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Synopsis

The planar elongational melt rheology and structural properties of dendrimers and hyperbranched

polymers of different molecular weights (generations 1–4) and their linear counterparts have been

studied using nonequilibrium molecular dynamics simulation techniques in the isothermal-isobaric

ensemble. The extensional viscosity showed three distinctive regions against strain-rate, including

an initial Newtonian region at low strain-rates, followed by a thickening behavior at medium

strain-rates and terminated with a thinning region at very high strain-rates, in agreement with the

Sarkar and Gupta model [J. Rein. Plast. Comp. 20, 1473–1484 (2001)]. In addition, a structural

analysis was performed to study the size, shape, and spatial distributions within globular dendrimers

and hyperbranched polymer molecules under planar elongational flow (PEF). Ratios of the

eigenvalues of the gyration tensor showed that contrary to shear flow, under PEF even at low strain

rates, dendrimers and hyperbranched molecules have ellipsoidal conformations and change to a

much more flattened prolate shape at higher strain rates. In combination with the eigenvalue ratios,

the distribution of monomers from the central core of the molecules showed that the thickening

region occurs due to branches being stretched, and terminal thinning behavior stems primarily from

flow-induced alignment and finite extensibility effects. VC 2014 The Society of Rheology.
[http://dx.doi.org/10.1122/1.4860355]

I. INTRODUCTION

Perhaps one of the most significant challenges for rheologists is the determination of

planar extensional viscosity, whether by experimental methods or simulation techniques.

This is reflected in the very small number of experimental and simulation studies available
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in the literature, which is due to the difficulties associated with generation and control of

extensional flows, as has been reviewed by Dealy (1971), Petrie (2006), and McKinley

and Sridhar (2002). Extensional flows are important for industry because of their applica-

tion in fiber spinning and film forming processes [Weinbergert and Goddard (1974)] and

also for academia, as a guide for formulating constitutive equations for the rheology of

non-Newtonian fluids [Tanner and Nasseri (2003); McLeish and Larson (1998); Ilg and

Kr€oger (2011)]. As most constitutive equations are tube-based models, they are not appli-

cable to systems with molecular weights under the entanglement molecular weight.

Dendritic polymers, including dendrimers and random hyperbranched polymers, are syn-

thetic treelike molecules that have received significant interest over the past 20 years due to

their unusual properties compared to conventional linear polymers [Tomalia et al. (1984)].

Since the introduction of this new class of materials, many papers [such as those by Flory

(1941); Kim and Webster (1990); Frechet et al. (1994); Wooley et al. (1991); Nunez et al.
(2000); Hsieh et al. (2001)] have been published on the synthesis and characterization of dif-

ferent generations of hyperbranched polymers and dendrimers, revealing unique macro-

scopic properties of these polymers compared to their linear counterparts, such as low melt

viscosity, due to their compact structure. Recently, Silva et al. (2012) introduced dendrimers

as a potential platform in nanotechnology-based drug delivery systems due to their specific

physical and chemical properties arising from their organized architecture.

The shape and the orientation of macromolecules in polymer melts dictate their

dynamical behavior and rheological properties. Understanding these structural effects is

crucial in increasing our understanding of the relationship between microstructure and

macroscopic properties of this class of materials. Experimental techniques such as neu-

tron scattering [Frick and Richter (1995)], neutron spin-echo (NSE) [Likhtman (2005)],

dielectric spectroscopy, and NMR have been very influential in illustrating the structure

and dynamics of polymer melts, but there are properties that these experimental techni-

ques fail to probe. For example, in the case of branched polymers, experimental techni-

ques such as NMR are useful in determining the number of branches. However, in

measuring the length of branches, NMR cannot differentiate branches that have more

than six–ten atoms [Gaborieau and Castignolles (2011)]. However, molecular simulation

techniques, such as molecular dynamics, offer an alternative approach.

There are also significant advances in molecular dynamics simulations which can

potentially directly calculate macroscopic properties from the microscopic properties of a

polymer melt. For this reason, computer simulations, especially nonequilibrium molecu-

lar dynamics (NEMD) simulation, can play an important role in our understanding of

polymer melt behavior under different flow conditions. The advantage of computer simu-

lation over experimental methods is that complex architectures can be simulated with

controlled molecular weight and molecular topology. However, the idealized molecules

examined by these methods are mostly much shorter than real polymers. Normally, a

limited number of molecules are studied in the simulation because of the large number of

calculations entailed. Moreover, for larger molecules, the relaxation time is very large

and beyond the feasible simulation time. This implies that the molecular weight of the

simulated molecules is usually below the entanglement molecular weight. Despite

the fact that the molecules in these simulations are short, they can still capture much of

the behavior of real polymer melts. For instance, these model molecules often reproduce

nonlinear behavior and normal stress differences that are observed for real polymer melts.

NEMD simulations have shown [Matin et al. (2003b)] that liquids that often appear

Newtonian in experiments at low strain rates show non-Newtonian behavior if they are

deformed at large enough strain rates, as in NEMD simulations. Furthermore, these simu-

lations can also be used to capture the effect of molecular shape on the rheological
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behavior. Understanding of these structural effects can boost our general knowledge and

provides guidance in devising theoretical models for real polymers.

Although numerous computational studies have been performed to investigate the

dynamics of polymeric fluids [for instance, van Ruymbeke et al. (2006); Karayiannis and

Mavrantzas (2005); Hess (2002); Hoover and Hoover (2003)], only a few of these simula-

tion studies focus on melt rheology [e.g., works by van Ruymbeke et al. (2007); Wagner

and Rolon-Garrido (2009); Likhtman et al. (2007); Daivis et al. (1992); Laun and M€unstedt

(1978); Aust et al. (1999)] which, among them, elongational behavior studies are very lim-

ited. For example, for molecular dynamics simulations, see works by Heyes (1985),

Hounkonnou et al. (1992), Todd and Daivis (1998), Kalra and Joo (2009), and Baranyai

and Cummings (1999). Also, several authors conducted Brownian dynamics simulations in

order to study different types of extensional flow behavior of polymeric solutions, such as

Cifre and de la Torre (1999), Sridhar et al. (2007), and Neelov and Adolf (2003, 2004).

