
 

Advancing silver nanostructures towards 

antibacterial applications 

 

 

Vivian L. Li 
B.Sc. (Applied Chemistry) (Honours) 

B. Sc. (Applied Chemistry) 

 

 

A thesis submitted in fulfilment of the requirements for the degree of  

Doctor of Philosophy 

 

 

School of Applied Sciences 

RMIT University 

July 2014 

 



 

 

 

i  
 

Declaration 

 

 

I certify that except where due acknowledgment has been made, the work is that 

of the author alone; the work has not been submitted previously, in whole or in part, to 

qualify for any other academic award; the content of the thesis is the result of work which 

has been carried out since the official commencement date of the approved research 

program; and, any editorial work, paid or unpaid, carried out by a third party is 

acknowledged.  

 

 

 

 

Vivian Li  

  



 

 

 

ii  
 

 

 

 

 

 

 

 

 

This dissertation is dedicated to my family, especially to Gon Gon. 

I hope I have made you proud. 

 

  



 

 

 

iii  
 

Acknowledgements  

 This thesis would not have been possible without the help and support from some 

of the wonderful people that have contributed in one way or another during this PhD 

candidature.  

First and foremost, I would like to take this opportunity to express my gratitude to 

my senior supervisor, Associate Professor Vipul Bansal for the guidance and support 

throughout this journey. Thank you for introducing me to the world of 

nanobiotechnology, ever since completing Honours with you, I knew I wanted to further 

my studies in this exciting and growing field. Your vast knowledge and guidance in the 

directions of this thesis is greatly appreciated. Thank you for being a great mentor and 

not giving up on me throughout these years. To Professor Suresh K. Bhargava, I still 

remember that afternoon of undergrad graduation and you opened the opportunity to 

work with you and your group. That opportunity turned into Honours and now a PhD 

degree. I thank you for all the support, encouragement and motivation to achieve for the 

greatest heights in life. I am forever grateful to the both of you for the opportunities 

provided and support throughout my candidature. 

Many thanks to NanoBiotechnology Research Laboratory (NBRL) and Centre of 

Advanced Materials and Industrial Chemistry (CAMIC), I am grateful for the opportunity 

to be part of such great multidisciplinary teams. I thank members past and present for 

the contribution of their knowledge, providing me with positive criticism and 

encouragement to ensure I excel as a young researcher. 

I would also like to thank some senior researchers who have contributed to my 

thesis, namely Dr. Selvakannan, for your research assistance, continual support and 

words of encouragement. Thank you for sharing your knowledge and scientific advice, I 



 

 

 

iv  
 

will always cherish it. Secondly, to the new Endeavour postdoctoral research fellow 

Dr. Tarun Sharma, I am grateful that you have joined NBRL during this last stage of my 

PhD candidature. Not only have you contributed in this thesis, but also provided guidance 

and knowledge in the field of nanobiotechnology. Thank you for your friendship and 

support during these final stages of my PhD journey. Also, thanks are due to 

Prof. Shimshom Belkin from Hebrew University of Jerusalem for providing the plasmid 

for the genotoxicity and cellular toxicity studies. To Dr. Anthony O`Mullane, I thank you 

for the electrochemistry expertise, your kind words and your valued collaboration and 

contribution to this thesis. Also a sincere thanks to Dr. Hemant Daima, for all the 

assistance, guidance and immense motivation and encouragement you provided me just 

before you left RMIT University. I will cherish our memories and your friendship.  

To the lovely Dr. Lisa Dias, you have helped in so many ways from keeping me on 

track to the continuous motivation and words of encouragement to help me finish my 

thesis. Thank you so much for your endless support every time I visit. 

I would like to acknowledge the technical staff of Building 3, Mr. Frank Antolasic, 

Mrs. Nadia Zakhartchouk, Mrs. Ruth Cepriano-Hall, Mr. Howard Anderson, Mrs. Diane 

Mileo, Mr. Karl Lang and Mr. Paul Morrison for their hard work ensuring the laboratories 

are running efficiently and always lending a helpful hand. Moreover, for the invaluable 

expertise in the instruments I worked on during my candidature. Special thanks go to 

Ms. Zahra Davoudi, my mother at RMIT, without you, I would not have been able to finish 

this thesis. I am forever grateful for our conversations, your knowledge that you have 

passed down to me, the ongoing support and encouragement throughout this journey. 

For this I cannot thank you enough.   



 

 

 

v  
 

To the staff at RMIT Microscopy and Microanalysis Facility, especially Mr. Peter 

Rummel and Dr. Matthew Field who have spent countless hours to teach the finer points 

and techniques of imaging on the electron microscopes from the old days of developing 

films to the current advanced digital imaging.  

I have made some great friendships during this PhD journey; I thank Rahul Ram, 

Fiona Charalambous, Elizabeth Kulikov, Kat Fortig, Emma Goethals, Jos Cambell, Jarrod 

Newnham, Andrew Pearson, Hailey Daly, Nathan Thompson, Dave Tonkin, Rajesh 

Ramanathan, Blake Plowman, Ilija Najdovski, Ahmad Esmaielzadeh, Nafisa Zohora, Vishal 

Mistry, Katie Tur, Manika Mahajan, Bebeto Lay, Daniel Oppedisano, Aaron Raynor and 

Qing Hong Loh. You are all great individuals and I thank you all for your friendship and 

providing such a pleasant environment in the office and the laboratory. A special mention 

also goes to Nicola Nola for your endless support and encouragement throughout this 

candidature. Thank you for your help in the analysis of data and presentation of 

schematics. To Amanda Abraham, thank you for your help in assisting with laboratory 

techniques during my candidature. You have been a great help and saved me a vast 

amount of time.  

I thank the Australian government for the APA scholarship. I am also thankful for 

receiving a travel bursary from RACI to attend the CHEMECA conference. I would also like 

to thank Jigsaw and the girls who I have worked with past and present whilst writing my 

thesis. Thank you for all the support and motivation throughout the years and giving me 

the balance I need from work and university. 

To all my friends in my life, you have all been very supportive and keeping me 

sane. Thank you for believing in me and keeping our friendship alive. Now that I have 

finished, we’ll have time to make more happy memories.  



 

 

 

vi  
 

My love and gratitude to my entire family here and overseas, thank you for all the 

support and motivation throughout my PhD candidature. Thank you for always believing 

in me and encouraging me to try my best at all times. In particular, a special mention to 

my mother, father and sister for their endless love and support.  

Last but not least, a big thank you to Dr. Andrew Basile. Thank you for always 

being there, for the sacrifices, patience and continual love and support throughout this 

occasionally stressful journey. I am glad we were able to experience this chapter together 

as one, and share an understanding on how it is. Finally, thank you for believing in me 

and encouraging me to achieve the best I can always. 

 

 

Vivian Li 



 

 

 

vii  
 

Table of Contents 

 
Declaration ............................................................................................................................................................ i 

Dedication ............................................................................................................................................................. ii 

Acknowledgments ........................................................................................................................................... iii 

Table of contents ............................................................................................................................................. vii 

List of Figures ................................................................................................................................................... xii 

List of Tables ................................................................................................................................................... xvii 

Nomenclature ................................................................................................................................................ xviii 

Abstract .............................................................................................................................................................. xxi 

Chapter I.  Introduction ............................................................................................................. 1-30 

1.1 Antimicrobial resistance ................................................................................................................... 1 

1.2 Introduction to nanotechnology and nanobiotechnology ................................................... 2 

1.3 Nanomaterials: synthesis and applications ............................................................................... 4 

1.3.1 Metal nanoparticles .............................................................................................................. 6 

1.3.2 Silver nanoparticles .............................................................................................................. 7 

1.4 Antimicrobial applications of Ag nanoparticles ...................................................................... 8 

1.5 Distinctive features of the bacterial cell .................................................................................. 10 

1.5.1 Structure of Gram negative and Gram positive bacterial cell............................ 11 

1.6 Rationale of thesis ............................................................................................................................ 15 

1.7 Outline of thesis ................................................................................................................................. 17 

1.8 References ........................................................................................................................................... 19 

Chapter II.  Characterisation techniques .......................................................................... 31-47 

2.1 Introduction ........................................................................................................................................ 31 

2.2 Fourier transform infrared spectroscopy (FTIR)  ............................................................... 32 

 2.2.1 Attenuated total reflection infrared spectroscopy (ATR-IR)  ........................... 34 

2.3 X-ray photoelectron spectroscopy (XPS)  ............................................................................... 35 

2.4 Ultraviolet visible spectroscopy (UV-Vis)  .............................................................................. 36 

 2.4.1 Surface plasmon resonance (SPR)  .............................................................................. 38 

2.5 Atomic absorption spectroscopy (AAS)  .................................................................................. 39 

2.6 Electron microscopy ........................................................................................................................ 39 



 

 

 

viii  
 

 2.6.1 Transmission electron microscope (TEM)  .............................................................. 39 

  2.6.1.1 Image formation  .................................................................................................. 40 

 2.6.2 Scanning electron microscope (SEM)  ........................................................................ 41 

2.7 Dynamic light scattering (DLS)  .................................................................................................. 42 

2.8 X-ray diffraction (XRD) via general area detector diffraction system (GADDS)  ..... 43 

 2.8.1 General area detector diffraction system.................................................................. 45 

2.9 Electrochemical studies using cyclic voltammetry ............................................................. 45 

2.10 References ........................................................................................................................................... 46 

Chapter III. Influence on the morphology of silver nanoparticles on antibacterial 

activity: spheres, cubes and prisms .................................................................................... 48-78 

3.1 Introduction ........................................................................................................................................ 48 

3.2 Experimental ...................................................................................................................................... 50 

 3.2.1 Synthesis of Ag nanospheres ......................................................................................... 50 

 3.2.2  Synthesis of Ag nanocubes .............................................................................................. 51 

 3.2.3 Synthesis of Ag nanoprisms ........................................................................................... 52 

  3.2.3.1 Seed production .................................................................................................... 52 

  3.2.3.2 Nanoprism growth .............................................................................................. 52 

3.2.4 Quantification of Ag nanoparticles by atomic absorption spectroscopy 

(AAS)  ...................................................................................................................................... 52 

 3.2.5 Antibacterial applications ............................................................................................... 53 

  3.2.5.1 Colony forming units (CFU) assay ................................................................. 53 

  3.2.5.2 Liquid broth growth kinetic assay ................................................................. 54 

3.3 Results and discussion .................................................................................................................... 55 

 3.3.1 UV-Visible spectroscopy studies of Ag nanoparticles .......................................... 55 

 3.3.2 TEM and DLS measurements of Ag nanoparticles ................................................. 56 

 3.3.3 X-ray diffraction (XRD) studies of Ag nanoparticles ............................................ 58 

 3.3.4 FTIR analysis of Ag nanoparticles ................................................................................ 59 

  3.3.4.1 FTIR analysis of Ag nanospheres ................................................................... 59 

  3.3.4.2 FTIR analysis of Ag nanocubes ....................................................................... 62 

  3.3.4.3 FTIR analysis of Ag nanoprisms ..................................................................... 64 

 3.3.5 Antibacterial study of Ag nanoparticles against microorganisms .................. 67 

  3.3.5.1 Colony count studies ........................................................................................... 67 



 

 

 

ix  
 

  3.3.5.2 Antibacterial growth kinetics studies .......................................................... 69 

 3.3.6 SEM of bacteria cells after treatment of Ag nanostructures .............................. 70 

3.4 Conclusions ......................................................................................................................................... 74 

3.5 References ........................................................................................................................................... 75 

Chapter IV. Influence of synergism between antibiotics and silver nanoparticles on 

antibacterial activity: ampicillin, penicillin G and polymyxin B ............................ 79-116 

4.1 Introduction ........................................................................................................................................ 79 

 4.1.1  Ampicillin .............................................................................................................................. 85 

 4.1.2 Penicillin G ............................................................................................................................ 85 

 4.1.3 Polymyxin B .......................................................................................................................... 86 

4.2 Experimental ...................................................................................................................................... 86 

 4.2.1 Synthesis of Ag nanospheres ......................................................................................... 86 

 4.2.2 Antibacterial study ............................................................................................................ 87 

  4.2.2.1 Colony forming units (CFU) assay ................................................................. 87 

4.3 Results and discussion .................................................................................................................... 88 

 4.3.1 UV-Visible spectral studies of antibiotics and Ag nanoparticles...................... 88 

 4.3.2 TEM and DLS studies of antibiotics combined with Ag nanoparticles .......... 89 

 4.3.3 FTIR analysis of antibiotics combined with Ag nanoparticles .......................... 91 

4.3.4 X-ray photoelectron spectroscopy (XPS) of antibiotics combined with 

Ag nanoparticles ................................................................................................................. 94 

4.3.5 Antibacterial assays of antibiotics and Ag nanoparticles ................................ 103 

 4.3.5.1 Synergistic effects of ampicillin combined with Ag nanoparticles 103 

 4.3.5.2 Synergistic effects of penicillin G or polymyxin B combined with 

Ag nanoparticles .............................................................................................................. 105 

4.3.6 SEM of bacteria cells after treatment of Ag nanoparticles and antibiotics 108 

4.3.7 Mechanism of action ...................................................................................................... 111 

4.4 Conclusions ...................................................................................................................................... 113 

4.5 References ........................................................................................................................................ 113 

Chapter V. Influence of surface corona of silver nanoparticles on antibacterial 

activity: tyrosine, curcumin and epigallocatechin gallate ..................................... 117-159 

5.1 Introduction ..................................................................................................................................... 117 

5.2 Experimental ................................................................................................................................... 122 



 

 

 

x  
 

 5.2.1 Synthesis of tyrosine reduced Ag nanoparticles ................................................. 122 

 5.2.2  Synthesis of curcumin reduced Ag nanoparticles............................................... 123 

 5.2.3 Synthesis of EGCG reduced Ag nanoparticles ....................................................... 123 

 5.2.4 Processing of Ag nanoparticles by concentration and dialysis ..................... 123 

5.2.5 Quantification of Ag nanoparticles by atomic absorption spectroscopy 

(AAS)  ................................................................................................................................... 124 

5.2.6 Antibacterial applications ............................................................................................ 124 

 5.2.6.1 Colony forming units (CFU) assay .............................................................. 124 

5.3 Results and discussion ................................................................................................................. 125 

 5.3.1 UV-Visible spectral studies of functionalised Ag nanoparticles .................... 125 

 5.3.2 Silver reducing capabilities of phenolic compounds via AAS ........................ 127 

 5.3.3 TEM and DLS measurements of functionalised Ag nanoparticles ................ 128 

 5.3.4 X-ray diffraction (XRD) studies of functionalised Ag nanoparticles............ 131 

5.3.5 FTIR analysis to understand surface corona of functionalised 

Ag nanoparticles .............................................................................................................. 132

5.3.5.1 FTIR analysis of curcumin-reduced Ag nanoparticles ........................ 132 

 5.3.5.2 FTIR analysis of EGCG-reduced Ag nanoparticles ................................ 135 

5.3.6 Antibacterial assays of functionalised Ag nanoparticles ................................. 139 

 5.3.6.1 Colony count studies for equimolar ratios of functionalised 

Ag nanoparticles .............................................................................................................. 139 

 5.3.6.2 Colony count studies for varied mole ratios of curcumin reduced 

Ag nanoparticles .............................................................................................................. 141 

 5.3.6.3 Colony count studies for varied mole ratios of EGCG reduced 

Ag nanoparticles .............................................................................................................. 143 

5.3.7 Morphology studies of bacteria cells after the treatment of functionalised 

Ag nanoparticles .............................................................................................................. 146 

5.4 Conclusions ...................................................................................................................................... 150 

5.5 References ........................................................................................................................................ 151 

Chapter VI. Mechanistic insight into antibacterial performance of silver 

nanomaterials........................................................................................................................ 160-184 

6.1 Introduction ..................................................................................................................................... 160 

6.2 Experimental ................................................................................................................................... 163 



 

 

 

xi  
 

 6.2.1 Electrochemical methods ............................................................................................. 163 

 6.2.2 Antibacterial applications ............................................................................................ 164 

  6.2.2.1 Bacterial membrane protein study ............................................................ 164 

  6.2.2.2 Genotoxicity and cellular toxicity studies................................................ 165 

6.3 Results and discussion ................................................................................................................. 166 

6.3.1 The oxidability for phenolic compounds and phenol-reduced nanoparticles

 ................................................................................................................................................ 166 

 6.3.2 The oxidability of various nanoparticle shapes ................................................... 170 

6.3.3 Comparison of oxidation potentials dependent on corona or shape with 

antibacterial activity ...................................................................................................... 171 

6.3.4 Interaction of nanoparticles with bacterial membrane proteins ................. 174 

6.3.5 Genotoxicity and cellular detection .......................................................................... 176 

6.4 Conclusions ...................................................................................................................................... 177 

6.5 References ........................................................................................................................................ 180 

Chapter VII.  Conclusions and future work .................................................................. 185-190 

7.1 Conclusions ...................................................................................................................................... 185 

7.2 Future work ..................................................................................................................................... 189 

  



 

 

 

xii  
 

List of Figures  
 

Figure 1.1 Schematic representing peptidoglycan structure ................................................. 12 

Figure 1.2 Schematic representation of Gram positive and Gram negative bacteria  ... 14 

Figure 2.1 Schematic of a Fourier transform infrared spectrometer .................................. 33 

Figure 2.2 Attenuated total reflection experimental setup ..................................................... 34 

Figure 2.3 Components of a typical UV-Vis spectrometer ....................................................... 37 

Figure 2.4 Schematic of SPR spectroscopy .................................................................................... 38 

Figure 2.5 Schematic of a single-lens transmission electron microscope ......................... 40 

Figure 2.6 Schematic of Bragg’s reflection from a crystal ........................................................ 44 

Figure 2.7 (A) Applied potential regime and (B) the corresponding cyclic 

voltammogram .................................................................................................................... 46 

Figure 3.1 (A) UV-Visible spectra of Ag nanospheres, Ag nanocubes and 

Ag nanoprisms, (B) Photograph of Ag nanoparticles illustrating range of 

colours obtained ................................................................................................................. 55 

Figure 3.2 TEM images and corresponding particle size distribution histograms of 

(A) Ag nanospheres, (B) Ag nanocubes and (C) Ag nanoprisms ...................... 57 

Figure 3.3 DLS size distribution profile of (A) Ag nanospheres, (B) Ag nanocubes and 

(C) Ag nanoprisms ............................................................................................................. 57 

Figure 3.4 (A) Schematic of FCC crystal structure. (B) XRD patterns of Ag nanospheres, 

nanocubes and nanoprisms. XRD patterns have been shifted vertically for 

clarity with Bragg reflections corresponding to fcc Ag indicated. The dotted 

lines correspond to reflections corresponding to hcp Ag................................... 59 

Figure 3.5 Functional groups within tyrosine molecule ........................................................... 60 

Figure 3.6 Mechanism of reduction of Ag+ ions to Ag nanoparticles ................................... 60 

Figure 3.7 FTIR spectra of pure tyrosine and tyrosine-reduced Ag nanospheres ......... 61 

Figure 3.8 Structure of precursors EG (left) and PVP (right) employed for 

Ag nanocubes synthesis ................................................................................................... 62 

Figure 3.9 FTIR spectra of Ag nanocubes, EG and PVP ............................................................. 63 

Figure 3.10 Structure of precursors, PSSS (left) and ascorbic acid (right) employed for 

Ag nanoprisms synthesis ................................................................................................. 64 



 

 

 

xiii  
 

Figure 3.11 FTIR spectra of precursors, Ag seed and Ag nanoprisms ................................... 65 

Figure 3.12 CFU expressed in percentage cell death (A) Ag nanoparticles against 

Gram negative E. coli and (B) Ag nanoparticles against Gram positive 

S. albus .................................................................................................................................... 68 

Figure 3.13 Growth kinetic profiles of (A) E. coli and (B) S. albus ........................................... 70 

Figure 3.14 SEM micrographs of E. coli cells (A) untreated cells and after treatments 

with (B) Ag nanospheres, (C) Ag nanocubes and (D) Ag nanoprisms ........... 71 

Figure 3.15 SEM micrographs of S. albus cells (A) untreated cells and after treatments 

with (B) Ag nanospheres, (C) Ag nanocubes and (D) Ag nanoprisms ........... 72 

Figure 3.16 Schematic illustration of potential mechanisms of antibacterial activity of 

Ag nanostructures against E. coli and S. albus ......................................................... 74 

Figure 4.1 Schematic representation of antibiotic resistance scheme  .............................. 81 

Figure 4.2 Chemical structure of ampicillin .................................................................................. 85 

Figure 4.3 Chemical structure of penicillin G ................................................................................ 85 

Figure 4.4 Chemical structure of polymyxin B ............................................................................. 86 

Figure 4.5 UV-Visible absorbance studies on antibiotics on pristine antibiotics on its 

own and antibiotics combined with Ag nanoparticles......................................... 89 

Figure 4.6 TEM images and corresponding particle size distribution histograms of 

(A) AgNPs+AMP (B) AgNPs+PCG and (C) AgNPs+PMB. (Scale bars 

corresponds to 200 nm)  ................................................................................................. 90 

Figure 4.7 DLS size distribution of (a) AgNPs+AMP (b) AgNPs+PCG and 

(c) AgNPs+PMB ................................................................................................................... 91 

Figure 4.8 FTIR spectral analysis of Ag nanoparticles and antibiotics ............................... 92 

Figure 4.9 XPS spectra of tyrosine reduced Ag nanoparticles ................................................ 95 

Figure 4.10 XPS spectra of ampicillin and Ag nanoparticles with ampicillin coverage .. 96 

Figure 4.11 Scheme illustrating the structure of the Ag nanoparticle with bound 

ampicillin antibiotic ........................................................................................................... 97 

Figure 4.12 XPS spectra of penicillin G and Ag nanoparticles with penicilin G coverage

 ................................................................................................................................................... 98 

Figure 4.13 Scheme illustrating the structure of the Ag nanoparticle with bound 

penicillin G ............................................................................................................................ 99 



 

 

 

xiv  
 

Figure 4.14 XPS spectra of polymyxin B and Ag nanoparticles with polymyxin B 

coverage .............................................................................................................................. 100 

Figure 4.15  Scheme illustrating the structure of the Ag nanoparticle with bound 

polymyxin B ....................................................................................................................... 101 

Figure 4.16 AgNPs prepared with tyrosine coated with ampicillin, penicillin G and 

polymyxin B ....................................................................................................................... 102 

Figure 4.17 Synergistic effects of Ag nanoparticles and ampicillin against (A) E. coli and 

(B) S. albus .......................................................................................................................... 104 

Figure 4.18 Synergistic effects of Ag nanoparticles and penicillin G against S. albus ... 105 

Figure 4.19 Synergistic effects of Ag nanoparticles and polymyxin B against E. coli .... 106 

Figure 4.20 SEM images of E. coli (A) untreated, (B) treatment with ampicillin and 

(C) treatment with Ag nanoparticles combined with ampicillin. (Scale bars 

corresponds to 5 µm)  ................................................................................................... 108 

Figure 4.21 SEM images of S. albus (A) untreated, (B) treatment with ampicillin and 

(C) treatment with Ag nanoparticles combined with ampicillin. (Scale bars 

corresponds to 5 µm)  ................................................................................................... 109 

Figure 4.22 SEM images of S. albus (A) untreated, (B) treatment with penicillin G and 

(C) treatment with Ag nanoparticles combined with penicillin G. (Scale bars 

corresponds to 5 µm)..................................................................................................... 110 

Figure 4.23 SEM images of E. coli (A) untreated, (B) treatment with polymyxin B and 

(C) treatment with Ag nanoparticles combined with polymyxin B. (Scale 

bars corresponds to 5 µm) ........................................................................................... 111 

Figure 5.1 Chemical structure of tyrosine ................................................................................... 119 

Figure 5.2 Curcuma longa plant, turmeric and grounded curcumin ................................. 119 

Figure 5.3 Chemical structure of curcumin ................................................................................ 120 

Figure 5.4 Chemical structure of EGCG ........................................................................................ 121 

Figure 5.5 UV-Visible spectra of tyrosine, curcumin and EGCG reduced 

Ag nanoparticles in different mole ratios .............................................................. 126 

Figure 5.6 UV-Visible spectra of functionalised Ag nanoparticles separated for clarity

 ................................................................................................................................................ 126 

Figure 5.7 TEM images and corresponding particle size distribution histograms of 

functionalised Ag nanoparticles at various mole ratios: (A) tyrosine 



 

 

 

xv  
 

Ag nanoparticles, (B) curcumin Ag nanoparticles 1:1, (C) curcumin 

Ag nanoparticles 1:2, (D) EGCG Ag nanoparticles 1:1, (E) EGCG 

Ag nanoparticles 1:3 and (F) EGCG Ag nanoparticles 1:8................................ 129 

Figure 5.8 DLS size distribution profile of (A) tyrosine Ag nanoparticles, (B) curcumin 

Ag nanoparticles 1:1, (C) curcumin Ag nanoparticles 1:2, (D) EGCG 

Ag nanoparticles 1:1, (E) EGCG Ag nanoparticles 1:3 and (F) EGCG 

Ag nanoparticles 1:8....................................................................................................... 130 

Figure 5.9 XRD patterns of functionalised Ag nanoparticles ............................................... 131 

Figure 5.10 Chemical structure of curcumin ................................................................................ 132 

Figure 5.11 FTIR spectra of pure curcumin and curcumin reduced Ag nanoparticles at 

various mole ratios  ........................................................................................................ 133 

Figure 5.12 FTIR spectra of EGCG and EGCG reduced Ag nanoparticles ........................... 136 

Figure 5.13  Chemical structure of EGCG ....................................................................................... 137 

Figure 5.14 CFU expressed in percentage cell death of (A) functionalised 

Ag nanoparticles against Gram negative E. coli and (B) functionalised 

Ag nanoparticles against Gram positive S. albus ................................................. 140 

Figure 5.15 CFU expressed in percentage cell death of (A) curcumin reduced 

Ag nanoparticles against Gram negative E. coli and (B) curcumin reduced 

Ag nanoparticles against Gram positive S. albus ................................................. 142 

Figure 5.16 CFU expressed in percentage cell death of (A) EGCG reduced 

Ag nanoparticles against Gram negative E. coli and (B) EGCG reduced 

Ag nanoparticles against Gram positive S. albus ................................................. 145 

Figure 5.17 SEM micrographs of E. coli cells (A) untreated, and after treatment with 

(B) Curc-AgNPs (1:1) and (C) Curc-AgNPs (1:2) Scale bars 5 µm and insert 

scale bars 1 µm ................................................................................................................. 147 

Figure 5.18 SEM micrographs of S. albus cells (A) untreated, and after treatment with 

(B) Curc-AgNPs (1:1) and (C) Curc-AgNPs (1:2) Scale bars 3 µm insert scale 

bars 1 µm ............................................................................................................................ 147 

Figure 5.19 SEM micrographs of E. coli cells after treatment with (A) EGCG-AgNPs (1:1), 

(B) EGCG-AgNPs (1:3) and (C) EGCG-AgNPs (1:8) Scale bars 10 µm and 

insert scale bars 1 µm .................................................................................................... 148 



 

 

 

xvi  
 

Figure 5.20 SEM micrographs of S. albus cells after treatment with (A) EGCG-AgNPs 

(1:1), (B) EGCG-AgNPs (1:3) and (C) EGCG-AgNPs (1:8) Scale bars 3 µm 149 

Figure 6.1 A schematic diagram of plasmid pNHEX:  (A) represents restriction site that 

can be generated using SacI and NcoI, (B) the use of MunI and NcoI and 

(C) MunI and NcoI ........................................................................................................... 163 

Figure 6.2 Cyclic voltammograms for neat 1 M NaOH and each phenolic compound 

(in 1 M NaOH) used during silver nanoparticle synthesis .............................. 167 

Figure 6.3  Cyclic voltammograms for (A) polycrystalline silver and vitreous carbon 

electrodes modified with (B) Tyrosine-AgNPs, (C) Curcumin-AgNPs and 

(D) EGCG-AgNPs in 1 M NaOH .................................................................................... 169 

Figure 6.4 Cyclic voltammograms for Ag nanoprisms, Ag nanocubes and 

Ag nanospheres ................................................................................................................ 171 

Figure 6.5 Fluorescence spectroscopy of (A) ECMP and ECMP+Curc-AgNPs, (B) ECMP 

and ECMP+EGCG AgNPs, (C) SAMP and SAM+Curc-AgNPs and (D) SAMP 

and SAMP+EGCG-AgNPs ............................................................................................... 175 

Figure 6.6 Dissociation constant (Kd) of (A) ECMP and (B) SAMP profiles ................... 176 

Figure 6.7 (A) GFP fluorescence profile and (B) RFP fluorescence profile .................... 177 

Figure 6.8 Schematic illustration of potential mechanisms of antibacterial activity of 

functionalised Ag nanoparticles against E. coli and S. albus based upon 

genotoxicity and genotoxicity data.  ........................................................................ 179 

 

  

  
  



 

 

 

xvii  
 

List of Tables 
 

Table 3.1 Summary of functional groups in tyrosine and tyrosine-reduced 

Ag nanospheres ................................................................................................................... 61 

Table 3.2 Summary of functional groups in PVP, EG, Ag nanocubes ................................. 64 

Table 3.3 Summary of functional groups in ascorbic acid, PSSS, AgNO3, Ag seed and 

Ag nanoprisms ..................................................................................................................... 66 

Table 4.1 Optimum concentration of antibiotics needed for further studies ................. 88 

Table 4.2  Summary of functional groups in Ag nanoparticles and antibiotics 

combined with Ag nanoparticles .................................................................................. 93 

Table 4.3 Summary of synergistic effects of each antibiotic combination .................... 107 

Table 5.1 BDE and IP of phenolic compounds found in literature ................................... 122 

Table 5.2 Concentrations of silver and phenolic compounds and their reducing 

capabilities ......................................................................................................................... 127 

Table 5.3 Summary of functional groups in curcumin and curcumin reduced 

Ag nanoparticles .............................................................................................................. 135 

Table 5.4 Summary of functional groups in EGCG and EGCG reduced Ag nanoparticles

 ................................................................................................................................................ 138 

Table 6.1  Peak oxidation and peak reduction potential for Ag nanoparticle with 

phenolic coronas ordered lowest to highest. ....................................................... 169 

Table 6.2 Peak oxidation and peak reduction potentials for shape-dependent 

Ag nanoparticles ordered lowest to highest ......................................................... 171 

Table 6.3 Comparison of antibacterial activity and oxidation potentials for each 

nanoparticle synthesised including the use of phenolic compounds with 

varying molar ratios. Antibacterial data refers to the lowest concentration 

loading ................................................................................................................................. 172 

 

 

 

 



 

 

 

xviii  
 

Nomenclature 

AAS   Atomic absorption spectroscopy 

Ag   Silver 

AgNP   Silver nanoparticle 

AMP   Ampicillin 

ArOH   Phenolic antioxidant 

ATP   Adenosine triphosphate  

ATR   Attenuated total reflection infrared  

BDE   Bond dissociation energy 

BE   Binding energy 

CD   Cell death 

CFU   Colony forming unit 

Curc-AgNPs  Curcumin Ag nanoparticles 

CV   Cyclic voltammetry  

DLS   Dynamic light scattering  

DNA   Deoxyribonucleic acid 

E. coli   Escherichia coli 

ECMP   E. coli membrane protein 

EG   Ethylene gylcol 

EGCG   Epigallocatechin gallate 

EGCG-AgNPs  Epigallocatechin gallate Ag nanoparticles  

fcc   Face-centered cubic 

FTIR   Fourier transform infrared  

GADDS  General area detector diffraction system 



 

 

 

xix  
 

GFP   Green fluorescence protein 

HAT   Hydrogen atom transfer 

hcp   Hexagonally closed pack 

IP   Ionisation energy 

IR   Infrared 

Kd   Dissociation constant    

LB   Lauria Bertani 

NAG   N-acetylglucosamine 

NAL   Nalidixic acid  

NAM   N-acetylmuramic acid 

NP   Nanoparticle 

OD   Optical density  

PECS   Precision etching coating system 

PCG   Penicillin G 

PIA   Polysaccharide intercellular adhesion 

PMB   Polymyxin B 

PVP   Polyvinylpyrrolidone  

PSSS   Poly sodium styrenesulphonate 

R⦁   Free radical 

REDOX  Reduction-oxidation 

RFP   Red fluorescence protein 

ROS   Reactive oxygen species 

S. albus  Staphylococcus albus  

SAMP   S. albus membrane protein 



 

 

 

xx  
 

SEM   Scanning electron microscope 

SET   Single electron transfer 

SERS   Surface-enhanced Raman scattering 

SPR   Surface plasmon resonance 

STEC    Shiga toxin-producing Escherichia coli 

TEM   Transmission electron microscope 

trp   Tryptophan 

Tyr-AgNPs  Tyrosine Ag nanoparticles  

UV-Vis   Ultraviolet- visible 

XPS   X-ray photoelectron spectroscopy 

XRD   X-ray diffraction   

  



 

 

 

xxi  
 

Abstract 

 There is a growing concern on the emergence and re-emergence of drug-resistant 

pathogens such as multi-resistant bacterial strains. Hence, the development of new 

antimicrobial compounds or the modification of those that already exist in order to 

improve antimicrobial activity is a high priority area of research. In this endeavour, 

nanobiotechnology provides the means to modify distinct features of diverse materials, 

including metal nanoparticles. Silver has a strong antimicrobial potential, which has been 

exploited since ancient times. Therefore, the explorations of Ag nanomaterials for 

antimicrobial applications were pursued. Various Ag nanomaterials were synthesised, 

characterised and tested for their antibacterial activity. Tailoring nanomaterials for 

biological applications has become an emerging area of research. However, this warrants 

the need to understand the interaction between the materials with various biological 

applications. This thesis focuses on the influence of shape and surface functionalisation of 

Ag nanoparticles towards their antibacterial applications, while also exploring the 

synergism between existing antibiotics and Ag nanoparticles towards enhanced 

antibacterial activity. 

