltage blocking capability and half DC

bus voltage protection of the semiconductor switches of the converter.

Table 3-6: Dipolar PWM

State 1 2 3 4 5 6 7
Vector Zero Sm2 Lrg2 Med Lrg1 Sm1 Zero

Duty

zerod

x)1(

2smd
 2lrgd

medd 1lrgd
1smd

zeroxd

Phase
output

222 221 220 210 200 100 000

NP
current

0 CI 0
BI 0

AI 0

3.5 STRATEGIES TO BE COMPARED IN CHAPTER 4

46

c) The strategy has a constant switching frequency with 5 switching

transitions per switching cycle as opposed to 3 transitions for the ‘least

control’ strategy.

Hence this strategy also has some significant disadvantages.

3.5 Strategies to be Compared in Chapter 4

Using the qualitative analysis principles presented in this chapter, the following

NP control strategies can be identified as sub-optimal, and will now be eliminated

from further comparison. They are:

a) Ustuntepe (SVM – 2 Small Vector / 4 Redundant States with Medium

Vector Reduction). Although it should be the best compromise strategy for

the NPC converter, it will not be considered further because the high

number of switching transitions involved with this approach is

unacceptable for high power applications.

211

100

221

110

220

200

222

111

000

VSmall 1

VSmall 2

VZero
VLarge 1

VLarge 2

VREF
1

3

4

Figure 3.10: SV diagram for Medium vector elimination for Sector 1.

Table 3-7: Medium Vector Elimination

State 1 2 3 4
Vector Sm1 Lrg1 Lrg2 Sm1

Duty 11 smdk
 1lrgd 2lrgd

1

11

smd

k

Phase
output

211 200 220 100

NP
current

AI 0 0
AI

 3 FUNDAMENTALS OF ACTIVE NP CONTROL

47

b) Dipolar PWM - This strategy will not be considered for future comparison

because of its uncertain and unstrategic nature in controlling the NP

current and voltage. It is also harmonically inferior to other strategies.

c) Hybrid Strategies – these strategies change their operation between

alternative NP control approaches depending on modulation and load

conditions. Hence their performance can be identified by considering the

originating strategies that are combined in the Hybrid formulation.

d) Medium Vector Elimination – The loss of the dynamic voltage blocking

capability is considered to be a major disadvantage for these strategies,

especially in high power applications. Secondly, the performance of this

extreme strategy is similar to an ideal 2-level converter which is already

well known in the literature.

Table 3-8 identifies the strategies that will therefore be quantitatively investigated

in the next chapter. The comparison will attempt to explore the dynamic NP control

performance, maximum steady-state NP ripple and steady-state harmonic output

distortion.

3.6 Summary

This chapter has qualitatively investigated the fundamentals of NP control. It has

shown how the intrinsic limits of NP control are due to the small vectors being

unable to compensate for the medium vector NP current injection. These limits occur

at higher modulation depths and low load power factor angles. In order to maintain

Table 3-8: Strategies to be compared.

Strategy Group Duty Calculation 1k & 2k calculation Label in figures

NTV SVM – 1SV/2RS /

CSVPWM / SPWM

SPWM

Proportional SPWM+P

Song’s analytical zero-

offset calculation
SPWM+Song

SVM / CSVPWM Proportional CSVPWM+P

NTV SVM – 2SV/4RS Yamanaka’s Yamanaka’s Yamanaka SVM

SVM – Medium Vector

Reduction

NTVV
Zaragoza’s optimal

calculation
NTVV

ONTVV
Second order controller (

PI was used)
ONTVV

3.6 SUMMARY

48

controllability beyond these limits, the medium vector’s usage then has to be reduced

and replaced with large vectors. As a result, the pursuit of a greater range NP control

for the NPC converter pushes the converter from ideal 3-level modulation towards

performing closer to a 2-level converter. There is a middle ground where the medium

vector is reduced just enough to maintain controllability, however the analysis of

existing strategies (SVM – 2SV/4RS with Medium Vector Reduction) has shown that

this advantage is achieved at the cost of a high number of additional switching

transitions and as a result is not feasible for high power applications.

Finally, established NP control strategies were analysed by observing their vector

selection and arranged according to their expected NP control performance. A

number of strategies were then eliminated from further consideration because of their

identified disadvantages. This qualitative analysis however cannot quantify the

tradeoff that would be observed if one was to consider the Medium Vector Reduction

strategy compared to the conventional NTV SVM be it 1 or 2 Small Space Vector

control. As a result, a quantitative simulation comparison is now required, and will

be presented in the next chapter.

 4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

49

4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

Chapter 3 has shown that the benefit of improved dynamic NP control performance

and hence lower NP ripple comes with the drawbacks of increased switching

frequency and a breakaway from the harmonically-optimal NTV vector selection

principle. This makes a qualitative assessment of these control strategies difficult

because the harmonic distortion produced by a strategy depends simultaneously on

both NP ripple and space vector (and redundant state) selection. In other words, a

strategy that strives to minimise its NP ripple may choose space vectors that may

produce high harmonic output distortion. Besides the issue of harmonic quality, the

qualitative assessment also does not indicate the effectiveness or magnitude of the

increase in dynamic NP control performance for a given change in space vector

selection. As a result, a quantitative simulation-based assessment is required to assess

both the effectiveness of changes in space vector selection and the tradeoff in terms

of harmonic distortions.

This chapter will devise and execute such a quantitative assessment of the

strategies presented in Table 3-8 in order to explore their harmonic performance, NP

ripple magnitude and dynamic NP control performance.

4.1 Methodology

Dynamic NP control performance of a NPC converter is affected by its DC link

capacitance size, load magnitude and angle, modulation depth, and finally the

modulation strategy’s space vector selection. Besides affecting the dynamic NP

control performance of a converter, a strategy’s space vector selection can also affect

the switching frequency of the converter, the NP ripple observed, and the harmonic

distortion produced at its line-to-line output voltage.

This quantitative assessment will simulate a NPC converter with the parameters

listed in Table 4-1. It will then manipulate the factors that affect dynamic NP control

performance by:

 Varying the modulation depth continuously from 0.00 to 1.15.

 Setting the load power factor angle to the 3 points: 1º, 45 º and 85 º.

 Repeating the assessment at 2 DC link capacitance levels: 4200 and 840

µF. The 2 different capacitance levels are intended to highlight the

dependency of harmonic output distortion on both space vector selection

and NP ripple.

4.1 METHODOLOGY

50

The simulation is used to observe the following modes of converter operation:

 Steady-state mode will measure the maximum NP ripple produced by a

strategy, and the resulting harmonic distortion assessed using a NWTHD

calculation method (defined in the next section).

 Transient mode will measure the time it takes a strategy to reduce a NP

unbalance from an initial perturbation level to a minimum acceptable

deviation level (e.g. 20% to 5% and 25% to 6% of half the DC bus voltage,

DCV
 for 4200 and 840 µF DC link capacitance, respectively).

Each strategy produces a different switching frequency, since the switching

frequency is dependent firstly on the strategy’s space vector selection, and secondly,

on whether the converter is exercising maximum NP control, which may cause pulse

dropping or Discontinuous PWM. For example, the most conventional NTV-based

strategy will always use 3 vectors and switch through 4 switching states, with 2 of

these states belonging to a particular small space vector. However, when maximal

NP control is required, especially in regions beyond the natural NP control limit as

mentioned in Section 3.2, one of these 2 redundant states will be fully used and

hence the NTV-strategy will use only 3 switching states. This drop in switching

frequency must be accounted for. In this thesis the assessment process varies the

switching frequency for each strategy to guarantee that an equal number of switching

transitions also occur in the regions where pulse dropping doesn’t occur (i.e. between

0% to 70% of the modulation depth). These switching frequencies are listed in Table

Table 4-1: NPC converter parameters.

Parameter Values

Nominal DC link 360 V

Capacitor size
4200 µF (Case A)

840 µF (Case B)

Load magnitude 17.76

Load Resistance
Dependent on load power factor angle of simulation

Load Inductance

Fundamental Frequency (fo) 50

Table 4-2: Switching frequency of the various strategies.

Switching frequency of NPC (fs) Value (Hz)

CSVPWM and SPWM variants 4000

NTVV variants 3000

Yamanaka SVM 2000 & 3000

 4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

51

4-2.

Inherently, this comparison is suited to strategies that produce a fixed number of

switching transitions per switching cycle. However, this comparison includes the

variable switching frequency strategy: Yamanaka SVM. This strategy produces a

high number of switching transitions at low modulation depths compared to other

strategies. As a result, two simulation traces are shown for this strategy for the low

and high modulation depth ranges.

In order to compare these strategies to solutions that are usually used in industry,

two reference strategies are included for comparison with the state of the art. They

are used for NWTHD harmonic distortion plots but not for the NP voltage deviation

as these reference cases do not have any NP deviation as such. They are the ideal 2-

level and 3-level CSVPWM strategies. The latter case has its NP voltage fixed at 0V

to ensure that the only distortion mechanism is the vector selection process. These

reference cases are known to produce minimal harmonic distortion for 2-level and 3-

level converters in ideal cases. These are labelled within the figures as ‘Ideal 2L

CSVPWM’ and ‘Ideal 3L CSVPWM’.

4.2 Performance Metrics

4.2.1 Steady-state NP Ripple

The steady-state NP ripple (defined in this thesis as peak value) is measured in

order to determine the effect NP ripple has on the converter’s output harmonics. It is

also measured to highlight strategies that produce high NP voltage ripple, since this

may be unacceptable for applications with limited voltage headroom where the

likelihood of a switch overvoltage and thus converter damage is increased. Voltages

are measured in absolute terms, but can be readily converted to per-unit quantities by

scaling them by half of the DC link voltage, (i.e. 180V for this simulation

comparison).

4.2.2 Measure of Output Distortion - NWTHD

Harmonic distortion is measured as Normalised Weighted Total Harmonic

Distortion (NWTHD). The calculation depends on the spectrum of the switched

output line-to-line voltage of the converter, according to [80]:

4.3 SIMULATION SYSTEM

52

1

2

2

V

M

n

V
NWTHD

n

n

 (4.1)

where 1V is the fundamental harmonic magnitude, M is the modulation depth, and nV

is the magnitude of the n
th

 harmonic of the fundamental.

4.2.3 NP Dynamic Control Performance

The NP control performance of the various NP control strategies is compared

according to the time it takes to reduce the NP unbalance from an initial level of NP

voltage deviation to a target minimum acceptable level. For the large DC link

capacitance values, these levels are 20% and 5% of half the DC bus voltage, DCV ,

while for the small DC link capacitance value these levels are 25% and 6% of half

the DC bus voltage, DCV . Different initial conditions are used in order to ensure that

the time required to complete a simulation run is kept to manageable levels, since the

time constants for the large DC link capacitance are an order of magnitude slower

than for the small DC link capacitance case.

4.3 Simulation System

Details of the simulation system used for this investigation are presented in

Chapter 8.

 4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

53

4.4 Investigation Results

4.4.1 High DC link Capacitance Case (4200µF)

4.4.1.1 Steady-State Operating Mode

Figure 4.1, Figure 4.2, and Figure 4.3 show how an increase in the load power

factor angle causes an increase in the NP ripple of NTV-based strategies i.e. SPWM,

CSVPWM (equivalent to NTV SVM), and Yamanaka. The increase generally occurs

above a 0.6 modulation depth as the limits of NP control are reached. A comparison

of the magnitude of NP ripple between Figure 4.2, and Figure 4.3 shows the increase

in load power factor angle causes greater NP current disturbance and hence greater

NP deviation.

In terms of redundant state calculation methods, the SPWM+Song method seems

to maintain the lowest NP ripple, unlike the simple P linear controller. Figure 4.2

highlights this very well, showing how the SPWM+Song strategy experiences a

dramatic increase in NP ripple as it reaches its NP control limits.

Strategies that reduce the medium vector duty cycle usage i.e. NTVV and

ONTVV show excellent control of the NP ripple, even with greater power factor load

power factor angles. This is because the reduced medium vector usage leads to a

lower NP current disturbance injection.

Figure 4.4, Figure 4.5, and Figure 4.6 show the measured harmonic output

distortion of the various strategies for all 3 load power factor angles.

Overall, the results show that NTV-based strategies produce low harmonic

distortion but this result degrades as the load’s power factor angle increases.

Interestingly, the medium vector duty cycle reducing strategies i.e. NTVV and

ONTVV produce greater harmonic distortions to the point of surpassing the

reference ideal 2-level CSVPWM converter. This is despite the fact that Figure 4.2

and Figure 4.3 demonstrate that NTVV and ONTVV produce the lowest NP ripple.

This asserts the importance of considering the THD produced by both the modulation

process and the NP deviation rather than either performance criteria alone.

NTV-based strategies are not exempt from this effect. The NTV-based strategies

favour one redundant state more than another when NP control limits are reached.

4.4 INVESTIGATION RESULTS

54

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

NTVV w/o controller

Figure 4.1: Maximum NP deviation versus Modulation depth for load power factor

angle of 1 degree during steady state operation.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.2: Maximum NP deviation versus Modulation depth for load power factor

angle of 45 degree during steady state operation.

 4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

55

This causes them to operate in Discontinuous PWM mode. Note that the maximum

NP ripple experienced in Figure 4.2 is only 0.5% (1/180V) of the DC link. Hence,

some of the distortion must be caused by the NTV-based strategies favouring one

redundant state over another.

NTVV and ONTVV’s dramatic rise in harmonic distortion from the medium to

high modulation depths is due to large reductions in the usage of the medium vector

duty cycle and its greater reliance on the large vectors. All 3 figures show that

NTVV produces the same harmonic output regardless of the load power factor angle

whereas ONTVV produce lower harmonic outputs at lower power factor angles.

ONTVV achieves this by increasing its medium vector duty cycle usage for these

power factor conditions.

The results for unity power factor (1
o
 load angle) indicate that NTVV produces

high levels of harmonic distortion at low modulation depth ranges. This is due to the

fact that the optimal NP controller for NTVV is designed for reactive loads. To

illustrate, the ‘NTVV w/o controller’ result is presented to show how this strategy

produces harmonic distortion levels similar to other load power factor angles at low

modulation depths when the optimal calculation NP controller is disabled.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.3: Maximum NP deviation versus Modulation depth for load power factor

angle of 85 degree during steady state operation..

4.4 INVESTIGATION RESULTS

56

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Ideal 2L CSVPWM

Ideal 3L CSVPWM

NTVV w/o controller

Figure 4.4: NWTHD versus Modulation depth for load p.f. angle of 1 degree.

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Ideal 2L CSVPWM

Ideal 3L CSVPWM

Figure 4.5: NWTHD versus Modulation depth for load p.f. angle of 45 degree.

 4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

57

The figures also indicate the difference that centering of the redundant states i.e.

CSVPWM, has on producing better quality harmonic outputs versus non-centering

i.e. SPWM.

Although Yamanaka’s SVM has a variable switching frequency and uses an extra

redundant state, the results show it has good harmonic performance similar to 3-level

CSVPWM. This is because it follows the NTV principle of duty cycle calculation.

4.4.1.2 Transient Operating Mode

Figure 4.7, Figure 4.8, and Figure 4.9 show the dynamic NP control performance

of the various strategies. The test measures the time taken for the strategies to reduce

a 20% NP voltage unbalance to under 5%.

Figure 4.7 and Figure 4.8 shows that NTV-based strategies are the fastest at

reducing the unbalance. This is because these strategies have a greater small vector

duty cycle when compared to the Virtual Vector strategies. All the NTV-based

strategies achieve the same level of performance because they all have the same

small vector duty cycles. This duty cycle is almost always allocated to only one of

the redundant states to maximise NP control.

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Ideal 2L CSVPWM

Ideal 3L CSVPWM

Figure 4.6: NWTHD versus Modulation depth for load p.f, angle of 85 degrees.

4.4 INVESTIGATION RESULTS

58

0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.7: NP control performance versus Modulation depth for load power factor

angle of 1 degree.

0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.8: NP control performance versus Modulation depth for load power factor

angle of 45 degree.

 4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

59

Figure 4.8 shows this difference where the optimal (SPWM+Song) calculation

method is slower than linear controller.

NTVV shows that its dynamic NP control performance increases as the load’s

power factor angle increases. However, the slow result in Figure 4.7 for the NTVV

strategy is again a result of the NP controller response breaking down under resistive

load conditions. However, Figure 4.9 shows that it is the fastest strategy for reactive

loads. The reason behind the slower performance of NTV-based strategies is because

the small vectors have to compensate for the greater NP current disturbance injection

caused by the medium vector for highly reactive loads. On the other hand, NTVV

has a low utilisation of the medium vector hence lowering the NP current disturbance

injected and relying less on the small vectors to compensate for it.

ONTVV shows that its NP control performance degrades as the load power factor

angle increases. This is because the linear NP controller for ONTVV has a weak

control response implemented using only a static limiter. Note that ONTVV does not

have an optimal NP calculation method.

A comparison between Figure 4.7 and Figure 4.8 against Figure 4.9 shows that the

NTV-based strategies with 1 controllable small space vector (with the exception of

0 0.2 0.4 0.6 0.8 1 1.2

-1

0

1

2

3

4

5

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.9: NP control performance versus Modulation depth for load power factor

angle of 85 degree.

4.4 INVESTIGATION RESULTS

60

SPWM+Song) have the same dynamic NP control performance, however at a slower

rate, at 85 degrees load power factor angle. This is because the other small vector is

now acting as a source of disturbance.

Yamanaka’s SVM with its ability to control the 2 small vectors is unaffected as it

produces a control performance that is similar to that of NTV-based strategies when

operating at lower power factor loads.

4.4.2 Low DC link Capacitance Case (840µF)

This section reduces the capacitance by a factor of 5 to assess the impact the NP

ripple has on THD output levels and dynamic NP control performance.

4.4.2.1 Steady-State Operating Mode

Figure 4.10, Figure 4.11, and Figure 4.12 show the NP ripple produced by the

various strategies for the 3 load power factor angles. Note that the axis scales have

been increased to reflect the greater NP ripple. Next, Figure 4.13, Figure 4.14, and

Figure 4.15 show the harmonic output quality of the various strategies for the 3 load

power factor angles.

The figures show that the NP ripple of the various strategies occupy the same

relative positions when compared to the high DC link capacitor case, but are scaled

by a factor of 5. This is as expected since their NP current injections have not

changed because their load phase currents are matched for both scenarios. All that

has changed is that the capacitance has been reduced by a factor of 5.

Figure 4.13 to Figure 4.15 show results that scale quite differently. The results

show that NTV-based strategies are not significantly different with resistive loads.

However, as the loads become more reactive, the increased NP ripple causes THD

levels to move closer to 2-level converters. As a result, any NPC converter built with

NTV-based modulation strategies must have adequate DC link capacitance. Figure

4.15 shows that most NTV-based strategies with 1 small vector control show very

similar THD curves because they produce Discontinuous PWM patterns. This is

because they are at their maximum NP control capabilities.

On the other hand, NTVV and ONTVV do not show any change in their THD

performance as their NP ripple has not changed dramatically.

 4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

61

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

NTVV w/o controller

Figure 4.10: Maximum NP deviation versus Modulation depth for load power

factor angle of 1 degree during steady state operation.

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.11: Maximum NP deviation versus Modulation depth for load power

factor angle of 45 degree during steady state operation.

4.4 INVESTIGATION RESULTS

62

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.12: Maximum NP deviation versus Modulation depth for load power factor

angle of 85 degree during steady state operation.

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Ideal 2L CSVPWM

Ideal 3L CSVPWM

NTVV w/o controller

Figure 4.13: NWTHD versus Modulation depth for load power factor angle of 1

degree.

 4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

63

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Ideal 2L CSVPWM

Ideal 3L CSVPWM

Figure 4.14: NWTHD versus Modulation depth for load power factor angle of 45

degree.

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Ideal 2L CSVPWM

Ideal 3L CSVPWM

Figure 4.15: NWTHD versus Modulation depth for load power factor angle of 85

degrees.

4.4 INVESTIGATION RESULTS

64

0 0.2 0.4 0.6 0.8 1 1.2

-0.05

0

0.05

0.1

0.15

0.2

0.25

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.16: NP control performance versus Modulation depth for load power factor

angle of 1 degree.

0 0.2 0.4 0.6 0.8 1 1.2

-0.05

0

0.05

0.1

0.15

0.2

0.25

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.17: NP control performance versus Modulation depth for load power factor

angle of 45 degree.

 4 QUANTITATIVE COMPARISON OF ACTIVE NP STRATEGIES

65

4.4.2.2 Transient Operating Mode

Figure 4.16, Figure 4.17, and Figure 4.18 show the dynamic NP control

performance of the various strategies. The test measures the time taken for the

strategies to reduce a 25% NP voltage unbalance to under 6%.

As with the case of steady-state results, the relative performance of the various

strategies are the same. Note however the axis scales have changed. The times to

reduce the unbalance are much less due to the lower capacitance.

4.5 Active Strategy Recommendation

As expected, the NTV-based SVM or its equivalent CSVPWM with a

Proportional controller (CSVPWM+P) gives the best carrier-based PWM harmonic

and high overall NP control performance. It is adequate for most applications.

Another benefit of SPWM/CSVPWM+P is that it does not require current

measurement. However the power flow direction is required in order to set the

correct polarity of the NP controller gains.

0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

NTVV

ONTVV

SPWM+P

SPWM+Song

CSVPWM+P

Figure 4.18: NP control performance versus Modulation depth for load power factor

angle of 85 degree.

4.6 SUMMARY

66

A further increase in NP control performance at high load power factor angles is

attainable by using the NTV-based 2 small vector control (Yamanaka’s SVM)

however the variable switching frequency nature of the strategy and the requirement

to program a Space Vector Modulator (SVM) must be taken into account.

While the Virtual Vectors variants (i.e. NTVV and ONTVV) control the NP

voltage quite well, the harmonic performance of these strategies are worse than a 2-

level converter. Hence 2-level operation of the 3-level NPC converter utilising 2-

level CSVPWM is preferable under these conditions when compared to (O)NTVV.

Finally, these results identify that the NTV-based strategies i.e. NTV SVM

1SV/2RS and NTV SVM 2SV/4RS, achieve a better performance than any other

strategy provided that sufficient DC link capacitance is used to ensure reduction of

the harmonic distortion that is caused by both the active NP control mechanism and

the NP ripple mechanism.

4.6 Summary

This chapter has analysed the performance of various NPC converter modulation

strategies and demonstrated the tradeoff between increased harmonics, switching

losses and implementation complexity when further NP control performance is

demanded.

Simulation results show that NTV-based strategies, especially conventional SVM

/ CSVPWM with a P controller, are the best for most applications. They also confirm

that the Yamanaka SVM strategy does not provide significant additional

performance at the 1 and 45 degree load power factor angle conditions. However, the

result of its extra implementation complexity is beneficial at the extreme load power

factor angle of 90 degrees. As a result, applications that work in this region will

benefit from using this strategy.

Regardless of the strategy chosen, the THD and transient control response have

shown that adequate DC link capacitance must be provided in order to ensure

reduction of the harmonic distortion that is caused by both the active NP control and

the NP ripple mechanisms.

NTVV produces harmonic levels greater than a 2-level converter in the regions

where most of the converters would run. It also has shown that ONTVV performs

similarly to NTVV as the load power factor angle increases. However, neither

strategy compares well to the NTV-based variants.

 5 NATURAL BALANCING OF A NPC PHASE LEG

67

5 NATURAL BALANCING OF A NPC PHASE LEG

The previous two chapters have explored various strategies for active manipulation

of the modulation of a NPC converter to control the NP voltage, comparing their

performance in terms of harmonic distortion caused by NP fluctuation, non-optimal

space vector utilisation, and speed of unbalance recovery. An alternative approach to

control the NP voltage of a NPC converter is ‘natural balancing’, which can

potentially keep the NP voltage at its ideal (zero) value without requiring

modifications to the modulation switching patterns. However, natural balancing is

not yet fully understood [32], and its static and dynamic NP voltage control

capability has never been compared to the more common ‘active’ methods.

This chapter fully explores the fundamental principles of natural balancing of a

NPC converter. It begins by developing a mathematical model of NP voltage

variation as a function of the converter switching processes, and then uses harmonic

substitution of the modulation signals to resolve non-linearities within the model.

This results in a simple first-order differential equation that describes the natural

balancing response very accurately. The outcome of this modelling then allows the

use of natural balancing to be evaluated as a possible substitute for (or at least to

enhance) the existing better established ‘active’ NP voltage control strategies.

5.1 NP Voltage Variation with NPC Phase Leg Switching Commands

Figure 5.1 shows the structure of a NPC half-bridge phase-leg. As identified in

VDC

S1

S2

S1

S2

Ct

Cb

iNP

VDC

VNP

ZL

Vn

Io

Vo

Figure 5.1: Topology for a NPC phase leg. nV is connected to NPV to form the half-

bridge topology.

5.1 NP VOLTAGE VARIATION WITH NPC PHASE LEG SWITCHING COMMANDS

68

previous chapters, the converter DC bus supply is split using two series connected

DC capacitors that share the DC bus voltage. The mid-point of these capacitors is the

converter Neutral Point (NP) voltage, labelled as tVNP in Figure 5.1. The NPC half-

bridge phase leg has 4 switches, and 2 diodes that connect to the Neutral Point. These

diodes provide voltage blocking to ensure that the switches do not experience

excessive voltage stresses that could lead to their failure.

For the analysis in this chapter, the phase leg output voltage tVo feeds a load

impedance LZ that has its return connection tied to tVNP to complete the current

return path. Note that this connection will be rearranged in Chapter 6 to consider

more general three phase NPC structures.

To begin modelling the natural NP voltage balancing process, a relationship

between the capacitor voltages tVtV CbCt , and neutral point current, tI NP is

required. Figure 5.1 identifies that the neutral point current flowing out of the middle

point of the DC bus capacitors can be determined using KCL, as follows:

 tItItI CbCtNP (5.1)

The capacitor currents are related to their voltages by the following equations:

dt

dV
CtI Ct

tCt
(5.2)

dt

dV
CtI Cb

bCb
(5.3)

These voltages in turn can be related using Kirchoff’s voltage law around the mesh

containing the DC bus voltage and the top and bottom capacitor voltages, resulting

in:

 tVVtV NPDCCt (5.4)

 tVVtV NPDCCb (5.5)

Substituting Eqns. (5.2) to (5.5) into Eqn. (5.1) identifies that the time-derivative

of the NP voltage directly drives the NP current according to:

 tVV
dt

d
CtVV

dt

d
CtI NPDCbNPDCtNP

(5.6)

Equation (5.6) can now be simplified by assuming that the DC bus voltage is

constant and that the two DC bus capacitors have equal capacitance, i.e. CCC bt

, to give:

 5 NATURAL BALANCING OF A NPC PHASE LEG

69

dt

dV
C

dt

dV
CCtI NPNP

btNP 2
(5.7)

Using Kirchoff’s current law again on the right hand side of the NP node, the NP

current tI NP
must always match the outgoing current flowing through the clamping

diodes, minus the load current returning from the external load connection, i.e.

 tIo . Now, if the phase leg switching device states are defined by tS1 and tS2 ,

where tSx can only have two states; either ON or OFF denoted by the number 1

and 0 respectively, current can only flow through the clamping diodes when

 01 tS and 12 tS . This is because when 121 tStS , the load current is

supplied from the upper positive DC bus, when 021 tStS the load current is

supplied from the lower negative DC bus, and the switch combination

 0,1 21 tStS creates an open circuit output state that is not allowed for a NPC

converter.

With this logic definition, the NP current can be characterised as a function of

switching signals and the load current as:

 tItStS

tItItStStI

o

ooNP

1

)(

12

12

(5.8)

Substituting Eqn. (5.8) into Eqn. (5.7) results in a differential equation that relates

the NP voltage to the converter output load current and the phase leg switching states

according to:

 tItStS
Cdt

dV
o

NP 1
2

1
12

(5.9)

In turn, the phase leg output current depends on the voltage applied across the R-L

load (note that any type of load impedance is applicable here, as will be used later

with a Balance Boost impedance load when the model is in its harmonic form).

Hence applying Ohm’s law:

 tVtI
dt

d
LRtVtI

dt

d
LRtV NPoLLnoLLo

(5.10)

where the load voltage point tVn is identified as a generalised node voltage for

later use in Chapter 6, and as the Neutral Point voltage in this chapter to reflect the

way in which the load current is returned to the phase leg, i.e.:

 tVtV NPn (5.11)

5.1 NP VOLTAGE VARIATION WITH NPC PHASE LEG SWITCHING COMMANDS

70

Rearranging the second form of Eqn. (5.10) for the load current results in:

 tVtV

dt

d
LR

tI NPo

LL

o

1

(5.12)

Finally, substituting Eqn. (5.12) into Eqn. (5.9) produces a differential equation

for the NP voltage that only includes the switched phase leg output voltage tVo as

an independent variable, viz:

 tVtV

dt

d
LR

tStS
Cdt

dV
NPo

LL

NP

1

1
2

1
12

(5.13)

The three possible values of the phase leg output voltage tVo with respect to the

DC bus are given by Table 5-1 below. Using this table, the phase leg voltage can be

expressed mathematically as

 tVtStSVtStStV NPDCo 1221 1)((5.14)

where tS1 and tS2 are the switching states of the four phase leg switches as

defined earlier. Note that DCV represents half the DC bus voltage in the usual way.

Substituting the phase leg output voltage expression (5.14) into Eqn. (5.13)

creates a differential equation that defines the change in the NP voltage of the NPC

converter solely as a function of the phase leg switch modulation signals.

 tVtVtStSVtStS

dtdLR
tStS

Cdt

dV

NPNPDC

LL

NP

1221

12

1

1
1

2

1

(5.15)

Eqn. (5.15) is non-linear, since it includes a multiplication of the phase leg

switching signals and the derivative R-L load term. However previous work that has

analysed the natural balancing characteristics of a Flying Capacitor converter

resolved this complexity by replacing the time domain switching functions with

Table 5-1: Phase leg output voltages and associated switching commands

S1(t) S2(t) Vo(t) INP(t)

0 0 -VDC 0 - Io(t)

0 1 VNP(t) Io(t) - Io(t)

1 0 Not Applicable Not Applicable

1 1 VDC 0 - Io(t)

 5 NATURAL BALANCING OF A NPC PHASE LEG

71

equivalent harmonic components derived using Double Fourier analysis, to create a

linear voltage balance model [81]. A similar approach will now be applied to the

NPC converter to achieve the same level of simplification.

5.2 Double Fourier Representation of NPC PD Modulation

Irrespective of the modulation strategy used for the NPC phase leg, any PWM

switching signal produced by a periodic reference waveform can be represented by

the Double Fourier series given by [61]:

1

1

0
00

1

cos

cos
2

)(

m n

ooccmn

n

oon

tntmA

tnA
A

tS

 (5.16)

where c and o , c and o are the carrier and reference frequencies and phase

shifts respectively. The coefficients mnA are the harmonic magnitudes of the

baseband, carrier and sideband harmonics, and are found through evaluation of the

Double Fourier integral.

For the specific case of PD modulation for a NPC converter shown in Figure 5.2,

the harmonic coefficients for tS1 are determined in [61] as follows:

 MA

2
00 2

01

M
A (5.17)

S
2,a

(t)

S
1,a

(t)

V
a
(t)

Ref
a
(t)

Figure 5.2: Phase Disposition (PD) modulation strategy. The lower diagram shows

the ‘a’ switching signals and phase output voltage.

5.2 DOUBLE FOURIER REPRESENTATION OF NPC PD MODULATION

72

 11

2cos2
0

nn

n
MA n

 n > 1 (5.18)

 Mm

k

J
km

A km

1 12

1

2

4
120

 m > 0 (5.19)

12

12
1212

2
cos12

1

4

2
sin

1

kn

knmn
knkn

nk

Mm

k

JnMmJ
m

A

(5.20)

where M is the modulation depth and m and n are the coefficients of the carrier and

the fundamental frequency.

The harmonic coefficients for tS2 can be obtained by adding 180 degrees to

both the values of carrier and fundamental phase offset of tS1 i.e. 1801S

cc

and 1801S

o o
 , and adding an offset of 2 to the DC coefficient of tS1 , to give:

1 1

1
0

00
2

cos

cos
2

)(

m n
ooccmn

n
oon

tntmD

tnD
D

tS

(5.21)

where 20000 AD 0101 AD (5.22)

 nn AnD 00 cos mnmn AnmD cos (5.23)

Using these solutions, the switching sum and difference terms in Eqn. (5.15),

namely 112 tStS and 121 tStS can now be expressed as a set of

harmonic components with co-efficients given by:

 omnmn ntFtStS cos112 (5.24)

where mnmnmn ADF , ocmn nm (5.25)

and omnmn ntHtStS cos121 (5.26)

where mnmnmn ADH , ocmn nm (5.27)

Note that the -1 constant term within the sum and difference switching functions

can be readily incorporated into their DC harmonic components. For example, for the

switching function (5.24), 00F is made equal to:

 1000000 ADF (5.28)

 5 NATURAL BALANCING OF A NPC PHASE LEG

73

Also, the carrier phase shift c in Eqn. (5.16) can be set to zero without any loss of

generality because any NPC topology that is controlled by PD modulation will use

the same carrier waveforms for all phase legs.

5.3 Reduction of NPC Natural Balance Solution to Linear Form

In phasor form, the load impedance at mn is given by:

 mnj
mnLmnmnmnmnL eZLjRZ

 ,, (5.29)

Substituting Eqn. (5.24) to (5.27) and Eqn. (5.29) into Eqn. (5.15), and solving

using AC phasor arithmetic, gives after some manipulation for each switching

harmonic, the differential equation of:

 tVntFVntH

nt
Z

F

Cdt

tdV

NPomnmnDComnmn

mnomn

mnL

mnmnNP

coscos

cos
2

1

,

,

 (5.30)

Equation (5.30) can be simplified by recognising that its cosine multiplications

produce both DC and double harmonic frequency terms. Since it is only the low

frequency deviation of tVNP that is of interest, the double frequency terms in (5.30)

can be neglected, yielding:

 tVFVHF
ZCdt

dV
NPmnDCmnmnmn

mnL

mnNP 2

,

,
cos

1

4

1
 (5.31)

This equation can be simplified by recognising that the harmonic coefficients of

the open-loop PD modulation process are orthogonal, and hence their cross product

is zero, i.e.

 01cos2222

nmAAD

ADADHF

mnmnmn

mnmnmnmnmnmn (5.32)

With this simplification, Eqn. (5.31) reduces to:

 tV

tVF
ZCdt

dV

NP

mnNP

NPmnmn

mnL

mnNP

,

2

,

,

1

cos
1

4

1

 (5.33)

which is a simple first order linear differential equation that links the change in the

NP centre point voltage tVNP caused by a particular harmonic mn to the magnitude

of this centre point voltage, via a single time constant. The combined effect on the

5.4 NATURAL BALANCING RESPONSE AND BALANCE BOOSTER CONTRIBUTION

74

NP voltage of all harmonics created by the phase leg switching processes can then be

determined by summing (5.33) over all switching harmonics, to give:

 tVtV
dt

dV

dt

dV
NP

NPm n

NP

mnNPm n

mnNPNP

11

1 ,1

,

 (5.34)

Eqn. (5.34) shows how the natural transient response of the centre point voltage of

a NPC converter is determined by a simple first order differential equation with a

time constant that is determined by the parallel summation of the time constants for

the significant harmonics created by the modulation process at any particular

modulation depth M. The magnitudes of each of these harmonic time constants are

each inversely proportional to the magnitude of the converter switching harmonic

terms, and directly proportional to the load impedance magnitude, at their particular

frequency. Furthermore, since there is no offset term in this differential equation, the

centre point voltage of a NPC converter must naturally balance to a final value of 0V

(i.e. midway between the two DC bus voltages), with a time constant of NP .

From this analysis, it can be seen that the NPC converter natural balancing time

constant is determined ONLY by the magnitude of the switching harmonics created

by the PD PWM process (i.e. mnF explained in the next section), and the load

impedance magnitude at these harmonic frequencies (i.e.
mnLZ ,

). It is not affected by

DC bus voltage fluctuations, device voltage drops and other similar second order

factors that might in the first place have been expected to have some influence.

5.4 Natural Balancing Response and Balance Booster Contribution

Equation (5.34) has identified that the natural balancing response of a NPC

converter is determined by the summation of the inverse of the time constants

associated with each harmonic frequency created by the modulation processes.

Hence achieving a significant reduction in any one of these harmonic time constants

will substantially increase the magnitude of the inverse summation result, and thus

significantly improve the overall balancing response of the converter. Equation

(5.33) has identified that the magnitude of each harmonic time constant component is

inversely proportional to the square of the harmonic co-efficient mnF divided by the

load impedance at that harmonic frequency. Furthermore the power factor angle of

the load impedance mn at that frequency must be near to unity, so that 1cos mn .

Thus to determine the natural balance time constant of a particular NPC system, it is

 5 NATURAL BALANCING OF A NPC PHASE LEG

75

necessary to firstly identify at what frequencies mnF has significant values, and then

to determine the load impedance magnitude and angle at these frequencies.

For optimum PD modulation of a NPC converter, the harmonic co-efficients of

the PWM process are explicitly determined by the target fundamental magnitude

(modulation index M) and frequency. Consequently there is no opportunity to vary

the magnitude of the mnF components to improve the converter’s natural balance

response while still achieving the same fundamental output.

Figure 5.3 and Figure 5.4 show values for both the mnH and the mnF harmonic co-

efficients for a particular converter operating condition. These co-efficients are in

fact interesting in their own right, since they identify the DCV and NPV voltage

contribution to the inverter output voltage through the switched phase leg, as follows:

From Eqn. (5.14):

 tVtStSVtStStV NPDCo 1221 1)((5.35)

while from Eqns. (5.24) and (5.26)

 omnmn

omnmn

ntFtStS

ntHtStS

cos1

cos1

12

21

(5.36)

Substituting (5.36) into (5.35) gives, neglecting the summation of the harmonics:

 omnNPmnomnDCmno nttVFntVHtV coscos)((5.37)

which clearly identifies the harmonic components of the output voltage that derive

from the (constant) DC link voltage, and the additional output voltage harmonic

components that derive from the (variable) NP voltage. Figure 5.3 and Figure 5.4

confirm this understanding, where the harmonic spectra for mnH shown in Figure 5.3

has the anticipated zero baseband distortion, large carrier component and decaying

sidebands that are expected from PD modulation. In contrast, the spectra for mnF

shown in Figure 5.4 has significant decaying baseband harmonic components, plus

additional interleaved carrier sideband components. From this spectra it is clear that a

varying NP voltage will significantly increase the overall output distortion of a NPC

converter, as was identified in Chapter 4 in relation to active balancing strategies,

and that only the ideal condition of 0NPV will achieve the theoretical harmonic

performance predicted by PD PWM of a NPC converter. Figure 5.5 confirms this

understanding, showing the phase leg output voltage spectra for the ideal condition

5.4 NATURAL BALANCING RESPONSE AND BALANCE BOOSTER CONTRIBUTION

76

of no NP unbalance voltage, and a 20% NP unbalance condition. The addition of the

unwanted mnF components into the output voltage for the unbalanced NP voltage

condition can be clearly seen.

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

Harmonic number

Harmonics of H
mn

Figure 5.3: Harmonic spectra of Hmn. M=0.9, fsw = 2000Hz, fo = 50Hz

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

Harmonic number

Harmonics of F
mn

Figure 5.4: Harmonic spectra of Fmn. M=0.9, fsw = 2000Hz, fo = 50Hz

 5 NATURAL BALANCING OF A NPC PHASE LEG

77

From Figure 5.4 also, it is clear that the load impedance magnitude and phase angle

must be small either near the fundamental output frequency, or near the carrier

frequency, since these are the only regions where the mnF harmonic co-efficients

which have a significant magnitude. However, the load impedance will generally be

determined by the external load system, and furthermore may vary its impedance as

load conditions change. Also, a typical inductive load will always have a magnitude

that continuously increases with frequency. Hence an additional load impedance is

required to make natural balancing an effective NP control strategy.

Figure 5.6 shows how this can be done by placing a “balance-booster” RLC notch

filter in parallel with the load that is tuned to the carrier frequency of the converter,

as proposed by Mouton [32]. Figure 5.7 and Figure 5.8 show an example load,

balance booster and load+balance-booster impedance magnitude and phase as a

function of harmonic frequency, where a dramatic reduction in impedance

magnitude, with a corresponding load phase angle of zero, can be seen at the first

carrier harmonic frequency of 2000 Hz (the designed carrier frequency).

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

Harmonic number

Harmonics of V
x
(t) without NP unbalance (Also F

mn
)

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

Harmonic number

Harmonics of V
x
(t) with 20% NP unbalance

Figure 5.5: Harmonic spectra of phase voltage without and with 20% NP unbalance,

M=0.9, fs = 2000Hz, fo = 50Hz

5.5 DESIGN OF BALANCE BOOSTER

78

5.5 Design of Balance Booster

The effect of the balance-booster can be included in the harmonic natural balance

model in two ways. Firstly, the load term can be modified by calculating a new load

impedance as a function of frequency using a parallel combination of the R-L load

and the RLC network, viz:

mnj

mn

mnBBmn

mnBBmnmnBBmnmnmnmn

eZ

C
LjRLjRZ

,

,,

1
||

 (5.38)

However, this approach is cumbersome, and does not provide particularly useful

insight into the influence of the balance-booster impedance on natural balancing.

A better approach is to introduce a second phase leg model where Eqn. (5.33) is

recalculated separately with ONLY a balance booster load. The result of this new

phase leg is then added to the original R-L load model as a superposition of 2 NPC

phase leg models, each with different load impedances. The resultant differential

equation describing the natural response of NPV is:

 tV

dt

dV

dt

dV

dt

dV

NP

ZNPZNP

BBZ

NP

loadZ

NPfinalNP

BBL

,,

,

11

(5.39)

and allows the natural balancing time constants of the R-L load and the RLC

VDC

S1

S2

S1

S2

Ct

Cb

iNP

VDC

VNP

ZBB

ZL

Vn

iBB

Io

Vo

Figure 5.6: Topology for a NPC phase leg with a RLC network / balance booster

placed in parallel to the load.

 5 NATURAL BALANCING OF A NPC PHASE LEG

79

balance-booster filter to be clearly separately identified. In principle, the balance-

booster filter creates a low impedance in the switching frequency region and thus a

flow of harmonic currents, mnBBi that increase the natural balancing action. The

magnitude of these currents can be readily calculated as follows:

 mnBB

mno
mnBB

Z

V
i

)(

(5.40)

Unfortunately, not all of the harmonic currents contribute to the balancing

process, since (5.37) has identified that the converter output voltage contains both

mnF and mnH harmonic components. As identified earlier in Section 5.4, only the

mnF components contribute to the balancing process and disappear as 0tVNP .

The mnH components on the other hand are always present in the output voltage, and

cause steady state carrier group harmonic currents to always flow through the

balance-booster impedance, with a resultant power loss in the filter resistance.

The ideal balancing impedance solution to avoid this penalty would be a set of

very narrow bandwidth notch filters that only interact with the mnF harmonic

components, but this is very difficult to achieve in practice. A more practical method

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

0

10
5

Frequency (Hz)

RL

BB

RL+BB

Figure 5.7: Load and balance-booster impedance magnitude versus frequency.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-100

-50

0

50

100

Frequency (Hz)

RL

BB

RL+BB

Figure 5.8: Load and balance-booster impedance phase angle versus frequency.

5.6 NATURAL BALANCE TIME DOMAIN SIMULATION

80

may be to disconnect the balance-booster filter during steady state operation when

the NP voltage is zero. Balance-booster power losses and other such practical issues

will be discussed further in Chapter 7.

5.6 Natural Balance Time Domain Simulation

The theoretical NP natural balancing concepts were verified using a detailed time

domain simulation with the PSIM 9.0.3 simulation package, as shown in Figure 5.9.

Note that the node labelled ‘BUS’ is used to tie the load return connection to the NP

of the converter. Table 5-2 shows the parameters of the simulation for the two

operating configurations that are presented here, viz: Configuration A operates with

half the modulation depth and double the fundamental frequency of Configuration B.

Figure 5.10 shows natural balance response of the converter Neutral Point voltage

for operating configuration A, returning to zero quite quickly after an initial

unbalance offset condition. There is an almost exact match between the time domain

simulation solution, a numerical calculation of the non-linear switched differential

Eqn. (5.15), and the linearised first order harmonic solution of Eqn. (5.39), which

validates the analysis of this chapter.

A similar comparison result is shown in Figure 5.11 for operating configuration B,

where once again there is an almost exact match between the three analysis

Figure 5.9: PSIM Simulation Schematic for Natural Balance Investigation.

 5 NATURAL BALANCING OF A NPC PHASE LEG

81

approaches. However, the natural balancing response for configuration B is much

slower, taking more than 1.2 seconds to reach a steady state NP condition. This

slower response is directly a result of the different operating conditions for

configuration B, where the increased modulation index significantly reduces the

number and magnitude of the mnF harmonic components that drive the natural

balance response, as shown in Figure 5.13 and Figure 5.14.

Figure 5.12 shows the dramatic improvement in natural balancing that is achieved

for configuration B when a balance-booster filter is installed. However, there is a

penalty of an increased NP voltage ripple because of the additional carrier group

frequency harmonic currents that now flow continuously through the balance-booster

filter even when the NP voltage is zero.Experimental results to support these

simulation validations will be presented in the next chapter for a three phase NPC.

Table 5-2: Parameters for phase leg’s balancing simulations.

Parameter
Value

(Config A)

Value

(Config B)

Nominal DC link (V) 100

Capacitor size (µF) 4200

Load Resistance (ohms) 1

Load Inductance (mH) 2e-3

Modulation depth 0.5 1

Fundamental Frequency (fo) (Hz) 100 50

Carrier Frequency (fc) (Hz) 5000

Number of carriers considered, m 3

Number of sidebands considered, n 20

Balance Booster Resistance, RBB 2.3

Balance Booster Capacitance 992µH

Balance Booster Inductance 970mH

5.6 NATURAL BALANCE TIME DOMAIN SIMULATION

82

Figure 5.10: Neutral Point voltage of simulation against models derived for

Configuration A. M=0.5, fo = 100Hz

Figure 5.11: Neutral Point voltage of simulation against models derived for

Configuration B without balance booster. M=1.0, fo = 50Hz

Figure 5.12: Neutral Point voltage of simulation against models derived for

Configuration B with balance booster. M=1.0, fo = 50Hz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

40

60

80

100
Natural balancing

Time (s)

N
P

 v
o
lt
a
g
e
 (

V
)

Simulation

D. E.

Harmonic D.E.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

40

60

80

100
Natural balancing

Time (s)

N
P

 v
o
lt
a
g
e
 (

V
)

Simulation

D. E.

Harmonic D.E.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

40

60

80

100
Natural balancing with balance booster

Time (s)

N
P

 v
o
lt
a
g
e
 (

V
)

Simulation

Harmonic D.E.

 5 NATURAL BALANCING OF A NPC PHASE LEG

83

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-3

10
-2

10
-1

10
0

F
mn

harmonics

Frequency (Hz)

Figure 5.13: Fmn harmonics for Configuration A. M=0.5, fo = 100Hz.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-3

10
-2

10
-1

10
0

F
mn

harmonics

Frequency (Hz)

Figure 5.14: Fmn harmonics for Configuration B. M=1.0, fo = 50Hz

5.7 SUMMARY

84

5.7 Summary

This chapter has modelled the natural balancing mechanism of a NPC phase leg.

The resulting model is a simple summation of harmonic time constants that only

depend on the harmonics of the modulation process and the phase leg load

impedance. The natural balancing process is caused by the unbalanced NP voltage

producing harmonic currents which generate self-eliminating currents that return the

NP to its balanced state. These currents, and hence the balancing response, can be

enhanced by a balance-booster output filter, tuned to the carrier group frequencies.

The modelling concepts have been verified through simulation and analytical

solutions, and are readily extended to three phase converters, as will be presented in

the next chapter.

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

85

6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

Chapter 5 has developed a linear model that predicts the balancing performance of a

NPC phase leg, achieved by combining a non-linear transient circuit model of the

NPC converter with a Double Fourier series representation of the converter switching

functions. The chapter also showed how additional balance booster elements can be

modelled, either through modification of the load term directly or by superposition of

multiple phase leg models to account for the primary load and the additional balance

booster elements.

This chapter now extends these concepts to demonstrate how a three phase NPC

converter can be broken up into individual phase leg models which can then be

superimposed to predict the behaviour of the overall converter. The design of balance

booster filters is then explored to consider which topological configuration results in

the best balancing performance, and to also assess the overall power loss of the

balance booster in these different configurations. This investigation is confirmed by

detailed simulation and experimental verification of the concepts.

6.1 Modelling the Three-phase NPC [82]

The physical construction and modulation of a 3-phase NPC converter has been

thoroughly introduced in Chapters 2 and 3, and hence is not repeated here. However,

the 3-phase NPC converter load has several possible topological options because

there are several approaches available to connect the 3-phase load’s neutral point,

LnV ,
, and the neutral point, BBnV , , of the balance booster filter (if it is used).

Various configurations of the 3-phase converter are shown in Figure 6.1 and

summarised in Table 6-1. Case 1 (ZL-F) is the ‘standard’ NPC converter

configuration with a simple ‘3-wire’ load that has a floating neutral. Case 3 (ZL-F,

BB-F) extends Case 1 (ZL-F) with the addition of a balance booster. Case 2 (ZL-NP)

is a 4-wire configuration typically used in Flexible AC Transmission Systems

(FACTS). In this configuration the load’s neutral is connected to the NP of the

converter. It is also known as ‘4
th

 wire to NP’ [83][84]. Case 4 (ZL-NP, BB-NP)

extends Case 2 (ZL-NP) by adding a balance booster that has its 4
th

 wire also

connected to the NP. Cases 5 (ZL-F, BB-NP) and 6 (ZL-F, BB-VDC) are extensions

of Case 1 (ZL-F) with balance booster filters that are connected to the NP and the

negative rail of the DC link respectively.

6.1 MODELLING THE THREE-PHASE NPC [82]

86

In Chapter 5 it was demonstrated that the principle of superposition can be applied

to model the natural balancing process for a NPC converter. This superposition

approach will now be applied to the three phase topologies shown in Figure 6.1. The

development of a natural balance model for any particular topological configuration

proceeds by superposing individual phase leg natural balance models which account

for the (a,b,c) phase legs, and also the load and balance booster filter configurations.

In this way the generic phase leg natural balance model developed in Chapter 5 can

be used, with minor modifications required to account for the different phase leg

modulation phase shifts, as well as the different load and filter connection

VDC

S1,a

S2,a

S1,a

S2,a

Ct

Cb

iNP

VDC

VNP

S1,b

S2,b

S1,b

S2,b

S1,c

S2,c

S1,c

S2,c

ZL

Vn,L

VDC

S1,a

S2,a

S1,a

S2,a

Ct

Cb

iNP

VDC

VNP

S1,b

S2,b

S1,b

S2,b

S1,c

S2,c

S1,c

S2,c

ZL

Vn,L

 Case 1 (ZL-F) Case 2 (ZL-NP)

VDC

S1,a

S2,a

S1,a

S2,a

Ct

Cb

iNP

VDC

VNP

S1,b

S2,b

S1,b

S2,b

S1,c

S2,c

S1,c

S2,c

ZL ZBB

Vn,L Vn,BB

VDC

S1,a

S2,a

S1,a

S2,a

Ct

Cb

iNP

VDC

VNP

S1,b

S2,b

S1,b

S2,b

S1,c

S2,c

S1,c

S2,c

ZL ZBB

Vn,L Vn,BB

 Case 3 (ZL-F, BB-F) Case 4 (ZL-NP, BB-NP)

VDC

S1,a

S2,a

S1,a

S2,a

Ct

Cb

iNP

VDC

VNP

S1,b

S2,b

S1,b

S2,b

S1,c

S2,c

S1,c

S2,c

ZL ZBB

Vn,L Vn,BB

VDC

S1,a

S2,a

S1,a

S2,a

Ct

Cb

iNP

VDC

VNP

S1,b

S2,b

S1,b

S2,b

S1,c

S2,c

S1,c

S2,c

ZL ZBB

Vn,L Vn,BB

 Case 5 (ZL-F, BB-NP) Case 6 (ZL-F, BB-VDC)

Figure 6.1: 3-phase NPC converter with and without different balance booster

placement configurations .

