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Exploring the link between early constructor involvement in project decision-making 

and the efficacy of health and safety risk control  

 

Abstract 
Theories developed to explain work health and safety performance (WHS) in the construction industry posit that 

better outcomes are achieved when WHS is considered in early project decision-making. Consistent with this, 

legislation has been enacted requiring that the WHS of construction workers be considered in pre-construction 

(i.e, project planning and design) decision-making.  The research aimed to examine the extent to which the 

position of the constructor in communication networks, including those before the commencement of 

construction, was related to the quality of WHS outcomes realised. Twenty three cases were drawn from ten 

participating construction projects in Australia and New Zealand. Social network analysis was used to 

mathematically and graphically model information exchanges in 13 of these cases. For each case, the quality of 

WHS risk control outcomes was measured. This measurement was based on an established “hierarchy of 

control” in which risk controls are classified in descending order of effectiveness from the elimination of a 

hazard (the most effective) to the reliance on personal protective equipment (the least effective). Social network 

metrics were calculated reflecting: (i) the ratio of actual links among parties in the project network relative to 

the maximum number of links possible (network density); and (ii) the extent to which the constructor 

communicated with other parties in pre-project planning and design stages (the constructors’ degree centrality). 

Network metrics were compared for cases in which the risk control scores were higher and lower than average. 

The results showed a significant difference in constructors’ pre-construction degree centrality for cases with 

high and low risk control scores. The results provide preliminary evidence as to the potential WHS benefits of 

ensuring that constructors’ knowledge about construction methods, materials, WHS risks and means of risk 

control, are integrated into pre-construction decision-making. The research also highlights the potential 

usefulness of social network metrics in WHS performance measurement and benchmarking. 
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Introduction 

 

Work health and safety in the construction industry 

The construction industry performs poorly in work health and safety (WHS) relative to other 

industries. In Australia between 2008–09 and 2010–11, 123 construction workers died from 

work-related injuries. The construction industry fatality rate is 4.26 fatalities per 100,000 

workers, nearly twice the national rate of 2.23 (Safe Work Australia, 2012a). Further, in the 

same period, construction accounted for a disproportionate number of serious workers’ 

compensation claims. Despite employing 9% of the Australian workforce, construction 

accounted for 11% of serious workers’ compensation claims. On average, 39 claims were 

made each day by construction industry employees who required one or more weeks off work 

because of work-related injury or disease. As with fatalities, the rate of serious claims is 

considerably higher among construction industry employees than the national average (19.9 

compared to 13.0 per 1000 workers).  

 

Theoretical models developed to explain the occurrence of accidents, injuries and fatalities in 

the construction industry reflect the fact that accidents can often be traced back to decisions 

made before construction work commenced (i.e, during project planning and design stages). 

For example, Suraji et al. (2001) describe the complex interaction of factors that contribute to the 

occurrence of construction site accidents. They propose a Constraint-Response accident causation 

model. The model holds that the parties involved in each stage of the construction project lifecycle 

(conception, design, and construction) experience constraints on their decision making. Their 

responses to these constraints, in turn, constrain the actions of participants in the subsequent stages. 

Ultimately, unless carefully managed, the cumulative effect of constraints and responses will be 

experienced as hazardous site conditions, inappropriate work practices, or unsafe actions at the 

construction site. Thus, accident causes can be traced back from the immediate site level conditions, 



actions and practices, to the planning and control activities of site supervisors and managers, to 

subcontractors’ constraints and responses, to principal contractors’ constraints and responses, and to 

the constraints and responses experienced by designers and clients in the design and project 

conception stages (Suraji et al., 2001).  

Similarly, a research team based at Loughborough University developed holistic model of accident 

causation by carefully investigating the causes of 100 construction accidents. The research team 

obtained information from people involved in accidents, including the victims and their supervisors, 

to describe the processes of accident causation in construction. Based on their analysis, they 

developed a construction accident causality (ConAC) model.  The ConAC model identifies originating 

influences affecting accidents in construction as including:  

 client requirements 

 features of the economic climate 

 prevailing  level of construction education 

 design of the permanent works 

 project management issues 

 construction processes, and  

 the prevailing safety culture and risk management approach.  

Haslam et al. (2005) comment that in almost 50% of the cases included in the analysis, a change to the 

permanent works design could have reduced the level of risk that preceded an accident. 

Early research investigating safety in design in the construction industry sought to establish 

an empirical link between design activity and WHS outcomes, specifically the occurrence of 

accidents, injuries or fatalities. This research largely involved retrospectively analysing the 

causes of accidents to assess whether design was a cause. Retrospective analyses contribute 

to building the case for safety in design. However, they have limitations. It may not be 

warranted to conclude that there are direct links between design decisions and a workplace 

accident. A researcher may attribute a direct link even though the relationship is tenuous – an 

outcome that Lundberg et al. (2009) termed ‘what-you-look-for-is-what-you-find’. 