 Different shapes of Ag nanoparticles were synthesised via various chemical 

methods. Ag nanospheres were synthesised with the use of tyrosine as a reducing and 

capping agent. Ag nanocubes were obtained by mediating a polyol process with ethylene 

glycol and Ag nanoprisms were achieved by a seed-based thermal procedure. The 

comparison of these different shapes of Ag nanoparticles was tested for their 

antibacterial activity against model strains of Gram negative bacteria Escherichia coli and 

Gram positive bacteria Staphylococcus albus. All shape-dependent Ag nanoparticles 
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exhibited antibacterial activity against both Gram negative and Gram positive strains. 

However, Ag nanocubes exhibited the highest antibacterial activity overall.  

 Tyrosine reduced Ag nanoparticles were found to be the most stable and facile to 

synthesise. Therefore, these particles were selected as the model Ag nanoparticles for 

further studies. These nanoparticles were employed as antibiotic carriers for 

antibacterial activity. Traditional broad and narrow spectrums of antibiotics including 

ampicillin, penicillin G and polymyxin B were utilised as functional conjugates to 

influence antibacterial capabilities on the surface of Ag nanoparticles. The combination of 

Ag nanoparticles and antibiotics demonstrated synergistic effects at the lower 

concentrations of silver employed in the studies and revealed physical mode of action 

against bacteria causing cell wall cleavage and cell lysis.  

 The control of surface functionalisation and composition of nanoparticles via a 

green and eco-friendly approach was also achieved. Three particular phenolic 

compounds including tyrosine, curcumin and epigallocatechin gallate (EGCG) were 

utilised as a reducing as well as a capping agent to synthesise functional Ag nanoparticles. 

These phenolic compounds incorporate one or multiple phenolic groups which were 

instigated as organic surface coronas surrounding Ag nanoparticles. Ag nanoparticles 

containing equimolar and various mole ratios of these phenolic compounds were 

synthesised according to the number of phenolic groups present within each molecule. 

These functionalised Ag nanoparticles were tested for their antibacterial activity and 

their correlation between surface coronas and composition of nanoparticles was studied. 

The functionalised Ag nanoparticles of various mole ratios all exhibited significant 

antibacterial activity with physical damage to bacterial cells. Efforts were made to 

understand the role of surface functionalisation in conjugation with Ag nanoparticles in 
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dictating their ability to differentially interact with bacterial membranes. This led to the 

mechanistic insight into the antibacterial performance of Ag nanomaterials. 

Electrochemical and biological techniques were elucidated to assist in the proposed 

mechanism of Ag nanomaterials’ and interaction with both Gram negative and Gram 

positive bacterial cells. Cyclic voltammetry studies complimented antibacterial studies 

through which it was noted that the lower the potential required to oxidise 

Ag nanoparticles into Ag+ ions, the higher the antibacterial effect. Therefore, in the case of 

functionalised Ag nanoparticles, curcumin reduced Ag nanoparticles at 1:2 mole ratios 

exhibited the highest antibacterial activity.  

The interaction of nanoparticles to bacterial membrane protein was also studied. 

Additionally, the investigation of the effect at gene and protein level, genotoxicity and 

cellular toxicity was explored.  Membrane protein studies demonstrated that EGCG 

Ag nanoparticles exhibited more affinity for E. coli membrane proteins compared to 

curcumin Ag nanoparticles. However, for S. albus membrane proteins, curcumin 

Ag nanoparticles demonstrated a 30 fold increase in affinity compared to EGCG 

Ag nanoparticles. The cellular toxicity induction of the functionalised Ag nanoparticles 

revealed that curcumin Ag nanoparticles (synthesised at 1:2 mole ratio with respect to 

curcumin:silver) demonstrated the highest stress response. Irrespective of capping 

agents, all functionalised Ag nanoparticles induced DNA damage and SOS response. 

Therefore, it was proposed that Ag nanomaterials may display various mode of action for 

antibacterial activity which may not be solely restricted to interaction with membranes, 

genotoxicity and cytotoxicity. 

These studies have demonstrated that the antibacterial activity of silver can be 

enhanced through the use of several methodologies outlined within this thesis. Several 
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factors can influence the microbial effectiveness of silver nanomaterials, including their 

shape and surface functionality, as well as their conjugation with well-proven traditional 

antibacterial compounds. 
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Chapter I 

Introduction 
 

1.1 Antimicrobial resistance 

There has been an incoming tide of apprehension on the overuse of antibiotics and 

the effectual rise of antimicrobial resistance. Resistance can threaten the effective 

prevention and treatment of an ever-increasing range of infections caused by bacteria, 

parasites, viruses and fungi. When microorganisms develop resistance to antimicrobial 

agents such as antibiotics, they are usually referred to as “superbugs”.[1] This is a main 

concern as a resistant pathogen may spread or impose substantial costs to individuals 

and society. Antimicrobial resistance is the broader term coined to describe resistance in 

a variety of microbes which are resistant to one or more than one antimicrobial drug.[1-7]  

The majority of antibiotic use is found in two areas: humans in the community and 

in animals for growth promotion and prophylaxis.[8] The antibiotics used in human 

medicine belong to the same conventional class as those used in animals. In many cases 

even if they do not possess similar compounds, their mode of action is essentially the 

same.[9] Antibiotics are employed in diverse settings for food production. Animals are 

treated with antibiotics for both curing diseases and promoting growth,[10, 11] fruit trees 

are often treated prophylactically with antibiotics to control bacterial infections and 
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aquaculture relies on antibiotics to manage infectious disease. In each of these situations, 

the effects of the antibiotics extend beyond the site of use.[12]  

In the past 70 years, people have accepted antibiotics as their right to obtain a 

prescription at the first signs of common infection or treat themselves with a handful of 

economical antibiotics. Although one cannot conceive a restoration of pre-antibiotic 

times, yet the overuse of these agents in man and animals is relentlessly driving us in that 

direction.  

Over the last 30 years,  limited new types of antibiotics have been developed.[13, 14] 

As the use of conventional antibiotics rises, antimicrobial resistance patterns are 

developing which necessitates the continuous need for novel and more effective 

alternatives. One of the recent efforts in addressing this challenge lies within the study of 

nanotechnology. 

1.2 Introduction to nanotechnology and nanobiotechnology 

Nanotechnology is the field of research and fabrication that is on a scale between 

1 to 100 nm. The initial concept was introduced by Nobel laureate Richard P. Feynman 

during his renowned lecture “There’s plenty of room at the bottom” at the annual meeting 

of the American Physical Society, the Californian Institute of Technology.[15] Since then, 

there have been numerous revolutionary developments in physics, chemistry and biology 

that have validated Feynman’s ideas of manipulating matter at an immensely small scale, 

the level of molecules and atoms, i.e. the nanoscale. The prefix nano is derived from the 

Greek word nanos meaning “dwarf”. Today, it is used as a prefix describing 10-9 of a 

measuring unit. Nanotechnology is the understanding, control and restructuring of 
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matter on the order of nanometres to create materials with fundamentally novel 

properties and functions.[16-18]  

Currently, there are two approaches to synthesising nanomaterials, the 

“top -down” or “bottom-up” approach.[19] The top-down approach seeks the means in 

which larger structures are reduced in size to nanoscale while preserving their original 

properties without atomic-level control or deconstructed from larger structures into 

their smaller composite parts.[20] The bottom-up approach, also referred to as molecular 

nanotechnology is when materials are assembled from atoms or molecular components 

through a process of assembly or self-assembly.[20] Although most present technologies 

rely on the “top-down” approach, “bottom-up” approach holds great promise for 

advancements in materials and manufacturing,[21-23] electronics,[24] energy,[25-27] 

biotechnology,[28-30] medicine and healthcare.[31-34]  

Unlike non-biological systems that are typically formulated top-down, biological 

systems are built up from the molecular level in a bottom-up manner. This is achieved via 

a collection of molecular tool kits of atomic resolution that are used to fabricate micro 

and macrostructure compositions. Biological nanotechnology or “nanobiotechnology” can 

be perceived in many ways, one in particular is to incorporate nanoscale applications into 

biological organisms for the key purpose of improving the organism’s quality of life.[35, 36]  

Presently, there are numerous methods for synthesising nanodevices that have the 

potential to be utilised for biological applications to construct nano to 

microstructures.[37, 38] However, the broad overview is perhaps the one that will include 

both and can be defined as, the engineering, construction and manipulation of entities in 

the 1 to 100 nm range using biologically based methodologies or for the benefit of 

biological systems. The biological approaches can be an inspired way of mimicking 
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biological structures or the actual use of biological building blocks and platforms to 

assemble nanostructures.[39, 40]  

As already mentioned, there are two elemental assemblies to creating 

nanostructures: top-down and bottom-up. The bottom-up approach exploits biological 

structures and processes to create novel functional materials, biosensors and 

bioelectronics for various applications.[26, 41] In terms of top-down approach in 

nanobiotechnology, tools and processes of nano or micro fabrication to synthesise 

nanostructures with defined surface features are applied.[39] One of the key differences 

between nanotechnology and nanobiotechnology is that in the former, the dominant 

approach is top-down whereas in the latter, it is bottom-up. This multidisciplinary field 

covers a vast and diverse array of technologies encompassing engineering, physics, 

chemistry and biology. It is the combination of these fields that has led to the birth of a 

new generation of materials and methods of preparation.  

1.3 Nanomaterials: synthesis and applications 

The fundamental challenge in the growth of nanotechnology is to synthesise 

nanostructures of desired material with tailored properties suitable for these particular 

applications. Contrarily, functionalising these nanostructures by altering their optical, 

electrical and optoelectronic properties through suitable control of size, shape, doping, 

assembly or incorporating in host matrix opens up more possibilities for their 

applications. Hence, while the novel and unconventional fabrication methodologies are 

emerging to prepare nanostructures of several morphologies, their physical properties 

are being studied in detail to explore their applicability.[42]  
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Traditionally, nanoparticles were synthesised only via physical and chemical 

methods. Some of the commonly used physical and chemical routes are ion sputtering, 

solvothermal synthesis, reduction and sol gel technique. Some of the commonly used 

physical and chemically techniques include: 

a) Sol-gel technique: wet chemical method used for the fabrication of metal oxides 

from a chemical solution which acts as a precursor for integrated network (gel) of 

several particles or polymers. The precursor sol can either be deposited on the 

substrate to form a film, cast into a suitable container with desired shape or 

utilised in the synthesis of powders.[43]  

b) Solvothermal synthesis: versatile low temperature route in which polar solvents 

under pressure and temperatures above their boiling points are employed. The 

solubility of reactants increase notably which enables a reaction to take place at 

lower temperature when under solvothermal conditions.[44] 

c) Chemical reduction: synthesis involving the reduction of an ionic salt in a suitable 

medium in the presence or absence of a surfactant using reducing agents. Some 

commonly used  reducing agents are sodium borohydride, hydrazine hydrate and 

sodium citrate.[45] 

d) Laser ablation: a process which involves removing material from a solid surface by 

irradiating with a laser beam. At low laser flux, the material is heated by absorbed 

laser energy and evaporates or sublimates. Higher flux causes the material to 

convert to plasma. The depth over which laser energy is absorbed and the amount 

of material removed by single laser pulse is determined by the material’s 

wavelength and optical properties. One well established route for carbon 

nanotubes synthesis is via laser ablation.[46]  
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e)  Inert gas condensation: metals are evaporated in separate crucibles inside a high 

vacuum chamber filled with helium or argon gas. The evaporated metal atoms lose 

their kinetic energy and condense in the form of small crystals which accumulate 

on liquid nitrogen filled cold finger as a result of inert atomic collision with gas 

atoms in the chamber.[47]  

Chemical reduction is the most common route in metal nanoparticle synthesis due 

to their facile protocols, fine shape and size control achieved.  The control of size, shape 

and stability of nanoparticles can be achieved by integrating different capping agents, 

solvents and templates. Capping agents utilised include simple ions to polymeric 

molecules and biomolecules.[48]  

While physical and chemical approaches have dominated the synthesis of 

nanostructures, recently considerable attention is placed upon the application of 

biological systems. Biological systems are known to construct intricate structures at the 

nano and micro scale with precise control in normal environmental conditions. This 

property has attracted researchers to understand and discover the underlying 

mechanisms used by the biological systems and thus explore the biomimetic 

methodology towards nanomaterial synthesis. Biomimetic refers to the application of 

biological principles for materials formation. One of the primary processes in 

biomimetics involves bioreduction- the use of organisms such as bacteria, actinomycetes, 

fungi and plants to synthesise nanomaterials.[49-53]  

1.3.1 Metal nanoparticles  

Metal particles are particularly interesting nanoscale systems due to the ease with 

which they can be synthesised and modified chemically. From the perspective of 
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understanding their optical and electronic effects, metal nanostructures also offer an 

advantage over other systems as their optical constants resemble those of the bulk metal 

to exceedingly small dimensions (i.e. <5 nm).[54] 

Synthesis of metal nanostructures has been widely researched due to their 

interesting size and shape-dependent properties. These novel properties can be tailored 

by controlling their size, shape, composition, structure and crystallinity. Emphasis is 

placed on shape control as this allows optical, electronic, magnetic, catalytic and other 

properties of the nanostructures to be altered for versatile applications. Thus it has been 

established that the optical and electro-magnetic properties of a metal nanostructure is 

greatly dependent not only on the size of the structure, but also on the shape.[55-59] 

 The synthesis and properties of a number of different types of metal nanoparticles 

have been investigated. These include gold,[60-62] silver,[63-65] palladium,[66, 67] 

platinum,[68-70] titanium,[71-73] etc. Among these, gold and silver nanoparticles have been 

most commonly studied for diverse range of applications. This thesis focuses on 

exploring the potential of silver (Ag) nanoparticles for antimicrobial applications. 

1.3.2 Silver nanoparticles  

Elemental silver, both in bulk and dispersed state has been known for its unique 

chemical and physical properties, i.e. chemical stability, electrical and thermal 

conductivities, catalytic and antibacterial activity and malleability.[74] Silver has been 

studied as a material utilised within nanostructures for its superior performance in 

applications including plasmonics and surface-enhanced Raman scattering (SERS). Silver 

nanostructures have also been synthesised with a range of different shapes including 

spheres,[75] rods,[76] wires,[76] prisms[77] and cubes.[78] However, it was its simple use in 
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decorative ornaments and as a biocide that first captivated the interest of early 

civilizations.  

The applications of silver have advanced since the time of ancient Greece and 

Rome; this is primarily due to its distinctive electrical properties which promoted its first 

use in electrical devices. Since silver is identified to be among the best electrical and 

thermal conductors of all noble metals, it is widely used in conductors, switches, contacts 

and fuses.[79, 80] The most significant use of metallic silver in electronics has been in the 

preparation of thick-film pastes, typically in pure silver-palladium formulations for use in 

silk screened circuit paths, multi-layer ceramics capacitors and conductive adhesives.[81]  

1.4 Antimicrobial applications of Ag nanoparticles 

Ag nanoparticles have been used to treat burns, wounds and infections.[82, 83] In 

addition, various salts of silver and their derivatives have been used as antimicrobial 

agents.[84] Numerous studies have reported that Ag nanoparticles exhibit antimicrobial 

properties. Ag nanoparticles have been studied as a medium for antibiotic delivery, 

synthesis of composites for the use as disinfecting filters and coating materials.[85-88] 

Owing to their small sizes and higher surface-to-volume ratio, Ag nanoparticles 

possess a wider contact area with microorganisms. This property can enhance biological 

and chemical activity, hence provides Ag nanoparticles with high antibacterial activity. 

Ag nanoparticles have the ability to disturb functions of cell membranes such as 

permeability and respiration. Furthermore, upon penetration of the bacteria cell, 

Ag nanoparticles can disturb and react with the functions of sulphur containing proteins 

and phosphorus containing compounds such as deoxyribonucleic acid (DNA).[89-92] 
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Although Ag nanoparticles exhibit significant antibacterial properties, they also 

possess some disadvantages. Studies have found that nanoparticles have demonstrated 

toxic action on particular mammalian cells.[93-96] However, recent studies have 

demonstrated that combining Ag nanoparticles with antibiotics may reduce the toxicity of 

both agents towards mammalian cells and synergistically enhance their antimicrobial 

activity.[86, 97-100] Moreover, combination of nanoparticles and antibiotics lower the 

amount of both agents in the dosage which also increases antimicrobial properties. Due 

to this conjugation, the concentrations of antibiotics were increased at the site of 

antibiotic to microbe contact and thus accelerated the binding between microbes and 

antibiotics.[101]  

Another alternative to overcome the toxicity towards mammalian cells is the use 

of peptide linkages to Ag nanoparticles. The interaction of metal ions with biomolecular 

targets i.e. amino acids, peptides or proteins is known to play a fundamental role in 

several biological routes including electron transfer reactions, metal transport and 

storage. Additionally, the inhibitions of enzymes by metal complexes with ligands are 

well known. It functions by ligand exchange reactions where the ligand present in the 

administered drug is substituted by the targeted enzyme which is a primary application 

in many metal-based drugs. Therefore, it is one of the most significant processes in 

bioinorganic chemistry.[102-105]  

 Surface modification of Ag nanoparticles can also help in tuning their properties 

to suit various applications and determine the interaction of the components as such 

chemical functionalisation of the surface of Ag nanoparticles has attracted much 

attention.[106-108] Functionalised nanoparticles can be applied in various areas including 

engineering, medical and biological applications. The main aspect of functionalisation is 



 

 

 

10  
 

to optimise the active sites on the nanoparticle surface i.e. hydrophilic, hydrophobic, 

conductive etc.[109] It can be broadly classified into two categories, non-covalent binding 

physisorption or covalent binding chemisorption. In terms of physisorption, the binding 

is fairly weak where the ligand and the nanomaterial are bound through weak 

electrostatic interactions, hydrogen bonding and or hydrophobic interactions. This 

nature of surface functionalisation is beneficial for forming the surface coatings for 

stabilising individual nanoparticles in solution. In contrast, chemisorption is greater than 

the non-covalent bonds formed by physisorption. The majority of the surface 

functionalisation methods are based on covalent bond formation. This technique 

provides a stronger bond which allows the ligand to be more stable on the surface which 

makes the linkage robust. Functional groups present on the ligand react with the 

substrate material and chemisorb onto the nanomaterial surface to yield self-assembled 

structures.[110-112]  

Surface modification of nanoparticles may generate novel and interesting 

opportunities to develop efficient antimicrobial agent. To this end, nature has developed 

unique protein-based effective antibacterial platforms including lysozyme and 

antimicrobial peptides to control bacterial growth.[113-115] These natural antibacterial 

applications normally cause bacterial cell lysis and hence microorganisms find it 

challenging to gain resistance against these biologically nature produced antibiotics.  

1.5 Distinctive features of the bacterial cell 

Bacteria are prokaryotes with a simple internal structure and no membrane bound 

organelles. Bacteria display a wide diversity of morphology comprising of various sizes 

and shapes. These bacterial cells are approximately one tenth the sizes of eukaryotic cells 
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and are normally 0.5 to 5.0 µm in length.[116] Bacterial outer envelope that protects it 

from the external environment can have the following structural characteristics: 

 Polysaccharide membrane (capsule) 

 Lipid bilayer (outer membrane) 

 Peptidoglycan (cell wall)  

 Periplasmic space  

 Periplasmic membrane (cytoplasmic plasma membrane) 

Bacteria can possess different cell wall structures on the basis of their Gram stain. 

This staining technique was founded by Hans Christian Gram to distinguish bacteria into 

two major categories based on their response to the Gram stain procedure. In a Gram 

stain test, Gram positive bacteria would retain the crystal violet dye purple while a 

counterstain added to the crystal violet produces Gram negative bacteria a red or pink 

stain.[117, 118] The structural difference between Gram negative and Gram positive bacteria 

is also in the organisation of peptidoglycan layer which is the key component of the cell 

wall.[119]  

1.5.1 Structure of Gram negative and Gram positive bacterial cell  

The cell walls of bacteria consist of covalently linked polysaccharide and 

polypeptide chains which form a round macromolecule that entirely encases the cell. This 

framework is known as peptidoglycan, a polymer composed of two sugar derivatives: 

N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). The main component of 

this polymer is composed with the repeating units of NAM and NAG which forms a 

carbohydrate backbone (glycan portion). A tetrapeptide chain comprising of four 

alternating D- and L- amino acids is attached to the carboxyl group of NAM. Chains of 



 

 

 

12  
 

linked peptidoglycan are connected by cross linkers between peptides while the 

carboxylic group of the terminal D-alanine is attached directly to the amino group of 

diaminopimelic acid. In addition, a peptide inter-bridge may be an alternative option, 

however most Gram negative cell wall peptidoglycan lacks the peptide 

inter-bridge.[120, 121]  

Illustrated in Figure 1.1 is the schematic representation of Gram positive and 

Gram negative bacteria. In the case of Gram positive bacteria, it consists of a thick 

multilayered cell wall composed of peptidoglycan surrounding the cytoplasmic 

membrane. In addition, a peptide inter-bridge and greater amount of teichoic acids 

(polymer of glycerol or ribitol joined by phosphate groups) exists. Amino acids such as 

D-alanine are attached to the glycerol and ribitol groups. Teichoic acid is covalently 

linked to muramic acid and connects various layers of the peptidoglycan mesh together. 

Teichoic acid may prevent extensive wall breakdown and cell lysis during cell growth and 

is the provider of the cell wall’s antigenicity.[120]  

 

Figure 1.1 - Schematic representing peptidoglycan structure. 
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Gram negative bacterial cell walls have a more complicated structure than Gram 

positive bacteria both structurally and chemically. Structurally, in a Gram negative cell 

wall two layers external to the cytoplasmic membrane are apparent. Immediately 

external to the cytoplasmic membrane is a thin peptidoglycan layer which accounts for 

merely 5 to 10% of the Gram negative cell wall by weight. There are no teichoic or 

lipoteichoic acids present in the cell wall. Peripheral to the peptidoglycan layer is the 

outer membrane, which is unique to Gram negative bacteria. The area found between the 

external surface of the cytoplasmic membrane and the internal surface of the outer 

membrane is referred to as the periplasmic space. The periplasm compartment contains a 

battery of hydrolytic enzymes which are imperative to the cell for the breakdown of large 

macromolecules for metabolism. These enzymes normally include proteases, 

phosphatases, lipases, nucleases and carbohydrate degrading enzymes. Furthermore, 

there are fewer proteins in the outer membrane than in the cytoplasmic membrane. 

Porins are particularly important components due to their role in the permeability of the 

outer membrane to small molecules. Porins are proteins that form pores in the outer 

membrane large enough to allow passage of most small hydrophilic molecules.[120]  

Overall, the difference between the cell walls of Gram positive and Gram negative 

bacteria greatly influence the success of the microbes in their environments. The thick 

cell wall of Gram positive cells allows them to perform better in dry conditions as it 

reduces water loss. The outer membrane and its lipopolysaccharides aid Gram negative 

cells to excel in the intestines and other host environments. 
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Figure 1.2 – Schematic representation of Gram positive and Gram negative bacteria.  

 One of the main objectives of the work presented in this thesis is to investigate the 

interactions between different silver nanostructures and various bacterial strains.  

Therefore, well established model microorganisms Staphylococcus albus (S. albus) and 

Escherichia coli (E. coli) were utilised in this study. S. albus, is a Gram positive bacterium 

belonging to the genus Staphylococcus that is spherical and grow in a grapelike cluster. It 

forms white, raised, cohesive colonies approximately 1-2 mm in diameter. It is of low 

pathogenicity, while occasional strains may be coagulase positive and produce hemolysis. 

They are generally part of the normal human commensal on the skin and nasal 

passages.[122] S. albus have the ability to form a hydrophobic biofilm on plastic devices 

which is a major hindrance to society. S. albus creates an extracellular polysaccharide 

material known as polysaccharide intercellular adhesion (PIA), which is made up of 
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sulphated polysaccharide. The gene icaADBC is responsible for both the polysaccharide 

capsule and the polysaccharide intracellular adhesion used in biofilm formation. This 

allows other bacteria to bind to the already existing biofilm, which in turn produces a 

multilayer biofilm. The metabolic activity of bacteria within is therefore decreased. This 

film is adhesive to hydrophobic biopolymers of prosthetics, creating diseases such as 

endocarditis.[123, 124]  

E. coli is a Gram negative, rod shaped bacterium of the genus Escherichia which is 

typically found in the lower intestine of warm blooded organisms. Most E. coli strains are 

harmless however some strains may cause severe food poisoning in their hosts and are 

seldom liable for food contamination.[125] Some E. coli cause disease by producing a toxin 

called Shiga toxin. Thus the bacteria that create these toxins are known as “Shiga 

toxin-producing” E. coli or STEC. The most common type of STEC is E. coli O157:H7 which 

causes severe, acute haemorrhagic diarrhoea and abdominal cramps.[126, 127] 

 These bacteria were chosen as they are well understood and these are an 

important model organism in a number of fields of research, particularly genetics, 

molecular biology and biochemistry. The bacteria are easy to grow under laboratory 

conditions and strains are relatively safe to work with.  

1.6 Rationale of thesis 

The importance of metal nanostructures is apparent from the various platforms 

that are being pursued towards their potential applications. It is apparent that there are 

numerous pursuits to synthesise and characterise nanomaterials in biological and 

medicinal applications.[30, 38, 58, 128-132] In particular, Ag nanoparticles have been exploited 
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as an excellent antimicrobial agent and one that can cause cell lysis or inhibit cell 

transduction.[33, 74, 85, 87, 90, 133-136]  

Moreover, the use of nanomaterials for a variety of biological applications has 

become an emerging interdisciplinary area of science. Yet, an understanding of how 

nanomaterials interact with different biological components is still a poorly understood 

area.[30, 137-139] Comprehension of biologically mimicked and naturally occurring materials 

can progress to the development of novel nanomaterials, nanodevices and processes with 

tailored functionalities. Nature itself has derived desired biological and chemical 

applications using commonly found materials.[140-142] Directions in construction and 

design of nanomaterials with novel applications can only be achieved by the fundamental 

understandings of biology at the molecular level. The four main essential bio-

macromolecules include nucleic acid, proteins, lipids, and polysaccharides which are 

made up of nucleotide, amino and fatty acids and sugars.[128, 143] 

Though Ag nanoparticles have found use in antibacterial applications, their mode 

of action on microbes is not fully understood. As the field of bionanotechnology continues 

to advance, studies on the mechanism of Ag nanoparticles (with respect to their size, 

shape and composition) interaction with microorganisms are required in order to 

facilitate nanotechnology for biomedical applications.  

The work presented in this thesis emphasises on the synthesis, characterisation 

and antibacterial activity of Ag nanostructures. 

a) Shape-dependent properties of Ag nanoparticles and their potential antibacterial 

activity (Chapter III). 

b) Coupling Ag nanoparticles with conventional antibiotics to increase the 

antibacterial activity and determine their synergistic effects (Chapter IV). 
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c) A non-toxic green synthesis of functionalised Ag nanoparticles using phenolic 

compounds (e.g. phytochemicals or amino acids) to enhance antibacterial activity 

due to antioxidant corona layers (Chapter V).  

d) Investigation of new interdisciplinary techniques to understand the role of surface 

corona and Ag nanoparticle shape on antibacterial activity (Chapter VI). 

1.7 Outline of thesis 

In this thesis, the major interest is the antibacterial capabilities of 

Ag nanoparticles. The synthesis of several Ag nanostructures incorporates the chemical 

reduction techniques with an end goal of synthesising a material which exhibits 

antibacterial activity with respect to already available nanomaterials. More importantly, 

it has been demonstrated that using these chemical routes, a collection of 

Ag nanomaterials with functional properties can be synthesised in a repeatable process 

to enhance antibacterial activity.  

Chapter II deals with a range of characterisation techniques that were employed in 

this thesis. As discussed in Chapter III, Ag nanospheres, cubes and prisms were 

synthesised via different chemical methodologies. Ag nanospheres were synthesised with 

amino acid tyrosine as a reducing as well as a capping agent, Ag nanocubes were achieved 

by mediating a polyol process and Ag nanoprisms were synthesised by a seed-based 

thermal method. The comparison of various shapes of Ag nanoparticles was tested 

against representative Gram negative and Gram positive bacteria for their antibacterial 

activity. Tyrosine reduced Ag nanospheres were the most stable as well as isotropic. 

Additionally these particles were synthesised via a 1:1 ratio of silver stock to the 

monophenolic tyrosine amino acid which was least complicated. Therefore, these 



 

 

 

18  
 

tyrosine reduced Ag nanoparticles were chosen as model Ag nanoparticles for further 

studies throughout the thesis.  

In Chapter IV, Tyrosine reduced Ag nanoparticles were used as antibiotic carriers 

for antibacterial activity. Broad and narrow spectrums of antibiotics (ampicillin, 

penicillin G and polymyxin B) were employed as functional fragments to influence 

antibacterial potential on the surfaces of Ag nanoparticles. This combination can 

therefore provide synergistic observations towards antibacterial effects. The measure of 

synergism was studied and the method of binding was revealed. 

Chapter V dealt with the control of surface functionality and composition of 

nanoparticles using green and eco-friendly synthetic routes. Three different biochemicals 

including tyrosine, curcumin and epigallocatechin gallate (EGCG) were employed as a 

reducing and capping agent to synthesise Ag nanoparticles. These biochemicals possess 

one or multiple phenolic groups and were implemented as organic surface coronas 

surrounding Ag nanoparticles. Equimolar and various mole ratios of these biochemicals 

were used according to the number of phenolic groups present in their structure. These 

nanoparticles were synthesised and tested for their antibacterial activity. The interface of 

nanoparticles and the correlation between the surface coronas and composition of 

nanoparticles were studied.  