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

87

arrangements.

Common to all the variations is the fundamental reference phase shift of 120
0
 and

240
0
 in the phases b and c. Also, before the superposition of the phase leg models to

obtain the overall D.E.s for each case in Figure 6.1 can proceed, it is first necessary

to derive the phase leg models when nV is:

a) the floating neutral of a 3-phase load for Cases 1 (ZL-F) and 3 (ZL-F, BB-F)

(Section 6.1.1), and

b) connected to the negative DC rail for Case 6 (ZL-F, BB-VDC) in (Section

6.1.2).

6.1.1 Modelling the NP Change when tVn is Floating (Case 1 (ZL-F) & 3 (ZL-F,

BB-F))

A floating 3-phase wye-connected load means the phase leg models are no longer

independent because tVn now depends on the switched voltages of the three phase

legs, tVa , tVb and tVc . Also care must be exercised in modelling each NPC

phase leg to keep the phase legs separate. Hence for this analysis, the variables

associated with a particular phase leg will be labelled with the subscripts },,{ cbax .

This section will now model the NPC phase leg A, recognising that the model of

the other phase legs are just an adaptation of this model. The first variation from

Chapter 5 that is required is to adjust the neutral point current, since the load current

no longer returns to the NP. Hence the NP current summation of Eqn. (5.8) becomes

 tItStSti aaaaNP ,1,2,)((6.1)

Table 6-1: Variations of the 3-phase NPC converter.

Case Load. Balance Booster

1 (ZL-F) floating NP Not used

2 (ZL-NP) 4
th

 wire to NP Not used

3 (ZL-F, BB-F) floating NP floating NP

4 (ZL-NP, BB-NP) 4
th

 wire to NP 4
th

 wire to NP

5 (ZL-F, BB-NP) floating NP 4
th

 wire to NP

6 (ZL-F, BB-VDC) floating NP 4
th

 wire to DC rail

6.1 MODELLING THE THREE-PHASE NPC [82]

88

The subscript notation of this equation is for the NP current component attributed to

phase leg A, and its value is dependent upon the switching states for this phase leg

and its load current. Substituting Eqn. (6.1) into Eqn. (5.7) from Chapter 5 thus leads

to the revised NP voltage D.E. for the contribution of phase leg A of :

 tItStS
C

i
Cdt

dV
aaaaNP

aNP
 ,1,2,

,

2

1

2

1

(6.2)

The phase A load current tIa is dependent upon the switched voltage of phase

leg A and the 3-phase load’s floating neutral, nV . This floating neutral voltage is the

average of the 3 switched phase leg voltages and can be described by:

 tVtVtVtV cban
3

1
 (6.3)

Ohm’s law then gives the phase A current relationship of:

 tVtVtV

dt

d
LR

tVtVtVtV

dt

d
LR

VtV

dt

d
LR

tI

cba

LL

cbaa

LL

na

LL

a

2
3

11

3

11

1

(6.4)

The switched output voltage for a NPC inverter phase leg were established in

Chapter 5 as the sum and difference of the individual switching functions in Eqn.

(5.14), and hence can be simply rewritten here for each of the three phase legs as

 tVtStSVtStStV NPxxDCxxx ,1,2,2,1 1 (6.5)

Substituting Eqn. (6.5) into the load current equation, Eqn. (6.4), and then into the

per-phase D.E., Eqn. (6.2), results in the following NP voltage transient circuit model

for the contribution of the phase leg A current:

tVtStSVtStS

tVtStSVtStS

tVtStSVtStS

dtdLR
tStS

Cdt

dV

NPcbDCbc

NPbbDCbb

NPaaDCaa

aa
aNP

,1,2,2,1

,1,2,2,1

,1,2,2,1

,1,2
,

1

1

212

3

1

/

1

2

1

 (6.6)

This result is more complex than the transient relationship derived in Chapter 5

because it has switching functions from all three phase legs. However the switching

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

89

functions are still very similar to Eqns. (5.24) and (5.26), differing essentially only

because of the loss of the ‘-1’ in the difference expression. Of course the switching

functions also have different fundamental reference offset values depending on

which phase leg they are associated with, but this is not difficult to accommodate in

the detailed evaluation. Using the “x” subscript phase leg notation, the switching

sum and difference expressions in Eqn. (6.6) thus develop from Eqns. (5.24) and

(5.26) to become:

 xmnmnxx ntFtStS cos,1,2
 (6.7)

where mnmnmn ADF , ocmn nm (6.8)

and

 xmnmnxx ntHtStS cos1,2,1
 (6.9)

 where mnmnmn DAH , ocmn nm (6.10)

Substitution of these Double Fourier representations, Eqns. (6.7) and (6.9) into

Eqn. (6.6) results in the following individual harmonic D.E for the phase A current:

tVntFVntH

tVntFVntH

tVntFVntH

Z
ntF

Cdt

tdV

NPcmnmnDCcmnmn

NPbmnmnDCbmnmn

NPamnmnDCamnmn

mn

mnamnmn

mnaNP

coscos

coscos

cos2cos2

3

1

1
cos

2

1,,

 (6.11)

The cosine multiplications in Eqn. (6.11) produce both DC and double harmonic

frequency terms, but since again only the low frequency deviation of tVNP is of

interest, the double frequency terms in Eqn. (6.11) can be neglected once more, to

give, after some manipulation:

 tVFVHF

nn

ZCdt

tdV

NPmnDCmnmn

mncamnbamn

mn

mnaNP

2

,,

coscoscos2

1

12

1

(6.12)

From Chapter 5, Eqn. (5.32) identified that mnF and mnH harmonics are

orthogonal. Thus Eqn. (6.12) simplifies to a result that is only dependent on mnF

harmonics, i.e.

6.1 MODELLING THE THREE-PHASE NPC [82]

90

 tV

tVFnn

ZCdt

tdV

NP

mnaNP

NPmnmncamnbamn

mn

mnaNP

,,

2

,,

1

coscoscos2

12

1

 (6.13)

This is the first order D.E. for the NP voltage variation caused by phase leg A of a

NPC inverter feeding into a 3-phase floating wye load. A similar relationship can be

readily developed for the other two phase legs using the same approach, to give

 tV

tVFnn

ZCdt

tdV

NP

mnbNP

NPmnmnabmncbmn

mn

mnbNP

,,

2

,,

1

coscoscos2

12

1

 (6.14)

 tV

tVFnn

ZCdt

tdV

NP

mncNP

NPmnmnbcmnacmn

mn

mncNP

,,

2

,,

1

coscoscos2

12

1

 (6.15)

The overall NP voltage variation caused by all three phase legs feeding into a 3-

phase floating wye load is then given by the superposition of Eqns. (6.13), (6.14) and

(6.15).

6.1.2 Modelling the NP Change when tVn is Connected to a DC link (Case 6 (ZL-

F, BB-VDC))

For Case 6 (ZL-F, BB-VDC), the neutral of the balance booster filter, BBnV , , is

connected to the DC link instead of the NP voltage. This causes two changes, viz:

a) The filter current no longer returns to the NP node. As a result, Eqn. (5.8)

becomes:

 tItStSti oNP 12)((6.16)

where once again the switching function has lost the ‘-1’ term.

b) The filter load current is now dependent upon the difference between the

switched voltage and the negative DC link potential. Eqn. (5.12) therefore

adapts to become:

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

91

 DCo

f

ff

o VtV

dt
Cdt

d
LR

tI

1

1

(6.17)

A similar modelling process is again used where the filter current, Eqn. (6.17), is

substituted into the switched NP current equation, Eqn. (6.16), which is then

substituted into the D.E. relating the NP current to the NP voltage, Eqn. (5.7), to

produce the following transient circuit model:

 tVtStSVtStS

dt
Cdt

d
LR

tStS
Cdt

dV

NPDC

f

ff

NP

1221

12

1

1

2

1

(6.18)

This resulting D.E. again differs from those in Chapter 5 by the removal of the ‘-1’

term in both switching functions, thus causing a change in DC term of both of mnF

and mnH harmonics. The new forms of Eqn. (5.24) and (5.26) are:

 omnmn ntFtStS cos12 (6.19)

where mnmnmn ADF , ocmn nm (6.20)

and

 omnmn ntHtStS cos21 (6.21)

 where mnmnmn DAH , ocmn nm (6.22)

Eqn. (5.33) can again be used to model the NPC phase leg when the balance booster

filter is connected to the lower DC link by removing the DC offset within mnF and

mnH harmonics. Note also that the connection of nV to the top DC rail results in a

different change in the DC term of mnH harmonics. However, the end result is similar

and will not be explored further in this chapter.

6.1.3 Application of the Superposition of Phase Leg Models to obtain D.E.s for the

Different Cases of a 3-Phase NPC Converter.

The differential equation for the topological cases shown in Table 6-1 can be

obtained by applying the superposition principle as shown below for the various

cases:

6.1 MODELLING THE THREE-PHASE NPC [82]

92

Case 1 (ZL-F): The phase legs of this case are connected to a floating 3-phase wye-

connected load. As a result, the overall D.E. uses the summation of 3 ‘floating load’

phase leg models derived from Section 6.1.1 (denoted by the subscript ‘flt’), viz:

LZZ

cfltNPbfltNPafltNPtotalNP

dt

tdV

dt

tdV

dt

tdV

dt

tdV

,,,,,,_
 (6.23)

where each phase leg’s D.E. is a summation of individual D.E.s representing each

particular harmonic frequency. Their evaluation results in time constants for every

harmonic of:

1 ,,,,,,,,,,,,

_ 111

m

NP

n ZcfltmnNPZbfltmnNPZafltmnNP

totalNP
tV

dt

tdV

LLL

 (6.24)

The time constants are then summed across all the harmonic frequencies and phase

legs to derive a final time constant. Note that if the phase leg’s load elements are

identical, the balancing time constants produced will be the same. Hence the analysis

process can be simplified by multiplying the result of one phase leg by 3, viz:

 tV

tV
dt

tdV

NP

ZfltphaseNP

m

NP

n ZafltmnNP

totalNP

L

L

,,3,

1 ,,,,

_

1

1
3

 (6.25)

Case 2 (ZL-NP): The phase legs of this case are connected to the NP. As a result, the

overall D.E. uses the ‘NP’ phase leg model derived from Chapter 5 (denoted by the

subscript ‘4w’), and summed across the phases, to give:

 tV

tV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

NP

ZwphaseNP

m

NP

n ZcwmnNPZbwmnNPZawmnNP

ZZ

cwNPbwNPawNPtotalNP

L

LLL

L

,4,3,

1 ,,4,,,,4,,,,4,,

,4,,4,,4,_

1

111

 (6.26)

Case 3 (ZL-F, BB-F): The phase legs of this case are connected to a floating 3-phase

wye-connected load along with a floating 3-phase wye-connected balance booster.

As a result, the overall D.E. superpositions are: a) the ‘floating load’ phase leg model

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

93

derived from Section 6.1.1 with a RL load and b) the same ‘floating load’ model with

only a balance booster, viz:

 tV

tV

tV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

NP

ZfltphaseNPZfltphaseNP

m

NP

n ZcfltmnNPZbfltmnNPZafltmnNP

m

NP

n ZcfltmnNPZbfltmnNPZafltmnNP

ZZ

cfltNPbfltNPafltNP

ZZ

cfltNPbfltNPafltNPtotalNP

BBL

BBBBBB

LLL

BB

L

,,3,,,3,

1 ,,,,,,,,,,,,

1 ,,,,,,,,,,,,

,,,,,,

,,,,,,_

11

111

111

 (6.27)

Case 4 (ZL-NP, BB-NP): In this case a 4
th

 wire is used to connect the star-points of

the load and balance booster to the NP. As a result, the overall D.E. superpositions

are:

a) the ‘NP’ phase leg model derived from Chapter 5 with a RL load (LZZ) and

b) the same ‘NP’ model with only a balance booster (BBZZ), viz:

 tV

tV

tV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

NP

ZwphaseNPZwphaseNP

m
NP

n ZcwmnNPZbwmnNPZawmnNP

m
NP

n ZcwmnNPZbwmnNPZawmnNP

ZZ

cwNPbwNPawNP

ZZ

cwNPbwNPawNPtotalNP

BBL

BBBBBB

LLL

BB

L

,4,3,,4,3,

1 ,,4,,,,4,,,,4,,

1 ,,4,,,,4,,,,4,,

,4,,4,,4,

,4,,4,,4,_

11

111

111

 (6.28)

Case 5 (ZL-F, BB-NP): The phase legs of this case are connected to a floating 3-

phase wye-connected load along with a 3-phase wye-connected balance booster with

its neutral connected to the NP. As a result, the overall D.E. superpositions are:

6.1 MODELLING THE THREE-PHASE NPC [82]

94

a) the ‘floating load’ phase leg model from Section 6.1.1 with a RL load (LZZ)

and

b) the ‘NP’ model with only a balance booster from Chapter 5 (BBZZ), viz:

 tV

tV

tV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

NP

ZwphaseNPZfltphaseNP

m
NP

n ZcwmnNPZbwmnNPZawmnNP

m
NP

n ZcfltmnNPZbfltmnNPZafltmnNP

ZZ

cwNPbwNPawNP

ZZ

cfltNPbfltNPafltNPtotalNP

BBL

BBBBBB

LLL

BB

L

,4,3,,,3,

1 ,,4,,,,4,,,,4,,

1 ,,,,,,,,,,,,

,4,,4,,4,

,,,,,,_

11

111

111

 (6.29)

Case 6 (ZL-F, BB-VDC): The phase legs of this case are connected to a floating 3-

phase wye-connected load along with a 3-phase wye-connected balance booster with

its neutral connected to the lower DC rail. As a result, the overall D.E. superpositions

are:

a) the ‘floating load’ phase leg model derived from Section 6.1.1 for the RL load and

b) the DC-link-connected balance booster (denoted by the subscript ‘DC’) from

Section 6.1.2 for the balance booster (BBZZ), viz:

 tV

tV

tV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

dt

tdV

NP

ZDCphaseNPZfltphaseNP

m

NP

n ZcDCmnNPZbDCmnNPZaDCmnNP

m

NP

n ZcfltmnNPZbfltmnNPZafltmnNP

ZZ

cDCNPbDCNPaDCNP

ZZ

cfltNPbfltNPafltNPtotalNP

BBL

BBBBBB

LLL

BB

L

,,3,,,3,

1 ,,,,,,,,,,,,

1 ,,,,,,,,,,,,

,,,,,,

,,,,,,_

11

111

111

 (6.30)

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

95

6.2 Matching Balance Booster Filter Losses.

The above analytical model now allows the natural balancing performance of the

3-phase topology variants to be explored in terms of modulation depth, carrier

frequency, fundamental frequency, load power factor angle and load magnitude. The

nominal parameters for the 3-phase NPC investigated are listed in Table 6-2. The

design of the balance boosters has been presented earlier in Section 5.5 where the

inductance, L, and capacitance, C, parameters were varied to achieve resonance at

the switching frequency of the converter, while the resistance, R of the balance

booster was varied according to the performance desired.

However, before proceeding with this analysis, the balance booster losses for the

alternative configurations of a floating neutral and a DC linked balance booster

impedance need to be matched, to provide a consistent baseline for the balancing

comparison. These losses were balanced by iteratively varying the balance booster’s

resistance, BBR and then numerically evaluating the balance booster currents to

determine the balance booster power loss.

The balance booster RMS currents were calculated by evaluating:

2
)(0

 m n
mnBB

BB

i

RMSI

(6.31)

where the balance booster currents, mnBBi at a particular harmonic frequency, mn

are dependent on the topology, and are defined as:

a) Floating Neutral,

 mnBB

mncmnbmna
mnBB

Z

VVV
i

3

)()()(2
 (6.32)

b) Linked Balance Boosters i.e. 4-wire and balance booster linked to the DC link.

 mnBB

mno
mnBB

Z

V
i

)(
 (6.33)

Table 6-2 shows the results of these calculations by specifying the resistance of

the balance boosters for each case. Figure 6.2 shows the resulting balance booster

currents per phase leg as a function of converter modulation depth for the same filter

loss. From this figure, it can be seen that the ‘4-wire’ linked configurations requires

less balance booster currents for the same power loss. This means the ‘4-wire’ is a

more lossy topology and hence a higher resistance is required to equalise its losses. A

lossier balance booster will generally improve balancing performance, however

6.3 ANALYTICALLY CALCULATED NATURAL BALANCING PERFORMANCE OF 3-

PHASE NPC CONVERTER

96

further numerical studies are required to determine the best ‘balancing

performance/watt’ or ‘balancing performance/efficiency loss’. For example,

eventually, there is a tradeoff point where the semiconductor size has to be increased

to accommodate the higher balancing currents caused by a lossier balance booster.

Using the parameters listed in Table 6-2, the apparent power, S, of the RL load

was calculated as 2215 VA. The balance booster filters were then targeted to

consume less than 5% of the load (as a reasonable choice). Consequently, they were

required to consume less than 130W, and their resistances were set accordingly.

Figure 6.3 shows the overall balance booster losses for the 3-phase NPC converter

with resistances set as per Table 6-2, as a function of converter modulation depth.

With the losses of the two alternative balance booster arrangements now equalised as

shown in Figure 6.3 the investigation of the natural balancing performance of the

various load alternatives in Figure 6.1 can proceed.

6.3 Analytically Calculated Natural Balancing Performance of 3-Phase NPC

Converter

Figure 6.4 shows how the natural balancing time constant varies with modulation

depth for all the load alternatives listed in Figure 6.1, where a larger time constant

represents a poorer natural balancing response (note also the log scale on the vertical

axis). From these results it can be seen that the most common ‘3-wire’ load (Case 1

(ZL-F)) for a 3-phase converter has the slowest balancing response. If the load’s

Table 6-2: 3-phase NPC converter parameters for balancing simulations.

Parameter Value

Nominal DC link 360 V

Capacitor size 4200 µF

Load Resistance 11 ohms

Load Inductance 44.4 mH

Fundamental Frequency (fo) 50 Hz

Carrier Frequency (fc) 5000 Hz

Balance Booster Resistance

13.8 ohms (Floating)

138 ohms (4-wire & DC linked)

15.1 ohms (experimental Floating)

Balance Booster Inductance 992µH

Balance Booster Capacitance 970nF

Total number of carriers considered, m 3

Total number of sidebands considered, n 20

Modulation depth 0.9

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

97

neutral point, LnV , is available and can be connected to the converter’s NP node

(Case 2 (ZL-NP)), the natural balancing response increases by more than an order of

magnitude.

Figure 6.2: Balance booster currents versus modulation depth.

Figure 6.3: Balance booster power loss versus modulation depth.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

10
0

10
1

Modulation depth

IB
B

 (
A

)

Floating

Linked

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-1

10
0

10
1

10
2

10
3

X: 0.4407

Y: 128.9

Modulation depth

P
lo

s
s
 (

W
)

Floating

Linked

6.3 ANALYTICALLY CALCULATED NATURAL BALANCING PERFORMANCE OF 3-

PHASE NPC CONVERTER

98

Alternatively, if the load’s neutral point is unavailable, for loads such as motors, a

balance booster with a floating neutral can be used (Case 3 (ZL-F, BB-F)) to achieve

a similar improvement in balancing response, albeit with a reduced benefit at

modulation depths above 0.7. The performance at higher modulation depths can be

also be improved by connecting both the load’s and balance booster’s neutral point to

the converter’s NP (Case 4 (ZL-NP, BB-NP)). However, the improvement over Case

2 (ZL-NP) is small, because the load impedance magnitude is already small relative

to the balance booster’s impedance, thus rendering the balance booster less effective.

Alternatively, only the balance booster’s NP can be either connected to the

converter’s NP (Case 5 (ZL-F, BB-NP)) or either of the DC rails (Case 6 (ZL-F, BB-

VDC)), to gain a moderate improvement in balancing performance (both alternatives

have a mathematically identical response).

Note that in all cases, the balancing performance degrades at very low modulation

depths. This is because low modulation depths produce low voltages and hence low

balancing currents. Thus there is little restorative force available to return the NP

voltage to zero. Furthermore it should be remembered that the balance booster

resistance for Case 3 (ZL-F, BB-F) has a significantly smaller resistance to maintain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
-1

10
0

10
1

10
2

Modulation depth

Case 1 (ZL-F)

Case 2 (ZL-NP)

Case 3 (ZL-F, BB-F)

Case 4 (ZL-NP, BB-NP)

Case 5 (ZL-F, BB-NP)

Case 6 (ZL-F, BB-VDC)

Figure 6.4: Natural balancing time constant versus modulation depth.

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

99

a matching power loss. This smaller resistance is what makes this filter configuration

as effective as a neutral point connected topology, despite the reduced harmonic

currents that are available to naturally balance the NP voltage with a floating neutral

load.

Figure 6.5 shows the change in natural balancing behaviour as the fundamental

frequency increases. In general, balancing performance reduces with the increase of

the fundamental frequency, as the load impedance increases and the balancing

harmonic currents reduce accordingly. However, it can been seen from Figure 6.5

how the response of load topologies with a balance booster filter flattens to a

constant value, as the balance booster filter contribution takes over from the primary

load impedance contribution as the fundamental frequency increases.

Figure 6.6 shows how the natural balancing time constant varies linearly with

capacitor size regardless of the load/balance booster topology. This result is expected

since the balancing differential equation response of a phase leg e.g. Eqn. (5.33) is

inversely proportional to the capacitance of the DC link bus.

Figure 6.7 shows the effect of load power factor angle on the converter’s natural

balancing performance. As the load power factor angle increases, the natural

balancing response of the floating neutral load (Case 1 (ZL-F)) deteriorates,

asymptotically decreasing to no benefit at all (i.e. an infinite time constant) as the

load power factor angle approaches 90 degrees. This degradation is substantially

mitigated by installing a balance booster filter, irrespective of whether its neutral is

floating or connected to the converter NP (Cases 3 (ZL-F, BB-F), 5 (ZL-F, BB-NP)

and 6 (ZL-F, BB-VDC)), because the balance booster filter provides a relatively

constant NP restoring force independently of the load power factor.

However, when the load neutral point is connected to the NP (Cases 2 (ZL-NP) and 4

(ZL-NP, BB-NP)), the natural balancing response improves with increasing load

power factor, because the neutral point connection of the load allows baseband

common mode currents to flow back into the converter NP. The model presented in

this thesis breaks down for power factor angles above 70 degrees for this load

combination and its results should be discarded. This is because actual balancing

response is a damped 2
nd

 order response because of resonance between the load

(inductive) impedance and the converter’s DC bus capacitors. The first order model

developed in this thesis is incapable of adequately modelling a 2
nd

 order response

near to its resonance region where the damping decreases.

6.3 ANALYTICALLY CALCULATED NATURAL BALANCING PERFORMANCE OF 3-

PHASE NPC CONVERTER

100

0 50 100 150 200 250

10
-1

10
0

10
1

10
2

Fundamental Frequency (Hz)

Case 1 (ZL-F)

Case 2 (ZL-NP)

Case 3 (ZL-F, BB-F)

Case 4 (ZL-NP, BB-NP)

Case 5 (ZL-F, BB-NP)

Case 6 (ZL-F, BB-VDC)

Figure 6.5: Natural balancing time constant versus fundamental frequency.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Capacitor size (F)

Case 1 (ZL-F)

Case 2 (ZL-NP)

Case 3 (ZL-F, BB-F)

Case 4 (ZL-NP, BB-NP)

Case 5 (ZL-F, BB-NP)

Case 6 (ZL-F, BB-VDC)

Figure 6.6: Natural balancing time constant versus capacitor size, C.

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

101

0 10 20 30 40 50 60 70 80 90
10

-2

10
-1

10
0

10
1

10
2

10
3

Load angle (Deg)

Case 1 (ZL-F)

Case 2 (ZL-NP)

Case 3 (ZL-F, BB-F)

Case 4 (ZL-NP, BB-NP)

Case 5 (ZL-F, BB-NP)

Case 6 (ZL-F, BB-VDC)

Figure 6.7: Natural balancing time constant versus load power factor angle.

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

Load magnitude (ohm)

Case 1 (ZL-F)

Case 2 (ZL-NP)

Case 3 (ZL-F, BB-F)

Case 4 (ZL-NP, BB-NP)

Case 5 (ZL-F, BB-NP)

Case 6 (ZL-F, BB-VDC)

Figure 6.8: Natural balancing time constant versus load magnitude.

6.4 EXPERIMENTAL RESULTS

102

Finally, Figure 6.8 shows how the natural balancing time constant varies with load

magnitude. The relationship is initially linear, until the load impedance becomes

larger than the balance booster filter impedance (where this filter is included).

Beyond this point, the balancing/impedance relationship flattens to a flat line.

In general, a ‘4-wire’ load where load/balance booster’s neutral is connected to

the converter’s NP (Cases 2 (ZL-NP) and 4 (ZL-NP, BB-NP)) provides the fastest

balancing performance, provided this connection is allowable for the application.

Otherwise, a balance booster filter connected in parallel with the load with a floating

neutral (Case 3 (ZL-F, BB-F)) provides the next best balancing performance,

providing the filter resistance is sized to have the same power losses as its NP

connected counterpart.

6.4 Experimental Results

The natural balancing concepts and simulation results presented in this chapter

were confirmed on an experimental NPC converter with the parameters listed in

Table 6-2. The system is described in Chapter 9 and was operated in open loop

constant voltage mode using PD modulation. Two load configurations were

experimentally investigated, being

a) a ‘3-wire’ load with floating neutral, initially without a balance booster (Case 1

(ZL-F)), and subsequently with a balance booster (Case 3 (ZL-F, BB-F)).

b) a ‘4-wire’ load with neutral returned to NP, without the balance booster (Case 2

(ZL-NP)). This alternative was chosen because the low power balance booster

does not provide much improvement in balancing performance (i.e. Case 4 (ZL-

NP, BB-NP)’s calculated performance as presented in Section 6.3).

The experimental balance booster was tuned to 5100 Hz, just off centre from the first

carrier group harmonics at 5000 Hz.

The natural balancing response was tested by connecting a resistance between the

NP and the lower DC bus voltage rail to create an unbalanced voltage across the bus

capacitors as a starting point. The balancing response was then initiated by removing

the resistance from the circuit.

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

103

6.4.1 Experimental Results for 3-Wire Load, 3-Phase NPC (Cases 1 (ZL-F) & 3 (ZL-

F, BB-F))

Figure 6.9 to Figure 6.12 show the NPC converter voltages and currents under

steady state continuous operation for Cases 1 & 3. Figure 6.9 shows the switched

output voltage of one phase leg of the inverter, where the expected three switched

voltage levels can be clearly seen. Figure 6.10 shows the switched line-to-line output

voltage, with the characteristic 5 level switched voltage pattern produced by PD

modulation of a NPC converter. Figure 6.11 shows the current flowing out of one

switched phase leg, together with the three load phase currents. The additional

harmonic currents flowing through the switch because of the balance booster filter

load can be clearly seen in this result. Figure 6.12 shows the residual steady state

triplen ripple in the NP caused by the modulation strategy, which cannot be

eliminated by the natural balancing strategy.

Figure 6.13 shows the resultant natural balancing response for a floating neutral

load without a balance booster filter (Case 1 (ZL-F)), while Figure 6.15 shows the

matching response with a floating neutral balance booster filter (Case 3 (ZL-F, BB-

F)). In both cases there is a very close match between theory, simulation and

experimental results. The results also confirm the extremely long natural balancing

time constant of the floating neutral load without the balancing filter, with the bus

capacitor voltages taking nearly 10 seconds to restore to a balanced condition. This

response is unacceptably slow for most practical applications. On the other hand, the

inclusion of the balancing filter, has improved the natural balance response to less

than 1.5 seconds, which is a much more attractive result.

Figure 6.14 and Figure 6.16 show the inverse time constants for each of the

individual harmonics for Case 1 (ZL-F) and Case 3 (ZL-F, BB-F). Matching numeric

values are listed in Table 6-3 and Table 6-4. These time constants are calculated by

evaluating Eqn. (6.13) across all three phase legs for each individual harmonic. It can

clearly be seen from Figure 6.14 how natural balancing depends only on the main R-

L load, since the only significant inverse time constants are in the baseband harmonic

region. In contrast, as shown in Figure 6.16, the balance booster creates additional

inverse time constants near to the switching frequency. The overall time constants

determined by summing the individual harmonic inverse time constants match well

with the experimental results, as also shown in Table 6-3 and Table 6-4.

6.4 EXPERIMENTAL RESULTS

104

Figure 6.9: Experimental NPC - Switched Phase Leg Voltage, Case 1 (ZL-F) & 3

(ZL-F, BB-F) (M=0.9)

Figure 6.10: Experimental NPC - Switched Line to Line voltage, Case 1 (ZL-F) &

3 (ZL-F, BB-F) (M=0.9)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-200

-150

-100

-50

0

50

100

150

200
P

h
a
s
e
 V

o
lt
a
g
e
 (

V
)

Time (s)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-400

-300

-200

-100

0

100

200

300

400

L
in

e
 t

o
 l
in

e
 V

o
lt
a
g
e
 (

V
)

Time (s)

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

105

Figure 6.11: Experimental NPC - Switch and Phase leg currents for floating neutral

load with balance booster, Case 3 (ZL-F, BB-F) (M=0.9)

Figure 6.12: Experimental NPC – steady state NP voltage for floating neutral load

without balance booster, Case 1 (ZL-F) & 3 (ZL-F, BB-F) (M=0.9)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-15

-10

-5

0

5

10

15

C
u
rr

e
n
t

(A
)

Time (s)

Switch B current

Load current A

Load current B

Load current C

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

N
P

 V
o
lt
a
g
e
 (

V
)

Time (s)

6.4 EXPERIMENTAL RESULTS

106

Figure 6.13: Experimental natural balance response with a floating neutral load and

without a balance booster, Case 1 (ZL-F) (M=0.9).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-4

10
-3

10
-2

10
-1

10
0

The (dV/dt) = 1/tau of individual harmonics

Figure 6.14: Combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each individual

harmonic (1/tau) without a balance booster filter, Case 1 (ZL-F).

0 2 4 6 8 10 12 14 16 18 20
-30

-25

-20

-15

-10

-5

0

5

10

Time (seconds)

N
e
u
tr

a
l
P

o
in

t
V

o
lt
a
g
e

Without BB

Experimental

Simulation

Analytical

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

107

Figure 6.15: Experimental natural balance response with floating neutral load and

balance booster filter, Case 3 (ZL-F, BB-F) (M=0.9).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-4

10
-3

10
-2

10
-1

10
0

The (dV/dt) = 1/tau of individual harmonics

Figure 6.16: The combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each

individual harmonic (1/tau) with a balance booster filter, Case 1 (ZL-F).

0 0.5 1 1.5 2 2.5 3 3.5 4
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

N
e
u
tr

a
l
P

o
in

t
V

o
lt
a
g
e
 (

V
)

Time (s)

Experimental

Simulation

Analytical

6.4 EXPERIMENTAL RESULTS

108

6.4.2 Experimental Results for 4-Wire Load, 3-Phase NPC (Case 2 (ZL-NP))

Figure 6.17 to Figure 6.22 show matching experimental results for the 4-wire load

with the neutral connected back to the NP point (Case 2 (ZL-NP)). The switched

voltage waveforms in Figure 6.17 and Figure 6.18 are the same as for Cases 1 (ZL-F)

& 3 (ZL-F, BB-F), reflecting that the same open loop PD modulation strategy has

been used. Figure 6.19 shows the phase load currents and the harmonic current that

returns through the 4
th

 wire to the NP. This harmonic current is the primary natural

balancing driver. Figure 6.20 shows a similar unavoidable level of NP voltage ripple

as before.

The very fast balancing response of Case 2 (ZL-NP) can be seen in Figure 6.21,

where the unbalanced voltage is reduced within 0.25s. Note that this balancing

response is now so strong that the initial unbalance voltage deviates to only -9V with

the same unbalancing resistor as before. Figure 6.22 and Table 6-5 identify the

individual harmonic balancing time constants, where it can be seen that the 4-wire

connection creates a very strong DC balancing component which dominates the

balancing response of this load connection and explains its excellent performance.

The overall calculated time constant again matches well with the experimental result,

as listed in as listed in Table 6-5.

Table 6-3: Numerical values for significant harmonics shown in Figure 6.14

Harmonic frequency Magnitude (1/tau) Time constant, tau (s)

100 0.3187

200 0.003545

Sum of harmonics 0.322245 3.103

Table 6-4: Numerical values for significant harmonics shown in Figure 6.16.

Harmonic frequency Magnitude (1/tau) Time constant, tau (s)

100 0.3188

200 0.003568

4750 0.004844

4950 0.7516

5050 0.7655

5250 0.005311

Sum of harmonics 1.9108 0.5233

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

109

Figure 6.17: Experimental NPC - Switched Phase Leg Voltage, Case 2 (ZL-NP)

(M=0.9)

Figure 6.18: Experimental NPC - Switched line to line voltage, Case 2 (ZL-NP)

(M=0.9)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-200

-150

-100

-50

0

50

100

150

200

P
h
a
s
e
 V

o
lt
a
g
e
 (

V
)

Time (s)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-400

-300

-200

-100

0

100

200

300

400

L
in

e
 t

o
 l
in

e
 V

o
lt
a
g
e
 (

V
)

Time (s)

6.4 EXPERIMENTAL RESULTS

110

Figure 6.19: Experimental NPC - Switch and Phase leg currents for 4-wire load

without balance booster, Case 2 (ZL-NP) (M=0.9)

Figure 6.20: Experimental NPC – Steady state NP voltage for 4-wire load without

balance booster, Case 2 (ZL-NP) (M=0.9)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-15

-10

-5

0

5

10

15

C
u
rr

e
n
t

(A
)

Time (s)

4th wire current

Load current A

Load current B

Load current C

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
P

 V
o
lt
a
g
e
 (

V
)

Time (s)

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

111

Figure 6.21: Experimental natural balance response with 4-wire load without balance

booster filter, Case 2 (ZL-NP) (M=0.9).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

X: 0

Y: 10.66

The (dV/dt) = 1/tau of individual harmonics

Figure 6.22: The combined 3-phase (dVa/dt+ dVb/dt+ dVc/dt) result of each

individual harmonic or (1/tau) for a 4-wire load, Case 2 (ZL-NP).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

-8

-6

-4

-2

0

2

N
e
u
tr

a
l
P

o
in

t
V

o
lt
a
g
e
 (

V
)

Time (s)

Experimental

Simulation

Analytical

6.5 EXPERIMENTAL VERIFICATION OF NATURAL BALANCING WITH CSVPWM

112

6.4.3 Experimental Results for High-Loss Balance Booster with Floating Neutral

Load

An additional experiment was conducted with a high-loss balance booster for

Case 3 (ZL-F, BB-F), where the balance booster’s resistance, RBB was set to 2.3

ohms. The results are shown in Figure 6.23 and Figure 6.24. Figure 6.23 now shows

the very fast balancing response of 0.2 seconds. However, the disadvantage of this

booster filter design is shown in Figure 6.24 where the significant balance booster

harmonic currents that flow from the switched phase leg substantially overshadow

the 3-phase load currents. These large currents are simply due to the low balance

booster resistance.

6.5 Experimental Verification of Natural Balancing with CSVPWM

It is well known that CSVPWM and SVM causes the neutral of the 3-phase load,

LnV , to oscillate at 3 times the fundamental frequency with respect to the positive and

negative DC bus voltages, in order to obtain a 15 per cent increase in the modulation

depth [61]. Consequently, a 4-wire load configuration such as Case 2 (ZL-NP) & 4

(ZL-NP, BB-NP)cannot be used with CSVPWM because the 4
th

 wire connection will

prevent this triplen oscillation. However, CSVPWM should be compatible with

Cases 1 (ZL-F), 3 (ZL-F, BB-F), 5 (ZL-F, BB-NP) and 6 (ZL-F, BB-VDC), since

these load configurations all have a load with a floating neutral.

To confirm this expectation, further experimental tests were conducted for Case 3

(ZL-F, BB-F) when the NPC inverter was modulated with CSVPWM. Figure 6.25 to

Figure 6.29 show the results. Note that a theoretical analytical solution was not

derived for this modulation strategy because of the additional complexity of the

harmonic solution.

Table 6-5: Numerical values for significant harmonics shown in Figure 6.22

Harmonic frequency Magnitude (1/tau) Time constant, tau (s)

0 10.66

100 0.3187

Sum of harmonics 10.9813 0.09106

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

113

Figure 6.23: Experimental natural balance response with floating neutral load with

high loss balance booster filter, Case 3 (ZL-F, BB-F) (M=0.9).

Figure 6.24: Experimental NPC - Switch and Phase leg currents for floating neutral

load with high loss balance booster, Case 3 (ZL-F, BB-F) (M=0.9)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-30

-25

-20

-15

-10

-5

0

5

10

Time (seconds)

N
e
u
tr

a
l
P

o
in

t
V

o
lt
a
g
e

With BB

Experimental

Analytical

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-20

-15

-10

-5

0

5

10

15

20

Time (s)

C
u
rr

e
n
t

(A
)

Switch A current

Load A current

Load B current

Load C current

6.5 EXPERIMENTAL VERIFICATION OF NATURAL BALANCING WITH CSVPWM

114

Figure 6.25 and Figure 6.26 show the phase leg and line-to-line switched output

voltages of the inverter, which are very similar to those of direct PD modulation as

shown earlier. Indeed, the differences between PD PWM and CSVPWM are very

slight, and usually cannot be identified from the time domain switched waveforms.

Figure 6.27 shows the switched phase leg output current and the load currents, which

are also very similar to those shown previously for Case 3 (ZL-F, BB-F) in Figure

6.11. Once again, this is entirely expected since the switching harmonics for

CSVPWM are essentially the same as for direct PD, differing only slightly in

magnitude. Figure 6.28 shows the unavoidable residual triplen NP ripple for

CSVPWM, which is also much the same as before.

Figure 6.29 is the more interesting result, showing the natural balancing response

for CSVPWM with a floating neutral balance booster filter. The settling time has

now reduced to about 1.1 seconds, in contrast to the result for PD PWM of 1.6

seconds shown in Figure 6.15 with the same load situation. This improvement is

directly because of the changes in switching harmonic magnitudes caused by

CSVPWM, which slightly increase the harmonic currents flowing through the

balance booster filter, and hence improve the natural balancing response for this

modulation strategy. So, in summary, CSVPWM is compatible with 3-wire floating

neutral loads only, and has a faster balancing performance than PD PWM when

integrated with the same balance booster filter.

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

115

Figure 6.25: Experimental Phase Leg Voltage (M=0.9)

Figure 6.26: Experimental Switched Line to Line Voltage (M=0.9)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-200

-150

-100

-50

0

50

100

150

200

P
h
a
s
e
 V

o
lt
a
g
e
 (

V
)

Time (s)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-400

-300

-200

-100

0

100

200

300

400

L
in

e
 t

o
 l
in

e
 V

o
lt
a
g
e
 (

V
)

Time (s)

6.5 EXPERIMENTAL VERIFICATION OF NATURAL BALANCING WITH CSVPWM

116

Figure 6.27: Switch and Phase leg currents for 3-phase NPC (M=0.9)

Figure 6.28: Experimental NP voltage of the NPC converter (M=0.9)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-15

-10

-5

0

5

10

15

C
u
rr

e
n
t

(A
)

Time (s)

Switch B current

Load current A

Load current B

Load current C

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
P

 V
o
lt
a
g
e
 (

V
)

Time (s)

 6 NATURAL BALANCING OF THREE PHASE NPC CONVERTERS

117

6.6 Summary

This chapter has used superposition of the NPC phase-leg model to successfully

predict the balancing performance of 3-phase converter and its variants, with and

without a balance booster filter. The results have been experimentally verified. The

model shows a very poor natural balancing performance as the load power factor

angle approaches 90 degrees with only a load connected, but this result can be

significantly improved by including a balance booster filter. A further improved

balancing response can also be achieved by connecting the load’s or/and balance

booster’s neutral node to the converter neutral point. Note also that there is no

difference between connecting the balance booster’s neutral to either the NP or one

of the DC link buses.

Note that unbalanced loads can also produce natural balancing, since they are

identical to the 4-wire case except that the three loads have different balancing time

constants. Alternatively, they be analysed as three single-phase configurations.

The chapter concludes by exploring the natural balancing response of CSVPWM ,

identifying that it is only compatible with a 3-wire load configuration, but does

achieve an improved natural balancing response compared to PD modulation when a

balance booster filter is used.

Figure 6.29: Balancing performance of CSVPWM for Case 3 (ZL-F, BB-F)

(M=0.9)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-40

-35

-30

-25

-20

-15

-10

-5

0

5

N
e
u
tr

a
l
P

o
in

t
V

o
lt
a
g
e
 (

V
)

Time (s)

Experimental

Simulation

6.6 SUMMARY

118

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

119

7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

Chapters 4 to 6 of this thesis have examined the performance of both active and

passive (natural balancing) NP control strategies. The results presented in these

chapters show that while the natural balancing response can be quite strong with a

balance booster filter, it is still typically slower than what can be achieved with an

active balancing strategy. However, both strategies have their advantages and

disadvantages. For example, active balancing strategies perform worse at low power

factor loads and with smaller DC link capacitances, whereas the passive balancing

response is much less affected by such parameters since it is primarily driven by the

switching voltage harmonics (particularly when a balance booster filter is added).

A further issue associated with NP control is that irrespective of the NP control

strategy that is used, there will always be some degree of cyclic NP voltage

disturbance in any practical system. This disturbance can range from NP fluctuation

at the primary switching frequency, to low frequency variations caused by the

medium space vector usage. Preferably, such variations should be accommodated by

the modulation strategy to minimise output voltage distortion because of unbalanced

DC link voltages.

Recent work has shown how NP voltage variations can be accommodated by

rescaling the PWM reference signals to instantaneously take account of unbalanced

DC link voltages [85][12][86][87]. Of these schemes, the last three are vector

modulation approaches that vary the available modulation vector magnitudes to

match the DC link voltages, and then apply these vectors to achieve NP control in

their particular ways. Hence they are not relevant to passive NP balancing. However,

ref [85] describes a means of varying the references for SPWM to compensate for

unbalanced DC link voltages. This chapter now explores how this SPWM

compensation strategy can be adapted to suit CSVPWM and then used to improve

the natural NP voltage balancing process itself. The resulting performance is then

compared against the performance of the active NP balancing strategies presented in

Chapter 4, to show that under many conditions, natural NP balancing can achieve a

performance that is very similar to active NP balancing.

7.1 CSVPWM WITH FEEDFORWARD DC LINK COMPENSATION

120

7.1 CSVPWM with Feedforward DC Link Compensation

Centered Space Vector PWM (CSVPWM) extends SPWM to replicate the

modulation produced by a centered space vector modulator. It achieves this by

adding a non-linear zero-offset [59], as shown in Figure 7.1.

The process of generating the CSVPWM offset for a 3-level system is as follows:

Initially, the sinusoidal references are generated identically to SPWM:

3

2
cos

3

2
cos

cos

tMV

tMV

tMV

C

B

A

(7.1)

Then, according to [59], the 2-level CSVPWM offset is calculated and applied, viz:

 CBACBAshift VVVVVVV ,,min,,max5.00.1 (7.2)

shiftCC

shiftBB

shiftAA

VVV

VVV

VVV

'

'

'

 (7.3)

where max() and min() functions find the maximum and minimum of their three

arguments respectively. The references ''' ,, CBA VVV are applicable to a 2-level

converter, but they do not produce the required equal duty cycle split when applied to

a 3-level converter. To solve this an additional offset calculation and is employed as

follows. Firstly, shifted phase voltages are calculated:

0.1mod

0.1mod

0.1mod

'''

'''

'''

CC

BB

AA

VV

VV

VV

 (7.4)

where mod is the remainder after division process. This result is used to calculate the

additional zero sequence required, as:

 ''''''''''''
_ ,,min,,max5.05.0 CBACBAshiftadd VVVVVVV (7.5)

The final reference waveform sent to the modulator is defined as:

shiftaddC
ref

C

shiftaddB
ref
B

shiftaddA
ref
A

VVV

VVV

VVV

_
'

_
'

_
'

 (7.6)

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

121

Using CSVPWM as defined in this way, the balancing properties of DC link

compensation will now be explored.

From Figure 7.1, it can be seen how the zero crossing transitions of the CSVPWM

references transit across the NP zero voltage of the converter when the DC link

voltages are balanced. When the DC link voltages become unbalanced, ref [85]

Figure 7.1: NPC Modulation references for CSVPWM with DC link compensation

with 0% unbalance. (M=0.9)

vx
* +

1 vCt

+
-

vDC

1
vCb

+
-

Top

+-

1 Bottom

S2,x

S1,x

+

1

+

-

vDC

1

+

1

+

Figure 7.2: Block diagram implementation of DC link compensation for NPC [86]

Figure 7.3: Modulation references for CSVPWM with DC link compensation with

50% unbalance. (M=0.9)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-1

-0.5

0

0.5

1

Time (s)

0% unbalance

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-1

-0.5

0

0.5

1

Time (s)

50% unbalance

7.2 INFLUENCE OF CSVPWM DC LINK COMPENSATION ON NATURAL BALANCING

122

proposes how the modulation process should be adjusted by the algorithm shown in

Figure 7.2, by level shifting the references to unipolar values, scaling them by the

unbalanced DC link voltages, and shifting them back to bipolar values for the carrier

comparison. Figure 7.3 shows how this strategy changes the CSVPWM references

for a 50% voltage unbalance between the upper and lower bus capacitors (upper

capacitor voltage is higher). From this figure, it can be seen how the zero crossing

transitions of the references are now well into the upper modulation region, and how

this region now modulates for much more than 50% of the fundamental cycle. It can

also be seen how the lower voltage region reference has significantly increased offset

steps, which reflect the rescaling of this part of the reference to attempt to better use

the available modulation capability of the reduced lower voltage region.

7.2 Influence of CSVPWM DC Link Compensation on Natural Balancing

7.2.1 Generalised Harmonic Analysis of NP Voltage Control

The 3-phase NPC model derived in the previous chapter will now be used to

investigate the implications for natural NP balancing using the DC link compensated

CSVPWM. In principle, the following analysis could be applied to any of the load

variations shown in Figure 6.1, but in practice only wye load combinations with a

floating neutral are viable for CSVPWM because of the triplen baseband harmonics

that this modulation strategy introduces. Case 3 (ZL-F, BB-F) for the balance booster

filter connection is then chosen because this has been identified as the most effective

natural balancing filter connection in Chapter 6, once the filter resistance is adjusted

for matching power loss for the different connection alternatives.

Adapting from (6.23), the overall natural NP balancing relationship for a wye

connected load driven from a three phase NPC is given by

c

ax m n

nmxNPtotalNP

dt

tdV

dt

tdV

1

,,,_
 (7.7)

where x is the phase leg label and the individual harmonic D.E. is defined according

to (results for phase leg a shown, the other phase legs can be readily derived by

adjusting subscript labels) (note that this equation is the same as Eqn. (6.12) and is

simply repeated here for reference):

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

123

 tVFVHF

nn

ZCdt

tdV

NPmnDCmnmn

mncamnbamn

mnL

mnaNP

2

,

,,

.

coscoscos2

12

1

(7.8)

where mnF and mnH are the magnitudes of the harmonic representations of the sum

and difference of the phase leg switching signals as defined in Eqns. (6.7) and (6.9),

i.e. tStS xx ,1,2 and 1,2,1 tStS xx
.

The DC link capacitance C, load impedance at a particular harmonic frequency,

and the associated cosine terms in the first part of Eqn. (7.8), can now be equated to a

fixed constant
mnaK ,

for each particular harmonic frequency ocmn nm ,

creating the reduced version of:

 tVFVHFK
dt

tdV
NPmnDCmnmnmna

mnaNP

2

,

,,
. (7.9)

which identifies that the derivative of the NP voltage contributed by phase leg a is

determined by the harmonic co-efficient product term mnmn HF . times the DC link

voltage DCV , and the harmonic co-efficient product term
2

mnF times the deviation of

the neutral point voltage away from zero tVNP (recall that the nominal value of

 tVNP is zero). Note that the alternative balance booster filter arrangements shown

in Figure 6.1 only cause the value of
mnaK ,

 to change, and do not affect the primary

relationships between mnF , mnH ,

 tVNP and DCV .

Similar expressions can be developed for the matching contributions of phase legs

‘b’ and ‘c’ to the derivative of the NP voltage, so that across all three phases, the NP

overall voltage derivative can be expressed as

 tVV
dt

dV
NPDC

NP (7.10)

where the gain coefficients and are the summation of the harmonic co-

efficient product terms across all three phase legs, viz:

c

ax m n
mnmnmnx HFK

1
, (7.11)

c

ax m n
mnmnx FK

1

2
, (7.12)

7.2 INFLUENCE OF CSVPWM DC LINK COMPENSATION ON NATURAL BALANCING

124

Equation (7.9) identifies that the derivative of the NP voltage is controlled by mnF

and mnH harmonic representations of the modulation sum and difference signals,

 tStS xx ,1,2 and 1,2,1 tStS xx
 multiplied by the DC bus voltage term, DCV

and the NP voltage term, tVNP , respectively. This result shows that NP voltage

control (i.e. a non-zero derivative) can be achieved either by the multiplication of

mnmn HF . with DCV , or
2

mnF with tVNP . Of these two alternatives, the first product

term is likely to be more significant, since tVV NPDC , and provides a harmonic

explanation for the way in which “active” NP balancing strategies operate – they

continually change the value of mnmn HF . depending on the NP voltage error and

hence drive the error back to zero. On the other hand, the second product term in

Eqn. (7.9) identifies the natural balancing process, where any unbalanced NP voltage

(i.e. 0tVNP) creates a derivative term that naturally reduces this unbalance.

Furthermore, regardless of how any particular modulation or NP control strategy

manipulates the values of mnmn HF . to achieve a balanced NP voltage, adding a

balance booster will always reduce the load magnitude and angle in Eqn. (7.8) thus

increasing the constant term, mnaK , and the and gains in Eqn. (7.10).

7.2.2 Evaluation of NP Control Gains for CSVPWM with DC Link Compensation

Unlike the work presented in Chapters 5 and 6, where an analytical form of the

phase leg switching signals can be obtained for PD PWM, it is much more difficult

to derive analytical solutions for the phase leg switching signals, tS x,1 and tS x,2

when the DC link voltages are not constant. Hence in this chapter, the time varying

switching signals from a detailed simulation are processed using a Fast Fourier

Transformation (FFT) evaluation, to determine values of mnF and mnH at various

operating points. Table 7-1 shows the parameters of the NPC used for this simulation

investigation, which are the same as has been used in previous chapters.