Retrospective analysis alone cannot illuminate the relationship between implementing safety 

in design and achieving improved WHS outcomes.  
The objective strength of the link between design and WHS performance is still unclear, and remains 

a subject of debate. Researchers have been justifiably cautious about quantifying the potential for 

safety in design to produce improved WHS outcomes in construction. For example, Gibb et al. (2004) 

choose their words carefully when stating that design modifications had the potential to reduce the 

risk of almost half of the construction accidents they analysed, but might not necessarily have 

prevented those accidents from occurring. Further, in focusing on outcomes (that is, accidents), 

retrospective analyses tell us little about current safety in design initiatives and tools, or their potential 

impact on future WHS performance in the construction industry.  

Research in ‘live’ projects is helpful for better understanding the relationship between WHS 

management activities that take place during a construction project’s pre-construction stage and actual 

WHS performance.  

 

Aim 

The research explored the relationship between the flow of communication among project 

participants in a construction project and the quality of WHS risk controls realised during the 

ensuing construction stage of the project. This included communication flow prior to the 

commencement of construction, i.e., in the planning and design stages of a project’s life 

cycle. In particular,  

 the quality of controls used to mitigate construction WHS  hazards/risks was 

measured, 

 the involvement of the construction contractor in project communication networks 

was quantified; and  



 the relationship between the construction contractor’s prominence in the project 

communication network and the quality of WHS risk control outcomes was assessed. 

 

In the remaining sections of this paper a short overview of the Australian policy context 

relating to safety in design is provided to provide the context for the research. This is 

followed by a brief explanation of some of the structural challenges associated with the 

implementation of safety in design in the construction industry. The importance of integrating 

construction process knowledge into early project planning and design decisions is discussed. 

The choice of methodological approach used to explore project communication networks is 

briefly explained. The comparative case study research design and methods used to collect 

and analyse research data are described in detail. The results of the analysis are presented, 

using two detailed narrative case descriptions. Finally, the research results are discussed with 

particular reference to the implications for construction project communication networks and 

the implementation of safety in design.   

 

The Australian policy context for safety in design 

The construction industry has been identified as an industry requiring priority action in the 

Australian Work Health and Safety Strategy 2012-2022. This Strategy establishes ambitious 

targets over a ten year period. These targets include: (i) a reduction of at least 20 per cent in 

the number of worker fatalities due to injury; (ii) a reduction of at least 30 per cent in the 

incidence rate of claims resulting in one or more weeks off work; and (iii) a reduction of at 

least 30 per cent in the incidence rate of claims for musculoskeletal disorders resulting in one 

or more weeks off work.  

 

Promoting safety in design is a key action area in the Australian Work Health and Safety 

Strategy 2012-2022. Strategic outcomes to achieve by 2022 are: 

 structures, plant and substances are designed to eliminate or minimise hazards and 

risks before they are introduced into the workplace, and 

 work, work processes and systems of work are designed and managed to eliminate or 

minimise hazards and risks (Safe Work Australia 2012). 

It is argued that designers are better positioned to make decisions that eliminate hazards 

before work commences at a construction site. Adopting this perspective has led to WHS 

legislation in all Australian states and territories which now specifies WHS duties for 

designers of buildings and structures. This means that responsibility for some aspects of 

WHS have been pushed up the supply chain and now rest with professional contributors in 

the planning and design stages. Behm (2005, p.608) notes: 

While the constructor will always bear the responsibility for construction site 

safety, utilization of the [safety in design] concept allows design professionals to 

participate in enhancing site safety. 

 

Structural challenges to integration of WHS 

Notwithstanding the growing emphasis integrating WHS consideration into project decision-

making in the planning and design stages of projects, the extent to which WHS has actually 

been improved by these policy initiatives remains unclear. One challenge lies in the degree to 

which there is vertical segregation between participants engaged in the initiation, design, 

production, use and maintenance of facilities (Atkinson and Westall, 2010).  In particular, the 

traditional separation between the design and construction function can impede the 

development of shared project goals (Baiden and Price, 2011) and can negatively impact 

project outcomes (Love and Gunasekaran, 1998). A recent review of WHS in the UK 



construction industry identifies separation and poor communication between the design and 

construction functions as a causal factor in construction fatalities (Donaghy, 2009).   

 

The organizational and contractual separation of the design and construction functions 

reduces the possibility of free flowing communication between constructors and designers 

(see, Atkinson and Westall, 2010). This is a problem because communication is critical to the 

effective performance of construction project teams. 

 

There is emerging research evidence that design professionals are not sufficiently well versed 

in knowledge of construction methods and/or WHS to fulfill their responsibilities for safety 

in design (Yates and Battersby 2003). Even in the UK, where the Construction Design and 

Management Regulations have been in place for some 18 years, Brace et al. (2009) report 

that “many designers still think that safety is ‘nothing to do with me,’ although there are a 

small cohort who want to engage and are having difficulty doing this because they do not 

fully understand what good practice looks like” (p. 12).  Consequently, Donaghy (2009) 

recommended that accrediting bodies establish specific requirements to embed WHS in the 

education of all professionals engaged in the delivery of construction projects, particularly 

those with “upstream” roles. 

