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ABSTRACT 

 

The turbulent behaviour of non-Newtonian suspensions in open channel conditions is investigated 

here. There is a lack of fundamental understanding of the mechanisms involved in the transport of 

suspension particles in non-Newtonian fluids, hence direct numerical simulation into the research is 

a useful validation tool. A better understanding of the mechanism operating in the turbulent flow of 

non-Newtonian suspensions in open channel would lead to improved design of many of the systems 

used in the mining and mineral processing industries.  

 

Direct numerical simulation (DNS) of the turbulent flow of non-Newtonian fluids in an open 

channel has been modelled using a spectral element-Fourier method. The simulation of a yield–

pseudoplastic fluid using the Herschel-Bulkley model agreed qualitatively with experimental results 

from field measurements of mineral tailing slurries. The effect of variation of the flow behaviour 

index has been investigated and used to assess the sensitivity of the flow to this physical parameter. 

This methodology is seen to be useful in designing and optimising the transport of slurries in open 

channels. 

 

The aim of this work is to understand the underlying phenomena and mechanisms operating in the 

turbulent flow of non-Newtonian suspensions in open channels, in particular their ability to 

transport suspended particles. It is intended to achieve the following objectives: 

• Demonstrate how the rheological characteristics of the continuous medium carrier 

fluid influence the transport of solid particles in the suspension 

• Carry out modification of existing computational model to describe the non-

Newtonian open channel flow and validate by experimental measurements 

• Establish relationships between rheology of the fluid and turbulent characteristics of 

the flow 

• Establish relationships between rheology of the fluid and particle suspension in an 

open channel flow 
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There is a substantial amount of literature on turbulent flow in pipe and open channel flow. In this 

thesis, both experimental and computational studies for channel flow of non-Newtonian fluids have 

been carried out. The prediction of the velocity profile and other parameters such as Reynolds 

stresses and velocity fluctuations were compared with measurements of the same obtained in an 

open channel. These results addressed the question of size, intensity and frequency of the turbulent 

structures. 

 

The existing computational code could not be used for open channel flow. It was therefore modified 

by introducing new boundary conditions on free surface. Rheological parameters were also 

incorporated in the computational code. Computational simulation was then validated against a 

number of different experimental and computational results. Different velocity distributions were 

tested to see the validity of the simulation.  

 

Major investigations have been conducted to observe the effect of different rheological parameters 

on the simulation results. The major contribution from this study is that the simulation method 

provided the opportunity to examine the effect of changing one rheology parameter while keeping 

the other parameters constant. The relationship between rheological parameters and flow 

characteristics is Reynolds number dependent. It is concluded that the simulation can simulate non-

Newtonian turbulent open channel flow reasonably well. A further investigation on secondary 

current was also conducted. It appears that with a smaller Reynolds number, weak and large size 

turbulent structures appear in the middle region of the channel.  

 

Furthermore, Stokes number, low velocity streaks intensities and sizes have been studied. It is 

determined that the Reynolds number has more effects than rheological parameters on the low 

velocity streak size. It is found that the largest percentage of ejection and sweep events occurred 

away from the centreline and close to the wall at a height 10-20 cm from the bottom. It is already 

known that particles are easier to be suspended and re-suspended in those areas. In addition, it is 

also reinforced that the secondary current cell can assist the re-suspension of particles. 

 

This study of non-Newtonian suspension flow in open channel will provide fundamental 

information for understanding the behaviour of fluid structure and the relationship between fluid 

and particles. This information will also be applicable to the design and operation of industrial 
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channels for the transport of mineral suspensions leading to improved channel management and 

economic outcomes. 
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1 Chapter 1: Introduction 
 

1.1 Purpose and scope 

 

The flow of non-Newtonian fluids in open channels has great implications for mining 

industry. When self-formed channels flow at a sufficient gradient or slope, it can generate a 

certain level of turbulence. This turbulent behaviour of the transportation material can keep 

the particles in suspension. From literature (Chryss et al, 2006) and industrial experience, it is 

concluded that if the slope reduces, the intensity of turbulence will decline as well. Therefore 

the particles will not be fully suspended in the channel and consequently the channel will 

slow its transportation rate and fill with tailing residues.  

 

Particle transportation in the turbulent channel flow is often poorly understood. The addition 

of particles in turbulent flow increases the complexity of the turbulent phenomena. The 

mechanism governing particle transportation in turbulent flow has been studied in the past; 

however they are not completely comprehended. The Centrally Thickened Discharge (CTD) 

process is a good example of turbulent channel flow where mine waste is discharged as 

thickened slurry at a fixed location, forming low stacks of settled tailings. In this particular 

circumstance, the open channels of non-Newtonian suspensions arise spontaneously on the 

tailings stacks. A better understanding of the mechanisms operating in the turbulent flow of 

non-Newtonian suspensions in the open channels can well improve the operation in financial 

terms as well as in sustainability terms.  

 

Over the past fifty years, the study of turbulent non-Newtonian suspension in pipes has 

received considerable attention because of its industrial relevance. In the 1960s, experimental 

flow visualization techniques were used to investigate the structure of a Newtonian turbulent 

boundary layer. In recent times, there has been a significant improvement in understanding 

turbulent flow in pipes as a result of improved instrumentation (e.g. Electro-Resistive 

Tomography, Particle image velocimetry and Rheometric methods) and computational 

techniques (Fluent, CFX and DNS). Although open channel flows are encountered frequently 

in industrial and natural circumstances, there has not been the same level of improved 



 

  Page 2 

 

understanding. Open channels present a complex scenario for analysis because they show 

asymmetric velocity and concentration gradients. Moreover, open channels often produce 

secondary flows. Usually, open channel flow of water can be described by simple equations 

such as Manning’s equation as water has a constant viscosity under isothermal conditions. 

However, when water is admixed with a fraction of fine particles, its viscosity becomes 

increasingly non-Newtonian. Therefore the velocity distribution in an open channel is usually 

difficult to predict. 