Figure 7.4 and Figure 7.5 show the numerical evaluation of the mnF and mnH

harmonic summations for CSVPWM generated phase leg switching functions

representing mnF and mnH with 0% and 20% NP unbalance respectively. The red

crosses within these figures identify harmonics with negative values magnitudes, to

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

125

allow productive and counterproductive harmonic product terms to be recognised.

(Unproductive product terms will have a negative product value for mnmn HF . . These

terms make a positive derivative contribution to Eqn. (7.10) and thus drive the NP

voltage away from balance.) Figure 7.5 shows the presence of significant additional

baseband and sideband harmonic components for both mnF and mnH , caused by

incomplete harmonic cancellation between the positive and negative half cycle PWM

comparison processes because of the adaptation of the modulation references to

accommodate the unbalanced DC link voltages.

Figure 7.6 and Figure 7.7 show the product result of mnmn HF . and
2

mnF with 0%

and 20% NP unbalance respectively, and a modulation depth of M=0.9. Figure 7.6

confirms that as identified in Section 5.3, Eqn. (5.32), the orthogonal cross-product

mnmn HF . is essentially zero for balanced DC link voltages, but develops significant

harmonic components as the link voltages unbalance, as shown in Figure 7.7.

Furthermore, some of these cross product terms are negative as identified by the red

crosses in Figure 7.7, creating an unbalancing NP driving force as noted above. In

contrast, the
2

mnF product terms are essentially unchanged without and with NP

voltage unbalance, identifying these terms as providing a relatively constant natural

balancing NP restorative force determined primarily by the NP voltage error itself.

Table 7-1: Parameters of the NPC converter.

Parameter Value

Nominal DC link 360 V

Capacitor size 4200 µF

Load Resistance 11 ohms

Load Inductance 44.4 mH

Fundamental Frequency (fo) 50

Carrier Frequency (fc) 5000

Balance Booster Resistance 15.1 ohms

Balance Booster Inductance 992µH

Balance Booster Capacitance 970nF

Total number of carriers considered, m 3

Total number of sidebands considered, n 20

Modulation depth 0.9

7.2 INFLUENCE OF CSVPWM DC LINK COMPENSATION ON NATURAL BALANCING

126

Figure 7.4: Magnitudes of harmonics co-efficients mnF and mnH with

0% NP voltage unbalance. (M=0.9)

Figure 7.5: Magnitudes of harmonics co-efficients mnF and mnH with

20% NP voltage unbalance. (M=0.9)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Real Fmn 0% @ M = 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Imag Fmn 0% @ M = 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Real Hmn 0% @ M = 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Imag Hmn 0% @ M = 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Real Fmn 20% @ M = 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Imag Fmn 20% @ M = 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Real Hmn 20% @ M = 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Imag Hmn 20% @ M = 0.9

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

127

Figure 7.6: Harmonic plot of mnmn HF . and
2

mnF with 0% unbalance. (M=0.9)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Real FHmn 20% @ M = 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Real FFmn 20% @ M = 0.9

Figure 7.7: Harmonic plot of mnmn HF . and
2

mnF with 20% unbalance. (M=0.9)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Real FHmn 0% @ M = 0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

-3

10
-2

10
-1

10
0

Frequency (Hz)

Real FFmn 0% @ M = 0.9

7.2 INFLUENCE OF CSVPWM DC LINK COMPENSATION ON NATURAL BALANCING

128

Figure 7.8 to Figure 7.11 show the effect of a balance booster filter on the NP

balancing gains. Figure 7.8 and Figure 7.9 show the scaling effect of the load

impedance on the gain co-efficient components mn and mn as the harmonic

frequency increases. As could be anticipated, the increasing inductive load

impedance with frequency rapidly rolls off the magnitude of the gain co-efficient

harmonic terms, so that only the baseband harmonics make a significant contribution

to the NP balancing process. In contrast, as shown in Figure 7.10 and Figure 7.11,

the low impedance of the balance booster filter at the first carrier group harmonic

frequencies creates significant gain co-efficient components at these frequencies,

which would be expected to significantly improve the NP balancing process as a

consequence.

Table 7-2 and Table 7-3 shows these effects on the overall and gains for the

NP balancing D.E. Eqn. (7.10), for the two modulation depths of M=0.9 and M=0.1.

From Table 7-2 it can be seen how the active balancing gain increases at high

modulation depths as the NP voltage unbalance increases, even without the presence

of a balance booster filter. In fact, the table shows that the balance booster filter

Table 7-2: Evaluation of NP D.E. balancing gains at M=0.9.

M = 0.9

 DC link comp. DC link comp. and balance booster

% unbalance VNP dt

dVNP

dt

dVNP

20.00% -36 0.423
-0.177 82.5 0.235 -2.605 136.0

15.00% -27 0.320 -0.161 61.9 0.183 -2.558 102.0

10.00% -18 0.221 -0.147 42.4 0.129 -2.523 68.6

5.00% -9 0.123 -0.137 23.3 0.069 -2.504 35.0

0.00% 0 0.024 -0.133 4.4 0.005 -2.495 0.8

Table 7-3: Evaluation of NP D.E. balancing gains at M=0.1.

M = 0.1

 DC link comp. DC link comp. and balance booster

% unbalance VNP dt

dVNP

dt

dVNP

20.00% -36 0.042
-0.042 9.1 0.164 -0.164 35.3

15.00% -27 0.046 -0.046 9.6 0.198 -0.198 40.9

10.00% -18 0.048 -0.045 9.4 0.222 -0.232 44.2

5.00% -9 0.035 -0.021 6.4 0.167 -0.247 32.2

0.00% 0 0.000 -0.001 0.0 -0.005 -0.238 -0.9

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

129

Figure 7.8:
2

mnmn FK and mnmnmn HFK . without balance booster,

0% NP voltage unbalance. M=0.9.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

-K*FFmn - 20% unbalance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

-K*FHmn - 20% unbalance

Figure 7.9:
2

mnmn FK and mnmnmn HFK . without balance booster,

20% NP voltage unbalance, M=0.9.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f

c
h
a
n
g
e
 (

1
/s

)

-K*FFmn - 0% unbalance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f

c
h
a
n
g
e
 (

1
/s

)

-K*FHmn - 0% unbalance

7.2 INFLUENCE OF CSVPWM DC LINK COMPENSATION ON NATURAL BALANCING

130

Figure 7.10:
2

mnmnFK and mnmnmn HFK . with balance booster,

0% NP voltage unbalance. M=0.9.

Figure 7.11:
2

mnmnFK and mnmnmn HFK . with balance booster,

20% NP voltage unbalance, M=0.9.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f

c
h
a
n
g
e
 (

1
/s

)
-K*FFmn - 0% unbalance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f

c
h
a
n
g
e
 (

1
/s

)

-K*FHmn - 0% unbalance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f

c
h
a
n
g
e
 (

1
/s

)

-K*FFmn - 20% unbalance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-2

10
0

Frequency (Hz)

R
a
te

 o
f

c
h
a
n
g
e
 (

1
/s

)

-K*FHmn - 20% unbalance

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

131

actually reduces the active balancing gain under these conditions, because several of

the additional carrier group harmonic gain co-efficients mn are counterproductive as

shown by the sign of the mnmnmn HFK . terms in Figure 7.11 (note that as presented

in this figure, a positive co-efficient term is unproductive). In contrast, the natural

balancing gain is essentially constant irrespective of the NP voltage unbalance,

and simply increases with the presence of the balance booster filter as could be

expected.

Table 7-3 shows matching results for the D.E balancing gains at the low

modulation depth of M=0.1. Without the balance booster filter, the influence of the

active balancing gain is very small, and in this case it is significantly improved by

the addition of the balance booster filter. Once again the natural balancing gain is

constant irrespective of the NP voltage unbalance, but in this case the benefit of the

balance booster filter in increasing the natural balancing gain is less.

Table 7-2 and Table 7-3 also list the overall
dt

dV mnxNP ,, restoring driving force for

the nominal DC link bus voltages and the various listed levels of NP unbalance

ranging from 0% to 20%. From these results, it can be seen that the overall restoring

balance force increases with the level of NP voltage unbalance, and is also

significantly increased when a balance booster filter is added to the load.

Furthermore, since a substantial part of this restoring force comes from the active

balancing response of the unbalanced harmonics created by the DC Link

compensation strategy for CSVPWM, it could be expected that the balancing

response for this system will be significantly better than for the simple passive

balancing response presented in Chapter 6.

Figure 7.12 and Figure 7.13 show the resulting NP voltage balancing response for

the various combinations of natural balancing only, natural balancing with a balance

booster filter, and these two alternatives with the addition of DC link compensation

included into the CSVPWM algorithm. The improvement with DC link

compensation is clear, with a slightly faster settling time at a high modulation depth

(the DC link compensation provides most of the restoring force for this condition,

with the balance booster filter adding a small benefit) and a much faster settling time

at a low modulation depth (where the combination of DC link compensation and a

balance booster filter is much more effective than either alternative individually).

7.3 EXPERIMENTAL VERIFICATION

132

7.3 Experimental Verification

The same experimental system as was used for the results presented in Chapter 6

was used to verify the improved natural balancing response achieved by including

DC link compensation into the CSVPWM algorithm. Figure 7.14 and Figure 7.15

show the resulting balancing responses for a modulation depth of M=0.9 without and

with a balance booster filter. The excellent match achieved between simulation and

experiment fully confirms the analysis and understanding presented in this chapter.

Figure 7.12: Balancing performance of various natural balancing schemes, M=0.9.

0 1 2 3 4 5 6 7 8 9 10
-30

-25

-20

-15

-10

-5

0

5

Time (s)

Simulation comparison at M=0.1

Natural

Balance booster

DC link comp.

Balance booster + DC link comp.

Figure 7.13: Balancing performance of various natural balancing schemes, M=0.1

0 1 2 3 4 5 6 7 8 9 10
-30

-25

-20

-15

-10

-5

0

5

Time (s)

N
e
u
tr

a
l
p
o
in

t
v
o
lt
a
g
e
 (

V
)

Simulation comparison at M=0.9

Natural

Balance booster

DC link comp.

Balance booster + DC link comp.

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

133

Figure 7.14: Neutral Point balancing for CSVPWM with DC link compensation

with RL load only, M=0.9.

Figure 7.15: Neutral Point balancing for CSVPWM with DC link compensation

with RL load and balance booster filter, M=0.9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-30

-25

-20

-15

-10

-5

0

5

N
e
u
tr

a
l
P

o
in

t
V

o
lt
a
g
e
 (

V
)

Time (s)

Experimental

Simulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-25

-20

-15

-10

-5

0

5

N
e
u
tr

a
l
P

o
in

t
V

o
lt
a
g
e
 (

V
)

Time (s)

Experimental

Simulation

7.4 SIMULATION COMPARISON WITH ACTIVE NP BALANCING CONTROLLERS

134

7.4 Simulation Comparison with Active NP Balancing Controllers

To complete this chapter, the natural balancing performance of CSVPWM with

the various combinations of a balance booster filter and DC link voltage

compensation, is now compared against the best “active” strategies that were

explored in Chapter 4. The same methodology and operating conditions as were

presented in Chapter 4 will be used, except that the DC link capacitance is reduced

by a factor of 5 to increase the steady NP voltage ripple, and hence the output voltage

distortion if compensation is not included into the balancing algorithm (as is the case

for the active NP balancing strategies). The various natural balancing strategies

identified from this chapter are:

a) CSVPWM+FF – Feedforward

b) CSVPWM+NB – Natural balancing (Case 1 (ZL-F))

c) CSVPWM+FBB – Floating Balance Booster (Case 3 (ZL-F, BB-F))

d) CSVPWM+LBB – Linked Balance Booster (Case 5 (ZL-F, BB-NP) / Case

6 (ZL-F, BB-VDC))

e) CSVPWM+FF+FBB – Combined Feedforward-Floating Balance Booster

f) CSVPWM+FF+LBB – Combined Feedforward-Linked Balance Booster

Figure 7.16, Figure 7.17, and Figure 7.18 show the NP ripple produced by the

various strategies for three load power factor angles. For all these load power factor

angles, the NP ripple produced by CSVPWM with passive damping strategies is very

similar to the ‘active’ strategies that belong to NTV-based / ‘least control’ group.

This is entirely expected because the passive strategies and these active strategies all

use same modulation strategy - CSVPWM.

Figure 7.19, Figure 7.20, and Figure 7.21 shows the harmonic performance

(NWTHD) of the various NP balancing strategies at 1, 45 and 85 degree load power

factor angles respectively. From these results it can be seen that:

a) Feedforward-based CSVPWM has the best harmonic performance of all the

NP strategies evaluated, and in fact matches the ideal performance of

CSVPWM despite the NP ripple voltage that is present. Once again, this

result is to be expected, since the primary purpose of DC link compensation

for CSVPWM is to eliminate any output voltage distortion that may be

caused by operating with unbalanced DC link voltages.

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

135

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

SPWM+P

CSVPWM+P

CSVPWM+FF

CSVPWM+NB

CSVPWM+FBB

CSVPWM+LBB

CSVPWM+FF+FBB

CSVPWM+FF+LBB

Figure 7.16: Maximum NP deviation versus Modulation depth for load power

factor angle of 1 degree during steady state operation.

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

SPWM+P

CSVPWM+P

CSVPWM+FF

CSVPWM+NB

CSVPWM+FBB

CSVPWM+LBB

CSVPWM+FF+FBB

CSVPWM+FF+LBB

Figure 7.17: Maximum NP deviation versus Modulation depth for load power

factor angle of 45 degree during steady state operation.

7.4 SIMULATION COMPARISON WITH ACTIVE NP BALANCING CONTROLLERS

136

b) Non-Feedforward based strategies show an increasing level of NWTHD as

the load power factor angle increases. This is also to be expected because

these strategies do not compensate for the increasing NP voltage ripple that

occurs as the load power factor reduces, as shown in Figure 7.16 , Figure 7.17

and Figure 7.18.

c) Both ‘active’ CSVPWM+P and CSVPWM+NB strategies create a similar

level of NP ripple However, the active CSVPWM+P method produces a

greater harmonic distortion at lower power factor loads, because it reduces to

Discontinuous PWM (DPWM) under these conditions.

Figure 7.22, Figure 7.23 and Figure 7.24 shows the NP balancing time constant of

both active and passive strategies for load power factor angles of 1, 45 and 85 degree

respectively. Overall, the performance of the ‘passive’ strategies is generally still

slower than their active strategy counterparts, reflecting the fact that they have no

direct objective to reduce the NP unbalance. Closer analysis of these results also

identifies a few more specific features:

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

SPWM+P

CSVPWM+P

CSVPWM+FF

CSVPWM+NB

CSVPWM+FBB

CSVPWM+LBB

CSVPWM+FF+FBB

CSVPWM+FF+LBB

Figure 7.18: Maximum NP deviation versus Modulation depth for load power

factor angle of 85 degree during steady state operation.

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

137

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

SPWM+P

CSVPWM+P

CSVPWM+FF

CSVPWM+NB

CSVPWM+FBB

CSVPWM+LBB

CSVPWM+FF+FBB

CSVPWM+FF+LBB

Ideal 2L CSVPWM

Ideal 3L CSVPWM

Figure 7.19: NWTHD versus Modulation depth for load power factor angle of 1

degree.

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

SPWM+P

CSVPWM+P

CSVPWM+FF

CSVPWM+NB

CSVPWM+FBB

CSVPWM+LBB

CSVPWM+FF+FBB

CSVPWM+FF+LBB

Ideal 2L CSVPWM

Ideal 3L CSVPWM

Figure 7.20: NWTHD versus Modulation depth for load power factor angle of 45

degree.

7.4 SIMULATION COMPARISON WITH ACTIVE NP BALANCING CONTROLLERS

138

a) Natural balancing (CSVPWM+NB) and CSVPWM with Linked BB

(CSVPWM+LBB) is the slowest and 2
nd

 slowest strategy. Both their

performances get worse as the load power factor angle increases.

b) The third slowest strategy is standalone Feedforward CSVPWM

(CSVPWM+FF) is 10 times slower than CSVPWM+P at a 1 degree load

power factor angle. Furthermore its performance further worsens as the

load power factor angle is increased.

c) The fourth slowest strategy is CSVPWM with a floating balance booster

filter (CSVPWM+FBB). It is also around 10 to 15 times slower than active

CSVPWM+P at 1 and 45 degree load power factor angles. However, at an

85 degree load power factor angle, its performance is faster than

CSVPWM+P. The faster Yamanaka’s result should treated with some

caution as it requires the designer to program the strategy in SVM.

d) For all load power factor angles, the combined feedforward and balance

booster configurations are faster than their individual constituents. In fact,

combined Feedforward-Floating BB (CSVPWM+FF+FBB) is the fastest

of all the strategies presented in Chapters 5-7, and is quite competitive to

0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

SPWM+P

CSVPWM+P

CSVPWM+FF

CSVPWM+NB

CSVPWM+FBB

CSVPWM+LBB

CSVPWM+FF+FBB

CSVPWM+FF+LBB

Ideal 2L CSVPWM

Ideal 3L CSVPWM

Figure 7.21: NWTHD versus Modulation depth for load power factor angle of 85

degrees.

 7 PASSIVE NP CONTROL WITH DC LINK COMPENSATION

139

0 0.2 0.4 0.6 0.8 1 1.2

-0.05

0

0.05

0.1

0.15

0.2

0.25

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

SPWM+P

CSVPWM+P

CSVPWM+FF

CSVPWM+NB

CSVPWM+FBB

CSVPWM+LBB

CSVPWM+FF+FBB

CSVPWM+FF+LBB

Figure 7.22: NP control performance versus Modulation depth for load power factor

angle of 1 degree.

0 0.2 0.4 0.6 0.8 1 1.2

-0.05

0

0.05

0.1

0.15

0.2

0.25

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

SPWM+P

CSVPWM+P

CSVPWM+FF

CSVPWM+NB

CSVPWM+FBB

CSVPWM+LBB

CSVPWM+FF+FBB

CSVPWM+FF+LBB

Figure 7.23: NP control performance versus Modulation depth for load power factor

angle of 45 degree.

7.5 SUMMARY

140

active balancing strategies at low to medium modulation ranges and at 1

and 45 degree load power factor angles. At an 85 degree load power factor

angle, its performance becomes better than CSVPWM+P. This is

particularly attractive because it does not produce any harmonic distortion

for this performance.

7.5 Summary

This chapter has shown how passive NP balancing including a balance booster

filter, can be combined with DC Link Compensation using the CSVPWM strategy, to

create a passive NP balancing response that is quite comparable with active NP

balancing controllers under a useful range of operating conditions. One particular

benefit of this strategy is the excellent NP balancing performance that it achieves at

low modulation depths or at low load currents. It also provides very low levels of

harmonic distortion, but still with a quite acceptable level of NP dynamic control

performance, for systems with low DC link capacitances.

0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

Modulation depth

Yamanaka 3kHz

Yamanaka 2kHz

SPWM+P

CSVPWM+P

CSVPWM+FF

CSVPWM+NB

CSVPWM+FBB

CSVPWM+LBB

CSVPWM+FF+FBB

CSVPWM+FF+LBB

Figure 7.24: NP control performance versus Modulation depth for load power factor

angle of 85 degree.

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

141

8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE

COMPARISON

Simulation models of NPC converters have been developed in this thesis to achieve

two objectives. The first of these is to enable a fair comparative evaluation of the

numerous active NP balancing strategies to be conducted, as detailed in Chapter 4,

while the second is to validate the theoretical natural balance models developed in

Chapters 5 to 7. The purpose of this chapter is to describe the simulation models that

were developed to achieve these objectives.

For the comparative evaluation of active balancing strategies presented in Chapter

4, a critical issue was to ensure that the simulation models produced results that were

consistent with the established literature. This chapter will briefly outline the steps

that were adopted to achieve this, and in particular includes:

 A description of how the vector duty cycle calculation method (i.e. the base

modulation process) was implemented.

 A description of the implementation of the vector redundancy calculation

process (i.e. the determination of the 1k and 2k parameters).

 Results showing the simulated performance of a particular strategy against the

original author’s own results for the same conditions as presented in the

published paper.

8.1 Simulation Environment

All of the NPC converter simulation models developed in this thesis utilised the

PSIM power electronics simulator. Figure 8.1 and Figure 8.2 show PSIM schematics

for the primary power stage and the modulator/controller respectively (note that each

schematic is constrained within the same *.psim model file).

The power stage of the NPC converter consists of three phase legs, each of which

uses four IGBT switching devices arranged as complementary switch pairs and two

NP clamping diodes. The DC link is constructed from two separate DC sources (with

a mid-point ground connection), and a capacitive divider is then used to form the NP

node. A third DC source connected between the negative rail and the NP node

through a controlled ideal switch enables an initial unbalanced NP voltage to be set

so that the NP controller dynamic response can be observed. The converter feeds a

three phase RL load, and all phase currents, phase voltages and the DC link capacitor

voltages are measured with sensors for control purposes.

8.1 SIMULATION ENVIRONMENT

142

Figure 8.1: PSIM simulation (topology)

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

143

Figure 8.2: PSIM simulation (control)

8.1 SIMULATION ENVIRONMENT

144

Figure 8.2 shows the architecture of the controller utilised in the simulation. On

the left hand side of the schematic is a (DLL) control block with 20 input and 20

output pins. This block includes a Dynamic Linked Library (DLL) file which is

programmed with the same C-source code as the DSP micro-controller used in the

experimental NPC converter. This ensures that the simulation model developed will

replicate the same functional behaviour as the experimental system. All modulation

calculations are conducted with floating-point numbers within the DLL, and current

and voltage sensor inputs to the DLL enable all closed loop NP regulatory functions

to also be programmed in the DLL source code. Finally the DLL also includes the

code to drive the switch on the DC bus which is responsible for the initial NP voltage

unbalance condition.

To the right of the DLL function block are three sets of dual comparators which

are used to implement the PD modulation process. These function blocks are

bypassed if a SVM strategy is implemented as the switches would be directly

controlled by the DLL in this case. The implementation of the PD modulator utilises

two carrier waveforms, one occupying the upper band with the second occupying the

lower band. These carrier waveforms are fed into the three sets of dual comparators,

which are also fed with the phase-leg reference waveforms from the DLL. The

comparator outputs then feed into a set of logic inverters and switch drivers to

generate the four gate drive signals for each phase leg.

To ensure that all the modulation and NP control strategies are compared on a fair

and equivalent basis, only the control section of each PSIM model is changed, with

the loading and converter supply conditions matched for each scenario. The primary

changes to the simulation model therefore occur within the DLL function block.

8.1.1 NP Controller Gain Selection Considerations.

One of the key issues that arose from the literature review of active NP control

strategies is that many of the reported techniques do not describe methodologies to

select the controller gains or parameters (e.g. the proportional and/or integral gain

constants of the linear NP voltage regulators). Only the SPWM and SVM strategies

have quantitative methods (i.e. ‘optimal’ methods) which specify exactly how the

gains should be designed. To ensure that the comparative evaluation of NP

controllers is fair the strategy that has been adopted in this thesis is to select

controller gain constants that maximise the dynamic response of each NP regulator.

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

145

8.2 Implementation - SPWM+P

8.2.1 Duty Cycle Calculation / Modulation.

SPWM is implemented by comparing three phase waveforms against a double

triangular carrier arrangement as shown in Figure 8.3. As discussion in Section 8.1,

the basic PSIM model already includes the base PD modulator implemented with

dual carrier/comparator function blocks, and as such all the DLL must generate is the

three phase reference waveforms, viz.:

3

2
cos

3

2
cos

cos

tMV

tMV

tMV

C

B

A

(8.1)

where M is the modulation depth where 0.10 M .

8.2.2 State Redundancy Calculation Method - 1k & 2k .

As discussed in Chapter 3, the SPWM method with an NP controller can only

control 1 small vector within a switching cycle by varying the split-ratio (i.e. 1k and

2k) of the redundant switching states for that particular small vector. This control

action is achieved via the addition of a common-mode / zero-sequence-offset to the

three phase reference waveforms. This zero-sequence is generated using a high gain

Figure 8.3: Phase Disposition (PD) modulation (top) and Phase leg A output of

unipolar form (bottom) M=1.0.

8.3 IMPLEMENTATION - SPWM+SONG [17]

146

proportional (P) controller [6] according to:

 Offset = K * (Vtop capacitor – Vbottom capacitor) (8.2)

where K is the controller gain constant, which is set to 0.1 in this thesis. Note that

this system will not produce dynamic instability, despite the high gain, because a

dynamic limiter is used. This is achieved by first identifying upper and lower offset

limits, defined by:

 Max_limit = min(1.0- AV , 1.0- BV , 1.0- CV) (8.3)

 Min_limit = -min(1.0+ AV , 1.0+ BV , 1.0+ CV) (8.4)

The desired offset defined by the proportional controller is then limited in

accordance with the following pseudo-code:

if (Offset > Max_limit)

 limited_Offset = Max_limit

else if (Offset < Min_limit)

 limited_Offset = Min_limit

else

 limited_Offset = Offset;

Finally, the limited offset is added to all three reference waveforms, according to:

fsetlimited_Of
3

2
cos

fsetlimited_Of
3

2
cos

fsetlimited_Ofcos

tMV

tMV

tMV

C

B

A

(8.5)

8.3 Implementation - SPWM+Song [17]

This strategy employs the same PD modulator as detailed in Section 8.2.1, with

the only difference being the methodology used to determine the split ratio of the

redundant states of the controllable small vector. As with the SPWM+P controller, a

zero-sequence injection strategy is used, with the zero-sequence determined as

follows:

1) The first step is to calculate the average NP current that would be required to

eliminate the NP voltage unbalance, based on the measured difference

between the upper and lower capacitor voltages, according to:

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

147

s

CbCt

T

VVC

NPconi

 (8.6)

2) The second step is to calculate an initial test zero-sequence offset, defined as:

 c

b

a

Vsignc

Vsignb

Vsigna

sgn

sgn

sgn

 (8.7)

cba

ccbbaaNPcon
tst

icibia

iVciVbiVai
v

sgnsgnsgn

sgnsgnsgn
)(0 (8.8)

3) Verify and Revise

It is now required to test whether the addition of this offset to the three voltage

references will cause the sign of any one reference to change. This is achieved

by first calculating CBAmid VVVmidv ,, .

Then if midtstmid vvsignvsign)(0 , the offset is valid, otherwise the offset

calculation must be revised.

4) Revision

To revise the offset calculation, first identify midv , change its sign, and then

repeat the offset calculation defined in step 2.

5) Saturation limit of the offset 0v :

As in other zero-sequence offset based strategies, a limit has to be applied to

ensure that overmodulation does not occur. This is done as follows:

if (1,,max0 CBA vvvv

 CBA vvvv ,,max10

else if (1,,max0 CBA vvvv

 CBA vvvv ,,max10

6) Final application of the offset 0v :

0

0

0

3

2
cos

3

2
cos

cos

vtMV

vtMV

vtMV

C

B

A

(8.9)

8.4 IMPLEMENTATION - CSVPWM+P

148

8.4 Implementation - CSVPWM+P

8.4.1 Duty Calculation / Modulation

CSVPWM extends SPWM to replicate the modulation produced by a centered

space vector modulator. It achieves this by adding a non-linear zero-offset [59], as

shown in Figure 8.4

The process of generating the CSVPWM offset for a 3-level system is as follows:

Initially, the sinusoidal references are generated identically to SPWM:

3

2
cos

3

2
cos

cos

tMV

tMV

tMV

C

B

A

(8.10)

Then, according to [59], the 2-level CSVPWM offset is calculated and applied, viz:

 CBACBAshift VVVVVVV ,,min,,max5.00.1 (8.11)

shiftCC

shiftBB

shiftAA

VVV

VVV

VVV

'

'

'

 (8.12)

where max() and min() functions find the maximum and minimum of their three

arguments respectively. The references ''' ,, CBA VVV are applicable to a 2-level

converter, but they do not produce the required equal duty cycle split when applied to

Figure 8.4: Reference waveforms for CSVPWM for 3-level systems. M=0.7

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

149

a 3-level converter. To solve this an additional offset calculation and is employed as

follows. Firstly, shifted phase voltages are calculated:

0.1mod

0.1mod

0.1mod

'''

'''

'''

CC

BB

AA

VV

VV

VV

 (8.13)

where mod is the remainder after division process. This result is used to calculate the

additional zero sequence required, as:

 ''''''''''''
_ ,,min,,max5.05.0 CBACBAshiftadd VVVVVVV (8.14)

The final reference waveform sent to the modulator is defined below:

shiftaddC
ref

C

shiftaddB
ref
B

shiftaddA
ref
A

VVV

VVV

VVV

_
'

_
'

_
'

 (8.15)

8.4.2 State Redundancy Calculation Method - 1k & 2k .

As with SPWM, the CSVPWM method only has 1 small vector that can be

controlled by utilising dual redundant switching states with a duty cycle split ratio

defined by the constants 1k and 2k . Hence the same proportional controller approach

defined in Section 8.2.2. For the sake of brevity this control algorithm will not be

repeated here, but for CSVPWM the calculation process follows the same procedure

albeit based on the PWM reference set ref
C

ref
B

ref
A VVV ,, as opposed to CBA VVV ,, .

8.5 Implementation - Yamanaka SVM

8.5.1 Duty Calculation / Modulation

As with any SVM strategy, the first step requires the identification of the location

of the reference vector. Since the SV diagram of Yamanaka’s SVM is identical to

those of conventional SVM (see Figure 2.2), a simplifying technique such as ,

coordinate to g,h coordinate transformation can be used [88], as was done in this

thesis. With this strategy, the following steps are followed with the full simulation

code provided in Appendix A.1.5.3:

1) Firstly, the sector where the reference vector lies in is identified. It is simply

obtained by dividing the reference vector’s angle by 60 degrees and adding

one to the result.

8.5 IMPLEMENTATION - YAMANAKA SVM

150

2) Nearest Three Vector determination

Next, the reference vector is converted from , to gh coordinates in order

to determine which of the 4 subsectors it lies within. The process is detailed in

[88]. The result of this transformation gives the nearest three vectors and their

duty cycles.

3) State Redundancy Calculation Method - 1k & 2k .

Yamanaka recommends equating the two redundant split vectors i.e.

21 kk and the optimal calculation of 1k is based on the following equation:

21

*

1
2

1

smallysmallx

mediumzn

tRitRi

tRii
k (8.16)

where Rix and Riy are the phase currents associated to small vector 1 and

2 respectively. They are a function of R, the sector where the reference vector

resides. Riz is the phase current for the medium vector. 1smallt , 2smallt and

mediumt are the time during a switching cycle for the each of the vectors. *
ni is

the reference NP current that is commanded.

A major issue with the paper is that Yamanaka left the reader to determine

the value of *
ni . Obviously in steady state, a value of 0 is ideal however during

transients, it is dependent upon the converter’s parameters. Yamanaka set this

to the peak output current value, which is then reduced instantly to zero once

the unbalance is eliminated.

In this thesis this approach is replicated by commanding the maximum

possible NP current, by explicitly setting k to 1 or 0 depending on the

unbalance. Pseudo-code to implement this is as follows:

if (1.0NPV)

 NPVk *15.0

else

 1k

This method forces k to the extreme value to obtain maximum

performance when the NP unbalance is greater than 5V.

4) Maximisation of NP control based on current polarity

The current controlled by each small vector changes depending the sector that

the reference vector is located within (e.g. in the first sector {0
0
 to 60

0
} the

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

151

small vectors can control IA and IC, whereas in the second sector {60
0
 to 120

0
}

the small vectors can control IB and IC – see Figure 3.2). This is accounted for

by assigning the calculated duty cycle split ratio, k , to either 1k or 2k , based

on the sector and also the sign of the relevant phase current since this

determines whether the NP current will either reinforce or subtract from the

current NP voltage disturbance. This step is essential to obtain maximum

performance at high load power factor angles.

5) Switching sequence determination

Each possible switching sequence has been manually coded, based on both the

sector and sub-region that the reference vector is located, and also accounting

for the vector reversal in the next half-carrier equivalent switching cycle. This

approach ensures that each possible variation in sequence has been correctly

catered for, and the only input required is the variation to the duty cycle split

ratio determined in accordance with steps 3 and 4.

The end result of this process is the replication of the sequences required by

Yamanaka’s SVM as shown in Figure 8.5. Within the picture, 4 sequences

representing 4 subsectors are shown. In each sequence, the vector notations ‘ap’,

‘an’, ‘bp’, ‘bn’ denote the redundant states of the small vector. ‘a’ and ‘b’ denote the

large vectors whereas the medium vector is denoted by ‘c’.

8.5.2 Verification of the Simulation Implementation

The conditions within the authors’ paper were replicated in this simulation [8].

The parameters are listed in Table 8-1. A current source was used in the author’s

simulation and the worse case load power factor angle (i.e. 90
0
) was specified. As a

result the power stage of the simulation within this thesis was changed to match the

author’s paper as shown in Figure 8.6

The simulation results are shown in Figure 8.7 The figure shows how the NP

controller attempts to reduce the NP drift (initially set to 10V) at the beginning of the

simulation run. The dynamic features of the NP recovery shows an identical

performance to that reported by Yamanaka et al. as shown in Figure 8.8 This

validates this thesis’s implementation of the SVM strategy proposed by Yamanaka et

al. and provides confidence that the comparative performance reported in Chapter 4

is valid and correct.

8.5 IMPLEMENTATION - YAMANAKA SVM

152

Table 8-1: Converter parameters for Yamanaka SVM validation

Name Modulation Strategy

DC bus voltage 560 V

DC link capacitance 4500 uF

Load frequency 50 Hz

Load magnitude 10 A

Load power factor angle 90 degrees

Switching frequency 3000 Hz

Figure 8.5: PWM for Yamanaka’s SVM. Image obtained from [8]

This image has been removed from the digital edition of this
thesis in order to comply with copyright statutes.

Please refer to Fig. 4 from ref. [8]

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

153

Figure 8.6: Modification of load to match author’s setup for Yamanaka SVM. 10000

ohm resistor is required for current source to be use within this simulation.

8.5 IMPLEMENTATION - YAMANAKA SVM

154

Figure 8.7: Thesis simulation results for Yamanaka’s SVM.

This image has been removed from the digital edition of this thesis in order to comply with
copyright statutes.

Please refer to Fig. 10 from ref. [8]

Figure 8.8: Balancing performance at different modulation depths for author’s

implementation of Yamanaka’s SVM. Image obtained from [8]

0 0.01 0.02 0.03 0.04 0.05 0.06
-5

0

5

10

15

Time (s)

N
P

 v
o
lt
a
g
e
 (

V
)

M = 0.1

M = 0.5

M = 0.8

M = 1.0

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

155

8.6 Implementation of NTVV

8.6.1 Duty Calculation / Modulation

The carrier-based version of NTVV has been implemented in this thesis, since it

has now been demonstrated to be equivalent to an explicit space vector formulation

[68]. The process translates SPWM references to two references; one each for the top

and bottom carrier. The references are calculated based on the typical 3-phase

references cba VVV ,, , as defined according to Eqns (8.17) and (8.18), with the

resulting reference waveforms shown in Figure 8.9.

2

,,min cbax
xp

VVVV
V

 (8.17)

2

,,max cbax
xn

VVVV
V

 (8.18)

where cbax ,, .

8.6.2 State Redundancy Calculation Method - 1k & 2k .

The process to determine the duty cycle split ratio parameters proceeds as follows:

1) Firstly, the required current to discharge the unbalance is calculated according

to:

s

CtCb

T

VVC

oi

 (8.19)

where C is the parallel combination of the DC bus capacitance, CbV and CtV

Figure 8.9: Result of transformation of SPWM references to NTVV references

obtained from [68]

This image has been removed from the digital edition of this thesis in order to comply
with copyright statutes.

Please refer to Fig. 4 from ref. [68]

8.6 IMPLEMENTATION OF NTVV

156

are the voltages of the bottom and top capacitors respectively, and sT

represents the sampling period.

2) Next the duty cycles which represent the fraction of time each phase is

connected to the NP must be calculated to enable the determination of the

required zero-sequence offsets. These duty cycles are based on the two

reference waveforms defined in Eqns. (8.17) and (8.18) according to:

1

1

1

cpcnc

bpbnb

apana

VVd

VVd

VVd

 (8.20)

3) The required zero-sequence offsets can then be calculated based on the duty

cycle information, the NP voltage error, the target NP current and the top and

bottom reference waveforms, according to:

ccbb

apano

aCtCboffa
idid

VVi
iVVsignv

1

2

1
_

 (8.21)

ccaa

bpbno

bCtCboffb
idid

VVi
iVVsignv

1

2

1
_

 (8.22)

bbaa

cpcno

cCtCboffc
idid

VVi
iVVsignv

1

2

1
_

 (8.23)

where cba iii ,, are the phase leg currents.

4) The actual offset applied must be limited to prevent further NP imbalance

from occurring. This condition occurs when xpxn VV 1 . Hence the following

algorithm is used to limit the actual offset used:

if (0.0_ offxv)

 limit = xpxn VV 15.0

 if (offxv _ > limit) offxv _ = limit

else

 top_limit = xpV

 bot_limit = xnV

 limit = -min(top_limit,bot_limit)

 if (offxv _ < limit) offxv _ = limit

end

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

157

5) Note that the three offsets are not applied simultaneously. Zaragoza applies

the offsets when both phase leg references are non-zero in order to prevent

additional unwanted switching transitions. shows that this region of operation

occurs in two locations for phase leg A i.e. 60
0
 to 120

0
 and 240

0
 to 300

0
. As a

result, the algorithm applies the following offsets:

if (eq. ref. vector angle is between 60
0
 → 120

0
 and 240

0
 → 300

0
)

 offaapap vVV _

offaanan vVV _

if (eq. ref. vector angle is between 0
0
 → 60

0
 and 180

0
 → 240

0
)

 offbbpbp vVV _

offbbnbn vVV _

if (eq. ref. vector angle is between 120
0
 → 180

0
 and 300

0
 → 360

0
)

 offccpcp vVV _

 offccncn vVV _

8.6.3 Verification of Simulation Implementation

The parameters of NTVV are replicated within this simulation and their values are

listed in Table 8-2. The results of the simulation are shown in Figure 8.10. The

results correlate well with those from the authors as shown in Figure 8.11.

Table 8-2: Converter parameters for NTVV validation

Name Modulation Strategy

DC bus voltage 1200 V

DC link capacitance 1100 uF

Switching frequency 5000 Hz

Load frequency 50 Hz

Load resistance 10 ohms

Load inductance 12 mH

Load configuration Wye

Modulation index 0.8

8.6 IMPLEMENTATION OF NTVV

158

Figure 8.10: Simulation of NTVV balancing performance at different modulation

depths.

This image has been removed from the digital edition of this thesis in order to comply with
copyright statutes.

Please refer to Fig. 8 from ref. [69]

Figure 8.11: Benchmarking simulation results for different modulation depths. Image

obtained from [69] for comparison purposes.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
450

500

550

600

650

700

750

Time (s)

V
o
lt
a
g
e
 (

V
)

Vcap top @ M = 0.3

Vcap bot @ M = 0.3

Vcap top @ M = 0.6

Vcap bot @ M = 0.6

Vcap top @ M = 1.0

Vcap bot @ M = 1.0

m=1

m=0.6

m=0.3

 8 SIMULATION IMPLEMENTATIONS FOR QUANTITATIVE COMPARISON

159

8.7 Implementation of ONTVV

8.7.1 Duty Calculation / Modulation

This modulation strategy is very similar to NTVV and as defined in [19]. The

strategy executes the following steps:

1) Region of operation identification.

2) Approximation of medium vector usage scaling based on region.

3) Calculation of duty cycles in d-q-0 domain.

4) Translation from d-q-0 domain to a-b-c references.

The steps are outlined explicitly in their paper and detailed in Appendix A.1.5.7.

8.7.2 State Redundancy Calculation Method - 1k & 2k .

The method of NP control for ONTVV is described in [71]. The NP controller is a

second order system, because the authors state within their paper that ‘This

compensator must have a low-pass characteristic, in order to only react to

perturbations in the dc-link voltage balance with frequencies lower than the

switching frequency.’ The output of this controller is then limited through a static

limiter.

Unfortunately, the information presented in this paper describes the 2
nd

 order

controller qualitatively and without parameters nor design rules. As such there is

insufficient information presented to enable the reader to replicate the documented

performance within this paper. In this thesis the following approach has been applied

to overcome this short-fall of information:

1) Given the absence of information on tuning the parameters of the 2
nd

 order

compensator, a PI controller has been used instead, with gains selected to be

Kp = 0.01 and Ki = 0.001. These are relatively small gain values but were

selected based on the observation of the offset was produced by the ONTVV’s

NP controller in simulation. [Note :For PI controller gains set well above these

values additional NP imbalance can result, and the output harmonic

performance degrade because the static limiter proposed by the authors in [71]

does not take into account the possibility of overmodulation.]

2) The output of this compensator is then passed through a static limiter where

the thresholds are set at [-0.1 and 0.1].

8.8 SUMMARY

160

3) Since the offset can be applied to either reference waveform per phase leg. An

algorithm recommended by the paper is used and it is not repeated due to its

clearly defined nature.

8.8 Summary

This chapter has detailed the implementation of the various NPC converter

modulation and NP control strategies in the PSIM simulation environment. These

simulation models were used to perform the comparative evaluation of the different

NP regulation approaches in Chapter 4, and to validate the natural balancing

responses throughout the remainder of the thesis. Selected benchmarking simulation

results have been presented to provide confidence and validation of the simulation

models developed.

 9 EXPERIMENTAL SYSTEM

161

9 EXPERIMENTAL SYSTEM

The natural balance models developed in Chapters 5 and 6, and the enhanced natural

balance NP controller of Chapter 7, have been validated in two ways. The first

validation is by comparing the analytical models with the full-switched simulation

models described in Chapter 8. The second is by comparing simulation results

against experimentally measured time-domain NP balancing responses obtained

using a prototype NPC converter. This experimental verification is a critical aspect of

this thesis since it ensures that all pertinent factors of the theoretical models of the

natural balancing process that may impact on the NP voltage response, have been

properly accounted for. This chapter describes the experimental system that was

developed to obtain the experimental results presented throughout this thesis.

9.1 Overview of the Experimental System

Figure 9.1 shows a photo of the overall experimental arrangement used in this

investigation, including the NPC converter (centre of the work-bench), two series-

connected DC power supplies (bottom of the image) and three phase resistive loads

and filter networks (to the right of the image). The mid-point of the series connected

DC supplies creates a virtual earth potential to which the NP voltage can be

Figure 9.1: Photo of the experimental NPC converter, power supply and loads.

9.2 POWER STAGE

162

measured. An additional load bank (shown under the main work-bench) is used in

conjunction with a static switch to create the initial NP voltage unbalance. The load

bank to the upper-most right is the primary converter load, with the series connected

inductor to its’ immediate left. The load bank to the lower right is used for the

balance booster (note that this is significantly over-rated for this purpose). On the

lower right portion of the diagram is the balance booster placed with parallel to the

R-L load where the load bank is used to emulate the balance booster’s resistance. In

front of it are the inductors and capacitors that make up the other parts of the balance

booster, tuned at the switching frequency.

Figure 9.2 shows a close up of the experimental 3-phase NPC converter. The next

sections of this chapter will now discuss the different groups of components that

make up this 3-phase Active NPC converter.

9.2 Power Stage

The power stage of the converter was built in the lab. It uses an active NPC

topology as shown in Figure 9.3. From this diagram, three alternatives are available

to feed the DC input side of the converter.

a) Rectified 3-phase supply. The diode rectifier used is Semikron SKD 82/12.

b) One DC source connected across the nodes: BUS_TOP and BUS_BOT.

c) Two DC sources in series connected across the nodes BUS_TOP and

BUS_BOT. The node BUS_MID may or may not be connected to the mid-

point of the two DC sources depending on the requirements of the user. If the

user requires a 3-level source, the mid-point of the DC source has to be

connected to BUS_MID. A 2-level source would mean the disconnection of

this point.

The design decisions made in this thesis for the DC input to the power stage were:

a) DC sources were chosen over a rectified 3-phase supply because this allows

short circuit currents to be limited.

b) A two DC sources configuration were chosen over a single DC source

because:

a. This thesis follows the convention used in [62] to formulate the

mathematical expressions of PWM signals and their Double Fourier

expressions. These expressions assume 2 DC sources. These structure

is used in Chapter 5 onwards to model the NPC phase leg(s).

 9 EXPERIMENTAL SYSTEM

163

b. NP voltage deviation is easy to measure electrically when it is

measured w.r.t. to its ideal value i.e. the mid-point of the DC sources.

Both DC sources are set to produce the exact same voltage.

Figure 9.2: Close up of experimental NPC converter.

9.2 POWER STAGE

164

Figure 9.3: Power stage design of the converter.

 9 EXPERIMENTAL SYSTEM

165

Figure 9.4 shows the capacitors used in this system: Nippon Chemi-con KMH

105
o
C 400V 2200uF . Although only 2 capacitors are shown in Figure 9.3, there are

actually 4 physical capacitors; each capacitor in Figure 9.3 represents 2 units of

Nippon Chemicon KMH placed in parallel thus doubling the capacitance between the

NP midpoint and each bus to a nominal 4400uF. However, time constant tests

conducted on the experimental converter identified that the effective capacitance to

each bus was actually 4200uF instead of 4400uF capacitance, and so this value was

used for all theoretical analysis and simulation investigations.

Since the capacitors are rated at 400V, the DC sources are set to 180V each,

making a total converter rated voltage of 360 V. This voltage was set as the highest

safe voltage that the converter could operate taking into account the fact that a

unstable NP controller could drift the NP to either DC bus voltage. This would

expose the capacitors to a maximum of only 360 V , i.e. 40 V below their rating.

Figure 9.5 shows the DC source supplies connected in series and used in the

experiment. They are Magna Power Electronics XR250-24. Each DC source can

supply a maximum of 250V with a current limit of 10A thus limiting the maximum

power of the converter to 2 x 180 V x 10 A = 3600 W.

The output of the NPC converter is formed by 3 NPC phase legs. Figure 9.3

shows each phase leg is made up of 3 units of SEMIKRON’s SKM75GB123, shown

in Figure 9.6. Each module has 2 IGBT switches coupled with anti-parallel diodes,

and are rated to 1200 V and 75 A. A PCB board was used to connect the modules to

form the NPC phase legs, with the snubber circuitry included on-board.

Close observation of Figure 9.3 shows that one of the modules in each phase leg

has its two IGBT gates shorted to their emitters to prevent them turning on. This is

because this converter has 6 switches per phase leg to be able to operated as an

Active NPC. However only 4 switches are required for this Passive NPC system. The

extra module purely provides the diodes used to connect the phase legs to the NP.

9.3 Controller Boards

The power stage was controlled by three Creative Power Technologies (CPT)

GIIB boards as shown in the bottom part of Figure 9.2. A master-slave structure was

used to coordinate the control efforts of the 3 boards. The middle GIIB board within

the figure was made to be the Master as it minimised the cable length to the Slaves.

9.3 CONTROLLER BOARDS

166

Figure 9.4: One of the 4 capacitors used as the DC link within the converter.

Figure 9.5: Two DC sources in series using Magna XR250-24.

 9 EXPERIMENTAL SYSTEM

167

Figure 9.7 shows a detailed view of the GIIB board, identifying the various circuit

sections. The gate driver outputs were connected to the IGBTs according to the net

labels shown in Figure 9.3, Figure 9.8, Figure 9.9 and Figure 9.10.

Since the CPT-GIIB and other CPT products were initially designed to operate

with an earlier version controller card and not a CPT-DA2810 which has a newer

Texas Instrument DSP, a interposing CPT-Mini2810 board is required to interface

the CPT-DA2810 and CPT-GIIB. This card uses an Altera CPLD to route signals

between the CPT-DA2810 and various parts of the CPT-IIB power board, including

clock, gate driver signals, MINIBUS, digital data (e.g. SPI), and protection signals.

Additional features of the board are deadband generation for one 2 gate drivers / one

phase leg and hysteresis signal generation. The CPT-Mini2810 is controlled by the

CPT-DA2810 through SPI signals. Figure 9.11 shows the CPT-DA2810 assembled

with onto CPT-Mini2810 board, while Figure 9.12 shows an individual CPT-

DA2810 board.

Figure 9.6: Semikron module consisting of 2 IGBT switches with anti-parallel

diodes.

9.3 CONTROLLER BOARDS

168

Figure 9.7: CPT’s Generalised Integrated Inverter Board (CPT-GIIB).

POWER SUPPLY

GATE

DRIVERS

CURRENT

SENSORS

VOLTAGE SENSORS

PLUG-IN

CONTROLLER

BOARD

 9 EXPERIMENTAL SYSTEM

169

Figure 9.8: Controller board wiring for Master GIIB.

9.3 CONTROLLER BOARDS

170

Figure 9.9: Controller board wiring for Slave GIIB 1.

 9 EXPERIMENTAL SYSTEM

171

Figure 9.10: Controller board wiring for Slave GIIB 2.

9.3 CONTROLLER BOARDS

172

The CPLD on the CPT-Mini2810 was reprogrammed for this thesis to provide a

SPI communications channel in between the 3 CPT-DA2810 boards. This involved

controlling the direction of the bidirectional SPI communications. 2 pins are

necessary to indicate the direction of SPI data (towards/away the DSP) and the mode

of the DSP (Master/Slave). The sequence of operation of the three GIIBs is as

follows:

Figure 9.11: CPT-DA2810 on top of CPT-Mini2810.

Figure 9.12: CPT-DA2810.

 9 EXPERIMENTAL SYSTEM

173

Step # MASTER GIIB SLAVE GIIB

1 Turn ON

2 Initialise DSP variables

3 Set DSP’s SPI module to MASTER mode

4 Set control pins to ensure CPLD only communicates with DSP

5 Initialise / Configure CPLD

6
Set DSP’s SPI module to MASTER

mode

Set DSP’s SPI module to SLAVE

mode

7
Set CPLD’s control pins to send

data from DSP to output buffer pins

Set CPLD’s control pins to receive

data from input buffer pins to DSP

8 Send synchronisation pulse
Receive synchronisation pulse and

realign PWM carrier.

9 Calculate value of PWM signals Do nothing

10
Transmit data if it has been 1

second after turning on DSP
Receive data

11 Set value of PWM compare logic.

12 Continously repeat steps 8 to 11.

9.4 Communications

The communication between MASTER and SLAVE GIIBs were conducted

through a shielded ribbon cable. The following signals were transmitted:

MASTER pin Communication direction SLAVE pin

Synchronisation (GPIO) → Capture port

SPI CLOCK → SPI CLOCK

SPI DATA → SPI DATA

SPI Chip Select ?* SPI Chip Select

Slave error (2 pins for 2

slaves)
←

Converter fault (1 pin for

each GIIB)

* GPIO is General Purpose Input/Output.

* Chip select is controlled manually by the DSP and CPLD.

9.5 LOAD BANK

174

The shielded ribbon cable is connected to the Digital I/O connector of each GIIB.

The pins of the Digital I/O are partially controlled by the CPLD. The CPLD has been

modified to route the synchronisation and SPI communications.

The MASTER sends the following SPI data at 7.5 Mhz; byte 0 is the first byte

transmitted:

Byte 0 – Status bit where the bit 0 designates whether the SLAVE GIIB should

enable switching.

Byte 1 – Upper 8-bits of the 16-bit COMPARE value for SLAVE 1’s switches S1

and S3.

Byte 2 – Lower 8-bits of the 16-bit COMPARE value for SLAVE 1’s switches S1

and S3.

Byte 3 – Upper 8-bits of the 16-bit COMPARE value for SLAVE 1’s switches S2

and S4.

Byte 4 – Lower 8-bits of the 16-bit COMPARE value for SLAVE 1’s switches S2

and S4.