Finally in Chapter VI, to establish the surface coating corona and shape relation to 

antibacterial activity, interaction of nanoparticles to bacterial membrane protein were 

studied. Further to understand the effect of different Ag nanoparticles at gene and protein 

level, genotoxicity and cellular toxicity study was also performed. Mechanistic insight into 

the antibacterial performance of Ag nanomaterials was also obtained using 

electrochemistry experiments. The mode of action and toxicity was understood by 
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electrochemical and biological techniques helped in proposing potential mechanisms of 

Ag nanostructures and their ability to interact with Gram negative and Gram positive 

bacterial cells. 

Last but not the least, Chapter VII summarises the overall outcome of the thesis 

and proposes some of the future work that may be built upon the outcomes obtained 

from this study. 
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Chapter II 

Characterisation Techniques 
 

2.1 Introduction  

The study of nanoparticles in general and metal nanoparticles in particular is 

made possible only through the use of the latest technological discoveries in 

instrumentation techniques. High resolution electron microscopy allows scientists in this 

field to explore the structure, size, and shape of nanosized objects, with the latest 

instruments being able to resolve individual atoms and give information on the atomic 

structure of the crystal structure.[1] Even more impressive are spectroscopy probes that 

can be used in situ in the electron microscope to provide insight into the elemental 

composition and even chemical nature of the atoms within the particles themselves.  

The main emphasis of this thesis is to develop Ag nanostructures and investigate 

their biological applications. Prior to antibacterial applications, all nanomaterials used in 

this thesis were characterised by Fourier transform infrared (FTIR) spectroscopy, X-ray 

photoelectron spectroscopy (XPS), UV-Visible absorption spectroscopy (UV-Vis), atomic 

absorption spectroscopy (AAS), transmission electron microscopy (TEM), scanning 

electron microscopy (SEM), dynamic light scattering (DLS) and X-ray diffraction (XRD) 

using general area detector diffraction system (GADDS). 
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This chapter is devoted to the physical principles and instrumentation of the 

various characterisation techniques used in this thesis which have been elaborated 

further below.  

2.2  Fourier transform infrared spectroscopy (FTIR) 

 Fourier transform infrared spectroscopy is a vibrational spectroscopy technique 

that involves photons that induce transitions between vibrational states in molecules and 

solids. The infrared region of the electromagnetic spectrum broadens from 14,000 cm-1 to 

10 cm-1. The region of most significance for chemical analysis is between 4,000 cm-1 to 

400 cm-1 which is known as the mid-infrared region. This region corresponds to changes 

in vibrational energies within molecules. As an infrared light beam interacts with the 

molecule, chemical bonds will stretch, contract and/or bend.[2]  

 In infrared spectroscopy, an IR photon hv is absorbed directly to induce a 

transition between two vibrational levels, En and Enʹ, where  

02
1 hvnEn 





 +=  (2.1) 

The vibrational quantum number n= 0,1,2,... is a positive integer and v0 is the 

characteristic frequency for a particular normal mode. In accordance with the selection 

rule Δn= ±1, infrared transitions are observed only between adjacent vibrational energy 

levels, hence have the frequency v0.[2] 

The classical method to perform infrared spectroscopy is to scan the frequency of 

the incoming light to enable the detector to record changes in the light intensity for those 

frequencies at which the sample absorbs energy. However, a major disadvantage of this 

method is that the detector cannot record any data. To overcome this deficiency, modern 

infrared spectrometers irradiate the sample with an extensive band of frequencies 



 

 

 

33  
 

simultaneously followed by a mathematical analysis of the signal output. This is called a 

Fourier transformation, where it is used to convert the detected signal back into the 

classical form of the spectrum. Thus the resulting signal is known as a Fourier transform 

infrared (FTIR) spectrum.  

In contrast to classical spectrometers, where the spectral absorption of a sample is 

being scanned, FTIR spectroscopy is an interferometric method. A FTIR spectrometer 

consists in principle of an infrared source, an interferometer, the sample, and the infrared 

detector.  

 

Figure 2.1- Schematic of a Fourier transform infrared spectrometer. 

FTIR spectrometer attains infrared spectra by obtaining an interferogram of a 

sample signal with an interferometer. The interferometer is the heart of the spectrometer 

and consists of a beam splitter, a permanent mirror, and a moving mirror scanning back 

and forth. Hence, the spectrum is not directly measured but its interferogram is. This is 

when the infrared intensity reaches the detector as a function of the mirror position, as 

shown in Figure 2.1.  
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2.2.1 Attenuated total reflection infrared spectroscopy (ATR-IR) 

Attenuated total reflection infrared (ATR-IR) spectroscopy is employed for the 

analysis of the surface of materials. It is also often suitable for characterisation of 

materials which are too condensed to be analysed by transmission spectroscopy. The 

experimental setup of the internal reflection technique is shown in Figure 2.2. 

 
Figure 2.2- Attenuated total reflection experimental setup. 

For ATR-IR, the infrared light passes through an optically dense crystal and 

reflects at the surface of the sample. According to Maxwell’s theory, the propagating light 

passing through an optically thin, non-absorbing medium forms a standing wave, 

perpendicular to that of the total reflecting surface.[3] When the sample absorbs a fraction 

of this radiation, the propagating wave interacts with the sample and becomes 

attenuated. The reflectance R of the attenuated wave can be expressed as: 

ekdR −= 1  (2.2) 

Where de is the effective layer thickness and k is absorptivity of the layer. The loss of 

energy in the refractive wave is identified as attenuated total reflectance.  

 The depth of penetration of the IR radiation into the sample is dependent upon the 

angle of incidence, the frequency of incident light and refractive index difference between 

ATR element and the sample. The depth of penetration dp is expressed by: 

( ) 2/1
21

22
1

0

sin2 n
dp

n −
=

θπ

λ
 (2.3) 
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Where λ0 is the wavelength of light in the internal reflection crystal, θ is the angle 

of incidence, and n21 is the reflective index ratio of the sample and crystal.  

Characterisation of silver nanoparticles was achieved by using Perkin Elmer 

Spectrum 100 to define functional groups present. An initial background for energy 

match was run at 16 scans per spectrum. Spectra were obtained by accumulating 16 

scans per spectrum in the ranges from 4000 cm-1 to 850 cm-1.  

2.3  X-ray photoelectron spectroscopy (XPS) 

 X-ray photoelectron spectroscopy (XPS) provides chemical information regarding 

the surface of a specimen. The XPS functions by bombarding a surface with x-rays and 

recording the energy of ejected electrons. These characteristic electrons are ejected from 

the top most layers of the surface, typically nanometres in depth, and are used to identify 

the source element and immediate environment of components. Thus the energy of 

electrons measured at the detector is used to distinguish which elements are present and 

how they are bound. This is described by binding energy (BE) in an XPS spectrum.[4] 

When an x-ray of known energy hv interacts with a surface, an electron is 

described as being ejected assigned EB (binding energy) giving the following equation 

observing the conservation of energy:[4] 

WBK EEhvE −−=  (2.4) 

Where EW is the work function of the x-ray photoelectron spectrometer, and not of 

the material. Equation 2.4 can thus be used to elucidate the element detected and the 

chemical nature in which it resides. 
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2.4  Ultraviolet visible spectroscopy (UV-Vis) 

Ultraviolet-Visible spectroscopy (UV-Vis) is a reliable and accurate analytical 

technique that allows for the quantitative analysis of a material. Specifically, UV-Vis 

measures the absorption, transmission and emission of ultraviolet and visible light 

wavelengths by matter.[5] 

When a beam of electromagnetic radiations strikes an object, it can be absorbed, 

transmitted, scattered, reflected or excite fluorescence. The processes of interest in the 

absorption spectroscopy are absorption and transmission. When a sample is observed for 

absorption, conditions are undertaken to maintain reflection, scatter and fluorescence to 

a minimum.[6] An optical spectrometer records the wavelengths at which absorption 

occurs as well as the degree of absorption at each wavelength.  The energy associated 

with a given fragment of the spectrum is proportional to its frequency. The following 

equation depicts this correlation, which provides the energy carried by a photon of a 

given wavelength of radiation.  

𝐸 = ℎ𝑣 =
ℎ𝑐
𝜆

 (2.5) 

Where E is the energy absorbed in an electronic transition, h is the Planck’s 

constant, c is the speed of light and λ is the wavelength of the incident photon.  
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Figure 2.3- Components of a typical UV-Vis spectrometer. 
 

The absorption of radiation in a sample follows the Beer-Lambert law which states 

that the concentration of a substance in a sample (thin film/solution) is directly 

proportional to the absorbance, A. As shown in the schematics of a spectrophotometer in 

Figure 2.3. I0 is the intensity of the incident light at a given wavelength and I is the 

transmitted intensity.  









−=

0
10log

I
IA  (2.6) 

As part of this research, Varian UV-Visible Spectrophotometer Cary 50 BIO was 

used for optical characterization. The operating range of the equipment was 

190-1000 nm, although in this work it was used to scan samples in the wavelength of 

300-800 nm at a scan speed of 480 nm/min.  
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2.4.1  Surface plasmon resonance (SPR) 

Surface plasmons are essentially the light waves that are trapped on the surface 

due to interactions with free electrons of the metal.[7] When metal nanoparticles are 

implanted in a dielectric medium and specimen are exposed to electromagnetic radiation, 

SPR absorption band is observed at a specific wavelength (Figure 2.4). This is chiefly 

dependent upon the nature of the metal, size and distribution of the particles including 

several other factors.[6]  

 

Figure 2.4- Schematic of SPR spectroscopy. 

As the size of a particle is increased, the greater the number of electrons are 

involved, which will possess less displacement from the nuclear framework. If the 

formation of the particle is altered from a spherical shape, separate responses of the 

electrons for different directions of oscillation are apparent.[8] Therefore, SPR is found to 

be dependent on the size, shape and environment of particles. It can be used to determine 

size dispersity of particles in solution. A strong narrow absorption is representative of 

similar particles, while a broader, weaker band will be the result of the contribution of 

many particles over a large size distribution.[9-11]  
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2.5 Atomic absorption spectroscopy (AAS) 

 Atomic absorption spectroscopy (AAS) is an analytical procedure for the 

qualitative detection and quantitative determination of elements through the absorption 

of optical radiation by free atoms in the gas phase.[12]  

 Atomic absorption obeys the Beer Lambert law, which states that absorbance 

(denoted as A, negative logarithm of the transmission factor) is proportional to the 

concentration c of the absorbing substance and the thickness d of the absorbing layer:  

( )
( ) kcdA

i

t =−=
λφ
λφ

log  (2.7) 

Where Фt is the power of transmitted radiation and Фi is the power of incident 

radiation. Concentrations of samples were determined by Perkin Elmer Atomic 

Absorption Spectrometer 3110 (Cary 1).   

2.6 Electron microscopy  

Spectroscopic techniques can provide information on chemical nature of 

nanostructures, however, direct imagining of specimens can only be made possible via 

electron microscopes- transmission and scanning electron microscopes. Similar to light 

microscopy, where the resolution of the acquired image is dependent on the wavelength 

of light, electron microscopes uses beam of electrons to create such image. It is capable of 

much higher magnifications and has a greater resolving power than that of a light 

microscope, allowing one to see much smaller specimens in finer detail.   

2.6.1  Transmission electron microscopy (TEM) 

Transmission electron microscopy, as a high spatial resolution structure and 

chemical microanalysis tool, has proven to be powerful for the characterization of 

nanomaterials.[13] TEM explore the internal structure of solids to provide an 
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understanding of morphological fine structural details. A modern TEM provides the 

capability to directly image atoms in crystalline specimens at resolutions close to 0.1 nm, 

which is of the order of interatomic distances.  

  Electron beam instruments are operated under high vacuum to avoid dispersion of 

electrons from the air molecules due to high voltage. A TEM is operated under vacuum, 

equipped with an electron gun capable of accelerating electrons through a potential 

difference in the range of 60 to 400kV.  

 2.6.1.1 Image formation 

TEM is simplified into a single-lens microscope, as shown in Figure 2.6, in which 

only a single objective lens is considered for imaging. The intermediate lenses and 

projection lenses are omitted. This is due to the resolution of the TEM being primarily 

determined by the objective lens.[14] The entrance surface of a thin foil specimen is 

illuminated by a parallel beam. The electron beam is diffracted by the lattices of the 

crystal, forming the Bragg beams that are propagated along different directions.[15] The 

electron interaction results in phase and amplitude changes in the electron wave that are 

determined by quantum mechanical diffraction theory.[16]  

 
Figure 2.5- Schematic of a single-lens transmission electron microscope. 



 

 

 

41  
 

All TEM images in this thesis were obtained using a JEOL-1010 TEM operating at 

an accelerating voltage of 100kV. Samples were prepared by drop casting sample onto 

strong carbon coated 200 mesh copper grids and allowed to evaporate before TEM 

imaging. 

2.6.2  Scanning electron microscope (SEM) 

 Scanning electron microscope provides observation and characterisation of 

heterogeneous organic and inorganic materials on a nanometre (nm) to micrometre (µm) 

scale. Similar to the TEM, electrons are used to form an image. The SEM has many 

advantages over traditional microscopes, by means of a larger depth of field, which 

allows more of a specimen to be focused at one time and the capability of obtaining three-

dimensional images that are high in resolution. Additionally, closely spaced specimens 

can be magnified at higher levels with more control with the use of electromagnets rather 

than lenses.  

 When a specimen is irradiated with a finely focused electron beam, electrons may 

be swept in a raster pattern across the surface of the specimen to form images or may be 

static to obtain an analysis at one position. The types of signals producing this interaction 

include secondary and backscattering electrons, characteristic x-rays and photons of 

various energies.[17] 

 The imaging signals of greatest significance are the secondary and backscattered 

electrons as they vary primarily as a result of differences in surface topography. The 

secondary electron emission are the main means of viewing images in the SEM. 

Secondary electrons are predominately formed by collisions with the nucleus where 

substantial energy loss occurs or by the ejection of loosely bound electrons from the 

specimen atoms. The incident electron causes electrons to be emitted from the specimen 
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due to elastic and inelastic scattering interaction within the surface. High energy 

electrons that are ejected by an elastic collision of an incident electron are referred to 

backscattered electrons.[18]   

 SEM images presented within this thesis were obtained by using Philips XL30 

SEM. Samples were drop cast on polished silicon wafers attached to SEM stub via carbon 

tape. The samples were then coated with a thin layer of platinum deposition via precision 

etching coating system (PECS), Gratan model 682 to minimise sample charging. The 

coatings were prepared at a rock angle of 20°, speed 40°/sec, rotation of 25 rpm and 

beam current of 5 KeV.  

2.7 Dynamic light scattering (DLS) 

 Dynamic light scattering, also referred to as photon correlation spectroscopy is 

one of the most common techniques used for measuring the size distribution profile of 

colloidal particles. DLS measures Brownian motion and relates this to the size of the 

particles. Brownian motion is the random movement of particles due to the 

bombardment by the surrounding solvent molecules. Generally, DLS is correlated with 

the measurement of particles suspended within a liquid sample. 

 The larger the particle, the Brownian motion is slower and the smaller particles 

move rapidly by solvent molecules. Additionally, an accurately known temperature is 

crucial for DLS as knowledge of the viscosity is required. Temperature needs to be 

constant otherwise convection currents in the sample will cause non-random movements 

that will interrupt the correct interpretation of the size. The velocity of the Brownian 

motion is defined by a property known as the translational diffusion coefficient.[19, 20] 

 The size of a particle is calculated from the translation diffusion coefficient using 

the Stokes-Einstein equation: 
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𝑑(𝐻) =
𝑘𝑇

3𝜋𝜂𝐷
 (2.8) 

Where d(H) is the hydrodynamic diameter, d  is the translational diffusion 

coefficient, k is Boltzmann’s constant, T is absolute temperature and η is the viscosity.  

 The diameter measured in DLS is a value that refers to how a particle diffuses 

within the fluid and is referred to as a hydrodynamic diameter. The diameter obtained by 

this technique is the diameter of a sphere that has the same translational diffusion 

coefficient as the particle.  

 The translational diffusion coefficient is determined by not only the size of the 

core of the particle, but also on any surface structure as well as the concentration and 

type of ions in the medium. Factors that affect the diffusion speed of particles are ionic 

strength of medium, surface structure and non-spherical particles. Therefore, the 

hydrodynamic diameter measured in DLS can often be larger than that measured by 

electron microscopy.  

 All DLS measurements were carried out on an ALV 5022F Fast DLS particle sizing 

spectrometer at 22°C with a fixed angle of 90° on highly diluted aqueous samples.  

2.8  X-ray diffraction (XRD) via general area detector diffraction 

system (GADDS) 

X-ray diffraction (XRD) is a versatile, non-destructive technique that reveals in-

depth information regarding the chemical composition and crystallographic structure of 

an unknown material.   

When an X-ray beam interacts with an atom, radiation striking the material may 

be scattered or absorbed. X-rays, high energy electrons and neutrons are used to extract 

structural information of the crystal lattice. Incident radiations of sufficiently smaller 
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wavelength interact elastically with the regular arrays of atoms in a crystal lattice to yield 

a diffraction pattern.[21] Diffraction angles and the intensities in various diffracted beams 

are a receptive function of the crystal structure. The diffracted angles are dependent 

upon the lattice and the unit cell dimensions, while the diffracted intensities are 

dependent upon the atomic numbers of the constituent atoms and geometrical 

relationship with the lattice points.  

A convenient form of the geometrical relationship determining the angular 

distribution of the peak intensities in the diffraction pattern is the Bragg’s equation:[22]  

θλ sin2dn =  (2.9) 

Where n is an integer referring to the order of reflection, λ is wavelength of the 

radiation, d is the spacing between crystal lattice planes and θ is the angle of the incident 

beam.  

 

 

Figure 2.6- Schematic of Bragg’s reflection from a crystal. 

An X-ray diffractometer comprises of a source of X-rays, the X-ray generator, a 

diffractometer assembly, X-ray data collection and analysis system. The diffractometer 

assembly controls the alignment of the beam and the position and orientation of the 

specimen and detector.  
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2.8.1 General area detector diffraction system 

GADDS is a micro X-ray diffraction system which utilizes a high sensitivity 2D area 

detector. GADDS has the capability to analyse a selected spot on the surface of a sample, 

where the instrument focuses an x-ray beam to a spot as small as 60 µm.[23] Samples are 

usually fixed on a moveable x,y,z stage and for the investigation of a specific area, the 

sample is orientated in the x-ray beam via a CAD camera and a laser beam.  

Powder XRD data was obtained using Bruker Axis D8 Advance Powder 

Diffractometer with a GADDS micro diffraction instrument over a 2θ range of 15-85°. 

2.9 Electrochemical studies using cyclic voltammetry  

The oxidation and reduction involving electron transfer can be described as 

follows: 

RneO →←+ −  (2.10) 

where O is the oxidant and R is the reductant losing and gaining n electrons, e. However 

the more accurate definition of a REDOX reaction is a change in oxidation state with 

oxidants increasing whilst reductants decrease which occurs in covalent reactions where 

no electron transfer takes place.[24] Cyclic voltammetry (CV) techniques can be utilised to 

probe these REDOX reactions using a three-electrode conventional setup. This setup 

includes a working electrode, a reference electrode and a counter electrode with 

particular functions. The working electrode acts to probe the REDOX chemistry of an 

analyte by applying a potential whilst the reference electrode is a half-cell with a known 

stable potential and is used to reference said applied potential. A counter electrode is a 

stable material which is used to complete the current circuit with the working electrode. 

The current is measured between the working and counter electrodes, while the potential 

between the working and reference electrodes is applied.  
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When carrying out a cyclic voltammogram (CV), an initial potential is applied to 

the working electrode and is ramped positively at a sweep rate of 50 mV s-1 to a 

predetermined switching potential, at which the ramping direction is reversed. This is 

illustrated in Figure 2.7 where (A) shows the potential ramping profile whilst (B) shows 

the corresponding CV (current response) to the profile.[25]  

 
Figure 2.7- (A) Applied potential regime and (B) the corresponding cyclic voltammogram. 
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Chapter III 

Influence of the morphology of silver 

nanoparticles on antibacterial activity: 

spheres, cubes and prisms 

 

3.1 Introduction 
Due to the outbreak of infectious diseases caused by various pathogens and the 

development of antibiotic resistance, researchers are discovering new and effective 

antimicrobial agents.[1] Recently, nanoscale materials have emerged as novel 

antimicrobial agents owing to their inorganic nature, which are significantly different 

than traditional antibiotics that are mainly organic. Inorganic nanoparticles with 

antimicrobial activity are thus promising as a new class of biomedical materials to 

potentially overcome the rise of antibiotics resistance.[2]  Nanostructured materials are 

attracting an immense deal of attention due to their potential for achieving specific 

processes and selectivity, particularly in biological and medical applications.[3] 

Innovations in the past decade have revealed that size and shape of metal 

nanoparticles influence their electromagnetic, optical and catalytic properties.[4] 

Therefore, there has been an increase in research on the synthesis of metal 

nanostructures with interesting size and shape-dependent properties. These novel 

properties can be tailored by controlling their size, shape, composition, structure and 
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crystallinity. Emphasis is placed on shape control as this allows optical, electronic, 

magnetic, catalytic and other properties of the nanostructures to be altered for versatile 

applications.[5, 6] The synthesis and properties of various types of metal nanoparticles 

have been investigated. These include, gold,[7, 8] silver,[9] palladium,[10] platinum,[11] 

titanium etc.[12]   

Among noble metals, silver has have been commonly studied for its diverse range 

of applications. Silver has been employed for centuries to fight infections and control 

spoilage.[13] The role of silver for medicinal applications has been extensive with time and 

today, silver is still used in the healthcare and pharmaceutical sector.[14] Microorganisms 

are less likely to develop resistance against silver as they do against narrow-targeting 

antibiotics. This is due to the metal attacking a wide range of targets in the organisms, 

leading to the requirement to develop a host of mutations simultaneously in pathogens to 

generate resistance. Hence, silver ions have been employed as an antibacterial 

component in dental resins,[15, 16] wound dressings,[17, 18] and coatings of medical 

devices.[14, 19] 

Despite silver’s extensive use throughout the history as an antimicrobial agent, the 

discovery and development of wonder drug penicillin caused a dramatic shift in the way 

bacterial infections were treated. This led to a significant decrease in the use of silver-

based products for antimicrobial applications, and new silver-based products almost 

ceased to be developed. However, with the increase of resistant strains of bacteria due to 

heavy use of antibiotics and the need for an efficient universal disinfectant, the interest in 

the antimicrobial capability of silver-based products has once again renewed.[20] 

To this end, the recent focus is shifting towards silver nanoparticles, which are 

being tested against common pathogens in the hope of finding a novel and effective 
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antimicrobial agent. It is notable that silver ions (Ag+) are well known to possess strong 

inhibitory and antibacterial effects as well as a broad range of antimicrobial 

activities.[21-23] However, it is relatively recent that various researchers have started 

investigating the antimicrobial capabilities of silver nanoparticles (Ag0). Most of these 

studies on Ag nanoparticles based antimicrobial agents have been restricted to the use of 

spherical Ag nanoparticles against Gram negative and or Gram positive bacteria.[2, 21, 23, 24] 

Relatively few reports have investigated shape-dependent antimicrobial efficacy of 

Ag nanoparticles. However, contamination of samples with different Ag shapes in such 

studies makes it difficult to precisely understand the role of Ag nanoparticle shape in 

causing antimicrobial activity.[22] 

Considering that size as well as shape of Ag nanoparticles may have considerable 

effect on their properties, this chapter has undertaken the task of studying the shape-

dependent antibacterial properties of Ag nanoparticles. The main focus on this chapter is 

to particularly investigate the comparison of different shapes of nanoparticles (spherical, 

cubic and prismatic) against representative strains of Gram negative and Gram positive 

bacteria. 

3.2 Experimental  

3.2.1 Synthesis of Ag nanospheres 

Silver nanospheres were synthesised via a procedure outlined by 

Selvakannan et al.[25] whereby amino acid tyrosine was used as a reducing as well as 

capping agent in an alkaline environment. This procedure shows that amino acid tyrosine 

is an excellent reducing agent that is capable of reducing Ag+ ions to yield highly stable 

monodispersed spherical silver nanoparticles. In brief, 10 mL of 10-3 M aqueous silver 
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sulphate (containing 2 x 10-3 M equivalent of Ag+ ions) was prepared and added to 20 mL 

of 10-3 M aqueous solution of tyrosine. This solution was then diluted to 100 mL with 

Milli-Q water. To this solution, 1 mL of 10-1 M KOH was added and allowed to boil. Within 

20 minutes the initial colourless solution changed into a light yellow colour which 

indicated the formation of silver nanoparticles. The solution was allowed to boil for a 

further 15 minutes for silver nanoparticles to grow and stabilise.  

3.2.2 Synthesis of Ag nanocubes 

Silver nanocubes were synthesised via a procedure outlined by Xia et al.[26] This 

synthesis was achieved by mediating a polyol process which is simple, robust and 

versatile in the formation of monodispersed silver nanocubes. In a typical experiment, 

silver cubes are produced by reducing AgNO3 with ethylene glycol (EG) through the 

subsequent mechanism: 

2𝐻𝑂𝐶𝐻2 𝐶𝐻2 𝑂𝐻 →  2𝐶𝐻3𝐶𝐻𝑂 + 2𝐻2𝑂
 
 (3.1) 

2𝐴𝑔+ + 2𝐶𝐻3 𝐶𝐻𝑂 → 𝐶𝐻3 𝐶𝑂 ─ 𝑂𝐶𝐶𝐻3 +  2𝐴𝑔0 + 2𝐻+ (3.2) 

In brief, this method was adjusted through the modification of reaction conditions. 

Initially 30 mL of EG was heated and magnetically stirred for 1 hr. While the EG solution 

was heated, EG solutions containing AgNO3 (48 mg mL-1), polyvinylpyrrolidone (PVP) 

(20 mg mL-1) and 3 mM Na2S were prepared 45 minutes prior to injection.  After an hour 

heating the EG solution, 400 μL of Na2S, 7.5 mL PVP and 2.5 mL AgNO3 solutions were 

injected into the initial EG solution. As soon as AgNO3 was added, the colourless solution 

instantaneously turned purple/black, followed by a bright yellow colour. After 5 minutes 

into the reaction, the solution darkened to orange yellow. 10 minutes later, the final 

colour was an opalescent muddy brown indicating the formation of Ag nanocubes. 
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3.2.3 Synthesis of Ag nanoprisms 

Silver nanoprisms were synthesised via a procedure outlined by Aherne et al.[27] 

by a reproducible seed-based thermal method. The method was modified through the 

adjustment of reaction conditions and included following steps: 

3.2.3.1 Seed production: 

Silver seeds were produced by combining aqueous trisodium citrate (5 mL, 

2.5 mM), aqueous poly(sodium styrenesulphonate) (PSSS - 0.25 mL, 500 mgL-1; Aldrich 

1,000 kDa) and aqueous NaBH4 (0.3 mL, 10 mM, freshly prepared) followed by addition of 

aqueous AgNO3 (5 mL, 0.5 mM) at a rate of 2 mL min-1 while continuously stirred. 

3.2.3.2 Nanoprism growth: 

Nanoprisms were synthesised by increasing 5 times the concentration of the 

originally reported experiment; specifically, nanoprisms were produced by the 

combination of 10 mL Milli-Q water, 75 μL of aqueous ascorbic acid (50 mM), 400 μL seed 

solution, followed by the addition of 3 mL aqueous AgNO3 (2.5 mM) solution at a rate of 

1 mL min-1. To stabilize the nanoprisms 0.5 mL of aqueous trisodium citrate (125 mM) 

was added after the experiment.  

3.2.4 Quantification of Ag nanoparticles by atomic absorption 

spectroscopy (AAS) 

 For antibacterial applications, it is important to ascertain that nanoparticles used 

in experiments have the same concentration of silver. Therefore, all nanoparticles used in 

this study were analysed by AAS to determine the concentration of silver. Before AAS 
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analysis, all Ag nanoparticles were centrifuged three times against Milli-Q water for 15 

minutes at 12,000 rpm to remove free Ag+ ions. 

Ag nanoparticles were initially dissolved in nitric acid and calibration standards 

were prepared using 1000 ppm stock solution of silver nitrate. Based on Ag standards, 

calibration graph was created and concentrations of Ag nanoparticles were determined. 

Samples were then diluted to desired concentrations for use.  

3.2.5 Antibacterial applications 

 All antibacterial experiments were performed under sterile conditions in a 

laminar flow cabinet. Before the commencement of microbiological experiments, media 

cultures, glassware and pipette tips were sterilised by autoclaving at 121°C for 

15 minutes. Gram negative Escherichia coli (E. coli) and Gram positive bacterium 

Staphylococcus albus (S. albus) were used as microorganisms for antibacterial 

applications.  

3.2.5.1 Colony forming units (CFU) assay 

To examine the bactericidal effect of silver nanoparticles against Gram negative 

and Gram positive bacteria, 104 colony forming units (CFU) of each bacteria were mixed 

with various Ag nanoparticles (spheres, cubes and prisms) in varying concentrations for 

30 minutes in 1 mL volume. 100 µL of this was then plated on agar plates. These plates 

were then incubated for 24 hrs at 37°C and the numbers of colonies were counted. 

Colonies formed correspond to the number of viable bacteria in each suspension at the 

time of aliquot withdrawal.  
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3.2.5.2  Liquid broth growth kinetic assay  

To examine the bacterial growth rate and to determine the kinetic growth curve in 

the presence of various shapes of Ag nanoparticles, E. coli and S. albus were grown in 

Luria-Bertani (LB) broth. Growth rates and bacterial concentrations were determined by 

measuring optical density (OD) at 600 nm at hourly intervals where OD of 0.1 

corresponds to a concentration of 108 cells per cm3. For these kinetic experiments, 

Ag nanoprisms were omitted, as the absorption for these nanostructures occurs in the 

same region (ca. 650 nm) which interferes with measurements.  

 7 mL of LB broth, 2 mL of Ag nanoparticles (10-3 M) and 1 mL of respective 

bacteria (108 cells/mL) were mixed in sterile vials with a final volume of 10 mL. Vials of 

the following contents were prepared for each microorganism: 

1. Broth (for blank) 

2. Broth + Bacteria 

3. Broth + Bacteria + Ag nanospheres 

4. Broth + Bacteria + Ag nanocubes 

For each bacteria, there were 4 experiments conducted and each were in 

triplicates to test the statistical significance. Therefore, a total of 12 reactions were 

prepared for each bacterium. Growth rate of bacteria in the prepared reactions were 

monitored while incubating the reaction vessels on an orbital shaker at 37°C, and 

measuring the growth rate by using UV–Vis spectrophotometer at regular hourly 

intervals.  
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3.3 Results and discussion 

3.3.1 UV-Visible spectroscopy studies of Ag nanoparticles 

The optical absorption spectra of metal nanoparticles are dominated by surface 

plasmon resonance (SPR), which shifts to longer wavelengths with increasing particle 

size.[28] The shape and position of plasmon absorption of silver nanoclusters are highly 

dependent on the particle size, shape, dielectric environment and surface adsorbed 

species.[29] In Mie’s theory,[30] only a single SPR band is expected to be present in the 

absorption of spherical nanoparticles, whereas anisotropic particles could give rise to 

two or more SPR bands depending on the shape of the particles. The number of SPR 

peaks increases as the symmetry of the nanoparticles decreases,[31] hence different 

shaped nanoparticles of silver may show one, two or more peaks. 