 

It is frequently stated that collaborative or integrated forms of project delivery improve 

buildability and, by implication, have the potential to also improve WHS (Bresnan and 

Marshall, 2000; Kent and Becerik-Gerber 2010). However, Ankrah et al. (2009) comment 

that the procurement method cannot, of itself, create a positive cultural orientation towards 

WHS. Similarly, Atkinson and Westall (2010) point out that that the adoption of an integrated 

project delivery approach does not guarantee positive safety outcomes.  

 

Integrated project delivery mechanisms create favourable conditions for the integration of 

WHS into construction project planning and design activities, but actual WHS improvements 

are likely to occur as a direct result of the increased communication and information 

exchange among project participants. Little research has investigated the link between 

communication networks in construction projects and WHS performance. The present 

research sought to address this knowledge gap. 

 

Social network analysis 

The research utilised social network analysis to explore and understand communication in 

construction project networks. Social network analysis is an analytical tool to study the 

exchange of resources among actors in a network. Wasserman and Faust (1997, p. 17) define 

network actors “discrete individual, corporate or collective social units.” Using social 

network analysis, patterns of social relations among actors can be represented in the form of 

visual models (known as sociograms) and described in terms of quantifiable indicators of 

network attributes. In a sociogram, actors are represented as nodes. To varying extents, these 

nodes are connected by links which represent the relationships between actors in the network. 

Social network analysis is particularly useful in the analysis of relationships, information 

exchanges and communication patterns among organizations. This is important because 

previous research has highlighted the way in which inter-organizational relations and social 

context influence organizational behaviour in the construction industry (see, for example, 

Harty 2008; Schweber and Harty 2010).  

 

Social network analysis has been recommended as a useful method for understanding and 

quantifying the roles and relationships of actors in construction project coalitions (Pryke, 



2004; Chinowsky et al. 2008). The technique has been used to analyse knowledge flows 

among construction project participants (see, for example, Ruan et al. 2012; Zhang et al. 

2013). Network characteristics have also been used to explain failures in team-based design 

tasks (Chinowsky et al. 2008) and identify barriers to collaboration that arise as a result of 

functional or geographic segregation in construction organizations (Chinowsky et al. 2010). 

More recently, Alsamadani et al. (2013) used social network analysis to investigate the 

relationship between safety communication patterns and WHS performance in construction 

work crews.  

 

Methods 

 

Case study design 

The research adopted a comparative case study design. A case study approach was favoured 

for the rich data that it produces (Orum et al., 1991; Eisenhardt, 1989; Fellows and Liu, 1997; 

Yin, 1994).  Data were collected from ten construction projects in Australia/New Zealand. In 

each project “features of work” (i.e, specific building elements) were purposefully identified 

by project participants in consultation with the research team (see also Table 1). These 

features of work constituted discreet cases in the analysis. A feature of work was selected if: 

(i) all participants involved in the design, manufacture, and construction/installation of the 

feature of work were available and willing to be interviewed; and (ii) the feature presented a 

particular WHS challenge for construction. These criteria were established to provide 

completeness of data and to ensure that project participants would directly consider the WHS 

hazards/risks associated with the construction of the feature and make explicit decisions 

about how WHS hazards/risks would be controlled in each case. Multiple features of work 

(i.e, cases) were selected from a number of construction projects involved in the research. 

The total number of cases in the analysis was 23. The number of cases from each 

construction projects ranged between 1 and 4 and the mean number was 2.3. Owing to the 

intensity of data collection and the availability of project personnel, of these 23 cases, 

complete social network data could only be collected for 13 cases. 

 

 

Data collection 

Data were collected by conducting interviews with project participants involved in the 

planning, design and construction of the selected features of work. A total of 185 interviews 

were conducted. The average number of interviews per case was 8.04.   

 

Initially interviews were conducted with key project participants, i.e, the client, the principal 

design consultant and the construction contractors were interviewed. From these interviews, 

other actors in the network were identified. These ‘leads’ were followed up if certain criteria 

were met. These criteria mirror those used by Pryke (2005), namely that (i) the individual 

was an employee of one of the project actor firms comprising the project coalition and was 

actively engaged in the project at the time that the data was gathered, and (ii) the link 

between the individual at least one other actor in the network was significant in terms of 

frequency and perceived importance of input by other actors. This process of sampling 

continued until no new leads were identified in actors’ interviews. Data were verified by 

confirming the existence of each network link with both actors. Thus, at least two actors had 

to confirm that a link between them existed for it to be included in the social network 

analysis. 

 



All participants were asked to rate the frequency of their communication during pre-

construction project decision-making with each other actor. This rating was based on a five 

point Likert scale ranging from 1 (occasionally) to 5 (daily).   

 

Independent variables 

Two independent variables were measured, i.e, network density and the degree centrality of 

the constructor. Network density expresses the ratio of actual links or relationships in a 

network to the maximum possible number of links the network could have (Borgatti and 

Everett, 2006). Thus, as more proportionally more actors are connected to each other, the 

density value increases. Degree centrality refers to the extent to which an actor (a node in the 

network) is connected to other actors (or nodes). Thus, for each actor, the degree centrality is 

the ratio of the number of relationships the actor has relative to the maximum possible 

number of relationships that the actor could have. This measure of centrality provides a 

measure of an actor’s communication activity within the network such that if an actor 

possesses high degree centrality then this indicates that they are highly involved in 

communication within the network relative to other actors. Pryke (2005) argues that 

compared to other measures of centrality (e.g. betweenness and closeness), degree centrality 

is a useful indicator of an actor’s power within the network.   