Matin et al. (2003b) and Daivis et al. (2007) successfully applied NEMD techniques to

study melt rheological behavior of linear polymers. Le et al. (2009a, 2009b) and Bosko

et al. (2004a, 2004b) studied melt rheology and structural behavior of hyperbranched poly-

mers and dendrimers under shear flow, respectively, but to the best of our knowledge, this

current paper is the first NEMD study, coupled with the Kraynik-Reinelt (1992) (KR)

boundary condition method, to study the melt rheology of dendrimers and hyperbranched

polymer melts and their shape and orientational changes under planar elongational flow

(PEF). Our aim here is to investigate the effect of microscopic structural changes and flow-

induced molecular deformation under PEF on the observed macroscopic properties such as

extensional viscosity and obtain greater physical intuition into the microscopic reasons

behind the macroscopic properties observed for dendrimers and hyperbranched molecules

under such flow conditions. This study can elucidate the effect of highly branched and

globular architecture on nonlinear viscoelastic properties of this new class of material.

The Carreau-Yasuda model has been used over the past decades to model the strain-

rate dependent steady shear viscosity for polymeric melts. We refer the reader to the

book by Bird et al. (1987) for details. Sarkar and Gupta (2001) modified this model for

the elongational melt viscosity by incorporating one extra term for the thickening phe-

nomenon which is observed in the elongational behavior of polymer melts. We use the

Sarkar-Gupta model in our studies and calculate the adjustable parameters of the model

by fitting them to our simulation data. The longest relaxation times were further approxi-

mated for the systems under study.

The remainder of this paper is organized as follows. Section II A describes the molecular

model we used to design our polymers. Section II B presents the isothermal-isobaric (NPT)-

NEMD algorithm. In Sec. III A, we present the results and a discussion of the rheological

behavior of dendrimers and hyperbranched polymers, compared to their linear counterparts

undergoing both PEF and shear flow. We also discuss the application of the Sarkar and

Gupta model for the strain rate dependent elongational viscosity. Section III B focuses on

the structural properties of the systems under study such as gyration tensor analysis, mass

distribution within the molecules and its variations during PEF and shear flow, and also the

distribution of terminal groups within the molecule. Section IV presents the conclusion.

II. METHODOLOGY

A. Dendrimer and hyperbranched model

Dendrimers and hyperbranched polymers were simulated using a coarse-grained

uniform bead model. These basic units correspond to the linear units or branching
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points of the molecule and are interconnected to create treelike structures. Beads along

the chain can rotate and vibrate freely. All beads (monomers) are identical and indis-

tinguishable except for their position in the molecule. The total number of monomers

in a dendrimer can be defined as N ¼ fbððf � 1Þgþ1 � 1Þ=ðf � 2Þ, where f is the func-

tionality of end groups, b is the number of monomers in the chain units, and g is the

generation number. With the choice of f¼ 3 and b¼ 2, dendrimers of generations 1, 2,

3, and 4 will have 19, 43, 91, and 187 monomers, respectively. In order to compare

our simulation data for hyperbranched polymers with those of dendrimers, a simple

specific architecture of hyperbranched polymers has been chosen. They are dendrimers

with trifunctional end groups f¼ 3 and two monomers in the chain units b¼ 2 that

have one imperfect branching point f¼ 2. As our hyperbranched polymers have the

same number of monomers as the dendrimers but fewer branches at one branching

point, extra monomers are added in the outermost layer of the molecules with f¼ 3

and b¼ 2 (see Fig. 1). Models of linear polymers of length 19, 43, 91, and 187 have

been built by successively attaching the same monomers. More details can be found in

Le et al. (2009a) and Bosko et al. (2004a). In this model, only bond and pairwise inter-

actions are taken into account. Monomers comprising the melt interact via the Weeks-

Chandler-Anderson (WCA) potential, which is a shifted and truncated Lennard-Jones

(LJ) potential, and also a finitely extensible nonlinear elastic (FENE) potential [details

can be found in papers by Kr€oger and Hess (2000) and also Kremer and Grest (1990)].

The WCA potential is given as

FIG. 1. Schematic representation for model hyperbranched and dendrimer molecules of generation 1 (19 beads

per molecule), revealing functionality, and length of the spacing of both hyperbranched and dendrimer mole-

cules (f¼ 3 and b¼ 2), and position of the missing branch for hyperbranched molecule.

284 HAJIZADEH, TODD, AND DAIVIS



UWCA
ij ¼

4�
r
rij

� �12

� r
rij

� �6
" #

þ � for
rij

r
< 21=6

0 for
rij

r
� 21=6;

8>>><
>>>:

(1)

where rij is the separation between the sites represented by monomers i and j, � is the

potential well depth, and r is the effective diameter of the monomers. This potential

results in a purely repulsive force that includes the effect of excluded volume. The FENE

potential is expressed as

UFENE
ij ¼

�0:5kR2
0 ln½1� ðrijÞ=R2

0� for rij � R0

1 for rij � R0;

(
(2)

where R0 is a finite extensibility and k is a spring constant. In this work, R0 and k were set

to 1.5 and 30, respectively, as is typical [Kr€oger and Hess (2000); Kr€oger (2004); Kremer

and Grest (1990)]. For this choice of parameters, the maximal extent of bonds is short

enough to prevent crossing of branches, whereas the magnitude of the bonding force is

small enough to enable simulations with relatively large time steps. Nonbonded monomers

only have WCA potential interactions, whereas bonded monomers have both FENE and

WCA interactions which create a potential well for the flexible bonds that maintains the

architecture of the molecules. In the remainder of this paper, all quantities are expressed

in terms of site reduced units in which the reduction parameters are the LJ interaction

parameters � and r and the mass mia of bead a in molecule i. The reduced temperature is

given by T� ¼ kBT=�, the density by q� ¼ qr3, the pressure tensor by P� ¼ Pr3=�, and

strain rate by _c� ¼ _cðmr2=�Þ1=2
. For simplicity of notation, the asterisk will be omitted

hereafter. In all simulations we set r¼ �¼mia¼ kB¼ 1.