Byte 5 – Upper 8-bits of the 16-bit COMPARE value for SLAVE 2’s switches S1

and S3.

Byte 6 – Lower 8-bits of the 16-bit COMPARE value for SLAVE 2’s switches S1

and S3.

Byte 7 – Upper 8-bits of the 16-bit COMPARE value for SLAVE 2’s switches S2

and S4.

Byte 8 – Lower 8-bits of the 16-bit COMPARE value for SLAVE 2’s switches S2

and S4.

Byte 9 – Checksum. Its value is the lower 8-bit of the result of the sum of byte 0 to

byte 8.

9.5 Load Bank

The equipment used to form the R-L load is shown in Figure 9.13 and Figure

9.14. The specification of the RMIT resistive load bank is 240V, 5.25kW per phase.

The loads can be varied in steps by turning parallel loads on and off using switches

on the front panel of the load bank.

The 240V, 10A 3-leg 3-phase inductors are made by IRONCORE

TRANSFORMERS PTY. LTD. Their multiple taps offer 80mH, 64mH, 40mH and

16mH alternative inductances.

 9 EXPERIMENTAL SYSTEM

175

Figure 9.13: RMIT lab resistive load bank.

Figure 9.14: Inductive load bank.

9.6 BALANCE BOOSTER

176

9.6 Balance Booster

The equipment used to form the balance booster is shown in Figure 9.13 (a second

matching load bank), Figure 9.15 and Figure 9.16. Figure 9.15 shows the high

frequency 20mH inductor, rated at 12A per coil. This unit has multiple taps allowing

various inductances to be set using up to 10 coils. For this work, Figure 9.15 shows

the wiring configuration used to get the required inductance of 1mH.

Figure 9.16 and Figure 9.17 show the high-frequency WIMA MKS 4 1.0 uF 630V

capacitors used for the balance booster filter, mounted in a plastic enclosure.

The Dyne inductors were placed in series with the WIMA capacitors and the each

phase of the load bank, to form the RLC balance booster. The combined resistance of

the inductor and capacitor gives the experimental resistance of 2.3 ohms, determined

using a spectrum analyser.

Figure 9.15: Dyne high frequency inductors.

 9 EXPERIMENTAL SYSTEM

177

9.7 Experimental Verification using the Preferred Active Strategy:

CSVPWM+P

The operation of the experimental system was confirmed by comparing it against

the results of the simulation of a NPC converter using CSVPWM with Proportional

controller. The operational parameters for the simulation and experimental converter

were made identical of course for this test, with parameters as given in Table 9-1.

Figure 9.16: Top view of the enclosure of the capacitors for balance booster.

Figure 9.17: Bottom view of the enclosure of the capacitors for balance booster.

9.7 EXPERIMENTAL VERIFICATION USING THE PREFERRED ACTIVE STRATEGY:

CSVPWM+P

178

Figure 9.18 to Figure 9.20 demonstrate the close match of the experimental and

simulation results during a transient event, confirming the validity of the simulation

model and its excellent correlation with physical reality. Note in particular in Figure

9.20 how the line-to-line voltage of the converter recovers to a much better looking

symmetrical waveform as the NP unbalance reduces during the test.

This close match between simulation and experiment gives strong confidence that

the simulation results presented in the earlier chapters are in fact reasonable and

physically achievable.

Table 9-1: NPC converter parameters.

Parameter Value

Nominal DC link 360 V

Capacitor size 4200 µF

Load Resistance 11 ohms

Load Inductance 44.4 mH

Fundamental Frequency (fo) 50 Hz

Switching frequency 5000 Hz

Figure 9.18: NP control performance of CSVPWM with Proportional controller at

M=0.9, fs=5000 Hz.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-40

-35

-30

-25

-20

-15

-10

-5

0

5

Time (s)

N
P

 v
o
lt
a
g
e
 (

V
)

Dynamic performance of CSVPWM with P controller

Experimental

Simulation

 9 EXPERIMENTAL SYSTEM

179

Figure 9.19: Line current B during the NP control action transient. M=0.9, fs=5000

Hz.

Figure 9.20: Line-to-line voltage during the NP control action. M=0.9, fs=5000 Hz.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

L
in

e
 c

u
rr

e
n
t,

 I
b
 (

A
)

Line current during NP control action

Experimental

Simulation

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-400

-300

-200

-100

0

100

200

300

400

Time (s)

L
in

e
-t

o
-l
in

e
 v

o
lt
a
g
e
,

V
b
c
 (

V
)

Line-to-line voltage during NP control action

Experimental

Simulation

9.7 EXPERIMENTAL VERIFICATION USING THE PREFERRED ACTIVE STRATEGY:

CSVPWM+P

180

 10 CONCLUSION AND FUTURE WORK

181

10 CONCLUSION AND FUTURE WORK

One major concern for a Neutral Point Clamped (NPC) converter is drift of the

central Neutral Point (NP) voltage away from zero, particularly if it drifts to voltage

levels that can cause semiconductor failure. This drift occurs during both steady state

and transient operation and NP control is essential to manage it in any practical NPC

application. Three NP control methodologies are available. The most popular is

direct control of NP currents using modulation strategies, termed ‘active’ control. A

major challenge is the large amount of literature covering this concept. The next

methodology is the old and expensive method of using ‘additional hardware’. The

third alternative, ‘natural balancing’, is the least explored and understood.

This thesis has categorised and compared different ‘active’ control strategies to

identify that the CSVPWM with Proportional is usually the best choice for most

applications. Next, it explored the ‘passive’ method and the different load

configurations that are possible for the 3-phase NPC converter. An analysis of an

enhanced ‘passive’ balancing strategy in combination with Feedforward DC Link

compensation is also presented. Finally, this chapter summaries the results from the

previous chapters and proposes a list of future research areas to pursue.

10.1 Summary of Work

10.1.1.1 Fundamentals of NP control and Analysis of Existing ‘Active’ NP Control

Strategies

Chapter 3 has presented the fundamentals of NP control and its limiting

conditions. In particular it has shown that an increase in NP control performance

requires a reduction of the NP disturbing mediumV vector which causes multiple side-

effects, and usually degrades the converter’s operation to that of a 2-level converter

at maximum control action. In between ideal 3-level operation and the 2-level-like

operation is a middle ground that incurs an increase in implementation complexity,

switching transitions and creates poorer harmonic distortion.

Based on the analysis presented in this thesis, any NP control strategy can be

classified by observing its vector selection. This analysis also reveals disadvantages

of the various strategies. Dipolar PWM was shown to have an unclear NP control

strategy, thus being unpractical and consequently neglected for comparison in

Chapter 4. Ustepente SVM, which offers the best compromise between NP control

10.1 SUMMARY OF WORK

182

performance and harmonic degradation, was eliminated due to its high number of

switching transitions. Medium Vector Elimination is also eliminated because it

causes double switching transitions, and in any case degrades to a performance that

is similar to 2-level converters.

10.1.2 Categorisation of Active Control Strategies

The analysis of a strategy’s vector selection reveals its NP control methodology.

Hence, strategies that share similar vector selection can be grouped. The differences

within a group lie in two factors. The first is how it calculates the duty cycles for all

the vectors. The second is how it calculates the split of the small vectors’ duty cycles

across the redundant states. As a result of this understanding, this thesis has

contributed to a coherent classification of NP control strategies.

10.1.3 Quantitative Comparison of Practical Strategies

The qualitative analysis presented in Chapter 3 does not provide a good indicator

of the precise performance differences between various NP strategies. A

quantification of their various attributes is required to identify the ‘best’ strategy.

The research has conducted a detailed comparison to quantify the harmonic

performance, NP control performance and NP deviation in the search for the most

practical NP control strategy for the NPC converter. A list of carrier-based strategies

including ones that have been translated from their SVM form were compared. A

SVM strategy (Yamanaka SVM) from a group that is expected to produce a good

balance between harmonic distortion and NP control performance was also included.

The results show that the Centered Space Vector (CSV) PWM, a carrier-based

equivalent of conventional Nearest Three Vector (NTV) SVM, combined with a

proportional controller zero-offset addition, provides excellent performance in high

DC link capacitance converters while being simple to implement. It works well

except for regions of high modulation depth and low load power factor angle, where

the Yamanaka SVM strategy offers better performance whilst still maintaining good

harmonic performance. However, this strategy does not perform better than

CSVPWM with a proportional controller for other regions. The Virtual Vectors

method also offers exceptional NP control performance in these conditions however

its harmonic performance is worse than a 2-level converter. It also is not able to

perform better than CSVPWM at other conditions.

 10 CONCLUSION AND FUTURE WORK

183

Unsurprisingly, both the CSVPWM and SPWM strategy i.e. Phase Disposition

(PD), have the same NP control performance although this is not reported within the

literature. However, SPWM should be only recommended for applications where the

neutral of the load does not float i.e. grid-based 4-wire converters. This is because

SPWM causes more distortion than CSVPWM for the same amount of NP ripple.

10.1.4 Derivation of the Natural Balancing Mechanism

This thesis has modelled the NPC converter’s phase leg and shows how a tuned

RLC network placed in parallel with the load, also known as a balance booster, can

be used to increase its balancing performance. Simulation results were used to verify

the validity of the model. The balance booster’s performance varies linearly with the

amount of energy consumed. Thus, a high performance balance booster may reduce

the efficiency of a converter.

10.1.5 The Characterisation of Natural Balancing Performance with Balance Booster

for Three-phase Converters and their Variants

The phase leg model developed in Chapter 5 was then extended to model 3-phase

variants of the NPC converter, and it was found that the natural balancing

performance is typically three times faster than that of a single phase leg, even with a

floating load. The inclusion of an additional balance booster filter also further

increases the balancing performance by a considerable amount.

The chapter also compares various topological variations of the balance booster

network, identifying that a floating neutral filter connection gives the better natural

balancing response when the floating neutral and NP connected filters are matched

on a power loss basis. It concludes by exploring the variation in natural balancing

performance as various operating parameters are changed.

10.1.6 Harmonic Modelling of the Combination of ‘Passive’ NP Control and DC

Bus Link Voltage compensation using CSVPWM.

Chapter 7 demonstrated that the driving forces for NP balancing come from two

sources – a strong ‘active’ driving force deriving from the product of the unbalanced

modulation harmonics and the main DC link voltage DCV , and weaker ‘passive’

natural driving force deriving also from the product of the balanced modulation

10.2 SUGGESTIONS FOR FUTURE WORK

184

harmonics and the NP voltage deviation NPV . From this understanding, it was

recognised and confirmed that combining a balance booster filter with the additional

unbalanced harmonic distortion created by DC Link Compensation integrated into

CSVPWM, significantly improved the natural NP balancing response. The resulting

system almost matches the balancing performance of many direct active strategies at

all load power factor angles. In particular it provides an excellent NP control

performance midway between Yamanaka’s SVM, the fastest active method for an 85

degree load power factor angle, and CSVPWM+P, the second fastest active method,

while still maintaining an ideal 3-level THD output. This result is something that

most active controllers cannot achieve.

This new mathematical modelling approach opens up a new area of research for

NP controllers which incorporate a balance booster to improve their NP balancing

performance.

10.2 Suggestions for Future work

10.2.1 Carrier-based Equivalent of Yamanaka’s SVM

Yamanaka’s SVM offers the best harmonic performance and NP control

performance at the cost of variable switching frequency and high switching losses at

low modulation depth. The latter problem can be eliminated by reducing the

unnecessary switching transitions at low modulation depth. A carrier-based

equivalent of Yamanaka’s SVM is available in the form of ‘1-phase dipolar 2-phase

unipolar’ hybrid carrier-based modulation.

The difficulty is the analytical calculation required in order to choose the phase

leg that will perform dipolar modulation and the amount of offset between the

references within dipolar modulation. Nonetheless, the calculation can be translated

from the SVM to carrier-based form.

10.2.2 Comparison involving Common-mode Currents

High-frequency switched common-mode currents produced by the NPC converter

can cause premature failure of motor bearings and also insulation of long cables.

Unfortunately, there is little consistancy in measuring common-mode current in the

literature, and as a result it has not been included in the comparisons conducted

within this thesis. This is important because CSVPWM/SVM is known to inject

 10 CONCLUSION AND FUTURE WORK

185

common-mode in order to increase the modulation depth of the converter. Also, NP

controllers adjust the split of redundant states to control the NP current, and this is

effectively changing the common-mode currents too. As a result, an investigation is

required to not only understand these effects but to also compare the common-mode

voltages and currents produced by the different active NP balancing strategies.

10.2.3 Derivation of Stable Combined Balance-booster-assisted ‘Active’ NP

Controller

This thesis has developed an analysis tool that can be used to explore new active

strategies to take advantage of the balance boosters in order to achieve high-

efficiency and improved performance NP control. One major advantage of this

approach is the ability to control the NP voltage in the regions where ‘active’

controllers fail.

10.2.4 Model Predictive Control

This thesis has shown that any NP control strategy will lie in between the ‘least

control’ solution and the ‘full control’ solution. This is especially true for the Model

Predictive Control method. However, it has an added advantage to existing NP

control i.e. it is well suited to this multi-variable problem whereas existing NP

control solutions are not. Thus, it can better find an optimal point of operation.

Another advantage is that MPC can adapt its operation depending on whether

there is a transient event or not. During steady state, it can operate in a ‘least control’

mode to maximise harmonic performance. When a transient event occurs, the

converter can shift into a mode in between the middle mode and ‘full control’ mode

(depending on the severity of the NP drift) to counteract any NP drifts. This ability to

temporarily sacrifice quality is a good advantage to minimise converter overdesign.

10.2.5 Model Predictive Control with Balance boosters

The harmonic model framework can assist a designer to produce ‘active’ MPC

strategies that can be tailored to work with the balance booster to produce very high

performance NP controllers. This could be achieved by adapting the modulation

strategy in such a manner as to deliberately produce harmonics of the correct polarity

in order to reduce the NP unbalance.

10.3 SUMMARY

186

10.2.6 Optimised Balance-booster Design

A major drawback of a balance booster on a 3-phase NPC converter is the high

energy loss produced in order to obtain high balancing performance. This loss is

apparent during steady-state operation when the NP is balanced. This is because the

balance booster also interacts with the balanced harmonics produced by the Phase

Disposition modulation technique, which is undesirable. A high performance balance

booster has a low resistance and causes large balance booster currents and losses. On

the other hand, a low performance filter has a high resistance causing small balance

booster currents and losses. There are 2 solutions:

Firstly, an extremely narrow notch filter could be produced acting like a comb

filter that only interacts with the harmonics produced by NP unbalance. The result

would be a filter that only consumes energy when an unbalance occurs. The physical

construction of these extremely narrow notch filters can be produced by cascading

filters to derive n-order filters.

Secondly, variable loss performance could be obtained by varying the resistance

of the RLC network. Switching multiple resistors in parallel can produce stepwise

changes in resistance. However the several switches and resistors required could be

costly. An alternative could be to use semiconductors operating in the linear region,

acting as a variable resistor.

10.2.7 n-phase NPC

Chapter 6.1 has illustrated the ability to model a NPC converter with 3 phase legs

each having a common modulation signals phase shifted by 120 degrees. It has also

shown that the superposition technique can be used to simulate phase legs having

different load and balance booster configuration. This approach could be extended to

an arbitrary number of phase legs with each phase leg having different modulation

switching signals and different load and balance booster topologies.

10.3 Summary

The NP drift problem occurs as a result of modulation, topological structure,

physical construction and load asymmetries. Various modulation-based NP current

control strategies, termed ‘active’ control, have been proposed but few comparisons

have been conducted between them.

 10 CONCLUSION AND FUTURE WORK

187

This thesis has analysed different ‘active’ strategies, to identify CSVPWM with

Proportional zero-offset control as the most attractive alternative due to its simple

implementation and high performance. A higher performance at the cost of higher

implementation complexity can be found using Yamanaka’s SVM implementation,

however its performance advantage is only observable for low load power factor

angle applications.

The thesis work then showed that an NPC converter with low DC link capacitance

/ high NP ripple is best paired with a Feedforward / DC link compensation PWM

strategy coupled with a balance booster filter. This combination provides a NP

control performance that is only slightly less than CSVPWM with Proportional

controller while providing an improved harmonic performance because the latter

solution’s harmonic performance can degrade to 2-level converter levels.

Finally, the natural balancing harmonic analysis strategy presented in this thesis

opens up a new research area for providing extremely fast NP controllers by adding

balance booster filters to other control strategies.

10.3 SUMMARY

188

SIMULATION SOFTWARE 189

189

APPENDIX A SIMULATION SOFTWARE

This section will detail the software code used to conduct simulations of the various

‘active’ strategies. The following section will group together code from MATLAB

and PSIM used to simulate a particular strategy.

A. 1 MATLAB scripts to run simulations in Chapter 4

Common to all the modulation strategies tested are these high-level MATLAB

scripts. These scripts run a PSIM simulation file containing the topology and

modulation strategy. They store the results of the PSIM simulation and reiterate the

process across the whole modulation range.

A.1.1 MATLAB script – steady state NP deviation and NWTHD harmonic

calculation

This MATLAB script is to repeat the PSIM simulations across the whole range of

modulation depth while the NPC converter operates in steady state where NP is

allowed to float. As such, it will vary at 3 times the fundamental frequency for

conventional carrier-based PWM strategies. The resulting output voltage will contain

this NP variation and it is used for the NWTHD calculations.

clc

clear

%% Power converter simu settings calculator

load_angle = 1;

Z = 11 + 1j*2*pi*50*44.4e-3;

R = abs(Z) * cosd(load_angle);

X = abs(Z) * sind(load_angle) ;

L = X / (2*pi*50);

Load_R = R

Load_L = L

res = 40 % number of points in THD curve

step_M = 1/res;

vec_M = step_M:step_M:1;;

vec_M(size(vec_M,2)) = vec_M(size(vec_M,2)) - 0.001;

%vec_M = vec_M(find(vec_M == 0.5));

%% Automator

% Outer loop to cycle through the Ms

% Inner loop to increment frequencies until we find the required number of

% transitions.

for j=1:length(vec_M) % cycle through M

 %% User-changable system variables

 M = vec_M(j) * sqrt(4/3);

190 SIMULATION SOFTWARE

190

 fc = 3950;

 Tstop_unb = 0;

 n_transitions = 0;

 i = 1;

% while (n_transitions < 165) % increment frequencies

 %% PSIM simulation preparation

 ipath = [cd,'\','a.psimsch'];

 %ipath = ['a.sch'];

 ipath = ['"',ipath,'"']; % because there are spaces

 opath = [cd,'\','a.txt'];

 %opath = ['a.txt'];

 opath = ['"',opath,'"']; % because there are spaces

 M_s = sprintf('%g',M);

 fc_s = sprintf('%g',fc);

 Load_L_s = sprintf('%g',Load_L);

 Load_R_s = sprintf('%g',Load_R);

 load_angle_s = sprintf('%g',load_angle);

 Tstop_unb_s = sprintf('%g',Tstop_unb);

 variable1 = [' -v "M=',M_s,'" '];

 variable2 = [' -v "fc=',fc_s,'" '];

 variable3 = [' -v "Load_L=',Load_L_s,'" '];

 variable4 = [' -v "Load_R=',Load_R_s,'" '];

 variable5 = [' -v "Tstop_unb=',Tstop_unb_s,'" '];

 cmd = ['"C:\Program Files (x86)\Powersim\PSIM9.0.3\PsimCmd.exe" -i ',...

 ipath,' -o ',opath, variable1, variable2, variable3,...

 variable4, variable5];

 %% PSIM simulation execution

 tic

 disp(['Starting PSIM simulation M=', M_s, ' fc=', fc_s])

 dos(cmd);

 toc

 %% Post PSIM simulation

 % Load data

 tic

 disp('## txt2mat');

 data = txt2mat('a.txt','InfoLevel',0);

 toc

 % Truncate the data for one fundamental cycle

 % starting from 0.05 seconds

 z_t_step = data(1,1);

 z_n_elements = 0.02 / z_t_step;

 z_n_start = 0.3 / z_t_step;

 z_n_end = z_n_start+z_n_elements-1;

 z_t_start = z_n_start * z_t_step;

 z_t_end = z_n_end * z_t_step;

 data = data(z_n_start:z_n_end,:);

 % Pick off parts of the data

 disp('## picking data');

 Carrier = data(:,3);

 Transitions = data(:,27);

 Vab = data(:,13);

 NP_V = data(:,16);

 % # of carrier edges

 disp('## carrierCount');

 [pos, neg] = carrierCount(Carrier);

 % Error checking

 if (pos ~= neg)

SIMULATION SOFTWARE 191

191

 ME = MException('A', ...

 'Check please');

 throw(ME);

 end

 if (pos ~= fc/50)

 ME = MException('A', ...

 'Check please');

 throw(ME);

 end

 % # of transitions

 n_transitions = Transitions(length(Transitions)) - Transitions(1);

 n_transitions = round(n_transitions);

 disp('## wthdCalc');

 wthd = wthdCalc(Vab);

 nwthd = wthd*M;

 fprintf(1,'\n');

 disp(['fc=', fc_s, ' n=', sprintf('%g',n_transitions), ' wthd=' sprintf('%g',wthd)]);

 fprintf(1,'\n');

 result(j,1) = M;

 result(j,2:6) = [fc n_transitions wthd nwthd max(abs(NP_V))];

 j = j + 1;

end

result = sortrows(result,1)

disp('Game over, yeah!')

csvwrite('result.csv',result);

A.1.2 MATLAB script – Dynamic NP performance test

This MATLAB script is to repeat the PSIM simulations across the whole range of

modulation depth while the NPC converter reduces the NP unbalance from 20% to

5% of VDC, half the DC bus voltage. The initial NP unbalance is set using a DC bus

voltage and then disconnected once the load currents reach steady-state values. The

PSIM simulation time is 1second for both 1 degree and 45 degree load angle. 5

seconds is used for 90 degree load angle.

clc

clear

%% Power converter simu settings calculator

load_angle = 1;

Z = 11 + 1j*2*pi*50*44.4e-3;

R = abs(Z) * cosd(load_angle);

X = abs(Z) * sind(load_angle) ;

L = X / (2*pi*50);

Load_R = R

Load_L = L

res = 40 % number of points in THD curve

step_M = 1/res;

vec_M = step_M:step_M:1;

192 SIMULATION SOFTWARE

192

vec_M(size(vec_M,2)) = vec_M(size(vec_M,2)) - 0.001;

%vec_M = vec_M(find(vec_M <= 0.95));

%vec_M = vec_M(find(vec_M <= 0.051));

%% Automator

% Outer loop to cycle through the Ms

% Inner loop to increment frequencies until we find the required number of

% transitions.

for j=1:length(vec_M) % cycle through M

 %% User-changable system variables

 M = vec_M(j) * sqrt(4/3);

 fc = 3950;

 Tstop_unb = 0.02;

 n_transitions = 0;

 i = 1;

% while (n_transitions < 165) % increment frequencies

 %% PSIM simulation preparation

 ipath = [cd,'\','a.psimsch'];

 %ipath = ['a.sch'];

 ipath = ['"',ipath,'"']; % because there are spaces

 opath = [cd,'\','a.txt'];

 %opath = ['a.txt'];

 opath = ['"',opath,'"']; % because there are spaces

 M_s = sprintf('%g',M);

 fc_s = sprintf('%g',fc);

 Load_L_s = sprintf('%g',Load_L);

 Load_R_s = sprintf('%g',Load_R);

 load_angle_s = sprintf('%g',load_angle);

 Tstop_unb_s = sprintf('%g',Tstop_unb);

 variable1 = [' -v "M=',M_s,'" '];

 variable2 = [' -v "fc=',fc_s,'" '];

 variable3 = [' -v "Load_L=',Load_L_s,'" '];

 variable4 = [' -v "Load_R=',Load_R_s,'" '];

 variable5 = [' -v "Tstop_unb=',Tstop_unb_s,'" '];

 cmd = ['"C:\Program Files (x86)\Powersim\PSIM9.0.3\PsimCmd.exe" -i ',...

 ipath,' -o ',opath, variable1, variable2, variable3,...

 variable4, variable5];

 %% PSIM simulation execution

 tic

 disp(['Starting PSIM simulation M=', M_s, ' fc=', fc_s])

 dos(cmd);

 toc

 %% Post PSIM simulation

 % Load data

 tic

 disp('## txt2mat');

 data = txt2mat('a.txt','InfoLevel',0);

 toc

 % Truncate the data for one fundamental cycle

 % starting from 0.05 seconds

 z_t_step = data(1,1);

% z_n_elements = 0.02 / z_t_step;

% z_n_start = 0.3 / z_t_step;

% z_n_end = z_n_start+z_n_elements-1;

% z_t_start = z_n_start * z_t_step;

% z_t_end = z_n_end * z_t_step;

%

% data = data(z_n_start:z_n_end,:);

 % Pick off parts of the data

 disp('## picking data');

SIMULATION SOFTWARE 193

193

 Carrier = data(:,3);

 Transitions = data(:,27);

 Vab = data(:,13);

 NP_V = data(:,16);

 % # of carrier edges

 disp('## carrierCount');

 [pos, neg] = carrierCount(Carrier);

 % Error checking

 if (pos ~= neg)

 ME = MException('A', ...

 'Check please');

 throw(ME);

 end

 if (pos ~= fc/50)

 ME = MException('A', ...

 'Check please');

 throw(ME);

 end

 % # of transitions

 n_transitions = Transitions(length(Transitions)) - Transitions(1);

 n_transitions = round(n_transitions);

 disp('## wthdCalc');

 wthd = wthdCalc(Vab);

 nwthd = wthd*M;

 % tfinal

 tfinal_percent = 0.04;

 outside = find (abs(NP_V) > tfinal_percent*225);

 tfinal = outside(size(outside,1))*z_t_step;

 tfinal = tfinal - Tstop_unb;

 fprintf(1,'\n');

 disp(['fc=', fc_s, ' n=', sprintf('%g',n_transitions), ' wthd=' sprintf('%g',wthd)]);

 fprintf(1,'\n');

 result(j,1) = M;

 result(j,2:7) = [fc n_transitions wthd nwthd max(abs(NP_V)) tfinal];

 j = j + 1;

end

result = sortrows(result,1)

disp('Game over, yeah!')

csvwrite('result.csv', result)

A.1.3 Supporting MATLAB script – txt2mat

The ‘txt2mat’ MATLAB script is used to read comma-separated values (CSV)

files quickly. A copy of the script can be found at

http://www.mathworks.com/matlabcentral/fileexchange/18430-txt2mat .

http://www.mathworks.com/matlabcentral/fileexchange/18430-txt2mat

194 SIMULATION SOFTWARE

194

A.1.4 Supporting MATLAB script – wthdCalc

The ‘wthdCalc’ MATLAB function is used to calculate the weighted THD of the

data presented to it.

function wthd = wthdCalc(data)

fo=50; % fundamental frequency

fc=5000; % carrier frequency

harmax=240; % the number of harmonics you want to take into account

cycles=1; % the number of cycles your data contains

spectrum = abs(fft(data)); % - V_load contains the data in question

swfreq = fc; % - fc is the carrier frequency

 % - cycles must be the number of cycles

 % of the 50Hz sine wave

 % - harmax must be the maximum harmonic

 % of interest

for i = 1:harmax*cycles,

 if (fo ~= 0),

 harmag(i*2-1) = spectrum(i)/spectrum(cycles+1);

 else,

 harmag(i*2-1) = spectrum(i)/spectrum(1);

 end,

 if (harmag(i*2-1) < 1.e-4), harmag(i*2-1) = 1.e-4; end,

 harmag(i*2) = 1.e-4;

 if (fo ~= 0),

 harm(i*2-1) = (2*i-1)*fo/cycles;

 harm(i*2) = (2*i)*fo/cycles;

 else,

 harm(i*2-1) = (2*i-1)*fi/cycles;

 harm(i*2) = (2*i)*fi/cycles;

 end,

end

thd = 0;

wthd = 0;

if (fo ~= 0),

 for i=cycles+2: harmax*cycles+1,

 thd = thd + spectrum(i)^2;

 wthd = wthd + (spectrum(i)*cycles/(i-1))^2;

 end,

 thd = 100*sqrt(thd)/spectrum(cycles+1);

 wthd = 100*sqrt(wthd)/spectrum(cycles+1);

else,

 for i=2: harmax*cycles+1,

 thd = thd + spectrum(i)^2;

 wthd = wthd + (spectrum(i)*cycles/(i-1))^2;

 end,

 thd = 100*sqrt(thd)/spectrum(1);

 wthd = 100*sqrt(wthd)/spectrum(1);

end

SIMULATION SOFTWARE 195

195

A.1.5 PSIM files

The MATLAB scripts presented in the previous section is used to control the

PSIM files presented here. The PSIM simulation software contains the topology of

the NPC converter and the control logic of the modulation strategy. The PSIM files

are also accompanied by DLLs compiled with Visual Studio 2010 Express which

contain C code implementing the modulation strategy’s calculations.

A.1.5.1 Multi-modulation code (SPWM, CSVPWM with either Proportional or

Feedforward controller)

This PSIM file is a configurable file which can either produce SPWM or

CSVPWM modulation signals. It can then be coupled with either a zero-offset

Proportional or Feedforward NP controller. Both can also be used at the same time.

The choice of strategy is controlled by setting the variables

a) IN_SAMP_EN – Enables asymmetric sampling if set to 1. Else, natural

sampling is used.

b) IN_CSV_EN – Enables CSVPWM if set to 1.

c) IN_KP_OFFSET_EN – Enables Proportional zero-offset control if set to 1.

d) IN_FF_EN – Enables Feedforward if set to 1.

196 SIMULATION SOFTWARE

196

Figure A.1: NTV-based strategies PSIM simulation (topology)

SIMULATION SOFTWARE 197

197

Figure A.2: NTV-based strategies PSIM simulation (control)

198 SIMULATION SOFTWARE

198

A.1.5.2 Code

The following lists the C used within each PSIM block

A.1.5.2.1 Level determination

This code is part of the PSIM’s C simplified block

if (x1 > 0.5 && x2 > 0.5)

 y1 = 1.0;

else if (x1 > -0.5 && x2 > 0.5)

 y1 = 0.0;

else

 y1 = -1.0;

A.1.5.2.2 Transition counter

This code is a DLL used in PSIM to ensure the correct number of cycles are

captured for any THD calculation. DLL is compiled with Microsoft Visual Studio

2010 Express.

/*

 This transition counter assumes that the input is constructed in such a

 way that the difference between 2 voltage buses in absolute number is 1.0.

 E.g. for a 3-level inverter, the levels are 1 , 0 , -1 that corresponds to Vdc, 0, -Vdc

 Thus, if the phase leg travels from Vdc to -Vdc, the divider should be

 set to Vdc. This produces 1.0 to -1.0, and since the distance between

 1.0 and -1.0 is 2.0, there is 2 transitions.

*/

#include <math.h>

int round(double i)

{

 if (i >= floor(i) + 0.5)

 return (int) ceil(i);

 else

 return (int) floor(i);

}

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out)

{

 // Define "sum" as "static" in order to retain its value

 static double first_run=0.0;

 static int prev, c;

 static int transition=0;

 double a,b,divider;

 a = in[0];

 divider = in[1];

 b = a / divider;

 c = round(b);

 if (t == delt)

 {

SIMULATION SOFTWARE 199

199

 transition = 0;

 }

 else if (prev != c)

 {

 transition += (prev-c);

 }

 prev = c;

 //out[0] = round(a);

 out[0] = transition;

}

A.1.5.2.3 Modulator (x.dll)

This code is a DLL used in PSIM to execute modulation calculations. The DLL is

compiled with Microsoft Visual Studio 2010 Express.

/*

 Zaki Mohzani

 27th Nov 2010

 Combined SPWM and CSVPWM

 with Proportional or/and Feedforward

*/

#include <math.h>

// function prototypes

double max(double a, double b, double c);

double min(double a, double b, double c);

double rads (double angle);

// defines

#define TRUE 1

#define FALSE 0

#define CONST_PI 3.14159265

// input output aliases

#define IN_FLOW in[0]

#define IN_SW_PERIOD in[1]

#define IN_VLINE_A in[2]

#define IN_VLINE_B in[3]

#define IN_VLINE_C in[4]

#define IN_IA in[5]

#define IN_IB in[6]

#define IN_IC in[7]

#define IN_VCAP1 in[8]

#define IN_VCAP2 in[9]

#define IN_STRATEGY in[10]

#define IN_M in[11]

#define IN_KP_BENDRE in[12]

#define IN_STOP_UNB in[13]

#define IN_FFVDC in[14]

#define IN_SAMP_EN in[15]

#define IN_CSV_EN in[16]

#define IN_KP_0FFSET_EN in[17]

#define IN_FF_EN in[18]

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out)

{

 // For PSIM

 static double prev_flow = 0.0;

200 SIMULATION SOFTWARE

200

 static double sw_period;

 // For Controller

// static double sw_period = 0.0;

// static int error = 0;

// static double buffer_out[11];

 static double SQRT3;

 static int i;

 static double DC_BUS,delta_NP,

 omega,angle,Deg120,

 Ref_Va,Ref_Vb,Ref_Vc,

 I,P,FF,PI,

 vo_max,vo_min,

 limited_offset,

 Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset,

 a,b,c,

 ap,bp,cp,

 offset,offsetp,

 VDC,

 v1n,v2n,v3n,

 vdcff,

 RVa_top, RVa_bot,

 RVb_top, RVb_bot,

 RVc_top, RVc_bot;

 static double bout[20];

/*---

Initialisation of Controller simulator

void init_of_2810()

---*/

 if (t == delt)

 {

 sw_period = IN_SW_PERIOD;

 SQRT3=sqrt(3);

 I = 0.0;

 P = 0.0;

 }

/*---

Start of Controller simulator

void start_of_2810()

---*/

 // check if we have an overflow / underflow condition

 if ((IN_SAMP_EN == 0.0) || (prev_flow == 0.0 && IN_FLOW != 0.0))

 {

 for (i=0;i<20;i++)

 out[i] = bout[i];

 DC_BUS = IN_VCAP1 + IN_VCAP2;

 if (t > IN_STOP_UNB)

 delta_NP = IN_VCAP1 - IN_VCAP2; // Upper - Lower

 else

 delta_NP = IN_VCAP1 - (IN_VCAP2+0.1*DC_BUS); // Upper - Lower

 omega = 2*CONST_PI*50;

 angle = omega*t;

 Deg120 = (2.0/3.0)*CONST_PI;

 // Generate centered Refs

 a = IN_M*cos(angle);

SIMULATION SOFTWARE 201

201

 b = IN_M*cos(angle - Deg120);

 c = IN_M*cos(angle + Deg120);

 if (IN_CSV_EN == 1.0)

 {

 offset = - (max(a,b,c) + min(a,b,c))/2;

 VDC = 1.0;

 ap = fmod(a + offset + VDC, VDC);

 bp = fmod(b + offset + VDC, VDC);

 cp = fmod(c + offset + VDC, VDC);

 offsetp = VDC/2 - (max(ap,bp,cp) + min(ap,bp,cp))/2;

 Ref_Va = a + offset + offsetp;

 Ref_Vb = b + offset + offsetp;

 Ref_Vc = c + offset + offsetp;

 }

 else

 {

 Ref_Va = a;

 Ref_Vb = b;

 Ref_Vc = c;

 }

 // NP Controller

 if (IN_KP_0FFSET_EN == 1.0)

 {

 //I += IN_KI_BENDRE * deltaNP * sw_period/2;

 P = IN_KP_BENDRE * delta_NP;

 FF = 0;

 //PI = P + I;

 // Calculate limits

 vo_max = min(1.0-Ref_Va, 1.0-Ref_Vb, 1.0-Ref_Vc);

 vo_min = -1.0*min(1.0+Ref_Va, 1.0+Ref_Vb, 1.0+Ref_Vc);

 if (P>vo_max) limited_offset = vo_max;

 else if (P<vo_min) limited_offset = vo_min;

 else limited_offset = P;

 }

 else

 {

 limited_offset = 0.0;

 }

 Ref_Va_offset = Ref_Va + limited_offset;

 Ref_Vb_offset = Ref_Vb + limited_offset;

 Ref_Vc_offset = Ref_Vc + limited_offset;

 if (IN_FF_EN == 1.0)

 {

 v3n = 0;

 v2n = v3n + IN_VCAP2;

 v1n = v2n + IN_VCAP1;

 vdcff = IN_FFVDC;

 RVa_top = (Ref_Va_offset+1 - v2n/vdcff) / (v1n/vdcff - v2n/vdcff);

 RVa_bot = (Ref_Va_offset+1 - v3n/vdcff) / (v2n/vdcff - v3n/vdcff);

 RVb_top = (Ref_Vb_offset+1 - v2n/vdcff) / (v1n/vdcff - v2n/vdcff);

 RVb_bot = (Ref_Vb_offset+1 - v3n/vdcff) / (v2n/vdcff - v3n/vdcff);

 RVc_top = (Ref_Vc_offset+1 - v2n/vdcff) / (v1n/vdcff - v2n/vdcff);

 RVc_bot = (Ref_Vc_offset+1 - v3n/vdcff) / (v2n/vdcff - v3n/vdcff);

 // Accomodate the normal PD carrier arrangement

202 SIMULATION SOFTWARE

202

 RVa_bot -= 1.0;

 RVb_bot -= 1.0;

 RVc_bot -= 1.0;

 }

 else

 {

 RVa_top = Ref_Va_offset;

 RVa_bot = Ref_Va_offset;

 RVb_top = Ref_Vb_offset;

 RVb_bot = Ref_Vb_offset;

 RVc_top = Ref_Vc_offset;

 RVc_bot = Ref_Vc_offset;

 }

 bout[0] = Ref_Va;

 bout[1] = Ref_Vb;

 bout[2] = Ref_Vc;

 bout[3] = limited_offset;

 bout[4] = Ref_Va_offset;

 bout[5] = Ref_Vb_offset;

 bout[6] = Ref_Vc_offset;

 bout[7] = RVa_top;

 bout[8] = RVa_bot;

 bout[9] = RVb_top;

 bout[10] = RVb_bot;

 bout[11] = RVc_top;

 bout[12] = RVc_bot;

 // Disable asymmetric sampling

 if (IN_SAMP_EN == 0.0)

 {

 for (i=0;i<20;i++)

 out[i] = bout[i];

 }

 }

/*---

End of Controller simulator

void end_of_2810()

---*/

 // FOR PSIM: remember this iteration

 prev_flow = IN_FLOW;

}

double max(double a, double b, double c)

{

 if (a >= b)

 { // a is greater

 if (a >= c)

 return a;

 else

 return c;

 }

 if (a <= b)

 { // b is greater

 if (b >= c)

 return b;

 else

 return c;

 }

 return 100.0;

}

SIMULATION SOFTWARE 203

203

double min(double a, double b, double c)

{

 if (a <= b)

 { // a is smaller

 if (a <= c)

 return a;

 else

 return c;

 }

 if (b <= a)

 { // b is smaller

 if (b <= c)

 return b;

 else

 return c;

 }

 return 100.0;

}

double rads (double angle)

{

 return CONST_PI * (angle / 180.0);

}

204 SIMULATION SOFTWARE

204

A.1.5.3 Yamanaka SVM

Figure A.3: Yamanaka’s SVM PSIM simulation (topology)

SIMULATION SOFTWARE 205

205

Figure A.4: Yamanaka’s SVM PSIM simulation (control)

206 SIMULATION SOFTWARE

206

A.1.5.4 Code

The following lists the C used within each PSIM block

A.1.5.4.1 Alpha control block

This code is used in the simplified C code block. The code functions to calculate

the action of the NP controller.

if (x1 > -5)

 y1 = 0.5 - 0.1*x1;

else

 y1 = 1;

A.1.5.4.2 Modulator (x.dll)

This code is a DLL used in PSIM to execute modulation calculations. The DLL is

compiled with Microsoft Visual Studio 2010 Express.

/*

31/12/2011

Yamanaka SVM

Verified

- Sector 1 , Subsector 4

- Sector 2 , Subsector 4

- Sector 3 , Subsector 4

- Sector 4 , Subsector 4

- Sector 5 , Subsector 4

- Sector 6 , Subsector 4

- Sector 1 , Subsector 1

- Sector 2 , Subsector 1

- Sector 3 , Subsector 1

- Sector 4 , Subsector 1

- Sector 5 , Subsector 1

- Sector 6 , Subsector 1

- Sector 1 , Subsector 3

- Sector 2 , Subsector 3

- Sector 3 , Subsector 3

- Sector 4 , Subsector 3

- Sector 5 , Subsector 3

- Sector 6 , Subsector 3

- Sector 1 , Subsector 2

- Sector 2 , Subsector 2

- Sector 3 , Subsector 2

- Sector 4 , Subsector 2

- Sector 5 , Subsector 2

- Sector 6 , Subsector 2

Sequence and duty cycles are correct.

*/

#include <math.h>

// function prototypes

void output_to_phase_legs(double *out, int seq);

int vec_to_no_of_states(double *vec);

SIMULATION SOFTWARE 207

207

void vec_to_states(double *vec, int *states);

int sw_count(int s1, int s2);

double rads (double angle);

double vecs_to_sector(double *vec_uu, double *vec_ul, double *vec_lu, double *vec_ll);

// defines

#define TRUE 1

#define FALSE 0

#define PI 3.14159265

// input output aliases

#define IN_FLOW in[0]

#define IN_M in[1]

#define IN_ANGLE in[2]

#define IN_FSWITCHING in[3]

#define IN_IA in[4]

#define IN_IB in[5]

#define IN_IC in[6]

#define IN_ALPHA in[7]

#define OUT_A_UP out[10]

#define OUT_A_LOW out[11]

#define OUT_B_UP out[12]

#define OUT_B_LOW out[13]

#define OUT_C_UP out[14]

#define OUT_C_LOW out[15]

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out)

{

 // Define "sum" as "static" in order to retain its value

 static double prev_flow=0.0;

 //static int under_over=0;

 static double sw_period=0.0;

 static int error=0;

 static double M;

 static double ref_angle=0.0;

 static double ref_ab[2];

 static double ref_gh[2];

 static double vec_ul[2];

 static double vec_lu[2];

 static double vec_uu[2];

 static double vec_ll[2];

 static int duplicates;

 static double *vec1, *vec2, *vec3;

 static double d1,d2,d3;

 static double t1,t2,t3;

 static double final_duty[4];

 int nX1=0;

 int nX2=0;

 int nX3=0;

 double *Xtmp;

 double Dtmp;

 static int states1[4];

 static int states2[4];

 static int states3[4];

 static int seq[7];

 int sw_transitions;

 static double prev_vector[]={1,0};

208 SIMULATION SOFTWARE

208

 static int prev_state=100;

 static double sector = -1.0;

 static double subsector = -1.0;

 static double alphaC,alpha1,alpha2;

 static double dsmall_1, dsmall_2, dlarge_1, dlarge_2, dmedium, dzero;

 static double d[7], ds1p, ds1n, ds2p, ds2n;

 static double Ix, Iy;

 static double y[12];

 static double tmp;

 int lowest, best_i, best_j, reversed;

 int i,j;

 static int fail = 0;

 // check if we have an overflow / underflow condition

 if (prev_flow == 0.0 && IN_FLOW != 0.0)

 {

 // FOR PSIM ONLY

 sw_period = 1 / IN_FSWITCHING;

 // Simulate DSP controller from this point onwards

 // only now should we do sampling and calculation

 /*

 Step 1

 Calculate sector

 */

 sector = 1+(((int)IN_ANGLE)/60);

 if (sector == -1.0) fail = 1;

 if (fail == 1) return;

 /*

 Step 2

 Calculate subsector

 */

 // Take the reference and convert it into the alpha & beta coordinates

 M = IN_M;

 M *= 2.0;// Times 2 to scale according to the size of the large vectors.

 ref_angle = rads(IN_ANGLE-60*(sector-1));

 ref_ab[0] = M * cos(ref_angle);

 ref_ab[1] = M * sin(ref_angle);

 // Convert the ref from alpha & beta to g & h

 ref_gh[0] = 1*ref_ab[0] + -1/sqrt(3) * ref_ab[1];

 ref_gh[1] = 2/sqrt(3) * ref_ab[1];

 duplicates = TRUE;

 while (duplicates == TRUE)

 {

 // Do the rounding process to identify the vectors we require

 vec_ul[0] = ceil(ref_gh[0]);

 vec_ul[1] = floor(ref_gh[1]);

 vec_lu[0] = floor(ref_gh[0]);

 vec_lu[1] = ceil(ref_gh[1]);

 vec_uu[0] = ceil(ref_gh[0]);

 vec_uu[1] = ceil(ref_gh[1]);

SIMULATION SOFTWARE 209

209

 vec_ll[0] = floor(ref_gh[0]);

 vec_ll[1] = floor(ref_gh[1]);

 if ((vec_uu[0] == vec_ul[0]) && (vec_uu[1] == vec_ul[1]))

 {

 ref_gh[0] += 0.000001;

 ref_gh[1] += 0.000001;

 }

 else if ((vec_uu[0] == vec_lu[0]) && (vec_uu[1] == vec_lu[1]))

 {

 ref_gh[0] += 0.000001;

 ref_gh[1] += 0.000001;

 }

 else duplicates = FALSE;

 }

 // Determine first 2 vectors and duty cycles

 vec1 = vec_ul;

 vec2 = vec_lu;

 // Determine the third vector and duty cycle

 if ((ref_gh[0] + ref_gh[1] - vec_ul[0] - vec_ul[1]) >= 0)

 {

 vec3 = vec_uu;

 d1 = vec_uu[1] - ref_gh[1];

 d2 = vec_uu[0] - ref_gh[0];

 d3 = 1 - d1 - d2;

 }

 else

 {

 vec3 = vec_ll;

 d1 = ref_gh[0] - vec_ll[0];

 d2 = ref_gh[1] - vec_ll[1];

 d3 = 1 - d1 - d2;

 }

 out[0] = vec1[0];

 out[1] = vec1[1];

 out[2] = vec2[0];

 out[3] = vec2[1];

 out[4] = vec3[0];

 out[5] = vec3[1];

 if (vec1[0] == 1.0 && vec1[1] == 0.0 &&

 vec2[0] == 0.0 && vec2[1] == 1.0 &&

 vec3[0] == 0.0 && vec3[1] == 0.0)

 subsector = 4.0;

 else if (vec1[0] == 2.0 && vec1[1] == 0.0 &&

 vec2[0] == 1.0 && vec2[1] == 1.0 &&

 vec3[0] == 1.0 && vec3[1] == 0.0)

 subsector = 1.0;

 else if (vec1[0] == 1.0 && vec1[1] == 0.0 &&

 vec2[0] == 0.0 && vec2[1] == 1.0 &&

 vec3[0] == 1.0 && vec3[1] == 1.0)

 subsector = 2.0;

 else if (vec1[0] == 1.0 && vec1[1] == 1.0 &&

 vec2[0] == 0.0 && vec2[1] == 2.0 &&

 vec3[0] == 0.0 && vec3[1] == 1.0)

 subsector = 3.0;

 else

 subsector = -1.0;

 /*

 Step 3

 Calculate common alpha

210 SIMULATION SOFTWARE

210

 */

 alphaC = IN_ALPHA;

 if (alphaC >= 1.0)

 alphaC = 1.0;

 else if (alphaC <= 0.0)

 alphaC = 0.0;

 /*

 Step 4

 Calculate vectors and sequence and timing

 */

 if (subsector == 1.0)

 {

 dsmall_1 = d3;

 dsmall_2 = 0;

 dlarge_1 = d1;

 dlarge_2 = 0;

 dmedium = d2;

 dzero = 0;

 }

 else if (subsector == 2.0)

 {

 dsmall_1 = d1;

 dsmall_2 = d2;

 dlarge_1 = 0;

 dlarge_2 = 0;

 dmedium = d3;

 dzero = 0;

 }

 else if (subsector == 3.0)

 {

 dsmall_1 = 0;

 dsmall_2 = d3;

 dlarge_1 = 0;

 dlarge_2 = d2;

 dmedium = d1;

 dzero = 0;

 }

 else if (subsector == 4.0)

 {

 dsmall_1 = d1;

 dsmall_2 = d2;

 dlarge_1 = 0;

 dlarge_2 = 0;

 dmedium = 0;

 dzero = d3;

 }

 // Calculate the individual alphas

 if (sector == 1.0) { Ix = IN_IA; Iy = IN_IC; }

 else if (sector == 2.0) { Ix = IN_IB; Iy = IN_IC; }

 else if (sector == 3.0) { Ix = IN_IB; Iy = IN_IA; }

 else if (sector == 4.0) { Ix = IN_IC; Iy = IN_IA; }

 else if (sector == 5.0) { Ix = IN_IC; Iy = IN_IB; }

 else if (sector == 6.0) { Ix = IN_IA; Iy = IN_IB; }

 if (Ix >= 0.0)

 alpha1 = alphaC;

 else

 alpha1 = (1.0-alphaC);

 if (Iy >= 0.0)

 alpha2 = (1.0-alphaC);

 else

 alpha2 = alphaC;

SIMULATION SOFTWARE 211

211

 // Because I implemented it my way where my definition for small vector 1 is always at the 0 degree mark

 // and small vector 2 is always at the 60 degree mark\

 // Yet Yamanaka didnt so I have to swap it every 120 degrees

 if ((sector==2.0)||(sector==4.0)||(sector==6.0))

 {

 tmp = alpha1;

 alpha1 = alpha2;

 alpha2 = tmp;

 }

 ds1p = alpha1*dsmall_1;

 ds1n = dsmall_1 - ds1p;

 ds2p = alpha2*dsmall_2;

 ds2n = dsmall_2 - ds2p;

 if (subsector == 1.0)

 {

 if (sector == 1.0)

 {

 seq[0] = 211; d[0] = ds1p; //small 1p

 seq[1] = 210; d[1] = dmedium;

 seq[2] = 200; d[2] = dlarge_1;

 seq[3] = 100; d[3] = ds1n;

 }

 else if (sector == 2.0)

 {

 seq[0] = 221; d[0] = ds1p;

 seq[1] = 220; d[1] = dlarge_1;

 seq[2] = 120; d[2] = dmedium;

 seq[3] = 110; d[3] = ds1n;

 }

 else if (sector == 3.0)

 {

 seq[0] = 121; d[0] = ds1p;

 seq[1] = 21; d[1] = dmedium;

 seq[2] = 20; d[2] = dlarge_1;

 seq[3] = 10; d[3] = ds1n;

 }

 else if (sector == 4.0)

 {

 seq[0] = 122; d[0] = ds1p;

 seq[1] = 22; d[1] = dlarge_1;

 seq[2] = 12; d[2] = dmedium;

 seq[3] = 11; d[3] = ds1n;

 }

 else if (sector == 5.0)

 {

 seq[0] = 112; d[0] = ds1p;

 seq[1] = 102; d[1] = dmedium;

 seq[2] = 2; d[2] = dlarge_1;

 seq[3] = 1; d[3] = ds1n;

 }

 else if (sector == 6.0)

 {

 seq[0] = 212; d[0] = ds1p;

 seq[1] = 202; d[1] = dlarge_1;

 seq[2] = 201; d[2] = dmedium;

 seq[3] = 101; d[3] = ds1n;

 }

 }

 else if (subsector == 2.0)

 {

 if (sector == 1.0)

 {

212 SIMULATION SOFTWARE

212

 seq[0] = 221; d[0] = ds2p;

 seq[1] = 211; d[1] = ds1p;

 seq[2] = 210; d[2] = dmedium;

 seq[3] = 110; d[3] = ds2n;

 seq[4] = 100; d[4] = ds1n;