 

In open channel flow, a sufficient gradient can generate a level of turbulence that is able to 

maintain all the tailings particles in suspension.  Shallower gradient will reduce the turbulence 

intensity; hence allow more solids to settle in the channel bottom. The channel gradient is 

believed to dictate the beach slope of CTD. The CTD process is extremely important to the 

mining industry in Australia. With a better understanding of CTD process, there is an 

improved possibility to recovering process water, a reduced likelihood of ground water 

contamination and more rapid environmental regeneration compared to standard tailing dams. 

From previous researches, there is a lack of fundamental understanding about the mechanisms 

involved in how a turbulent flow of a non-Newtonian fluid keeps particles in suspension. 

 

1.2 Methodology 

 

Experimental measurement of velocity profiles and turbulence statistics can be used to 

determine the state of channel flow. If the rheology of the suspension is known, then 

computational simulation can be used to simulate the flow patterns. In earlier years of 

research, Kim et al (1987) have simulated turbulent channel flow of Newtonian fluids with 

Reynolds number up to 3300. There have been some DNS of the turbulent flow of polymer 

solutions as well (Sureskumar et al, 1997). The study considered the drag reduction that arises 

in dilute polymer solutions in which shear-thinning behaviour was unimportant. 

Dimitropoulos et al (2004) have also used DNS to simulate viscoelastic turbulent boundary 

layer flow. It was found that as drag reduction increases, the streamwise velocity fluctuations 

are decreased. Furthermore, Rudman and Blackburn (2003, 2006) have used spectral element 

method to simulate non-Newtonian flow in pipes. The velocity distribution resulting from the 

present approach of adopting the Herschel-Bulkley model showed good agreement in terms of 
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shape and magnitude when compared with the experimental data. This indicates that the same 

simulation method could also be tested on channel flow with a change of boundary condition.  

 

Experimental data on large scale channels has been obtained for non-Newtonian channel flow 

(Fitton, 2007). However, with limitations on equipments, most details of the turbulent 

structure are missed, and measurements close to the channel wall are impossible. With the 

comparison from both experimental result (Fitton, 2007) and simulation result, more detailed 

turbulence characteristics of the flow can be obtained from simulation. Wall velocity streaks 

sizes and frequency then can be closely investigated. Therefore it is possible to explore the 

possible relationship between rheology of the fluid, turbulence characteristics of the flow and 

particle behaviour. Consequently by relating turbulence characteristics to particle behaviour; a 

set of new knowledge can be gained from the research. The knowledge will also be significant 

for the design and operation of flumes in the process industries.  

 

The study of non-Newtonian suspensions in open channels will provide the additional 

fundamental information for understanding the behaviour of self-formed channels in 

situations such as CTD stack. The same information will also be applicable to the design and 

operation of industrial channels for the transport of mineral suspensions with expected 

advantages in management and economic outcomes. 

 

1.3 Aim and objectives 

The aim of this project is to understand the underlying phenomena and mechanisms operating 

in the turbulent flow of non-Newtonian suspensions in open channels, in particular their 

ability to transport suspended particles. It is intended to achieve the following objectives: 

• Demonstrate how the rheological characteristics of the continuous medium 

carrier fluid influence the transport of solid particles in the suspension 

• Carry out modification of existing computational model to describe the non-

Newtonian open channel flow and validate by experimental measurements 

• Establish relationships between rheology of the fluid and turbulent 

characteristics of the flow 
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• Establish relationships between rheology of the fluid and particle suspension in 

an open channel flow 

 

1.4 Thesis structure 

The work presented here is structured in the following manner: 

• Literature Review (Chapter 2). The literature that specifically addresses the topic of 

open channel flow, turbulence characteristic of flow, particle interactions and other 

relevant literatures. 

• DNS studies review (Chapter 3). The literature addresses the previous DNS researches 

on turbulent pipe/duct flow and turbulent channel flow. 

• Experimental work (Chapter 4) 

o Ultrasound velocity probe principles 

o Calibration of velocity probe 

o Experimental setup 

• Numerical modelling of turbulent flow in open channels using Semtex (Chapter 5) 

o More detailed numerical method 

o Detailed simulation procedures  

• Validation of open channel models presented in the literature (Chapter 6). The 

simulation results were validated with five different sets of data. 

o Presentation of current results 

o Validation of simulation results 

o Explore the effects of different simulation variables, it includes: Three 

different rheological parameters, change of depth, change of measurement 

positions, and change of mesh resolution. 

o Discussion of secondary current 

• Discussion of particle transportation (Chapter 7) 

o Establishment of a relationship between fluid rheology and Stokes number 

o Establishment of a relationship between fluid rheology and wall velocity 

streaks and their sizes 



 

  Page 5 

 

o Discussion of particle suspension with the assistance of quadrant analysis 

o Establishment of a relationship between secondary current and particle 

suspension and re-suspension 

• A summary of new contributions and findings arising from the work is presented 

(Chapter 8) 

• Conclusions drawn from the work are presented (Chapter 8) 

• Recommendations are presented for future research (Chapter 8) 
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2 Chapter 2: Literature Review 
 

2.1 Outline 

There is a substantial amount of literature on turbulent flow in pipe and open channel. 

Experimental research on turbulent boundary layer and pipe flow has been conducted mainly 

in air flow since 1950s using hot wire anemometry. In the late 1960s, experimental flow 

visualization techniques were used to probe the structure of a Newtonian turbulent boundary 

layer. The basic research on open channel flow has only been investigated from the 1970s. 