B. NEMD simulation

Our NEMD simulations are based on the molecular version of the homogeneous NPT

SLLOD equations of motion [details can be found in Todd and Daivis (2007) and

Frascoli and Todd (2007)]

_ria ¼
pia

mia
þ _�ðixia � jyiaÞ þ _f

mia

Mi
ri; (3)

_pia ¼ Fia � _�ðipxia � jpyiaÞ � a
mia

Mi
pi �

mia

Mi

_fpi; (4)

where ria and pia represent the position and thermal momentum of monomer a on mole-

cule i, _� is the elongational strain rate, pi is the momentum of the molecular center of

mass of molecule i, and Mi is the mass of molecule i. Our geometry is such that expan-

sion occurs in the x-direction, whereas contraction occurs in the y-direction. The simula-

tions were performed at constant temperature using a molecular version of the Gaussian

thermostat with a constraint multiplier a given by

a ¼

XN

i¼1

ðFi � pi � _�ðp2
xi � p2

yiÞÞ=Mi

XN

i¼1

p2
i =Mi

� _f: (5)
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Constant pressure simulations were accomplished by coupling the system to an

extended degree of freedom _f associated with the volume of the simulation box. Thus,

the volume, rather than the pressure, is allowed to fluctuate. The Nos�e-Hoover integral

feedback mechanism has been implemented in this work [Daivis and Evans (1994)]. The

time evolution of V is regulated by the variable _f via the following equation:

_V ¼ 3 _fV; (6)

where _V is the first derivative of the cell volume with respect to time. To maintain the tar-

get pressure, the lattice vectors have to be rescaled such that the volume of the unit cell is

compatible with the equations of motion. This process has been done at each time step

and a consideration of the lattice cell evolution for PEF is necessary each time the rescal-

ing process takes place. The dilation rate is obtained by solving the additional differential

equation

€f ¼ ðp� p0ÞV
QpNkBT

; (7)

where Qp is a damping factor for which the optimal value will depend on the type of sys-

tem studied, p is the instantaneous isotropic pressure p ¼ 1
3

TrðPMÞ, and p0 is the target

pressure.

The molecular pressure tensor is computed as

PM ¼ 1

V

XNm

i¼1

pipi

Mi
� 1

2

XNm

i¼1

XN

a¼1

XNm

j 6¼i

XN

b¼1

rijFiajb

* +
; (8)

where rij¼ rj� ri, ri and rj are the centers of mass of molecules i and j, and Fiajb is the

intermolecular force on site ia due to site jb. Thus, there are a total of 6Nþ 2 differen-

tial equations to solve: 3N for the monomer positions, 3N for the peculiar momenta,

one for the system volume, and one for the dilation rate. The details of our implemen-

tation of the KR periodic boundary conditions for PEF simulations as well as the

description of the molecular pressure tensor are given elsewhere [Todd and Daivis

(1998, 2000, 2007)].

The equations of motion of all monomers were integrated using a fifth-order Gear

predictor corrector differential equation solver with reduced time step Dt¼ 0.001. After

dendrimer, linear, and hyperbranched polymer systems of 125 molecules generated at

low density had been compressed to the required density of q¼ 0.84, they were equili-

brated for typically several million time steps, and the pressure was plotted against time

to check if the system had reached the steady state. Ensemble averages of all properties

of interest were then calculated by averaging over typically 30 NEMD steady-state trajec-

tories. The temperature was fixed at 1 (reduced unit) for all systems studied.

There are two technical limitations in our NEMD simulations. One occurs at very low

strain rates and the other at very high strain rates, especially for high molecular weight

systems. The first limitation results in poor statistics for the properties calculated at very

low strain rates. To obtain better statistics, one needs to run the simulations for very long

times, which is not practical from a computational point of view. At extremely high strain

rates, our algorithm fails. This comes from the fact that at very high strain rates, bonds

between the monomers are fluctuating very fast and the integration time step is larger

than the inverse rate of these fluctuations. As a result, the equations of motion become
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stiff. In order to overcome this limitation, one should reduce the integration time step,

which again will demand a higher amount of computational time consumption. Thus in

the end, a compromise must be made between the competing demands of strain rate range

and computational time accessible.

III. RESULTS AND DISCUSSION

A. Rheology

The rheological properties of molecular melts are typically analyzed using standard

material functions. To characterize the melt rheological properties of dendrimers, hyper-

branched polymers of generations 1–4, and their linear polymer counterparts with 19, 43,

91, and 187 monomers per molecule under steady planar extensional flow, we compute

the first extensional viscosity g1, second extensional viscosity g2, and extensional viscos-

ity �g, which are expressed in terms of the components of the molecular pressure tensor

PM calculated as below

g1 ¼
Pyy � Pxx

_�

� �
; (9)

g2 ¼
Pyy � Pzz

_�

� �
; (10)

�g ¼ g1

4
: (11)

The extensional viscosity is often nondimensionalized with respect to the shear viscos-

ity. This ratio is called the Trouton ratio. In Eq. (11), the factor four comes from the

Trouton ratio for planar flows. This implies that in the Newtonian regime, the planar

extensional viscosity �g is comparable to the shear viscosity and the first planar elonga-

tional viscosity g1 is four times the shear viscosity.

Figure 2 shows the extensional viscosity �g in the form of a logarithmic plot versus

extension rate _� for dendrimer, hyperbranched, and linear polymers with 19, 43, 91, and

187 monomers per molecule. The overall trend includes three distinct regions: Initial pla-

teau Newtonian behavior followed by a deformation thickening region, terminated by a

considerable deformation thinning tail.

The first important issue to discuss here is the influence of the finite extensibility pa-

rameter of the FENE potential on the rheological behavior of our model polymer melt.

Kisbaugh and McHugh (1990) studied the effect of this parameter on flow behavior of

polymer solutions under shear flow. They showed that in the case of no finite extensibility

(Hookean potential), viscosity will increase indefinitely as a function of strain rate, and

there will be no thinning region after viscosity upturn occurs. This suggests finite extensi-

bility leads to the second relaxation mechanism of the chain after being fully extended,

namely, the overall alignment of the molecules at higher strain rates with respect to the

flow fields.

In order to discuss the occurrence of these regions for different molecules, we subdi-

vide our systems into (a) linear molecules including systems with entanglement (L187)

[according to Kr€oger et al. (1993), entanglement molecular weight for linear molecules

starts at approximately 100 monomers per chain] and linear molecules below the
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entanglement molecular weight (including L19, L43, and L91) and (b) dendrimers and

hyperbranched molecules (D19, D43, D91, D187, H19, H43, H91, and H187).

For category (a) and generally for linear chains except L19, there is an extra thinning

region at low strain rates before appearance of the thickening behavior [Figs. 2(b)–2(d)],

and we suggest that this comes from the fact that linear chains can align themselves more

easily along with the flow field than constrained dendritic structures even at fairly low

strain rates. The intensity of this initial thinning increases with molecular weight, and as

such, we do not see it for the L19 system, whereas there is a very strong initial thinning

for L187 system. It should be mentioned that for the L187 system at the available strain-

rate window presented in Fig. 2(d), just the initial thinning region has been captured.