 }

 else if (sector == 2.0)

 {

 seq[0] = 221; d[0] = ds1p;

 seq[1] = 121; d[1] = ds2p;

 seq[2] = 120; d[2] = dmedium;

 seq[3] = 110; d[3] = ds1n;

 seq[4] = 10; d[4] = ds2n;

 }

 else if (sector == 3.0)

 {

 seq[0] = 122; d[0] = ds2p;

 seq[1] = 121; d[1] = ds1p;

 seq[2] = 21; d[2] = dmedium;

 seq[3] = 11; d[3] = ds2n;

 seq[4] = 10; d[4] = ds1n;

 }

 else if (sector == 4.0)

 {

 seq[0] = 122; d[0] = ds1p;

 seq[1] = 112; d[1] = ds2p;

 seq[2] = 12; d[2] = dmedium;

 seq[3] = 11; d[3] = ds1n;

 seq[4] = 1; d[4] = ds2n;

 }

 else if (sector == 5.0)

 {

 seq[0] = 212; d[0] = ds2p;

 seq[1] = 112; d[1] = ds1p;

 seq[2] = 102; d[2] = dmedium;

 seq[3] = 101; d[3] = ds2n;

 seq[4] = 1; d[4] = ds1n;

 }

 else if (sector == 6.0)

 {

 seq[0] = 212; d[0] = ds1p;

 seq[1] = 211; d[1] = ds2p;

 seq[2] = 201; d[2] = dmedium;

 seq[3] = 101; d[3] = ds1n;

 seq[4] = 100; d[4] = ds2n;

 }

 }

 else if (subsector == 3.0)

 {

 if (sector == 1.0)

 {

 seq[0] = 221; d[0] = ds2p;

 seq[1] = 220; d[1] = dlarge_2;

 seq[2] = 210; d[2] = dmedium;

 seq[3] = 110; d[3] = ds2n;

 }

 else if (sector == 2.0)

 {

 seq[0] = 121; d[0] = ds2p;

 seq[1] = 120; d[1] = dmedium;

 seq[2] = 20; d[2] = dlarge_2;

 seq[3] = 10; d[3] = ds2n;

 }

 else if (sector == 3.0)

 {

 seq[0] = 122; d[0] = ds2p;

 seq[1] = 22; d[1] = dlarge_2;

SIMULATION SOFTWARE 213

213

 seq[2] = 21; d[2] = dmedium;

 seq[3] = 11; d[3] = ds2n;

 }

 else if (sector == 4.0)

 {

 seq[0] = 112; d[0] = ds2p;

 seq[1] = 12; d[1] = dmedium;

 seq[2] = 2; d[2] = dlarge_2;

 seq[3] = 1; d[3] = ds2n;

 }

 else if (sector == 5.0)

 {

 seq[0] = 212; d[0] = ds2p;

 seq[1] = 202; d[1] = dlarge_2;

 seq[2] = 102; d[2] = dmedium;

 seq[3] = 101; d[3] = ds2n;

 }

 else if (sector == 6.0)

 {

 seq[0] = 211; d[0] = ds2p;

 seq[1] = 201; d[1] = dmedium;

 seq[2] = 200; d[2] = dlarge_2;

 seq[3] = 100; d[3] = ds2n;

 }

 }

 else if (subsector == 4.0)

 {

 if (sector == 1.0)

 {

 seq[0] = 222; d[0] = dzero/3.0;

 seq[1] = 221; d[1] = ds2p;

 seq[2] = 211; d[2] = ds1p;

 seq[3] = 111; d[3] = dzero/3.0;

 seq[4] = 110; d[4] = ds2n;

 seq[5] = 100; d[5] = ds1n;

 seq[6] = 0; d[6] = dzero/3.0;

 }

 else if (sector == 2.0)

 {

 seq[0] = 222; d[0] = dzero/3.0;

 seq[1] = 221; d[1] = ds1p;

 seq[2] = 121; d[2] = ds2p;

 seq[3] = 111; d[3] = dzero/3.0;

 seq[4] = 110; d[4] = ds1n;

 seq[5] = 10; d[5] = ds2n;

 seq[6] = 0; d[6] = dzero/3.0;

 }

 else if (sector == 3.0)

 {

 seq[0] = 222; d[0] = dzero/3.0;

 seq[1] = 122; d[1] = ds2p;

 seq[2] = 121; d[2] = ds1p;

 seq[3] = 111; d[3] = dzero/3.0;

 seq[4] = 11; d[4] = ds2n;

 seq[5] = 10; d[5] = ds1n;

 seq[6] = 0; d[6] = dzero/3.0;

 }

 else if (sector == 4.0)

 {

 seq[0] = 222; d[0] = dzero/3.0;

 seq[1] = 122; d[1] = ds1p;

 seq[2] = 112; d[2] = ds2p;

 seq[3] = 111; d[3] = dzero/3.0;

 seq[4] = 11; d[4] = ds1n;

 seq[5] = 1; d[5] = ds2n;

 seq[6] = 0; d[6] = dzero/3.0;

 }

214 SIMULATION SOFTWARE

214

 else if (sector == 5.0)

 {

 seq[0] = 222; d[0] = dzero/3.0;

 seq[1] = 212; d[1] = ds2p;

 seq[2] = 112; d[2] = ds1p;

 seq[3] = 111; d[3] = dzero/3.0;

 seq[4] = 101; d[4] = ds2n;

 seq[5] = 1; d[5] = ds1n;

 seq[6] = 0; d[6] = dzero/3.0;

 }

 else if (sector == 6.0)

 {

 seq[0] = 222; d[0] = dzero/3.0;

 seq[1] = 212; d[1] = ds1p;

 seq[2] = 211; d[2] = ds2p;

 seq[3] = 111; d[3] = dzero/3.0;

 seq[4] = 101; d[4] = ds1n;

 seq[5] = 100; d[5] = ds2n;

 seq[6] = 0; d[6] = dzero/3.0;

 }

 }

 // Translate the duty to time

 if (subsector == 1.0)

 {

 /*

 | seq[0] | seq[1] | seq[2] | seq[3] | seq[2] | seq[1] | seq[0] |

 t -> y[0] -> y[1] -> y[2] -> y[3] -> y[4] -> y[5]

 */

 y[0] = t + 0.5*d[0]*sw_period;

 y[1] = y[0] + 0.5*d[1]*sw_period;

 y[2] = y[1] + 0.5*d[2]*sw_period;

 y[3] = y[2] + 1.0*d[3]*sw_period;

 y[4] = y[3] + 0.5*d[2]*sw_period;

 y[5] = y[4] + 0.5*d[1]*sw_period;

 }

 else if (subsector == 3.0)

 {

 /*

 | seq[0] | seq[1] | seq[2] | seq[3] | seq[2] | seq[1] | seq[0] |

 t -> y[0] -> y[1] -> y[2] -> y[3] -> y[4] -> y[5]

 */

 y[0] = t + 0.5*d[0]*sw_period;

 y[1] = y[0] + 0.5*d[1]*sw_period;

 y[2] = y[1] + 0.5*d[2]*sw_period;

 y[3] = y[2] + 1.0*d[3]*sw_period;

 y[4] = y[3] + 0.5*d[2]*sw_period;

 y[5] = y[4] + 0.5*d[1]*sw_period;

 }

 else if (subsector == 2.0)

 {

 /*

 | seq[0] | seq[1] | seq[2] | seq[3] | seq[4] | seq[3] | seq[2] | seq[1] | seq[0] |

 t -> y[0] -> y[1] -> y[2] -> y[3] -> y[4] -> y[5] -> y[6] -> y[7]

 */

 y[0] = t + 0.5*d[0]*sw_period;

 y[1] = y[0] + 0.5*d[1]*sw_period;

 y[2] = y[1] + 0.5*d[2]*sw_period;

 y[3] = y[2] + 0.5*d[3]*sw_period;

 y[4] = y[3] + 1.0*d[4]*sw_period;

 y[5] = y[4] + 0.5*d[3]*sw_period;

 y[6] = y[5] + 0.5*d[2]*sw_period;

 y[7] = y[6] + 0.5*d[1]*sw_period;

 }

 else if (subsector == 4.0)

SIMULATION SOFTWARE 215

215

 {

 /*

 | seq[0] | seq[1] | seq[2] | seq[3] | seq[4] | seq[5] | seq[6] | seq[5] | seq[4] | seq[3] | seq[2] | seq[1] | seq[0]

 t -> y[0] -> y[1] -> y[2] -> y[3] -> y[4] -> y[5] -> y[6] -> y[7] -> y[8] -> y[9] -> y[10] -> y[11]

 */

 y[0] = t + 0.5*d[0]*sw_period;

 y[1] = y[0] + 0.5*d[1]*sw_period;

 y[2] = y[1] + 0.5*d[2]*sw_period;

 y[3] = y[2] + 0.5*d[3]*sw_period;

 y[4] = y[3] + 0.5*d[4]*sw_period;

 y[5] = y[4] + 0.5*d[5]*sw_period;

 y[6] = y[5] + 1.0*d[6]*sw_period;

 y[7] = y[6] + 0.5*d[5]*sw_period;

 y[8] = y[7] + 0.5*d[4]*sw_period;

 y[9] = y[8] + 0.5*d[3]*sw_period;

 y[10] = y[9] + 0.5*d[2]*sw_period;

 y[11] = y[10] + 0.5*d[1]*sw_period;

 }

 //out[6] = vec_ll[0];

 //out[7] = vec_ll[1];

 //out[0] = vec1[0];

 //out[1] = vec1[1];

 //out[2] = vec2[0];

 //out[3] = vec2[1];

 //out[4] = vec3[0];

 //out[5] = vec3[1];

 out[6] = seq[0];

 out[7] = seq[1];

 out[8] = seq[2];

 out[9] = seq[3];

 out[16] = sector;

 out[17] = subsector;

 out[18] = d[0];

 out[19] = d[1];

 out[20] = d[2];

 out[21] = d[3];

 }

 // FOR PSIM: remember this iteration

 prev_flow = IN_FLOW;

 if ((subsector == 1.0) || (subsector == 3.0))

 {

 if (t <= y[0]) output_to_phase_legs(out, seq[0]);

 if (t > y[0] && t <= y[1]) output_to_phase_legs(out, seq[1]);

 if (t > y[1] && t <= y[2]) output_to_phase_legs(out, seq[2]);

 if (t > y[2] && t <= y[3]) output_to_phase_legs(out, seq[3]);

 if (t > y[3] && t <= y[4]) output_to_phase_legs(out, seq[2]);

 if (t > y[4] && t <= y[5]) output_to_phase_legs(out, seq[1]);

 if (t > y[5]) output_to_phase_legs(out, seq[0]);

 }

 else if (subsector == 2.0)

 {

 if (t <= y[0]) output_to_phase_legs(out, seq[0]);

 if (t > y[0] && t <= y[1]) output_to_phase_legs(out, seq[1]);

 if (t > y[1] && t <= y[2]) output_to_phase_legs(out, seq[2]);

 if (t > y[2] && t <= y[3]) output_to_phase_legs(out, seq[3]);

 if (t > y[3] && t <= y[4]) output_to_phase_legs(out, seq[4]);

 if (t > y[4] && t <= y[5]) output_to_phase_legs(out, seq[3]);

 if (t > y[5] && t <= y[6]) output_to_phase_legs(out, seq[2]);

 if (t > y[6] && t <= y[7]) output_to_phase_legs(out, seq[1]);

 if (t > y[7]) output_to_phase_legs(out, seq[0]);

 }

 else if (subsector == 4.0)

 {

216 SIMULATION SOFTWARE

216

 if (t <= y[0]) output_to_phase_legs(out, seq[0]);

 if (t > y[0] && t <= y[1]) output_to_phase_legs(out, seq[1]);

 if (t > y[1] && t <= y[2]) output_to_phase_legs(out, seq[2]);

 if (t > y[2] && t <= y[3]) output_to_phase_legs(out, seq[3]);

 if (t > y[3] && t <= y[4]) output_to_phase_legs(out, seq[4]);

 if (t > y[4] && t <= y[5]) output_to_phase_legs(out, seq[5]);

 if (t > y[5] && t <= y[6]) output_to_phase_legs(out, seq[6]);

 if (t > y[6] && t <= y[7]) output_to_phase_legs(out, seq[5]);

 if (t > y[7] && t <= y[8]) output_to_phase_legs(out, seq[4]);

 if (t > y[8] && t <= y[9]) output_to_phase_legs(out, seq[3]);

 if (t > y[9] && t <= y[10]) output_to_phase_legs(out, seq[2]);

 if (t > y[10] && t <= y[11]) output_to_phase_legs(out, seq[1]);

 if (t > y[11]) output_to_phase_legs(out, seq[0]);

 }

}

void output_to_phase_legs(double *out, int seq)

{

 int a,b,c;

 a = abs(seq/100);

 b = abs((seq - 100*a)/10);

 c = abs(seq - 100*a - 10*b);

 switch (a)

 {

 case 2:

 OUT_A_UP = 1;

 OUT_A_LOW = 1;

 break;

 case 1:

 OUT_A_UP = 0;

 OUT_A_LOW = 1;

 break;

 case 0:

 OUT_A_UP = 0;

 OUT_A_LOW = 0;

 break;

 }

 switch (b)

 {

 case 2:

 OUT_B_UP = 1;

 OUT_B_LOW = 1;

 break;

 case 1:

 OUT_B_UP = 0;

 OUT_B_LOW = 1;

 break;

 case 0:

 OUT_B_UP = 0;

 OUT_B_LOW = 0;

 break;

 }

 switch (c)

 {

 case 2:

 OUT_C_UP = 1;

 OUT_C_LOW = 1;

 break;

 case 1:

 OUT_C_UP = 0;

 OUT_C_LOW = 1;

 break;

 case 0:

 OUT_C_UP = 0;

SIMULATION SOFTWARE 217

217

 OUT_C_LOW = 0;

 break;

 }

}

int vec_to_no_of_states(double *vec)

{

 int g = (int) vec[0];

 int h = (int) vec[1];

 int n;

 // null

 if (g == 0 && h == 0) n = 3;

 // smalls

 else if (g == 1 && h == 0) n = 2;

 else if (g == 0 && h == 1) n = 2;

 else if (g == -1 && h == 1) n = 2;

 else if (g == -1 && h == 0) n = 2;

 else if (g == 0 && h == -1) n = 2;

 else if (g == 1 && h == -1) n = 2;

 // medium

 else if (g == 1 && h == 1) n = 1;

 else if (g == -1 && h == 2) n = 1;

 else if (g == -2 && h == 1) n = 1;

 else if (g == -1 && h == -1) n = 1;

 else if (g == 1 && h == -2) n = 1;

 else if (g == 2 && h == -1) n = 1;

 // large

 else if (g == 2 && h == 0) n = 1;

 else if (g == 0 && h == 2) n = 1;

 else if (g == -2 && h == 2) n = 1;

 else if (g == -2 && h == 0) n = 1;

 else if (g == 0 && h == -2) n = 1;

 else if (g == 2 && h == -2) n = 1;

 else n = 0; // error

 return n;

}

void vec_to_states(double *vec, int *states)

{

 // C compiler didn't like the idea of 010.

 // It wanted it to just be 10

 int g = (int) vec[0];

 int h = (int) vec[1];

 // null

 if (g == 0 && h == 0)

 {

 states[0] = 3;

 states[1] = 000; states[2] = 111; states[3] = 222;

 }

 // smalls

 else if (g == 1 && h == 0) { states[0] = 2; states[1] = 100; states[2] = 211; }

 else if (g == 0 && h == 1) { states[0] = 2; states[1] = 110; states[2] = 221; }

 else if (g == -1 && h == 1) { states[0] = 2; states[1] = 121; states[2] = 10; }

 else if (g == -1 && h == 0) { states[0] = 2; states[1] = 122; states[2] = 11; }

 else if (g == 0 && h == -1) { states[0] = 2; states[1] = 112; states[2] = 1; }

 else if (g == 1 && h == -1) { states[0] = 2; states[1] = 101; states[2] = 212; }

 // medium

 else if (g == 1 && h == 1) { states[0] = 1; states[1] = 210; }

 else if (g == -1 && h == 2) { states[0] = 1; states[1] = 120; }

 else if (g == -2 && h == 1) { states[0] = 1; states[1] = 21; }

218 SIMULATION SOFTWARE

218

 else if (g == -1 && h == -1) { states[0] = 1; states[1] = 12; }

 else if (g == 1 && h == -2) { states[0] = 1; states[1] = 102; }

 else if (g == 2 && h == -1) { states[0] = 1; states[1] = 201; }

 // large

 else if (g == 2 && h == 0) { states[0] = 1; states[1] = 200; }

 else if (g == 0 && h == 2) { states[0] = 1; states[1] = 220; }

 else if (g == -2 && h == 2) { states[0] = 1; states[1] = 20; }

 else if (g == -2 && h == 0) { states[0] = 1; states[1] = 22; }

 else if (g == 0 && h == -2) { states[0] = 1; states[1] = 002; }

 else if (g == 2 && h == -2) { states[0] = 1; states[1] = 202; }

 else { states[0] = 0; } // error

}

int sw_count(int x1, int x2)

{

 int na1,nb1,nc1;

 int na2,nb2,nc2;

 int count;

 count = 100;

 na1 = x1/100;

 nb1 = (x1 - 100*na1)/10;

 nc1 = x1 - 100*na1 - 10*nb1;

 na2 = x2/100;

 nb2 = (x2 - 100*na2)/10;

 nc2 = x2 - 100*na2 - 10*nb2;

 count = abs(na1 - na2) + abs(nb1 - nb2) + abs(nc1 - nc2);

 return count;

}

double rads (double angle)

{

 return PI * (angle / 180.0);

}

double vecs_to_sector(double *vec_uu, double *vec_ul, double *vec_lu, double *vec_ll)

{

 if (vec_uu[0] == 1.0 && vec_uu[1] == 1.0 &&

 vec_ul[0] == 1.0 && vec_ul[1] == 0.0 &&

 vec_lu[0] == 0.0 && vec_lu[1] == 1.0 &&

 vec_ll[0] == 0.0 && vec_ll[1] == 1.0)

 return 4.0;

 else if (vec_uu[0] == 2.0 && vec_uu[1] == 1.0 &&

 vec_ul[0] == 2.0 && vec_ul[1] == 0.0 &&

 vec_lu[0] == 1.0 && vec_lu[1] == 1.0)

 return 1.0;

 else if (vec_uu[0] == 1.0 && vec_uu[1] == 1.0 &&

 vec_ul[0] == 1.0 && vec_ul[1] == 0.0 &&

 vec_lu[0] == 0.0 && vec_lu[1] == 1.0 &&

 vec_ll[0] == 0.0 && vec_ll[1] == 0.0)

 return 2.0;

 else if (vec_uu[0] == 1.0 && vec_uu[1] == 2.0 &&

 vec_ul[0] == 1.0 && vec_ul[1] == 1.0 &&

 vec_lu[0] == 0.0 && vec_lu[1] == 2.0)

 return 3.0;

 else

 return -1.0;

}

SIMULATION SOFTWARE 219

219

A.1.5.5 NTVV

Figure A.5: NTVV’s PSIM simulation (topology)

220 SIMULATION SOFTWARE

220

Figure A.6: NTVV’s PSIM simulation (control)

SIMULATION SOFTWARE 221

221

A.1.5.6 Code

The following lists the C used within each PSIM block

A.1.5.6.1 Modulator (x.dll)

This code is a DLL used in PSIM to execute modulation calculations. The DLL is

compiled with Microsoft Visual Studio 2010 Express.

/*

 Zaki Mohzani

 27th Nov 2010

 PLL in C code

*/

#include <math.h>

// function prototypes

double max(double a, double b, double c);

double min(double a, double b, double c);

double rads (double angle);

double sgn(double a);

// defines

#define TRUE 1

#define FALSE 0

#define CONST_PI 3.14159265

// input output aliases

#define IN_FLOW in[0]

#define IN_SW_PERIOD in[1]

#define IN_VLINE_A in[2]

#define IN_VLINE_B in[3]

#define IN_VLINE_C in[4]

#define IN_IA in[5]

#define IN_IB in[6]

#define IN_IC in[7]

#define IN_VCAP1 in[8]

#define IN_VCAP2 in[9]

#define IN_STRATEGY in[10]

#define IN_M in[11]

#define IN_KP_BENDRE in[12]

#define IN_STOP_UNB in[13]

#define IN_C in[14]

#define IN_KP in[15]

#define IN_KI in[16]

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out)

{

 // For PSIM

 static double prev_flow = 0.0;

 static double sw_period;

 // For Controller

// static double sw_period = 0.0;

// static int error = 0;

// static double buffer_out[11];

 static double SQRT3;

 static int i;

222 SIMULATION SOFTWARE

222

 static double DC_BUS,delta_NP,

 omega,angle,angle_deg,Deg120,Deg30,

 Ref_Va,Ref_Vb,Ref_Vc,

 I,P,FF,PI,

 vo_max,vo_min,

 limited_offset,

 Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset,

 a,b,c,

 ap,bp,cp,

 offset,offsetp,

 VDC,

 Ref_Va_top, Ref_Va_bot,

 Ref_Vb_top, Ref_Vb_bot,

 Ref_Vc_top, Ref_Vc_bot,

 Ref_Va_top_offset, Ref_Va_bot_offset,

 Ref_Vb_top_offset, Ref_Vb_bot_offset,

 Ref_Vc_top_offset, Ref_Vc_bot_offset,

 vap, vbp, vcp,

 van, vbn, vcn,

 da,db,dc,

 va_offset, vb_offset, vc_offset,

 M_tmp,

 I_NP_ref,

 limit,top_limit,bot_limit;

 static double bout[20];

/*---

Initialisation of Controller simulator

void init_of_2810()

---*/

 if (t == delt)

 {

 sw_period = IN_SW_PERIOD;

 SQRT3=sqrt(3);

 I = 0.0;

 P = 0.0;

 }

/*---

Start of Controller simulator

void start_of_2810()

---*/

 // check if we have an overflow / underflow condition

 if (prev_flow == 0.0 && IN_FLOW != 0.0)

 {

 for (i=0;i<20;i++)

 out[i] = bout[i];

 DC_BUS = IN_VCAP1 + IN_VCAP2;

 if (t > IN_STOP_UNB)

 delta_NP = IN_VCAP1 - IN_VCAP2; // Upper - Lower

 else

 delta_NP = IN_VCAP1 - (IN_VCAP2+0.2*DC_BUS); // Upper - Lower

 // Paper wants Lower - Upper

 delta_NP = -delta_NP;

 omega = 2*CONST_PI*50;

 angle = omega*t;

 Deg120 = (2.0/3.0)*CONST_PI;

 Deg30 = CONST_PI/6;

SIMULATION SOFTWARE 223

223

 angle_deg = angle * (180/CONST_PI);

 while (angle_deg>=360)

 angle_deg -= 360;

 // Generate Refs

 vap = 0; vbp = 0; vcp = 0;

 van = 0; vbn = 0; vcn = 0;

 M_tmp = IN_M;

 a = M_tmp * cos(angle);

 b = M_tmp * cos(angle - Deg120);

 c = M_tmp * cos(angle + Deg120);

 vap = 0.5*(a - min(a,b,c));

 van = 0.5*(a - max(a,b,c));

 vbp = 0.5*(b - min(a,b,c));

 vbn = 0.5*(b - max(a,b,c));

 vcp = 0.5*(c - min(a,b,c));

 vcn = 0.5*(c - max(a,b,c));

 Ref_Va_top = vap;

 Ref_Va_bot = van;

 Ref_Vb_top = vbp;

 Ref_Vb_bot = vbn;

 Ref_Vc_top = vcp;

 Ref_Vc_bot = vcn;

 if (sw_period == 0.0)

 sw_period = 0.0000001;

 I_NP_ref = IN_C*delta_NP/sw_period;

 da = fabs(van - vap + 1);

 db = fabs(vbn - vbp + 1);

 dc = fabs(vcn - vcp + 1);

 va_offset = I_NP_ref*fabs(van-vap+1);

 va_offset = va_offset / (-db*IN_IB-dc*IN_IC);

 va_offset = 0.5*fabs(va_offset);

 va_offset = -1 * sgn(delta_NP*IN_IA)*va_offset;

 vb_offset = I_NP_ref*fabs(vbn-vbp+1);

 vb_offset = vb_offset / (-da*IN_IA-dc*IN_IC);

 vb_offset = 0.5*fabs(vb_offset);

 vb_offset = -1 * sgn(delta_NP*IN_IB)*vb_offset;

 vc_offset = I_NP_ref*fabs(vcn-vcp+1);

 vc_offset = vc_offset / (-da*IN_IA-db*IN_IB);

 vc_offset = 0.5*fabs(vc_offset);

 vc_offset = -1 * sgn(delta_NP*IN_IC)*vc_offset;

 Ref_Va_top_offset = Ref_Va_top; //+ limited_offset;

 Ref_Va_bot_offset = Ref_Va_bot; //+ limited_offset;

 Ref_Vb_top_offset = Ref_Vb_top; //+ limited_offset;

 Ref_Vb_bot_offset = Ref_Vb_bot; //+ limited_offset;

 Ref_Vc_top_offset = Ref_Vc_top; //+ limited_offset;

 Ref_Vc_bot_offset = Ref_Vc_bot; //+ limited_offset;

 if (60.0 <= angle_deg && angle_deg <= 120.0)

 {

 // Apply to phase A

224 SIMULATION SOFTWARE

224

 if(va_offset > 0.0)

 {

 limit = ((van+1)-vap)/2.0;

 if (va_offset > limit)

 va_offset = limit;

 }

 else

 {

 top_limit = vap-0;

 bot_limit = 0-van;

 limit = -min(top_limit,bot_limit,1);

 if (va_offset < limit)

 va_offset = limit;

 }

 limited_offset = va_offset;

 Ref_Va_top_offset = Ref_Va_top + va_offset;

 Ref_Va_bot_offset = Ref_Va_bot - va_offset;

 }

 if (240.0 <= angle_deg && angle_deg <= 300.0)

 {

 // Apply to phase A

 if(va_offset > 0.0)

 {

 limit = ((van+1)-vap)/2.0;

 if (va_offset > limit)

 va_offset = limit;

 }

 else

 {

 top_limit = vap-0;

 bot_limit = 0-van;

 limit = -min(top_limit,bot_limit,1);

 if (va_offset < limit)

 va_offset = limit;

 }

 limited_offset = va_offset;

 Ref_Va_top_offset = Ref_Va_top + va_offset;

 Ref_Va_bot_offset = Ref_Va_bot - va_offset;

 }

 if (180.0 <= angle_deg && angle_deg <= 240.0)

 {

 // Apply to phase B

 if(vb_offset > 0.0)

 {

 limit = ((vbn+1)-vbp)/2.0;

 if (vb_offset > limit)

 vb_offset = limit;

 }

 else

 {

 top_limit = vbp-0;

 bot_limit = 0-vbn;

 limit = -min(top_limit,bot_limit,1);

 if (vb_offset < limit)

 vb_offset = limit;

 }

SIMULATION SOFTWARE 225

225

 limited_offset = vb_offset;

 Ref_Vb_top_offset = Ref_Vb_top + vb_offset;

 Ref_Vb_bot_offset = Ref_Vb_bot - vb_offset;

 }

 if (0.0 <= angle_deg && angle_deg <= 60.0)

 {

 // Apply to phase B

 if(vb_offset > 0.0)

 {

 limit = ((vbn+1)-vbp)/2.0;

 if (vb_offset > limit)

 vb_offset = limit;

 }

 else

 {

 top_limit = vbp-0;

 bot_limit = 0-vbn;

 limit = -min(top_limit,bot_limit,1);

 if (vb_offset < limit)

 vb_offset = limit;

 }

 limited_offset = vb_offset;

 Ref_Vb_top_offset = Ref_Vb_top + vb_offset;

 Ref_Vb_bot_offset = Ref_Vb_bot - vb_offset;

 }

 if (300.0 <= angle_deg && angle_deg <= 360.0)

 {

 // Apply to phase C

 if(vc_offset > 0.0)

 {

 limit = ((vcn+1)-vcp)/2.0;

 if (vc_offset > limit)

 vc_offset = limit;

 }

 else

 {

 top_limit = vcp-0;

 bot_limit = 0-vcn;

 limit = -min(top_limit,bot_limit,1);

 if (vc_offset < limit)

 vc_offset = limit;

 }

 limited_offset = vc_offset;

 Ref_Vc_top_offset = Ref_Vc_top + vc_offset;

 Ref_Vc_bot_offset = Ref_Vc_bot - vc_offset;

 }

 if (120.0 <= angle_deg && angle_deg <= 180.0)

 {

 // Apply to phase C

 if(vc_offset > 0.0)

 {

 limit = ((vcn+1)-vcp)/2.0;

 if (vc_offset > limit)

 vc_offset = limit;

 }

 else

 {

226 SIMULATION SOFTWARE

226

 top_limit = vcp-0;

 bot_limit = 0-vcn;

 limit = -min(top_limit,bot_limit,1);

 if (vc_offset < limit)

 vc_offset = limit;

 }

 limited_offset = vc_offset;

 Ref_Vc_top_offset = Ref_Vc_top + vc_offset;

 Ref_Vc_bot_offset = Ref_Vc_bot - vc_offset;

 }

 bout[0] = Ref_Va_top;

 bout[1] = Ref_Va_bot;

 bout[2] = Ref_Vb_top;

 bout[3] = Ref_Vb_bot;

 bout[4] = Ref_Vc_top;

 bout[5] = Ref_Vc_bot;

 bout[6] = limited_offset;

 bout[7] = Ref_Va_top_offset;

 bout[8] = Ref_Va_bot_offset;

 bout[9] = Ref_Vb_top_offset;

 bout[10] = Ref_Vb_bot_offset;

 bout[11] = Ref_Vc_top_offset;

 bout[12] = Ref_Vc_bot_offset;

 }

/*---

End of Controller simulator

void end_of_2810()

---*/

 // FOR PSIM: remember this iteration

 prev_flow = IN_FLOW;

}

double max(double a, double b, double c)

{

 if (a >= b)

 { // a is greater

 if (a >= c)

 return a;

 else

 return c;

 }

 if (a <= b)

 { // b is greater

 if (b >= c)

 return b;

 else

 return c;

 }

 return 100.0;

}

double min(double a, double b, double c)

{

 if (a <= b)

 { // a is smaller

 if (a <= c)

 return a;

 else

SIMULATION SOFTWARE 227

227

 return c;

 }

 if (b <= a)

 { // b is smaller

 if (b <= c)

 return b;

 else

 return c;

 }

 return 100.0;

}

double rads (double angle)

{

 return CONST_PI * (angle / 180.0);

}

double sgn(double a)

{

 if (a >= 0.0)

 return 1;

 else

 return -1;

}

228 SIMULATION SOFTWARE

228

A.1.5.7 ONTVV

Figure A.7: ONTVV’s PSIM simulation (topology)

SIMULATION SOFTWARE 229

229

Figure A.8: ONTVV’s PSIM simulation (control)

230 SIMULATION SOFTWARE

230

A.1.5.8 Code

The following lists the C used within each PSIM block

A.1.5.8.1 Modulator (x.dll)

This code is a DLL used in PSIM to execute modulation calculations. The DLL is

compiled with Microsoft Visual Studio 2010 Express.

/*

 Zaki Mohzani

 27th Nov 2010

 PLL in C code

*/

#include <math.h>

// function prototypes

double max(double a, double b, double c);

double min(double a, double b, double c);

double rads (double angle);

// defines

#define TRUE 1

#define FALSE 0

#define CONST_PI 3.14159265

// input output aliases

#define IN_FLOW in[0]

#define IN_SW_PERIOD in[1]

#define IN_VLINE_A in[2]

#define IN_VLINE_B in[3]

#define IN_VLINE_C in[4]

#define IN_IA in[5]

#define IN_IB in[6]

#define IN_IC in[7]

#define IN_VCAP1 in[8]

#define IN_VCAP2 in[9]

#define IN_STRATEGY in[10]

#define IN_M in[11]

#define IN_STOP_UNB in[12]

#define IN_KP_NP in[13]

#define IN_KI_NP in[14]

#define IN_LOAD_ANGLE in[15]

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out)

{

 // For PSIM

 static double prev_flow = 0.0;

 static double sw_period;

 // For Controller

// static double sw_period = 0.0;

// static int error = 0;

// static double buffer_out[11];

 static double SQRT3;

 static int i;

 static double DC_BUS,delta_NP,

 omega,angle,angle_deg,Deg120,Deg30,

SIMULATION SOFTWARE 231

231

 Ref_Va,Ref_Vb,Ref_Vc,

 I,P,FF,PI,

 vo_max,vo_min,

 limited_offset,

 Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset,

 a,b,c,

 ap,bp,cp,

 offset,offsetp,

 VDC,

 Ref_Va_top, Ref_Va_bot,

 Ref_Vb_top, Ref_Vb_bot,

 Ref_Vc_top, Ref_Vc_bot,

 Ref_Va_top_offset, Ref_Va_bot_offset,

 Ref_Vb_top_offset, Ref_Vb_bot_offset,

 Ref_Vc_top_offset, Ref_Vc_bot_offset,

 M_tmp;

 static double

 load_angle, abs_load_angle,

 region, K,

 dpd, dpq, dp0,

 dnd, dnq, dn0,

 dap, dbp, dcp,

 dan, dbn, dcn,

 doffset,

 dpap, dpbp, dpcp,

 dpan, dpbn, dpcn,

 denum,wt,L,

 overmodulation;

 static double bout[20];

/*---

Initialisation of Controller simulator

void init_of_2810()

---*/

 if (t == delt)

 {

 sw_period = IN_SW_PERIOD;

 SQRT3=sqrt(3);

 I = 0.0;

 P = 0.0;

 }

/*---

Start of Controller simulator

void start_of_2810()

---*/

 // check if we have an overflow / underflow condition

 if (prev_flow == 0.0 && IN_FLOW != 0.0)

 {

 for (i=0;i<20;i++)

 out[i] = bout[i];

 DC_BUS = IN_VCAP1 + IN_VCAP2;

 if (t > IN_STOP_UNB)

 delta_NP = IN_VCAP1 - IN_VCAP2; // Upper - Lower

 else

 delta_NP = IN_VCAP1 - (IN_VCAP2+0.1*DC_BUS); // Upper - Lower

 delta_NP = delta_NP/2.0;

 omega = 2*CONST_PI*50;

 angle = omega*t;

232 SIMULATION SOFTWARE

232

 Deg120 = (2.0/3.0)*CONST_PI;

 Deg30 = CONST_PI/6;

 angle_deg = angle * (180/CONST_PI);

 while (angle_deg>=360)

 angle_deg -= 360;

 M_tmp = IN_M / sqrt(4.0/3.0);

/*///

 Generate Refs

///*/

 // Find the region of K based on M and load angle

 load_angle = IN_LOAD_ANGLE * (CONST_PI/180); // input is in degrees

 abs_load_angle = fabs(load_angle);

#define REGION_A 1.0

#define REGION_B 2.0

#define REGION_C 3.0

 if (M_tmp <= 0.5)

 {

 region = REGION_A;

 }

 else if (M_tmp <= (0.75 + 0.213*(1-sin(abs_load_angle))))

 {

 region = REGION_B;

 }

 else

 {

 region = REGION_C;

 }

 //out[0] = 0.75 + 0.213*(1-sin(abs_load_angle));

 //out[1] = region;

 // Calculate K

 if (region == REGION_A)

 K = 0.25 * M_tmp*M_tmp * cos(load_angle);

 else if (region == REGION_B)

 K = 0.25 * M_tmp * (1 - abs_load_angle/(CONST_PI/2));

 else

 K = 1.53 * (1-M_tmp) * (1-sin(abs_load_angle)) / (abs_load_angle+0.24);

 // Calculate dpq, dpd

 dpq = -K * sin(3*angle);

 dpd = tan(load_angle) * dpq + M_tmp/sqrt(2.0);

 // Calculate dnd, dnq

 dnd = dpd - sqrt(2.0) * M_tmp;

 dnq = dpq;

 // Calculate dp0

 if (0.0 <= angle_deg && angle_deg <= 120.0)

 dp0 = sqrt(2.0) * (-dpd*cos(angle+Deg120) + dpq*sin(angle+Deg120));

 else if (120.0 < angle_deg && angle_deg <= 240.0)

 dp0 = sqrt(2.0) * (-dpd*cos(angle) + dpq*sin(angle));

 else if (240.0 < angle_deg && angle_deg <= 360.0)

 dp0 = sqrt(2.0) * (-dpd*cos(angle-Deg120) + dpq*sin(angle-Deg120));

 // Calculate dn0

 if (0.0 <= angle_deg && angle_deg <= 60.0)

 dn0 = sqrt(2.0) * (-dnd*cos(angle) + dnq*sin(angle));

SIMULATION SOFTWARE 233

233

 else if (60.0 < angle_deg && angle_deg <= 180.0)

 dn0 = sqrt(2.0) * (-dnd*cos(angle-Deg120) + dnq*sin(angle-Deg120));

 else if (180.0 < angle_deg && angle_deg <= 300.0)

 dn0 = sqrt(2.0) * (-dnd*cos(angle+Deg120) + dnq*sin(angle+Deg120));

 else if (300.0 < angle_deg && angle_deg <= 360.0)

 dn0 = sqrt(2.0) * (-dnd*cos(angle) + dnq*sin(angle));

 //out[0] = dpd;

 //out[1] = dpq;

 //out[2] = dp0;

 //out[3] = dnd;

 //out[4] = dnq;

 //out[5] = dn0;

 denum = sin(2*Deg120) - 2*sin(Deg120);

 L = 1.0/sqrt(2.0);

 wt = angle;

 // Calculate dap

 dap = dpq*(cos(Deg120 - wt) - cos(Deg120 + wt)) - dpd*(sin(Deg120 - wt) + sin(Deg120 + wt)) +

dp0*sin(2*Deg120)/L;

 dap = (sqrt(3.0/2.0)) / denum * dap;

 dbp = dpd*(sin(Deg120 + wt) - sin(wt)) + dpq*(cos(Deg120 + wt) - cos(wt)) - dp0*sin(Deg120)/L;

 dbp = (sqrt(3.0/2.0)) / denum * dbp;

 dcp = dpd*(sin(wt) + sin(Deg120 - wt)) + dpq*(cos(wt) - cos(Deg120 - wt)) - dp0*sin(Deg120)/L;

 dcp = (sqrt(3.0/2.0)) / denum * dcp;

 dan = dnq*(cos(Deg120 - wt) - cos(Deg120 + wt)) - dnd*(sin(Deg120 - wt) + sin(Deg120 + wt)) +

dn0*sin(2*Deg120)/L;

 dan = (sqrt(3.0/2.0)) / denum * dan;

 dbn = dnq*(cos(Deg120 + wt) - cos(wt)) + dnd*(sin(Deg120 + wt) - sin(wt)) - dn0*sin(Deg120)/L;

 dbn = (sqrt(3.0/2.0)) / denum * dbn;

 dcn = dnq*(cos(wt) - cos(Deg120 - wt)) + dnd*(sin(wt) + sin(Deg120 - wt)) - dn0*sin(Deg120)/L;

 dcn = (sqrt(3.0/2.0)) / denum * dcn;

 Ref_Va_top = dap;

 Ref_Va_bot = -dan;

 Ref_Vb_top = dbp;

 Ref_Vb_bot = -dbn;

 Ref_Vc_top = dcp;

 Ref_Vc_bot = -dcn;

 bout[0] = Ref_Va_top;

 bout[1] = Ref_Va_bot;

 bout[2] = Ref_Vb_top;

 bout[3] = Ref_Vb_bot;

 bout[4] = Ref_Vc_top;

 bout[5] = Ref_Vc_bot;

/*///

 NP Control

///*/

 I += IN_KI_NP * delta_NP * sw_period/2;

 P = IN_KP_NP * delta_NP;

 FF = 0;

 PI = P + I;

 doffset = PI;

 if (doffset > 0.1)

 doffset = 0.1;

234 SIMULATION SOFTWARE

234

 if (doffset < -0.1)

 doffset = -0.1;

 // Phase A

 if (doffset >= 0)

 {

 if (dan > doffset)

 {

 dpan = dan - doffset;

 dpap = dap;

 }

 else

 {

 dpan = 0;

 dpap = dap + (doffset - dan);

 }

 }

 else

 {

 if (dap > fabs(doffset))

 {

 dpap = dap - fabs(doffset);

 dpan = dan;

 }

 else

 {

 dpap = 0;

 dpan = dan + (fabs(doffset) - dap);

 }

 }

 // Phase B

 if (doffset >= 0)

 {

 if (dbn > doffset)

 {

 dpbn = dbn - doffset;

 dpbp = dbp;

 }

 else

 {

 dpbn = 0;

 dpbp = dbp + (doffset - dbn);

 }

 }

 else

 {

 if (dbp > fabs(doffset))

 {

 dpbp = dbp - fabs(doffset);

 dpbn = dbn;

 }

 else

 {

 dpbp = 0;

 dpbn = dbn + (fabs(doffset) - dbp);

 }

 }

 // Phase C

 if (doffset >= 0)

 {

 if (dcn > doffset)

 {

SIMULATION SOFTWARE 235

235

 dpcn = dcn - doffset;

 dpcp = dcp;

 }

 else

 {

 dpcn = 0;

 dpcp = dcp + (doffset - dcn);

 }

 }

 else

 {

 if (dcp > fabs(doffset))

 {

 dpcp = dcp - fabs(doffset);

 dpcn = dcn;

 }

 else

 {

 dpcp = 0;

 dpcn = dcn + (fabs(doffset) - dcp);

 }

 }

 overmodulation = 0;

 if (dpap>1.0 || dpbp>1.0 || dpcp>1.0) overmodulation = 1;

 if (dpan>1.0 || dpbn>1.0 || dpcn>1.0) overmodulation = 1;

 Ref_Va_top_offset = dpap;

 Ref_Va_bot_offset = -dpan;

 Ref_Vb_top_offset = dpbp;

 Ref_Vb_bot_offset = -dpbn;

 Ref_Vc_top_offset = dpcp;

 Ref_Vc_bot_offset = -dpcn;

 bout[6] = doffset;

 bout[7] = Ref_Va_top_offset;

 bout[8] = Ref_Va_bot_offset;

 bout[9] = Ref_Vb_top_offset;

 bout[10] = Ref_Vb_bot_offset;

 bout[11] = Ref_Vc_top_offset;

 bout[12] = Ref_Vc_bot_offset;

 bout[13] = overmodulation;

 }

/*---

End of Controller simulator

void end_of_2810()

---*/

 // FOR PSIM: remember this iteration

 prev_flow = IN_FLOW;

}

double max(double a, double b, double c)

{

 if (a >= b)

 { // a is greater

 if (a >= c)

 return a;

 else

 return c;

 }

 if (a <= b)

 { // b is greater

236 SIMULATION SOFTWARE

236

 if (b >= c)

 return b;

 else

 return c;

 }

 return 100.0;

}

double min(double a, double b, double c)

{

 if (a <= b)

 { // a is smaller

 if (a <= c)

 return a;

 else

 return c;

 }

 if (b <= a)

 { // b is smaller

 if (b <= c)

 return b;

 else

 return c;

 }

 return 100.0;

}

double rads (double angle)

{

 return CONST_PI * (angle / 180.0);

}

SIMULATION SOFTWARE 237

237

A.1.5.9 Song PWM

Figure A.9: Song’s SPWM’s PSIM simulation (topology)

238 SIMULATION SOFTWARE

238

Figure A.10: Song’s SPWM’s PSIM simulation (control)

SIMULATION SOFTWARE 239

239

A.1.5.10 Code

The following lists the C used within each PSIM block

A.1.5.10.1 Modulator (x.dll)

This code is a DLL used in PSIM to execute modulation calculations. The DLL is

compiled with Microsoft Visual Studio 2010 Express.

/*

 Zaki Mohzani

 27th Nov 2010

 PLL in C code

*/

#include <math.h>

// function prototypes

double max(double a, double b, double c);

double min(double a, double b, double c);

double rads (double angle);

double sgn(double a);

double mid(double a, double b, double c);

double midPH(double a, double b, double c);

// defines

#define TRUE 1

#define FALSE 0

#define CONST_PI 3.14159265

// input output aliases

#define IN_FLOW in[0]

#define IN_SW_PERIOD in[1]

#define IN_VLINE_A in[2]

#define IN_VLINE_B in[3]

#define IN_VLINE_C in[4]

#define IN_IA in[5]

#define IN_IB in[6]

#define IN_IC in[7]

#define IN_VCAP1 in[8]

#define IN_VCAP2 in[9]

#define IN_STRATEGY in[10]

#define IN_M in[11]

#define IN_KP_BENDRE in[12]

#define IN_STOP_UNB in[13]

#define IN_CAP in[14]

#define IN_T_EN_CONT in[15]

#define IN_KI in[16]

// Internal usage defines

#define PhA 1

#define PhB 2

#define PhC 3

__declspec(dllexport) void simuser (double t,double delt,double* in,double* out)

{

 // For PSIM

 static double prev_flow = 0.0;

 static double sw_period;

240 SIMULATION SOFTWARE

240

 // For Controller

// static double sw_period = 0.0;

// static int error = 0;

// static double buffer_out[11];

 static double SQRT3;

 static int i;

 static double DC_BUS,delta_NP,

 omega,angle,Deg120,

 Ref_Va,Ref_Vb,Ref_Vc,

 I,P,FF,PI,

 vo_max,vo_min,

 limited_offset,

 Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset,

 a,b,c,

 a1,b1,c1,

 ap,bp,cp,

 offset,offsetp,

 VDC;

 static double iNPcon,sgn_a,sgn_b,sgn_c,

 offset_tst,denum_offset_tst,

 middle, middlePh,

 tst_rslt,error,

 vmax,vmin;

 static double bout[20];

/*---

Initialisation of Controller simulator

void init_of_2810()

---*/

 if (t == delt)

 {

 sw_period = IN_SW_PERIOD;

 SQRT3=sqrt(3);

 I = 0.0;

 P = 0.0;

 }

/*---

Start of Controller simulator

void start_of_2810()

---*/

 // check if we have an overflow / underflow condition

 if (prev_flow == 0.0 && IN_FLOW != 0.0)

 {

 for (i=0;i<20;i++)

 out[i] = bout[i];

 DC_BUS = IN_VCAP1 + IN_VCAP2;

 if (t > IN_STOP_UNB)

 delta_NP = IN_VCAP1 - IN_VCAP2; // Upper - Lower

 else

 delta_NP = IN_VCAP1 - (IN_VCAP2+0.1*DC_BUS); // Upper - Lower

 omega = 2*CONST_PI*50;

 angle = omega*t;

 Deg120 = (2.0/3.0)*CONST_PI;

 iNPcon = -IN_CAP*delta_NP/(sw_period); // /2);

 // Generate centered Refs

SIMULATION SOFTWARE 241

241

 a1 = IN_M*cos(angle);

 b1 = IN_M*cos(angle - Deg120);

 c1 = IN_M*cos(angle + Deg120);

 sgn_a = sgn(a1); sgn_b = sgn(b1); sgn_c = sgn(c1);

 offset_tst = -iNPcon - (sgn_a*a1*IN_IA + sgn_b*b1*IN_IB + sgn_c*c1*IN_IC);

 denum_offset_tst = (sgn_a*IN_IA + sgn_b*IN_IB + sgn_c*IN_IC);

 //if (denum_offset_tst == 0.0)

 // denum_offset_tst = 0.0000000001;

 offset_tst = offset_tst / denum_offset_tst;

 middle = mid(a1,b1,c1);

 middlePh = midPH(a1,b1,c1);

 tst_rslt = 0;

 offset = 0;

 if (sgn(middle) == sgn(middle + offset_tst))

 {

 tst_rslt = 1;

 offset = offset_tst;

 }

 if ((sgn(middle) == -sgn(middle + offset_tst)))

 {

 tst_rslt = -1;

 // Revise calculation

 if (middlePh == PhA) sgn_a = -sgn_a;

 if (middlePh == PhB) sgn_b = -sgn_b;

 if (middlePh == PhC) sgn_c = -sgn_c;

 offset_tst = -iNPcon - (sgn_a*a1*IN_IA + sgn_b*b1*IN_IB + sgn_c*c1*IN_IC);

 denum_offset_tst = (sgn_a*IN_IA + sgn_b*IN_IB + sgn_c*IN_IC);

 //if (denum_offset_tst == 0.0)

 // denum_offset_tst = 0.0000000001;

 offset = offset_tst / denum_offset_tst;

 }

 if (middlePh < 0 || tst_rslt == 0)

 error = 1;

 Ref_Va = a1;// + offset;

 Ref_Vb = b1;// + offset;

 Ref_Vc = c1;// + offset;

 // Restriction of v0

 vmax = max(a1,b1,c1);

 vmin = min(a1,b1,c1);

 if ((offset+vmax) > 1.0) offset = 1 - vmax;

 if ((offset+vmin) < -1.0) offset = -1 - vmin;

 //I += IN_KI_BENDRE * deltaNP * sw_period/2;

 //P = IN_KP_BENDRE * delta_NP;

 //FF = 0;

 //PI = P + I;

 // Calculate limits

 //vo_max = min(1.0-Ref_Va, 1.0-Ref_Vb, 1.0-Ref_Vc);

 //vo_min = -1.0*min(1.0+Ref_Va, 1.0+Ref_Vb, 1.0+Ref_Vc);

 //if (P>vo_max) limited_offset = vo_max;

242 SIMULATION SOFTWARE

242

 //else if (P<vo_min) limited_offset = vo_min;

 //else limited_offset = P;

 if (t > IN_T_EN_CONT)

 limited_offset = offset;

 else

 limited_offset = 0;

 Ref_Va_offset = Ref_Va + limited_offset;

 Ref_Vb_offset = Ref_Vb + limited_offset;

 Ref_Vc_offset = Ref_Vc + limited_offset;

 bout[0] = Ref_Va;

 bout[1] = Ref_Vb;

 bout[2] = Ref_Vc;

 bout[3] = limited_offset;

 bout[4] = Ref_Va_offset;

 bout[5] = Ref_Vb_offset;

 bout[6] = Ref_Vc_offset;

 bout[7] = sgn(a);

 bout[8] = mid(a1,b1,c1);

 bout[9] = tst_rslt;

 bout[10] = middlePh;

 bout[11] = error;

 bout[12] = denum_offset_tst;

 bout[13] = sgn_a;

 bout[14] = sgn_b;

 bout[15] = sgn_c;

 }

/*---

End of Controller simulator

void end_of_2810()

---*/

 // FOR PSIM: remember this iteration

 prev_flow = IN_FLOW;

}

double max(double a, double b, double c)

{

 if (a >= b)

 { // a is greater

 if (a >= c)

 return a;

 else

 return c;

 }

 if (a <= b)

 { // b is greater

 if (b >= c)

 return b;

 else

 return c;

 }

 return 100.0;

}

double min(double a, double b, double c)

{

 if (a <= b)

 { // a is smaller

 if (a <= c)

 return a;

SIMULATION SOFTWARE 243

243

 else

 return c;

 }

 if (b <= a)

 { // b is smaller

 if (b <= c)

 return b;

 else

 return c;

 }

 return 100.0;

}

double rads (double angle)

{

 return CONST_PI * (angle / 180.0);

}

double sgn(double a)

{

 if (a >= 0.0)

 return 1;

 else

 return -1;

}

double mid(double a, double b, double c)

{

 if (a > b && a > c) // a is max

 {

 // its either b or c

 if (b > c)

 return b;

 else

 return c;

 }

 if (b > a && b > c) // b is max

 {

 // its either a or c

 if (a > c)

 return a;

 else

 return c;

 }

 if (c > a && c > b) // c is max

 {

 // its either a or b

 if (a > b)

 return a;

 else

 return b;

 }

 return -100.0;

}

double midPH(double a, double b, double c)

{

 if (a > b && a > c) // a is max

244 SIMULATION SOFTWARE

244

 {

 // its either b or c

 if (b > c)

 return PhB;

 else

 return PhC;

 }

 if (b > a && b > c) // b is max

 {

 // its either a or c

 if (a > c)

 return PhA;

 else

 return PhC;

 }

 if (c > a && c > b) // c is max

 {

 // its either a or b

 if (a > b)

 return PhA;

 else

 return PhB;

 }

 return -3;

}

}

A.1.5.11 Strategies using Balance booster

The usage of balance booster only requires the removal of any NP controller. The

simplest method is to set the Proportional gain of a zero-offset addition controller to

0. Then the balance booster is placed in the PSIM file as shown below:

SIMULATION SOFTWARE 245

245

Figure A.11: Balance booster-based strategies’ PSIM simulation (topology)

246 SIMULATION SOFTWARE

246

EXPERIMENTAL SOFTWARE 247

247

APPENDIX B EXPERIMENTAL SOFTWARE

Code Composer 4 is used to program the Texas Instrument TMSC240F2810 DSP.