Since 1980s, laser anemometry has made experimental studies in open channel turbulence 

much easier. In recent times, there has been a significant improvement in understanding 

turbulent flow in pipes as a result of improved instrumentation (e.g. Electro-Resistive 

Tomography, Particle image velocimetry and rheometric methods) and computational 

techniques. There is also a large amount of related literature that is extremely relevant to this 

work. The literature is presented in the following order: 

• Flow behaviour 

o Non-Newtonian flow behaviour 

• Open channel flow 

o Open channel flow categories 

o Equations for Newtonian turbulent open channel flow 

o Open channel flow review 

• Turbulence characteristics of channel flow 

o Velocity profile in channel flow 

o Secondary current in channel flow 

o Quadrant analysis 

• Particle interactions 

o Particle characteristics 

o Turbulence and particle interaction 
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2.2 Flow Behaviour 

In this section, the flow characteristic of single-phase liquids and pseudo-homogeneous 

mixtures is described.  

 

2.2.1 Non Newtonian behaviour 

The flow behaviour of a fluid can be classified on the basis of the shear stress-shear rate 

relations. If the relationship between shear stress and shear rate is not linear, then the material 

is called a non-Newtonian fluid. Sometimes, rheological behaviour of solid-liquid suspensions 

is dependent on the interactions between the dispersed components and the suspending 

medium which cause the deviation of the shear stress versus shear rate relation from the 

linearity observed in Newtonian fluids. Typical tailing slurry may exhibit both yield stress as 

well as change in viscosity at different shear rates.  

 

The graphical presentation of some relationships between shear stress and shear rate are 

shown in Figure 1. 

 

 

Figure 1  Types of time-independent flow behaviour (Chhabra and Richardson, 2008) 
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2.2.1.1 Non-Newtonian models 

 

Three commonly used rheological models are Power law model, Bingham plastic model and 

Herschel-Bulkley model.  

 

Power law model 

This model suits a fluid flow that exhibits non-linear behaviour without yield stress. The 

equation for the power law model is presented below: 

n
Kγτ &=   

(1) 

 

Where τ is the shear stress (Pa), K is the power law consistency index (Pa.S
n
), n is a power 

and  is shear rate applied to the fluid (1/s). 

 

A shear thinning fluid is characterised by an apparent viscosity which decreases with an 

increase of shear rate. 

 

Bingham plastic model 

This model is the simplest way to describe a flow behaviour with a yield stress. The equation 

is as follows: 

γττ &Ky +=   

(2) 

 

Where τy is the yield stress (Pa), K is the Bingham plastic viscosity (Pa.S) and  is shear rate 

applied to the fluid (1/s). 

 

This equation is linear and shear stress intercept is the yield stress. It is often used to represent 

many concentrated dispersions, emulsions and multiphase mixtures over a range of shear rates 

(Bhattacharya, 2001). 

 

Herschel-Bulkley model 



 

  Page 9 

 

If a yield stress fluid exhibits a non-linear relationship between the shear stress and shear rate, 

then the yield pseudoplastic three constant models can be used. The equation is presented 

below: 

n

y Kγττ &+=  
 

(3) 

 

Where τy is the yield stress (Pa), K is the power law consistency index (Pa.S
n
), n is a power 

and  is shear rate applied to the fluid (1/s). It will be noted that the Herschel-Buckley model 

can be easily modified to describe the previously mentioned models. 

If τy= 0, the equation becomes the power law equation. 

If n = 1, the equation becomes the Bingham equation. 

If n = 1, and τy= 0, the equation becomes the Newtonian flow equation. 

 

2.3 Open channel flow 

Open channel flow of water is a popular topic and has been studied extensively in the past 

(Chanson, 1999; Henderson, 1966). The physical conditions in open channels are quite 

different from that in pipes. The cross section of pipes is always round; for open channel the 

cross section can be of any shape. Open channel flow tends to be more complicated to predict 

because of the free surface which will change with time and space. Moreover, the depth of the 

flow, the discharge rate, the slopes of the channel and the free surface are all interdependent. 

In addition, an open channel flow is usually driven by gravitational force whereas a pipe flow 

is driven by a pressure gradient along with some gravitational effects. Secondary currents 

exist in open channel flows, which can cause the maximum velocity to exist somewhere 

below the free surface.  
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Table 1 Difference between pipe flow and open channel flow 

 

 Pipe Flow Open channel flow 

Flow driven by Pressure Gravity 

Flow cross section Known, fixed Unknown, as flow depth is 

unknown 

Characteristics flow 

parameters 

Velocity deduced from 

continuity 

Flow depth deduced 

simultaneously from solving 

both continuity and 

momentum equations 

Specific boundary condition  Atmospheric pressure at the 

free surface 

 

2.3.1 Open channel flow categories 

Open channel flow can be categorised into different types. 

• Steady and unsteady flow 

Flow in an open channel is steady if the depth of flow does not change or if it can be 

assumed to be constant during the time interval under consideration. Therefore in this 

category, time is the important criterion. 

• Uniform flow and varied flow  

If it is a uniform flow, then the depth of the flow is the same at every section of the 

channel. The flow is varied when the flow depth varies over the length. A uniform flow 

may be steady or unsteady, depending on whether or not the depth changes with time. In 

this category, space is the important criterion. 

(Chow, 1959) 

 

The open channel flow under investigation for this study is expected to be a steady flow, as 

the depth of flow does not change over time. The depth of the flow will be same at every 

section of the channel.  

 

Like any fluid mechanical problem, dimensional analysis can play a key role. In open channel 

flow, there are a few variables that are needed to describe the transportation of fluid or 

suspensions. They are as follows: 
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Table 2 Open channel flow variables 

Symbol Description Unit 

V Velocity m/s 

L Relevant length scale m 

µ Dynamic viscosity Pa.s 

ρ Density m
3
/kg 

g Gravity m/s
2
 

 

There are two dimensionless parameters commonly related to open channel flow. They are 

Reynolds number and Froude number. Reynolds number is the ratio of the inertial to viscous 

forces and is calculated using: 

µ

ρVL
=Re  

 

(4) 

 

For open channel flow, L becomes the hydraulic radius Rh, where the hydraulic radius is the 

ratio of area over the wetted perimeter of the flow cross-section (Chow, 1959). Then (French, 

1982): 

Re ≤ 500  Laminar flow 

500≤ Re ≤ 12500 Transitional flow 

12500 ≤ Re  Turbulent flow 

 

A dimensionless parameter Froude number (Fr) is commonly associated with open channel 

flow (Chow, 1959; Henderson, 1966; Yalin, 1977).  