 
Figure 3.1- (A) UV-Visible spectra of Ag nanospheres, Ag nanocubes and Ag nanoprisms. (B) Photograph of 

Ag nanoparticles illustrating range of colours obtained. 

The UV-Vis analysis of Ag nanoparticles reveals the SPR features of nanostructures 

that are in agreement with those from the previous studies (Figure 3.1).[25-27] The 

absorption spectrum of Ag nanospheres prepared by the reduction of tyrosine shows a 
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sharp SPR feature at 428 nm indicating monodispersity of the sample without any 

anisotropic features.[25]  

Similarly, a SPR maximum of Ag nanocubes at 420 nm is consistent with that of 

previous studies wherein SPR maximum was found to blue-shift with the reduction in 

edge length and 40 nm sized nanocubes with rounded edges lead to SPR maximum at 

ca. 425 nm.[32] Conversely, Ag nanoprisms show three dominant SPR peaks in the UV-Vis 

spectrum that are typical of Ag nanoprisms, and arise due to in-plane dipolar excitation 

(most intense red-most band at 700 nm), in-plane quadrupole excitation (middle band at 

400 nm), and out-of-plane quadrupole excitation (bluest resonance at 335 nm).[27, 33] 

3.3.2 TEM and DLS measurements of Ag nanoparticles  

Representative TEM images in Figure 3.2 of Ag nanospheres, nanocubes and 

nanoprisms reveal that well defined shapes are formed. Ag nanospheres, nanocubes and 

nanoprisms were synthesized using established chemical synthesis protocols that are 

known to predominately produce shape-selective, fairly monodispersed nanostructures 

in high yields. TEM images of Ag nanostructures used in this study show the well-formed 

Ag nanoparticles (Figure 3.2).  

Furthermore, TEM analysis of all Ag nanostructures revealed that there was no 

aggregation in particles which is in agreement with UV-Vis spectroscopic analysis. 

Corresponding particle size histograms of respective 250-350 nanoparticles on TEM 

images were taken into account in each case to obtain particle size distribution. In case of 

Ag nanospheres, the reported values correspond to the nanoparticle diameter and in the 

case of Ag nanocubes and Ag nanoprisms, edge length is reported as a representative of 

nanoparticle size. The average particle diameter for each nanomaterial was calculated 
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along with standard distribution to be 21.8 ± 5.0 nm (diameter), 48.7 ± 9.3 nm (edge 

length) and 30.5 ± 10 nm (edge length) for spheres, cubes and prisms respectively. 

 
Figure 3.2- TEM images and corresponding particle size distribution histograms of (A) Ag nanospheres, 

(B) Ag nanocubes and (C) Ag nanoprisms. 

Dynamic light scattering (DLS) is a well-established technique to determine the 

size distribution profile of nanoparticles that provides information about the 

hydrodynamic radii of nanoparticles in solution by measuring the time scale of light 

intensity fluctuations. Hence, to confirm the hydrodynamic radii of nanoparticles in 

solution, DLS analysis was carried out on all Ag nanostructures.  

 
Figure 3.3- DLS size distribution profile of (A) Ag nanospheres, (B) Ag nanocubes and (C) Ag nanoprisms. 
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DLS measurements in Figure 3.3 revealed that the trend in change of the average 

hydrodynamic radius corroborates with TEM diameter measurements. The average 

hydrodynamic radius was 41.4 nm in Ag nanospheres (equivalent to hydrodynamic 

diameter 82 nm), 69.6 nm (equivalent to hydrodynamic diameter 140 nm) in 

Ag nanocubes and 22.8 nm (equivalent to hydrodynamic diameter 45 nm) in 

Ag nanoprisms. Although DLS reveals a significantly higher particle size than those 

measured using TEM, this is expected because TEM reveals the physical size of high 

contrasting Ag component while DLS reveals hydrodynamic size taking surface capping 

into account.   

3.3.3 X-ray diffraction (XRD) studies of Ag nanoparticles 

Silver crystallites are in a cubic packed structure (FCC- face centred cubic), 

wherein the unit cell structure consists of the same length in all sides and all the faces are 

perpendicular to one another (Figure 3.4A). Silver atoms are present at each corner and 

in the centre of each face of the unit cell. Therefore, this unit cell is referred to as a face-

centered cubic (fcc) unit cell.  

Structural information of Ag nanostructures were obtained by XRD using a general 

area detector diffraction system (GADDS) (Figure 3.4B). XRD patterns of 

Ag nanostructures confirm highly crystalline silver nanoparticles. Ag nanospheres 

showed an XRD pattern typical of face-centered cubic (fcc) silver with a predominant 

(111) Bragg reflection.[34] In the case of Ag nanocubes, (200) peak is significantly stronger 

relative to the (111) that is expected from a sample rich is Ag nanocubes since most of the 

cubes will tend to align flat on the substrate with their surface bound (100) planes being 

oriented parallel to the substrate.[32] Ag nanoprisms showed an XRD pattern typical of 
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flat-lying Ag nanoprisms predominantly covered by (111) fcc faces.[27] The (311) plane 

observed in the XRD pattern of Ag nanoprisms is also typically observed in flat fcc metal 

nanostructures, thus confirming the flat sheet-like morphology of Ag nanoprisms.[27] 

Additionally, two further peaks corresponding to reflections that were recently predicted 

to arise from a hexagonally closed pack (hcp) arrangement of Ag atoms was observed 

(dotted lines in Figure 3.4B). The hexagonal arrangement of Ag atoms is believed to 

propagate perpendicular to the flat (111) face of the nanoprism, resulting in a layered 

defect structure within the nanoprism.[27]  

 

 
Figure 3.4- (A) Schematic of fcc crystal structure. (B) XRD patterns of Ag nanospheres, nanocubes and 

nanoprisms. XRD patterns have been shifted vertically for clarity with Bragg reflections corresponding to 
fcc Ag indicated. The dotted lines correspond to reflections corresponding to hcp Ag.  
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3.3.4 FTIR analysis of Ag nanoparticles 

3.3.4.1 FTIR analysis of Ag nanospheres 

The structure of the amino acid tyrosine used during the synthesis of 

Ag nanospheres is shown in Figure 3.5. Tyrosine consists of three main functional groups: 

phenolic, amine and carboxylic. 

 
Figure 3.5- Functional groups within tyrosine molecule. 

 Tyrosine was used as a reducing agent under alkaline conditions to reduce Ag+ 

ions for the synthesis of stable Ag nanospheres in aqueous solution. Ag+ ion reduction 

occurs at high alkaline pH, therefore tyrosine is a pH-dependent reducing agent. The 

pH -dependent reducing ability of tyrosine is shown to arise due to ionization of the 

phenolic group of tyrosine at high pH which by electron transfer to silver ions, is 

transformed to quinone (Figure 3.6).[25]  

 
Figure 3.6-Mechanism of reduction of Ag+ ions to Ag nanoparticles. 

FTIR studies of pure tyrosine and Ag nanospheres (Figure 3.7) reveal different 

functional groups present within the molecules. Table 3.1 summarises the different 

vibrational bands present in tyrosine and Ag nanospheres. From the peaks observed, the 

carbonyl stretching from the carboxylate in tyrosine occurs from 1609 cm-1 in the case of 
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pure tyrosine. However, there is an apparent shift in vibrational frequency towards 

1624 cm-1 after oxidation of tyrosine (Figure 3.7). Notably, this shift in the vibrational 

frequency of carbonyl stretching has been previously attributed to the formation of a 

quinone type structure due to the oxidation of the phenolic group in tyrosine.[25] 

 
Figure 3.7- FTIR spectra of pure tyrosine and tyrosine-reduced Ag nanospheres. 

The broad O-H peak in the tyrosine reduced Ag nanospheres at 3400 cm-1 

to 3200 cm-1 is due to water molecules apparent in the sample. Absence of vibration 

signals of N-H bend and C-O stretch in Ag nanospheres compared to pure tyrosine 

suggests those functional groups have been involved and/or utilized during synthesis of 

Ag nanoparticles.  

Table 3.1- Summary of functional groups in tyrosine and tyrosine-reduced Ag nanospheres. 

Wavenumber (cm-1) Bond Functional group Appearance 

Tyrosine 

3640 - 3200 H- bonded Phenolic vibrations Broad 

1609 C=O stretch Carboxylic acid Narrow and sharp 

1591 N-H bend 1 ˚ amine Narrow and sharp 

1450 - 1300 C-H stretch Alkanes Narrow 

Tyrosine-reduced Ag nanospheres 

3400 - 3200 O-H stretch Hydroxyl Broad 

1624 C=O stretch Carboxylate ion Narrow and sharp 
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3.3.4.2  FTIR analysis of Ag nanocubes  

 Silver nanocubes were synthesized via a polyol-mediated process. The primary 

reaction of this process involves the reduction of an organic salt (the precursor) by polyol 

at an elevated temperature.[35] Polyvinylpyrrolidone (PVP) is normally added as a 

stabilizer to prevent agglomeration of the colloidal particles. The structure of the 

precursors used in this study has been shown in Figure 3.8. Table 3.2 provides a 

summary of the different vibrational bands present in PVP, EG, Ag nanocubes, and 

washed Ag nanocubes respectively. 

 
Figure 3.8- Structure of precursors EG (left) and PVP (right) employed for Ag nanocubes synthesis. 

FTIR spectra of precursors and Ag nanocubes are shown in Figure 3.9. The 

precursors for FTIR studies were PVP and EG. The polyol process is based on EG, which 

serves as an excellent solvent for PVP due to its relatively high dielectric constant.[36, 37] At 

high temperatures, EG can reduce Ag+ ions into Ag atoms and thereby induce the 

nucleation and growth of silver nanostructures in the solution phase. PVP plays a critical 

role in the formation of nanostructures, possessing efficient stability and size/shape 

uniformity.  

From the comparison between the FTIR spectra of precursors and Ag nanocubes 

(Figure 3.9), it can be seen that all spectra possess a broad hydroxyl vibrational signal at 

ca. 3600 cm-1 to 3000 cm-1 due to water molecules within the sample. The frequencies 
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from 3000 cm-1 to 2800 cm-1 indicate C-H stretching vibration modes of alkanes within 

PVP, EG, and Ag nanocubes.  

It is also evident from Figure 3.9 that PVP plays a critical role in the formation of 

silver nanocubes, as is clear from the comparison of the spectra of PVP and Ag nanocubes 

washed (peak shift and sharpening ca. 1600 cm-1). PVP molecules have been shown to 

preferentially adsorb onto the surface of silver particles, thus stabilizing the small single 

crystal Ag seeds.[32, 36] This also supports that EG acts as a solvent during the synthesis of 

Ag nanocubes, while PVP acts as a shape promoting and stabilizing agent, which leads to 

the formation of Ag nanocubes. 

 
Figure 3.9- FTIR spectra of Ag nanocubes, EG and PVP. 
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Table 3.2- Summary of functional groups in PVP, EG and Ag nanocubes. 

Wavenumber (cm-1) Bond Functional group Appearance 

Polyvinylpyrrolidone 

3400 - 3600 O–H stretch Hydroxyl Broad 

2900 - 2800 C–H stretch Alkane Broad 

1660 C= O stretch Aromatic ketone Broad 

1470 - 1450 C H bend Alkane Medium 

1250 - 1020 C–N stretch Aliphatic amine Medium 

900 - 800 Vinyl Monosubstituted alkene Medium 

Ethylene glycol 

3300 O-H stretch Hydroxyl Broad 

2900 - 2800 C-H stretch Alkane Medium 

1470 - 1450 C-H bend Alkanes Medium 

1110 - 1000 C–O stretch Primary alcohol Strong 

Ag nanocubes  

3600 - 3000 O-H stretch Hydroxyl Broad 

1660 C=O stretch Aromatic ketone Broad 

3.3.4.3 FTIR analysis of Ag nanoprisms 

Silver nanoprism synthesis is a seed-based thermal synthetic procedure that 

selectively produces Ag nanoprisms in a rapid and reproducible manner at room 

temperature. This method involves the silver seed catalysing a reduction of Ag+ by 

ascorbic acid. One of the key precursors for production of high quality Ag nanoprisms is 

the use of PSSS, which is used as a stabiliser in the seed production stage. The structures 

of PSSS and ascorbic acid are shown below in Figure 3.10.  

 
Figure 3.10- Structure of precursors, PSSS (left) and ascorbic acid (right) employed for Ag nanoprisms 

synthesis.  
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Illustrated in Figure 3.11 is the FTIR spectra of precursors used in the synthesis, 

Ag seed as well as Ag nanoprisms. The frequencies observed at 1700 cm-1 to 1560 cm-1 in 

the case of PSSS are aromatic alkenes with HC=CH stretching. Since PSSS is used in the 

synthesis of Ag seeds, a shift at 1635 cm-1 in the case of Ag seeds is apparent. This shift 

suggests binding of PSSS to seed Ag nanoparticles. Similarly, a shoulder peak can be 

observed in the case of Ag nanoprisms at 1635 cm-1. Therefore, direct evidence for the 

utilisation of PSSS and the Ag seed during the synthesis of Ag nanoprisms is observed.  

 
Figure 3.11- FTIR spectra of precursors, Ag seed and Ag nanoprisms. 

 It is also evident that ascorbic acid plays a vital role in the formation of 

Ag nanoprisms with a peak at ca. 1750 cm-1  within the ascorbic acid spectrum 

representing C=O, and a shift in the frequency to ca. 1726 cm-1 in the Ag nanoprisms 

spectrum. Moreover, nitrate frequencies at 1398 cm-1 and 1356 cm-1 present in 
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Ag nanoprisms suggests that AgNO3 have also been involved and NO3- potentially remain 

bound to Ag nanoprisms post synthesis.  

Broad O-H peaks at ca. 3600 cm-1 to 3000 cm-1 are present in ascorbic acid, 

Ag seed and Ag nanoprisms which are attributed to water molecules apparent within the 

samples. Table 3.3 provides a summary of the various vibrational bands present in all the 

precursors used in the synthesis as well as Ag seed and Ag nanoprisms.  

Table 3.3- Summary of functional groups in ascorbic acid, PSSS, AgNO3, Ag seed and Ag nanoprisms. 

Wavenumber (cm-1) Bond Functional group Appearance 

Ascorbic acid 

3550 - 2950 O–H stretch Hydroxyl Broad 

1750 C=O Aldehyde/Ketone Weak 

1660 C=C stretch Aromatic ketone Strong 

1443 C-H scissor Alkane Weak 

1300 C–H bend Alkane  Medium 

PSSS 

3600 - 3100  R–SO3stretch Ionic sulphonate Sharp 

1700 - 1560 HC=CH stretch Aromatic alkene Weak 

AgNO3 

1296 NO3 Nitrate Broad 

Ag seed 

3600 - 3000 O-H stretch Hydroxyl Broad 

1635 HC=CH stretch Aromatic alkene Broad 

Ag nanoprisms 

3600 - 3000 O–H stretch Hydroxyl Broad 

1726 C=O Aldehyde/Ketone Medium 

1635 HC=CH stretch Aromatic alkene Shoulder 

1584 CO-NHx Amide Shoulder 

1398 NO3 Nitrate Broad 

1356 NO3 Nitrate Broad 
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3.3.5  Antibacterial study of Ag nanoparticles against microorganisms  

3.3.5.1 Colony count studies  

 Colony count method was empolyed to investigate the antibacterial effects of 

Ag nanoparticles against different bacterial strains. To evaluate the effects of 

Ag nanoparticles on bacteria, various concentrations of Ag0 nanoparticles ranging from 

0.1 mM to 1 mM were tested against  103 colony forming units (CFU) of bacteria. During 

CFU assays, Ag nanoparticles demonstrated antibacterial activity against both 

Gram negative and Gram positive bacteria as shown in Figure 3.12A and B. 

In the case of Ag nanoparticles against Gram negative bacteria E. coli as shown in 

Figure 3.12A, all nanostructures (prisms, spheres and cubes) showed a consistent trend 

of increasing cell death across the various concentrations from low to high. 

Ag nanoprisms exhibited the least percentage cell death compared to Ag nanocubes 

which displayed the highest cell death in most concentrations. Similarly, Ag nanospheres 

possessed comparable trends to that of Ag nanocubes with little percentage differences in 

cell death across the range of concentrations.  

Similarly, in case of Gram positive bacteria S. albus (Figure 3.12B), Ag nanoprisms 

once again showed the least and limited inhibitory effect in the lower concentrations of 

0.1  mM and 0.2 mM and mild effects in higher concentration with only ca. 30% cell death. 

Since Ag nanoprisms are expected to be highly rich in (111) crystal planes followed by 

that in nanospheres and nanocubes, this observation suggests that crystallography of 

Ag nanoparticles might play some role in assigning activity against Gram positive 

bacteria. 
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Figure 3.12- CFU expressed in percentage cell death (A) Ag nanoparticles against Gram negative E. coli and 

(B) Ag nanoparticles against Gram positive S. albus. 

 Therefore, it can be inferred from the CFU assay that Ag nanocubes perform 

significantly better than Ag nanoprisms and nanospheres in terms of antibacterial activity 

against both Gram negative and Gram positive bacteria. These findings suggest that 

different shape of Ag nanoparticles can considerably influence their antibacterial 
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behaviour and via controlling the shape of Ag nanoparticles, it might also be possible to 

control the growth of both Gram negative and Gram positive bacterial species.  

 

3.3.5.2 Antibacterial growth kinetics studies 

Although bacterial growth on agar plates is commonly employed for 

distinguishing antibacterial properties of various materials, LB broth (liquid) assay 

provides a better qualitative estimation and kinetics of antibacterial activity. Therefore, 

LB broth assays (Figure 3.13) were also performed to compare the antibacterial 

capabilities of Ag nanospheres and Ag nanocubes against Gram negative E. coli and 

Gram positive S. albus, which further supported the results obtained from CFU assay. 

However, as Ag nanoprisms absorb at ca. 600 nm, they were not included in this study. 

The comparison of Ag nanospheres and nanocubes using growth kinetics studies was 

important as they show relatively less difference in activity profile during CFU assay, in 

comparison to Ag nanoprisms that were significantly less effective.  

The dynamics of bacterial growth in the presence and absence of Ag nanoparticles 

was monitored in liquid LB broth (initial bacterial concentration, 106 CFU ml-1) with 

0.1 mM final effective concentration of Ag nanoparticles in 1 mL reaction volume for 106 

starting bacterial population.  

It is apparent from the comparison of curves in Figure 3.13 that the 

Ag nanoparticles in liquid medium caused a growth delay in all cases of bacterial species 

(red and blue curves in Figure 3.13). From the growth curves of Gram negative bacteria it 

is also evident that Ag nanocubes are significantly more effective than Ag nanospheres. In 

the case of E. coli, Ag nanocubes exhibited cytotoxicity (cell death), clearly indicated by 

the negative gradient. The decline in the number of cells at the later time points in case of 
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B A 

Ag nanocubes therefore indicates cytolytic activity of Ag nanocubes. Whereas 

Ag nanospheres could only exhibit growth inhibition within this time frame.  

 
Figure 3.13- Growth kinetic profiles of (A) E. coli and (B) S. albus. 

Interestingly, Ag nanocubes were found to be significantly more effective in 

delaying the growth of Gram positive bacteria S. albus as evident in Figure 3.13B. The 

difference between the control and Ag nanospheres curves were not that significant 

compared to the effectiveness of Ag nanocubes. Therefore, Ag nanocubes are definitely 

more effective than Ag nanospheres as they are found to intensively delay the growth of 

Gram positive bacteria. 

3.3.6 SEM of bacterial cells after treatment of Ag nanostructures 

To understand the behaviour of bacteria on exposure to Ag nanoparticles, 

scanning electron microscopy (SEM) images of bacteria before and after exposure to 

Ag nanoparticles were obtained as shown in Figures 3.14 and 3.15. In the case of E. coli, 

Figure 3.14A shows untreated cells which appear smooth. When cells are exposed to 

Ag nanostructures (Figures 3.14B and D), cell walls show signs of rupture.  In comparison 

to untreated E. coli cells against treated cells with Ag nanoparticles, the images reveal 
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distinct changes in cell morphology, with pitting occurring where Ag nanoparticles are 

present. It is evident that there is a breakdown of cells as well as aggregation of 

Ag nanoparticles with the treatment of Ag nanocubes (Figure 3.14C). In the case of 

Ag nanospheres and Ag nanoprisms (Figure 3.14 B and D) exposure to E. coli promotes 

breakdown of the cell wall with less Ag nanoparticle aggregation observed on the 

bacterial surface in the case of Ag nanoprisms.  

 
Figure 3.14- SEM micrographs of E. coli cells (A) untreated cells and after treatments with 

(B) Ag nanospheres, (C) Ag nanocubes and (D) Ag nanoprisms. 

After the exposure of Ag nanoparticles the components of E. coli bacterial cell wall 

are damaged causing E. coli to migrate from their original close arrangement. This 

confirms that shape-dependent Ag nanostructures have substantial influence on E. coli 

bacterial cell morphology. These observations reveal that in the case of Gram negative 

bacteria E. coli, shape-dependent Ag nanostructures exhibit toxic effects.  

In the case of S. albus, upon treatment of Ag nanostructures there is a clear 

morphological change in contrast to untreated S. albus cells (Figure 3.15A). The cell wall 
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observed in Figure 3.15B with the treatment of Ag nanospheres reveals comprehensive 

breakdown and damage to the bacterial cell integrity. Furthermore, it could be seen that 

treated S. albus upon exposure of Ag nanocubes (Figure 3.15C) showed cells dissolving 

and their cellular components being released. Additionally, the components of S. albus 

bacteria cell wall displayed disorganised and scattered arrangement after the exposure of 

Ag nanoprisms in Figure 3.15D.  

 
Figure 3.15- SEM micrographs of S. albus cells (A) untreated cells and after treatments with 

(B) Ag nanospheres, (C) Ag nanocubes and (D) Ag nanoprisms. 

It has been documented in literature that nanomaterials and heavy metal cations 

such as Ag+ ions can play a vital role in the bacterial cell’s function.[38, 39] It has been 

hypothesised that Ag+ ions can affect the function of membrane bound enzymes and 

proteins. This interaction causes cellular distortion and a loss of viability.[40] Reports on 

the mechanism of inhibitory action of silver ions on microorganisms demonstrate that 

upon Ag+ treatment, DNA loses its replication ability and expression of ribosomal subunit 



 

 

 

73  
 

proteins. Furthermore, other cellular proteins and enzymes essential to adenosine 

triphosphate (ATP) production becomes inactivated.[23, 38, 41-44] 

However, the exact mechanism of bacterial actions of Ag nanoparticles employed 

to cause antibacterial effect is still not well understood. In previous findings 

Ag nanoparticles displayed interaction between constituents of bacterial membrane 

which resulted in structural changes and destruction to membranes, consequently 

leading to cell death.[21, 45] From antibacterial applications and SEM imaging of bacterial 

cells, it is evident that Ag nanostructures cause irreversible bacterial damage to the cell 

wall and result in ultimate cell death by disrupting the bacterial integrity. 

From this study we can speculate that the action of Ag nanoparticles is fairly 

similar to that of silver ions. It may be proposed that when a bacterial cell is in contact 

with Ag nanoparticles silver ions are released due to nanoparticle oxidation which 

inhibits respiratory enzymes, facilitating the generation of reactive oxygen species and 

consequently damaging the cell.  Additionally, Ag nanoparticles have the ability to anchor 

to the bacterial cell wall and subsequently penetrate through it thereby causing structural 

changes in the cell membrane as depicted in SEM images.  

Based on the observed antibacterial activity and existing literature, Figure 3.16 

exhibits various mechanisms by which Ag nanostructures may pose antibacterial activity 

towards Gram negative and Gram positive bacteria. The schematic illustrates 

Ag nanostructures interacting with the cell membrane as well as components within each 

bacterial cell.  
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Figure 3.16- Schematic illustration of potential mechanisms of antibacterial activity of Ag nanostructures 

against E. coli and S. albus. 

3.4 Conclusions 

This study shows that Ag nanoparticles exhibit a shape-dependent antibacterial 

behaviour against bacterial species. Overall, Ag nanoparticles were found to be active 

against both Gram negative and Gram positive bacterial species. Moreover, among 

different shapes of Ag nanoparticles explored, Ag nanocubes performed significantly 

better than Ag nanospheres and nanoprisms, in that order in terms of antibacterial 

activity against both Gram negative and Gram positive bacteria. This is a significant 

finding considering that Ag nanocubes have not so far been studied for antibacterial 

studies, and most of the Ag based nanomaterials reported so far in the literature 

demonstrate antibacterial activity mainly against Gram negative bacteria. Hence, 

Ag nanocubes can potentially be utilized in the future for controlling the growth of 

pathogenic Gram positive bacterial species. 
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Chapter IV 

Influence of synergism between antibiotics 

and silver nanoparticles on antibacterial 

activity: ampicillin, penicillin G and 

polymyxin B 

 

4.1  Introduction 

 Antibiotics are molecules that inhibit microbes, both bacteria and fungi from 

growth inhibition or outright cell killing. Generally, antibiotics are divided into two broad 

groups of selective toxicity according to their biological effect on microorganisms: 

antibiotics that prevent bacteria from growing are known as bacteriostatic, and ones that 

cause bacterial cell death are bactericidal. Certain antibiotics can display bacteriostatic 

activity in some circumstances and bactericidal activity in others, with sufficient damage 

to one or more metabolic pathways or cellular structures.[1] 

 Antibiotic agents can either be natural products or man-made synthetic chemicals 

designed to selectively block specific crucial metabolic pathways in microbial cells 

selectivity.[2] Majority of antibiotics introduced into human clinical use to treat infectious 

disease have been natural products. This aspect of antibiotic discovery is underpinned by 
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one microorganism in a specific habitat and set of environmental conditions to disturb 

neighbouring microbes, either to regulate their growth or to activate their elimination.[3] 

 The range of bacteria or other microorganisms that is affected by a certain 

antibiotic is expressed as its spectrum of action. When antibiotics are effective against 

prokaryotes to kill or inhibit a wide array of Gram positive and Gram negative bacteria, 

they are known to be of broad spectrum. If effectiveness is primarily against either Gram 

positive or Gram negative bacteria, they are of narrow spectrum. Additionally, if effective 

against a single organism or disease, they are referred to as limited spectrum. A medically 

useful antibiotic should have as many of these characteristic as possible:[4] 

 Possess a wide spectrum of activity with the ability to destroy or inhibit many 

different species of pathogenic organisms 

 Nontoxic to the host and without undesirable side effects 

 Non-allergenic to the host 

 Inexpensive and easy to produce 

 Chemically-stable (long shelf life) 

 Least chance of microbial resistance 

 Microbial resistance is uncommon and unlikely to develop 

The first antibiotic was penicillin, which was discovered in 1928 and then followed by 

penicillin-related antibiotics such as ampicillin, amoxicillin and benzylpenicillin which 

are extensively used today to treat various infections and diseases. However complete 

elimination of bacteria is somewhat impossible as they eventually become resistant to 

antibiotics.[5] 

 Antibiotic resistance is a natural phenomenon. When antibiotics are utilised, 

bacteria that show resistance have a greater chance of survival than those that are 
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susceptible. Susceptible bacteria are killed or inhibited by an antibiotic, resulting in a 

selective pressure whereby antibiotic-resistant bacteria are allowed to survive and 

multiply. Some bacteria are naturally resistant to certain types of antibiotics, and may 

also become resistant in two ways: genetic mutation or by acquiring resistance from 

another bacterium.[6-8] Figure 4.1 illustrates how antibiotic resistance spreads in day to 

day life from humans and animals.  

 
Figure 4.1- Schematic representation of antibiotic resistance scheme. 

Different genetic mutations yield diverse types of resistance. Some mutations 

enable the bacteria to produce effective enzymes that inactivate antibiotics, while other 

mutations eliminate the cell target that the antibiotics attack. A mechanism responsible 

for removing compounds such as neurotransmitters, toxic substances and antibiotics out 

of the cell is known as active efflux. The system functions via an energy dependent 

mechanism to pump out unwanted toxic wastes through efflux pumps. These pumps are 



 

 

 

82  
 

protein transporters localised in the cytoplasmic membrane in cells. However, the impact 

of efflux mechanisms on antimicrobial resistance is relatively vast. This may attribute to 

genetic elements encoded on chromosomes and plasmids. Antibiotics can act as inducers 

and regulators of some efflux pumps causing over-expression of several efflux pumps in a 

given bacterial species. However this can lead to a broad spectrum of resistance when 

shared across species.[9, 10]  

Consequently, the extensive use of antibiotics has led to a worldwide escalation of 

bacterial resistance and spread of many pathogens which is a serious concern for modern 

day medicine. High prevalence of multidrug-resistant bacteria among bacteria-based 

infections decreases effectiveness of current treatments and causes millions of 

deaths.[11, 12] Antibiotics are also commonly found in food of animals to prevent, control 

and treat disease, and to promote the growth of food-producing animals. The foremost 

problem is that bacteria and other microbes that cause infections are remarkably 

resilient and have developed several ways to resist antibiotics and other antimicrobial 

drugs. Moreover, resistance is due to increasing use and misuse of existing antibiotics in 

human and veterinary medicine as well as in agriculture. Other factors contributing to the 

development of antimicrobial resistance are:[13, 14] 

 Single mode of action of particular antibiotics 

 Evolving microorganisms themselves, escalation of emerging and re-emerging 

infectious diseases 

 Combination of increased pressure of antibiotic selections  

 Decline in the development of new antibiotics  

Bacteria can obtain antibiotic resistance genes from other microorganisms in 

several ways by conjugation. This allows bacteria to transfer genetic material including 
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genes encoding resistance to antibiotics from one bacterium to another. Bacteriophages 

provide an additional mechanism for passing resistance traits between microorganisms. 

The resistance traits from one bacterium are embedded into the head portion of the 

virus. The virus then transfers the resistance traits into any new bacteria it attacks. 

Bacteria also have the capacity to obtain deoxyribonucleic acid (DNA) from their 

surrounding environment.[15] Hence, any bacteria that attain resistance genes, whether 

by spontaneous mutation or genetic exchange with other bacteria have the ability to 

resist one or more antibiotics. Since bacteria can accumulate multiple resistance traits 

over time, they may become resistant to different categories of antibiotics.  

 The bacterial resistance to antibiotics has been attempted to be resolved by 

discovering new antibiotics and chemically modifying existing antimicrobial drugs. 

However, it is difficult for new antimicrobial drugs to catch up to the microbial 

pathogen’s fast and frequent development of resistance in a timely manner. This 

challenging and dynamic array of infectious diseases and the emergence of bacterial 

strains resistant to current antibiotics, demand for a long term solution to this ever 

growing problem.[16-18] 

 One of the promising approaches in addressing this challenge lies in exploring 

antimicrobial nanomaterials, to which microbial pathogens may not be able to develop 

resistance due to multiple mechanisms of action and novel nanosized platforms for 

efficient antibiotics delivery.[19, 20] It has been suggested in recent studies that some metal 

nanomaterials are known to possess antimicrobial activities to control infectious 

diseases. Moreover, metallic nanoparticles offer many distinctive advantages in reducing 

toxicity, overcoming resistance and lower costs when compared to conventional 

antibiotics. Owing to their small sizes and higher surface to volume ratio, metallic 
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nanoparticles have an enlarged contact surface area with microorganisms. This trait 

enhances biological and chemical activity, which contributes towards potent antibacterial 

properties. In addition to this property, metal nanoparticles have the ability to target 

various bacterial structures as shown in the previous chapter. Nanoparticles can disturb 

functions of cell membranes, causing permeability and interference with metabolic 

processes. 