The code below is used to implement the different modulation strategies.

B. 1 Common library files

B.1.1 CPT libraries

Creative Power Technologies C library are used to provide low-level hardware

support. They are not listed here in the thesis.

B.1.2 cas_cpld.h

This library is used to provide functions to control the CPLD which is partly

responsible for communications between the three CPT-GIIB boards.

#define ADD_EVB 0xCA

#define ADD_MAS_SLAVE 0xCC

#define ADD_TX_RX 0xCE

#define ADD_SWAP_PWM34 0xDC

#define ADD_CAS_ENABLE 0xDE

void CAS_init();

void CAS_enable();

void CAS_disable();

void CAS_master_mode();

void CAS_slave_mode();

void CAS_tx_mode();

void CAS_rx_mode();

void CAS_SWAP_PWM34_ENABLE();

void CAS_SWAP_PWM34_DISABLE();

void CAS_reset_pin();

B.1.3 cas_cpld.c

// processor standard include files

#include <DSP281x_Device.h>

#include <DSP281x_Examples.h>

// board standard include files

//#include <lib_da2810.h>

#include <lib_mini2810.h>

#include <lib_cpld.h>

#include <dac_ad56.h>

#include <lib_giib.h>

#include "cas_cpld.h"

extern int16 wait, tmp2, SPI_TRASH;

void CAS_init()

{

 cpld_write(ADD_SPECIAL,0x01); // special function = 1

 cpld_write(ADD_GPIO,0x00); // set gpios to input

 CPLD.SCIBMODE.bit.SPD = 1;

248 EXPERIMENTAL SOFTWARE

248

 cpld_write(ADD_SCIBMODE, CPLD.SCIBMODE.all);

 // Enable the pins to control BIDIR SPI

 EALLOW;

 GpioMuxRegs.GPFMUX.bit.CANRXA_GPIOF7 = 0; // disabled

 GpioMuxRegs.GPDMUX.bit.T2CTRIP_SOCA_GPIOD1 = 0; //disabled

 GpioMuxRegs.GPFDIR.bit.GPIOF7 = 1;

 GpioMuxRegs.GPDDIR.bit.GPIOD1 = 1;

 EDIS;

}

void CAS_enable()

{

 GpioDataRegs.GPFSET.all = BIT7;

}

void CAS_disable()

{

 GpioDataRegs.GPFCLEAR.all = BIT7;

}

void CAS_master_mode()

{

 CAS_disable();

 cpld_write(ADD_MAS_SLAVE,0x01);

}

void CAS_slave_mode()

{

 CAS_disable();

 cpld_write(ADD_MAS_SLAVE,0x00);

}

void CAS_tx_mode()

{

 SET_TP11();

}

void CAS_rx_mode()

{

 CLEAR_TP11();

}

void CAS_SWAP_PWM34_ENABLE()

{

 CAS_disable();

 cpld_write(ADD_EVACOMCON,0x19); // 0001 1001 assuming PWM outputs were enabled.

}

void CAS_SWAP_PWM34_DISABLE(){

 CAS_disable();

 cpld_write(ADD_EVACOMCON,0x01); // 0000 0001 assuming PWM outputs were enabled.

}

void CAS_reset_pin()

{

 int wait;

 GpioDataRegs.GPDSET.all = BIT1;

 for(wait = 0; wait < 3; wait++);

 GpioDataRegs.GPDCLEAR.all = BIT1;

}

EXPERIMENTAL SOFTWARE 249

249

B.1.4 main.h

/**

\file

\brief Main system definitions

\par Developed By:

 Creative Power Technologies, (C) Copyright 2009

\author A.McIver

\par History:

\li 23/04/09 AM - initial creation

*/

/* ===

__Definitions()

== */

#define __SQRT2 1.4142135624

#define __SQRT3 1.7320508075

#define __PI 3.1415926535

#define SYSCLK_OUT (150e6)

#define HSPCLK (SYSCLK_OUT)

#define LSPCLK (SYSCLK_OUT/4)

/* ===

__State_Simple_Definitions()

== */

/** Simple State Machine Type */

 typedef void (* funcPtr)(void);

typedef struct

{

 funcPtr f;

 unsigned int call_count;

 unsigned char first;

} type_state;

/* Simple State Handling Macros */

#define SS_NEXT(_s_,_f_) { _s_.f = (funcPtr)_f_; \

 s.call_count = 0; \

 s.first = 1; }

#define SS_IS_FIRST(_s_) (_s_.first == 1)

#define SS_DONE(_s_) { _s_.first = 0; }

#define SS_DO(_s_) { _s_.call_count++; \

 ((*(_s_.f))()); }

#define SS_IS_PRESENT(_s_,_f_) (_s_.f == (funcPtr)_f_)

/* ===

__Grab_Code_Definitions()

== */

/**/

#define GRAB_INCLUDE

#ifdef GRAB_INCLUDE

// grab array size

#define GRAB_LENGTH 200

#define GRAB_WIDTH 6

// modes

#define GRAB_GO 0

#define GRAB_WAIT 1

250 EXPERIMENTAL SOFTWARE

250

#define GRAB_TRIGGER 2

#define GRAB_STOPPED 3

#define GRAB_SHOW 4

// macros

#define GrabStart() grab_mode = GRAB_TRIGGER;

#define GrabStop() grab_mode = GRAB_STOPPED;

#define GrabRun() grab_mode = GRAB_GO;

#define GrabShow() grab_mode = GRAB_SHOW;

#define GrabClear() { grab_mode = GRAB_WAIT; \

 grab_index = 0; }

#define GrabTriggered() (grab_mode == GRAB_TRIGGER)

#define GrabRunning() (grab_mode == GRAB_GO)

#define GrabStopped() (grab_mode == GRAB_STOPPED)

#define GrabAvail() (grab_mode >= GRAB_STOPPED)

#define GrabShowTrigger() (grab_mode == GRAB_SHOW)

#define GrabStore(_loc_,_data_) grab_array[grab_index][_loc_] = _data_;

#define GrabStep() { grab_index++; \

 if (grab_index >= GRAB_LENGTH) \

 grab_mode = GRAB_STOPPED; }

// variables

extern int16

 grab_mode,

 grab_index,

 grab_array[GRAB_LENGTH][GRAB_WIDTH];

// functions

void GrabDisplay(int16 index);

void GrabInit(void);

#endif

/* */

void print_help(void);

B.1.5 main.c

/**

\file

\brief System software for the DA-2810 Demo code

\par Developed By:

 Creative Power Technologies, (C) Copyright 2009

\author A.McIver

\par History:

\li 23/04/09 AM - initial creation

*/

// compiler standard include files

#include <stdlib.h>

#include <stdio.h>

// processor standard include files

#include <DSP281x_Device.h>

#include <DSP281x_Examples.h>

// board standard include files

EXPERIMENTAL SOFTWARE 251

251

//#include <lib_da2810.h>

#include <lib_mini2810.h>

#include <lib_cpld.h>

#include <lib_giib.h>

// common project include files

//#define AD5624

#define DAC_SHIFT 4

#include <dac_ad56.h>

// common project include files

// local include files

#include "main.h"

#include "conio.h"

#include "vsi.h"

/* ===

__Definitions()

== */

#define LCD_CTRL (ADD_MINICS2_BASE+MINIBUS_MA1)

#define TRUE 1

#define FALSE 0

/* ===

__Typedefs()

== */

/// Time related flag type

/** This structure holds flags used in background timing. */

typedef struct

{

 Uint16

 msec:1, ///< millisecond flag

 msec10:1, ///< 10ms flag

 sec0_1:1, ///< tenth of a second flag

 sec:1, ///< second flag

 sec5:1;

} type_time_flag;

/* ===

__Variables()

== */

#ifndef BUILD_RAM

// These are defined by the linker (see F2812.cmd)

extern Uint16 RamfuncsLoadStart;

extern Uint16 RamfuncsLoadEnd;

extern Uint16 RamfuncsRunStart;

#endif

// Background variables

Uint16

 quit = 0; ///< exit flag

/// timing variable

type_time_flag

 time =

 {

 0,0,0,0 // flags

 };

Uint32

 idle_count = 0, ///< count of idle time in the background

 idle_count_old = 0, ///< previous count of idle time

252 EXPERIMENTAL SOFTWARE

252

 idle_diff = 0; ///< change in idle time btwn low speed tasks

char

 str[40]; // string for displays

extern signed int

 ZX_time;

extern int16

 loop_back_character;

/* ===

__Serial_input_variable()

== */

int mod_depth_serial =0; //In 2810 modulation depth go from 0 to 1000 (0-100%)

int step_mod_depth_serial = 100;

int final_mod_depth_serial = 0;

int mod_depth_max = MOD_DEPTH_MAX;

double mod_f_freq_serial = INIT_FF; //Fundamental modulation frequency in Hz

double step_f_freq_serial = 0.5;

double mod_f_freq_max = 100.0;

Uint16 sw_freq_serial = 15000;

Uint16 step_sw_freq_serial = 50;

#define KP_INIT 0

#define TINT_INIT 0

double

 real_Kp_serial = KP_INIT,

 real_Tint_serial = TINT_INIT;

long

 step_at_phase_serial = 0;

int

 step_enable_flag = FALSE,

 step_direction = 1;

extern int16

 ctrl_latch;

/* ===

__Local_Function_Prototypes()

== */

/* 1 second interrupt for display */

interrupt void isr_cpu_timer0(void);

/// display operating info

void com_display(void);

/* process keyboard input */

void com_keyboard(void);

void init_dac1_mini(void);

/* ===

__Grab_Variables()

== */

#ifdef GRAB_INCLUDE

EXPERIMENTAL SOFTWARE 253

253

//#pragma DATA_SECTION(grab_array, "bss_grab")

int16

 grab_mode = GRAB_STOPPED,

 grab_index,

 grab_array[GRAB_LENGTH][GRAB_WIDTH];

#endif

/*===

zaki_defines()

===*/

#include <math.h>

#define TABLE_SIZE 400

#define PI 3.14159265359

int zphase,zphase_step;

extern int16 transmission_en;

void put_bin(unsigned int num);

void PREVENT_BUFFER_OVERRUN(void);

int16 master_slave_mode = 0;

int16 Unit_number = 0;

extern unsigned int failures;

void zaki_vsi_init(void);

void sine_table_gen(float *start, int table_size);

float sine_table[TABLE_SIZE];

extern Uint16 is_switching;

extern float mod_depth;

extern Uint16 gtransmit;

int16 cause_unbalance=0;

/* === */

/* Main */

/* === */

/* Idle time benchmark:

\li Ram based program with only bios interrupt and an empty main loop gives an

idle_diff of 4.69M (4,685,900)

\li 23/03/09 V1.02 1.23M with no modbus running

*/

void main(void)

{

 static int i = 0;

 int date = 0;

 Uint32 waste_time = 0;

 Uint16 count;

 // Zaki's addition

 Uint16 read_no = 0;

 static int j = 0;

 double k;

 float y;

 int yint;

// Disable CPU interrupts

 DINT;

// Initialise DSP for PCB

 lib_mini2810_init(150/*MHz*/,37500/*kHz*/,150000/*kHz*/,LIB_EVAENCLK

 |LIB_EVBENCLK|LIB_ADCENCLK|LIB_SCIAENCLK|LIB_SCIBENCLK|LIB_MCBSPENCLK);

// Initialize the PIE control registers to their default state.

 InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:

 IER = 0x0000;

 IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt

254 EXPERIMENTAL SOFTWARE

254

// Service Routines (ISR).

// This will populate the entire table, even if the interrupt

// is not used in this example. This is useful for debug purposes.

// The shell ISR routines are found in DSP281x_DefaultIsr.c.

// This function is found in DSP281x_PieVect.c.

 InitPieVectTable();

#ifndef BUILD_RAM

// Copy time critical code and Flash setup code to RAM

// The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart

// symbols are created by the linker. Refer to the F2810.cmd file.

 MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

// Call Flash Initialization to setup flash waitstates

// This function must reside in RAM

 InitFlash();

#endif

 InitAdc();

 InitCpuTimers();

// Initialise COM port

bios_init(9600L);

// Configure CPU-Timer 0 to interrupt every millisecond:

// 150MHz CPU Freq, 1ms Period (in uSeconds)

ConfigCpuTimer(&CpuTimer0, 150.0/*MHz*/, 1000.0/*us*/);

StartCpuTimer0();

// Interrupts that are used in this example are re-mapped to

// ISR functions found within this file.

 EALLOW; // This is needed to write to EALLOW protected register

 PieVectTable.TINT0 = &isr_cpu_timer0;

 EDIS; // This is needed to disable write to EALLOW protected registers

 // Enable TINT0 in the PIE: Group 1 interrupt 7

 PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

 IER |= M_INT1; // Enable CPU Interrupt 1

 EnableInterrupts();

 // Initialise DAC before I do anything with normal SPI

 init_dac1_mini();

 spi_init(MODE_CPLD);

 cpld_reg_init();

 giib_init();

#ifdef GRAB_INCLUDE

 GrabInit();

#endif

/*

 END OF CPT's INITIALISATION

 LETS DO SOME WORK!

 Zaki 4/10/2010

*/

 for (j=0; j<=4000000000;j++)

 {

 if (j == 4000000000-1)

 put_str("\nlets roll\n");

 }

 // This is must be done first

 // before we set the SPI to SLAVE mode

 CPLD.EVACOMCON.bit.ENA = 1; // CPLD: Enable EVA PWM outputs

 cpld_write(ADD_EVACOMCON,CPLD.EVACOMCON.all);

EXPERIMENTAL SOFTWARE 255

255

 //SpiaRegs.SPICCR.bit.SPILBK = 1; //Set SPI on loop back for testing

 put_str("\nZaki\n");

 //Read the DIP switch on GIIB to determine the unit number of the unit

 Unit_number = ReadDigIn();

 /* Unit 0 is always the master module of the network responsible for sending sync pulse and master message */

 put_str("Unit number: ");

 putxx(Unit_number);

 put_str("\n");

 if(Unit_number == 0)

 {

 master_slave_mode = 1;

 put_str("MASTER");

 }

 else

 {

 master_slave_mode = 0;

 put_str("SLAVE");

 }

 put_str("\n");

 // Force DIGIN5-6 to CAP1-2

 CPLD.CAPQEP.bit.CP = 1;

 cpld_write(ADD_CAPQEP,CPLD.CAPQEP.all);

 /*

 NOTE:

 The code below assumes that SPISTE is not connected

 or 3-wire SPI.

 The slave's SPISTE is driven low permanently so that

 SPI comms work.

 Please ensure that there is no bus contention.

 */

 EALLOW;

 //Enable test pins on EVA

 GpioMuxRegs.GPAMUX.bit.T1PWM_GPIOA6 = 0; // disabled

 GpioMuxRegs.GPAMUX.bit.T2PWM_GPIOA7 = 0; //disabled

 GpioMuxRegs.GPADIR.bit.GPIOA6 = 1;

 GpioMuxRegs.GPADIR.bit.GPIOA7 = 1;

 //Enable test pin on EVB

 GpioMuxRegs.GPBMUX.bit.T3PWM_GPIOB6 = 0;

 GpioMuxRegs.GPBMUX.bit.T4PWM_GPIOB7 = 0;

 GpioMuxRegs.GPBDIR.bit.GPIOB6 = 1;

 GpioMuxRegs.GPBDIR.bit.GPIOB7 = 1;

 EDIS;

 CAS_init();

 if (master_slave_mode == 0)

 {

 CAS_slave_mode();

 CAS_rx_mode();

 }

 else

 {

 CAS_master_mode();

 CAS_tx_mode();

 }

 DISABLE_CPLD();

 EALLOW;

 GpioDataRegs.GPFDAT.bit.GPIOF3 = 0;

256 EXPERIMENTAL SOFTWARE

256

 GpioMuxRegs.GPFMUX.bit.SPISTEA_GPIOF3 = 0;

 GpioMuxRegs.GPFDIR.bit.GPIOF3 = 1;

 EDIS;

 if (master_slave_mode == 0)

 // Set SPI to slave mode

 SpiaRegs.SPICTL.bit.MASTER_SLAVE = 0;

 // 3rd DIGIO socket pin is fault

 // Routed to master through NPC SPI Comms board

 EALLOW;

 GpioDataRegs.GPBDAT.bit.GPIOB2 = 0;

 GpioMuxRegs.GPBMUX.bit.PWM9_GPIOB2 = 0;

 GpioMuxRegs.GPBDIR.bit.GPIOB2 = 1;

 EDIS;

 sine_table_gen(sine_table, TABLE_SIZE);

 CAS_enable();

 vsi_disable();

 if (master_slave_mode == 1)

 {

 PREVENT_BUFFER_OVERRUN();

 put_str("DSP Initialisation complete\n\n");

 PREVENT_BUFFER_OVERRUN();

 put_str("This system will automatically synchronise\n");

 PREVENT_BUFFER_OVERRUN();

 put_str("provided NPC SPI Comm's board is used.\n");

 PREVENT_BUFFER_OVERRUN();

 put_str("1. Ensure SPI cables are connected\n");

 PREVENT_BUFFER_OVERRUN();

 put_str("2. Ensure slaves are correctly receiving\n");

 PREVENT_BUFFER_OVERRUN();

 }

 else

 {

 PREVENT_BUFFER_OVERRUN();

 put_str("DSP Initialisation complete\n\n");

 PREVENT_BUFFER_OVERRUN();

 put_str("This system will automatically synchronise\n");

 PREVENT_BUFFER_OVERRUN();

 put_str("provided NPC SPI Comm's board is used.\n");

 PREVENT_BUFFER_OVERRUN();

 put_str("1. Ensure SPI cables are connected\n");

 PREVENT_BUFFER_OVERRUN();

 put_str("2. Ensure slaves are correctly receiving\n");

 PREVENT_BUFFER_OVERRUN();

 }

 zaki_vsi_init();

/*

void main_loop(void)

*/

 while(quit == 0)

 {

 com_keyboard(); // process keypresses

 if (time.msec != 0) // millisecond events

 {

 time.msec = 0;

 vsi_state_machine();

EXPERIMENTAL SOFTWARE 257

257

 }

 else if (time.msec10 != 0) // ten millisecond events

 {

 time.msec10 = 0;

 }

 else if (time.sec0_1 != 0) // tenth of second events

 {

 time.sec0_1 = 0;

 if(GrabShowTrigger() && i < GRAB_LENGTH){

 GrabDisplay(i);

 i++;

 }

 else if(GrabShowTrigger() && i == GRAB_LENGTH){

 GrabStop();

 i = 0;

 }

 }

 else if (time.sec != 0) // one second events

 {

 time.sec = 0;

 idle_diff = idle_count - idle_count_old;

 idle_count_old = idle_count;

 com_display(); // one second display

 }

 else if (time.sec5 != 0){ //five second events

 time.sec5 = 0;

 if(step_enable_flag == TRUE){

 if(step_direction == 1){ //Stepping the reference to final value

 step_direction = 0;

 step_ref_setup(step_at_phase_serial, final_mod_depth_serial);

 }

 else{ //Stepping the reference to initial value

 step_direction = 1;

 step_ref_setup(step_at_phase_serial, mod_depth_serial);

 }

 }

 }

 else // low priority events

 {

 idle_count++;

 }

 } /* end while quit == 0 */

// DISABLE_PWM();

 EvaRegs.T1CON.bit.TENABLE = 0;

 EvaRegs.ACTRA.all = 0x0000;

 DINT;

} /* end main */

/* ===

__Local_Functions()

== */

/* */

/**

Display operating information out COM1.

\author A.McIver

\par History:

\li 22/06/05 AM - initial creation

\param[in] mode Select whether to start a new display option

*/

void com_display(void)

{

 Uint16

258 EXPERIMENTAL SOFTWARE

258

 status;

 //If system is displaying grab data do nothing otherwise display normal status stuff

 if(GrabShowTrigger()){

 }

 else{

 if(master_slave_mode ==1){

 put_str("M");

 }

 else{

 put_str("S");

 }

 putu(Unit_number);

 put_str(" ");

 if (is_switching == 1)

 put_str(" En");

 else

 put_str("Dis");

 put_str(" ");

 put_str("M ");

 putdbl(mod_depth,2);

 put_str(" ");

 put_str("F ");

 putu(failures);

 put_str(" ");

 put_str("FFRX ");

 putu(0x1F & (SpiaRegs.SPIFFRX.all >> 8));

 put_str(" ");

 put_str("D ");

 //putu(detected_faults);

 put_str(" ");

 put_str("Grab mode: ");

 putu(grab_mode);

 put_str(" ");

 put_str("Grab index: ");

 putu(grab_index);

 put_str(" ");

 put_str("\n");

 }

} /* end com_display */

/* */

/* void com_keyboard

Parameters: none

Returns: nothing

Description: Process characters from COM0.

Notes:

History:

 22/06/05 AM - initial creation

\li 27/11/07 PM - added in testing of the digital I/O

*/

void com_keyboard(void)

{

 char c;

 Uint16 next = 0;

 Uint16 original = 0;

EXPERIMENTAL SOFTWARE 259

259

 // ZAKI

 Uint16 a;

 static Uint16 b=0;

 // ZAKI

// put_str("KEY");

 if (Kbhit())

 {

 c = get_char();

 switch (c)

 {

// case 'q': quit = 1;

// break;

/* Template

 case 'a':

 put_str("Letter a\n");

 break;

*/

 case 'u':

 if(cause_unbalance) cause_unbalance = 0;

 else cause_unbalance = 1;

 break;

 case 'e':

 put_str("Enabled VSI\n");

 vsi_enable();

 break;

 case 'd':

 put_str("Disabled VSI\n");

 vsi_disable();

 break;

 case '+':

 mod_depth += 0.01;

 if (mod_depth < 0.0)

 mod_depth = 0.0;

 break;

 case '-':

 mod_depth -= 0.01;

 if (mod_depth < 0.0)

 mod_depth = 0.0;

 break;

 case 'T':

 put_str(" Transmitting\n");

 gtransmit = 1;

 break;

 case 't':

 put_str("NOT Transmitting\n");

 gtransmit = 0;

 break;

 //Setting switching frequency

 case '>':

 if((sw_freq_serial+10*step_sw_freq_serial) < 20000){ sw_freq_serial +=10*step_sw_freq_serial;}

 else{ sw_freq_serial = 20000; }

 break;

 case '<':

 if((sw_freq_serial-10*step_sw_freq_serial) > 50){ sw_freq_serial -=10*step_sw_freq_serial;}

 else{ sw_freq_serial = 50;}

 break;

 case '.':

 if((sw_freq_serial+step_sw_freq_serial) < 20000){ sw_freq_serial +=step_sw_freq_serial;}

 else{ sw_freq_serial = 20000; }

 break;

 case ',':

 if((sw_freq_serial-step_sw_freq_serial) > 50){ sw_freq_serial -=step_sw_freq_serial;}

 else{ sw_freq_serial = 50;}

 break;

260 EXPERIMENTAL SOFTWARE

260

#ifdef GRAB_INCLUDE

 case '1': /* grab interrupt data */

 GrabClear();

 GrabStart();

 GrabRun();

 break;

 case '2':

 GrabShow();

 break;

 case '3': /* stop grab display */

 GrabClear();

 break;

#endif

 }

 }

} /* end com_keyboard */

/* */

/**

1 second CPU timer interrupt.

\author A.McIver

\par History:

\li 22/06/05 AM - initial creation (derived from k:startup.c)

*/

#ifndef BUILD_RAM

#pragma CODE_SECTION(isr_cpu_timer0, "ramfuncs");

#endif

interrupt void isr_cpu_timer0(void)

{

 static struct

 {

 Uint16

 msec,

 msec10,

 msec100,

 sec;

 } i_count =

 {

 0, 0, 0, 0

 };

 /*for (ii=0; ii<WD_TIMER_MAX; ii++)

 {

 if (wd_timer[ii] > 0)

 wd_timer[ii]--;

 }*/

 i_count.msec++;

 if (i_count.msec >= 10)

 {

 i_count.msec = 0;

 i_count.msec10++;

 if (i_count.msec10 >= 10)

 {

 i_count.msec10 = 0;

 i_count.msec100++;

 if (i_count.msec100 >= 10)

 {

 i_count.msec100 = 0;

 i_count.sec++;

 if(i_count.sec >= 5){

 time.sec5 = 1;

 }

 time.sec = 1;

EXPERIMENTAL SOFTWARE 261

261

 }

 time.sec0_1 = 1;

 }

 time.msec10 = 1;

 }

 time.msec = 1;

 // Acknowledge this interrupt to receive more interrupts from group 1

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

} /* end isr_cpu_timer0 */

/* ===

__Exported_Functions()

== */

/* ===

__Grab_Functions()

== */

#ifdef GRAB_INCLUDE

void GrabInit(void)

{

 Uint16

 i,j;

 for (i=0; i<GRAB_LENGTH; i++)

 {

 for (j=0; j<GRAB_WIDTH; j++)

 {

 grab_array[i][j] = 0;

 }

 }

 GrabClear();

}

/* call with index == 0xFFFF for title line

else index = 0..GRAB_LENGTH-1 for data */

void GrabDisplay(int16 index)

{

 Uint16

 i;

 if (index == 0xFFFF)

 {

 put_str("\nindex");

 for (i=0; i<GRAB_WIDTH; i++)

 {

 put_str("\tg");

 put_d(i);

 }

 }

 else

 {

 put_d(index);

 put_char(',');

 for (i=0; i<GRAB_WIDTH; i++)

 {

 //put_char('');

 put_d(grab_array[index][i]);

 put_char(',');

 }

 }

 put_str("\n");

}

262 EXPERIMENTAL SOFTWARE

262

#endif

/* */

void print_help(void)

{

/* put_str("\th\thelp\n");

 put_str("\tq\tquit\n");

 put_str("\te/d\tenable/disable switching\n");

 put_str("\ti/m\treference magnitude increase/decrease\n");

 put_str("\tl/j\tref freq increase/decrease\n");

 put_str("\t>/<\tswitching freq increase/decrease\n");

 put_str("\tt/T\tintegral reset time slow/fast increase\n");

 put_str("\tv/V\tintegral reset time slow/fast decrease\n");

 put_str("\tr/R\tproportional constant slow/fast increase\n");

 put_str("\tc/C\tproportional constant slow/fast decrease\n");

 //puts("\tg\tto enable grab code and print grab data\n");

 put_str("\tu/b\tincrease/decrease magnitude of step change in reference\n");

 put_str("\ta/s\tincrease/decrease phase where step is applied\n");

 put_str("\tp\tenable/disable step change in reference every 5 sec\n");

 put_str("\tf\tenable/disable feed forward\n");

 put_str("\t0\tDC current regulator (using leg A&B)\n");

 put_str("\t1\tSingle phase PI regulator mode (using leg A&B)\n");

 put_str("\t2\tSingle phase PI regulator mode (using leg A&B) with back EMF\n");

 put_str("\t3\tSingle phase PR regulator mode (using leg A&B) with back EMF\n");

 put_str("\t4\t3 phase PI regulator mode \n");

 put_str("\t5\t3 phase PI regulator mode with back EMF\n");

 put_str("\t6\t3 phase DQ regulator mode with back EMF\n");

 put_str("\t7\t3 phase PR regulator mode with back EMF\n");

 */

} /* end print_help */

/*Reza DAC initialization function */

void init_dac1_mini(void)

{

 // Set SPI mode

 spi_init(MODE_DAC);

 // Initialise DAC

 dac_init();

 // Set internal reference

 dac_set_ref(DAC_MODULE_D1,DAC_INT_REF);

 // Power up DAC

 dac_power_down(DAC_MODULE_D1,0x0F);

 // Write to half voltage

 dac_write(DAC_MODULE_D1,DAC_WRn_UPDn,DAC_ADDR_ALL,2047);

 //set up for fast dac code

 //GpioDataRegs.GPDCLEAR.all = nDAC1;

/* GpioDataRegs.GPASET.all = OC_SPI_EN;

 GpioDataRegs.GPASET.all = M_nS;

 GpioDataRegs.GPDCLEAR.all = nDAC1;

 spi_putc(DAC_WRn_UPDn|DAC_ADDR_ALL); //set up dac for dac

*/

 //dac_write_FAST(DAC_MODULE_D1,DAC_WRn_UPDn,DAC_ADDR_ALL,2047);

}

void put_bin(unsigned int num)

{

 put_char(num & 0x01);

}

void PREVENT_BUFFER_OVERRUN(void)

{

EXPERIMENTAL SOFTWARE 263

263

 int i;

 int j;

 for (i=0;i<1000;i++)

 {

 for(j=0;j<500;j++);

 }

}

void sine_table_gen(float *start, int table_size)

{

 int i;

 for (i=0;i<table_size;i++)

 {

 start[i] = sin(2.0*PI*(float)i/(float)table_size);

 }

}

B.1.6 vsi.h

/**

\file

\brief VSI definitions

\par Developed By:

 Creative Power Technologies, (C) Copyright 2009

\author A.McIver

\par History:

\li 23/04/09 AM - initial creation

*/

/* === */

/* Definitions */

/* === */

/// ADC sampling and VSI switching freq in Hz (initial value)

#define SW_FREQ 5000.0

#define MAX_SW_FREQ 20000.0

#define MIN_SW_FREQ 2000.0

#define INIT_FF 0.0 //Initial fundamental frequency

/// Boot ROM sine table size for VSI and DFT

#define ROM_TABLE_SIZE 512

/// Boot ROM sine table peak magnitude for VSI and DFT

#define ROM_TABLE_PEAK 16384

/// Maximum fundamental frequency

#define F_FREQ_MAX 100.0

/// Minimum fundamental frequency

#define F_FREQ_MIN 0.1

/// Carrier timer half period in clock ticks

#define PERIOD_2 (Uint16)(HSPCLK/SW_FREQ)/2.0

/// Carrier timer period in clock ticks

#define PERIOD (Uint16)(PERIOD_2*2)

/// Maximum VSI switching time in clock ticks

//#define MAX_TIME (int16)(PERIOD_2-6)

/** @name VSI Status bit definitions */

//@{

264 EXPERIMENTAL SOFTWARE

264

#define VSI_RUNNING 0x0001 ///< VSI is running

#define VSI_SETTLED 0x0002 ///< set when target reached

#define VSI_FAULT 0x0004 ///< set when fault present in VSI system

//@}

/** @name Fault Codes */

//@{

#define FAULT_VSI_IAC_OL 0x0001

#define FAULT_VSI_IAC_OC 0x0002

#define FAULT_VSI_VDC_OV 0x0004

#define FAULT_VSI_VDC_UV 0x0008

#define FAULT_VSI_PDPINT 0x0010

#define FAULT_VSI_SPI 0x0020

//@}

/// Maximum modulation depth in tenths of a percent

#define MOD_DEPTH_MAX 20000

/* ===

__Exported_Variables()

== */

typedef long long signed int int64;

/* ===

__Function_Prototypes()

== */

/// Core interrupt initialisation

void vsi_init(void);

/// Core interrupt VSI state machine for background processing

void vsi_state_machine(void);

/// Enables vsi switching (assuming no faults)

void vsi_enable(void);

/// Disable vsi switching

void vsi_disable(void);

/// Set the target output modulation depths in tenths of a percent

void vsi_set_mod(Uint16 m);

/// Set the target output modulation depths in tenths of a percent immediately bypassing ramping function

/// Used to create step change in reference

void vsi_set_mod_immediate(Uint16 m);

/// Returns the target output modulation depths in tenths of a percent

Uint16 vsi_get_mod(void);

/// Set the target output frequency in Hz

double vsi_set_freq(double f);

/// Returns the VSI fundamental frequency

double vsi_get_freq(void);

/// Returns the status of the VSI

Uint16 vsi_get_status(void);

/// Report what faults are present in the VSI

Uint16 vsi_get_faults(void);

/// Clear some detected faults and re-check.

void vsi_clear_faults(void);

EXPERIMENTAL SOFTWARE 265

265

// Print the current state of the state machine

void get_state(void);

/* Retrieve filtered and scaled analog measurements. */

//Uint16 vsi_get_vdc(void); /* returns V */

//Uint16 vsi_get_vout(Uint16 scale); /* returns scaled Vout */

//Uint16 vsi_get_iout(Uint16 scale); /* returns scaled Aout */

/* */

B. 2 CSVPWM with Feedforward

B.2.1 vsi.c

/**

\file

\brief VSI Interrupt Service Routine

This file contains the code for the core interrupt routine for the CVT system.

This interrupt is the central system for the signal generation and

measurement. The carrier timer for the VSI generation also triggers the

internal ADC conversion at the peak of the carrier. The end of conversion then

triggers this interrupt. Its tasks are:

- Read internal ADC results

- Perform internal analog averaging and RMS calculations

- Update VSI phase and switching times

\par Developed By:

 Creative Power Technologies, (C) Copyright 2009

\author A.McIver

\par History:

\li 23/04/09 AM - initial creation

*/

// compiler standard include files

#include <math.h>

// processor standard include files

#include <DSP281x_Device.h>

#include <DSP281x_Examples.h>

//#include <lib_da2810.h>

#include <lib_mini2810.h>

#include <lib_cpld.h>

#include <lib_giib.h>

// common project include files

//#define AD5624

#define DAC_SHIFT 4

#include <dac_ad56.h>

// local include files

#include "main.h"

#include "conio.h"

#include "vsi.h"

#include "curreg.h"

#include "cas.h"

/* ===

266 EXPERIMENTAL SOFTWARE

266

__Definitions()

== */

/// Shift from internal modulation depth scaling

#define MOD_SHIFT 14

/* the phase is scaled so that one fundamental is 2^32 counts. */

//#define PHASE_STEP_SC_D (65536.0*65536.0/SW_FREQ) //Synchronous switching

sampling freq

#define PHASE_STEP_SC_D (65536.0*65536.0/SW_FREQ) //Asynchronous switching sampling

#define PHASE_STEP (Uint32)(PHASE_STEP_SC_D*F_FREQ_MIN)

/// ADC calibration time

#define ADC_CAL_TIME 0.1 // seconds

#define ADC_COUNT_CAL (Uint16)(ADC_CAL_TIME * SW_FREQ)

/// DC averaging time

#define ADC_DC_TIME 0.1 // seconds

#define ADC_COUNT_DC (Uint16)(ADC_DC_TIME * SW_FREQ)

#define ADC_REAL_SC 1

/* */

/// RMS scaling

#define ADC_RMS_PS 4

#define GRAB_INCLUDE

#define ON 1

#define OFF 0

/* ===

__Macros()

== */

/// Disable VSI switching

#define VSI_DISABLE() EvaRegs.ACTRA.all = 0x0000

/// Enable VSI switching

//#define VSI_ENABLE() EvaRegs.ACTRA.all = 0x0066;

#define VSI_ENABLE() EvaRegs.ACTRA.all = 0x0999

/// Enable VSI for single phase operation

#define VSI_ENABLE_1P() EvaRegs.ACTRA.all = 0x0066

 // output pin 1 CMPR1 - active high

 // output pin 2 CMPR1 - active low

 // output pin 3 CMPR2 - active high

 // output pin 4 CMPR2 - active low

 // output pin 5 force low

 // output pin 6 force low

/// Turn low side devices on full for charge pump starting

#define VSI_GATE_CHARGE() EvaRegs.ACTRA.all = 0x00CC

}

/* ===

__Types()

== */

/// Internal ADC channel type

/** This structure hold variables relating to a single ADC channel. These

EXPERIMENTAL SOFTWARE 267

267

variables are used for filtering, averaging, and scaling of this analog

quantity. */

typedef struct

{

 int16

 raw, ///< raw ADC result from last sampling

 filt; ///< decaying average fast filter of raw data

 int32

 rms_sum, ///< interrupt level sum of data

 rms_sum_bak, ///< background copy of sum for averaging

 dc_sum, ///< interrupt level sum

 dc_sum_bak; ///< background copy of sum for processing

 double

 real; ///< background averaged and scaled measurement

} type_adc_ch;

/// Internal ADC storage type

/** This structure holds all the analog channels and some related variables

for the averaging and other processing of the analog inputs. There are also

virtual channels for quantities directly calculated from the analog inputs.

The vout and iout channels are for DC measurements of the VSI outputs when it

is producing a DC output. */

typedef struct

{

 Uint16

 count_cal, ///< counter for low speed calibration summation

 count_rms, ///< counter for full fund. period for RMS calculations

 count_rms_bak, ///< background copy of RMS counter

 count_dc, ///< counter for DC averaging

 count_dc_bak, ///< background copy of DC counter

 flag_cal, ///< flag set to trigger background calibration averaging

 flag_rms, ///< flag set to trigger background RMS averaging

 flag_dc; ///< flag set to trigger background DC averaging

 type_adc_ch

 A0, ///< ADC channel A0

// A1, ///< ADC channel A1

// A2, ///< ADC channel A2

// A3, ///< ADC channel A3

// A4, ///< ADC channel A4

// A5, ///< ADC channel A5

 B0, ///< ADC channel B0

// B1, ///< ADC channel B1

// B2, ///< ADC channel B2

 Vdc1,// B3, ///< ADC channel B3

// B4, ///< ADC channel B4

// B5, ///< ADC channel B5

 yHA, ///< bank A high reference

 yLA, ///< bank A low reference

 yHB, ///< bank B high reference

 yLB; ///< bank B low reference

} type_adc_int;

/* ===

__Variables()

== */

// state machine level variables

Uint16

 vsi_status = 0, /// Status of VSI system

 int_count = 0,

 is_switching = 0, // flag set if PWM switching is active

 vsi_counter = 0; // counter for timing VSI regulation events

//Timer period and switching frequency related variable

//Initialized to default value as set by #define values at top of this file

Uint16

268 EXPERIMENTAL SOFTWARE

268

 period_2 = PERIOD_2, //sw_freq = SW_FREQ,

 period = PERIOD;

Uint32

 PHASE_STEP_SC = PHASE_STEP_SC_D ;

/// Maximum VSI switching time in clock ticks

int16

 MAX_TIME = (int16)(PERIOD_2-6) ;

int16

 V_Asat=0, V_Bsat=0, V_Csat=0;

double

 Ref_freq_float = INIT_FF;

// PWM Timer interrupt variables

// Boot ROM sine table starts at 0x003FF000 and has 641 entries of 32 bit sine

// values making up one and a quarter periods (plus one entry). For 16 bit

// values, use just the high word of the 32 bit entry. Peak value is 0x40000000

// WYK note: Sin table contain 1024 entire with peak value of +-16384

int16

 *sin_table = (int16 *)0x003FF000, // pointer to sine table in boot ROM

 *cos_table = (int16 *)0x003FF100, // pointer to cos table in boot ROM

 phase_offset, // round off amount from sine lookup

 val_diff, // interpolation temp variable

 val_lo, // interpolation temp variable

 sin_val, // interpolated sine table value

 cos_val, // interpolated cosine table value

 sin_PI_on_3_val,

 sin_PI_on_6_val,

 sin_4PI_on_3_val,

 cos_PI_on_3_val,

 DC_val;

Uint32

 phase_step = PHASE_STEP,// change in phase angle each interrupt

 phase = 0L; // running phase angle (2^32 == 360degrees)

//Calculate phase offset to initialized phase value to enable reading of sin table to generate various differernt

trignometrey lookup needed

Uint32

 phase_sin = (long)65536.0*0.0* 65536.0,

 phase_sin_PI_on_3 = (long) 65536.0*(1.0/6.0) * 65536.0,

 phase_sin_PI_on_6 = (long)65536.0*(1.0/12.0) * 65536.0,

 phase_sin_2PI_on_3 = (long) 65536.0/3.0 * 65536.0,

 phase_sin_4PI_on_3 = (long) 65536.0*(2.0/3.0) * 65536.0,

 phase_cos = (long) 65536.0*(0.25) * 65536.0,

 phase_cos_PI_on_3 = (long) 65536.0*(0.25+1.0/6.0) * 65536.0;

Uint16 // index into sine look-up table (phase >> 22), this give a 10 bit number which can be used to

read sin table

 index = 0,

 index_sin = 0,

 index_sin_PI_on_3 = 0,

 index_sin_PI_on_6 = 0,

 index_sin_4PI_on_3 = 0,

 index_cos = 0,

 index_cos_PI_on_3 = 0;

int16

 V_A, // demanded voltages

 t_A, // switching times

 t_B,

 t_C,

EXPERIMENTAL SOFTWARE 269

269

 Voff, //3rd harmonic offset

 mod_targ = 0, // target modulation depth

 mod_ref = 0; // background reference mod depth

/// fault variables

Uint16

 detected_faults = 0; // bits set for faults detected (possibly cleared)

/** @name Internal ADC Variables */

//@{

type_adc_int

 adc_int =

 {

 0, // count_cal

 0, // count_rms

 0, // count_rms_bak

 0, // count_dc

 0, // count_dc_bak

 0, // flag_cal

 0, // flag_rms

 0, // flag_dc

 { 0, // raw

 0, // filt

 0L, // rms_sum

 0L, // rms_sum_bak

 0L, // dc_sum

 0L, // dc_sum_bak

 0.0 // real

 }, // #A0

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A1

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A2

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A3

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A4

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #A5

 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B0

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B1

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B2

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B3

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B4

// { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // #B5

 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yHA

 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yLA

 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yHB

 { 0, 0, 0L, 0L, 0L, 0L, 0.0 }, // yLB

 };

// ADC calibration variables

int16

 cal_gainA = 1<<14, // calibration gain factor for A channel

 cal_gainB = 1<<14, // calibration gain factor for B channel

 cal_offsetA = 0, // calibration offset for A channel

 cal_offsetB = 0; // calibration offset for B channel

double

 cal_gain_A, cal_gain_B,

 cal_offset_A, cal_offset_B;

//@}

//ADC value holder

int16

 I_res_A,

 I_res_B,

 VAC_A, //Voltage measuremnet of phase A of grid to natural

 VAC_B, //Voltage measuremnet of phase B of grid to natural

 Vdc;

270 EXPERIMENTAL SOFTWARE

270

//Reference mode for current regulator

int16 refMode = SINGLE_AC_OL;

signed int I_ref_Peak_AB = 0;

//Control loop variables

//Stationary frame PI regulator internal variables

int16

 I_ref_A = 0,

 I_ref_B = 0;

int32

 err_i_prop_A=0,

 err_i_int_now_A=0,

 err_i_int_total_A=0;

int32

 err_i_prop_B=0,

 err_i_int_now_B=0,

 err_i_int_total_B=0;

int16

 Error_I_A,

 Error_I_B,

 Command_A, //Controller output variable

 Command_B; //Controller output variable

//Controller tuning in integer form used by controller calculation

int16

 Kp_i = 0, //Proportional constant in ADC count and timer count

 Ki_i = 0, //Integral constant in ADC count and timer count

 MODMAX = 8191, //Maximum modulation index 100% modulation

 ADC_offset = ADC_OFFSET,

 // add_phase is the size of step jump in phase, the extra_phase should be added to

 // the phase for reading the sintable, as it is a record of all the step change in phase

 // requested so far

 add_phase = 0;

//Delta transform variables

double

 delta, one_on_delta, w_c, w_0, Ts;

//S domain transfer function of P+Resonant controller

//Function of form H(s) = (bs_0*s^2 + bs_1*s + bs_2)/(as_0*s^2 + as_1*s + as_0)

double

 bs_0, bs_1, bs_2, as_0, as_1, as_2;

//Z domain transfer function of P+Resonant controller

//Function of form H(z) = (bz_0 + bz_1*z^-1 +bz_0*z^-2)/(az_0 + az_1*z^-1 +az_0*z^-2)

double

 bz_0, bz_1, bz_2, az_0, az_1, az_2;

//Delta domain transfer function of P+Resonant controller in floating point form

//Function of form H(d) = (beta_0_f + beta_1_f*d^-1 + beta_2_f*d^-2)/(1 + alpha_1_f*d^-1 + alpha_2_f*d^-2)

double

 alpha_1_f, alpha_2_f, beta_0_f, beta_1_f, beta_2_f;

int16

 beta_0, beta_1, beta_2, alpha_0, alpha_1, alpha_2;

double

 Ki_i_f, Kp_i_f;

//Interal variables for phase A of P+R controller

long

 Error_I_L_A=0;

int

 s0_1_fp_A = 0, s0_0_fp_A = 0,

 s1_1_fp_A = 0, s1_0_fp_A = 0,

 s2_1_fp_A = 0, s2_0_fp_A = 0;

long

 branch1_A=0, branch2_A=0, branch3_A=0, branch4_A=0, branch5_A=0;

EXPERIMENTAL SOFTWARE 271

271

Uint16

 togg = 0,

 sw = 0, Inom,

 step_tog=0; //Toggle channel 2 of Dig IO for step change in reference

//Interface variables used to recieve controller loop parameters from background

//Controller loop turning parameters in real floating pointer number from background

double

 real_KP =KP_INIT,

 real_TINT =TINT_INIT;

//For step change in reference in AC reference modes

int16 count_from_zero_for_step = 0;

int16 new_mod_targ = 0;

int16 step_ref_request = 0;

int16 step_phase_request = 0;

int16 prev_sin_table_sign = 0;

int16 step_0_ref_A = 0;

//Feedforward + bus compensation related variables

int FFenable = DISABLE; //Feedforward status

long FF_amount_A = 0;

long FF_amount_B = 0;

long ZERO = 0;

int count_per_A = ADC_I1_SC_SCALED; //Scaled version of Amp per count used in calculation

int VBUS = 0; //DC bus voltage

int cond = 0;

int one_on_vbus =0;

int inverse_INOM = (int)((1.0/(float)I_NOM)*(long)(1l<<16));

int DAC_out = 0;

int fundament_frequency = 0; //Fundamental frequency multiple by 256

//int inverse_bus_v_array[BUS_ARRAY_SIZE]; //Array contain the inverse of bus voltage multiple

by a constant for bus compensation calculation

/* Zero crossing variables */

unsigned int

 in_sync,

 ZX_in_sync,

 ZX_state,

 ZX_count,

 ZX_seen,

 ZX_cycles,

 ZX_sum;

signed int

 ZX_time,

 ZX_time_phase,

 ZX_phase_scale,

 ZX_phase_err,

 ZX_err_sum;

int phase_trim = 0;

extern int16 Unit_number;

extern int16 cause_unbalance;

/* ===

__Local_Function_Prototypes()

== */

/// ADC and VSI interrupt

interrupt void isr_adc(void);

/// Gate fault (PDPINT) interrupt

interrupt void isr_gate_fault(void);

/// Calibrates the adc for gain and offset using the reference inputs.

void calibrate_adc(void);

272 EXPERIMENTAL SOFTWARE

272

/// Scales the RMS summations to real volts and amps

void scale_adc_rms(void);

/// Scales the DC summations to real volts and amps

void scale_adc_dc(void);

// Timer 1 underflow interrupt

//interrupt void isr_T1UF(void);

// Timer 1 period interrupt

//interrupt void isr_T1P(void);

// Capture port interrupt

interrupt void isr_CAP1(void);

interrupt void isr_CAP2(void);

interrupt void isr_T2P(void);

interrupt void isr_SPIRX(void);

interrupt void isr_pwm(void);

interrupt void isr_pwm2(void);

interrupt void isr_T1CINT(void);

int transmission_en; // ZAKI

/* vsi state machine state functions */

void

 st_vsi_init(void), // initialises CFPP regulator

 st_vsi_stop(void), // waiting for start trigger

 st_vsi_gate_charge(void), // delay to charge the high side gate drivers

 st_vsi_ramp(void), // ramping to target mod depth

 st_vsi_run(void), // maintaining target mod depth

 st_vsi_fault(void); // delay after faults are cleared

/* === */

/* State Machine Variable */

/* === */

type_state

 vsi_state =

 {

 &st_vsi_init,

 1

 };

/* ===

__Exported_ADC_Functions()

== */

/**

This function initialises the ADC and VSI interrupt module. It sets the

internal ADC to sample the DA-2810 analog inputs and timer1 to generate a PWM

carrier and the event manager A to generate the VSI switching. It also

initialises all the relevant variables and sets up the interrupt service

routines.

This functions initialises the ADC unit to:

- Trigger a conversion sequence from timer 1 overflow

- Convert the appropriate ADC channels

Result registers as follows:

- ADCRESULT0 = ADCINA0

- ADCRESULT1 = ADCINB0

EXPERIMENTAL SOFTWARE 273

273

- ADCRESULT2 = ADCINA1

- ADCRESULT3 = ADCINB1

- ADCRESULT4 = ADCINA2

- ADCRESULT5 = ADCINB2

- ADCRESULT6 = ADCINA3

- ADCRESULT7 = ADCINB3

- ADCRESULT8 = ADCINA4

- ADCRESULT9 = ADCINB4

- ADCRESULT10 = ADCINA5

- ADCRESULT11 = ADCINB6

- ADCRESULT12 = ADCINA6 yHA

- ADCRESULT13 = ADCINB6 yHB

- ADCRESULT14 = ADCINA7 yLA

- ADCRESULT15 = ADCINB7 yLB

It initialises the Evant Manager A unit to:

- drive PWM1-4 as PWM pins not GPIO

- a 0.48ns deadtime between the high and low side pins

- Timer 1 as an up/down counter for the PWM carrier

It initialises the PIE unit to:

- Take PDPINTA as a power stage interrupt

- Use the internal ADC completion interrupt to trigger the main ISR

\author A.McIver

\par History:

\li 12/10/07 AM - initial creation

*/

void vsi_init(void)

{

 DINT;

 EALLOW;

 PieVectTable.T1UFINT = &isr_pwm2;

 PieVectTable.T1PINT = &isr_pwm2;

 EDIS;

 EvaRegs.EVAIMRA.bit.T1UFINT = 1;

 EvaRegs.EVAIMRA.bit.T1PINT = 1;

 // Enable T1UFINT in PIE: Group 2 interrupt 6.

 PieCtrlRegs.PIEIER2.bit.INTx6 = 1;

 // Enable T1PINT in PIE: Group 2 interrupt 4.