Newtonian behavior for the L187 system happens at much lower strain rates and is not

captured in this work due to the technical limitations which were mentioned earlier in

Sec. II B. This trend is already reported in an experimental paper by Bhattacharjee et al.
(2002) for entangled polymer solutions under uniaxial elongational flow. They suggested

that for entangled polymers as _� increases, the polymer chains become significantly

aligned with the principle axis of strain, but they do not stretch, which causes the exten-

sional viscosity to decrease. Once chain stretching begins, the viscosity upturn shows

up. Therefore, thinning at lower values of _� is characteristic of polymeric melts with a

considerable number of entanglements per chain. For unentangled polymer melts or solu-

tions, extensional viscosity increases monotonically from the limiting Trouton value of

4g0 under PEF with increasing _�.
In the case of dendrimers and hyperbranched molecules, we might be able to interpret

their elongational behavior based on their constrained topology which prevents them

from being fully stretched and fully oriented along the flow direction. In addition, based

on structural analysis later in this paper, we find that dendrimers and hyperbranched

FIG. 2. Strain-rate dependence of extensional viscosity for linear (L), hyperbranched (H), and dendrimer (D)

molecules with 19 (a), 43 (b), 91 (c), and 187 (d) monomers per molecule. Symbols in each subplot includes L

", H �, D �.
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molecules change their size, shape, and orientation in the melt while undergoing elonga-

tional flow. We suggest that the stretched backbone/branches may be responsible for the

thickening behavior at intermediate strain rates for linear/hyperbranched molecules, and

global alignment is responsible for the thinning region for both dendrimers and hyper-

branched molecules. In Fig. 2, one can also see that there is a significant difference

between hyperbranched and dendrimer behavior under PEF, namely, the missing thicken-

ing region for dendrimers compared to hyperbranched molecules. This implies that

imperfection in the microstructure of the hyperbranched molecules introduces some free

volume throughout the interior of the molecules which facilitate the motion of branches

in the hyperbranched structure compared to dendrimer architecture in which the tightly

packed structure prevents branches being stretched very easily under PEF. Hence, due to

the very globular structure and constrained geometry of dendrimers, their rheological

behavior involves Newtonian behavior at low strain rates, with a weak viscosity upturn at

moderate strain rates followed by a thinning region. The viscosity upturn decreases with

the molecular weight and completely vanishes for the high molecular weight dendrimers

for the strain rates studied here. The dampening of the viscosity upturn for dendrimers

has been observed previously by Bosko and Prakash (2008) for shear flow. Neelov and

Adolf studied the intrinsic viscosity of dendrimers (2003) and hyperbranched polymer

(2004) solutions under elongational flow using Brownian dynamics simulations. They

suggested that “as _� increases, dendritic molecules first orient at low _� as a whole along

the flow axis without significant deformation and local orientation. Increasing _� leads to

local orientation at the level of the monomer leading to significant global deformation of

dendrimer and hyperbranched molecules” [Neelov and Adolf (2003)].

Figure 3 shows the second extensional viscosity g2 in the form of a logarithmic plot

versus extension rate _� for dendrimer, hyperbranched, and linear polymers with 19, 43,

FIG. 3. Strain-rate dependence of second extensional viscosity for linear (L), hyperbranched (H), and dendrimer

(D) molecules with 19 (a), 43 (b), 91 (c), and 187 (d) monomers per molecule. Symbols in each subplot includes

L ", H �, D �.
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91, and 187 monomers per molecule. One can see that the start of the thinning region for

all the systems is approximately around _� ¼ 0:001, which suggests that the elongation

thinning behavior of g2 is not sensitive to the molecular weight for these systems. The

second planar elongational viscosity is very rarely measured, and the only available data

are, e.g., Matin et al. (2003), Laun and M€unstedt (1978), and Baig et al. (2006) for linear

polymers. Our g2 results are in qualitative agreement with the data of these papers.

Sarkar and Gupta (2001) used a modified version of the Carreau model [Bird et al.
(1987)] for shear viscosity in order to predict the elongational viscosity as

g1 ¼ g0 4þ d 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðk1I2Þ2

q
8<
:

9=
;

2
64

3
75½1þ ðk2I2Þ2�

m�1
2 : (12)

For d¼ 0, the elongational viscosity in Eq. (12) reduces to the Carreau model with the

elongational viscosity parameters k2 and m, respectively, replacing k and n in the shear

viscosity model. I2 is the second scalar invariant of the strain rate tensor and is 8 _�2 for

PEF and 2 _c2 for shear flow. Physically, I2 is a measure of the rate of viscous heat dissipa-

tion in steady state flow. The parameter k1 in Eq. (12) dictates I2 for transition between

Newtonian and elongation thickening regions of the viscosity against strain-rate curve,

whereas d characterizes the total increase in viscosity in the elongation thickening region.

Parameters k2 and m specify I2 for the transition between elongation-thickening and

power-law regions, and the power-law index for elongational viscosity, respectively. We

used this model to compare our simulation results with and adjusted the parameters of

the model using our simulation data, see Figs. 4(a)–4(d). The model parameters with our

simulation data for dendrimers and hyperbranched polymers of length 19, 43, and 91 are

provided in Table I.

Figure 4 reveals interesting aspects of elongational behavior of our studied systems.

As opposed to shear flow, there is not just one time constant to define a single

Weissenberg number. Here, we defined two Weissenberg numbers using two different

time constants k2 and k1. Figures 4(a) and 4(b) show normalized extensional viscosity

versus k2I2 for dendrimer and hyperbranched systems, respectively. Figures 4(c) and 4(d)

show normalized extensional viscosities against k1I2 for dendrimers and hyperbranched

systems, respectively. The former Weissenberg number k2I2 makes the thinning tail of

the plots fall on a single plot (partly only), while the latter k1I2 makes the tickenning

region of the plots collapse on a single plot (partly only). This is a very important aspect

of the elongational flow, namely, that there is no single Weissenberg number to be used

in order to plot a master curve. A combination of time constants will also merely show

the plots in accord with the relative weightings of the constants and would be an arbitrary

measure.

It is also important to note that, as discussed before, increasing perfection in the archi-

tecture of dendrimer molecules compared to hyperbranched polymers with imperfect

structures, the thickening region tends to moderate and disappear for dendrimer systems

by increasing the generation number. This is indicative of the constrained internal struc-

ture of these molecules that suppresses stretching of the branches along the flow lines.