 Recent studies have shown that combined use of nanoparticles with antibiotics 

makes it possible to reduce the toxicity of both agents towards mammalian cells while 

synergistically enhancing their antimicrobial activity. Investigations of interactions of 

antibiotics with silver nanoparticles are the most common among studies dedicated to 

examination of combined action of metallic nanoparticles with antibiotics. However, most 

of these studies are mainly focused on broad spectrum of antibiotics.[21-24] The variety of 

novel antimicrobials which show synergy with classic antibiotics is limited with many of 

these compounds used as an alternative to conventional treatments and agriculture. 

However, their widespread application is limited, primarily due to their mechanisms of 

action have not been fully characterised and understood.[22-24] 

 Since it has been shown in the previous chapter that Ag nanoparticles exhibit 

antibacterial activities against both Gram negative and Gram positive bacteria, this 

chapter will explore the synergistic effects of Ag nanoparticles when combined with 

antibiotics. The major focus on this chapter is primarily on tyrosine reduced 

Ag nanospheres combined with both broad and narrow spectrums of antibiotics. The 

bactericidal antibiotics selected for this study were ampicillin, penicillin G and 

polymyxin B.  
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4.1.1 Ampicillin 

 Ampicillin, commonly known as broad-spectrum aminopenicillin is a β-lactam 

(beta-lactam) antibiotic which belongs to the broad class of antibiotics and has been 

extensively used to treat bacterial infections. Since it is classified to be in the broad 

spectrum, ampicillin is effective against Gram negative as well as Gram positive 

organisms. Aminopenicillins were created by joining penicillin to an amino group or side 

chain. Addition of the side chains significantly changed the activity of the antibiotic drug 

against some bacteria.  

 
Figure 4.2- Chemical structure of ampicillin. 

4.1.2 Penicillin G 

Penicillin G, also known as benzylpenicillin is a derivative from penicillin. 

Penicillin G possesses a narrow spectrum of effectiveness against microorganisms, 

mainly against Gram positive bacteria. The structure of penicillin G is shown in Figure 4.3. 

 
Figure 4.3- Chemical structure of penicillin G. 
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4.1.3 Polymyxin B 

Polymyxin B is a lipopeptide antibiotic isolated from Bacillus polymyxa. Its basic 

structure consists of a polycatonic peptide ring and a tripeptide side chain with a fatty 

acid tail as shown in Figure 4.4. This antibiotic has a narrow spectrum and is active 

against most Gram negative bacteria.  

 
Figure 4.4- Chemical structure of polymyxin B. 

4.2 Experimental  

4.2.1 Synthesis of Ag nanospheres 

Tyrosine reduced Ag nanospheres were synthesised as discussed in Chapter III, 

with slight modifications. In brief, 10 ml of 10-3 M aqueous silver nitrate was prepared 

and added to 10 ml of 10-3 M aqueous solution of tyrosine. This solution was then diluted 

to 100 mL with Milli-Q water. To this solution, 1 mL of 10-1 M KOH was added and was 

allowed to boil. Within 20 minutes the final colourless solution changed into a light 

yellow colour which indicated the formation of silver nanoparticles. The solution was 

allowed to boil for a further 15 minutes for silver nanoparticles to grow and stabilise.  
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4.2.2 Antibacterial study 

 All antibacterial experiments were performed under aseptic conditions in a 

laminar flow cabinet. Before the commencement of microbiological experiments, media 

cultures, glassware and pipette tips were sterilised by autoclaving at 121°C for 

15 minutes. Escherichia coli was chosen as Gram negative representative and Gram 

positive bacterium Staphylococcus albus was another candidate for antibacterial studies. 

Antibiotics used were ampicillin, penicillin G and polymyxin B.  

4.2.2.1 Colony forming units (CFU) assay 

 Colony forming units assay was used to examine the synergistic effects of 

antibiotics with Ag nanospheres for bactericidal activity against Gram negative and Gram 

positive bacteria. 104 CFU of each bacterium were mixed with appropriate proportion of 

antibiotics causing 20% cell death and different concentrations of nanoparticles in a total 

of 1 mL volume. 100 µL of this was then plated on agar plates and were incubated for 

24 hrs at 37°C and the numbers of colonies were counted.  

In order to screen the optimum concentration of antibiotics needed for further 

studies, preliminary experiments were conducted to determine the amount of antibiotics 

needed to yield ca. 20% cell death. Stock solutions of antibiotics were prepared and from 

this, various aliquots were taken and mixed with 104 bacteria in 1 mL volume tissue 

culture wells as shown in Table 4.1. From each well, 100 µL were plated onto agar plates 

with 1 hr exposure. Plates were then incubated for 24 hrs at 37°C and the numbers of 

colonies were counted. Colonies formed correspond to the number of viable bacteria in 

each suspension at the time of aliquot withdrawal. 
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Table 4.1- Optimum concentration of antibiotics needed for further studies. 

Antibiotics E. coli culture S. albus culture 

 
Stock Solution 

Aliquot for 20% cell 
death Stock Solution 

Aliquot for 20% cell 
death 

Ampicillin (+, -) 1 mg / mL 50 µL  1 mg / 5 mL 10 µL  

Penicillin G (+) - - 1 mg / 5 mL 2 µL  

Polymyxin B (-) 0.0125 mg / mL 10 µL   - - 

Subsequently, each aliquot of antibiotics as determined in Table 4.1 was combined 

with different concentrations of Ag nanospheres such as 0.5 mM, 1 mM, 1.5 mM and 

2.0 mM and were tested for their synergistic effects on both Gram positive and 

Gram negative bacteria via CFU assay. It may be noted that while further discussed 

nanoparticle characterisation aspect investigates only nanoparticles conjugated to 

antibiotics (through removal of free antibiotic in nanoparticle solution by centrifugation), 

the antibacterial tests took both free and conjugated antibiotics into account as per the 

above Table 4.1.  

4.3 Results and discussion 

4.3.1 UV-Visible spectral studies of antibiotics and Ag nanoparticles 

UV-Vis spectra shown in Figure 4.5, display the absorbance of antibiotics with and 

without the addition of Ag nanoparticles (AgNPs). Initially, antibiotics without the 

addition of Ag nanoparticles were characterised by UV-Vis (dotted lines) followed by the 

combination of Ag nanoparticles and antibiotics (solid lines). 

As illustrated in the UV-vis spectra, a strong absorbance peak was centered at 

ca. 320 nm for ampicillin (AMP) and penicillin G (PCG). However in the case of 

polymyxin B (PMB), only a weak peak was observed in this region while a shoulder 

observed at ca. 280 nm attributed to its peptide nature. Tyrosine reduced 

Ag nanoparticles showed a peak maximum at ca. 413 nm. Upon conjugation of antibiotics, 
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the surface plasmon resonance (SPR) peak maxima of Ag shifted to ca. 419, 421 and 

441 nm in case of AMP, PCG and PMB respectively. These shifts in Ag SPR peak maxima 

supports successful binding of antibiotics to the Ag nanoparticle surface.  

 
Figure 4.5- UV-Visible absorbance studies on pristine antibiotics on its own and antibiotics combined with 

Ag nanoparticles. 

4.3.2 TEM and DLS studies of antibiotics combined with Ag nanoparticles 

 Illustrated in Figure 4.6 are  TEM images of Ag nanoparticles combined with 

various antibiotics with corresponding particle size histograms. Images reveal that these 

particles are quasi spherical in shape with low polydispersity. The pristine tyrosine 

reduced Ag nanoparticles were found to be of ca. 21.8 ± 5.0 nm in diameter as shown in 

previous Chapter III. The average particle diameter for each nanomaterial after antibiotic 

exposure was calculated along with the standard deviation of ca. 22.1 ± 8.2 nm, 

21.7 ± 7.7 nm and 23.4 ± 7.1 nm for Ag nanoparticles combined with ampicillin, penicillin 

G and polymyxin B respectively. The nanomaterials are relatively similar in sizes and 
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there were no signs of aggregation post antibiotic exposure which is consistent with 

UV-Vis spectroscopic observation.  

Figure 4.6- TEM images and corresponding particle size distribution histograms of (A) AgNPs+AMP 
(B) AgNPs+PCG and (C) AgNPs+PMB. (Scale bars corresponds to 200 nm) 

Additionally, DLS analysis was carried out on these nanomaterials to substantiate 

TEM results. DLS contributes information on the hydrodyanmic radii of nanoparticles in 

solution by measuring the time scale of light intensity fluctuations. DLS measurements in 

Figure 4.7 reveal the average hydrodynamic radius was 33.1 nm (equivalent to 

hydrodynamic diameter 66.2 nm) in the case of AgNPs+AMP, 28.5 nm (equivalent to 

hydrodynamic diameter 57.0 nm) for AgNPs+PCG and 35.7 nm (equivalent to 

hydrodynamic diameter 71.4 nm) for AgNPs+PMB. In comparison, as shown in 

Chapter III, pristine tyrosine reduced Ag nanoparticles had a hydrodynamic radius of 

41.4 nm (equivalent to hydrodynamic diamter 82.8 nm). Since the hydrodynamic 

diameter is typically larger than the TEM determined diameter by an offset that is a 

function of surface capping agent, reduction in hydrodynamic diameter of 
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Ag nanoparticles after exposure to antibiotics suggest a ligand exchange between 

tyrosine and antibiotics.  

 
Figure 4.7- DLS size distribution of (a) AgNPs+AMP (b) AgNPs+PCG and (c) AgNPs+PMB. 

4.3.3 FTIR analysis of antibiotics combined with Ag nanoparticles 

FTIR spectroscopic analysis of Ag nanoparticles, various antibiotics and 

Ag nanoparticles combined with antibiotics was carried out to understand how 

antibiotics are interacting and binding with Ag nanoparticles. FTIR analysis is also 

beneficial as it provides evidence on the surface chemistry of these particles. Figure 4.8 

reveals different functional groups present within each antibiotic and Table 4.2 provides 

a summary of functional groups present in each nanoparticle and antibiotic combination. 

The spectra of Ag nanoparticles combined with ampicillin, and pure ampicillin are similar 

suggesting that Ag nanoparticles are completely capped with the antibiotic without any 

perturbation of antibiotic structure while sharing spectral bands at frequencies 

1765 cm-1 representing C=O stretch, and 1700 cm-1 to 1450 cm-1 with C=C stretching of 

aromatic rings. Similarly, frequencies at 1393 cm-1 and 1280 cm-1 corresponds to 

aromatic rings with C-O stretching.[25-27]  

In the case of pure penicillin G, the C=O stretch at ca. 1792 cm-1 shifted to 

ca. 1773 cm-1 when combined with Ag nanoparticles. Similarly, aromatic rings with C=C 

stretching at ca. 1516 cm-1 and 1322 cm-1 were shifted to ca. 1499 cm-1 and 1311 cm-1, 
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respectively when combined with Ag nanoparticles. These shifts suggest that there is 

interaction between penicillin G and the metal surface through the C=C bond.[26, 28] 

 
Figure 4.8- FTIR spectral analysis of Ag nanoparticles and antibiotics. 

 In the spectrum for pure polymyxin B, bands at ca. 1649 cm-1 and 1539 cm-1 are 

attributed to the amide I and II vibrational modes.[26, 29, 30] These frequencies were 

slightly shifted to ca. 1647 cm-1 and 1536 cm-1 upon exposure to Ag nanoparticles. The 

shifts indicate the binding of polymyxin B on Ag nanoparticles. Additionally, broad O-H 

peaks ca. 3650 cm-1 to 2800 cm-1 are present in all cases of antibiotics and when 

antibiotics are combined with Ag nanoparticles. These peaks are attributed to water 

molecules apparent within the samples.  

  

4000 3500 3000 2500 2000 1500 1000

 

 
Tr

an
sm

itt
an

ce
 (a

.u
.)

Wavenumber (cm-1)

 AgNPs + PMB
 Polymyxin B
 AgNPs

 AgNPs + AMP
 Ampicillin

 AgNPs + PCG
 Penicillin G



 

 

 

93  
 

Table 4.2- Summary of functional groups in Ag nanoparticles and antibiotics combined with 
Ag nanoparticles. 

Wavenumber (cm-1) Bond Functional group Appearance 

AgNPs with Ampicillin 

3650 - 2800 O-H stretch Hydroxyl Broad 

1765 C=O stretch  Aldehyde/Ketone  Weak 

1700 - 1450 C=C stretch Aromatic rings Weak 

1393 C–O stretch Aromatic rings Weak 

1280 C–O stretch Aromatic rings Weak 

Ampicillin 

3650 - 2800 O–H stretch Hydroxyl Broad 

1765 C=O stretch  Aldehyde/Ketone  Weak 

1700 - 1450 C-C stretch Aromatic rings Weak 

1393 C-O stretch Aromatic rings Weak 

1280 C-O stretch Aromatic rings Weak 

AgNPs with Penicillin G 

3356 N–H stretch  Amine Narrow and sharp 

3088 - 2858 C–H stretch Alkane Broad 

1773 C=O stretch Aldehyde/Ketone Medium 

1604 C=O stretch Aromatic rings Medium 

1499 C=C stretch Aromatic rings Medium 

1311 C=C stretch Aromatic rings Medium 

3356 N–H stretch  Amine Narrow and sharp 

AgNPs with Penicillin G 

3088 - 2858 C–H stretch Alkane Broad 

1792 C=O stretch Aldehyde/Ketone Medium 

1604 C=O stretch Aromatic rings Medium 

1516 C=C stretch Aromatic rings Medium 

1322 C=C stretch Aromatic rings Medium 

AgNPs with Polymyxin B 

3650 - 3150 O–H stretch Hydroxyl Broad 

1647 N–H stretch Amide Medium 

1539 N–H stretch Amide Medium 

Polymyxin B 

3650 - 3150 O–H stretch Hydroxyl Broad 

1649 N–H stretch Amide Medium 

1536 N–H stretch Amide Medium 

AgNPs 

3400 - 3200 O–H stretch Hydroxyl Broad 

1638 C=O stretch Carboxylate ion Narrow and sharp 

 



 

 

 

94  
 

4.3.4 X-ray photoelectron spectroscopy (XPS) of antibiotics combined with 

Ag nanoparticles 

The X-ray photoelectron spectra for C 1s, N 1s and O 1s core level binding energies 

(BEs) of silver nanoparticles that were synthesised by tyrosine mediated reduction of 

silver ions are shown in Figure 4.9. These are in close agreement with the BE’s of silver 

nanoparticles previously reported.[31] The C 1s spectrum was deconvoluted into three 

chemically different components, which were assigned to the aromatic carbon 

(285.04 eV), carbon bound to the quinone oxygen (286.74 eV) and the carbon in 

carboxylate ion (288.53 eV) that bind with the silver metal nanoparticle. The N 1 s 

spectra was deconvoluted into two chemically different nitrogen peaks at 400.17 eV and 

399.25 eV, which correspond to the amine groups bound to the silver nanoparticles and 

free amine groups respectively. Amine groups were shown to bind with nanoparticles, 

therefore these groups may have competitive binding with silver nanoparticles such as 

carboxylate groups. The O 1s spectrum was resolved into three major components with 

BE of 531.72, 532.93 and 536.13 eV. The peaks at 531.72 and 532.93 eV are 

representative of the carboxylate oxygen and the semiquinone group respectively.  The 

high BE O 1s peak at 536.13 eV is indicative of the presence of nitrate ions that are 

coming from the silver nitrate precursor, which are usually present along with 

nanoparticles for stabilisation because complete removal of these ions and molecules 

typically results in the aggregation of nanoparticles.[31] 
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Figure 4.9- XPS spectra of tyrosine reduced Ag nanoparticles. 

The antibiotic ampicillin was added to these nanoparticles and X-ray photoelectron 

spectroscopy was used to determine the binding of antibiotic with Ag nanoparticles to 

identify which functional groups of ampicillin take part in binding. Shown in Figure 4.9 

are the 1s core level spectra for carbon, nitrogen and oxygen of ampicillin as well as 

Ag nanoparticles bound with ampicillin molecules. The C 1s spectra was fitted with three 

chemically distinct carbon species and their BEs were observed at 285.02, 286.55 and 

288.18 eV, respectively. These three chemical states of carbon were assigned to the 

aromatic carbon, carbon that bound to the amine groups and carboxylic acid carbon. The 

spectra for ampicillin is presented in Figure 4.10. The N 1s spectrum for ampicillin shows 

an intense peak at 400.16 eV, which was assigned to secondary amine nitrogen group. 

The higher N 1s binding energy component observed at 402.11 eV represents the 

primary amine group and the weak component at 398.7 eV can be assigned to the 

nitrogen in a cyclic structure. O 1s core level spectrum shows two intense chemically 

different oxygen species, representing the carbonyl oxygen (532.77 eV) and carboxylate 

oxygen (532.13 eV). A weak O 1s component observed at 534.87 eV was assigned to the 

carbonyl oxygen present in the four membered ring. 
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Figure 4.10- XPS spectra of ampicillin and Ag nanoparticles with ampicillin coverage. 

Significant changes in the BEs of the different components of 1s core level spectra 

of carbon, nitrogen and oxygen after ampicillin functionalisation with Ag nanoparticles 

are observed.  In the case of tyrosine mediated synthesis of Ag nanoparticles (Figure 4.9), 

BE of the carboxylate carbon that was bound to the Ag nanoparticles surface appeared at 

288.53 eV, however after functionalisation with ampicillin, the BE was shifted to 

288.23 eV. This BE value was found to be very close to the carboxylic acid C 1s binding 

energy of free ampicillin. Moreover, the BEs associated with the carbon that is bound 

with the amine groups decreased to 286.40 eV. N 1s binding energies of tyrosine reduced 

Ag nanoparticles and the free ampicillin were shifted from 400.17 eV to 399.92 eV, and 

this lowering of BE indicated that the amine groups were no-longer protonated. The O 1s 

binding energy associated with carboxyl oxygen remains at 531.72 eV and the 

appearance of new O 1s peak at 532.52 eV was observed after ampicillin addition to 
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Ag nanoparticles. All these changes clearly indicated that ampicillin bind with the 

Ag nanoparticles through its carboxylic acid group, by partially replacing tyrosine from 

the nanoparticles surface. Therefore, XPS analysis further supports DLS observations, 

which indicated ligand exchange between tyrosine and antibiotics. Since both tyrosine 

and ampicillin have carboxylic acid groups and they can bond with the nanoparticles 

surface, the probable mode of binding of ampicillin with Ag nanoparticles is shown in 

Figure 4.11.  

 
Figure 4.11- Scheme illustrating the structure of Ag nanoparticle with bound ampicillin antibiotic. 

Illustrated in Figure 4.12 is the XPS core level spectra of penicillin G and after its 

functionalisation with Ag nanoparticles. The C 1s spectra of penicillin G was deconvoluted 

into three chemically distinct carbon species and their BEs were observed at 285.01, 

286.34 and 288.03 eV respectively. These three chemical states of carbon were assigned 

to the aromatic carbon, amine groups bearing carbon and carbon in the carboxylic acid 

functional group. The N 1s spectrum for ampicillin shows a major peak at 400.00 eV, 

which was assigned to the secondary amine nitrogen group. Another N 1s component 

fitted at 399.34 eV was assigned to the nitrogen present in the cyclic structure. O 1s core 
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level spectrum shows three chemically distinct species, representing the carbonyl oxygen 

(532.03 eV), carboxylate oxygen (531.14 eV) and the carbonyl oxygen present in the four 

membered ring (535.69 eV). 

Figure 4.12- XPS spectra of penicillin G and Ag nanoparticles with penicilin G coverage. 

Like the previous case, XPS spectra of penicillin G after its binding with 

Ag nanoparticles have shown significant changes. In the case of tyrosine mediated 

synthesis of Ag nanoparticles (Figure 4.9), BE of the carboxylate carbon that was bound 

to the Ag nanoparticles surface appeared at 288.53 eV, while pure penicillin G showed the 

carboxylic carbon BE at 288.03 eV. After penicillin G functionalisation of the 

Ag nanoparticles, both these carboxylate carbon binding energies shifted to 289.34 eV 

and 288.35 eV respectively. These results clearly indicate that carboxylic groups present 

in both tyrosine and penicillin G are bound to the Ag nanoparticles surface. Major changes 

were seen in the O 1s spectrum, wherein carboxylic acid group oxygen binding energies 
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were shifted to 531.48 eV with clear signature of carboxylic acid group binding with 

Ag nanoparticles. The BE of the carbonyl group present in the four membered ring shifted 

from 535.69 eV to 535.99 eV, which is again due to the proximity of this functional group 

to the Ag nanoparticles surface owing to the binding of carboxylic acid group with the 

Ag nanoparticles. In the case of N 1s spectra, the BE of the nitrogen present in the four 

membered ring only was shifted to 399.49 eV, which is again due to the proximity of the 

four membered ring to the Ag nanoparticles surface. Penicillin G and ampicillin differ only 

in the number of amine groups (additional groups in ampicillin), therefore their mode of 

binding is almost similar. They both bind with the Ag nanoparticles through their 

carboxylic acid groups by partially replacing tyrosine molecules from the 

Ag nanoparticles surface. The probable mode of binding of penicillin G with the 

Ag nanoparticle is given in the following Figure 4.13. 

 
Figure 4.13- Scheme illustrating the structure of the Ag nanoparticle with bound penicillin G. 

Polymyxin B is a larger antibiotic, structurally different from penicillin G and 

ampicillin (Figure 4.14). The C 1s spectra of polymyxin B was deconvoluted into three 

chemically distinct carbon species and their BEs were observed at 284.98, 286.38 and 
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288.07 eV respectively. These three chemical states of carbon were assigned to the 

aromatic carbon, amine/hydroxyl groups bearing carbon and carbon in the carbonyl 

group of the amide functional group. The N 1s spectrum for polymyxin B shows a major 

peak at 400.01 eV, which was assigned to the amide nitrogen groups.  Additionally two 

N 1s components fitted at 401.40 and 401.94 eV were assigned to the primary amine 

group nitrogen present in the decapeptide and tail of the polymyxin B respectively. O 1s 

core level spectrum was deconvoluted into two chemically distinct O components, 

representing the carbonyl oxygen (531.41 eV) present in the amide groups and alcohol 

functional groups (533.21 eV).  

Figure 4.14- XPS spectra of polymyxin B and Ag nanoparticles with polymyxin B coverage. 

Unlike the previous two antibiotics, they are minor changes observed in the C 1s 

and N 1s core level spectrum of the nanoparticles. The larger structure of decapeptide 

and associated steric hindrance tends to avoid this group binding with the 
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Ag nanoparticles by replacing the tyrosine molecules from its surface. This minimal 

replacement of tyrosine molecules bound onto Ag nanoparticle surface is further 

reflected from DLS analysis. DLS revealed that while ampicillin and penicillin G caused 

significant reduction in hydrodynamic diameters, only limited reduction in the DLS size 

of Ag nanoparticles was observed during polymyxin B functionalisation. Moreover, 

significant changes are observed in the O 1s binding energies after addition of 

polymyxin B to Ag nanoparticles. In particular, the BE component corresponding to the 

hydroxyl/alcohol groups diminished its intensity. This indicates that polymyxin B can 

bind through the alcohol functional groups present in the long chain attached to the 

decapeptide. This would be beneficial as the antibiotic component is undisturbed and the 

probable mode of binding is given below in Figure 4.15. 

 
Figure 4.15- Scheme illustrating the structure of the Ag nanoparticle with bound polymyxin B. 

Shown in Figure 4.16 are the Ag 3d5/2 and 3d3/2 spin-orbit components of the Ag 

scan. The tyrosine reduced Ag nanoparticles exhibit two chemically distinct peaks in the 

Ag 3d5/2 region at 367.88 and 369.18 eV which have been previously assigned to silver 
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metal and unreduced silver cations, respectively.[31] The presence of silver cations in this 

spectrum suggests that unreduced silver ions remain bound to the nanoparticle surface. 

Each of the Ag nanoparticles with bound antibiotics display peaks at ca. 368.3 and 

374.3 eV representing Ag0, higher than the initial silver binding energy. This is a clear 

indication that the chemical environment of Ag nanoparticles has been changed as a 

result of antibiotic binding.  

 
Figure 4.16- Ag nanoparticles prepared with tyrosine coated with ampicillin, penicillin G and polymyxin B. 
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4.3.5 Antibacterial assays of antibiotics and Ag nanoparticles 

 Colony count method was used to investigate the synergistic effects of 

Ag nanoparticles combined with antibiotics against Gram positive and Gram negative 

bacteria. Since all antibiotic concentrations were set at a constant cell death of 20%, to 

achieve synergism, the percentage cell death of antibiotics combined with 

Ag nanoparticles needs to be greater than the sum of the individual cell death (CD) 

percentage of antibiotics and Ag nanoparticles (i.e., CD% AgNPs/Antibiotics combined > 

CD% antibiotics + CD% AgNPs). 

4.3.5.1 Synergistic effects of ampicillin combined with Ag nanoparticles 

In the case of Ag nanoparticles combined with ampicillin, synergistic effects were 

tested against both Gram negative and Gram positive bacteria as ampicillin is of broad 

spectrum range. Illustrated in Figure 4.17A is the antibacterial profile of Ag nanoparticles 

combined with ampicillin against E. coli. Evidence of synergistic effects can be observed 

across all concentrations of silver, particularly higher synergism is demonstrated at 

lower concentrations. When 0.1 mM of silver was used, the sum of the individual 

percentage cell death of ampicillin and Ag nanoparticles was ca. 54% (20% cell death of 

ampicillin + 34% cell death of AgNPs); however the combined effects of Ag nanoparticles 

with ampicillin exhibited ca. 77% cell death. This gives an additional effect of ca. 23% and 

an overall synergistic enhancement of ca. 43% (23/54×100). The same trend occurs at 

0.2 mM concentration where there is an additional effect of ca. 26% and synergism 

enhancement of 43%. As concentration of silver increases to 0.5 mM, the synergistic 

enhancement decreases to ca. 21% and thereafter ca. 18% for the highest concentration 

at 1.0 mM.  
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Conversely, in the case of Ag nanoparticles combined with ampicillin against 

S. albus as shown in Figure 4.17B, at the lowest concentration of 0.1 mM, the synergistic 

enhancement achieved was ca. 49%. It was then decreased to ca. 17% synergism at 

0.2 mM of silver concentration. As the concentrations increased to 0.5 mM and 1.0 mM, 

limited synergistic effects were apparent, at only 3-4% enhancement. Table 4.3 displays a 

summary of the synergistic effects between the studies of E. coli and S. albus.  

 

 
Figure 4.17- Synergistic effects of Ag nanoparticles and ampicillin against (A) E. coli and (B) S. albus. 
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4.3.5.2 Synergistic effects of penicillin G or polymyxin B combined with 

Ag nanoparticles 

Synergistic effects of penicillin G was tested only against Gram positive bacteria 

S. albus as it is of narrow spectrum antibiotic (Figure 4.18). All concentrations 

demonstrated synergistic effects, with the lowest concentration of 0.1 mM exhibiting the 

highest outcome. At 0.1 mM of silver, the individual sum of percentage cell death of 

penicillin G and Ag nanoparticles demonstrated ca. 37%, and the combined effect 

displayed ca. 69% cell death which suggests a significant synergistic enhancement of ca. 

87%.  As the concentration of silver increases, the synergistic effects decrease to 42% (for 

0.2 mM Ag), 14% (0.5 mM Ag) and 10% (1.0 mM Ag). At higher concentrations, 

Ag nanoparticles itself exhibits significant antibacterial effects therefore at those 

concentrations, the synergism between antibiotics and Ag nanoparticles becomes less 

effective compared to lower concentrations.  

 
Figure 4.18- Synergistic effects of Ag nanoparticles and penicillin G against S. albus. 
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Similar outcomes were achieved in the case of Ag nanoparticles combined with 

Gram negative specific polymyxin B where synergistic effects profile was tested against 

Gram negative bacteria E. coli. Again, as illustrated in Figure 4.19, at lower concentrations 

of silver, synergism is clearly evident. When 0.1 mM silver was used, the individual sum 

of percentage cell death of polymyxin B and Ag nanoparticles achieved was ca. 54% 

compared to 100% cell death when Ag nanoparticles and polymyxin B were combined. 

This produces an additional effect of ca. 46% and a high synergistic enhancement of 

ca. 85%. The percentage cell death of Ag nanoparticles combined with antibiotics is 

ca. 100% across all four concentrations.  

 
Figure 4.19- Synergistic effects of Ag nanoparticles and polymyxin B against E. coli. 

Similar to all other antibiotics, as the silver concentration increases, the 

synergistic effect appears to decrease. This is shown clearly in Table 4.3 which 

summarises all the synergistic effects of each antibiotic combination. It can be 

demonstrated that the lower the silver concentration, the better the synergistic 

enhancements across all antibiotic combinations. The highest synergism was 

demonstrated in 0.5 mM for polymyxin B against E. coli at ca. 85% and for penicillin G 
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against S. albus at ca. 87%, whereas, the similar concentration of Ag nanoparticles in case 

of broad spectrum ampicillin caused only 43% and 49% synergistic enhancements in 

case of E. coli and S. albus, respectively.  

Table 4.3- Summary of synergistic effects of each antibiotic combination. 

*  [𝐶−(𝐴+𝐵)]
(𝐴+𝐵)

× 100 

   

 Percentage cell death (%)  

Concentration 
(mM) 

 
Antibiotic 

(A) 

 
AgNPs 

(B) 

Individual 
AgNPs + 

Antibiotics 
(A+B) 

AgNPs-
Antibiotics 
combined 

(C) 

Additional 
effect 

[C-(A+B)] 

Synergistic 
enhancement 

of activity 
(%)* 

Ampicillin against E. coli 

0.1 20 34 54 77 23 43 

0.2 20 40 60 86 26 43 

0.5 20 52 72 87 15 21 

1.0 20 59 79 93 14 18 

Ampicillin against S. albus 

0.1 20 17 37 55 18 49 

0.2 20 32 52 61 9 17 

0.5 20 51 71 73 2 3 

1.0 20 57 77 80 3 4 

Penicillin G against S. albus 

0.1 20 17 37 69 32 87 

0.2 20 32 52 74 22 42 

0.5 20 51 71 81 10 14 

1.0 20 57 77 85 8 10 

Polymyxin B against E. coli 

0.1 20 34 54 100 46 85 

0.2 20 40 60 100 40 67 

0.5 20 52 72 100 28 39 

1.0 20 59 79 100 21 27 
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4.3.6 SEM of bacteria cells after treatment of Ag nanoparticles and 

antibiotics 

 Physical composition of bacterial cell is essential for its survival and to overcome 

environmental changes and stress. Hence, the morphological changes that occur in the 

bacterial cells after exposure to Ag nanoparticles, antibiotics, and Ag nanoparticles 

combined with antibiotics are illustrated in Figure 4.20-4.23.  

 As mentioned previously, ampicillin is a broad spectrum antibiotic which targets 

Gram negative and Gram positive bacteria. In the study of ampicillin, SEM images of 

bacteria cells without treatment and those treated with Ag nanoparticles and ampicillin 

are demonstrated below in Figure 4.20.  