 PieCtrlRegs.PIEIER2.bit.INTx4 = 1;

 // Acknowledge interrupt to PIE

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;

 IER |= M_INT2;

 EINT;

} /* end vsi_init */

/*

 * After successfully initialising this DSP

 * I'd like to follow the vsi_init format

 */

void zaki_vsi_init(void)

{

 EvaRegs.GPTCONA.all = 0x0000;

 EvaRegs.EVAIMRA.all = 0x0000;

 EvaRegs.EVAIFRA.all = BIT0; // Resets PDPINTA FLAG

274 EXPERIMENTAL SOFTWARE

274

 EvaRegs.COMCONA.all = 0x0000;

 EvaRegs.ACTRA.all = 0x0000;

// Set up ISRs

 EALLOW;

 //PieVectTable.ADCINT = &isr_adc;

 PieVectTable.PDPINTA = &isr_gate_fault;

 PieVectTable.T1UFINT = &isr_pwm2;

 PieVectTable.T1PINT = &isr_pwm2;

 /* SPI interrupt test code */

 //PieVectTable.SPIRXINTA = &isr_SPIRX;

 EDIS;

 /*--------------------------------

 Set the GPIO MUX to enable the EVA

 --------------------------------*/

 EALLOW;

 GpioMuxRegs.GPAMUX.bit.PWM1_GPIOA0 = 1;

 GpioMuxRegs.GPAMUX.bit.PWM2_GPIOA1 = 1;

 GpioMuxRegs.GPAMUX.bit.PWM3_GPIOA2 = 1;

 GpioMuxRegs.GPAMUX.bit.PWM4_GPIOA3 = 1;

 GpioMuxRegs.GPAMUX.bit.PWM5_GPIOA4 = 1;

 GpioMuxRegs.GPAMUX.bit.PWM6_GPIOA5 = 1;

 //Enable test pins on EVA

 GpioMuxRegs.GPAMUX.bit.T1PWM_GPIOA6 = 0; // disabled

 GpioMuxRegs.GPAMUX.bit.T2PWM_GPIOA7 = 0; //disabled

 GpioMuxRegs.GPADIR.bit.GPIOA6 = 1;

 GpioMuxRegs.GPADIR.bit.GPIOA7 = 1;

 //Enable test pin on EVB

 GpioMuxRegs.GPBMUX.bit.T3PWM_GPIOB6 = 0;

 GpioMuxRegs.GPBMUX.bit.T4PWM_GPIOB7 = 0;

 GpioMuxRegs.GPBDIR.bit.GPIOB6 = 1;

 GpioMuxRegs.GPBDIR.bit.GPIOB7 = 1;

 //Enable PDPINTA

 GpioMuxRegs.GPDMUX.all = BIT0;

 GpioMuxRegs.GPDQUAL.bit.QUALPRD = 6; // 500ns qualification period

 //Enable first pin of EVB as digout pins for outputing sync signal

 GpioMuxRegs.GPBMUX.bit.PWM7_GPIOB0 = 0;

 GpioMuxRegs.GPBDIR.bit.GPIOB0 = 1;

 EDIS;

 //Enabling Capture port pins

 EALLOW;

 GpioMuxRegs.GPAMUX.bit.CAP1Q1_GPIOA8 = 1;

 GpioMuxRegs.GPAMUX.bit.CAP2Q2_GPIOA9 = 1;

 EDIS;

 /*-------------------

 Capture port setting

 -------------------*/

 EvaRegs.CAPCONA.all = 0x0000;

// EvaRegs.CAPCONA.bit.CAPRES = 0; //Reset capture unit

 EvaRegs.CAPCONA.bit.CAP12EN = 1; //Enable capture port 1 and 2

 EvaRegs.CAPCONA.bit.CAP1EDGE = 1; //Detect rising edge in capture port 1

 EvaRegs.CAPCONA.bit.CAP2EDGE = 1; //Detect rising edge in capture port 2

 EvaRegs.CAPCONA.bit.CAP12TSEL=0; // GP timer selection for CAP1 and CAP2

 EvaRegs.EVAIMRC.all = 0; //Disable all capture port interrupt

 EvaRegs.EVAIFRC.all = 0; //Clearing interrupt flag for capture port

// EvaRegs.EVAIMRC.bit.CAP1INT = 1; //Enabling capture port 1 interrupt

EXPERIMENTAL SOFTWARE 275

275

// EvaRegs.EVAIMRC.bit.CAP2INT = 1;

 /*-----------------

 Set up deadband

 -----------------*/

 /* DBT DBTPS time

 9 2 0.48

 9 3 0.96

 9 4 1.92

 12 3 1.28

 */

 //1.8us deadtime

 EvaRegs.DBTCONA.bit.DBT = 8;

 EvaRegs.DBTCONA.bit.EDBT1 = 1;

 EvaRegs.DBTCONA.bit.EDBT2 = 1;

 EvaRegs.DBTCONA.bit.EDBT3 = 1;

 EvaRegs.DBTCONA.bit.DBTPS = 6;

 EvaRegs.CMPR1 = PERIOD_2;

 EvaRegs.CMPR2 = PERIOD_2;

 EvaRegs.CMPR3 = PERIOD_2;

 // Setup and load COMCONA

 EvaRegs.COMCONA.bit.CENABLE = 1; // Enable compare operation

 EvaRegs.COMCONA.bit.CLD = 1; // Reload CMPRx on underflow and period match

 EvaRegs.COMCONA.bit.SVENABLE = 0; // Disable SV mode

 EvaRegs.COMCONA.bit.ACTRLD = 2; // Reload ACTR immediately

// EvaRegs.COMCONA.bit.ACTRLD = 1; // Reload ACTR on underflow and period match

 EvaRegs.COMCONA.bit.FCOMPOE = 1; // Enable all outputs

// EvaRegs.COMCONA.bit.PDPINTASTATUS; // Read-only

// EvaRegs.COMCONA.bit.FCMP3OE = 0; // Hi-Z PWM5/6

// EvaRegs.COMCONA.bit.FCMP2OE = 0; // Hi-Z PWM5/6

// EvaRegs.COMCONA.bit.FCMP1OE = 0; // Hi-Z PWM5/6

// EvaRegs.COMCONA.bit.C3TRIPE = 0; // C3TRIP disabled

// EvaRegs.COMCONA.bit.C2TRIPE = 0; // C2TRIP disabled

// EvaRegs.COMCONA.bit.C1TRIPE = 0; // C1TRIP disabled

 /*----------------

 Set up Timer 1

 ----------------*/

 EvaRegs.T1CON.all = 0x0000;

 EvaRegs.T1CON.bit.FREE = 1; // Not sure what this does yet

 EvaRegs.T1CON.bit.SOFT = 1; // Not sure what this does yet

 EvaRegs.T1CON.bit.TMODE = 1; // Count up/down

 EvaRegs.T1CON.bit.TPS = 0;

 EvaRegs.T1CON.bit.TENABLE = 0;

 EvaRegs.T1CON.bit.TCLKS10 = 0;

 EvaRegs.T1CON.bit.TCLD10 = 1; // Reload when CNT == 0 or Period

 EvaRegs.T1CON.bit.TECMPR = 1; // Enable Timer Compare

 EvaRegs.T1PR = 0xFFFF;

 EvaRegs.T1CMPR = 300; // 65535;

 EvaRegs.T1CNT = 0;

 /*----------------

 Set up Timer 2

 ----------------*/

 EvaRegs.T2CON.all = 0x0000;

 EvaRegs.T2CON.bit.FREE = 1; // Not sure what this does yet

 EvaRegs.T2CON.bit.SOFT = 1; // Not sure what this does yet

 EvaRegs.T2CON.bit.TMODE = 2; // Count up

276 EXPERIMENTAL SOFTWARE

276

 EvaRegs.T2CON.bit.TPS = 0; // Prescale by HSP/1

 EvaRegs.T2CON.bit.T2SWT1 = 1; // Use TENABLE bit of GP Timer 1

 EvaRegs.T2CON.bit.TENABLE = 0; // Enable timer

 EvaRegs.T2CON.bit.TCLKS10 = 0; // Internal clock source

 EvaRegs.T2CON.bit.TCLD10 = 0; // Reload when counter is 0

 EvaRegs.T2CON.bit.TECMPR = 1; // Enable timer compare operation

 EvaRegs.T2CON.bit.SET1PR = 0; // Use own period register

 EvaRegs.T2PR = 0xFFFF;

 EvaRegs.T2CMPR = 300; // 65535;

 EvaRegs.T2CNT = 0;

 /*-------------------------

 Set the EVA GP CON register

 -------------------------*/

// EvaRegs.GPTCONA.bit.T2STAT;

// EvaRegs.GPTCONA.bit.T1STAT;

// EvaRegs.GPTCONA.bit.T2CTRIPE = 0; // I'm not sure. Check CPT defaults please.

// EvaRegs.GPTCONA.bit.T1CTRIPE = 0; // I'm not sure. Check CPT defaults please.

 EvaRegs.GPTCONA.bit.T2TOADC = 2; // Start ADC on Period match

 EvaRegs.GPTCONA.bit.T1TOADC = 2; // Start ADC on Period match

 EvaRegs.GPTCONA.bit.TCMPOE = 1;

// EvaRegs.GPTCONA.bit.T2CMPOE = 1;

// EvaRegs.GPTCONA.bit.T1CMPOE = 1;

 /* Zaki: The pins below are set to Active Low

 So that I know when UF starts for masters and Slave */

 EvaRegs.GPTCONA.bit.T2PIN = 1;

 EvaRegs.GPTCONA.bit.T1PIN = 1;

// Set up ADC

 AdcRegs.ADCMAXCONV.all = 0x0007; // Setup 8 conv's on SEQ1

 AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; // Setup ADCINA/B0 as 1st SEQ1 conv.

 AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; // Setup ADCINA/B1 as 2nd SEQ1 conv.

 AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; // Setup ADCINA/B0 as 3rd SEQ1 conv.

 AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; // Setup ADCINA/B1 as 4th SEQ1 conv.

 AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x4; // Setup ADCINA/B0 as 5th SEQ1 conv.

 AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x5; // Setup ADCINA/B6 as 6th SEQ1 conv.

 AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x6; // Setup ADCINA/B0 as 7th SEQ1 conv.

 AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x7; // Setup ADCINA/B7 as 8th SEQ1 conv.

 AdcRegs.ADCTRL1.bit.ACQ_PS = 1; // lengthen acq window size

 AdcRegs.ADCTRL1.bit.SEQ_CASC = 1; // cascaded sequencer mode

 AdcRegs.ADCTRL2.bit.EVA_SOC_SEQ1 = 1; // EV manager start

 AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0; // disable interrupt

 AdcRegs.ADCTRL2.bit.INT_MOD_SEQ1 = 1; // int at end of every SEQ1

 AdcRegs.ADCTRL2.bit.INT_MOD_SEQ2 = 1;

 AdcRegs.ADCTRL3.bit.SMODE_SEL = 1; // simultaneous sampling mode

 AdcRegs.ADCTRL3.bit.ADCCLKPS = 0x04; // ADCLK = HSPCLK/8 (9.375MHz)

// Enable interrupts

 DINT;

 EvaRegs.EVAIMRA.all = 0; // disable all interrupts

 // Enable PDPINTA: clear PDPINT flag and T1PINT flag

 //EvaRegs.EVAIFRA.all = BIT0|BIT7;

 EvaRegs.EVAIMRA.bit.PDPINTA = 1; //Disable for testing WYK 2009/05/20

 EvaRegs.EVAIFRA.bit.PDPINTA = 1;

// EvaRegs.EVAIFRA.all = BIT0|BIT7|BIT9|BIT8; //PDPINTA, T1UFINT, T1PINT, T1CINTenabled

 EvaRegs.EVAIMRA.bit.T1UFINT = 1;

 EvaRegs.EVAIMRA.bit.T1PINT = 1;

// EvaRegs.EVAIMRA.bit.T1CINT = 1;

// EvaRegs.EVAIMRB.bit.T2PINT = 1;

 // Enable PDPINTA in PIE: Group 1 interrupt 1

EXPERIMENTAL SOFTWARE 277

277

 PieCtrlRegs.PIEIER1.bit.INTx1 = 1;

 // Enable ADC interrupt in PIE: Group 1 interrupt 6

 //PieCtrlRegs.PIEIER1.bit.INTx6 = 1;

 // Enable T1UFINT in PIE: Group 2 interrupt 6.

 PieCtrlRegs.PIEIER2.bit.INTx6 = 1;

 // Enable T1PINT in PIE: Group 2 interrupt 4.

 PieCtrlRegs.PIEIER2.bit.INTx4 = 1;

 // Enable T1CINT in PIE: Group 2 interrupt 5. WYK 20091207

 //PieCtrlRegs.PIEIER2.bit.INTx5 = 1;

 // Enable CAPINT1 in PIE: Group 3 interrupt 5

 //PieCtrlRegs.PIEIER3.bit.INTx5 = 1;

 // Enable CAPINT2 in PIE: Group 3 interrupt 6

 //PieCtrlRegs.PIEIER3.bit.INTx6 = 1;

 // Enable T2PINT in PIE: Group 3 interrupt 1

 //PieCtrlRegs.PIEIER3.bit.INTx1 = 1;

 IER |= M_INT1 | M_INT2; // Enable CPU Interrupts 1,2,3,6

 //IER |= M_INT1|M_INT2|M_INT3|M_INT6; // Enable CPU Interrupts 1,2,3,6

 EINT;

// AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // clear interrupt flag

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP2; // Acknowledge interrupt to PIE

// PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; // Acknowledge interrupt to PIE

 // Zaki:

 // Now, I want them both to have the same period.

 // Max value of period_load is 32768.

 EvaRegs.T1PR = PERIOD_2;

 EvaRegs.T2PR = PERIOD_2*2-1;

 EvaRegs.T1CMPR = PERIOD_2/2;

 EvaRegs.T2CMPR = PERIOD_2/2;

 putxx(EvaRegs.T1CMPR);

 putxx(EvaRegs.T2CMPR);

 EvaRegs.T1CON.bit.TENABLE = 1;

 // Initialise state machine

// vsi_state.first = 1;

// vsi_state.f = &st_vsi_init;

}

/* */

/**

This function is called from the main background loop once every millisecond.

It performs all low speed tasks associated with running the core interrupt

process, including:

- checking for faults

- calling the VSI state functions

- calling internal analog scaling functions

\author A.McIver

\par History:

\li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

*/

void vsi_state_machine(void)

{

 //SS_DO(vsi_state);

 if (adc_int.flag_rms != 0) // rms flag synched to VSI fundamental

 {

 adc_int.flag_rms = 0;

 scale_adc_rms();

 }

 else if (adc_int.flag_dc != 0) // ADC_DC_TIME flag

 {

 adc_int.flag_dc = 0;

 scale_adc_dc();

278 EXPERIMENTAL SOFTWARE

278

 }

 else if (adc_int.flag_cal != 0)

 {

 adc_int.flag_cal = 0;

 calibrate_adc();

 }

} /* end vsi_state_machine */

/* ===

__Exported_VSI_Functions()

== */

/* */

/**

This function switches the VSI from the stopped state to a running state.

\author A.McIver

\par History:

\li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

*/

void vsi_enable(void)

{

 if (detected_faults == 0)

 is_switching = 1;

 EvaRegs.ACTRA.bit.CMP4ACT = 1; // Active high

 EvaRegs.ACTRA.bit.CMP3ACT = 2; // Active low

 EvaRegs.ACTRA.bit.CMP2ACT = 1; // Active high

 EvaRegs.ACTRA.bit.CMP1ACT = 2; // Active low

} /* end vsi_enable */

/* */

/**

This function switches the VSI from the running state to a stop state.

The ramp down process has the side effect of resetting the reference to zero.

\author A.McIver

\par History:

\li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

*/

void vsi_disable(void)

{

 is_switching = 0;

 EvaRegs.ACTRA.all = 0x0000;

} /* end vsi_disable */

/* */

/**

This function sets the target output modulation depth.

The target is passed in tenths of a percent, so a value of 1000 corresponds to

100% modulation depth.

\author A.McIver

\par History:

\li 24/04/09 AM - initial creation

\param[in] m Target output modulation depth

*/

void vsi_set_mod(Uint16 m)

{

 int32

 temp;

EXPERIMENTAL SOFTWARE 279

279

 if (m > MOD_DEPTH_MAX)

 {

 m = MOD_DEPTH_MAX;

 }

 temp = (((int32)m) << MOD_SHIFT) / ((int32)MOD_DEPTH_MAX);

 mod_ref = (int16)temp;

} /* end vsi_set_mod */

void vsi_set_mod_immediate(Uint16 m)

{

 int32

 temp;

 if (m > MOD_DEPTH_MAX)

 {

 m = MOD_DEPTH_MAX;

 }

 temp = (((int32)m) << MOD_SHIFT) / ((int32)MOD_DEPTH_MAX);

 mod_ref = (int16)temp;

 mod_targ = mod_ref;

 //Shift left of 1 introduce to deal with the fact that mod_targ 200% at full range

 I_ref_Peak_AB = ((long)I_NOM*((long)mod_targ<<1))>>MOD_SHIFT;

} /* end vsi_set_mod */

/* */

/**

This function returns the target output modulation depth.

\author A.McIver

\par History:

\li 24/04/09 AM - initial creation

\returns The VSI target output modulation depth in tenths of a percent

*/

Uint16 vsi_get_mod(void)

{

 int32

 temp;

 temp = ((int32)mod_ref * (int32)MOD_DEPTH_MAX + (1L<<(MOD_SHIFT-1)))

 >> MOD_SHIFT;

 return (Uint16)temp;

} /* end vsi_get_mod */

/* */

/**

Set the target output frequency in Hz.

\author A.McIver

\par History:

\li 12/10/07 AM - initial creation

\li 04/03/08 AM - added return of new frequency

\returns The new frequency in Hz

\param[in] f Target fundamental frequency in Hz

*/

double vsi_set_freq(double f)

{

280 EXPERIMENTAL SOFTWARE

280

 if (f == 0.0||refMode == DC_REF) // DC output

 {

 phase_step = 0L;

 phase = 32768uL*65536uL;

 }

 else

 {

 if (f > F_FREQ_MAX)

 {

 f = F_FREQ_MAX;

 }

 else if (f < F_FREQ_MIN)

 {

 f = F_FREQ_MIN;

 }

 phase_step = (Uint32)(PHASE_STEP_SC * f + 0.5); // atomic load

 }

 Ref_freq_float = f;

 return (double)phase_step/PHASE_STEP_SC;

} /* end vsi_set_freq */

/* */

/**

This function returns the VSI fundamental frequency.

\author A.McIver

\par History:

\li 19/06/08 AM - initial creation

\returns The VSI fundamental frequency

*/

double vsi_get_freq(void)

{

 return (double)phase_step/PHASE_STEP_SC;

} /* end vsi_get_freq */

/* */

/**

This function returns the status of the VSI output system. It returns

- stopped or running

- fault code

- ramping or settled

\author A.McIver

\par History:

\li 13/10/07 AM - derived from 25kVA:vsi:vsi.c

\retval VSI_RUNNING VSI system switching with output

\retval VSI_SETTLED Output has reached target

\retval VSI_FAULT VSI system has detected a fault

*/

Uint16 vsi_get_status(void)

{

 return vsi_status;

} /* end vsi_get_status */

/* */

/**

This function returns the fault word of the VSI module.

\author A.McIver

\par History:

\li 04/03/08 AM - initial creation

EXPERIMENTAL SOFTWARE 281

281

\returns The present fault word

*/

/// Report what faults are present in the VSI

Uint16 vsi_get_faults(void)

{

 return detected_faults;

} /* end vsi_get_faults */

/* */

/* void vsi_clear_faults(void)

Parameters: none

Returns: nothing

Description: Clear the detected faults.

Notes:

History:

 13/10/05 AM - initial creation

\li 28/04/08 AM - added event reporting

*/

void vsi_clear_faults(void)

{

 Uint16

 i;

 if (detected_faults & FAULT_VSI_PDPINT)

 {

 for (i=0; i<100; i++)

 i++; // delay for fault to clear

 EvaRegs.COMCONA.all = 0;

 EvaRegs.COMCONA.all = 0xAA00;

 }

 detected_faults = 0;

} /* end vsi_clear_faults */

/* */

/* Uint16 vsi_get_vdc(void)

Parameters: none

Returns: DC bus voltage in Volts

Description: Retrieves filtered and scaled Vh measurements.

Notes:

History:

 13/10/05 AM - initial creation

*/

/*

Function is commented out until scaling is set up

 Uint16 vsi_get_vdc(void)

{

 return (Uint16)(adc_int.vdc.real + 0.5);

}*/ /* end vsi_get_vdc */

/* === */

/* Interrupt Routines */

/* === */

#ifndef BUILD_RAM

#pragma CODE_SECTION(isr_adc, "ramfuncs");

#endif

interrupt void isr_adc(void){

 SET_TP10();

 EvaRegs.EVAIFRA.all = BIT7; // clear interrupt flag

 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // clear interrupt flag

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE

 //adc_ready_flag = 1;

282 EXPERIMENTAL SOFTWARE

282

 CLEAR_TP10();

}

/**

\fn interrupt void isr_adc(void)

\brief Updates VSI and stores ADC results

This interrupt is triggered by the completion of the internal ADC conversions.

It then:

- stores the internal ADC results

- applies the internal ADC calibration factors

- sums the calibration measurements

- applies a fast decaying average filter to the analog signals

- checks for fault conditions

- performs low speed averaging and rms calculations on internal ADC quantities

- updates phase angle

- calculates switching times

- loads compare registers with switching times

- sets up analogs for next interrupt

/*===

 * CSVPWM Helper functions

 * ==*/

inline float max(float a, float b, float c)

{

 if (a >= b)

 { // a is greater

 if (a >= c)

 return a;

 else

 return c;

 }

 else

 { // b is greater

 if (b >= c)

 return b;

 else

 return c;

 }

}

inline float min(float a, float b, float c)

{

 if (a <= b)

 { // a is smaller

 if (a <= c)

 return a;

 else

 return c;

 }

 else

 { // b is smaller

 if (b <= c)

 return b;

 else

 return c;

 }

}

/*===

zaki_defines()

===*/

#include <math.h>

#define TABLE_SIZE 400

#define PI 3.14159265359

#define PHASE 0

EXPERIMENTAL SOFTWARE 283

283

#define PHASE_4PI3 (0.666667 * TABLE_SIZE)

#define PHASE_STEP 2

unsigned int failures=0;

int rxfail = 0;

extern int16 master_slave_mode;

extern float sine_table[TABLE_SIZE];

extern int16 Unit_number;

Uint16 status = 0xFF;

Uint16 gtransmit;

extern int sw_freq_serial;

#define MOD_DEPTH 0.90

float mod_depth = MOD_DEPTH;

#define CYCLES_50HZ (2.0*SW_FREQ/50.0)

/*===*/

#ifndef BUILD_RAM

#pragma CODE_SECTION(isr_pwm2, "ramfuncs");

#endif

interrupt void isr_pwm2(void)

{

 //Find out the direction which the timer is going, used to update timer 1 compare to

 //get ADC to trigger at right point.

 int timer1_dir = EvaRegs.GPTCONA.bit.T1STAT;

 Uint16 i,j;

 int wait = 0;

 Uint16 CAP1_read;

 int carrier, carrier_adjust;

 Uint16 spibuf[15];

 Uint16 waste;

 Uint16 checksum;

 float ya,yb,yc;

 float ap,bp,cp,offset,offsetp,VDC,Ref_Va,Ref_Vb,Ref_Vc,

 P,vo_max,vo_min,limited_offset,Ref_Va_offset,Ref_Vb_offset,Ref_Vc_offset;

 float delta_NP,Vdc_float,Vhigher_float,Vlower_float,useless,rmd_tmp,

 v1n,v2n,v3n,

 vdcff,

 RVa_top, RVa_bot,

 RVb_top, RVb_bot,

 RVc_top, RVc_bot,

 inv_denum_top,inv_denum_bot,

 vdcff_Ref_Va_1,vdcff_Ref_Vb_1,vdcff_Ref_Vc_1;

 int16 cmprtmp,cmprtmp2;

 // Fixed

 int32 F_Ref_Va,F_Ref_Vb,F_Ref_Vc;

 int32 F_Vdc,F_Vhigher,F_Vlower;

 int32 F_v1n,F_v2n,F_v3n;

 int32 F_vdcff, F_inv_denum_top, F_inv_denum_bot;

 int32 F_vdcff_Ref_Va_1,F_vdcff_Ref_Vb_1,F_vdcff_Ref_Vc_1;

 int32 F_RVa_top,F_RVa_bot,F_RVb_top,F_RVb_bot,F_RVc_top,F_RVc_bot;

 int32 F_holder;

 // End Fixed

 int16 ta,tb,tc;

 int16 cmpratop, cmprabot, cmprbtop, cmprbbot, cmprctop, cmprcbot;

 static Uint16 period_4 = PERIOD_2/2;

 static Uint16 counter_50hz = 0;

 static Uint16 phase = PHASE;

 static Uint16 phase_n4PI3 = TABLE_SIZE - PHASE_4PI3;

 static Uint16 phase_4PI3 = PHASE_4PI3;

284 EXPERIMENTAL SOFTWARE

284

 static Uint16 cmprval, prev_CMPR1_sat, CMPR1_sat, prev_CMPR2_sat, CMPR2_sat;

 static Uint32 loop_no = 0;

 static Uint16 sqwv_count = 0;

 static Uint16 sqwv_period = 1;

 static Uint16 sqwv_toggle = 0;

 int16 Vdc, Vlower, Vhigher,deltaV;

/*==

isr_pwm2_MASTER()

==*/

 if (master_slave_mode == 1)

 {

 // Code was copied from Wang.

 // Master sends the sync pulse to synchronise the carriers

 // Only sent at underflow.

 if (timer1_dir == 1)

 {

 // Send the sync pulse through B4

 SET_TP13();

 GpioDataRegs.GPBDAT.bit.GPIOB4 = 1;

 GpioDataRegs.GPBDAT.bit.GPIOB5 = 1;

 for (i=0;i<3;i++)

 wait++;

 CLEAR_TP13();

 GpioDataRegs.GPBDAT.bit.GPIOB4 = 0;

 GpioDataRegs.GPBDAT.bit.GPIOB5 = 0;

 SET_TP12();

 }

 else

 CLEAR_TP12();

/*

void isr_pwm2_MASTER_read_adc()

*/

 /* Read and scale ADC values */

 // Wait for ADC to be finished

 while(AdcRegs.ADCST.bit.SEQ1_BSY);

 // store ADC results

 adc_int.Vdc1.raw = (AdcRegs.ADCRESULT7>>4);

 // gain correction factor

 // STEWARTS

 adc_int.Vdc1.raw = (int16)(((int32)adc_int.Vdc1.raw*(int32)cal_gainB) >> 14) - cal_offsetB -

ADC_ZERO;

 // WANGS

 //adc_int.Vdc1.raw = (int16)((((int32)(adc_int.Vdc1.raw -ADC_ZERO -cal_offsetB))*(int32)cal_gainB) >>

14);

 // Vdc = (int16)((((int32)(Vdc- ADC_OFFSET - cal_offsetB))*(int32)cal_gainB) >> 14);

 // ZAKI

 //adc_int.Vdc1.raw -= ADC_ZERO;

 // GIIB's diff amp is inverted

 adc_int.Vdc1.raw *= -1;

 // store ADC results

 adc_int.B0.raw = (AdcRegs.ADCRESULT1>>4);

 // gain correction factor

 adc_int.B0.raw = (int16)(((int32)adc_int.B0.raw*(int32)cal_gainB) >> 14) - cal_offsetB - ADC_ZERO;

 // GIIB's diff amp is inverted

 adc_int.B0.raw *= -1;

 // calibration from references

 adc_int.yHA.dc_sum += (Uint32)(AdcRegs.ADCRESULT12>>4);

 adc_int.yLA.dc_sum += (Uint32)(AdcRegs.ADCRESULT14>>4);

EXPERIMENTAL SOFTWARE 285

285

 adc_int.yHB.dc_sum += (Uint32)(AdcRegs.ADCRESULT13>>4);

 adc_int.yLB.dc_sum += (Uint32)(AdcRegs.ADCRESULT15>>4);

 adc_int.count_cal++;

 if (adc_int.count_cal > ADC_COUNT_CAL)

 {

 adc_int.count_cal = 0;

 adc_int.yHA.dc_sum_bak = adc_int.yHA.dc_sum;

 adc_int.yLA.dc_sum_bak = adc_int.yLA.dc_sum;

 adc_int.yHB.dc_sum_bak = adc_int.yHB.dc_sum;

 adc_int.yLB.dc_sum_bak = adc_int.yLB.dc_sum;

 adc_int.yHA.dc_sum = 0;

 adc_int.yLA.dc_sum = 0;

 adc_int.yHB.dc_sum = 0;

 adc_int.yLB.dc_sum = 0;

 adc_int.flag_cal = 1;

 }

 // Reinitialise for next ADC sequence

 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // Reset SEQ1

 Vdc = adc_int.Vdc1.raw;

 Vlower = adc_int.B0.raw;

 /*===

 Compare register calculations

 ===*/

 // Open loop 3-phase

 // y range => -1.0 to 1.0

 //y = sin(2.0*PI*(float)phase/(float)TABLE_SIZE);

 ya = mod_depth * sine_table[phase];

 yb = mod_depth * sine_table[phase_4PI3];

 yc = mod_depth * sine_table[phase_n4PI3]; //yc = 1.0 - ya - yb;

 //yb = -ya;

 //yc = -ya;

 // 2-level switching

 // y range => -0.5*period_2 to 0.5*period_2

 //ya = ya * (float) period_4;

 //yb = yb * (float) period_4;

 //yc = yc * (float) period_4;

 // CSVPWM

 offset = - (max(ya,yb,yc) + min(ya,yb,yc))*0.5;

 VDC = 1.0;

// ap = fmod(ya + offset + VDC, VDC);

// bp = fmod(yb + offset + VDC, VDC);

// cp = fmod(yc + offset + VDC, VDC);

 rmd_tmp = ya + offset + VDC;

 ap = rmd_tmp - ((int)rmd_tmp);

 rmd_tmp = yb + offset + VDC;

 bp = rmd_tmp - ((int)rmd_tmp);

 rmd_tmp = yc + offset + VDC;

 cp = rmd_tmp - ((int)rmd_tmp);

 offsetp = 0.5 - (max(ap,bp,cp) + min(ap,bp,cp))*0.5;

 Ref_Va = ya + offset + offsetp;

 Ref_Vb = yb + offset + offsetp;

 Ref_Vc = yc + offset + offsetp;

 // FIXED POINT CALCS START HERE

 // FORMAT int32 -> 16.16 fixed

 F_Ref_Va = (int32)(Ref_Va*65536);

 F_Ref_Vb = (int32)(Ref_Vb*65536);

286 EXPERIMENTAL SOFTWARE

286

 F_Ref_Vc = (int32)(Ref_Vc*65536);

// Vdc_float = Vdc*0.2673796791;

 F_Vdc = (int32)Vdc*17523;

// Vlower_float = Vlower*0.272479564;

 F_Vlower = (int32)Vlower*17857;

// if (cause_unbalance) Vlower_float += 36;

 if (cause_unbalance) F_Vlower += (int32)36<<16;

// Vhigher_float = Vdc_float-Vlower_float;

 F_Vhigher = F_Vdc-F_Vlower;

// delta_NP = Vhigher_float - Vlower_float;

// P = 0.1 * delta_NP; // NP CONTROLLER GAIN

//

// // Calculate limits

// vo_max = min(1.0-Ref_Va, 1.0-Ref_Vb, 1.0-Ref_Vc);

// vo_min = -1.0*min(1.0+Ref_Va, 1.0+Ref_Vb, 1.0+Ref_Vc);

//

// if (P>vo_max) limited_offset = vo_max;

// else if (P<vo_min) limited_offset = vo_min;

// else limited_offset = P;

//

// ya = Ref_Va + limited_offset;

// yb = Ref_Vb + limited_offset;

// yc = Ref_Vc + limited_offset;

 // END OF CSVPWM

 // DC BUS COMPENSATION

// v3n = 0;

 F_v3n = 0;

// v2n = v3n + Vlower_float;

 F_v2n = F_v3n + F_Vlower;

// v1n = v2n + Vhigher_float;

 F_v1n = F_v2n + F_Vhigher;

// vdcff = Vdc_float;

 F_vdcff = ((int64)F_Vdc * 32768)>>16;

// RVa_top = (Ref_Va+1 - v2n/vdcff) / (v1n/vdcff - v2n/vdcff);

// RVa_bot = (Ref_Va+1 - v3n/vdcff) / (v2n/vdcff - v3n/vdcff);

// RVb_top = (Ref_Vb+1 - v2n/vdcff) / (v1n/vdcff - v2n/vdcff);

// RVb_bot = (Ref_Vb+1 - v3n/vdcff) / (v2n/vdcff - v3n/vdcff);

// RVc_top = (Ref_Vc+1 - v2n/vdcff) / (v1n/vdcff - v2n/vdcff);

// RVc_bot = (Ref_Vc+1 - v3n/vdcff) / (v2n/vdcff - v3n/vdcff);

// inv_denum_top = 1.0/(v1n - v2n);

 F_inv_denum_top = ((int64)1<<32)/(F_v1n - F_v2n); //(int64)((1<<16 * 1<<16)/ (F_v1n - F_v2n)));

// inv_denum_bot = (1.0/(v2n - v3n));

 F_inv_denum_bot = ((int64)1<<32)/(F_v2n - F_v3n);

// vdcff_Ref_Va_1 = vdcff*(Ref_Va+1);

 F_vdcff_Ref_Va_1 = ((int64)F_vdcff * (F_Ref_Va+65536))>>16;

// vdcff_Ref_Vb_1 = vdcff*(Ref_Vb+1);

 F_vdcff_Ref_Vb_1 = ((int64)F_vdcff * (F_Ref_Vb+65536))>>16;

// vdcff_Ref_Vc_1 = vdcff*(Ref_Vc+1);

 F_vdcff_Ref_Vc_1 = ((int64)F_vdcff * (F_Ref_Vc+65536))>>16;

// RVa_top = (vdcff_Ref_Va_1 - v2n) * inv_denum_top;

 F_RVa_top = ((int64)(F_vdcff_Ref_Va_1 - F_v2n) * F_inv_denum_top)>>16;

// RVa_bot = (vdcff_Ref_Va_1 - v3n) * inv_denum_bot;

EXPERIMENTAL SOFTWARE 287

287

 F_RVa_bot = ((int64)(F_vdcff_Ref_Va_1 - F_v3n) * F_inv_denum_bot)>>16;

// RVb_top = (vdcff_Ref_Vb_1 - v2n) * inv_denum_top;

 F_RVb_top = ((int64)(F_vdcff_Ref_Vb_1 - F_v2n) * F_inv_denum_top)>>16;

// RVb_bot = (vdcff_Ref_Vb_1 - v3n) * inv_denum_bot;

 F_RVb_bot = ((int64)(F_vdcff_Ref_Vb_1 - F_v3n) * F_inv_denum_bot)>>16;

// RVc_top = (vdcff_Ref_Vc_1 - v2n) * inv_denum_top;

 F_RVc_top = ((int64)(F_vdcff_Ref_Vc_1 - F_v2n) * F_inv_denum_top)>>16;

// RVc_bot = (vdcff_Ref_Vc_1 - v3n) * inv_denum_bot;

 F_RVc_bot = ((int64)(F_vdcff_Ref_Vc_1 - F_v3n) * F_inv_denum_bot)>>16;

 // END OF DC BUS COMPENSATION

 // 3-level switching

 // for CMPR1 => 0 to 1.0 => 0 to period_2

 // for CMPR2 => -1.0 to 1 => -period_2 to 0

// ya = ya * (float) period_2;

// yb = yb * (float) period_2;

// yc = yc * (float) period_2;

// ta = (int) (ya*period_2);

// tb = (int) (yb*period_2);

// tc = (int) (yc*period_2);

 if (F_RVb_top >= 65536)

 cmprbtop = period_2;

 else if(F_RVb_top <= -65536)

 cmprbtop = 0;

 else

 cmprbtop = period_2*(F_RVb_top/65536.0);

 if (F_RVb_bot >= 65536)

 cmprbbot = period_2;

 else if(F_RVb_bot <= -65536)

 cmprbbot = 0;

 else

 cmprbbot = period_2*(F_RVb_bot/65536.0);

 if (F_RVc_top >= 65536)

 cmprctop = period_2;

 else if(F_RVc_top <= -65536)

 cmprctop = 0;

 else

 cmprctop = period_2*(F_RVc_top/65536.0);

 if (F_RVc_bot >= 65536)

 cmprcbot = period_2;

 else if(F_RVc_bot <= -65536)

 cmprcbot = 0;

 else

 cmprcbot = period_2*(F_RVc_bot/65536.0);

 // END OF COMPARE REGISTER CALC

/*===

isr_pwm2_M2S_comms()

Master to Slave SPI communications

===*/

 status = is_switching;

 DISABLE_CPLD();

 spibuf[0] = (status); //STATUS;

 spibuf[1] = (cmprbtop)>>8; //SLAVE1_TOPC_HI;

 spibuf[2] = (cmprbtop); //SLAVE1_TOPC_LO;

 spibuf[3] = (cmprbbot)>>8; //SLAVE1_BOTC_HI;

 spibuf[4] = (cmprbbot); //SLAVE1_BOTC_LO;

 spibuf[5] = (cmprctop)>>8; //SLAVE2_TOPC_HI;

 spibuf[6] = (cmprctop); //SLAVE2_TOPC_LO;

288 EXPERIMENTAL SOFTWARE

288

 spibuf[7] = (cmprcbot)>>8; //SLAVE2_BOTC_HI;

 spibuf[8] = (cmprcbot); //SLAVE2_BOTC_LO;

 checksum = 0;

 for (i=0;i<9;i++)

 checksum += spibuf[i] & 0x00FF;

 checksum = checksum & 0x00FF;

 spibuf[9] = checksum; //CHECKSUM;

 // gtransmit == 1)

 if (loop_no > 30000) // 1.5 secs * 10kHz * 2 ISRs per cycle

 {

 // ZAKI NPC Comms: Enable the external buffers

 GpioDataRegs.GPBDAT.bit.GPIOB1 = 0;

 for (i=0;i<9;i++)

 {

 SpiaRegs.SPITXBUF = spibuf[i] << 8;

 }

 SpiaRegs.SPITXBUF = checksum << 8;

 }

 // END OF MASTER TO SLAVE SPI COMMS

// Calc ON time for A is done here to speed up the comms process

 phase += PHASE_STEP; // BUG: AUTOMATE THIS

 phase_4PI3 += PHASE_STEP; // BUG: AUTOMATE THIS

 phase_n4PI3 += PHASE_STEP; // BUG: AUTOMATE THIS

 if (phase >= TABLE_SIZE)

 phase = 0;

 if (phase_4PI3 >= TABLE_SIZE)

 phase_4PI3 = 0;

 if (phase_n4PI3 >= TABLE_SIZE)

 phase_n4PI3 = 0;

 if (F_RVa_top >= 65536)

 {

 cmpratop = period_2;

 cmprtmp = 1;

 }

 else if(F_RVa_top <= -65536)

 {

 cmpratop = 0;

 cmprtmp = 2;

 }

 else

 {

 cmpratop = period_2*(F_RVa_top/65536.0);

 //cmpratop = (int64)((int64)(F_RVa_top)*(period_2<<16))>>32;

 cmprtmp = 3;

 }

 if (F_RVa_bot >= 65536)

 cmprabot = period_2;

 else if(F_RVa_bot <= -65536)

 cmprabot = 0;

 else

 cmprabot = period_2*(F_RVa_bot/65536.0);

 // Threshold check for cmpra

 if (cmpratop > (0.98*period_2))

 cmpratop = period_2;

 else if (cmpratop < (0.02*period_2))

 cmpratop = 0;

 if (cmprabot > (0.98*period_2))

EXPERIMENTAL SOFTWARE 289

289

 cmprabot = period_2;

 else if (cmprabot < (0.02*period_2))

 cmprabot = 0;

 // Calculate OFF time

 // Assuming ACTR for CMPR1 is set active high

 cmpratop = period_2-cmpratop;

 cmprabot = period_2-cmprabot;

/*==================================

isr_pwm2_MASTER_missing_transition()

Fixes DSP2810 Missing transition problem

Please implement before setting EvaRegs.CMPRx

==================================*/

 // Change line below for EvaRegs.CMPR1

 cmprval = cmpratop;

 prev_CMPR1_sat = CMPR1_sat;

 if (cmprval >= period_2)

 CMPR1_sat = TRUE;

 else

 CMPR1_sat = FALSE;

 if (timer1_dir == 1 && prev_CMPR1_sat == FALSE && CMPR1_sat == TRUE)

 // Fix for entering saturation --->>> Case 3 & 6

 // (please refer to the missing transition document by Zaki)

 {

 // Force the second transition

 EvaRegs.CMPR1 = period_2-1;

 }

 else if (timer1_dir == 1 && prev_CMPR1_sat == TRUE && CMPR1_sat == FALSE)

 // Fix for leaving saturation --->>> Case 7 & 8

 {

 // Change from shadow CMPR to immediate CMPR

 EvaRegs.COMCONA.bit.CLD = 2;

 // Force the first transition

 EvaRegs.CMPR1 = period_2-1;

 // Change back to shadow mode

 EvaRegs.COMCONA.bit.CLD = 1;

 // Set CMPR for count down

 EvaRegs.CMPR1 = cmprval;

 }

 else

 // Normal

 {

 EvaRegs.CMPR1 = cmprval;

 }

 // Change line below for EvaRegs.CMPR2

 cmprval = cmprabot;

 prev_CMPR2_sat = CMPR2_sat;

 if (cmprval >= period_2)

 CMPR2_sat = TRUE;

 else

 CMPR2_sat = FALSE;

 if (timer1_dir == 1 && prev_CMPR2_sat == FALSE && CMPR2_sat == TRUE)

 // Fix for entering saturation --->>> Case 3 & 6

 // (please refer to the missing transition document by Zaki)

 {

 // Force the second transition

 EvaRegs.CMPR2 = period_2-1;

290 EXPERIMENTAL SOFTWARE

290

 }

 else if (timer1_dir == 1 && prev_CMPR2_sat == TRUE && CMPR2_sat == FALSE)

 // Fix for leaving saturation --->>> Case 7 & 8

 {

 // Change from shadow CMPR to immediate CMPR

 EvaRegs.COMCONA.bit.CLD = 2;

 // Force the first transition

 EvaRegs.CMPR2 = period_2-1;

 // Change back to shadow mode

 EvaRegs.COMCONA.bit.CLD = 1;

 // Set CMPR for count down

 EvaRegs.CMPR2 = cmprval;

 }

 else

 // Normal

 {

 EvaRegs.CMPR2 = cmprval;

 }

 /* ====

 fault()

 =====*/

 if (GpioDataRegs.GPBDAT.bit.GPIOB11 == 1)

 {

 vsi_disable();

 put_str("\nFail 1\n");

 // BUG : Please set it as fault

 //isr_gate_fault();

 }

 if (GpioDataRegs.GPADAT.bit.GPIOA11 == 1)

 {

 vsi_disable();

 put_str("\nFail 2\n");

 // BUG : Please set it as fault

 //isr_gate_fault();

 }

 }

 // END OF MASTER()

/*==

isr_pwm2_SLAVE()

==*/

 if (master_slave_mode == 0)

 {

 //SET_TP11();

 if (timer1_dir == 1)

 {

 // Send the sync pulse through T1PWM

 SET_TP13(); // GpioDataRegs.GPBDAT.bit.GPIOB0 = 1;

 for (i=0;i<5;i++)

 wait++;

 CLEAR_TP13(); //GpioDataRegs.GPBDAT.bit.GPIOB0 = 0;

 }

 // Slave tries to sync to the value in the capture port

 if (timer1_dir == 0)

 {

 /*

 CAP1_read = EvaRegs.CAP1FIFO;

 Line above commented out because DIGIN5_5 is not going through the header correct

 Could be a bus contention somewhere

 */

 CAP1_read = EvaRegs.CAP2FIFO;

 if (CAP1_read > period_2)

EXPERIMENTAL SOFTWARE 291

291

 carrier = CAP1_read - 2*period_2;

 else

 carrier= CAP1_read;

 if(carrier < 60)

 {

 // We are lagging the master

 // Reduce the period to catch up

 carrier_adjust = -1;

 }

 else if (carrier > 65)

 {

 // We are leading the master

 // Increase the period to catch up

 carrier_adjust = 1;

 }

 else

 carrier_adjust = 0;

 // We want it to wobble around the original FSW

 period_2 = PERIOD_2 + carrier_adjust;

 period_4 = period_2/2;

 period = period_2*2;

 EvaRegs.T1PR = period_2;

 EvaRegs.T2PR = period_2*2-1;

 }

 /*======================================

 Clear SPI buffers so that the information

 we are receiving is current.

 Only for slave, but it doesn't matter for the master

 ======================================*/

 //SpiaRegs.SPIFFRX.bit.RXFIFORESET = 0;

 //SpiaRegs.SPIFFRX.bit.RXFIFORESET = 1;

 /*

 RECEIVING DATA FROM MASTER

 */

 // Let the machines sync first before we wait for reliable info

 if (loop_no > 60000) // 3 secs * 10kHz * 2 ISRs per cycle

 {

 // Wait until we receive the info

 // while ((((SpiaRegs.SPIFFRX.all>>8)&0x1F) != 10))

 // wait++;

 }

 for (i=0;i<9;i++)

 {

 spibuf[i] = SpiaRegs.SPIRXBUF;

 }

 checksum = SpiaRegs.SPIRXBUF;

 for (i=0;i<9;i++)

 {

 spibuf[i] = spibuf[i] & 0x00FF;

 }

 checksum = checksum & 0x00FF;

 // Checksum check

 j = 0;

 for (i=0;i<9;i++)

 j += spibuf[i] & 0x00FF;

292 EXPERIMENTAL SOFTWARE

292

 j = j & 0x00FF;

 if (j != checksum)

 {

 failures++;

 SET_TP10();

 }

 // END OF RECEIVING FROM MASTER

 /*======================================

 Extract the numbers and use em

 ======================================*/

 //spibuf[1] = (period_4+tb)>>8; //SLAVE1_TOPC_HI;

 //spibuf[2] = (period_4+tb); //SLAVE1_TOPC_LO;

 //spibuf[3] = (period_4+tb)>>8; //SLAVE1_BOTC_HI;

 //spibuf[4] = (period_4+tb); //SLAVE1_BOTC_LO;

 //spibuf[5] = (period_4+tc)>>8; //SLAVE2_TOPC_HI;

 //spibuf[6] = (period_4+tc); //SLAVE2_TOPC_LO;

 //spibuf[7] = (period_4+tc)>>8; //SLAVE2_BOTC_HI;

 //spibuf[8] = (period_4+tc); //SLAVE2_BOTC_LO;

 status = spibuf[0]; //STATUS;

 if ((status & 0x01) == 1)

 vsi_enable();

 else

 vsi_disable();

 if (Unit_number == 1)

 {

 cmprbtop = (spibuf[1] << 8) | spibuf[2];

 cmprbbot = (spibuf[3] << 8) | spibuf[4];

 // Thresholding

 if (cmprbtop > (0.98*period_2))

 cmprbtop = period_2;

 else if (cmprbtop < (0.02*period_2))

 cmprbtop = 0;

 if (cmprbbot > (0.98*period_2))

 cmprbbot = period_2;

 else if (cmprbbot < (0.02*period_2))

 cmprbbot = 0;

 // Calculate OFF time

 // Assuming ACTR for CMPR1 is set active high

 cmprbtop = period_2-cmprbtop;

 cmprbbot = period_2-cmprbbot;

 }

 if (Unit_number == 2)

 {

 cmprctop = (spibuf[5] << 8) | spibuf[6];

 cmprcbot = (spibuf[7] << 8) | spibuf[8];

 // Thresholding

 if (cmprctop > (0.98*period_2))

 cmprctop = period_2;

 else if (cmprctop < (0.02*period_2))

 cmprctop = 0;

 if (cmprcbot > (0.90*period_2))

 cmprcbot = period_2;

 else if (cmprcbot < (0.02*period_2))

 cmprcbot = 0;

EXPERIMENTAL SOFTWARE 293

293

 // Calculate OFF time

 // Assuming ACTR for CMPR1 is set active high

 cmprctop = period_2-cmprctop;

 cmprcbot = period_2-cmprcbot;

 }

 // END OF EXTRACTING NUMBERS

/*==================================

isr_pwm2_SLAVE_missing_transition()

Fixes DSP2810 Missing transition problem

Please implement before setting EvaRegs.CMPRx

==================================*/

 // Change line below for EvaRegs.CMPR1

 if (Unit_number == 1)

 cmprval = cmprbtop;

 if (Unit_number == 2)

 cmprval = cmprctop;

 prev_CMPR1_sat = CMPR1_sat;

 if (cmprval >= period_2)

 CMPR1_sat = TRUE;

 else

 CMPR1_sat = FALSE;

 if (timer1_dir == 1 && prev_CMPR1_sat == FALSE && CMPR1_sat == TRUE)

 // Fix for entering saturation --->>> Case 3 & 6

 // (please refer to the missing transition document by Zaki)

 {

 // Force the second transition

 EvaRegs.CMPR1 = period_2-1;

 }

 else if (timer1_dir == 1 && prev_CMPR1_sat == TRUE && CMPR1_sat == FALSE)

 // Fix for leaving saturation --->>> Case 7 & 8

 {

 // Change from shadow CMPR to immediate CMPR

 EvaRegs.COMCONA.bit.CLD = 2;

 // Force the first transition

 EvaRegs.CMPR1 = period_2-1;

 // Change back to shadow mode

 EvaRegs.COMCONA.bit.CLD = 1;

 // Set CMPR for count down

 EvaRegs.CMPR1 = cmprval;

 }

 else

 // Normal

 {

 EvaRegs.CMPR1 = cmprval;

 }

 // Change line below for EvaRegs.CMPR2

 if (Unit_number == 1)

 cmprval = cmprbbot;

 if (Unit_number == 2)

 cmprval = cmprcbot;

 prev_CMPR2_sat = CMPR2_sat;

 if (cmprval >= period_2)

 CMPR2_sat = TRUE;

 else

 CMPR2_sat = FALSE;

 if (timer1_dir == 1 && prev_CMPR2_sat == FALSE && CMPR2_sat == TRUE)

 // Fix for entering saturation --->>> Case 3 & 6

 // (please refer to the missing transition document by Zaki)

 {

 // Force the second transition

294 EXPERIMENTAL SOFTWARE

294

 EvaRegs.CMPR2 = period_2-1;

 }

 else if (timer1_dir == 1 && prev_CMPR2_sat == TRUE && CMPR2_sat == FALSE)

 // Fix for leaving saturation --->>> Case 7 & 8

 {

 // Change from shadow CMPR to immediate CMPR

 EvaRegs.COMCONA.bit.CLD = 2;

 // Force the first transition

 EvaRegs.CMPR2 = period_2-1;

 // Change back to shadow mode

 EvaRegs.COMCONA.bit.CLD = 1;

 // Set CMPR for count down

 EvaRegs.CMPR2 = cmprval;

 }

 else

 // Normal

 {

 EvaRegs.CMPR2 = cmprval;

 }

 // SET PIN ON END OF ISR ROUTINE ON SLAVE

 //SET_TP11();

 }

 // END OF isr_pwm2_SLAVE()

 /*======================================

 50 Hz counter

 ======================================*/

 counter_50hz++;

 if (counter_50hz >= CYCLES_50HZ) // 400 because this ISR runs at 20kHz

 {

 counter_50hz = 0;

 if (master_slave_mode == 1)

 {

 SET_TP10();

 wait=0;

 while(wait++ < 2);

 }

 }

 // Set the CMPR values for next count up/down

 if (timer1_dir == 1)

 {

 EvaRegs.T1CMPR = 0;

 }

 else

 {

 EvaRegs.T1CMPR = period_2-1;

 }

 // FOR AUTO SYNCHRONIZING

 if (loop_no < 220000) // 11secs*2ISR/cycle*10000cycles

 loop_no++;

 else

 ; // Stop incrementing

 if (GrabRunning())

 {

 GrabStore(0, cmpratop);

 GrabStore(1, cmprabot);

 GrabStore(2, cmprbtop);

 GrabStore(3, cmprbbot);

 GrabStore(4, cmprctop);

 GrabStore(5, cmprcbot);

 GrabStep();

EXPERIMENTAL SOFTWARE 295

295

 }

 // Write to DAC

 CLEAR_TP10(); // for 50 Hz counter

 //CLEAR_TP11(); // for end of slave ISR

 // Clear T1UFINT flag (BIT9) and T1PINT (BIT7)

 EvaRegs.EVAIFRA.all = BIT9|BIT7; // clear interrupt flag

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP2; // Acknowledge interrupt to PIE

} /* end isr_adc */

#ifndef BUILD_RAM

#pragma CODE_SECTION(isr_T2P, "ramfuncs");

#endif

interrupt void isr_T2P(void){

 /*

 if(master_slave_mode == 1){

 SET_SYNC_PIN();

 }

 */

 EvaRegs.EVAIFRB.all = BIT0; //Clear interrupt flag

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; // Acknowledge interrupt to PIE

}

#ifndef BUILD_RAM

#pragma CODE_SECTION(isr_T1CINT, "ramfuncs");

#endif

interrupt void isr_T1CINT(void){

 SET_TP10();

 //loop_no++;

 //timer1_cmp_flag = 1;

 EvaRegs.EVAIFRA.all = BIT8; //Clear interrupt flag

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP2; // Acknowledge interrupt to PIE

 CLEAR_TP10();

}

#ifndef BUILD_RAM

#pragma CODE_SECTION(isr_CAP1, "ramfuncs");

#endif

interrupt void isr_CAP1(void){

 //ZX_seen = TRUE;

 //Read bottom of capture port FIFO, this causes the FIFO status to think the FIFO got 1 entry already,

 //there it will trigger the interrupt next time there is an entry. (Capture port trigger interrupt

 //only when there are two entries in the FIFO

 //ZX_seen = TRUE;

 //Read bottom of capture port FIFO, this causes the FIFO status to think the FIFO got 1 entry already,

 //there it will trigger the interrupt next time there is an entry. (Capture port trigger interrupt

 //only when there are two entries in the FIFO

 //ZX_time = (period)-EvaRegs.CAP1FBOT;

 ZX_time = EvaRegs.CAP1FBOT;

 EvaRegs.EVAIFRC.all = BIT0; //Clear interrupt flag

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; // Acknowledge interrupt to PIE

}

#ifndef BUILD_RAM

296 EXPERIMENTAL SOFTWARE

296

#pragma CODE_SECTION(isr_CAP2, "ramfuncs");

#endif

interrupt void isr_CAP2(void){

 static int toggle = 0;

 //ZX_seen = TRUE;

 //Read bottom of capture port FIFO, this causes the FIFO status to think the FIFO got 1 entry already,

 //there it will trigger the interrupt next time there is an entry. (Capture port trigger interrupt

 //only when there are two entries in the FIFO

 if(toggle == 0){

 toggle = 1;

 }

 else if(toggle == 1){

 toggle = 0;

 }

 //ZX_time = (period)-EvaRegs.CAP2FBOT;

 EvaRegs.EVAIFRC.all = BIT1; //Clear interrupt flag

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; // Acknowledge interrupt to PIE

}

/*

#ifndef BUILD_RAM

#pragma CODE_SECTION(isr_SPIRX, "ramfuncs");

#endif

interrupt void isr_SPIRX(void){

 static int i = 0;

 if(i == 1){

 i = 0;

 }

 else{

 i = 1;

 }

 SpiaRegs.SPIFFRX.bit.RXFFINTCLR = 1; // interrupt on 3 bytes in fifo

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP6; // Acknowledge interrupt to PIE

}

*/

/* */

/**

Handles the PDPINT interrupt caused by a gate fault.