 

Degree centrality can be measured by combining the number of lines of communication into 

and out of a node in the network (see, for example, Alsamadani et al., 2013). The former is 

referred to as in-degree centrality while the latter is referred to as out-degree centrality. 

However, in this research we chose to measure the constructors’ outgoing communication 

only. This was a deliberate choice because the research aimed to measure the extent to which 

construction process knowledge is considered and used in pre-construction (planning and 

design) decision-making and the implications that this has for the quality of WHS risk 

control. The construction contractors’ out-degree centrality was therefore used as a proxy 

measure of the extent to which construction process knowledge was available to pre-

construction stage decision makers.  

 

Dependent variable 

The dependent variable of interest was the quality of risk control solutions implemented 

during the construction stage of the project. For each feature of work (i.e, case) in the sample, 

WHS risks were identified. A common categorization scheme was developed based on the 

National Institute for Occupational Safety and Health (NIOSH) Occupational Injury & Illness 

Classification System (OIICS) (BLS, 2012). WHS risks relevant to each case were identified 

and categorized using this classification system (e.g., fall, slip, trip; struck by object or 

equipment, etc.). 

 

Once WHS risks had been classified for each case, the methods by which each risk was 

actually controlled were identified.  This information was elicited during the interviews and 

supplemented with site-based observations and examination of project documentation (e.g. 

plans and drawings). Thus, an attempt was made to verify the information provided during 

the interviews with on-site observation. 

 

Methods of WHS risk control were classified according to their type.  This classification was 

based on the hierarchy of control (HOC). The hierarchy of control (HOC) is a well-

established framework in WHS (see, for example, Manuele, 2006). The HOC classifies ways 

of dealing with WHS hazards/risks according to the level of effectiveness of the control. At 

the top of the HOC is the elimination of a hazard/risk altogether. This is the most effective 



form of control because the physical removal of the hazard/risk from the work environment 

means that workers are not exposed to it. The second level of control is substitution. This 

involves replacing something that produces a hazard with something less hazardous. At the 

third level in the HOC are engineering controls, which isolate people from hazards. The top 

three levels of control (i.e, elimination, substitution and engineering) are technological 

because they act on changing the physical work environment. Beneath the technological 

controls, level four controls are administrative in nature, such as developing safe work 

procedures or implementing a job rotation scheme to limit exposure. At the bottom of the 

hierarchy at level five is personal protective equipment (PPE) – the lowest form of control. 

Although, much emphasized and visible on a worksite, at best, PPE should be seen as a “last 

resort,”  see, for example Lombardi et al.’s analysis of barriers to the use of eye protection 

(Lombardi et al. 2009). The bottom two levels in the HOC represent behavioural controls that 

eek to change the way people work (for a summary of the limitations of these controls see 

Hopkins, 2006). 

 

 

To ensure consistent classification of the WHS risk control measures, a detailed coding 

framework was developed. This coding framework identified the options available for 

controlling various WHS risks and provided the HOC score that should be given for each risk 

control option. The coding framework was used by two researchers who independently coded 

the data.  

 

An average HOC score was generated for each feature of work, reflecting the quality of risk 

control solutions implemented for identified WHS hazards/risks.  Each level of the HOC was 

given a rating ranging from one (personal protective equipment) to five (elimination). The 

risk controls implemented for hazards/risks presented by each feature of work were assigned 

a score on this five point scale. In the event that no risk controls were implemented, a value 

of zero was assigned. Using these values the mean HOC score for each feature of work was 

generated. Thus, if two hazards were identified, one was eliminated and the other controlled 

by administrative methods, the mean score would be 3.5.  

 

Inter-rater reliability 
 

To ensure that the coding of WHS risk control measures was consistent an inter-rater 

reliability assessment was performed. A list of WHS hazards and risk controls was sent to an 

international construction WHS research group based in the United States. The US research 

group rated the Australian case data using the HOC classification method. The US raters’ 

HOC classification was consistent with the Australian research team classifications in 12 of 

14 Australian cases included in the reliability check  (85.7%). This suggests an acceptable 

level of inter-rater reliability.  

 

 

Data analysis 

In the first instance data were entered into the UCINET social network analysis software. 

Sociograms were developed for each case (feature of work). Network density was calculated 

for each feature of work at the pre-construction phase as well as for the overall case (by 

calculating the ratio of existing information ties to the maximum number of possible ties in 

the network). Next the constructor’s out degree-centrality in each network was calculated by 

summing the information tie values linking constructor to other stakeholders in a network. To 

facilitate the comparison between different features of work, the constructor’s degree-



centrality value in each network was normalised by dividing it into the maximum possible tie 

value in that network. The constructor’s normalised degree-centrality was calculated for each 

feature of work at the pre-construction (i.e, planning and design) stage of the project, as well 

as for the overall case.  