 

gL

V
Fr =  

 

(5) 

 

Where V represents the average velocity in the channel while g represents the local 

acceleration due to gravity. L is the characteristic length of the channel; it can be the depth of 

flow or hydraulic radius. The value of the Froude number (Equation (5)) indicates whether the 

flow is critical (Fr = 1), subcritical (Fr < 1), or supercritical (Fr > 1).  For Froude numbers 

greater than 1, the flow is said to be supercritical. In open channel flow, it means that the flow 
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can only be controlled by an upstream weir or height control device (Henderson, 1966). For 

Froude numbers less than 1, the flow is said to be subcritical. This means that the flow can 

only be controlled by downstream devices. Froude number is readily used in Newtonian 

flows; however the application for non-Newtonian flow is not fully discovered. 

 

In Figure 2, the flume is inclined at an angle θ from the horizontal plane. Figure 3 shows the 

cross sectional area of the flow, the depth of the flow and the angle β, which describes the 

location of the free surface relative to the location of the centre of the pipe.  

 

 

Figure 2  Schematic illustration of non-uniform, axial flow in a flume 

 

 

Figure 3  Schematic illustration of the cross-sectional view of open channel flow in a circular 

flume 

 

For flow in an open channel, the wall shear stress is dependent upon the flume slope angle, 

the flow rate and cross-sectional area of flow. The bulk velocity at any location in a steady 

flow can be calculated by: 
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A

Q
V =  

 

(6) 

 

The average wall shear stress in the channel can be determined by a force balance on the 

system. When uniform flow occurs gravitational forces exactly balance the frictional 

resistance forces which apply as a shear stress along the wall. Considering the gravity force 

resolved in the direction of the flow is 

Gravity force θρ singAL=   

(7) 

 

And the boundary shear stress resolved in the direction of flow is  

 

PLwττ =   

(8) 

 

In uniform flow these balance 

θρτ singALPLw =   

(9) 

 

So 

θρ
θρ

τ sin
sin

hw gR
P

gA
==  

 

(10) 

 

The wall shear stress varies along the wetted perimeter of the flow and the value calculated in 

Equation (10) is the average shear stress in the open channel. 

2.3.2 Equations for Newtonian turbulent open channel flow 

There are a number of open channel flow models; some of them are adapted from pipe flow. 

A few of the models will be discussed in the next section. 

2.3.2.1 Chezy’s equation for channel flow 

Most of the existing formulas and theories for pipe flow are not applicable to open channel 

flow. As mentioned previously, pipe flow is bounded in all directions by walls which fix the 

velocity based on the local cross-section area. In open channel flow, the velocity is not fixed 
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as the conditions dictate the depth of flow. Antoine Chezy developed the very first uniform-

flow formula, which is defined as follows (Chow, 1959): 

SRCV h=  
 

(11) 

 

Where V is the mean velocity, Rh is the hydraulic radius, S is the slope and C is a factor of 

flow resistance called Chezy’s C. This formula applies to turbulent flow. It is also defined as 

follows by (Chanson, 1999) 

αsinhChezy RCV =   

(12) 

 

H. Bazin proposed a formula to predict C (Chow, 1959). 

R

m
C

+

=

1

6.157
 

 

(13) 

The value of Bazin constant varies from 0.11 for very smooth cement of planed wood to 3.17 

for earth channels in rough conditions (Chow, 1959). 

 

2.3.2.2 Manning’s equation 

Robert Manning presented a different equation, which is presented as follows: 

2/13/249.1
SR

n
V h=  

 

(14) 

(Chow, 1959) 

Where V is the mean velocity, Rh is the hydraulic radius, S is the slope and n is the coefficient 

of roughness. This particular formula applies to turbulent flow and is widely used for open 

channel flow. 

 

2.3.2.3 Colebrook and White equation  

Colebrook and White have designed an equation for pipe flow 









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
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(15) 
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In open channels, the equation can be modified by substituting the diameter with the 

hydraulic radius. 





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(16) 

 

The k value is the equivalent roughness height. This particular equation can be transformed to 

an explicit equation in terms of the velocity to be: 
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(17) 

 

This equation is used to calculate the flume roughness, and is regarded as one of the more 

sophisticated approaches to open channel design (Wallingford and Barr, 1994). 

 

2.3.3 Open channel flow review 

The flow of non-Newtonian fluid in open channels is quite common in mineral processing 

industry. However, it is not well presented in the literature and textbooks. A significant 

amount of research has been applied to the study of the water flow behaviour in open channel. 

The other area which attracts research interests is the transportation of sediments in open 

channel.  

 

Coussot (1994) investigated flow of concentrated mud suspension in open channels. He used 

kaolin as the non-Newtonian suspension which had a particle diameter of less than 40 µm. He 

characterised the suspension as a Herschel-Bulkley fluid. The flow behaviour index was fixed 

to be 0.333. 

 

The author defined the Herschel-Bulkley number as follows: 

n

y

b
V

h

K
H 








=

τ
 

 

(18) 

 

Then the author proposed the empirical formula of the average wall shear stress: 
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(19) 

 

With ‘a’ being the shape factor and differing for different channel shape. For this particular 

paper, the wall shear stress equation is only designed for rectangular and trapezoidal channel 

shapes. These formulas are only valid for the Herschel-Bulkley fluids and the value of n needs 

to be fixed to 0.333. Furthermore the flow needs to be in the laminar region in order to be 

valid. 

 

Haldenwang et al (2002, 2003, 2004) investigated a range of non-Newtonian fluid flows in 

open channel. Laminar and transitional flows were both achieved. The author used different 

concentrations of CMC solutions, kaolin and bentonite suspensions in the experiment. He 

characterised the CMC solution as a power law fluid, the kaolin suspension as a Herschel-

Bulkley fluid and bentonite suspension as a Bingham fluid. The author conducted 

experiments in three different sizes of rectangular flumes, which were 75 mm, 150 mm and 

300mm wide. The 75 mm flume was 4.5 m long and the 150 mm and 300 mm flumes were 10 

m long. The author used five different slopes in the experiments, from 1 to 5 degrees.  