We suggest that this imperfection in hyperbranched polymers can produce some open

spaces within the internal structure that can facilitate motion of the branches under flow

so that molecules respond to the flow by stretching, which leads to increased intermolecu-

lar stress and hence the occurrence of viscosity upturn.

In order to find the viscous relaxation time under shear flow, it is common to use the

following expression [Friedrich and Heymann (1988); Hartkamp et al. (2013)]:
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sv ¼
W1;0

2g0

; (13)

where W1,0 is defined as the zero-shear rate first normal stress coefficient. We used data

available in Le et al. (2009b) and Bosko et al. (2004b), for W1,0 and g0, and calculated sv

using Eq. (13). For more details, see Table II. These values are in good agreement with

our elongation data calculated from the reciprocal of the strain-rate at which the thinning

TABLE I. Sarkar-Gupta model parameters.

System d k1 k2 m

DEN19 0.1 0.11 43.08 0.8

DEN43 0.07 0.12 92.89 0.76

DEN91 0.2 116.52 142.98 0.7

HYP19 2.1 965.14 20.93 0.85

HYP43 2.49 4905.12 52.94 0.782

HYP91 2.38 11905.11 169.92 0.654

FIG. 4. Normalized extensional viscosity for dendrimers and hyperbranched polymers with 19, 43, and 91

monomers per molecule as a function of k2I2 [(a)–(b)] and k1I2 [(c)–(d)], respectively. Dashed lines (- -) show

fitted data to the Sarkar-Gupta model. Symbols for each generation of dendrimers and hyperbranched molecules

are as follows: 91 beads ", 43 beads �, 19 beads �.
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region begins (sp). Le et al. (2009b) and Bosko et al. (2004b) used the Carreau-Yasuda

model to fit their shear-rate dependent shear viscosity data for hyperbranched polymers

and dendrimers of generations 1–4, respectively, and calculated the adjustable parameters

of the model. Values obtained for the time constant of this model only gave an approxi-

mation of the relaxation times and were of the same order of magnitude as the relaxation

times calculated from the reciprocal of the strain-rate at which thinning begins. Likewise,

values obtained for k2 from the Sarkar-Gupta model here (sm) are shown in Table II and

are within the same order of magnitude of the viscous relaxation times calculated from

Eq. (13) and also the reciprocal of the strain-rate at which thinning begins (sp) (for the

extensional viscosity versus strain-rate plot). Unfortunately, the W1,0 and g0 values are

not available for all the systems under study due to poor signal to noise quality for these

properties at very low strain-rates. In addition, the relaxation times obtained from the

Sarkar-Gupta model parameters are shown in Fig. 5 as a function of molecular weight for

dendrimers and hyperbranched molecules of generations 1–3. Both dendrimers and

FIG. 5. The relaxation times obtained from the Sarkar-Gupta model parameters against molecular weight (in

reduced unit) for dendrimers and hyperbranched molecules of generations 1–3. Symbols are as follows: den-

drimers (D) �, hyperbranched (H) �. Dashed lines are quadradic fits to the data, which confirm the predicted

relation s / M2:2 [Rubinstein and Colby (2003)].

TABLE II. Relaxation times calculated from Eq. (13), sv, reciprocal of _� at which thinning region starts, sp, and

the Sarkar-Gupta model parameters, sm.

System sv sp sm

DEN19 — 50 43.08

DEN43 — 90 92.89

DEN91 — 125 169.98

HYP19 25(3) 25 20.93

HYP43 67(7) 66.7 52.94

HYP91 — 95 142.92

LIN19 — 25 28.57

LIN43 — 100 —
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hyperbranched molecules show approximately quadratic dependence on the molecular

weight under PEF, which confirms theoretical predictions s / M2:2 for short branched

polymers [Rubinstein and Colby (2003)]. This relation can be used to predict the approxi-

mate longest relaxation time for dendrimers and hyperbranched molecules with any

molecular weight. Furthermore, the strain rate at which thinning behavior starts is obtain-

able from the reciprocal of this relaxation time. This trend is consistent with Bosko et al.
(2006) for dendrimers under shear flow.

In order to compare differences in melt behavior of our systems under PEF with shear

flow, we plot the normalized extensional viscosity �g=g0 and corresponding shear viscos-

ity results for hyperbranched molecules of generations 1–4 along with dendrimer and

linear counterparts under PEF as a function of k1I2 in Fig. 6. We find that for both PEF

and shear flow under Newtonian flow, the expected normalized viscosity of 1 is obtained.

Second, nonlinear behavior under both types of flow starts at the same k1I2 value. This

confirms the general knowledge that the Weissenberg number at the onset of extension

thickening in PEF is roughly the same as the Weissenberg number at which the shear

viscosity begins to shear thin under shear flow [Bird et al. (1987)].

B. Structural analysis

The extension of a molecule in space can be characterized by its radius of gyration.

The average tensor of gyration is given by the expression

R2
g �

Rn
a¼1maðra � rCMÞðra � rCMÞ

Rn
a¼1ma

� �
; (14)

where ra is the position of monomer a, rCM is the position of the molecular center of

mass, and the angle brackets denote an ensemble average. The value of the squared radius

of gyration, which is defined as the trace of the tensor of gyration (R2
g ¼ TrðR2

gÞ),

FIG. 6. Normalized planar elongational (gi ¼ �g) and shear viscosities (i¼ s) gs/g0 for hyperbranched molecules

of generations 1–4 versus k1I2. The coincidence of the zero shear rate viscosity and the zero extension rate vis-

cosity in the Newtonian regime indicates the validity of our extensional flow simulations. Symbols under PEF

are as follows: H187 �, H91 ", H43 �, H19 �. Open symbols identify correspondent molecules under shear

flow.
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characterizes the size of the molecule and can be compared with the experimentally

measured radial sizes of dendrimers and hyperbranched molecules. Figure 7 illustrates

the changes in shape and orientation of dendrimers with 91 monomers per molecule at

equilibrium and over a range of strain rates under PEF. These snapshots suggest that at

equilibrium, the molecule has its own natural globular configuration and under PEF,

branches of the molecule stretch in the x-direction and compress in the y-direction. This

results in the molecules becoming more flat and ellipsoidal in shape rather than spherical.