Figure 4.20- SEM images of E. coli (A) untreated, (B) treatment with ampicillin and (C) treatment with 
Ag nanoparticles combined with ampicillin. (Scale bars corresponds to 5 µm) 

The SEM images of rod-shaped E. coli untreated (Figure 4.20A) and those treated 

with ampicillin on its own (Figure 4.20B) reveal negligible morphological changes, 

especially in the cell membrane integrity. It is evident that there is initial cell wall 

interaction with ampicillin by itself where the bacterial cell edges are roughening, which 

suggests the disruption of cellular component especially membrane change in 

morphology. This observation of slight modification in the bacterial cell also supports the 

results obtained in the antibacterial CFU assay where ampicillin only exhibiting ca. 20% 

cell death.  
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Upon exposure of Ag nanoparticles combined with ampicillin (Figure 4.20C), SEM 

images illustrated distinct morphological changes in E. coli. This change is indicative of 

significant damage to bacterial cell integrity. The combined effect of Ag nanoparticles and 

ampicillin on E. coli is evident where further damage of cells is seen compared to 

ampicillin on its own. Furthermore, the bacterial cells are completely fragmented and the 

dissolving of the bacterial cell walls is evident. These disintegrated cells provide distinct 

evidence that there are distinct changes in the morphology of the cells.  

Figure 4.21 displays SEM images of S. albus bacterial cells with and without the 

treatment of ampicillin and combined Ag nanoparticles and ampicillin. The control image 

of S. albus without exposure (Figure 4.21A) is arranged in grape-like clusters. Upon 

treatment of ampicillin, cells become fused together as illustrated in Figure 4.21B and 

this provides evidence of some interaction between ampicillin and bacterial cells.  The 

combined effects of Ag nanoparticles and ampicillin exposed to S. albus are illustrated in 

Figure 4.21C. As evident in the image, the cell wall components appeared to be exfoliating 

and a change in morphology is apparent. 

Figure 4.21- SEM images of S. albus (A) untreated, (B) treatment with ampicillin and (C) treatment with 
Ag nanoparticles combined with ampicillin. (Scale bars corresponds to 5 µm) 

In contrast, for the case of penicillin G (narrow spectrum) against S. albus, similar 

outcomes are observed as shown in Figure 4.22.  Similarly, when S. albus is treated only 

with penicillin G, bacterial cells appeared to be once again fused together and cell 
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surfaces were peeling (Figure 4.22B). When Ag nanoparticles are combined with 

penicillin G (Figure 4.22C), S. albus cells are dissolved and cellular components appeared 

to be disintegrated. After treatments, the cell wall components are disorganised and 

scattered from the original ordered close packed smooth arrangement.  

Figure 4.22- SEM images of S. albus (A) untreated, (B) treatment with penicillin G and (C) treatment with 
Ag nanoparticles combined with penicillin G. (Scale bars corresponds to 5 µm) 

 Illustrated in Figure 4.23, is the profile for polymyxin B (narrow spectrum) against 

E. coli. When cells are untreated, they are well intact rod-shaped structures as it is 

apparent in Figure 4.23A.  When cells are exposed to only polymyxin B, there is evident of 

change in morphology. There is clear indication of cell wall breakdown, whereby E. coli 

cells appeared to be dissolving and denaturing as observed in Figure 4.23B.  In contrast 

Figure 4.23C depicts that when these cells are exposed to Ag nanoparticles combined 

with polymyxin B, there is a significant alteration in the cell morphology. Bacterial cells 

are dissolved and disorganised from their original arrangement to an extent that cell 

debris is clearly visible. Thus confirming that Ag nanoparticles combined with 

polymyxin B had significant influence on E. coli bacterial cell morphology compared to 

polymyxin B on its own.  

In all cases of the change of morphology and disintegration caused by 

Ag nanoparticles and antibiotics to bacterial cells, it can be observed that cell wall plays a 

vital role in the survival of these bacterial cells. Treatment of bacterial cells resulted in 
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reduction in the initial cell thickness as well as roughening of the cell which caused the 

disruption of the cell wall and membrane.  

Figure 4.23- SEM images of E. coli (A) untreated, (B) treatment with polymyxin B and (C) treatment with 
Ag nanoparticles combined with polymyxin B. (Scale bars corresponds to 5 µm) 

 From antibacterial studies and SEM imaging of bacterial cells, it is clear that 

Ag nanoparticles combined with antibiotics has synergistic effects which cause significant 

irreversible bacterial cell damage and ultimately cell death by disruption of the cell wall 

and membrane when compared with antibiotics on its own.  

4.3.7 Mechanism of action 

As mentioned previously, antibacterial antibiotics are commonly determined 

based on their mechanisms of action, chemical structure, or spectrum of activity. They 

generally target bacterial functions or growth processes. Those that target the bacterial 

cell wall or cell membrane or interfere with essential bacterial enzymes have bactericidal 

activities.  

 Gram negative and Gram positive bacteria both have a peptidoglycan layer as part 

of their cell wall structure. The peptidoglycan layer is substantially thicker and 

multilayered in Gram positive bacteria. The peptidoglycan with orthogonal glycan and 

peptide strands undergo enzymatic cross-linking of the glycan strands by 

transglycosylase action and the peptide strands by the transpeptidase action. The peptide 

cross-links introduce covalent connectivity to the interlacing, transmit mechanical 
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strength and provide the major structure barrier to osmotic pressure forces that could 

kill the bacteria. Antibiotics that affect bacterial cell wall inhibit enzymes or seize 

substrates involved in peptidoglycan assembly and cross-linking.[32] 

 In the case of ampicillin, the amino group present helps penetrate the outer 

membrane of Gram negative bacteria. Ampicillin acts as a competitive inhibitor of the 

enzyme transpeptidase which is needed to form the cell wall. The final stages of bacterial 

cell wall synthesis in binary fission are also inhibited and leads to cell lysis.  

Similarly, penicillin G binds at the active site of the transpeptidase enzyme that 

cross-links the peptidoglycan strands in Gram positive bacteria. It does this by mimicking 

the D-alanyl-D-alanine enzyme residues that would generally bind to this site. Penicillin G 

irreversibly inhibits the enzyme transpeptidase by reacting with a serine residue in the 

transpeptidase. This reaction is irreversible and hence the growth of the bacterial cell 

wall is inhibited.[33] 

Polymyxin B is a cationic antibiotic that consists of a cyclic decapeptide molecule 

which is positively charged and linked to a fatty acid chain. Bactericidal effect of 

polymyxin B is via binding to the bacterial cell membrane and disrupting its permeability 

which results in leakage of intracellular components. Antiendotoxin activity is also 

apparent in polymyxin B; these agents are rapidly bactericidal against many 

Gram negative bacteria. Therefore, polymyxin B acts primarily on the Gram negative cell 

wall, leading to rapid permeability changes in the cytoplasmic membrane and ultimately 

cell death.[34-37] Additionally, a study has found that drug entry into the cell is not 

essential, as polymyxin B can inhibit the growth and respiration via interacting with the 

outer surface of the cells. It was projected that perturbation of the outer membrane 

structure indirectly affected the selective permeability of the inner membrane and 
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inhibited respiration.[38] Since all of the antibiotics employed in this study act on bacterial 

cell wall, it is not surprising that in the presence of antibiotics, nanoparticle uptake may 

be significantly enhanced. This is most likely the dominant reason for large synergistic 

enhancement observed when nanoparticles are jointly used with antibiotics.  

4.4 Conclusions 

 Ag nanomaterials are known for their biological applications due to their high 

surface area to volume ratio. Ag nanoparticles have been employed as potent 

antibacterial agents to overcome resistance. Of many different approaches to overcome 

antimicrobial resistance, using Ag nanoparticles as antibiotics carriers seems to hold 

highest promise. Hence, this chapter has demonstrated that antibiotics bound onto 

Ag nanoparticles as well as those present freely around nanoparticles revealed 

noteworthy influence on antibacterial activities.  

 Additionally, traditional antibiotics with various spectrums were employed as 

functional fragments to influence antibacterial potential on the surface of 

Ag nanoparticles.  

 Furthermore, this chapter provides strong evidence that antibiotic combined 

Ag nanoparticles provide synergistic effects and employ a physical mode of action against 

bacterial cells causing cell wall cleavage and cell lysis. Although Ag nanoparticles 

combined with antibiotics may not replace antibiotics, but they may become valuable 

antibiotic complements by preventing the development of resistance. 
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Chapter V 

Influence of surface corona of silver 

nanoparticles on antibacterial activity: 

tyrosine, curcumin and 

epigallocatechin gallate 

 

5.1  Introduction  

Antioxidants are substances that when present in foods or in the body at low 

concentrations can distinctly delay or prevent the oxidation of proteins, carbohydrates, 

lipids and DNA. They may act by decreasing oxygen concentration, intercepting singlet 

oxygen, preventing first-chain initiation by scavenging initial radicals such as hydroxyl 

radicals, binding metal ion catalysts, decomposing primary products to non-radical 

compounds and chain-breaking to prevent continued hydrogen abstraction from 

substrates.[1-6] Moreover, it is imperative to recognise various herbs, spices and plant 

sources that produce powerful antioxidants as phytochemical elements in seeds, stems, 

fruits and in leaves. These naturally occurring antioxidants are already within the human 

food chain and have been proven to be nontoxic to living organisms and to the 

environment for thousands of years.[7-9] 
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Natural antioxidants from dietary sources include phenolic and polyphenolic 

compounds,[10, 11] chelators,[12, 13] antioxidant vitamins and enzymes[14] as well as 

carotenoids and carnosine.[8, 15] Phenolic compounds are a large group of the secondary 

metabolites produced by higher plants. They are distinguished into classes based on their 

structure and subcategorised according to the number and position of hydroxyl group 

and the presence of other constituents. Polyphenols are regular components of our diets 

and serve as a role in the prevention of degenerative diseases such as cancer and 

cardiovascular diseases.[16] Researchers and food manufacturers have become 

progressively interested in polyphenols, the foremost reason for this growing interest is 

the recognition of the antioxidant properties associated with polyphenols.[17] Moreover, 

polyphenols constitute the active substances found in medicinal plants; modulate the 

activity of an extensive array of enzymes and cell receptors.[18]  

Currently, there is an increasing need to develop environmentally sustainable 

nanoparticle synthesis routes that do not exhibit toxic chemicals. As a result, scientists 

have explored the field of biological systems in the synthesis and assembly of 

nanoparticles. These inspirations of green chemistry includes but not limited to 

employment of bacteria,[19, 20] fungi[21, 22] and phytochemicals to produce 

nanoparticles.[23, 24] Biological methods are considered as a safe and ecologically sound 

alternative to conventional physical and chemical routes.[25-27] In this chapter, three 

different phenolic compounds consisting of one or multiple phenolic groups are adopted 

for the synthesis of Ag nanoparticles; namely tyrosine, curcumin and epigallocatechin 

gallate (EGCG). Additionally, these phenolic compounds are utilised as a reducing as well 

as a capping agent during the synthesis.  
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Tyrosine or 4-hydroxyphenylalanine is an essential aromatic amino acid that is 

derived from phenylalanine by hydroxylation in the para position. This amino acid acts as 

one of the building blocks of protein. Tyrosine can be synthesised in the body from 

phenylalanine, found in high protein packed produces, in plants and most 

microorganisms. The structure of tyrosine is shown below in Figure 5.1 consisting of one 

phenolic group.  

 
Figure 5.1- Chemical structure of tyrosine.   

The polyphenol curcumin is the active ingredient found in the traditional herbal 

remedy and dietary spice turmeric, also known as Curcuma longa. Turmeric is a member 

of the Curcuma botanical group, which is part of the ginger family of herbs. Grounded 

turmeric produces a vibrant yellow-orange colour from a naturally occurring pigment in 

the Curcuma longa tuber; this pigment is the source of curcumin. The warm yellow spice, 

derived from the rhizome of the plant (Figure 5.2), has a long history of use in traditional 

Chinese and Indian medicines, asian cooking, cosmetics and fabric dying for more than 

2000 years.[28-31] 

 
Figure 5.2- Curcuma longa plant, turmeric and grounded curcumin. 
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The use of curcumin as an ancient remedy continues today in India where a 

bandage of turmeric paste is used to treat infections, wound dressings, burns, acne and 

different skin diseases.[31] In food and manufacturing, curcumin is presently used in 

perfumes as a naturally yellow colouring agent, as well as a food additive to flavour 

various types of curries and mustards.[32, 33] 

Recent emphasis on employing the use of natural and complementary medicines 

in Western medicine has diverted the attention of the scientific community to this ancient 

remedy. Researchers have revealed that curcumin possesses an extensive range of 

beneficial properties, including antimicrobial,[34-36] anti-inflammatory,[37-39] 

antioxidant,[40-42] anti-carcinogenic, chemopreventive and chemotherapeutic 

activity.[43-46] Curcumin is a free radical scavenger and hydrogen donor which exhibits 

antioxidant activity. Sharma et al. observed that the phenolic hydroxyl groups are 

essential for antioxidant activity.[47] Illustrated in Figure 5.3 is the structure of curcumin, 

consisting of two phenolic groups.  

 
Figure 5.3- Chemical structure of curcumin. 

Epigallocatechin gallate (EGCG), the main and the most essential polyphenol in 

green tea is a common phytochemical that is claimed to have many potential health 

benefits.[48] These include prevention of cardiovascular disease,[49] anti-inflammatory 

properties,[50] antioxidant,[51-53] antibacterial[54, 55] and anti-carcinogenic properties.[56-58] 

It has been proposed that many of the health benefits of green tea are due to the 

catechins, in particular EGCG to trap reactive oxygen species (ROS).[59, 60] Cancer 
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preventative properties of EGCG have also received recognition as various mechanisms 

for the preventive effect were suggested. These include antioxidant activity, direct 

binding to specific carcinogens and induction of apoptosis.[61, 62] As shown in Figure 5.4 is 

the structure of EGCG which consists of eight phenolic groups.  

 
Figure 5.4- Chemical structure of EGCG.   

 Polyphenols possess strong antioxidant properties and has been documented 

comprehensively.[63-67] The typical mode of action for polyphenols is mainly due to their 

ability to donate hydrogen atoms (5.1) or electrons (5.2).[63, 68, 69] 

𝑅⦁ + 𝐴𝑟𝑂𝐻 → 𝑅𝐻 + 𝐴𝑟𝑂⦁ (5.1) 

𝑅⦁ + 𝐴𝑟𝑂𝐻 → 𝑅− + 𝐴𝑟𝑂𝐻⦁+  (5.2) 

 In the hydrogen-atom transfer (HAT) mechanism in Equation 5.1, the free radical 

(R⦁) removes a hydrogen atom from the phenolic antioxidant (ArOH) and becomes a free 

radical (ArO⦁) itself. This transfer is through homolytic rupture of the O-H bond.  The 

formation and stability of ArO⦁ is highly dependent upon the structural features of the 

ArOH compound. The most crucial determining factors are: 

 Presence, number and relative positions of additional phenolic hydroxyl groups, 

 Involvement in the formation of intramolecular hydrogen bonds  
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 Conformation dependent possibility of allowing electronic delocalisation 

throughout the largest part of the molecule 

All these factors affect the bond dissociation energy (BDE) of the phenolic O-H bond, 

where the weaker the O-H bond, the easier the H-atom transfer will be.  

 The second mechanism is the single-electron transfer (SET) displayed in 

Equation 5.2 from ArOH to a free radical R⦁ with formation of a stable radical cation 

ArOH⦁+. The ionisation potential (IP) of ArOH is another essential physicochemical 

parameter for evaluating the antioxidant efficacy of plant polyphenols where the lower 

the IP, the easier the electron abstraction.  

 The BDE and IP of polyphenols provide interesting information about the 

efficiency and the activity of the phenolic antioxidants.  The following Table 5.1 provides 

the list of BDEs and IPs for the phenolic compounds used in this chapter from the 

literature. Thus, it is expected that the antibacterial activity of Ag nanoparticles may be 

improved by using phytochemicals such as curcumin and EGCG as reducing and capping 

agents. 

Table 5.1- BDE and IP of phenolic compounds found in literature. 

Phenolic Compound BDE (kJ/mol) IP (eV) 

Tyrosine 350[70] 8.0[71] 

Curcumin 348[72] 7.5[72] 

EGCG 294[73] 7.1[74] 

5.2  Experimental 

5.2.1 Synthesis of tyrosine reduced Ag nanoparticles 

 Tyrosine reduced Ag nanospheres were synthesised as discussed previously in 

Chapter III.  
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5.2.2 Synthesis of curcumin reduced Ag nanoparticles 

 In a typical experiment, 10 mL of 10-3 M aqueous silver sulphate (containing 

2 × 10-3 M equivalent of Ag+ ions) was prepared and added to 20 mL of 10-3 M aqueous 

solution of curcumin. This solution was then diluted to 100 mL with Milli-Q water. To this 

solution, 1 mL of 10-1 M KOH was added and was allowed to boil. Within 15 min, the final 

colourless solution changed into yellow in colour which indicates the formation of 

nanoparticles. Curcumin reduced Ag nanoparticles were also synthesised with a mole 

ratio of 1:2 (Curcumin: Ag), wherein while concentration of Ag+ ions were kept constant, 

the amount of curcumin was reduced to 50%.  

5.2.3 Synthesis of EGCG reduced Ag nanoparticles 

 In a typical experiment, 20 mL of 10-3 M aqueous silver sulphate was prepared and 

added to 10 ml of 10-3 M aqueous solution of EGCG. This solution was then diluted to 

100 mL with Milli-Q water. To this solution, 1 mL of 10-1 M KOH was added and was 

allowed to boil. Within 15 min, the final colourless solution changed into green/yellow in 

colour which indicates the formation of nanoparticles. EGCG reduced Ag nanoparticles 

were also synthesised with mole ratio of 1:3 (EGCG: Ag) and 1:8 (EGCG: Ag), wherein with 

a constant amount of Ag+ ions, the amount of EGCG was reduced to one-third and 

one-eighth respectively. 

5.2.4 Processing of Ag nanoparticles by concentration and dialysis 

 All six nanoparticle solutions were dialysed overnight against deionised water 

using 12 kDa dialysis membranes to remove free ions. Samples were then rotary 

evaporated to concentrate the nanoparticle solutions by ten times. After concentration 

and dialysis, all Ag nanoparticles remained stable with an indication that they were 
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strongly capped with their precursors. The solutions were stable under standard 

laboratory conditions at room temperature and used for further characterisation and 

biological applications.    

5.2.5 Quantification of Ag nanoparticles by atomic absorption 

spectroscopy (AAS) 

 Before the utilisation of further applications, AAS was used to determine the 

concentration of silver within each sample.  Ag nanoparticles were initially dissolved in 

nitric acid and calibration standards were prepared using standard silver nitrate solution. 

Based on silver standards, a calibration graph was created and concentrations of silver 

within each sample were determined. Samples were then diluted to desired 

concentration for use.   

5.2.6 Antibacterial applications 

 All antibacterial experiments were performed under aseptic conditions in a 

laminar flow cabinet. Before the commencement of microbiological experiments, media 

cultures, glassware and pipette tips were sterilised by autoclaving at 121°C for 

15 minutes. Gram negative Escherichia coli (E. coli) and Gram positive bacterium 

Staphylococcus albus (S. albus) were used as microorganisms for antibacterial 

applications.  

5.2.6.1 Colony forming units (CFU) assay 

To examine the bactericidal effect of silver nanoparticles against Gram negative 

and Gram positive bacteria, 104 colony forming units (CFU) of each bacteria were mixed 

with various Ag nanoparticles in varying concentrations for 30 minutes in 1 mL volume. 
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100 µL of this was then plated on agar plates. These plates were then incubated for 24 hrs 

at 37°C and the numbers of colonies were counted. Colonies formed correspond to the 

number of viable bacteria in each suspension at the time of aliquot withdrawal.  

5.3 Results and discussion 

5.3.1 UV-Visible spectral studies of functionalised Ag nanoparticles 

 Reduction of aqueous Ag+ ions during exposure to curcumin and EGCG can be 

revealed by UV-Vis spectroscopy. It is known that Ag nanoparticles exhibits yellow colour 

due to the excitation of surface plasmon vibrations (SPR) in metal nanoparticles.[75, 76] 

The SPR band for spherical Ag nanoparticles appears in the range of 380 nm to 440 nm in 

aqueous solutions. UV-Visible absorption spectra of Ag nanoparticles functionalised with 

tyrosine, curcumin and EGCG were obtained (Figure 5.5).  It may be noted that in all the 

cases, the amount of Ag+ ions used for nanoparticle synthesis is the same, while 1:1, 1:2, 

1:3 and 1:8 phenolic Ag nanoparticles ratios correspond to increasingly less molar 

amounts of phenolic compounds with respect to constant 0.1 mM Ag2SO4. 

In Figure 5.6, UV-Vis spectra have been separated according to their functionalised 

groups. A sharp SPR band for spherical tyrosine reduced Ag nanoparticles occur at 

ca. 417 nm in aqueous medium. For curcumin reduced Ag nanoparticles, SPR bands 

centred around 421 nm (1:1) is observed and as the amount of curcumin is decreased, 

there is an apparent shift to ca. 412 nm. There is also a noticeable decrease in intensity in 

the Ag SPR peak for C1:Ag2 which includes less curcumin, suggesting that there is not 

enough reducing agent (curcumin) available to reduce all of the Ag+ ions. 
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Figure 5.5- UV-Visible spectra of tyrosine, curcumin and EGCG reduced Ag nanoparticles in different mole 

ratios.   

   
Figure 5.6- UV-Visible spectra of functionalised Ag nanoparticles separated for clarity.  

  Similarly, at equimolar (1:1) concentration of EGCG reduced Ag nanoparticles, SPR 

bands are observed at ca. 406 nm. As the amount of EGCG is decreased, the peak at ca. 

406 nm shifted to 404 nm for (1 EGCG: 3 Ag) and (1 EGCG: 8 Ag) with a decrease of 

intensity. Again, the intensities of the ratios decrease as less EGCG is apparent within the 

sample, suggesting the lack of enough reducing agent to allow complete reduction of Ag+ 

ions. 
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5.3.2 Silver reducing capabilities of phenolic compounds via AAS 

 Dialysed solutions were analysed by AAS to determine the concentration of silver 

after functionalised nanoparticle reduction. During the synthesis of each sample, the 

amount of precursor capping and reducing agent i.e. tyrosine, curcumin and EGCG, was 

decreased according to their phenolic group present within their structure. For example, 

in the case of amino acid tyrosine, only one active phenolic group is present, therefore an 

equimolar ratio of 1:1 (Tyr:Ag) was studied. As for the structure of curcumin, two 

phenolic groups are present hence ratios of 1:1 and 1:2 were studied. EGCG on the other 

hand consists of multiple phenolic groups, leading ratios of 1:1, 1:3 and 1:8 to be 

synthesised. During the synthesis, since 0.1 mM Ag2SO4 was employed, it corresponds to 

0.2 mM Ag+ ions that remained constant for all six nanoparticle solutions. Illustrated 

below in Table 5.2, depicts the concentrations of silver present before and after synthesis 

according to AAS analysis.  

Table 5.2- Concentrations of silver and phenolic compounds and their reducing capabilities. 

System Ag (mM) Phenolic compounds (mM) AgNPs (mM) Efficiency (%) 

Tyr-AgNPs 1:1 0.2 0.2 0.172 86 

Curc-AgNPs 1:1 0.2 0.2 0.178 89 

Curc-AgNPs 1:2 0.2 0.1 0.180 90 

EGCG-AgNPs 1:1 0.2 0.2 0.143 72 

EGCG-AgNPs 1:3 0.2 0.07 0.142 71 

EGCG-AgNPs 1:8 0.2 0.025 0.147 74 

From Table 5.2, it can be observed that among different reducing agents, EGCG 

provided the least amount of silver content in Ag nanoparticles from 71-74% efficiency 

across different concentrations of EGCG, while tyrosine could reduce Ag+ ions with 86% 

efficiency. Overall, the highest silver nanoparticle concentrations attained were from 

curcumin for both ratios of 1:1 and 1:2 with ca. 90% reduction efficiency. Therefore, of all 

three phenolic compounds, curcumin shows the best Ag+ ion reducing capability. 
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Although the ratios of phenolic compounds to silver were decreased, the reducing 

capabilities within each sample did not significantly differ. This suggests that more than 

one phenolic group present in curcumin and EGCG structure can simultaneously 

participate in reduction of Ag+ ions.  

5.3.3 TEM and DLS measurements of functionalised Ag nanoparticles 

  Illustrated in Figure 5.7 are TEM images and particle size distribution histograms 

of functionalized Ag nanoparticles with their respective mole ratios. Influence of the 

amount of capping agent used during synthesis can determine the surface modifications 

on particle size and distribution. Tyrosine reduced Ag nanoparticles (Figure 5.7A) are 

quasi spherical in appearance with an average particle diameter of ca. 21.8 nm and 

standard deviation of 5.0 nm.  

 Curcumin reduced Ag nanoparticles are spherical in shape in both mole ratios 

(Figure 5.7B and 5.7C). As the ratio of curcumin decreases, the average size diameter is 

increased. The average particle diameter for each curcumin reduced Ag nanoparticle was 

calculated along with standard deviation to be ca. 14.5 nm ± 5.6 nm and 

ca. 15.2 nm ± 5.6 nm for curcumin reduced Ag nanoparticles 1:1 and curcumin reduced 

Ag nanoparticles 1:2, respectively. 

 EGCG reduced Ag nanoparticles portrayed similar trends in the increase of particle 

size diameter as the ratio of EGCG decreases (Figure 5.7D-F). These spherical particles 

become aggregated at the highest mole ratio of 1:8. This may be due to a reduction in the 

amount of EGCG available as a capping agent post reduction of Ag+ ions. The average 

diameter for each EGCG reduced Ag nanoparticle was ca. 10.5 nm ± 7.4 nm, 

ca. 11.8 ±7.2 nm and ca. 24.1 nm ± 16.4 nm for EGCG reduced Ag nanoparticles at 1:1, 1:3 
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and 1:8 mole ratios respectively. According to Ejima et al., it was found that the increase 

in salt concentration affects the morphology of nanomaterials.[77] In that study, with an 

increasing metal ion concentration with respect to a polyphenol as a reducing agent, 

larger film assembly and increase of roughness was observed. Similarly, in this study 

while overall Ag+ ion remain constant, the Ag2SO4 concentration has been artificially 

increased with respect to relative amount of EGCG present.  

 

 
Figure 5.7- TEM images and corresponding particle size distribution histograms of functionalised Ag 

nanoparticles at various mole ratios: (A) tyrosine Ag nanoparticles, (B) curcumin Ag nanoparticles 1:1, (C) 
curcumin Ag nanoparticles 1:2, (D) EGCG Ag nanoparticles 1:1, (E) EGCG Ag nanoparticles 1:3 and (F) EGCG 

Ag nanoparticles 1:8. 
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Alternatively, size distribution of the functionalised Ag nanoparticles was also 

investigated via dynamic light scattering (DLS). DLS provides information on the 

hydrodynamic radii of nanoparticles in solution by measuring the time sale of light 

intensity fluctuations. DLS measurements in Figure 5.8 provided the trend in change of 

the average hydrodynamic radius for each mole ratio. The average hydrodynamic radius 

for tyrosine reduced Ag nanoparticles was 41.4 nm (equivalent to hydrodynamic 

diameter 82.8 nm). 

 
Figure 5.8- DLS size distribution profile of (A) tyrosine Ag nanoparticles, (B) curcumin Ag nanoparticles 

1:1, (C) curcumin Ag nanoparticles 1:2, (D) EGCG Ag nanoparticles 1:1, (E) EGCG Ag nanoparticles 1:3 and 
(F) EGCG Ag nanoparticles 1:8.  

In the case of curcumin reduced Ag nanoparticles, at equimolar ratio the average 

hydrodynamic radius was 25.1 nm (equivalent to hydrodynamic diameter 50.2 nm) and 

at 1:2 mole ratio, the average hydrodynamic radius was 18.8 nm (equivalent to 

hydrodynamic diameter 37.6 nm). Moreover, as for EGCG reduced Ag nanoparticles, the 

equivalent trend of increase of hydrodynamic radius are observed as the mole ratio rises. 

The average hydrodynamic radius was 65.7 nm (equivalent to hydrodynamic diameter 
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131.4 nm) for equimolar ratio, 75.6 nm (equivalent to hydrodynamic diameter 151.2 nm) 

for 1:3 mole ratio and 75.6 nm (equivalent to hydrodynamic diameter 151.2nm) for 1:8 

mole ratio. 

5.3.4 X-ray diffraction (XRD) studies of functionalised Ag nanoparticles 

 Silver crystallises in a cubic close packed structure. The unit cell for this structure 

is cubic consisting of the same length and all faces are perpendicular to each other.  Silver 

atoms are present at each corner as well as in the centre of each face of the unit cell. This 

unit cell is also known as a face-centered cubic (FCC) unit cell. Structural information of 

functionalised Ag nanoparticles were attained via XRD using a general area detector 

diffraction system (GADDS) as shown in Figure 5.9. 

 
Figure 5.9- XRD patterns of functionalised Ag nanoparticles.  

Diffraction patterns of functionalised Ag nanoparticles confirmed the crystalline 

structure of silver nanoparticles and are normalised to the (111) peak. All peaks in the 

XRD pattern can be readily indexed to a face-centered cubic structure of silver. Curcumin 
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reduced Ag nanoparticles in all mole ratios displayed characteristic (111), (200) and 

(220) peaks which represents the FCC silver plane in Bragg’s Law. In the case of EGCG 

reduced Ag nanoparticles, the same (111), (200) and (220) peaks of silver are shown. 

Additionally, an extra peak at (311) plane of silver FCC is apparent across all mole ratios, 

however intensity decreases as mole ratios rises to 1:8. The XRD pattern of tyrosine 

reduced Ag nanoparticles is provided in Chapter III.  

5.3.5 FTIR analysis to understand surface corona of functionalised 

Ag nanoparticles 

 Tyrosine reduced Ag nanoparticle FTIR can be found in Chapter III.  

5.3.5.1 FTIR analysis of curcumin-reduced Ag nanoparticles 

The molecule of curcumin as shown in Figure 5.10, have an alternating conjugated 

symmetrical structure with single (-C-C-) and double (-C=C-) bonds. There are two 

benzene rings, two methoxy and predominantly two hydroxyl functional groups. 

Curcumin can also exist in two tautomeric forms in the central part of the molecule; keto 

with two C=O groups, and a C=O and C-OH group for enol form.  

 
Figure 5.10- Chemical structure of curcumin. 

The FTIR spectrum of curcumin and curcumin reduced Ag nanoparticles are 

shown in Figure 5.11. In the case of curcumin alone, the highest frequency region for both 

phenolic OH vibrations were calculated at 3595 cm-1 by Kolevet et al.,[78] however in 

practice this band could be shifted towards the negative scale due to intramolecular and 
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intermolecular hydrogen bonding and this can be seen in Figure 5.11, with a weak sharp 

peak at ca. 3509 cm-1. Towards the middle region, a sharp peak at ca. 1627 cm-1 has a 

predominately mixed C=C and C=O character of the benzene ring. The observed shoulder 

peak at ca. 1602 cm-1 is attributed to the symmetric aromatic ring stretching vibrations 

C=Cring. The medium intensity peak at ca. 1506 cm-1 is assigned to the C=O. Most bands in 

the frequency region 1400 cm-1 to 1490 cm-1 are highly mixed with one clear band at 

ca. 1428 cm-1. This band corresponds to deformation vibrations of the two methyl groups. 

In-plane deformation vibrations of CCH of phenyl rings and skeletal in-plane formations 

are observed at ca. 1274 cm-1 and ca. 1182 cm-1 respectively.  In the range of 1320 cm-1 to 

1200 cm-1, the observed bands at 1315 cm-1 and 1204 cm-1 are attributed to C-O 

and  C=C-H of interring chain respectively.  In this fragment the vibrations of the phenyl 

group are intensely mixed with skeletal groups. Therefore a prominent peak at 

ca. 1152 cm-1 corresponds to C-O-C vibration. The band at ca. 1024 cm-1 is attributed to 

the C-H out of plane vibration of the aromatic ring.  