 

The author defined Reynolds number as follow: 

n

h

y
R

V
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V
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(20) 

 

He modified the Slatter’s Reynolds number to open channel flow (Slatter, 1995) by 

substituting the pipe diameter with hydraulic radius.  

 

For power-law fluids, the equation reduces to: 

n

hR

V
K

V









=

2

8
Re

2ρ
 

 

(21) 

 

For the Bingham fluids the equation reduces to: 
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(22) 

 

Further, Haldenwang (2003) developed a new model for predicting the onset of transition and 

the onset of turbulence for non-Newtonian open channel flow. The author stated that the flow 

behaviour could be characterised by the Froude number and the Reynolds number. 

Haldenwang (2003) plotted Reynolds number against Froude number to establish the 

correlation between the two dimensionless numbers. He found that there is a linear 

relationship between the tested slopes. Then the linear relationship was plotted against the 

apparent viscosity. A critical Reynolds number was established by using the Froude number 

to predict the onset of transition. The Reynolds number was found to have a linear 

relationship with the Froude number for an apparent viscosity at 100 s
-1

.  

 

This critical Reynolds number is as follows: 

( )( ) ( )( ) 75.0

100

21.0

100 11

71200
Re
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(23) 

 

To predict the onset of transition the following procedure is followed: 

• Select the Reynolds number 

• Calculated f with laminar flow friction factor, which is: f = 16/Re 

• Guess the flow depth 

• Calculate the velocity using Darcy friction factor equation 
2

2

V

gSR
f h=  

• Calculate Re using equation (20). 

• Optimise the flow depth until the two Reynolds numbers are the same 

• Calculate the Froude number  

• Calculate the Re transition using equation (23) 

• Optimise the flow depth until Re is the same as Rec for onset of transition 
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To predict the onset of turbulence, the author used similar procedure as for the onset transition 

prediction. The only difference is that the linear relationship was at an apparent viscosity at 

500 s
-1

. This critical Reynolds number is as follows: 

( )( ) ( )( ) 65.0
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(24) 

 

To determine the onset of turbulence, the procedure is as follows: 

• Complete the first seven steps used when predicting the onset transition as above 

• Calculate the critical turbulent Reynolds number using equation (24) 

• Optimise the depth until Re is the same as Rec for onset of turbulence 

 

However, there is no mention of coarse particle transportation in laminar or turbulent flow in 

any of those works. Moreover the author did not include any turbulence characteristics in the 

paper and there is no measurement of local velocities as well. The prediction of transition and 

turbulence is purely based on Reynolds number and Froude number relationship. In Chapter 

6, these methods will be used for the prediction of turbulence. 

 

The shape factors were first defined by Straub et al (1958) in their open channel investigation. 

Kozicki and Tiu (1967) investigated the effect of shape in laminar flow in open channels 

further in their work. They proposed an analytical method by which frictional effects resulting 

from non-Newtonian fluid flow can be predicted in ducts of arbitrary cross-section (Kozicki 

and Tiu, 1967). Additional relevant research included the work of Metzner and Reed (1955) 

and Straub et al (1958) who attempted to correlate data and create a method for predicting 

wall shear stress and turbulent transition for non-Newtonian fluids in ducts of different cross 

sections. 

 

Kozicki and Tiu (1967) showed that the method can be applied to open channel gravity flows 

with the following flow conditions. 

1. Incompressible, time independent, non-Newtonian fluid 

2. Isothermal, stead, one-dimensional, laminar, gravity flow 

3. No-slip at channel walls 

4. Zero shear free surface 
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5. Flow is uniform (free surface height does not change with axial position), no ripples or 

waves 

6. Smooth channel wall 

 

Kozicki and Tiu (1967) proposed a Reynolds number for a power-law fluid in rectangular 

flume as follows:  
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(25) 

 

This Reynolds number includes the shape factors ‘a’ and ‘b’. With a semi-circular open 

channel, a = ¼ and b = ¾, and for rectangular open channel a = 0.21 and b = 0.68. 

 

For a rectangular open channel ‘a’ and ‘b’ are as follows: 
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With  

hB/=λ   

(27) 
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(28) 
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These shape factors however have not been tested against any valid experiment dataset. In 

fact, Kozicki and Tiu’s shape factor can only predict the flow rate and maximum velocity in 
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laminar flow of an incompressible, time-independent non-Newtonian fluid in a straight open 

channel (Kozicki and Tiu, 1967). In Chapter 5, these models will be tested with data compiled 

for this thesis. 

 

2.4 Turbulence characteristics of channel flow 

Velocity distribution and turbulence characteristics in open channel flow have been studied 

theoretically and experimentally by many researchers. The following section reviews some 

interesting aspects of turbulence research in open channels.  

2.4.1 Velocity profile in channel flow 

 

In open channel flow, the velocity is not constant with depth. It usually increases from zero at 

the invert of the channel to a maximum value close to the surface. The velocity difference 

results from the resistance to flow at the bottom and sides of the channel. Theoretical 

exploration used the statistical theory of turbulence for uniform and fully developed flows in 

wide open channels. Some of the most definite data in 2-D open channel flow are velocity 

distributions. All the flows referenced in this section are fully developed turbulent flows.  

 

 

Figure 4  Definition sketch for steady 2D uniform open channel flow 
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Figure 4 shows the coordinate system in open channel flows. As shown in the figure, u, v, and 

w denote the components of mean velocity; u', v' and w' denote the velocity fluctuations.  