More evidence for the tendency to become ellipsoidal in shape is given later in this

section by calculating the eigenvalues of the tensor of gyration and also by schematic 3D

representations of dendrimer, hyperbranched, and linear molecules under PEF and shear

flow.

Figure 8 presents the dependence of the normalized radii of gyration with respect to

its value at equilibrium hR2
gi0 for dendrimer, hyperbranched, and linear polymers with

19, 43, 91, and 187 monomers per molecule as a function of I2 for elongational flow and

also as a comparison for hyperbranched molecules undergoing shear flow. Under PEF,

molecular size increases with I2 for all the studied systems and tends to saturate at higher

I2 values. This means that even at low I2 values, molecules are stretched under PEF

which reveals the importance of the PEF flow field on molecular deformation. Under

shear flow for all studied systems, at small values of I2, the averaged size of the polymer

molecules fluctuate around a constant value. It is only at intermediate to high I2 regions

that molecular size increases but is always smaller than its corresponding value under

PEF. Differences between molecular size for hyperbranched molecules under PEF and

shear flow become smaller as generation increases. This suggests that for higher genera-

tion of hyperbranched molecules, the type of flow becomes less influential on molecular

size. By increasing the generation number, the interior of the molecule becomes increas-

ingly crowded which makes stretching difficult.

Comparing different architectures reveals that linear molecules are always larger in

size than dendritic molecules, and this difference in size increases as molecular weight

FIG. 7. Snapshot configuration of a dendrimer of generation 3 at (a) equilibrium, (b) _� ¼ 0:0008, (c) _� ¼ 0:008,

and (d) _� ¼ 0:08.
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increases (see subplots of Fig. 8). The higher the generation number is, the more crowded

the interior of the molecule becomes, which results in limited movement of the branches

under both types of flow. The result is smaller increase in size for high molecular weight

melts under any type of flow.

Hyperbranched molecules show higher radius of gyration compared to their corre-

sponding dendrimer molecules. This was expected due to imperfection in hyperbranched

molecule architecture compared to perfect globular architecture of dendrimers.

Imperfection gives hyperbranched molecules this unique opportunity to use the available

free volume in their interior to move and stretch more freely compared to constrained

dendrimer microstructures, which results in their relatively larger size.

Neelov and Adolf studied structural properties of dendrimers (2003) and hyper-

branched (2004) solutions under elongational flow using Brownian dynamics simula-

tions. Their results are in qualitative agreement with data presented here for radius of

gyration variations of both dendrimer and hyperbranched polymers. They found that the

increase/upturn in radius of gyration is less pronounced for dendrimers compared to

hyperbranched molecules and less pronounced for hyperbranched molecules compared to

linear counterparts, which is comparable to our findings.

As the radius of gyration is an averaged quantity over the three directions, we can fur-

ther investigate the deformation of molecules under both types of flow by calculating

ratios of different eigenvalues of the tensor of gyration, which follows.

Further analysis of the tensor of gyration can provide insights into the shape and orien-

tation of the molecules at different directions in space. For each system mentioned above,

the eigenvalues of the tensor of gyration (in descending order, L1, L2, and L3) were com-

puted and averaged over the ensemble. These eigenvalues can be interpreted as the linear

dimensions of the ellipsoid occupied by the average molecule, regardless of its orienta-

tion. Changes in these values with I2 quantitatively describe the flow induced stretching

FIG. 8. Normalized mean squared radius of gyration of linear, hyperbranched, and dendrimer polymers with 19

(a), 43 (b), 91 (c), and 187 (d) monomers at different I2, and also hyperbranched molecules under shear flow.

Symbols under PEF are as follows: L �, H �, D �, and þ for hyperbranched molecules under shear flow.
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of the molecules. In addition, the asymmetry of molecules is characterized by the ratio of

the eigenvalues of the average gyration tensor, which we define here as L12¼ L1/L2,

L13¼ L1/L3, and L23¼ L2/L3. If the ratios of the eigenvalues are closer to 1, the molecules

have greater spherical symmetry. If L1> L2	L3, then the shape is prolate and if

L1	 L2>L3, the shape is considered as oblate. Figures 9–11 show the changes in these

three ratios as a function of I2. As one can see, all these three ratios are constant at small

I2 values and tend to increase at higher I2. At very high I2 values, they tend to decrease

slightly. In addition, linear polymers compared to dendrimers and hyperbranched mole-

cules show sharper increase, especially for L13 ratios (Fig. 10), and this arises because

dendrimers and hyperbranched polymers are structurally constrained and are not able to

become fully stretched compared to linear chains. In addition, hyperbranched molecules

show higher Lij values compared to dendrimers which implies they have a more flattened

ellipsoidal shape than dendrimers.

We find that, at low to intermediate I2 values, hyperbranched molecules show much

lower Lij values under shear flow in comparison to PEF. Under shear flow and at lower I2

values, these three ratios are closer to 1, which means they have more spherical shape at

low I2. Under PEF, even at very low I2 values, molecules have an elongated shape and

stretched configuration, contrary to the spherical shape under shear flow. By further

increasing I2, under both types of flow, they become more elongated. Only at very high I2

values do the eigenvalue ratios under shear flow dominate their corresponding values

under PEF. It should be noted that at high values of I2, molecules are at their fully

stretched and aligned states under shear flow (see Fig. 6 for shear thinning region under

shear flow). It is important to note that higher Lij ratios under shear flow at very high I2

compared to PEF do not imply larger hyperbranched molecules under shear flow com-

pared to PEF. Under shear flow, molecules start to deform from a spherical shape to an

FIG. 9. L12 ratios for linear, hyperbranched, and dendrimer polymers with 19 (a), 43 (b), 91 (c), and 187 (d)

monomers per chain over a wide range of I2 values. Also hyperbranched molecules under shear flow. Symbols

under PEF are as follows: L ", H �, D �, and þ for hyperbranched molecules under shear flow.
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FIG. 10. L13 ratios for linear, hyperbranched, and dendrimer polymers with 19 (a), 43 (b), 91 (c), and 187 (d)

monomers per chain over a wide range of I2 values. Also hyperbranched molecules under shear flow. Symbols

under PEF are as follows: L ", H �, D �, and þ for hyperbranched molecules under shear flow.