 

The 13 cases for which social network data was available were divided into three groups:  

1) cases for which the HOC score was lower than one standard deviation below the mean, 

2) cases for which the HOC score was higher than one standard deviation above the mean, 

and 

3) cases for which the HOC score was between one standard deviation below the mean and 

one standard deviation above the mean. 

Three cases fell into the higher than average HOC group and three fell into the lower than 

average HOC group. Independent samples t-tests were conducted to compare the density and 

centrality values for cases in which the HOC score was above average and those for which it 

was below average. 

 

Results 

 

Quality of risk control 

The quality of WHS risk control solutions implemented was rated for all 23 cases in the 

analysis. The results of these ratings are presented in Table 1. 

 
Table 1: Summary of cases and HOC scores 

Project Case/Feature of work Mean HOC 

Centrifuge replacement for sewerage 

treatment facility 

Installation of centrifuge 4.08 

Pipe works 3.73 

Installation of a steel platform 2.44 

Theatre demolition Demolition 3.08 

Public space landscaping Landscaping 3.05 

42-story residential complex 
Construction/installation of façade  4.25 

Construction of internal stair egress 3.33 

Manufacturing facility 

Roof and wall cladding 2.60 

Erecting/Installation of roof structure 4.50 

Erection/installation of steel columns 4.20 

Construction of foundation system 4.50 

Food processing plant reconstruction 

Steel columns 3.56 

Sewerage disposal system 3.61 

Fire wall 2.63 

Cemetery mausoleum Construction of basement mausoleum 4.19 

Suburban train station 

Construction of reinforced concrete 

columns 
4.63 

Construction of ramp access 3.50 

Construction of platform and supporting 

columns 
4.31 

Water pumping station upgrade 
Construction of wet well 3.50 

Construction of valve chamber 4.00 

Flood recovery works 

Construction of a retaining wall  2.73 

Construction of a retaining wall  4.25 

Rectification of a pedestrian bridge 4.25 

 

 

The mean HOC score for all 23 cases was 3.69 (SD=0.67). The maximum HOC score was 

4.63 and the minimum was 2.44.  



These scores did not differ greatly from the 13 cases for which social network analysis data 

were available. The mean HOC score for the cases for which social network analysis data 

were collected was 3.84 (SD=0.65). The maximum HOC score for cases for which social 

network data were collected was 4.63 and the minimum was 2.30. 

 

Project network metrics 

Table 2 presents descriptive statistics for the 13 cases for which complete social network data 

was available. 

 

Table 2: Descriptive statistics for social network characteristics (N=13 cases) 
 N Minimum Maximum Mean Std. Deviation 

Pre-Construction Normalized 

Degree Centrality 

13 1.76 24.81 11.33 7.10 

Overall Normalized Degree 

Centrality 

13 3.33 23.33 13.09 6.62 

Pre-Construction Network 

Density 

13 .074 .63 .27 .18 

Overall Network Density 

(Whole Prj) 

13 .119 .61 .28 .15 

 

The extent of the construction contractors’ out degree centrality varied considerably between 

cases. The average score was 11.33 (SD=7.10). The construction frequency with which the 

construction contractor engaged in outward communication with other parties in the project 

network varied considerably. The average out degree centrality score was score was 11.33 

(SD=7.10) in pre-construction project stages and 13.09 (SD = 6.62) for the entire project 

period. The average network density values were 0.27 (SD=0.18) in pre-construction stages, 

and 0.61 (SD=0.28) for the entire project period. 

 

Relationship between project network characteristics and risk control outcomes 

Table 3 shows the results of the comparison of mean social network values between cases 

with the highest and lowest HOC scores.  

 

Network density was higher in cases with more positive HOC outcomes. This was the case 

for overall project network density and network density measured only in the pre-

construction (i.e, planning and design) stage of the project. However, the independent 

samples t-tests revealed that the difference in network density among cases with high 

compared to low HOC values was not statistically significant. 

 

Constructors’ out degree centrality was higher in cases with more positive HOC outcomes. 

This was the case for the constructor’s degree centrality measured across the project as a 

whole, as well as the constructor’s degree centrality relating to only the pre-construction (i.e, 

planning and design) stage. In both cases, the independent samples t-tests revealed these 

differences to be statistically significant.  

 

 

 

 



Table 3: Comparison of cases with lower versus higher than average HOC scores 
Variable HOC 

grouping 

Mean T value Degrees of 

freedom 

Significance (p) 

Project network 

density (pre-

construction 

stage) 

High HOC 0.268 -1.231 3.206 NS 

Low HOC 0.149 

Constructor’s 

normalised 

degree centrality 

(pre-construction 

stage) 

High HOC 14.193 -3.636 2.071 0.065 

Low HOC 5.377 

Project network 

density (whole 

project) 

High HOC 0.168 -1.535 3.085 NS 

Low HOC 0.286 

Constructor’s 

normalised 

degree centrality 

(whole project) 

High HOC 16.080 -3.148 3.886 0.036 

Low HOC 9.103 

NB: Cases with High HOC scores are those for which HOC > mean +1 standard deviation, cases with low 

average HOC scores are those for which HOC < mean -1 standard deviation. 