 

Turbulent flow along a wall can be considered to consist of three regions, characterized by the 

distance from the wall. The very thin layer next to the wall where viscous effects are 

dominant is the viscous (or laminar or linear or wall) sublayer. Next to the viscous sublayer is 

the buffer layer, in which turbulent effects become significant, but the flow is still dominated 

by viscous effects. Above the buffer layer is the outer (or turbulent) layer where turbulent 

effects dominate over molecular diffusion effects (Cengel and Cimbala, 2006).  

 

Experimental evidence shows that all wall shear turbulent velocity profiles, such open 

channel flow and boundary layer flows can be divided into two regions (Coles, 1956). These 

two regions are: an inner region where turbulence is directly affected by the bed; and an outer 

region where the flow is only indirectly affected by the bed through its shear stress. The inner 

region can be divided into a viscous sublayer, a buffer layer and an overlap. Also the outer 

region can be further divided into the overlap and a wake layer. In summary, the flow domain 

in a wall shear turbulence can be divided into four layers: viscous sublayer, buffer layer, 

overlap layer (or intermediate layer), and wake layer, shown in Figure 5.  
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Figure 5  Sketch of a representative velocity profile in open channels 

 

The mean velocity distribution for fully developed turbulent flow could be expressed by the 

logarithmic velocity distribution equation of von Karman-Prandtl (Cengel and Cimbala, 

2006):  

( ) Ay
k

U += ++ ln
1

 
 

(30) 

 

Where  

ν

*yU
y =+

 , 
*U

U
U =+

 and ρτ /* wU =  
 

(31) 

 

In equation (31), where U
*
 is the friction velocity, A is a constant of integration and k is the 

von Karman constant. A and k values are determined experimentally to be about 5.29 and 0.41 

respectively (Nezu, 2005), regardless of the Reynolds number and Froude number. Nezu and 

Nagakawa (1993) reviewed results in other smooth-wall-bounded shear flows and found the 

following values for the constants in the log-law profile: k = 0.41 and A = 5.0 in boundary 

layers by Coles (1968); k = 0.41 and A = 5.17 in closed channel flow by Dean (1978). The 

von Karman constant is concluded to be 0.41 irrespective of flow configuration. However, 
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constant A may weakly depend on main flow properties but is nearly constant. i.e. between A 

= 5.0 - 5.3 on smooth beds. It is seen that the constants for ‘plane’ boundaries do not seem to 

differ much from those found for channel of circular cross section. It is indicating the 

similarity of the flow in the near-wall region of both cases. 

 

In the viscous sublayer, 

++ = yU   

(32) 

 

Equation (32) is the ‘log-law’ and is valid only in the wall region of the flow. Equations (30) 

and (32) are the ‘law of the wall’. It is viewed as a universal velocity profile for turbulent 

flow in pipes and is also readily used in channel flow cases.  

 

Van Driest (1955) provides a different A and k value for the logarithmic velocity distribution 

equation.  
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(33) 

 

In this case, the author used a log10 rather than the natural log.  

However, in buffer layer, there is no analytical solution available. Clapp (1961) proposed a 

velocity distribution equation for power law fluid which included an equation for buffer layer 
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Turbulent layer 
Hy

n

G
U += ++ ln , 2

++ > yy  
(36) 

 

Where G and H are empirical constants to be obtained by experiment. y
+

2 = 30 is used for 

Clapp’s (1961) paper and also in Chapter 6 of this work. The observed velocity distributions 

by the author were correlated by the equation: 
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Investigations (Coles, 1956) have shown that the deviation of the velocity distribution in the 

outer region of open channel flows from the log-law can be accounted for by adding a wake 

function. 
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Where w(ξ) accounts for the deviation and termed the wake function, and П is termed the 

Coles’ wake strength parameter. Equation (38) is known as ‘the velocity defect law’ or ‘the 

log-wake law’. Experiments conducted by Eckelmann (1974) and Nezu (2005) showed that П 

is about zero at low Reynolds number < 500. At small values of Re greater than 500, П 

increases rapidly with Re and it remains nearly constant, i.e. П =0.2 for Re > 2000.  

 

Barenblatt (1993) introduced a specific power law for the velocity profile in pipe flow. This 

law fits data in the inner part of the wake region and the outer part of the log region.  
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Where Red = VD/υ. The Red is based on the average pipe velocity V and the pipe diameter D = 

2r. However, it is uncertain that if this power law fits for open channel flow.  

 

Yalin (1977) introduced a set velocity distribution equation in turbulent flow with roughness 

of the channel considered. The author stated that: 

• if U*ks/υ < ≈ 5, then the velocity distribution is 
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• if U*ks/υ > ≈ 70, then the velocity distribution is 
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Where U
*
 is the friction velocity, ν is the kinematic viscosity. ks is Nikuradse’s original 

uniform sand grain roughness, it represents the equivalent sand roughness for any type of 

rough surface. B is a dimensionless property of the flow in the vicinity of the bed; in general, 

it must be a certain function of U
*
ks/υ. Kirkgoez (1988) conducted experiments with different 

rough surfaces in open channel flows. Experiments were performed in a glass-walled channel 

about 12 m long. Laser-Doppler anemometer was used to measure the flow velocities. The 

author found that on rough beds, the law-of-the-wall fits quite well for different roughnesses. 

However, the velocity-defect distribution shows some scatters.  

 

Chiu and Tung (2002) proposed a method to predict the position of maximum velocity under 

water surface. The author derived the following velocity distribution equation: 
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In which U = velocity; Umax = maximum velocity in a channel cross section; M = parameter; 

ξmax = maximum value of ξ and occurs at the location of Umax; and ξ = constant on an isovel 

on which the velocity is equal to U. ξ/ ξmax is equivalent to the probability of velocity, 

randomly sampled in a channel section, being less than or equal to U. M can be calculated by 

the ratio of the mean and maximum velocity: 
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ξ can be expressed as a function of y: 
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In which y = vertical distance from the bed. There are three cases for ξ, but only the following 

one is considered to be applicable for this research. 
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• The maximum velocity Umax occurs at a vertical distance h below the water surface, or 

y = Depth - h. In this case, h > 0 and ξmax as well as Umax occurs at y = Depth - h. 

therefore 
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Since h represents the distance of Umax from the water surface, the upper limit of h/Depth is 

unity. In Chapter 6, these velocity profile equations will be tested with data compiled for this 

thesis. 