FIG. 11. L23 ratios for linear, hyperbranched, and dendrimer polymers with 19 (a), 43 (b), 91 (c), and 187 (d)

monomers per chain over a wide range of I2 values. Also hyperbranched molecules under shear flow. Symbols

under PEF are as follows: L ", H �, D �, and þ for hyperbranched molecules under shear flow.
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ellipsoidal shape at these high values of I2, which leads to sharp increase in Lij values. In

contrast to shear flow, under PEF molecules are already ellipsoidal, even at lower I2 val-

ues, which leads to a gradual increase in Lij values and lower Lij under PEF compared to

shear flow at very high I2.

We find that there is a specific strain rate at which these ratios start to increase. The

value of this strain rate decreases as the molecular weight increases. These values are

listed in Table III and will be discussed in greater detail in what follows. Also, we find

that the magnitude of increase in L13 is much higher than L12 and L23. It means that the

difference between the smallest (L3) and largest (L1) dimensions of the molecules

becomes larger as strain rates increases. This is evidence that as strain rates increases, the

molecules become much more elongated and flattened in shape.

To correlate flow-induced molecular deformation with viscoelastic behavior of the

studied systems is of particular importance. Comparing I2 at which the eigenvalue ratios

start to rise (see Table III) along with I2 at which viscosity upturn occurs provides us

with very important information. We find that viscosity upturn occurs approximately at

the same I2 value where the eigenvalues start to rise. This indicates that the onset of mo-

lecular deformation under PEF coincides with the crossover from the Newtonian plateau

to the non-Newtonian region in the viscosity curves. In addition, hR2
gi saturates at I2 val-

ues comparable to I2 at which the ratios of different eigenvalues reach their maximum

plateau. At this state, as has already been discussed, the molecules have a flattened ellip-

soidal configuration. Also, thinning occurs at higher I2 values when deformed molecules

align themselves with the flow direction. Bosko et al. (2004a, 2004b) studied dendrimers

under shear flow and found the same behavior. They concluded that flow-induced defor-

mation is the major mechanism for the observed viscoelastic behavior of these molecules

under shear, and molecular alignment, which occurs at all I2 values, is a less effective

mechanism at low to intermediate I2 values.

In Fig. 12, we visualize the flow-induced deformation of dendrimers and linear mole-

cules under PEF, and hyperbranched molecules under both shear and PEF in terms of Li

values as linear dimensions of the ellipsoid occupied by the average molecule. By com-

paring different eigenvalue ratios, we find that linear molecules at low I2 have a prolate

shape which changes to a much more flattened ellipsoidal shape as I2 increases.

Hyperbranched molecules under shear flow have a spherical shape at low I2 and at high

TABLE III. Strain-rates at which thinning _� th and upturn start to occur for elongational viscosity _�ut, ratios of

different eigenvalues _�L12i
; _�L13i

; _�L23i
, and also strain-rate at which thinning occurs in which they show maxi-

mum or a plateau behavior _�L12m
; _�L13m

, and _�L23m
.

System _� th _�ut _�L12i
_�L13i

_�L23i
_�L12m

_�L13m
_�L23m

DEN19 0.02 — 0.02 0.01 0.01 0.1 0.1 0.04

DEN43 0.01 — 0.02 0.002 0.004 0.04 0.04 0.06

DEN91 0.008 — 0.002 0.002 0.002 0.02 0.04 0.04

DEN187 — — 0.0004 — 0.004 0.002 — —

HYP19 0.04 0.006 0.015 0.008 0.008 0.1 0.1 0.04

HYP43 0.015 0.004 0.006 0.002 0.002 0.04 0.04 0.06

HYP91 0.011 0.002 0.002 0.002 0.002 0.02 0.04 0.04

HYP187 — 0.001 0.0004 — 0.002 0.002 — —

LIN19 0.04 0.002 0.004 0.006 0.004 0.08 0.08 0.04

LIN43 0.01 0.0006 0.01 0.001 0.001 0.02 0.02 —

LIN91 — — 0.00006 0.00008 0.00006 — — —

LIN187 — — 0.00004 0.0001 0.0001 0.0008 — —
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I2 deform to a prolate shape. Hyperbranched molecules under PEF, even at low I2, have

an ellipsoidal shape which becomes more flattened and prolate at higher I2 values. While

dendrimers have the same trend under PEF, they are less flattened compared to hyper-

branched molecules under the same flow condition.

To analyze the distribution of mass within the molecule, the distribution of the mono-

mers from the core (central monomer) has been used and is defined by

gcoreðrÞ ¼
RN

i¼1R
Na
a¼2dðjr� ðria � ri1ÞjÞ

N

� �
; (15)

where ri1 is the position of the core and a runs over all the monomers belonging to the

same molecule. The distribution of mass from the central unit (core) for hyperbranched

and dendrimer molecules with 19, 43, and 91 monomers per molecule at the high

strain-rate of _� ¼ 0:004 and also for dendrimer and hyperbranched molecules of 43

monomers at three different strain rates corresponding to the three different regions of

rheological behavior can be found in Figs. 13 and 14, respectively. The first thing to note

is the correlation between the position of the core and its neighbor, which is evident

through a strong peak at the distance equal to the averaged bond length for all the genera-

tions. Second, by increasing the generation number (i.e., layers of branches of the micro-

structure of dendrimers and hyperbranched molecules), we see multiple peaks in the

distribution from the core, which is more significant in the case of hyperbranched mole-

cules and is indicative of treelike growth of layers in these molecules. For example,

regardless of the first peak, we see one more peak for hyperbranched and dendrimer mol-

ecules with 19 beads (representing generation 1) and so on. These peaks are representa-

tive of areas that are accumulated by different layers of monomers within the interior of

the molecular architecture of dendritic molecules. In Fig. 13, one can see that by increas-

ing the strain rate, as the molecules are stretched in the flow, the distribution of mass

becomes broader. We also observe that the average distance of the monomers from the

FIG. 12. Schematic ellipsoids for dendrimer, hyperbranched, and linear chains with 91 monomers under PEF at

low (left column) I2 ¼ 8
 10�8 and high (right column) I2¼ 0.0512. For comparison, we also show the hyper-

branched system under shear flow at the same I2 values. Colors are for clarity of perspective viewing and have

no physical meaning.
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core increases with strain rate. For example, at the highest strain rate, the distances of the

monomers from the core for D43 and D91 are 7.2 and 13.6. However, these are smaller

than the fully stretched arm, which are about 10.67 and 14.87 for D43 and D91, respec-

tively. The difference between dendrimer and hyperbranched molecules is evident

through the distribution at _� ¼ 0:004, where dendrimers show very narrow distribution,

while for hyperbranched molecules, the distribution is broader. This stems from the fact

that hyperbranched molecules can become stretched more easily than dendrimers due to

their more open structure. Furthermore, for hyperbranched molecules one can see that

this strain-rate ( _� ¼ 0:004) coincides with the maximum in the viscosity value, while for

FIG. 13. Distribution of monomers from the core for hyperbranched (a) and dendrimer (b) with 43 monomers

at three different strain rates. Symbols used for different strain rates are as follows: _� ¼ 0:08 —, _� ¼ 0:01 - -,

and _� ¼ 0:004 � �.