 
Figure 5.11- FTIR spectra of pure curcumin and curcumin reduced Ag nanoparticles at various mole ratios.  
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 When curcumin is used to reduce silver ions to form Ag nanoparticles, several 

bands representing curcumin were shifted from their original positions according to the 

IR spectrum. There is an increase in intensity for the hydroxyl vibration for 

Curc-AgNPs 1:1 and Curc-AgNPs 1:2 with a slight shift at ca. 3430 cm-1 and ca. 3432 cm-1 

respectively.  

 The assignment of the ketone functional group C=O was shifted from the original 

spectrum to ca. 1514 cm-1 for Curc-AgNPs 1:1 and ca. 1512 cm-1 for Curc-AgNPs 1:2. The 

intensities of these peaks have also been diminished upon binding of curcumin to 

Ag nanoparticles during synthesis.  

 The phenolic groups in Curc-AgNPs 1:1 and Curc-AgNPs 1:2 were also shifted to 

ca. 1272 cm-1 and ca. 1268 cm-1. The ether vibration for both ratios shifted to 

ca. 1130 cm-1 from the original curcumin spectrum at ca. 1152 cm-1. Similarly, the C-H 

vibration of the aromatic ring were shifted to ca. 1034 cm-1 and ca. 1032 cm-1 for 

Curc-AgNPs 1:1 and Curc-AgNPs 1:2. A summary of the various vibrational bands and 

functional groups present for curcumin and curcumin reduced Ag nanoparticles is 

provided in Table 5.3.  
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Table 5.3- Summary of functional groups in curcumin and curcumin reduced Ag nanoparticles. 

5.3.5.2 FTIR analysis of EGCG-reduced Ag nanoparticles 

FTIR analysis of EGCG and EGCG reduced Ag nanoparticles were carried out to 

understand how the functional groups interact as well as for providing information on 

the surface chemistry of Ag nanoparticles. Illustrated in Figure 5.12 is the FTIR spectra of 

EGCG and EGCG reduced Ag nanoparticles. In regards to the EGCG spectrum, a weak 

hydroxyl peak at ca. 3359 cm-1 is observed. This is due to the vibration of the OH stretch 

of phenolic hydroxyl group.[79, 80] EGCG demonstrating a sharp absorption band at 

ca. 1691 cm-1 is assigned to C=O of the ester functional group. A peak representing a C-O 

Wavenumber (cm-1) Bond Functional group Appearance 

Curcumin 

3509 O-H stretch Hydroxyl Weak 

1627 C=O stretch Aromatic  Sharp 

1602 C=Cringstretch Aromatic  Weak 

1506 C=O Ketone Medium 

1428 C-H  Alkane Medium 

1315 C-O Ether Weak 

1274 CCH Phenyl Medium 

1204 C=C-H Alkene Narrow 

1182 CCH Phenyl Weak 

1152 C-O-C  Ether Medium 

1024 C-H Aromatic Medium 

Curc-AgNPs 1:1 

3430 O-H stretch Hydroxyl Broad 

1514 C=O Ketone Weak 

1272 CCH Phenyl Broad 

1130 C-O-C Ether Weak 

1034 C-H Aromatic Medium 

Curc-AgNPs 1:2 

3432 O-H stretch Hydroxyl Broad 

1512 C=O Ketone Weak 

1268 CCH Phenyl Broad 

1130 C-O-C Ether Weak 

1032 C-H Aromatic Medium 
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bond can be found at ca. 1343 cm-1. Sharp aromatic ring stretching vibrations can be 

observed at ca. 1615 cm-1, 1527 cm-1 and 1447 cm-1.  Similarly, an aromatic alcohol C-O 

with a sharp band is evident at ca. 1292 cm-1. Furthermore, a sharp phenol C-O peak at 

ca. 1217 cm-1 and alcohol bands at ca. 1144 cm-1 and 1095 cm-1 are present.  

 
Figure 5.12- FTIR spectra of EGCG and EGCG reduced Ag nanoparticles.  

Upon utilisation of EGCG in the synthesis for the formation Ag nanoparticles, 

numerous bands were shifted from the original EGCG spectrum. Evidence of the 

broadening of the hydroxyl peaks are related to the intermolecular H-bonds and O-H 

stretching modes in EGCG-AgNPs mole ratios of 1:1, 1:3 and 1:8 with peaks at 

ca. 3426 cm-1 and 3446 cm-1.[81] 

The assignment of the ester functional C=O peak was also shifted in all mole ratios 

with a weaker intensity. For EGCG-AgNPs 1:1 the peak shifted to ca. 1702 cm-1, 

EGCG-AgNPs 1:3 shifted to ca. 1708 cm-1 and EGCG-AgNPs 1:8 shifted to ca. 1704 cm-1.  
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Aromatic C=C band broadening and shifting is evidence in all mole ratios at 

ca. 1606 cm-1 (EGCG-AgNPs 1:1), 1630cm-1 (EGCG-AgNPs 1:3) and 1622 cm-1 

(EGCG-AgNPs 1:8). Similarly, the same trend occurs for the alcohol functional group C-O 

in EGCG-AgNPs 1:3 and EGCG-AgNPs 1:8 with shifts at ca. 1120 cm-1 and ca. 1118 cm-1 

respectively.  

Since AgSO4 was utilised in the synthesis, sulphate SO4 peaks can be observed in 

all mole ratio spectral data post synthesis. These peaks occurred at ca. 1384 cm-1 

(EGCG-AgNPs 1:1), 1392 cm-1 (EGCG-AgNPs 1:3) and 1390 cm-1 (EGCG-AgNPs 1:8). The 

structure of EGCG (Figure 5.13) and a summary of the various vibrational bands and 

functional groups present for EGCG and EGCG reduced Ag nanoparticles are provided in 

Table 5.4.  

 

 
Figure 5.13- Chemical structure of EGCG. 
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Table 5.4- Summary of functional groups in EGCG and EGCG reduced Ag nanoparticles.  

 

  

Wavenumber (cm-1) Bond Functional group Appearance 

EGCG 

3359 O-H stretch Hydroxyl Weak 

1691 C=O  Ester Sharp 

1615 C=C Aromatic Sharp 

1527 C=C  Aromatic Sharp 

1447 C=C Aromatic  Sharp 

1343 C-O Ester Sharp 

1292 C-O Aromatic alcohol Sharp 

1217 C-O Phenol Sharp 

1144 C-O Alcohol Sharp 

1095 C-O Alcohol Sharp 

EGCG-AgNPs 1:1 

3426 O-H stretch Hydroxyl Broad 

1702 C=O Ester Medium 

1606 C=C Aromatic Strong 

1384 SO4 Sulphate Weak 

EGCG-AgNPs 1:3 

3446 O-H stretch Hydroxyl Broad 

1708 C=O Ester Medium 

1630 C=C Aromatic Broad 

1392 SO4 Sulphate Weak 

1120 C-O Alcohol Weak 

EGCG-AgNPs 1:8 

3446 O-H stretch Hydroxyl Broad 

1704 C=O Ester Medium 

1622 C=C Aromatic Broad 

1390 SO4 Sulphate Weak 

1118 C-O Alcohol Weak 
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5.3.6 Antibacterial assays of functionalised Ag nanoparticles 

5.3.6.1 Colony count studies for equimolar ratios of functionalised 

Ag nanoparticles. 

 Colony count method was employed to examine the antibacterial effects of 

functionalised Ag nanoparticles against Gram negative and Gram positive bacteria E. coli 

and S. albus, respectively. To determine the effects of functionalised Ag nanoparticles on 

bacterial growth, various concentrations of Ag0 nanoparticles ranging from 0.1 mM to 

1 mM equivalent of Ag+ ions were applied to 103 CFU of bacteria as per the protocols 

elaborated in Chapter III and IV. Figures 5.14A and B indicate the antibacterial activity 

profile for Gram negative and Gram positive bacteria at equimolar ratios.  

 In the case of E. coli shown in Figure 5.14A, when all functionalised 

Ag nanoparticles were at equimolar ratios, there is a consistent trend of the increase of 

cell death across all concentrations. Among three phenolic capping agents, tyrosine 

reduced Ag nanoparticles exhibited the least activity across all concentrations from 

0.1 mM to 1.0 mM. As the concentration of silver increases, curcumin and EGCG reduced 

Ag nanoparticles showed comparable activity with enhancement in antibacterial activity 

as a function of Ag concentration. 

 Similarly, in the case of S. albus antibacterial profile (Figure 5.14B), tyrosine 

reduced Ag nanoparticles again showed the lowest inhibitory effect across all 

concentrations. This is followed by curcumin reduced Ag nanoparticles with moderate 

percentage cell death across all concentrations. While curcumin reduced Ag nanoparticles 

showed higher activity than tyrosine reduced Ag nanoparticles, EGCG reduced 

Ag nanoparticles demonstrated the highest activity across all concentrations. There is a 
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significant increase in cell death at the higher end of the concentration range of 0.5 mM 

and 1.0 mM with ca. 79% and 94% respectively.  

 

 
Figure 5.14- CFU expressed in percentage cell death of (A) functionalised Ag nanoparticles against Gram 

negative E. coli and (B) functionalised Ag nanoparticles against Gram positive S. albus.   
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Overall, in regards to equimolar ratios, tyrosine reduced Ag nanoparticles 

displayed the least activity compared to other phenolic compounds both in the case of 

E. coli and S. albus. However, the comparative antibacterial profiles of curcumin and EGCG 

reduced Ag nanoparticles were different in case of E. coli and S. albus. In case of E. coli, 

both curcumin and EGCG reduced Ag nanoparticles showed equivalent activity while in 

case of S. albus, EGCG-AgNPs showed significantly higher activity than Curc-AgNPs. The 

relative activity profiles of different nanoparticles are in line with the dissociation 

energies and ionization potentials for each phenolic compound from the literature.[70-74] 

In general, and particularly at lower Ag concentrations, functionalised Ag nanoparticles 

are shown to be relatively more effective against Gram negative bacteria E. coli  over 

Gram positive S. albus. However, at the higher silver concentrations of 0.5 mM and 

1.0 mM, EGCG reduced Ag nanoparticles produces a higher percentage cell death in the 

case of Gram positive S. albus. 

5.3.6.2 Colony count studies for varied mole ratios of curcumin 

reduced Ag nanoparticles. 

 Two mole ratios of 1:1 and 1:2 (Curc:Ag) were tested against Gram negative and 

Gram positive bacteria. Concentrations of silver ranging from 0.1 mM to 1.0 mM were 

applied to 103 CFU of bacteria. Figures 5.15A and B illustrate the antibacterial activity of 

curcumin reduced Ag nanoparticles. With reference to E. coli as shown in Figure 5.15A, 

both mole ratios of curcumin reduced Ag nanoparticles exhibited a consistent trend of 

increasing cell death with rising silver concentration. The highest activity was achieved 

by curcumin reduced Ag nanoparticles comprising 1:2 mole ratio (less curcumin). At 

lower concentrations of silver, i.e. 0.1 mM and 0.2 mM, the average difference in 
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percentage cell death between the ratios of 1:1 and 1:2 are ca. 20%. The difference in cell 

death increases at 0.5 mM to ca. 25%. Thereafter, at the highest concentration of 1.0 mM, 

the variance of cell death between the two ratios is minute, ca. 5%. 

 

 
Figure 5.15- CFU expressed in percentage cell death of (A) curcumin reduced Ag nanoparticles against 

Gram negative E. coli and (B) curcumin reduced Ag nanoparticles against Gram positive S. albus. 
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Moreover, the antibacterial profile for Gram positive bacteria S. albus displays 

similar trends as E. coli with the increase of cell death as the silver concentration rises as 

shown in Figure 5.15B. Likewise, curcumin reduced Ag nanoparticles at mole ratio of 1:2 

(less curcumin) demonstrated the higher inhibitory effects. The difference in percentage 

cell death for the Gram positive S. albus is greater than that observed for E. coli. Starting 

at the lowest concentration of 0.1 mM, the difference is ca. 35% followed by ca. 34% at 

0.2 mM concentration. The percentage cell death for mid-range of 0.5 mM concentration 

was at ca. 26%, relatively similar to E. coli. At the highest concentration of 1.0 mM, the 

deviation of cell death was ca. 17% compared to merely ca. 5% in the E. coli study.  

 Interestingly, it can be observed that with less curcumin functionalised onto the 

surface of silver, the antibacterial activity gets enhanced. This suggests that when less 

curcumin is used as a capping agent, the corona layer is thinner and allows the facile 

nanoparticle oxidation to interact with bacteria cells.  

5.3.6.3 Colony count studies for varied mole ratios of EGCG reduced 

Ag nanoparticles. 

 Three mole ratios of 1:1, 1:3 and 1:8 (EGCG:Ag) were likewise tested against 

Gram negative and Gram positive bacteria. Reiteratively, concentrations of silver ranging 

from 0.1 mM to 1.0 mM were applied to 103 CFU of bacteria. Figures 5.16A and B portrays 

the antibacterial activity of EGCG reduced Ag nanoparticles. Similarly to that of curcumin 

reduced Ag nanoparticles against E. coli, all mole ratios of EGCG reduced Ag nanoparticles 

displayed the same behaviour in the increase of cell death with increase in silver 

concentration (Figure 5.16A). As expected from curcumin study, the greatest inhibitory 

effects were achieved by EGCG reduced Ag nanoparticles at 1:8 mole ratio (less EGCG). At 
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the lowest silver concentration of 0.1 mM, equimolar EGCG reduced Ag nanoparticles 

exhibited a percentage cell death of ca.  49% compared to the 1:3 and 1:8 ratios which 

possessed an equal cell death at ca. 67%.  At a silver concentration of 0.2 mM, the cell 

death of EGCG reduced Ag nanoparticles 1:3 remained the same at ca. 67% whereas 

equimolar and 1:8 mole ratios increased in percentage cell death at ca. 54% and 87% 

respectively. Similar increase of percentage cell death is apparent at 0.5 mM 

concentration, with ca. 61%, 71% and 93% for EGCG reduced Ag nanoparticles at 

equimolar, 1:3 and 1:8 mole ratios.  At the highest silver concentration of 1.0 mM, all 

mole ratios of EGCG reduced Ag nanoparticles possessed comparable trends with minor 

percentage differences in cell death.   

 In the case of Gram positive S. albus (Figure 5.16B), equimolar EGCG reduced 

Ag nanoparticles once again exhibited the least inhibitory effect across all silver 

concentrations. It can also be noted that at the lower end of the range of 0.1 mM and 

0.2 mM, the percentage cell death is only ca. 40% and 43% respectively, which is lower 

than that of the E. coli study. However, this behaviour transitioned to a higher percentage 

of cell death as the silver concentrations increased across all mole ratios of EGCG reduced 

Ag nanoparticles. This observation may suggest that at higher concentrations of silver, 

EGCG reduced Ag nanoparticles are significantly more active against Gram positive 

S. albus (ca. 100% cell death in the case of 1:8 mole ratio).  

 Once again, similar trends to curcumin reduced Ag nanoparticles antibacterial 

profile can be observed in this study. When the amount of EGCG is decreased to 

functionalise onto the surface of silver nanoparticles, higher antibacterial activity is 

detected. These results clearly indicate the effect of surface corona on the antibacterial 

activity of functionalised Ag nanoparticles. Thinner corona layer facilitate Ag nanoparticle 
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oxidation and interaction of Ag nanoparticles with bacterium. This interaction eventually 

leads to cell death due to multimode action of Ag nanoparticles.[82, 83] 

 

 
Figure 5.16- CFU expressed in percentage cell death of (A) EGCG reduced Ag nanoparticles against 

Gram negative E. coli and (B) EGCG reduced Ag nanoparticles against Gram positive S. albus. 
 
  

0.1 0.2 0.5 1.0
0

20

40

60

80

100
Ce

ll 
De

at
h 

(%
)

Treatments (Ag concentration - mM)

 EGCG-AgNPs 1:1
 EGCG-AgNPs 1:3
 EGCG-AgNPs 1:8

0.1 0.2 0.5 1.0
0

20

40

60

80

100

Ce
ll 

De
at

h 
(%

)

Treatments (Ag concentration - mM)

 EGCG-AgNPs 1:1
 EGCG-AgNPs 1:3
 EGCG-AgNPs 1:8

A 

B 



 

 

 

146  
 

5.3.7 Morphology studies of bacteria cells after the treatment of 

functionalised Ag nanoparticles 

 In relation to antibacterial activities, it is hypothesised that nanomaterials and 

cations mainly Ag+ ions predominantly affect the function of membrane-bound enzymes. 

The inhibitory components of nanoparticles on microorganisms depict that after 

exposure, DNA loses its replication ability, manifestation of ribosomal subunit proteins 

and other cellular proteins and enzymes becomes inactive.[84-91] However, the mechanism 

of antibacterial action of nanomaterials is still not distinctly understood. Nevertheless, 

findings in the literature emphasise that microbial morphology and membrane integrity 

is one of the significant elements which is crucial for bacterial survival. Hence, to 

understand the effects of phenolic compounds in surface functionalised Ag nanoparticles 

on bacterial morphology, nano-scanning electron microscopy (Nano-SEM) was employed 

to envisage the changes in bacterial cell wall and morphology after their exposure.  

 SEM micrographs of E. coli bacteria cells before and after their treatments with 

functionalised Ag nanoparticles are illustrated in Figures 5.17 and 5.19. SEM images of 

tyrosine reduced Ag nanoparticle interaction with bacterial cells can be found in 

Chapter III. In observance of curcumin reduced Ag nanoparticles against E. coli as shown 

in Figure 5.17, untreated cells appear smooth and perpetual. When cells are exposed to 

the two different mole ratios of curcumin reduced Ag nanoparticles, cell walls of the 

bacteria show signs of rupture in both cases.  Comparing the untreated E. coli cells against 

treated cells, the images reveal noticeable changes in cell morphology with roughening of 

the cell wall and the presence of curcumin reduced Ag nanoparticles scattered around the 

bacterial cells. Subsequently, with the exposure of curcumin reduced Ag nanoparticles, 

the components of E. coli cell wall are damaged which causes the cells to withdraw from 
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their original intact arrangement. This observation can confirm that curcumin reduced Ag 

nanoparticles (at mole ratios of 1:1 and 1:2) have considerable impact on E. coli bacterial 

cell morphology. Consequently, this reveals that in the case of Gram negative bacteria 

E. coli, curcumin reduced Ag nanoparticles demonstrates significant effects on membrane 

integrity.  

Figure 5.17- SEM micrographs of E. coli cells (A) untreated, and after treatment with (B) Curc- AgNPs (1:1) 
and (C) Curc-AgNPs (1:2) Scale bars 5 µm and insert scale bars 1 µm.  

 Illustrated in Figure 5.18 is the morphology of S. albus before and after treatment 

of curcumin reduced Ag nanoparticles. Untreated cells in Figure 5.18 are spherical in 

shape and the bacterial cluster resembles a grape-like structure. The cells possess a 

slightly rough surface, completely intact and undamaged in its original form. However 

when the cells are exposed to curcumin reduced Ag nanoparticles, there are selected 

fragments on the cell surface which indicates damage to the cell. The cell clusters are 

smoother in appearance and forms an irregular shape rather than spheres. 

Figure 5.18- SEM micrographs of S. albus cells (A) untreated, and after treatment with 
(B) Curc-AgNPs (1:1) and (C) Curc-AgNPs (1:2) Scale bars 3 µm insert scale bars 1 µm.  



 

 

 

148  
 

Furthermore, it is evident that as the mole ratios of curcumin reduced 

Ag nanoparticles are increased, the greater the cell destruction is observed. Comparing 

the two ratios of 1:1 and 1:2, there is a significant destruction of the bacteria cell in 

curcumin reduced Ag nanoparticles 1:2 (Figure 5.18A). The cell wall appears to be 

dissolving and completely disorganised. These micrographs confirm that curcumin 

reduced Ag nanoparticles also exhibits cell wall integrity effects on Gram positive 

bacteria, though to a lesser extent.  

In correlation to the antibacterial colony count studies, EGCG reduced 

Ag nanoparticles displayed greater impact on E. coli cell morphology to all ratios. It is 

evident from the SEM images shown in Figure 5.19 that upon treatment of EGCG reduced 

Ag nanoparticles, the once typically rod-shaped E. coli cells were ruptured and pitting is 

formed within the cell wall. As the mole ratios increased to 1:8, severe pitting and greater 

damage is observed. Breakdown of the cell wall is also evident where cells are fractured 

across all mole ratios. The greatest impact on the cell morphology is achieved by EGCG 

reduced Ag nanoparticles at 1:8 mole ratio (Figure 5.19C). By these observations, in the 

case of Gram negative bacteria E. coli, EGCG reduced Ag nanoparticles demonstrate the 

greatest effects of membrane integrity.  

Figure 5.19- SEM micrographs of E. coli cells after treatment with (A) EGCG -AgNPs (1:1), 
(B) EGCG-AgNPs (1:3) and (C) EGCG-AgNPs (1:8) Scale bars 10 µm and insert scale bars 1 µm. 
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Alternatively when EGCG reduced Ag nanoparticles are exposed to Gram positive 

S. albus, morphological changes in contrast to untreated cells are observed (Figure 5.20). 

The SEM images displayed signs of rupture of the cell wall and slight alteration of the 

bacterial shape compared to the control in Figure 5.20A. Furthermore, EGCG reduced 

Ag nanoparticles displayed the greatest activity in the case of S. albus compared to all 

functionalised Ag nanoparticles. The treated cells appear to be exfoliating and damage to 

membranes is recognised by the formation of pits around the cell wall. 

Figure 5.20- SEM micrographs of S. albus cells after treatment with (A) EGCG -AgNPs (1:1), 
(B) EGCG-AgNPs (1:3) and (C) EGCG-AgNPs (1:8) Scale bars 3 µm insert scale bar 1 µm. 

Interestingly, from all the SEM observations, there are various differences 

between Gram positive S. albus and Gram negative E. coli bacteria. S. albus shows slightly 

less bactericidal activities in morphology changes as shown in SEM imaging. The 

morphological destruction of bacterial cells for S. albus was weaker than E. coli. This 

difference may possibly be attributed to the difference of the peptidoglycan layer of the 

bacterial cell between Gram positive S. albus and Gram negative E. coli; an essential 

function of the peptidoglycan layer is to protect against antibacterial agents. Within the 

Gram negative cell envelope, there exists an outer membrane, thinner peptidoglycan 

layer and cell membrane. Whereas a Gram positive bacteria cell envelope consists of 

lipoteichoic acid containing a thick peptidoglycan layer and cell membrane. The thick 

peptidoglycan layer of Gram positive bacteria can protect the cell during formation of pits 
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or reactive oxygen species (ROS) by metal nanoparticles markedly than thin 

peptidoglycan layer of Gram negative bacteria as larger amounts of damage are required 

to impact the cell wall. 

5.4 Conclusions 

 Polyphenols are among the strongest active compounds synthesised by plants and 

host a unique combination of chemical, biological and physiological activities. However, 

their limited stability often combined with inadequate bioavailability needs to be 

resolved in order to make these compounds meet demands in nutrition and health. In this 

chapter, the results implementing various polyphenols as organic surface coronas 

surrounding Ag nanoparticles play a crucial role in tuning nanomaterial properties for 

biological applications. This study demonstrates a facile green approach to obtain various 

mole ratios of surface coronas involving tyrosine, curcumin and EGCG. Moreover, the 

antibacterial activities of these functionalised Ag nanoparticles revealed a significant role 

in causing damage to bacterial cells. 

 At equimolar ratios of all phenolic compounds, EGCG reduced Ag nanoparticles 

demonstrated the highest antibacterial activity in Gram positive bacteria. However in 

Gram negative bacteria, curcumin and EGCG reduced Ag nanoparticles were on par with 

one another in terms of antibacterial activity. The activity can be portrayed at the highest 

concentration of 1.0 mM as follows for S. albus: EGCG Ag nanoparticles > curcumin 

Ag nanoparticles > tyrosine Ag nanoparticles. As for E. coli: EGCG Ag nanoparticles ≥ 

curcumin Ag nanoparticles > tyrosine Ag nanoparticles. 

 Furthermore, at various mole ratios of curcumin Ag nanoparticles and EGCG 

Ag nanoparticles, the highest activity was achieved by EGCG reduced Ag nanoparticles in 
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both Gram negative and Gram positive bacteria. However, when comparing the activity 

between curcumin and EGCG reduced Ag nanoparticles individually in their own ratio 

formation, the study has shown that as the mole ratio increases with less capping of the 

phytochemicals, the higher the activity is demonstrated. Thus, from this study it can be 

concluded that a number of phenolic groups present in phytochemicals can be used to 

synthesise Ag nanoparticles, and also enhance antibacterial activity even at low 

concentrations. The greater the number of phenolic groups in the structure of capping 

agent, the better the performance against microbes.  In this domain, these finding can 

accelerate the use of polyphenolic compounds in biological applications in the future as 

antimicrobial agents. 
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Chapter VI 

Mechanistic insight into antibacterial 

performance of silver nanomaterials 

 

6.1  Introduction 

The inhibitory effect of silver on bacterial growth have been observed in the 

preceding chapters where the effect of variables have been compared including; shape, 

synergism with antibiotics and surface corona. It has been shown that Ag nanoparticles 

can be synthesised via physical, chemical and biological methods. The inhibition effect of 

silver is perhaps the sum of distinct mechanisms of action. A number of studies have 

suggested that silver ions may react with thiol groups of proteins as well as with 

phosphorus-containing macromolecules like nucleic acid and also form a low-molecular-

weight region in the centre which ultimately leads to cell death by preferably attacking 

the respiratory chain and cell division. Ag nanoparticles are also understood to release 

silver ions in the bacterial cells, which enhances their bactericidal activity.[1-3] 

The antimicrobial effects of silver can also be increased by manipulation of size. Ag 

nanoparticles having the size range of 10 to 100 nm showed strong bactericidal potential 

against Gram negative and positive bacteria.[4] Ag nanoparticles of smaller than 100 nm 

may contain 10,000-15,000 silver atoms.[5, 6] In addition to antimicrobial activity, the 
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mechanisms of action and toxicity are also of paramount importance. In this chapter 

electrochemical, biophysical and biotechnological approaches used to elucidate the 

mechanism of action of silver based nanomaterials will be discussed.  

Recently the oxidation potentials of polyphenols have been used to estimate their 

antioxidant capacity.[7] This includes the oxidation of flavonoids which are proposed to 

correlate with antioxidant capacity. The antioxidative activity of flavonoids are among the 

most effective naturally available antioxidants even in comparison to vitamin C or E. This 

is mainly attributed to their ability to scavenge free radicals in an environment by 

donation of the phenolic hydrogen atom from aromatic rings.[8] Thus, flavonoids with less 

positive oxidation potentials have been shown to possess higher radical scavenging.[9, 10] 

The reagents used in previous sections to reduce silver are susceptible to direct oxidation 

and thus electrochemical detection is used in this chapter to assist in mechanistic 

determination of their antibacterial activity. Concurrently, a measure of the oxidation 

potential for the various nanoparticle shapes which have been synthesised is also carried 

out to determine the impact oxidability has upon the antibacterial activity of these silver 

nanoparticles. 

 The traditional approach to monitor toxic chemicals in the environment is based 

on chemical analysis as this allows accurate and sensitive determination of the exact 

composition of any sample. However, when the nature of the compound is unknown, the 

range of analytical instrumentation necessary for a comprehensive analysis is complex 

and costly. As such, these procedures may fail to provide data in context of bioavailability 

of pollutants, effects on living systems and their synergistic interactions in mixtures. In 

order to address these needs, a complementary approach to base the use of living 

systems in a variety of environmentally oriented bioassays is required. The biological 
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systems used for such purposes range from a diverse range of live organisms, particularly 

bacteria. Their large population sizes, rapid growth rates and simplistic maintenance 

make them an ideal candidate for toxicity monitoring. An additional prominent 

component is that bacteria can be genetically modified to respond by a detectable signal 

to pre-determine changes in their environmental conditions.[11-15] 

 Genetically engineered microorganisms have played two parallel roles in the 

development of toxicity bioassays, which can be referred to as “lights off” and “lights on” 

assays.[11] The “lights off” approach is an addition to the commonly accepted microbial 

toxicity bioassay, bioluminescent Vibrio fischeri. This assay is based upon measuring the 

decrease in light emission by microorganisms as a function of sample concentration with 

a short term exposure.[16] The “lights on” approach is based on the molecular 

combination of a reporter system to selected promoters of different stress-responsive 

genes. Bacterial strains have been defined to detect the presence of either specific 

compounds or classes of chemicals including heavy metals,[17] dioxins and endocrine 

disruptors[18-20] or report on the general toxicity of the selected sample.[21, 22] With this 

aspect, bacterial strains have also been developed for assaying genotoxicity rather than 

just general toxicity. In these circumstances, the promoters serving as sensors were 

selected from deoxyribonucleic acid (DNA) repair operons such as the SOS system.[23-26] 

 In this study, a double-labelled E. coli cell including a single plasmid (Figure 6.1), 

two inducible promoters fused to different fluorescent protein genes: recA’::EGFP and 

grpE’::DsRed Express was employed. The recA promoter is part of the bacterial SOS 

system and its activation is considered an indication of DNA damage hazards. grpE is a 

heat shock protein, induced by a broad spectrum of chemicals as an excellent indicator of 

toxic cellular stress or protein damage. This combination can potentially allow an assay of 
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both genotoxicity and general toxicity to be carried out by the same reporter organism. 

This is the first study in which this dual reporter plasmid has been exploited to determine 

the genotoxicity and cytotoxicity of nanoparticles for bacterium.  

 
Figure 6.1- A schematic diagram of plasmid pNHEX:  (A) represents restriction site that can be generated 

using SacI and NcoI, (B) the use of MunI and NcoI and (C) MunI and NcoI.  

6.2 Experimental 

6.2.1 Electrochemical methods 

 Cyclic voltammetry was undertaken using a conventional three-electrode setup 

and referenced against Ag|AgCl|KCl. The reference electrode used was composed of a 

silver wire in saturated solution Ag|AgCl|KCl (aqueous 3 M KCl) to make up the half-cell, 

separated using a porous glass frit. In order to probe the electrochemical properties of 

the nanoparticles a vitreous carbon working electrode (0.07070 cm2) was loaded with 

each particular Ag nanoparticle by drop-casting 5 µL of 1 mM sample and allowed to dry 

under ambient conditions. The vitreous carbon working electrode was also used to 

measure the electrochemical window of the system without loading as is typical prior to 

electrochemical experiments. The counter electrode was 6 mm diameter graphene 
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(Johnson Matthey Ultra “F” purity grade). All solutions were degassed with nitrogen for 

10 minutes prior to measurements taking place. To be used as a standard to measure the 

degree of facile Ag nanoparticle oxidation, a polycrystalline silver (0.0317 cm2) macro 

electrode was also used as a working electrode. 

Working electrodes were cleaned via sonicating for 10 minutes in Milli-Q water 

and a subsequent polish using a microcloth pad (Buehler) with 0.3 µm alumina slurry 

(Electron Microscopy Sciences). The surface area for each nanoparticle loading was 

determined by analysing the charge associated with stripping of lead which has been 

previously deposited using under potential deposition.[27] These methods are described 

by Kirowa-Eisner et al. using the theoretical value of 400 µC cm-2 for full coverage of lead 

on silver.[28]  

6.2.2 Antibacterial applications 

6.2.2.1 Bacterial membrane protein study 

To study the interaction of EGCG-AgNPs and Curc-AgNPs with bacterial membrane 

(materials from Chapter V), crude membrane proteins were isolated from Gram negative 

representative strain E. coli (ECMP) and Gram positive S. albus (SAMP). These membrane 

preparations (100 µg) were incubated with EGCG-AgNPs and Curc-AgNPs (20 µM). The 

fluorescence spectra were recorded in the range of 310 to 400 nm by exciting the 

reaction mixture at 295 nm using a Horiba spectrofluorometer (FluoroMx-4). 