 

2.4.2 Secondary current in channel flow 

 

In 1878, Francis (cited in Gulliver and Halverson, 1987) first hypothesized the secondary 

currents concept. His explanation for secondary current was the depression of the point of 

maximum velocity from the free surface. Nikuradse (cited in Yang, 2009) first made the 

observations of secondary currents that appeared near the corners of the duct cross section. 

There are two kinds of secondary currents described in the literature. If the flow is not 

uniform in the streamwise direction, streamwise vorticity is generated by vortex stretching 

(Nezu and Nakagawa, 1993). Secondary currents generated by this particular mechanism are 

called ‘secondary currents of Prandtl’s second kind’. The first kind of secondary current has 

been widely investigated in curved channels and river ways. The other type of secondary 

currents is caused by the sidewall effect. These secondary currents of Prandtl’s second kind 

are often termed turbulence-driven secondary currents. This particular secondary current can 

not arise in laminar straight channel flow (Nezu, 2005). The presence of secondary current 

displaces considerably the velocity contours. 

 

In fact the secondary currents in open channel flows remained comparatively unknown until 

recently. The most important feature is that the maximum velocity appears not at the free 

surface, but just below the free surface in open channel flows. It is also suggested by Nezu 

and Nakagawa (1993) that this phenomenon is called the “velocity-dip”, and it is peculiar to 

open channel flows. According to Nezu and Nakagawa (1993) and Nezu (2005), a secondary 

current is where the lower velocity/momentum material has been dumped into the high 

velocity/momentum region. Therefore there is a dip in the axial velocity profile after 
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maximum velocity has been reached. This happens regularly in non circular channel flow. 

Only this second kind of secondary currents is studied in the present research.  

 

Nezu and Rodi (1985) used a two-colour LDV system to measure the longitudinal velocity 

and vertical velocity in an open channel. Figure 6 shows the velocity vectors of the secondary 

currents measured by Nezu and Rodi (1985) in a narrow open channel. It is quite obvious that 

a strong vortex occurs near the free surface. This vortex is called the ‘free-surface vortex’, and 

its pairing vortex near the bottom of the channel is called ‘bottom vortex’. This free-surface 

vortex is much stronger than the bottom vortex. Free-surface vortex transports momentum 

and energy from the side of the channel toward the centre of the channel. The strong down 

flow that occurs at the channel centre causes the so called velocity dip as momentum is 

transported from the free surface to mid-depth.  

 

Figure 6  Vector description of secondary currents in open channel by Nezu and Rodi (1985) 

 

Einstein and Li (1958) first deduced the equation of relation between the longitudinal 

vorticity and Reynolds shear stress. It is quite accepted that secondary flows are induced by 

the imbalance of normal Reynolds shear stress. In Gessner (1973), the author stated that the 

anisotropy of turbulent normal stresses, 
2ν and 

2
w , did not play a major role in the generation 

of secondary currents. Knight and Sterling (2000) conducted experiments in circular conduits, 

with and without a smooth flat bed, and flowing partially full. The author discovered that the 
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secondary current appeared in both near the free surface and in the corner regions, particularly 

when a deposited sediment bed is presented.  

 

In Nezu (2005), the author summarised that the velocity-dip phenomenon occurs if b/h ≤ αc . 

The value of αc is equal to 5 or slightly larger. It is then classified into two categories: 

• Narrow open channels, b/h ≤ αc . Corner flows are generated in flows because the side 

wall produces anisotropy of turbulence in the same manner as for closed-channel 

flows. The velocity-dip is also caused by the free-surface effect whereby the 

anisotropy of turbulence differs from that for closed-channel flows (Nezu, 2005). 

• Wide open channels, b/h > αc. The side-wall effect disappears. But if any spanwise 

variation of bed shear stress occurs that is periodic, cellular secondary currents are 

generated. However, it is not investigated in this research.  

 

Yang et al (2004) proposed a velocity distribution profile for secondary current in rectangular 

open channel as follows.  
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Where αy is the factor to predict secondary current given by 
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In αy = 0, the above equation will become the classical log law. The second term on the RHS 

plays an important role in the outer region. However, it is negligible in the inner region as 

ln(1-y/h) ≈0. This will be tested in the Results section.  

 

2.4.3 Quadrant analysis 

This particular method is used in various journal papers to investigate the Reynolds stress 

structures and features of the large eddy. In this research, quadrant analysis is used as a tool to 

quantify the near boundary behaviour of the fluid.  
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The quadrant analysis technique is introduced by Willmarth and Lu (1972) for a turbulent 

boundary layer. This technique sorts out contributions to the Reynolds shear stress u'v' into 

quadrants of the u-v plane. The largest positive contributions to the turbulent energy were 

provided by the ejection (u'<0, v'>0) and sweep quadrants (u'>0, v'<0), while small and 

negative contributions were made by the interaction quadrants (u'<0, v'<0 and u'>0, v'>0). 

The first quadrant u'>0, v'>0, contains outward motion of high-speed fluid. The second 

quadrant u'<0, v'>0 contains the motion associated with ejections of low-speed fluid away 

from the wall. The third quadrant u'<0, v'<0 contains inward motion of low-speed fluid. The 

fourth quadrant u'>0, v'<0 contains an inrush of high-speed fluid; this is usually referred to as 

the sweep event (Kim et al, 1987).  

 

 

Figure 7  Quadrants of the instantaneous u'v' plane 

 

 
 

 

Figure 8  Sweep and ejection in turbulent boundary layer (Biddinika, 2010) 
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In Wallace et al (1972), the author used Hot-film measurement to measure Reynolds stress in 

a full developed channel flow. The Reynolds number based on the width of the channel and 

the centre-line velocity is 7150. This is equivalent to a pipe Reynolds number of 11000 

(Wallace et al, 1972). Under these turbulent conditions, the author concluded that turbulent 

energy dissipation is associated with the Reynolds stress producing motions i.e. sweep and 

ejection. However, the author did not comment on the actual position of sweep and ejection. 