\author A.McIver

\par History:

\li 02/05/07 AM - initial creation

*/

#ifndef BUILD_RAM

#pragma CODE_SECTION(isr_gate_fault, "ramfuncs");

#endif

interrupt void isr_gate_fault(void)

{

 is_switching = 0;

 vsi_disable();

// SET_TP12();

// mod_targ = 0;

 detected_faults |= FAULT_VSI_PDPINT;

 // Notify the MASTER of fault

 GpioDataRegs.GPBDAT.bit.GPIOB2 = 1;

 put_str("\n GATE FAULT\n");

 // Acknowledge this interrupt to receive more interrupts from group 1

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

 EvaRegs.EVAIFRA.all = BIT0;

} /* end isr_gate_fault */

EXPERIMENTAL SOFTWARE 297

297

/* ===

__VSI_State_Functions()

== */

/* */

/**

This function initialises the VSI system. It resets the target modulation

depth to zero.

It is followed by the stop state.

\author A.McIver

\par History:

\li 12/10/07 AM - initial creation

*/

void st_vsi_init(void)

{

 mod_ref = 0;

 mod_targ = 0;

 //SetSwFreq(sw_freq);

 SS_NEXT(vsi_state,st_vsi_stop);

} /* end st_vsi_init */

/* */

/**

This is the state where the VSI is stopped. There is no switching. It waits

for a start trigger.

\author A.McIver

\par History:

\li 12/10/07 AM - initial creation

*/

void st_vsi_stop(void)

{

 if (SS_IS_FIRST(vsi_state))

 {

 SS_DONE(vsi_state);

 VSI_DISABLE();

 mod_targ = 0;

 vsi_status &= ~(VSI_RUNNING|VSI_SETTLED);

 }

 if (detected_faults != 0)

 {

 SS_NEXT(vsi_state,st_vsi_fault);

 return;

 }

 if (is_switching != 0) // start trigger

 {

 SS_NEXT(vsi_state,st_vsi_gate_charge);

 }

} /* end st_vsi_stop */

/* */

/**

In this state the VSI gates are enabled and the low side gates held on to

charge the high side gate drivers. The next state is either the ramp state.

\author A.McIver

\par History:

298 EXPERIMENTAL SOFTWARE

298

\li 12/10/07 AM - initial creation

*/

void st_vsi_gate_charge(void)

{

 if (SS_IS_FIRST(vsi_state))

 {

 SS_DONE(vsi_state);

 vsi_counter = 0;

 //VSI_GATE_CHARGE();

 vsi_status |= VSI_RUNNING;

 }

 if (detected_faults != 0)

 {

 SS_NEXT(vsi_state,st_vsi_fault);

 return;

 }

 // check for stop signal

 if (is_switching == 0)

 {

 SS_NEXT(vsi_state,st_vsi_stop);

 return;

 }

 vsi_counter++;

 if (vsi_counter > 200)

 {

 SS_NEXT(vsi_state,st_vsi_ramp);

 }

} /* end st_vsi_gate_charge */

/* */

/**

This state ramps up the target modulation depth to match the reference set by

the background. It only changes the target every 100ms and synchronises the

change with a zero crossing to avoid step changes in the output.

\author A.McIver

\par History:

\li 12/10/07 AM - initial creation

\li 28/04/08 AM - added event reporting

*/

void st_vsi_ramp(void)

{

 if (SS_IS_FIRST(vsi_state))

 {

 SS_DONE(vsi_state);

 vsi_counter = 0;

 if(refMode == DC_REF|| refMode == SINGLE_AC || refMode == SINGLE_AC_G || refMode ==

SINGLE_AC_PR){

 VSI_ENABLE_1P();

 }

 else{

 VSI_ENABLE();

 }

 }

 if (detected_faults != 0)

 {

 SS_NEXT(vsi_state,st_vsi_fault);

 return;

 }

 // check for stop signal

 if (is_switching == 0)

 {

 SS_NEXT(vsi_state,st_vsi_stop);

 return;

 }

 // check for target reached

EXPERIMENTAL SOFTWARE 299

299

 if (mod_targ == mod_ref)

 {

 SS_NEXT(vsi_state,st_vsi_run);

 return;

 }

 // ramp reference towards target

 if (mod_ref > mod_targ + 5)

 {

 mod_targ += 5;

 //Shift left of 1 introduce to deal with the fact that mod_targ 200% at full range

 I_ref_Peak_AB = ((long)I_NOM*((long)mod_targ<<1))>>MOD_SHIFT;

 }

 else if (mod_ref < mod_targ - 5)

 {

 mod_targ -= 5;

 //Shift left of 1 introduce to deal with the fact that mod_targ 200% at full range

 I_ref_Peak_AB = ((long)I_NOM*((long)mod_targ<<1))>>MOD_SHIFT;

 }

 else

 {

 mod_targ = mod_ref;

 //Shift left of 1 introduce to deal with the fact that mod_targ 200% at full range

 I_ref_Peak_AB = ((long)I_NOM*((long)mod_targ<<1))>>MOD_SHIFT;

 }

} /* end st_vsi_ramp */

/* */

/**

This state has the VSI running with the target voltage constant. The output is

now ready for measurements to begin. If the reference is changed then the

operation moves back to the ramp state.

\author A.McIver

\par History:

\li 12/10/07 AM - initial creation

*/

void st_vsi_run(void)

{

 if (SS_IS_FIRST(vsi_state))

 {

 SS_DONE(vsi_state);

 vsi_status |= VSI_SETTLED;

 }

 if (detected_faults != 0)

 {

 SS_NEXT(vsi_state,st_vsi_fault);

 return;

 }

 // check for stop signal

 if (is_switching == 0)

 {

 SS_NEXT(vsi_state,st_vsi_stop);

 }

 // check for changes in reference

 if (mod_targ != mod_ref)

 {

 vsi_status &= ~VSI_SETTLED;

 SS_NEXT(vsi_state,st_vsi_ramp);

 }

} /* end st_vsi_run */

/* */

/* void st_vsi_fault(void)

Parameters: none

Returns: nothing

300 EXPERIMENTAL SOFTWARE

300

Description: Delays for a while after faults are cleared.

Notes:

History:

 03/11/05 AM - initial creation

\li 04/03/08 AM - set vsi_status with fault bit

\li 28/04/08 AM - added event reporting

*/

void st_vsi_fault(void)

{

 if (SS_IS_FIRST(vsi_state))

 {

 SS_DONE(vsi_state);

 VSI_DISABLE();

 vsi_counter = 0;

 vsi_status |= VSI_FAULT;

 vsi_status &= ~(VSI_RUNNING|VSI_SETTLED);

 putxx(detected_faults);

 put_str("->VSI faults\n");

 }

 if (detected_faults == 0)

 vsi_counter++;

 else

 vsi_counter = 0;

 if (vsi_counter > 100)

 {

 vsi_status &= ~VSI_FAULT;

 SS_NEXT(vsi_state,st_vsi_stop);

 }

} /* end st_vsi_fault */

/* ===

__Local_Functions()

== */

/* */

/**

This function is called every fundamental period to perform the RMS

calculations and scale the analog quantities to Volts and Amps for use in the

background.

\author A.McIver

\par History:

\li 12/10/07 AM - derived from IR25kVA:vsi:adc_scale

\li 21/08/08 AM - added VSI DC offset compensation

\li 12/09/08 AM - added stop_count and moved to floating point data

*/

void scale_adc_rms(void)

{

 double

 val,

 temp;

 // calculate A0 RMS quantity

 temp = (double)adc_int.A0.dc_sum_bak/(double)adc_int.count_rms_bak;

 val = (double)adc_int.A0.rms_sum_bak*(double)(1<<ADC_RMS_PS)

 / (double)adc_int.count_rms_bak - temp*temp;

 if (val < 0.0) val = 0.0;

 adc_int.A0.real = ADC_REAL_SC * sqrt(val);

} /* end scale_adc_rms */

/* */

/**

This function is called every ADC_DC_TIME to perform the DC calculations and

EXPERIMENTAL SOFTWARE 301

301

scale the analog quantities to Volts and Amps for use in the background.

\author A.McIver

\par History:

\li 12/10/07 AM - derived from IR25kVA:vsi:adc_scale

*/

void scale_adc_dc(void)

{

 double

 val;

 // calculate B0 DC quantity

 val = (double)adc_int.B0.dc_sum_bak/(double)ADC_COUNT_DC;

 adc_int.B0.real = ADC_REAL_SC * val;

} /* end scale_adc_dc */

/* */

/**

Calibrates the adc for gain and offset using the reference inputs.

See spra989a.pdf for calibration details

\author A.McIver

\par History:

\li 07/10/05 AM - initial creation

*/

void calibrate_adc(void)

{

// char

// str[60];

 double

 yHA = 0.0,

 yLA,

 yHB,

 yLB;

 yHA = (double)adc_int.yHA.dc_sum_bak/(double)ADC_COUNT_CAL;

 yLA = (double)adc_int.yLA.dc_sum_bak/(double)ADC_COUNT_CAL;

 yHB = (double)adc_int.yHB.dc_sum_bak/(double)ADC_COUNT_CAL;

 yLB = (double)adc_int.yLB.dc_sum_bak/(double)ADC_COUNT_CAL;

 cal_gain_A = (xH - xL)/(yHA - yLA);

 cal_offset_A = yLA * cal_gain_A - xL;

 cal_gain_B = (xH - xL)/(yHB - yLB);

 cal_offset_B = yLB * cal_gain_B - xL;

 // sanity check on gains

 if (((cal_gain_A > 0.94) && (cal_gain_A < 1.05))

 && ((cal_gain_B > 0.94) && (cal_gain_B < 1.05))

 && ((cal_offset_A > -80.0) && (cal_offset_A < 80.0))

 && ((cal_offset_B > -80.0) && (cal_offset_B < 80.0)))

 {

 cal_gainA = (int16)(cal_gain_A*(double)(1<<14));

 cal_gainB = (int16)(cal_gain_B*(double)(1<<14));

 cal_offsetA = (int16)cal_offset_A;

 cal_offsetB = (int16)cal_offset_B;

 }

// sprintf(str,"cal:gA=%.3f,oA=%5.1f, gB=%.3f,oB=%5.1f\n",cal_gain_A,

// cal_offset_A,cal_gain_B,cal_offset_B);

// put_str(str);

} /* end calibrate_adc */

/* */

302 EXPERIMENTAL SOFTWARE

302

void get_state(void){

 if(vsi_state.f == st_vsi_init){

 put_str("INIT ");

 }

 else if(vsi_state.f == st_vsi_stop){

 put_str("STOP ");

 }

 else if(vsi_state.f == st_vsi_gate_charge){

 put_str("GATE ");

 }

 else if(vsi_state.f == st_vsi_ramp){

 put_str("RAMP ");

 }

 else if(vsi_state.f == st_vsi_run){

 put_str("RUN ");

 }

 else if(vsi_state.f == st_vsi_fault){

 put_str("FAU ");

 }

}

/* sets the switching frequency : returns switching frequency achieved */

/* fsw is in Hz */

int SetSwFreq(int fsw)

{

 unsigned int half_period;

 half_period = (unsigned int)((HSPCLK/4.0/fsw));

 //if (half_period > MAX_PER_2) half_period = MAX_PER_2;

 //else if (half_period < MIN_PER_2) half_period = MIN_PER_2;

 period_2 = half_period;

 period = period_2*2;

 //sw_freq = fsw; /* Write new switching freq to global variable */

 MAX_TIME = (int16)(period_2-6) ;

 //Recalculate phase advance speed for sin table read

 PHASE_STEP_SC = (65536.0*65536.0/(fsw*2.0));

 vsi_set_freq(Ref_freq_float);

 //If switching frequency is changed re-calculate controller parameters

 set_KI();

 set_KP();

 return (int)((HSPCLK/2/(long)half_period + 1)/2);

} /* end SetSwFreq */

void step_toggle(int direction){

 if(direction == ON){

 step_tog = ON;

 }

 else if (direction == OFF){

 step_tog = OFF;

 }

}

void set_KP_var(double KP){

 real_KP = KP;

 set_KP();

}

void set_TINT_var(double TINT){

 real_TINT = TINT;

 set_KI();

}

EXPERIMENTAL SOFTWARE 303

303

void set_KP(void){

 //The division by 1<<PROP_DISCARD_BITS allow for the use of higher proportional constant

 //then otherwise possible, there should not be significant loss to accuracy provided

 //that the number for PROP_DISCARD_BITS is smallish, the calculation for lost of accuracy

 //is listed in comment above

 //All together shifted left by 13 , which is then multiple by error and shifted back right by 16 in the PI

calculation

 //leaving net shift of right by 3 after that calculation

 //The period_2 multiplication with result of PI calculation to get Command then also introduce a shift by 3

left, so it balance out, hence

 //the need for multplication by 1<<13 in the PI constant calculation

 //The division by I_NOM give kind of a effect of getting the multiplication with error to become a per unit

number(i.e. below 1), that is scaled by

 //power of 2, as this give a more useful no(bigger then 1) The result then multiple by period_2 to give the

required count

 //Multiplicaiton by 65536 is there so that the number become 1 after shifted back by 16, otherwise the result

of this calculation become smaller

 //then 1, as the real_KP is a number that is rather small (i.e. in real scale, not 2^16 == 1 scale used in DSP

calculations)

 Kp_i = (real_KP*(double)1.0/(double)I_NOM)*(double)65536.0/(1l<<PROP_DISCARD_BITS)*(1l<<13);

 set_PResonant();

}

void set_KI(void){

 //Old controller form

 //Ki_i =

((double)1.0/((double)sw_freq*2.0)/real_TINT/(double)I_NOM)*(double)65536.0*(double)(1l<<13)/((double)(1

l<<INT_DISCARD_BITS));

 //Controller form in lecture

 //Ki_i =

((double)real_KP/((double)sw_freq*2.0)/real_TINT/(double)I_NOM)*(double)65536.0*(double)(1l<<13)/((doub

le)(1l<<INT_DISCARD_BITS));

 set_PResonant();

// Ki_i = ((float)period*2/(float)sw_freq/real_TINT/(float)I_NOM)*(float)I_SCALE;

}

void set_ref_mode(unsigned int mode){

 refMode = mode;

}

int get_phase_step(void){

 return phase_step;

}

void step_ref_setup(unsigned long int phase, unsigned int req_new_mag){

 count_from_zero_for_step = phase / phase_step;

 new_mod_targ = req_new_mag;

 //mod_ref = new_mod_targ;

 step_ref_request = 1;

}

void step_phase_setup(unsigned long int phase, unsigned int step_size){

 count_from_zero_for_step = phase / phase_step;

 add_phase = step_size;

 step_phase_request = 1;

}

void set_Feedforward(int status){

 FFenable = status;

}

304 EXPERIMENTAL SOFTWARE

304

int get_Feedforward_status(void){

 return FFenable;

}

/*

//Store in an array the inverse of bus voltage multiple by 2^13, these numbers are used in feed forward

calculations

//and bus compensation calculations

//Multiplication by 2^13 is because the actual calculation for duty cycle contain a left shift by 3 which must

//be taken into account.

void inverse_bus_v_array_setup(void){

 int i = 0;

 for(i=0; i<= BUS_ARRAY_SIZE; i++){

 inverse_bus_v_array[i] = (int)(((double)1/((double)(LOWER_BUS_V+i)))*(double)(1<<13));

 // putd(inverse_bus_v_array[i]); puts(" ");

 }

}

*/

/**

* Function: set_PResonant

* Use: Calculate the fix point coefficient used in P+Resoant controller. These coefficients are competitable with

the

* function DELTA_FILTER_2ND_ORDER.

* Note:

* The P+Resonant transfer function implemented here is of the form:

* H{s} = Kp*(1 + (1/Tr)*(2*w_c*s)/(s^2 + 2*w_c*s + w_0^2))

* This transfer function is transformed into the following form:

* H{s} = (bs_0*s^2 + bs_1*s + bs_0)/(as_0*s^2 + as_1*s + as_2)

* with the varibles bs_0, bs_1, bs_0, as_0, as_1, as_2 being different coefficient of the transfer function, as define

in code

* This S domain transfer function is then transformed into a Z domain form in floating point using Tustin

transfrom

* H{z} = (bz_0 + bz_1*z^-2 + bz_2*z^-2)/(1 + az_1*z^-1 + az_2*z^-2)

* Using conversion formula outline in P135 of Michael's thesis, the Z domain function is first transformed to

delta domain form,

* then converted to fix point.

* Delta domain transfer function is of the form:

* H{d}=(beta_0 + beta_1*d^-1 + beta_2*d^-2)/(1 + alpha_1*d^-1 + alpha_2*d^-2)

*******************************/

void set_PResonant(void){

 Kp_i_f = real_KP;

 Ki_i_f = 1/real_TINT;

 //Variables for P+Resonant controller, used in both S to Z domain transform, and Z to Delta domain

transform

 delta = 1.0/((1<<LOG2_1_ON_DELTA));

 one_on_delta = 1/delta;

 w_c = w_c_f * 2.0*PI;

 w_0 = ((double)fundament_frequency/256.0)* 2.0*PI;

 //Ts = 1.0/(sw_freq*2.0);

 //Defining S domain transfer function of P+Resonant controller, the form of controller is:

 //H(s) = (bs_0*s^2 + bs_1*s + bs_0)/(as_0*s^2 + as_1*s + as_2)

 //Transfer function define in floating point form

 bs_0 = Kp_i_f;

 bs_1 = 2.0*(Ki_i_f*Kp_i_f+w_c*Kp_i_f);

 bs_2 = Kp_i_f * w_0*w_0;

 as_0 = 1.0;

 as_1 = 2.0*w_c;

 as_2 = w_0*w_0;

EXPERIMENTAL SOFTWARE 305

305

 //Defining Z domain transfer function of P+Resonant controller, the form of controller is:

 //H(z) = (bz_0 + bz_1*z^-2 + bz_2*z^-2)/(1 + az_1*z^-1 + az_2*z^-2)

 //The S to Z transform is done using Tustin transform

 //Transfer function define in floating point form

 az_0 = (4.0/(Ts*Ts)*as_0 + as_1 *2.0/Ts + as_2);

 bz_0 = (4.0/(Ts*Ts)*bs_0 + bs_1 * 2.0/Ts + bs_2)/az_0;

 bz_1 = (2.0*bs_2 - bs_0 * 8.0/(Ts*Ts))/az_0;

 bz_2 = (4.0/(Ts*Ts)*bs_0 - bs_1 * 2.0/Ts + bs_2)/az_0;

 az_1 = (2*as_2 - as_0 * 8.0/(Ts*Ts))/az_0;

 az_2 = (4.0/(Ts*Ts)*as_0 - as_1 *2.0/Ts + as_2)/az_0;

 //Z to Delta domain transformation

 beta_0_f = bz_0;

 beta_1_f = (2.0*bz_0 + bz_1)/delta;

 beta_2_f = (bz_0 + bz_1 + bz_2)/(delta * delta);

 alpha_1_f = (2.0 + az_1)/delta;

 alpha_2_f = (1.0 + az_1 + az_2)/(delta*delta);

 //Delta transform from floating point to fix point

 alpha_0 = 1<<LOG2_ALPHA_0;

 beta_0 = beta_0_f * (double)alpha_0+0.5;

 beta_1 = beta_1_f * (double)alpha_0+0.5;

 beta_2 = beta_2_f * (double)alpha_0+0.5;

 alpha_1 = alpha_1_f * (double)alpha_0+0.5;

 alpha_2 = alpha_2_f * (double)alpha_0+0.5;

}

void set_RefMode(int mode){

 refMode = mode;

}

int get_Ref_mode(void){

 return refMode;

}

void display_ref_mode(void){

 if(refMode == DC_REF){

 put_str("DC PI ");

 }

 else if(refMode == SINGLE_AC){

 put_str("1P PI ");

 }

 else if(refMode == THREE_PHASE_PI){

 put_str("3P PI ");

 }

 else if(refMode == SINGLE_AC_G){

 put_str("1 PI G ");

 }

 else if(refMode == SINGLE_AC_OL){

 put_str("1P OL ");

 }

 else if(refMode == THREE_PHASE_DQ){

 put_str("3P DQ ");

 }

 else if(refMode == THREE_PHASE_PI_G){

 put_str("3P G ");

 }

 else if(refMode == SINGLE_AC_PR){

 put_str("1P PR ");

306 EXPERIMENTAL SOFTWARE

306

 }

 else if(refMode == THREE_PHASE_PR){

 put_str("3P PR ");

 }

 else if(refMode == THREE_PHASE_VF){

 put_str("3P VF ");

 }

 else if(refMode == SQUARE_WAVE){

 put_str("SQ WV ");

 }

 else if(refMode == THREE_PHASE_OL){

 put_str("3P OL ");

 }

 else if(refMode == PHASE_A){

 put_str("P_A ");

 }

 else if(refMode == PHASE_B){

 put_str("P_B ");

 }

 else if(refMode == PHASE_C){

 put_str("P_C ");

 }

}

BIBLIOGRAPHY 307

307

BIBLIOGRAPHY

[1] J. Rodriguez, J.-S. Lai, and F. Z. Peng, “Multilevel inverters: a survey of

topologies, controls, and applications,” IEEE Transactions on Industrial

Electronics, vol. 49, no. 4, pp. 724–738, 2002.

[2] R. Teichmann and S. Bernet, “A comparison of three-level converters versus

two-level converters for low-voltage drives, traction, and utility applications,”

Industry Applications, IEEE Transactions on DOI -

10.1109/TIA.2005.847285, vol. 41, no. 3, pp. 855–865, 2005.

[3] M. D. Manjrekar, P. K. Steimer, and T. A. Lipo, “Hybrid multilevel power

conversion system: a competitive solution for high-power applications,” IEEE

Transactions on Industry Applications, vol. 36, no. 3, pp. 834–841, 2000.

[4] J. Rodriguez, L. G. Franquelo, S. Kouro, J. I. Leon, R. C. Portillo, M. A. M.

Prats, and M. A. Perez, “Multilevel Converters: An Enabling Technology for

High-Power Applications,” Proceedings of the IEEE DOI -

10.1109/JPROC.2009.2030235, vol. 97, no. 11, pp. 1786–1817, 2009.

[5] J. Rodriguez, S. Bernet, P. K. Steimer, and I. E. Lizama, “A Survey on

Neutral-Point-Clamped Inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 7,

pp. 2219–2230, 2010.

[6] A. Bendre, G. Venkataramanan, D. Rosene, and V. Srinivasan, “Modeling and

design of a neutral-point voltage regulator for a three-level diode-clamped

inverter using multiple-carrier modulation,” Industrial Electronics, IEEE

Transactions on DOI - 10.1109/TIE.2006.874424, vol. 53, no. 3, pp. 718–726,

2006.

[7] A. Bendre, S. Krstic, J. Vander Meer, and G. Venkataramanan, “Comparative

evaluation of modulation algorithms for neutral-point-clamped converters,”

Industry Applications, IEEE Transactions on DOI -

10.1109/TIA.2005.844374, vol. 41, no. 2, pp. 634–643, 2005.

[8] K. Yamanaka, A. M. Hava, H. Kirino, Y. Tanaka, N. Koga, and T. Kume, “A

novel neutral point potential stabilization technique using the information of

output current polarities and voltage vector,” Industry Applications, IEEE

Transactions on DOI - 10.1109/TIA.2002.804761, vol. 38, no. 6, pp. 1572–

1580, 2002.

[9] S. R. Pulikanti, M. S. A. Dahidah, and V. G. Agelidis, “Voltage Balancing

Control of Three-Level Active NPC Converter Using SHE-PWM,” Power

Delivery, IEEE Transactions on DOI - 10.1109/TPWRD.2010.2063718, vol.

26, no. 1, pp. 258–267, 2011.

[10] Dong-Hyun Kim, Dae-Wook Kang, Yo-Han Lee, and Dong-Seok Hyun, “The

analysis and comparison of carrier-based PWM methods for 3-level inverter,”

in Industrial Electronics Society, 2000. IECON 2000. 26th Annual

Confjerence of the IEEE, 2000, vol. 2, pp. 1316–1321 vol.2.

[11] Jae Hyeong Seo and Chang Ho Choi, “Compensation for the neutral-point

potential variation in three-level space vector PWM,” in Applied Power

Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual

IEEE, 2001, vol. 2, pp. 1135–1140 vol.2.

[12] N. Celanovic, I. Celanovic, and D. Boroyevich, “The feedforward method of

controlling three-level diode clamped converters with small DC-link

capacitors,” in Power Electronics Specialists Conference, 2001. PESC. 2001

IEEE 32nd Annual, 2001, vol. 3, pp. 1357–1362 vol. 3.

308 BIBLIOGRAPHY

308

[13] R. K. Behera, T. V. Dixit, and S. P. Das, “Analysis of Experimental

Investigation of Various Carrier-based Modulation Schemes for Three Level

Neutral Point Clamped Inverter-fed Induction Motor Drive,” in Power

Electronics, Drives and Energy Systems, 2006. PEDES ’06. International

Conference on, 2006, pp. 1–6.

[14] R. M. Tallam, R. Naik, and T. A. Nondahl, “A carrier-based PWM scheme for

neutral-point voltage balancing in three-level inverters,” Industry Applications,

IEEE Transactions on DOI - 10.1109/TIA.2005.858283, vol. 41, no. 6, pp.

1734–1743, 2005.

[15] L. Ben-Brahim, “A Discontinuous PWM Method for Balancing the Neutral

Point Voltage in Three-Level Inverter-Fed Variable Frequency Drives,”

Energy Conversion, IEEE Transactions on DOI - 10.1109/TEC.2008.2001435,

vol. 23, no. 4, pp. 1057–1063, 2008.

[16] J. Zaragoza, J. Pou, S. Ceballos, E. Robles, P. Ibaez, and J. L. Villate, “A

Comprehensive Study of a Hybrid Modulation Technique for the Neutral-

Point-Clamped Converter,” Industrial Electronics, IEEE Transactions on DOI

- 10.1109/TIE.2008.2005132, vol. 56, no. 2, pp. 294–304, 2009.

[17] Qiang Song, Wenhua Liu, Qingguang Yu, Xiaorong Xie, and Zhonghong

Wang, “A neutral-point potential balancing algorithm for three-level NPC

inverters using analytically injected zero-sequence voltage,” in Eighteenth

Annual IEEE Applied Power Electronics Conference and Exposition, 2003.

APEC ’03, 2003, vol. 1, pp. 228– 233 vol.1.

[18] C. Newton and M. Sumner, “Neutral point control for multi-level inverters:

theory, design and operational limitations,” in , Conference Record of the 1997

IEEE Industry Applications Conference, 1997. Thirty-Second IAS Annual

Meeting, IAS ’97, 1997, vol. 2, pp. 1336–1343 vol.2.

[19] S. Busquets-Monge, S. Somavilla, J. Bordonau, and D. Boroyevich,

“Capacitor Voltage Balance for the Neutral-Point- Clamped Converter using

the Virtual Space Vector Concept With Optimized Spectral Performance,”

IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1128–1135, Jul.

2007.

[20] N. Celanovic and D. Boroyevich, “A comprehensive study of neutral-point

voltage balancing problem in three-level neutral-point-clamped voltage source

PWM inverters,” IEEE Transactions on Power Electronics, vol. 15, no. 2, pp.

242–249, Mar. 2000.

[21] S. Ogasawara and K. Akagi, “A vector control system using a neutral-point-

clamped voltage source PWM inverter,” in , Conference Record of the 1991

IEEE Industry Applications Society Annual Meeting, 1991, 1991, pp. 422–427

vol.1.

[22] H. L. Liu, N. S. Choi, and G. H. Cho, “DSP based space vector PWM for

three-level inverter with DC-link voltage balancing,” in , 1991 International

Conference on Industrial Electronics, Control and Instrumentation, 1991.

Proceedings. IECON ’91, 1991, pp. 197–203 vol.1.

[23] K. Shinohara and E. Sakasegawa, “A new PWM method with suppressed

neutral point potential variation of three level inverter for AC servo motor

drive,” in Proceedings of the IEEE 1999 International Conference on Power

Electronics and Drive Systems, 1999. PEDS ’99, 1999, vol. 2, pp. 668–672

vol.2.

[24] Dong Ho Lee, S. R. Lee, and F. C. Lee, “An analysis of midpoint balance for

the neutral-point-clamped three-level VSI,” in 29th Annual IEEE Power

BIBLIOGRAPHY 309

309

Electronics Specialists Conference, 1998. PESC 98 Record, 1998, vol. 1, pp.

193–199 vol.1.

[25] R. Maheshwari, S. Munk-Nielsen, and S. Busquets-Monge, “Neutral-point

current modeling and control for Neutral-Point Clamped three-level converter

drive with small DC-link capacitors,” in Energy Conversion Congress and

Exposition (ECCE), 2011 IEEE, 2011, pp. 2087–2094.

[26] J. K. Steinke, “Control strategy for a three phase AC traction drive with three-

level GTO PWM inverter,” in Power Electronics Specialists Conference,

1988. PESC ’88 Record., 19th Annual IEEE, 1988, pp. 431–438 vol.1.

[27] J. K. Steinke, “Switching frequency optimal PWM control of a three-level

inverter,” Power Electronics, IEEE Transactions on DOI -

10.1109/63.145136, vol. 7, no. 3, pp. 487–496, 1992.

[28] Wang Chenchen, Zhang Can, and You Xiaojie, “An improved voltage

balancing compensator for three-level NPC converters,” in Electrical

Machines and Systems (ICEMS), 2011 International Conference on, 2011, pp.

1–6.

[29] J. Pou, J. Zaragoza, S. Ceballos, M. Saeedifard, and D. Boroyevich, “A

Carrier-Based PWM Strategy With Zero-Sequence Voltage Injection for a

Three-Level Neutral-Point-Clamped Converter,” Power Electronics, IEEE

Transactions on DOI - 10.1109/TPEL.2010.2050783, vol. 27, no. 2, pp. 642–

651, 2012.

[30] B. Ustuntepe and A. M. Hava, “A Novel Two-Parameter Modulation and

Neutral Point Potential Control Method for The Three-Level Neutral Point

Clamped Inverter,” in Electric Machines & Drives Conference, 2007. IEMDC

’07. IEEE International, 2007, vol. 1, pp. 742–747.

[31] Enli Du, Ligao He, Xu Li, and Yanlin Ma, “Neutral point potential balance of

three-level inverter based on parameters self-tuning fuzzy logic control

strategy,” in IECON 2010 - 36th Annual Conference on IEEE Industrial

Electronics Society, 2010, pp. 2863–2867.

[32] H. du Toit Mouton, “Natural balancing of three-level neutral-point-clamped

PWM inverters,” IEEE Trans. Ind. Electron., vol. 49, no. 5, pp. 1017–1025,

2002.

[33] I. M. Salagae and H. du T Mouton, “Natural balancing of neutral-point-

clamped converters under POD pulsewidth modulation,” in Power Electronics

Specialist Conference, 2003. PESC ’03. 2003 IEEE 34th Annual, 2003, vol. 1,

pp. 47–52 vol.1.

[34] D. Drennan and H. T. Mouton, “An experimental investigation into natural

balancing of three level neutral point clamped multi-level inverters,” in

Africon Conference in Africa, 2002. IEEE AFRICON. 6th, 2002, vol. 2, pp.

749–754 vol.2.

[35] A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM

Inverter,” Industry Applications, IEEE Transactions on DOI -

10.1109/TIA.1981.4503992, vol. IA-17, no. 5, pp. 518–523, 1981.

[36] E. Clarke, Circuit analysis of A-C power systems... J. Wiley & sons, inc.,

1943.

[37] P. Enjeti and R. Jakkli, “Optimal power control strategies for neutral point

clamped (NPC) inverter topology,” in Industry Applications Society Annual

Meeting, 1989., Conference Record of the 1989 IEEE, 1989, pp. 924–930

vol.1.

310 BIBLIOGRAPHY

310

[38] H. L. Liu and G. H. Cho, “Three-level space vector PWM in low index

modulation region avoiding narrow pulse problem,” Power Electronics, IEEE

Transactions on DOI - 10.1109/63.321033, vol. 9, no. 5, pp. 481–486, 1994.

[39] B. Velaerts, P. Mathys, E. Tatakis, and G. Bingen, “A novel approach to the

generation and optimization of three-level PWM wave forms for induction

motor inverters,” in Power Electronics Specialists Conference, 1988. PESC

’88 Record., 19th Annual IEEE, 1988, pp. 1255–1262 vol.2.

[40] S. Fukuda and K. Suzuki, “Using harmonic distortion determining factor for

harmonic evaluation of carrier-based PWM methods,” in Industry Applications

Conference, 1997. Thirty-Second IAS Annual Meeting, IAS ’97., Conference

Record of the 1997 IEEE, 1997, vol. 2, pp. 1534–1541 vol.2.

[41] J. K. Steinke, “PWM control of a three-level inverter-principles and practical

experience,” in Power Electronics and Variable-Speed Drives, 1991., Fourth

International Conference on, 1990, pp. 98–103.

[42] S. Tadakuma, S. Tanaka, K. Miura, H. Inokuchi, and H. Ikeda, “Fundamental

approaches to PWM control based GTO inverters for linear synchronous

motor drives,” in , Conference Record of the 1991 IEEE Industry Applications

Society Annual Meeting, 1991, 1991, pp. 847–853 vol.1.

[43] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari, and G. Sciutto, “A new

multilevel PWM method: a theoretical analysis,” Power Electronics, IEEE

Transactions on DOI - 10.1109/63.145137, vol. 7, no. 3, pp. 497–505, 1992.

[44] A. I. Alolah, L. N. Hulley, and W. Shepherd, “A three-phase neutral point

clamped inverter for motor control,” Power Electronics, IEEE Transactions on

DOI - 10.1109/63.17960, vol. 3, no. 4, pp. 399–405, 1988.

[45] S. Ogasawara and H. Akagi, “Analysis of variation of neutral point potential in

neutral-point-clamped voltage source PWM inverters,” in Industry

Applications Society Annual Meeting, 1993., Conference Record of the 1993

IEEE, 1993, pp. 965–970 vol.2.

[46] T. A. Meynard and H. Foch, “Multi-level conversion: high voltage choppers

and voltage-source inverters,” in Power Electronics Specialists Conference,

1992. PESC ’92 Record., 23rd Annual IEEE, 1992, pp. 397–403 vol.1.

[47] M. Koyama, T. Fujii, R. Uchida, and T. Kawabata, “Space voltage vector-

based new PWM method for large capacity three-level GTO inverter,” in

Industrial Electronics, Control, Instrumentation, and Automation, 1992.

Power Electronics and Motion Control., Proceedings of the 1992

International Conference on, 1992, pp. 271–276 vol.1.

[48] R. Rojas, T. Ohnishi, and T. Suzuki, “An improved voltage vector control

method for neutral-point-clamped inverters,” Power Electronics, IEEE

Transactions on DOI - 10.1109/63.471286, vol. 10, no. 6, pp. 666–672, 1995.

[49] Qiang Song, Wenhua Liu, Qingguang Yu, Xiaorong Xie, and Zhonghong

Wang, “A neutral-point potential balancing algorithm for three-level NPC

inverters using analytically injected zero-sequence voltage,” in Applied Power

Electronics Conference and Exposition, 2003. APEC ’03. Eighteenth Annual

IEEE, 2003, vol. 1, pp. 228–233 vol.1.

[50] Chenchen Wang and Yongdong Li, “Analysis and Calculation of Zero-

Sequence Voltage Considering Neutral-Point Potential Balancing in Three-

Level NPC Converters,” Industrial Electronics, IEEE Transactions on DOI -

10.1109/TIE.2009.2024093, vol. 57, no. 7, pp. 2262–2271, 2010.

[51] K. R. M. N. Ratnayake, Y. Murai, and T. Watanabe, “Novel PWM scheme to

control neutral point voltage variation in three-level voltage source inverter,”

BIBLIOGRAPHY 311

311

in Industry Applications Conference, 1999. Thirty-Fourth IAS Annual

Meeting. Conference Record of the 1999 IEEE, 1999, vol. 3, pp. 1950–1955

vol.3.

[52] J. Pou, R. Pindado, D. Boroyevich, and P. Rodriguez, “Evaluation of the low-

frequency neutral-point voltage oscillations in the three-level inverter,” in

Industrial Electronics Society, 2003. IECON ’03. The 29th Annual

Conference of the IEEE, 2003, vol. 3, pp. 2179–2184 Vol.3.

[53] K. Rafal, M. Bobrowska-Rafal, S. Piasecki, and M. Jasinski, “Coordinated

control of grid-connected three-level NPC converter under distorted grid

voltage,” in Industrial Electronics (ISIE), 2011 IEEE International Symposium

on, 2011, pp. 1011–1016.

[54] Xinchun Lin, Shan Gao, J. Li, He Lei, and Yong Kang, “A new control

strategy to balance neutral-point voltage in three-level NPC inverter,” in

Power Electronics and ECCE Asia (ICPE & ECCE), 2011 IEEE 8th

International Conference on, 2011, pp. 2593–2597.

[55] Jae Hyeong Seo, Chang Ho Choi, and Dong Seok Hyun, “A new simplified

space-vector PWM method for three-level inverters,” Power Electronics,

IEEE Transactions on DOI - 10.1109/63.931078, vol. 16, no. 4, pp. 545–550,

2001.

[56] J. Holtz and N. Oikonomou, “Neutral Point Potential Balancing Algorithm at

Low Modulation Index for Three-Level Inverter Medium-Voltage Drives,”

Industry Applications, IEEE Transactions on DOI -

10.1109/TIA.2007.895767, vol. 43, no. 3, pp. 761–768, 2007.

[57] N. Celanovic and D. Boroyevich, “A comprehensive study of neutral-point

voltage balancing problem in three-level neutral-point-clamped voltage source

PWM inverters,” Power Electronics, IEEE Transactions on DOI -

10.1109/63.838096, vol. 15, no. 2, pp. 242–249, 2000.

[58] A. K. Gupta and A. M. Khambadkone, “A Simple Space Vector PWM

Scheme to Operate a Three-Level NPC Inverter at High Modulation Index

Including Overmodulation Region, With Neutral Point Balancing,” Industry

Applications, IEEE Transactions on DOI - 10.1109/TIA.2007.895766, vol. 43,

no. 3, pp. 751–760, 2007.

[59] Yo-Han Lee, Dong-Hyun Kim, and Dong-Seok Hyun, “Carrier based

SVPWM method for multi-level system with reduced HDF [harmonic

distortion factor],” in Industry Applications Conference, 2000. Conference

Record of the 2000 IEEE, 2000, vol. 3, pp. 1996–2003 vol.3.

[60] B. P. McGrath, D. G. Holmes, and T. Lipo, “Optimized space vector switching

sequences for multilevel inverters,” Power Electronics, IEEE Transactions on

DOI - 10.1109/TPEL.2003.818827, vol. 18, no. 6, pp. 1293– 1301, 2003.

[61] D. Holmes and T. Lipo, Principles and Practice. 2003.

[62] T. Bruckner and D. G. Holmes, “Optimal pulse-width modulation for three-

level inverters,” Power Electronics, IEEE Transactions on DOI -

10.1109/TPEL.2004.839831(410) 20, vol. 20, no. 1, pp. 82–89, 2005.

[63] Yo-Han Lee, Rae-Young Kim, and Dong-Seok Hyun, “A novel SVPWM

strategy considering DC-link balancing for a multi-level voltage source

inverter,” in Applied Power Electronics Conference and Exposition, 1999.

APEC ’99. Fourteenth Annual, 1999, vol. 1, pp. 509–514 vol.1.

[64] J. Pou, D. Boroyevich, and R. Pindado, “New feedforward space-vector PWM

method to obtain balanced AC output voltages in a three-level neutral-point-

312 BIBLIOGRAPHY

312

clamped converter,” Industrial Electronics, IEEE Transactions on DOI -

10.1109/TIE.2002.803207, vol. 49, no. 5, pp. 1026–1034, 2002.

[65] S. Kouro, P. Lezana, M. Angulo, and J. Rodriguez, “Multicarrier PWM With

DC-Link Ripple Feedforward Compensation for Multilevel Inverters,” Power

Electronics, IEEE Transactions on DOI - 10.1109/TPEL.2007.911834, vol.

23, no. 1, pp. 52–59, 2008.

[66] Zhuohui Tan, Yongdong Li, and Min Li, “A direct torque control of induction

motor based on three-level NPC inverter,” in Power Electronics Specialists

Conference, 2001. PESC. 2001 IEEE 32nd Annual, 2001, vol. 3, pp. 1435–

1439 vol. 3.

[67] S. Busquets-Monge, J. Bordonau, D. Boroyevich, and S. Somavilla, “The

nearest three virtual space vector PWM - a modulation for the comprehensive

neutral-point balancing in the three-level NPC inverter,” Power Electronics

Letters, IEEE, vol. 2, no. 1, pp. 11–15, 2004.

[68] J. Pou, J. Zaragoza, P. Rodriguez, S. Ceballos, V. M. Sala, R. P. Burgos, and

D. Boroyevich, “Fast-Processing Modulation Strategy for the Neutral-Point-

Clamped Converter With Total Elimination of Low-Frequency Voltage

Oscillations in the Neutral Point,” Industrial Electronics, IEEE Transactions

on DOI - 10.1109/TIE.2007.894788, vol. 54, no. 4, pp. 2288–2294, 2007.

[69] J. Zaragoza, J. Pou, S. Ceballos, E. Robles, C. Jaen, and M. Corbalan,

“Voltage-Balance Compensator for a Carrier-Based Modulation in the

Neutral-Point-Clamped Converter,” IEEE Trans. Ind. Electron., vol. 56, no. 2,

pp. 305–314, 2009.

[70] S. Busquets-Monge, S. Somavilla, J. Bordonau, and D. Boroyevich,

“Capacitor Voltage Balance for the Neutral-Point- Clamped Converter using

the Virtual Space Vector Concept With Optimized Spectral Performance,”

Power Electronics, IEEE Transactions on DOI - 10.1109/TPEL.2007.900547,

vol. 22, no. 4, pp. 1128–1135, 2007.

[71] S. Busquets-Monge, J. D. Ortega, J. Bordonau, J. A. Beristain, and J.

Rocabert, “Closed-Loop Control Design for a Three-Level Three-Phase

Neutral-Point-Clamped Inverter Using the Optimized Nearest-Three Virtual-

Space-Vector Modulation,” in Power Electronics Specialists Conference,

2006. PESC ’06. 37th IEEE, 2006, pp. 1–7.

[72] Wei-dong Jiang, Shao-wu Du, Liu-chen Chang, Yi Zhang, and Qin Zhao,

“Hybrid PWM Strategy of SVPWM and VSVPWM for NPC Three-Level

Voltage-Source Inverter,” Power Electronics, IEEE Transactions on DOI -

10.1109/TPEL.2010.2041254, vol. 25, no. 10, pp. 2607–2619, 2010.

[73] A. Saengseethong and S. Sangwongwanich, “A new modulation strategy for

capacitor voltage balancing in three-level NPC inverters based on matrix

converter theory,” in Power Electronics Conference (IPEC), 2010

International, 2010, pp. 2358–2365.

[74] R. Vargas, P. Cortes, U. Ammann, J. Rodriguez, and J. Pontt, “Predictive

Control of a Three-Phase Neutral-Point-Clamped Inverter,” Industrial

Electronics, IEEE Transactions on DOI - 10.1109/TIE.2007.899854, vol. 54,

no. 5, pp. 2697–2705, 2007.

[75] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model

Predictive Control—A Simple and Powerful Method to Control Power

Converters,” Industrial Electronics, IEEE Transactions on DOI -

10.1109/TIE.2008.2008349, vol. 56, no. 6, pp. 1826–1838, 2009.

BIBLIOGRAPHY 313

313

[76] A. Lewicki, Z. Krzeminski, and H. Abu-Rub, “Space-Vector Pulsewidth

Modulation for Three-Level NPC Converter With the Neutral Point Voltage

Control,” Industrial Electronics, IEEE Transactions on DOI -

10.1109/TIE.2011.2119453, vol. 58, no. 11, pp. 5076–5086, 2011.

[77] F. Wang, “Multilevel PWM VSIs,” Industry Applications Magazine, IEEE

DOI - 10.1109/MIA.2004.1311163, vol. 10, no. 4, pp. 51–58, 2004.

[78] S. Busquets-Monge, S. Alepuz, J. Rocabert, and J. Bordonau, “Pulsewidth

Modulations for the Comprehensive Capacitor Voltage Balance of n -Level

Three-Leg Diode-Clamped Converters,” Power Electronics, IEEE

Transactions on DOI - 10.1109/TPEL.2009.2016661, vol. 24, no. 5, pp. 1364–

1375, 2009.

[79] N. Celanovic and D. Borojevic, “A comprehensive study of neutral-point

voltage balancing problem in three-level neutral-point-clamped voltage source

PWM inverters,” in Applied Power Electronics Conference and Exposition,

1999. APEC ’99. Fourteenth Annual, 1999, vol. 1, pp. 535–541 vol.1.

[80] B. P. McGrath, D. G. Holmes, and T. Meynard, “Reduced PWM harmonic

distortion for multilevel inverters operating over a wide modulation range,”

Power Electronics, IEEE Transactions on DOI - 10.1109/TPEL.2006.876864,

vol. 21, no. 4, pp. 941– 949, 2006.

[81] B. P. McGrath and D. G. Holmes, “Analytical Modelling of Voltage Balance

Dynamics for a Flying Capacitor Multilevel Converter,” IEEE Trans. Power

Electron., vol. 23, no. 2, pp. 543–550, 2008.

[82] Z. Mohzani, B. P. McGrath, and D. G. Holmes, “Natural balancing of the

Neutral Point voltage for a three-phase NPC multilevel converter,” in IECON

2011 - 37th Annual Conference on IEEE Industrial Electronics Society, 2011,

pp. 4445–4450.

[83] Xioming Yuan, G. Orglmeister, and W. Merk, “Managing the DC link neutral

potential of the three-phase-four-wire neutral-point-clamped (NPC) inverter in

FACTS application,” in Industrial Electronics Society, 1999. IECON ’99

Proceedings. The 25th Annual Conference of the IEEE, 1999, vol. 2, pp. 571–

576 vol.2.

[84] N.-Y. Dai, M.-C. Wong, and Y.-D. Han, “Application of a three-level NPC

inverter as a three-phase four-wire power quality compensator by generalized

3DSVM,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 440 –

449, Mar. 2006.

[85] S. Kouro, P. Lezana, M. Angulo, and J. Rodriguez, “Multicarrier PWM With

DC-Link Ripple Feedforward Compensation for Multilevel Inverters,” IEEE

Transactions on Power Electronics, vol. 23, no. 1, pp. 52–59, Jan. 2008.

[86] J. I. Leon, S. Vazquez, R. Portillo, L. G. Franquelo, J. M. Carrasco, P. W.

Wheeler, and A. J. Watson, “Three-Dimensional Feedforward Space Vector

Modulation Applied to Multilevel Diode-Clamped Converters,” IEEE

Transactions on Industrial Electronics, vol. 56, no. 1, pp. 101–109, Jan. 2009.

[87] J. Pou, D. Boroyevich, and R. Pindado, “New feedforward space-vector PWM

method to obtain balanced AC output voltages in a three-level neutral-point-

clamped converter,” IEEE Transactions on Industrial Electronics, vol. 49, no.

5, pp. 1026– 1034, Oct. 2002.

[88] N. Celanovic and D. Boroyevich, “A fast space-vector modulation algorithm

for multilevel three-phase converters,” Industry Applications, IEEE

Transactions on DOI - 10.1109/28.913731, vol. 37, no. 2, pp. 637–641, 2001.