Furthermore, to determine the affinity of this interaction, the dissociation constant (Kd) 

of Ag nanoparticles with ECMP (E. coli membrane protein) and SAMP (S. albus membrane 

protein) were determined using the nonlinear regression equation:  
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𝑌 =
𝐵𝑚𝑎𝑥𝑋
𝐾𝑑 + 𝑋

 (6.1) 

Where Y is the fluorescence quenching, X is the concentration of nanoparticles and Bmax is 

the maximum binding. In this study tyrosine reduced Ag nanoparticles were not included 

as there is interference with the fluorescence due to its intrinsic fluorescence property in 

the same region of emission.  

6.2.2.2 Genotoxicity and cellular toxicity studies 

 To study the effect of nanoparticles at genetic (DNA) level or cellular (protein) 

level a dual colour bacterial reporter stain (expressed as GFP in response to DNA damage 

and/or DsRed (RFP) in response to cellular toxicity) harbouring a plasmid pNHEX was 

used. This plasmid was provided as a generous gift from Prof. S. Belkin, Hebrew 

University of Jerusalem. This plasmid was propagated in an E. coli strain RFM 443. For 

this study, E. coli strain RFM 443 (harbouring pNHEX) was cultured overnight in M9 

minimal media supplemented with 1% glucose in presence of 100 µg/mL ampicillin. The 

overnight grown cultured bacteria were subcultured and allowed to be grown until OD600 

was reached in order of 0.2-0.3. At this O.D. bacteria was treated with various 

nanoparticles, ethanol (positive control for cellular toxicity) and nalidixic acid (NAL as a 

positive control for genotoxicity).  GFP induction in presence of nanoparticles was 

monitored by exciting the cells at 485 nm and emission was collected from 495-600 nm. 

On the other hand, RFP expression was monitored by exciting the cells at 550 nm and 

emission was collected from 560-750 nm using Horiba spectroflourometer.  
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6.3 Results and discussion 

6.3.1 The oxidability for phenolic compounds and phenol-reduced 

nanoparticles 

Illustrated in Figure 6.2A is the CV for a vitreous carbon electrode immersed in a 

1 M NaOH solution (pH=14) which shows an electrochemical window of ca. 1.7 V where 

no Faradaic processes are occurring. The phenolic reagents which have been used to 

reduce silver are also probed using a vitreous carbon electrode and are shown in 

Figure 6.2. As can be seen in the CV for 5 mM tyrosine in 1 M NaOH (Figure 6.2B) the 

onset for the singular oxidation process of the phenolic compound takes place at a peak 

maximum of 0.511 V, slightly less positive than reported values in phosphate buffer 

solutions,[29, 30]  which is attributed to the strong pH used in this study. Upon the reverse 

sweep no reduction process highlighting the irreversible oxidation of tyrosine is 

observed.[31] The same conditions are observed for the oxidation of tyrosine at 

polycrystalline platinum.[32, 33] The two processes observed in Figure 6.2C for the 

irreversible oxidation of curcumin (5 mM) in 0.1 M NaOH refer to the oxidation of both 

phenolic groups (0.224 V and 0.306 V), which are less positive than reported values at 

vitreous carbon and platinum electrodes for the same reasons mentioned earlier.[34, 35] 

The current response for 1 mM epigallocatechin gallate (EGCG) in the CV in Figure 6.2D 

shows an anodic current on the positive sweep consisting of three weak oxidative 

processes at ca. -0.182, 0.061, and 0.309 V. It is difficult to discern these peaks as the peak 

current decreases with pH at a vitreous carbon electrode.[36] The reverse sweep shows 

little cathodic current response even though EGCG has been shown to be reversible at 

lower pH.[36] However, as mentioned earlier the study by Novak et al. found a decrease in 
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current amplitude with increased pH.[36] The order of facile oxidation for each 

phytochemical is shown to follow the order EGCG < Curcumin < Tyrosine when measured 

in 1 M NaOH solution.  

 
Figure 6.2-Cyclic voltammograms for neat 1 M NaOH and each phenolic compound (in 1 M NaOH) used 

during silver nanoparticle synthesis. 

 Shown in Figure 6.3 is the CVs for a polycrystalline silver electrode and each silver 

nanoparticle modified vitreous carbon electrode. The silver electrode is used as a 

standard to measure the degree of facile oxidation for each of the phenolic-reduced 

nanoparticles that were prepared using the various molar ratios of phenolic compounds. 

Depicted in Figure 6.3 is the typical CV for a silver macro electrode in alkaline medium 

with a main peak at ca. 0.34 V with a less positive process at 0.253 V. The more positive 

peak with greater current response indicates the Ag0/Ag+ oxidation,[37] whilst the less 

positive process is associated with the oxide or hydroxide transition.[38] Figure 6.3B 
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represents cyclic voltammetry of the silver nanoparticles synthesised using tyrosine as a 

reducing agent with similar behaviour to polycrystalline silver. However the onset of 

oxidation takes place at less positive potential with a peak of 0.335 V showing these 

nanoparticles are facile to oxidise compared to bulk silver metal.[37] The peak reduction 

potential for Tyr-AgNPs is also at more negative potentials (0.018 V) compared with the 

polycrystalline silver electrode (0.037 V) suggesting these oxidised nanoparticles are 

more stable than oxides at bulk silver metal.[37] 

The onset of oxidation is again less positive for each of the other nanoparticle 

systems shown in Figure 6.3C and Figure 6.3D, curcumin reduced nanoparticles have 

peak oxidation potentials of 0.273 V, 0.288 V for ratios of 1:2 and 1:1 respectively. EGCG 

reduced particles have peak oxidation potentials of 0.280 V, 0.291 V, 0.293V for ratios of 

1:8, 1:3, 1:1 respectively. Shown in Table 6.1, a trend can be observed for peak potentials 

being less positive as the amount of reducing agent used in synthesis is decreased 

(relative increase of silver salt). The less positive onset peak potential is indicative of the 

ease with which respective nanoparticles may be oxidised to release Ag+ ions in bacterial 

environment. As evident in general, as the amount of a particular phytochemical coating 

increases (e.g. curcumin 1:2 to curcumin 1:1), it becomes more difficult to oxidise theses 

nanoparticles.  The reduction potentials of these nanoparticles dictate the stability of the 

silver oxides which are formed during the positive sweep of the CV. There is a varying 

degree of hysteresis between samples which are also shown in Table 6.1. Thus, the 

particles which display most negative peak reduction potentials will exhibit the most 

stable oxide forms and may also be an indicator of the antibacterial activity for these 

platforms in longer term experiments. 
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Table 6.1 – Peak oxidation and peak reduction potential for Ag nanoparticle with phenolic coronas ordered 
lowest to highest. 

Peak oxidation potential (least positive to most positive) 

Curc 1:2 EGCG 1:8 Curc 1:1 EGCG 1:3 EGCG1:1 Tyr 1:1 

0.273 V 0.280 V 0.288 V 0.291 V 0.293 V 0.335 V 

Peak reduction potential (most negative to least negative) 

Tyr 1:1 EGCG 1:8 Curc 1:2 Curc 1:1 EGCG 1:3 EGCG1:1 

-0.017 V -0.003 V -0.002 V -0.002 V -0.002 V 0.028 V 

 
Figure 6.3 - Cyclic voltammograms for (A) polycrystalline silver and vitreous carbon electrodes modified 

with (B) Tyrosine-AgNPs, (C) Curcumin-AgNPs and (D) EGCG-AgNPs in 1 M NaOH. 

The oxide formation process for each of the nanoparticles follows from a wide 

double layer charging region as seen in the case of the polycrystalline silver electrode. 

The capacitance in this region is largest for those nanoparticles reduced using curcumin 

or EGCG in a 1:1 ratio to the silver salt. There is approximately the same level of activity 

measured for both Curc-AgNPs suggesting that the curcumin is not impeding the 

oxidation of underlying silver metal even at the lower relative phytochemical 
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concentration (1:2 ratio). However, there is a variance in the silver activity for the 

EGCG-AgNPs with the largest activity being for Ag nanoparticles synthesised using the 1:1 

ratio, followed by the 1:8 and 1:3 ratios. In particular for the 1:1 EGCG-AgNPs, the less 

positive process displays greater current density which may be complicated due to EGCG 

oxidation also taking place in this region.  

6.3.2 The oxidability of various nanoparticle shapes 

Shown in Figure 6.4 is the CVs for each different shape of silver nanoparticle 

loaded onto vitreous carbon electrode. The onset of oxidation is again less positive for 

each of the shaped nanoparticles compared to that of polycrystalline silver. The order of 

peak oxidation potential from least positive (facile oxidation) to most positive follows 

prisms, cubes then spheres. For comparison with the phytochemical reduced silver 

nanoparticles in Figure 6.3B, the data for Ag nanospheres pertains to Tyr-AgNPs.  

Significantly, the peak reduction potentials of these nanoparticles vary with less 

hysteresis observed for the Ag nanocubes. The peak potentials for both oxidation and 

reduction are listed in Table 6.2. The most negative peak reduction potentials belongs to 

the silver nanoprisms which indicates that these are the most stable silver oxide of this 

shape dependant system.[37] No large capacitance is observed for each of the shapes in 

this system, unlike the Curc-AgNPs and EGCG-AgNPs prepared using 1:1 ratios. 
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Table 6.2-Peak oxidation and peak reduction potentials for shape-dependent Ag nanoparticles ordered 
lowest to highest. 

 
Figure 6.4- Cyclic voltammograms for Ag nanoprisms, Ag nanocubes and Ag nanospheres. 

 

6.3.3 Comparison of oxidation potentials dependent on corona or shape 

with antibacterial activity. 

When comparing all of the AgNPs it is clear to see that capping of the 

nanoparticles still facilitates silver activity (REDOX) which, when ordered according to 

peak oxidation potentials fits quite well with antibacterial activity results against both 

Gram negative and Gram positive bacteria, shown in Table 6.3. Thus the choice of 

phenolic compounds for silver reduction, and nanoparticle capping, can be used to tailor 

the effectiveness of antibacterial activity of these platforms. 
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Table 6.3- Comparison of antibacterial activity and oxidation potentials for each nanoparticle synthesised 
including the use of phenolic compounds with varying molar ratios. Antibacterial data refers to the lowest 
concentration loading.  

Antibacterial activity of nanoparticles against E. coli (%) 

Curc 1:2 EGCG 1:8 EGCG 1:3 EGCG 1:1 Curc 1:1 Ag cubes Ag spheres Ag prisms 

68 67 67 49 46 39 33 17 

Oxidation potential for each nanoparticle (least to most positive) (V) 

Curc 1:2 EGCG 1:8 Curc 1:1 EGCG 1:3 EGCG 1:1 Ag prisms  Ag cubes  Ag spheres 

0.273 0.280 0.288 0.291 0.293 0.299 0.305 0.335 

Antibacterial activity of nanoparticles against S. albus (%) 

Curc 1:2 EGCG 1:8 EGCG 1:3 EGCG 1:1 Curc 1:1 Ag cubes Ag spheres Ag prisms 

65 59 49 40 30 22 16 1 
Values are taken from Chapter III and V, error values are omitted for concision. 

 From Table 6.3, it can be portrayed that Curc-AgNPs at 1:2 ratio exhibits the most 

effective antibacterial activity for both E. coli and S. albus at ca. 65-68% cell death across 

all compounds- surface corona and various shaped Ag nanoparticles. It can also be 

observed that there is a greater percentage cell death for Gram negative bacteria E. coli 

when treated across all silver nanomaterials. Not only does Curc-AgNPs 1:2 demonstrate 

the highest antibacterial activity, but also the least oxidation potential at 0.273 V.  

 A trend can be seen as the greater the amount of phenolic groups present in each 

individual phytochemical, the higher the antibacterial activity. For instance, 

EGCG-AgNPs 1:8 > EGCG-AgNPs 1:3> EGCG-AgNPs 1:1, and same applied for curcumin 

with Curc-AgNPs 1:2>Curc-AgNPs 1:1. These observations corresponds to the oxidation 

potentials, as the lower the potential, the facile it is to oxidise. Therefore, the greater the 

percentage cell death, the lower the oxidation potential which implies that these silver 

nanomaterials supplies the environment with silver ions easily to facilitate interaction 

with bacterial cells. Hence, antibacterial activity can be dictated by oxidation potentials 

with the contribution of surface corona. Tailoring nanoparticles to target specific bacteria 

through the choice of corona is very important.  
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 Furthermore, Ag nanoparticles can undergo a shape-dependent interaction with 

bacterial cells irrespective of oxidation potential. Size can cause steric hindrance and 

although there are higher binding properties, it is less effective in antibacterial activity 

compared to surface functionalised Ag nanoparticles as illustrated in Table 6.3. Although 

surface corona studies have a close fit to oxidation potentials, however different shapes 

of Ag nanoparticles do not follow the same trend. Despite this, the overall potentials for 

each individual shape only differ at a small amount of 2–3 mV. This may be due to other 

variables which indicate that oxidation is not the only indicator to measure antibacterial 

activity.  

One variable may be due to precursors used in the synthesis of various shapes of 

Ag nanoparticles which can play a role in the influence of antibacterial activity. In the 

synthesis of Ag nanospheres, tyrosine was used as a reducing and capping agent.[39] 

Plants possess a vast ability to synthesise aromatic substances, most of which are phenols 

or their oxygen-substituted derivatives.[40] Many of these are second metabolites and 

serves as plant defence mechanisms against predation by insects, herbivores or 

microorganisms. Quinones are responsible for plant pigmentation and tyrosine is usually 

used for the conversion.[41] 

Ascorbic acid is used in the synthesis of Ag nanoprisms during the growth of the 

shape after seed production.[42] One study suggests that ascorbic acid alone and in 

combination with lactic acid inhibited the growth of E. coli O157:H7.[43] Their results 

were consistent with those reported with Tabal et al. where they found that ascorbic acid 

in concentrations ranging from 0.2-2% inhibited growth of several microorganisms in 

liquid broth medium.[44] 
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Ag nanocubes synthesised via a polyol process used polyvinylpyrrolidone (PVP) as 

a stabilising agent.[45] PVP is a common stabilising ingredient in the production of Ag 

nanoparticles.[46, 47] Not only is PVP utilised in various synthesises, it is also known as an 

antimicrobial agent, namely Betadine. It is a broad spectrum antiseptic for topical 

application in the treatment of burn and wounds.[48]  

6.3.4  Interaction of nanoparticles with bacterial membrane proteins 

As evident from Chapter III-V, SEM results revealed significant damage to bacterial 

cells. In order to elucidate the interaction of Curc-AgNPs and EGCG-AgNPs with bacterial 

membrane proteins, protein interaction studies were performed using fluorescence 

spectroscopy. Alteration in tryptophan (trp) fluorescence (for trp present in the bacterial 

membrane proteins) was measured as a function of protein–NPs interaction. When E. coli 

and S. albus membrane preparations were incubated with Curc-AgNPs and EGCG-AgNPs 

in HEPES buffer, a typical trend was observed. In the presence of Curc-AgNPs and 

EGCG-AgNPs, trp fluorescence was quenched significantly in comparison to untreated 

membrane preparations as shown in Figure 6.5. It is evident from the emission spectra 

that the trp fluorescence of ECMP was decreased significantly in presence of EGCG-AgNPs 

1:1 and Curc-AgNPs 1:2. However while other nanoparticle combinations also affect 

fluorescent properties of membrane proteins, they do not do so as significantly as 

EGCG-AgNPs 1:1 and Curc-AgNPs 1:2. The two ratio combinations were chosen for 

further membrane protein and nanoparticles interaction studies.  
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Figure 6.5- Fluorescence spectroscopy of (A) ECMP and ECMP+Curc-AgNPs, (B) ECMP and 

ECMP+EGCG AgNPs, (C) SAMP and SAM+Curc-AgNPs and (D) SAMP and SAMP+EGCG-AgNPs. 

Figure 6.5 unequivocally demonstrates that these nanoparticles interact strongly with 

the ECMP as well as a similar trend occurring when these nanoparticles were incubated 

with SAMP. Further to determine the affinity of these interactions, a range of 

EGCG-AgNPs 1:1 and Cur-AgNPs 1:2 nanoparticles concentrations were incubated with 

ECMP and SAMP with fluorescence quenching calculated as a function of nanoparticle 

concentrations. With the quenching data, dissociation constant (Kd) was determined 

(Figure 6.6). The Kd of Curc-AgNPs (1:2) for ECMP was 11.6 µM however Kd for 

EGCG-AgNPs (1:1) for ECMP was 9.0 µM. This shows that EGCG has more affinity for 

ECMP over Curc-AgNPs which could be attributed to the strong interaction of EGCG itself 

over curcumin with the ECMP. Though the antibacterial potency of EGCG-AgNPs 1:1 was 

a bit less than other EGCG-AgNPs formulations, their experiments only demonstrate 
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strong membrane protein interaction. Plausible explanation to this is that EGCG is a more 

bulky molecule than curcumin and may interact strongly with secondary and tertiary 

protein structures in comparison to curcumin.[49, 50] While antibacterial activity is 

attributed to several mechanisms, membrane protein interaction is only one of those 

mechanisms. Genotoxicity (DNA damage), cytotoxicity (protein damage), production of 

reactive oxygen species etc. are other mechanism of bacterial cell death mediated by 

nanoparticles.[51-53] Curc-AgNPs demonstrated 30 fold more affinity (Kd) against SAMP 

(1.59 µM) in comparison to EGCG-AgNPs (50.5 µM). This evinces that curcumin possesses 

a slow off rate for SAMP over ECMP in terms of membrane protein binding. In general 

these results show that EGCG-AgNPs have high affinity for ECMP (Gram negative) over 

SAMP (Gram positive) while this trend is reverse in case of Curc-AgNPs. This is also 

evident in a study by Hamed et al.  which shows potent activity of curcumin itself in the 

case of Gram positive bacteria.[54]  

 
Figure 6.6- Dissociation constant (Kd) of (A) ECMP and (B) SAMP profiles. 

6.3.5 Genotoxicity and cellular detection  

In order to determine the nanoparticles induced genotoxicity and cytotoxicity, 

genetically engineered E. coli strain was treated with different nanoparticles preparations 

(each with 50 µM) for two hours and change in GFP/RFP fluorescence was followed. 
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Curc-AgNPs at 1:2 and EGCG-AgNPs at 1:8 ratios were used as they displayed the highest 

antibacterial activity. In this experiment ethanol, a known inducer of heat shock response 

(cellular stress or cytotoicity) and nalidixic acid an accepted inducer of SOS response 

were used as a positive control.  As demonstrated in Figure 6.7, the presence of 

nanoparticles regardless of their capping material induces expression of GFP, thus this 

confirms the genotoxic nature (DNA damaging potential). Furthermore when bacterium 

is exposed to nanoparticles and the expression of RFP was monitored, induction of RFP 

expression in presence of Curc-AgNPs was significantly higher than ethanol. Other 

nanoparticles (EGCG-AgNPs and Tyr-AgNPs) also displayed induction of RFP however it 

was less than the Curc-AgNPs induced expression. This suggests that all nanomaterials 

have the same genotoxicity potential but Curc-AgNPs induces highest stress response or 

cytotoxicity. 

 
Figure 6.7- (A) GFP fluorescence profile and (B) RFP fluorescence profile. 

6.4 Conclusions 

The potential mechanism of antibacterial activity of the Ag nanomaterials studied 

in this thesis can be elucidated using some of the new techniques discussed in this 

chapter. From the cyclic voltammetry studies, it was found that oxidation potential can 

influence the antibacterial activity of various Ag nanomaterials. The lower the oxidation 

potential, the higher the antibacterial activity was typically observed, this may be 
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attributed to the facile oxidability of Ag nanomaterials to release Ag+ into bacterial cells. 

Electrochemical studies correlate very well with antibacterial studies where they follow a 

similar trend in both functionalised Ag nanoparticles and to some extent in shape 

dependent Ag nanoparticles. In reference to the effect of surface corona studies, it was 

determined that the thinner the corona, the higher the antibacterial activity. Therefore it 

was found that Curc-AgNPs 1:2 exhibited the highest antibacterial activity as well as the 

lowest oxidation potential overall. Similar trends were demonstrated when the greater 

the ratio of phenolic groups present in each individual phytochemical, the higher the 

antibacterial activity and lower oxidation potentials, i.e. EGCG-AgNPs 1:8 > EGCG-AgNPs 

1:3 > EGCG-AgNPs 1:1 and Curc-AgNPs 1:2 > Curc AgNPs 1:1. 

Other variables might contribute to the influence of antibacterial activity, not just 

using oxidation potential as an indicator. A study on shape-dependent Ag nanoparticles 

revealed that oxidation potential was less relevant in assessment of antibacterial activity 

of these materials compared to functionalised Ag nanoparticles. Precursors used in the 

synthesis of the various shapes may have influenced the antibacterial activity. On the 

other hand, higher antibacterial activity of functionalised Ag nanoparticles is due to the 

phytochemicals utilised.  

Bacterial membranes are considered as the first barriers that need to be overcome by 

antibacterial agent. However when looking at the affinity of the Ag nanomaterials with 

cells, it is important to study the bacterial membrane proteins present. Membrane 

protein interactions showed that EGCG-AgNPs displayed more affinity for ECMP 

compared to Curc-AgNPs. Plausibly, this can be attributed to the strong interaction of 

EGCG alone, being a bulky molecule. In the case of SAMP, Curc-AgNPs 1:2 with a thinner 

surface corona demonstrated a 30 fold increase in affinity compared to EGCG-AgNPs. 
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Therefore, this reveals that Curc-AgNPs possess a slow off rate for SAMP over ECMP in 

terms of membrane protein binding.  

 Since Curc-AgNPs 1:2 and EGCG-AgNPs 1:8 demonstrated the highest antibacterial 

activity, the genotoxicity and cellular toxicity were studied on these two systems. When 

bacterium is exposed to Ag nanomaterials, significant induction of RFP expression in 

presence of Curc-AgNPs 1:2 displayed the highest stress response. For GFP response 

(genotoxicity) irrespective of capping agents, Ag nanomaterials induce expressions of 

GFP which confirms DNA damage and SOS response. These properties are illustrated in 

Figure 6.8.  

 

Figure 6.8- Schematic illustration of potential mechanisms of antibacterial activity of functionalised Ag 
nanoparticles against E. coli and S. albus based upon genotoxicity and genotoxicity data. 

 Therefore this thesis shows that Ag nanomaterials display different modes of 

action for antibacterial activity including but not limited to interaction with membranes, 

genotoxicity and cytotoxicity as demonstrated by GFP and RFP inductions. However, it 
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seems that irrespective of mode of action, a measure of oxidisation potential via cyclic 

voltammetry can in general be considered a reliable tool to predict the effectiveness of 

Ag nanomaterials antibacterial activity.  
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Chapter VII 

Conclusions and future work 

7.1  Conclusions 

 Bionanotechnology represent a modern and innovative approach to develop and 

apply new formulations based on metallic nanoparticles with antimicrobial activities. 

Ag nanoparticles exemplify a prominent nanomaterial with potential antibacterial 

applications.  The studies presented in this thesis are an attempt to establish the 

correlation between Ag nanomaterials with their antibacterial applications. 

Ag nanoparticles were synthesised via various methods as well as functionalisation to 

enhance antibacterial activity.  

 Change in reactivity and properties of nanoparticles are attributed to their small 

size, compared with bulk materials. The smaller the size, the larger the surface-area-to 

volume ratio. Therefore the bactericidal activity of Ag nanoparticles is affected by the size 

of the nanoparticles. Dependent on the size of nanoparticles, large surface area comes in 

contact with the bacterial cells to provide higher percentage of interaction than bigger 

particles. Not only is size a factor influencing the bactericidal effects of Ag nanoparticles, 

but the shape of the Ag nanoparticle can play a great role. Ag nanoparticles can undergo 

shape-dependent antibacterial behaviour again bacterial species of both Gram negative 

(E. coli) and Gram positive (S. albus). Ag nanospheres, cubes and prisms were synthesised 
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via various chemical approaches and characterised. The comparison of different shapes 

was tested on representative microorganisms for their antibacterial activity. Overall, 

Ag nanoparticles of various shapes demonstrated antibacterial activity against all strains 

of bacteria used. However, among the various shapes studied, Ag nanocubes performed 

significantly better in terms of antibacterial activity against both Gram negative and Gram 

positive bacteria.  

 The amino acid tyrosine was utilised in the synthesis of Ag nanospheres as a 

capping as well as a reducing agent. These particles were the most stable as well as 

isotropic and were synthesised via a 1:1 ratio of silver stock to the monophenolic 

tyrosine amino acid which was the least complex. Hence, these particles were selected as 

representative Ag nanoparticles for all studies throughout the thesis. These nanoparticles 

were bound with various spectrums of traditional antibiotics, namely ampicillin, 

penicillin G and polymyxin B to enhance antibacterial activity. Furthermore, these 

traditional antibiotics incorporating various spectrums were employed as functional 

fragments to influence the antibacterial potential on the surface of Ag nanoparticles. 

Moreover, these Ag nanoparticle/antibiotic combinations revealed notable influence on 

antibacterial activity providing synergistic effects which employ a physical mode of 

action against bacterial cells causing cell wall cleavage and cell lysis.  

 Surface functionalisation of Ag nanoparticles can also influence the antibacterial 

effects. To study this effect, various phenolic compounds were used as organic surface 

coronas surrounding Ag nanoparticles which then played a crucial role in tuning 

nanomaterial properties for biological applications. Tyrosine, curcumin and 

epigallocatechin gallate (EGCG) were utilised as reducing as well as capping agents to 

synthesise surface functionalised Ag nanoparticles. Equimolar and various mole ratios 
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were employed to study the effect of relative loading of phenolic groups onto 

nanoparticles towards antibacterial activity.  The antibacterial activities of these surface 

functionalised Ag nanoparticles also revealed a significant role in damage to bacterial 

cells.  

 Techniques including electrochemistry, bacterial membrane protein interaction 

with nanoparticles and genotoxicity as well as cellular toxicity studies could elucidate the 

mechanism of action of Ag based nanomaterials. Cyclic voltammetry studies that 

produced oxidation potential measurements provided a close fit trend with antibacterial 

profile of various nanomaterials. It was shown that the lower the oxidation potential, the 

higher the antibacterial activity detected. This may be due to the facile oxidability of 

Ag nanomaterials releasing Ag+ into bacterial membranes. Electrochemical studies were 

correlated with antibacterial studies where similar trends were found largely in 

functionalised Ag nanoparticles and to some extent in shape dependent Ag nanoparticles.  

In regards to the effect of surface corona studies of various phenolic compounds, it 

was determined that the thinner the corona, the higher the antibacterial activity. 

Curcumin Ag nanoparticles 1:2 exhibited the highest antibacterial activity as well as the 

lowest oxidation potential across all phenolic compounds. However, when comparing 

with each individual group, the antibacterial activity can be determined as follows: 

Curc-AgNPs 1:2> Curc-AgNPs 1:1 and EGCG-AgNPs 1:8> EGCG-AgNPs 1:3> 

EGCG AgNPs 1:1. 

It was found that further variables might contribute to the influence of 

antibacterial activity, not only the use of oxidation potential as an indicative technique. 

Although shape-dependent antibacterial activity of Ag nanoparticles were found to be 
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less effective compared to functionalised Ag nanoparticles, precursors used in the 

synthesis of different shapes of nanoparticles may have been an influence.   

To understand the surface coating corona in relation to antibacterial activity, 

interaction of surface functionalised Ag nanoparticles to bacterial membrane protein 

(MP) were studied. Additionally, the effect at gene and protein level, genotoxicity and 

cellular toxicity experiments revealed that the affinity of Ag nanomaterial with cells is of 

prominent importance. Membrane protein interactions revealed that EGCG-AgNPs 

demonstrated more affinity for ECMP (E. coli membrane protein) compared to 

Curc-AgNPs. This might be because EGCG is a bulky molecule which alone possesses a 

strong interaction with bacterial membranes. However, for SAMP (S. albus membrane 

protein), Curc-AgNPs 1:2 surrounded by a thinner surface corona demonstrated a 30 fold 

increase in affinity compared to EGCG-AgNPs. It was therefore determined that 

Curc-AgNPs exhibits a slow off rate for SAMP over ECMP in relation to membrane protein 

binding. 

Since Curc-AgNPs 1:2 and EGCG-AgNPs 1:8 demonstrated the highest antibacterial 

activity, the genotoxicity and cellular toxicity response were studied in detail. When 

bacteria were exposed to Ag nanomaterials, significant induction of RFP (red fluorescent 

protein) expression in presence of Curc-AgNPs 1:2 exhibited the highest stress response. 

For genotoxicity induction, irrespective of capping agents, Ag nanomaterials induce 

expressions of GFP (green fluorescent protein) which confirmed DNA damage and SOS 

response. Hence, Ag nanomaterials may display different modes of action for 

antibacterial activity which may not be limited to interaction with membranes, 

genotoxicity and cytotoxicity as demonstrated by GFP and RFP inductions.  
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Overall, various methods including electrochemical, biophysical and 

biotechnological approaches were employed to elucidate the mechanism of action of 

Ag nanostructures as demonstrated in this thesis.  

7.2  Future work 

 Studying the influence of surface corona on biological action of different 

nanomaterials is an area of intensive scrutiny; therefore exploring other antioxidants to 

functionalise Ag nanoparticles to enhance antibacterial activity may be carried out in the 

future. Antioxidant properties of these compounds can be studied to assist in 

understanding the mode of action of these nanomaterials and their interaction with cell 

membranes. Although antibacterial applications of these functionalised Ag nanoparticles 

have been discussed in this thesis, these nanomaterials containing curcumin and EGCG, 

which are known for their anticancer properties, can also be utilised as potential 

anticancer agents. It would be interesting to investigate whether these materials show 

similar mode of interaction with the mammalian cells. 

 Since different shapes of Ag nanoparticles can play a vital role in the enhancement 

of antibacterial activity, other shapes of nanomaterials can also be studied against 

disease-causing microorganisms. Tailoring of size and shape can be further studied for 

their antibacterial applications. Further work to understand the interaction between 

different shapes of nanomaterials and microorganisms can be carried out with other 

antimicrobial techniques such as membrane protein interaction as well as cytotoxicity 

and genotoxicity studies. 

The synergism of nanomaterials was tested using traditional antibiotics. This 

study could be further expanded to encompass a larger variety of Gram positive and 
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Gram negative targeting compounds, both broad and narrow spectrum. It will also be 

interesting to measure the synergism of antibiotics with the nanomaterials of different 

shapes, as well as functionalised nanospheres discussed within this thesis. 

 All the materials proposed in this thesis may also be studied for their 

antimicrobial activity against other group of microorganisms including fungi for 

antifungal activity. It will also be prudent to study whether these nanomaterials can be 

utilised in other biotechnological applications such as cytotoxicity towards mammalian 

cells not just microorganisms.  

 In summary, the work presented in this thesis clearly shows that the mode of 

antibacterial activity of Ag based nanomaterials is a highly complex phenomenon. This 

involves several steps including (i) level of interaction of nanomaterial with bacterial 

outer layer, (ii) uptake of nanoparticles by cell, (iii) potential oxidation of 

Ag nanoparticles to Ag+ ions and (iv) interaction of Ag+ ions with bacterial cellular, 

cytoplasmic and genetic components. This thesis shows that all these mechanistic 

components can be controlled by tailor-design of nanoparticles through shape control, 

surface control or synergism through traditional antibiotics. It is expected that these 

research outcomes will fuel more research in understanding the antibacterial activity of 

Ag based nanomaterials.  
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