FIG. 14. Distribution of monomers from the core for hyperbranched (a) and dendrimers (b) with 19, 43, and 91

monomers at _� ¼ 0:004. Symbols used for different generations are as follows: 91 beads —, 43 beads - -, and 19

beads ��.
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dendrimers, there is no maximum for the viscosity at this strain rate. These results are in

full agreement with previous results reported by Le et al. (2009a, 2009b) and Bosko et al.
(2004a, 2004b). Figure 14 displays the distribution from the core of dendrimers and

hyperbranched polymers as a function of molecular weight and strain rate for compara-

tive purposes.

One of the characteristic features of dendrimers and hyperbranched polymers is the

large number of their terminal groups. Their number doubles with every generation, and

their chemical activity can be controlled in the process of synthesis of the molecule.

From the configurational point of view, it is important to understand the spatial distribu-

tion of these groups because the location of these groups over the molecule affects its

chemical activity and physical properties. Similar to the bead distribution function pre-

sented earlier, the distribution of terminal groups is defined by

gtermðrÞ ¼
RN

i¼1Radðjr� ðria � ri1ÞjÞ
4pr2N

� �
; (16)

where in this case a runs over outermost monomers only.

In Fig. 15, we present the distribution of terminal groups from the central unit for den-

drimers and hyperbranched polymers with 19, 43, and 91 monomers per molecule at

strain rate of _� ¼ 0:01. For all the systems, secondary maxima are observed in the plot

which indicates that not all of the end groups are located on the surface of the molecules,

but rather that they can be found across the full range of distances from the central unit

due to backfolding. This means that terminal groups exist everywhere throughout the in-

terior of the molecules. This is consistent with other experimental results by Bodnar et al.
(2000) and simulation results by Timoshenko et al. (2002), Le et al. (2009a), and Bosko

et al. (2004a) under shear flow that have shown similar backfolding behavior with peaks

observed in the plot of end groups. In comparison to the shear results of these authors, we

conclude that backfolding phenomenon occurs under both shear and PEF flows, but it is

more intense under PEF compared to shear flow.

FIG. 15. Distribution of terminal groups for hyperbranched (a) and dendrimers (b) with 19, 43, and 91 mono-

mers at high strain rate of _� ¼ 0:01. Symbols used for different generations are as follows: 91 beads —, 43

beads - -, and 19 beads ��.
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IV. CONCLUSION

The planar elongational melt rheology and structural properties of dendrimers and

hyperbranched polymer melts of different molecular weights (generations 1–4) and their

linear counterparts have been studied using a coarse-grained model and NEMD simula-

tion techniques coupled with the so-called KR periodic boundary conditions in the NPT

ensemble. According to the above rheological results, it is clear that dendrimers and

hyperbranched polymers, due to their unique and compact structures, show much lower

melt viscosities in comparison to their linear counterparts, which make them potentially

useful candidates as flow modifiers and flow aid agents. The rheological properties,

including extensional viscosity and second extensional viscosity, were calculated.

Similar to previous experimental and simulation data for linear polymer melts, the elon-

gational viscosity showed three distinctive regions of behavior for dendrimers and hyper-

branched melts: An initial Newtonian region, followed by a thickening region, and

terminated by a thinning region at high strain-rates. Dendrimers, contrary to hyper-

branched molecules, did not show a thickening region in their rheological behavior at the

rates of strain studied. We related this phenomenon to the structural perfection of den-

drimers compared with hyperbranched molecules, which caused reduced mobility of the

branches and also reduced flow-induced stretching and alignment of the molecules.

Imperfection in the architecture of hyperbranched molecules introduced some free vol-

umes that facilitated the movement and stretching of the branches. We suggest that this

stretching is responsible for the thickening behavior of hyperbranched molecules.

Furthermore, terminal thinning behavior is related to the finite extensibility of the FENE

potential and flow-induced alignment. In addition, we fitted our simulation results with

the Sarkar-Gupta model to calculate the adjustable parameters of this model from our

normalized extensional viscosity data over a wide range of strain-rates. The longest relax-

ation times for dendrimers and hyperbranched molecules were calculated from the model

parameters and were in a good agreement with those calculated from the zero-shear rate

normal stress coefficients.

In addition to the rheological behavior, structural changes under PEF and shear flow

were analyzed using different standard distribution functions and also eigenvalues of the

tensor of gyration. The ratios of the eigenvalues demonstrated that, under shear flow,

hyperbranched molecules change their shape from a spherical conformation to a prolate

conformation as strain rate increases. Under PEF, even at low strain rates, molecules

were ellipsoidal in shape and by increasing the elongation rate, they became much more

flattened and prolate. Dendrimers showed the same changes in their shape, but they were

less flattened. Linear molecules were more elongated compared to hyperbranched and

dendrimer molecules at low elongation rates, while changing to a much more flattened

ellipsoidal shape at higher strain rates. We also studied the distribution of monomers

from the core of the molecules under PEF at three different strain rates corresponding to

the three different regions of the rheological behavior of dendrimers and hyperbranched

molecules. Generally, the distance of monomers from the core increases more signifi-

cantly for hyperbranched molecules compared to dendrimers. For dendrimers, at small

strain rates (i.e., the initial Newtonian region), the distribution of monomers from the

core was very narrow and at intermediate strain rates became slightly broader. Only at

very high strain rates did the distance of monomers from the core increase significantly.

This broadening of the distribution corresponds to the thinning region of the viscosity

curve. For hyperbranched molecules, even at low strain rates, the distribution of mono-

mers is very broad. This arises from the fact that hyperbranched molecules can stretch

and align themselves in the flow direction more easily than dendrimers due to their less
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constrained molecular architecture. Finally, we showed the existence of the typical back-

folding phenomena for dendrimers and hyperbranched polymers under PEF. End groups

were found across the full range of distances within the interior of the molecules rather

than just at the outermost regions of the molecules.
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