 

 

Example cases 

The statistical comparisons provide some insight into the relationship between characteristics 

of the social network and the quality of risk control solutions implemented. However, this 

statistical analysis does not explain how or why a constructors’ position or level of activity 

within a communication network shaped HOC outcomes. Two cases representing different 

social network configurations are described below, with reference to the sociograms 

produced for each case. These cases provide insight into the way in which the constructors’ 

outgoing communication (particularly during the pre-construction stages) contributed to 

WHS risk control outcomes during construction. 

 

Case example 1 – high rise building façade system 

Figure 1 shows the sociogram relating to the planning and design of a self-supporting, 

architectural façade to be connected to the exterior of a 42-story building. 

Twelve key project participants were identified for this case. The project used a design and 

construct delivery method in which the preliminary building design was completed by the 

client’s architects and specialist consultants. The tender documents indicated the façade was 

constructed of light-weight frame structure made of glass reinforced concrete (GRC) with 

larger vertical sections made of pre-cast reinforced concrete. During the tender process, the 

contractor raised concerns about the structural adequacy of the GRC frame for a building of 

this height.  

Figure 1: Example communication network for a building façade element 



 

 

NB: numbers denote the frequency of outgoing communication between project 

participants before the commencement of construction work (1= occasionally, 5= daily). 

 

Following the engagement of the design and construction contractor, structural and 

constructability reviews were conducted to investigate design options and material. A 

decision was made to use rolled steel sections instead of GRC elements. Consequently, the 

façade members and connections were re-designed. Using much lighter steel elements 

reduced material handling and exposure to ergonomic hazards. It also eliminated the risk of 

the façade structure collapsing during or after construction. 

 

The constructor proposed off-site manufacture of the façade. In this way, the construction 

process would be quicker and eliminating the need to store materials reduced congestion on 

the small inner-city construction site.  The off-site manufacture of the façade reduced 

exposure to the risk of contact with objects and equipment and reduced the risk of falls, slips, 

and trips. 

 

In the original planned sequence of work, the façade frame was to be fitted off once the 

building structure was completed. However, the constructor suggested an alternative 

sequence in which façade elements were to be fitted floor by floor as the building was being 

vertically constructed. This eliminated the need to work from swing stages or other 

mechanical equipment on the outside of the building. Workers were able to install and 

connect the framing beams from the safety of a finished floor level. 

 

The sociogram shows a high level of connectivity with a lot of direct information ties among 

the actors. This indicates a fast and easy information exchange pattern in the network.  



The social network data also reveals a medium normalized degree-centrality for the 

constructor. However, the sociogram reveals high frequency of information exchange among 

the construction manager, the design manager and the project manager. These actors arguably 

had the most important decision making roles in the redesign of the façade and development 

of the construction/installation sequence. The network  shows that these three actors form a 

triangle characterized with particularly strong ties (indicated by the thickness of the 

connecting lines) in the core of the network. This suggests a high level of design and 

construction information exchange occurred among these actors at the pre-construction stage. 

The network also reveals some important connections between the three core actors and 

subcontractors/suppliers, suggesting the involvement of the subcontractors in decisions 

concerning the design and planning of the façade. 

 

Case 2 – bridge column construction 

Figure 2 shows the sociogram relating to the planning and design of supporting columns for a 

pedestrian bridge spanning the railway lines at a new suburban train station. Eight prominent 

project participants were identified for this case. The original concept plan for the station 

involved the construction of a new ‘island’ platform, built between two existing and fully 

functioning rail lines.  The footbridge would provide access to the platform from either side 

of the tracks.  

 

Figure 2: Example communication network for bridge columns 

 

NB: numbers denote the frequency of outgoing communication between project 

participants before the commencement of construction work (1= occasionally, 5= daily). 

 



The project used a design and construct delivery method in which the preliminary bridge 

design was carried out by an engineering consultant engaged directly by the client. This 

design comprised a walkway which was to be supported by reinforced walls at each end and 

three columns in-between.  As part of the tender submission the Design and Construction 

contractor proposed that the number of columns be reduced to two.  Eliminating one of the 

piers would mean that the constructor would be able to reduce the amount of construction 

work in the railway corridor (a designated area either side of the tracks).  Reducing the 

amount of work within the railway corridor significantly reduced risks associated with train 

movements and overhead power supply lines. It also increased the separation between 

construction activities and rail tracks providing more space for crane movement and lifting 

operations. 

 

The constructor also decided to construct the columns in-situ, in three sections using a 

modular design approach.  The first section of the column would be built using standard 

construction methods, whereby formwork and steel reinforcement bars would be installed, 

the structure propped and concrete poured.   Once the first section was completed it would be 

used to ‘fix and stiffen’ the formwork for the next stage.  The formwork would be clamped to 

the completed section and extend up to allow the next three metres of concrete to be poured.  

This process was repeated until the column reached the required height.  Using slip-forms 

with z-bars to tie the formwork together the constructor was able to eliminate propping of the 

top two stages of the column. The only section that needed to be propped was the first stage 

of the column.  Working at height issues and manual handling hazards associated with in-situ 

construction were significantly reduced through the use of steel reinforcement “cages” that 

could be fabricated at ground level and lifted into position using a crane. The crane was also 

used to help fit and ‘slip’ the formwork shutters up the column.   

 

The network pattern shows a high level of connectivity for the constructor with direct 

information ties between the constructor and almost all the other actors in the network. This 

suggests a smooth and effective information exchange between the constructor and other 

stakeholders at early stage of the project. 

 

Given the high risk nature of the project and the specialist knowledge required to undertake 

the construction work safely, the contractor managed to maintain a high level of health and 

safety performance through involving the client, the rail authority and the transport operator 

in decision making process. This is evident by the relatively high frequency of 

communication between the constructor and these stakeholders. 

 

On the right hand side of the sociogram are key “demand-side” stakeholders with high 

regulatory/authority power (client, rail authority, transport operator). Due to the nature of the 

project and the requirement to maintain the transport operations during the construction 

phase, the constructor needed to obtain permits to work to ensure all required safety controls 

were in place. Communication links between the constructor and the client and rail 

authorities were therefore critical.  On the left side of the network are key “supply –side” 

stakeholders, who had a significant role in shaping decisions about the use of the modular 

construction systems which contributed to the reduction of WHS risks in the project.  

 

The design and construction contractor is the central actor connecting these two groups. In 

this central position, the contractor was able to identify constructability issues early in the 

project and drive the re-design of various components, including the bridge columns.  

 



Discussion 

 

Construction involvement in project planning and design decision-making 

The research sought to examine whether the position of construction contractors in project 

communication networks is related to the quality of measures implemented to control WHS 

risks.  

 

The results provides preliminary empirical evidence to indicate that the involvement of 

constructors in project decision-making (including decision-making that occurs before the 

commencement of construction) is linked to the adoption of “higher order” WHS risk 

controls. 

 

The t-tests revealed a significant difference in the constructors’ out-degree centrality values 

among cases with above and below average HOC scores. While these findings do not indicate 

a causal relationship, they do suggest that knowledge about construction processes and 

methods may an important and valuable resource that facilitates the adoption of high-quality 

risk control outcomes in construction projects. Constructors are responsible for the actual 

construction operations in a project and thus have a strong motivation and interest in ensuring 

work can be performed with minimal risk to health and safety (Song et al. 2009).  

Compared to other project participants, constructors have a high level of construction 

expertise because of their specialized training and knowledge and experience in the 

application of construction materials and methods. Constructors are therefore able to provide 

advice about WHS hazards/risks and ways to mitigate them in construction activities. When 

this information is fed into “upstream” decision-making, i.e, during the planning and design 

stages of a project, it may be particularly useful. Indeed, strategies to elicit constructors’ 

process knowledge during the early stages of a construction project are likely to improve the 

effectiveness if safety in design activities and facilitate the adoption of technological (rather 

than behavioural) controls for WHS risk. 

 

The qualitative case descriptions further illustrate the potential WHS benefits that can flow 

from frequent communication between the constructor and other project participants in 

communications networks early in the project life-cycle. In the case of the façade the 

contractor made significant changes to the materials and methods used to construct the 

façade, both of which significantly reduced WHS risks. In the case of the pedestrian bridge 

the contractor was able to reduce WHS risk by reducing the number of columns required to 

support the bridge span and adopting a modular design and construction method.  

 

Information exchange network characteristics 

In our analysis, the constructor’s out degree centrality was associated with the selection of 

higher order controls for WHS risks. However, the density of a communications network did 

not differ significantly between cases exhibiting high, compared to low HOC scores. This 

finding is in contrast to the results obtained by Alsamadani et al. (2013). In their analysis of 

safety communication in construction work crews Alsamadani et al. (2013) report network 

density (but not centrality) to be related to higher levels of WHS performance. Reasons for 

this difference are unclear. However, Alsamadani et al. investigated communication networks 

within small construction work crews. In this context the centrality of team members is 

possibly less important than the extent to which all group members communicate with one 

another about safety. Our research was specifically focused on the extent to which the actors 

with construction and/or WHS knowledge shared information with other members of a multi-

disciplinary team. In this context the overall network density is likely to be less important 



than the degree centrality of the constructor. However the different findings highlight the 

need to exercise care and be conceptually clear in the formulation and testing of hypotheses 

about social network characteristics and WHS outcomes.  

 

Integrating mechanisms 

Styhre and Gluch (2010) describe how knowledge stocks in construction projects reside 

within organizations that form a project coalition. They suggest that bridging mechanisms 

can help to ensure that organizational interflows of knowledge occur. Our results suggest that 

specific provision of mechanisms to ensure that constructors’ knowledge can be accessed 

might yield positive WHS benefits. Consistent with this view, Hare et al. (2006) report that 

two-way communication between designers and constructors, the early involvement of the 

constructor, participation in health and safety workshops and collaborative brainstorming are 

important mechanisms to support the integration of WHS into project planning and design 

decision-making. It is important to note that some important construction/WHS knowledge 

may reside with specialty subcontractors. Franz et al. (2013) present comparative case study 

data to suggest that early involvement of specialist contractors produces better WHS 

outcomes in otherwise comparable projects. Integrating mechanisms should seek to access 

this knowledge. Opportunities to engage participants with in-depth construction process 

knowledge early in the life of a project and actively elicit their suggestions for effective ways 

to eliminate (where possible) or reduce WHS risks are recommended. The input of 

construction process knowledge could be sought using face to face interviews, meetings or 

workshops, or by developing web-based knowledge-based systems (see, for example, Cooke 

et al. 2008). 

 

Social network analysis as a practical tool 

The research demonstrates that social network analysis can be used to quantify and compare 

project communication networks. Given the significant link between the constructors’ out 

degree centrality and the quality of WHS risk control, the analysis of project communication 

networks could help organisations to improve the integration of WHS into project decision-

making (particularly in the pre-construction stages). The measurement of project 

communication networks could also be useful in benchmarking within project organizations 

(see also Alsamadani et al., 2013). 

 

Social network analysis may also be a useful tool for the analysis and identification of 

network “gaps’ (El-Sheikh and Pryke, 2010). Used in this way, social network analysis could 

be used to diagnose network problems and identify opportunities for increasing information 

exchange to support WHS improvement. In particular, social network analysis is likely to be 

particularly useful in understanding the pattern of inter-organizational relationships and 

information exchanges that are important to ensuring that WHS is integrated through the 

activities of the construction supply chain. 

 

The hierarchy of control 

The research also reveals the usefulness of using the hierarchy of control as a measure of 

project WHS performance.  The use of injury rates as a dependent variable in WHS research 

has been questioned due to their poor reliability and high levels of under-reporting (Lingard 

et al. 2013). For example, in the United Kingdom, Daniels and Marlow (2005) found that the 

reporting of non-fatal construction injuries is as low as 46%. Alternative, more reliable 

measures of WHS performance have been recommended. In particular, the use of “leading” 

indicators of WHS performance is advocated. Leading indicators measure the state of WHS 

before the emergence of WHS risk rather than after the occurrence of undesirable events. As 



such, they are a more direct measure of WHS than accidents. The research suggests that 

classifying risk controls using the HOC may be a more proactive (and reliable) way to 

measure WHS in construction projects. Used in this way, the HOC can provide a practical 

measure of the quality of the WHS effort, rather than an after-the-fact measure of things that 

have already gone wrong. 

 

Conclusions 

The research sought to measure the quality of WHS risk controls implemented in 

construction projects and determine whether the quality of WHS risk control outcomes is 

associated with the position and role of the construction contractor in project communication 

networks. Social network analysis was used to quantify two dimensions of the 

communications network (i.e, network density and the constructors’ out degree centrality). 

The construction contractors’ out degree centrality was used as a proxy measure of the extent 

to which decisions were informed by knowledge of construction processes and methods. The 

quality of WHS risk control was measured using an innovative classification system based on 

the theoretical hierarchy of control (HOC). 

 

The results revealed that in cases in which the quality of WHS risk controls was higher than 

average the construction contractor’s out degree centrality was significantly higher than in 

cases in which the quality of risk controls was lower than average. This provides a prima 

facie case for the establishment and maintenance of strong communication between 

contractors and other project participants. In particular, the opportunity to seek the input of 

construction contractors into decision-making during the planning and design stages is 

recommended as a way to facilitate the adoption of technological (as opposed to behavioural) 

controls for WHS risk. 

 

The findings have implications for improved practice in the management of WHS in 

construction projects, in which the traditional separation between design and construction has 

been identified as a barrier to the effective implementation of safety in design. Arguably the 

greatest opportunity to implement technological controls for WHS risk, i.e, those that 

eliminate or reduce a risk by adopting engineering solutions, is during the early project 

planning and design stages. The research suggests that realising these “high order” 

technological risk controls is more likely when the construction contractor has a central and 

active role in project communication networks before construction commences. 

 

Limitations and future research 

The research was limited in a number of respects. These have important implications for the 

development of theory pertaining to the influence of communication between project team 

members on WHS outcomes. Firstly, the measurement of the construction contractors’ out 

degree centrality only quantified the frequency of outgoing communication. No attempt was 

made to evaluate the quality or content of the communication. It is possible that the 

relationship between construction contractors’ out degree centrality and the quality of risk 

control outcomes will be moderated by the quality of communication. Thus, when valuable 

information is communicated and when other project participants receive and respond to this 

communication in a positive way, the relationship between the constructors’ out-degree 

centrality and the quality of risk control outcomes may be strong and positive. However, 

when communication is about relatively trivial matters and/or if other project participants fail 

to respond to this communication, then the relationship between the constructors’ out-degree 

centrality and the quality of risk control outcomes may be non-significant (or even negative). 

Further research using hierarchical regression modelling techniques could test for a 



moderating effect and is recommended. However, a larger sample size would be required 

than was achieved in the reported research. The research was also limited by focusing solely 

on the out-degree centrality of the constructor. Future research should examine the WHS 

influence of the position and activity of other network participants within projects. 

Notwithstanding these limitations, the research has provided some empirical evidence to link 

the extent of inter-organizational communication with WHS outcomes in construction 

projects. 
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