The investigation is been limited by equipment measuring ability. It has been discovered in 

Kim et al (1987) that the ejection event dominated away from the wall region whereas the 

sweep event dominated in the wall region. In Kim et al (1987)’s study, the author only used 

direct numerical simulation to produce Reynolds stress in a turbulent channel flow.  

 

Rajagopalan and Antonia (1982) conducted X-wire/cold wire arrangement to measure 

velocity fluctuations in a wind tunnel. Their quadrant analysis technique is based on 

instantaneous products of longitudinal, normal velocity fluctuations and the temperature 

fluctuation. They found that the frequency of ejections is nearly equal to sweeps. Yet, they 

also did not comment on the place where sweep or ejection most likely to happen.  

 

Antonia and Browne (1987) investigated the average momentum and heat transfers in the 

self-preserving region of a turbulent wake. Similar to Rajagopalan and Antonia (1987) they 

used X-wire/cold wire technique to measure velocities in a wind tunnel. The main focus of 

this research is on the vortex motion of a turbulent wake. In this case, the author identified 

ejections with the outer downstream part of a spanwise vortex and sweeps with the inner 

upstream part of the same vortex.  

 

Shvidchenko and Pender (2001) presented a paper on the macro-turbulent structure of open 

channel flow. The author conducted the experiment with water in an 8 m long rectangular 

flume. They used SONTEK acoustic Doppler velocimeter to measure the velocity of the fluid. 

They also used a flow visualization technique to study the large scale turbulent structure of 

the flow. They used quadrant analysis and ADV to show the existence of sweeps and 

ejections in the channel. It is concluded that the upwelling (ejection) and high forward speed 

downwelling (sweep) fluid motions significantly increase the local Reynolds stress. This 

finding is parallel to Kim et al (1987)’s conclusion. Moreover, Shvidchenko and Pender 
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(2001) stated that if the sweep and ejection motion are strong enough, then the motion could 

suspend the bed particles.  

 

Klipp et al (2006) used quadrant analysis on atmospheric surface layer. They deployed an 

array of sonic anemometers mounted on five towers in Oklahoma City. The author studied the 

turbulent transport and dispersion in the atmospheric boundary layer within an urban 

environment. They actually focused only on the turbulent momentum transport on wind 

vectors. Moreover, the authors did not put any emphasis on sweep and ejection, but on 

quadrant 1 and quadrant 3 motion instead. 

 

Robinson (1991) stated that the majority of the turbulence production in the entire boundary 

layer occurs in the buffer region. The near wall turbulence production process is considered to 

be an intermittent, quasi-cyclic sequence. It is usually referred to as ‘bursting’. It has 

described as ‘violent breakup of a low-speed streak after lifting’, and ‘shear-layer interface 

sandwiched between an upstream, high-speed sweep and a downstream, low-speed ejection’ 

(Robinson, 1991). Most of the definitions about bursting process describe it as a highly 

intermittent, explosive event. It is a very satisfying concept for the production of turbulent 

motion.  

 

Yalin (1977) also mentioned ‘bursting’ as an ‘observable chain of events’. The total chain of 

the events mentioned is referred to as the ‘burst’. It seems that the bursting process is 

regenerative. I.e. a ‘recirculation cell’ is formed by the sweep action, then it would 

disintegrate into a multitude of smaller eddies. Therefore the path of a module or a macro-

turbulent eddy should end just on the downstream side of the location where the path of the 

next module begins. This is a vast area and is extremely relevant with regards to particle 

transportation in channels. In the next section, the interactions between particles and turbulent 

structure will be discussed in details.  

 

2.5 Particle interactions 

From the literature, there are two issues of fluid dynamics which are poorly understood: 

turbulence and two-phase flow. This section will review the interaction between these poorly 

understood areas. In the coming section, only the effect of the particles on the turbulence in a 

boundary layer will be discussed in some depths.   
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2.5.1 Particle characteristics 

2.5.1.1 Stokes number 

Crowe et al (1993) published some parameters which affect the particle dispersion in large 

scale and organized structures. The authors proposed a Stokes number defined as: 

F

sSt
τ

τ
=  

 

(50) 

 

Where τs is the aerodynamic response time of a particle and τF is the time associated with the 

motion of the large scale structure. The particle response time is the time it takes for the 

particle to respond to changes in the local flow velocity. It depends on the particle’s radius 

and density (Hogan and Cuzzi, 2001). The aerodynamic response time is scaled as: 
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Where ρp is the material density of the particle, d is the particle diameter and µ is the dynamic 

viscosity of the carrier fluid. The flow time is modelled as  

 

U
F

∆
=

δ
τ  

 

(52) 

 

Where d is the size of the structure and DU is the velocity difference across the shear layer. 

The size of the structure in fact is a very vague description. According to Nezu et al (2004), 

the size of the structure has also been described as mixing length. From Nezu et al (2004), the 

mixing length l
+
 is obtained by using van Driest damping function: 

 

Γ= ++ kyl   

(53) 

 

k is the von Karman constant and has an universal value of 0.412. y
+
 is the distance from the 

wall and 
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Stokes number becomes: 
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It is discovered that if the St <<1 then the particle response time is less than the flow time and 

the particles will follow the fluid path lines. If St ~ 1, the particles will probably be 

centrifuged by the vortices structures. For St >> 1, the particles have insufficient time to 

respond to changes in the fluid velocity and will continue in near rectilinear trajectories 

(Crowe et al, 1993). In other words, particles generally become more fluid-like as Stokes 

number approaches zero and they are distributed more uniformly in an incompressible fluid 

flow. When St is greater than unity, particles become less responsive to the flow field.  

 

This concept is based on particle dispersion rather than the particle transport. The paper only 

described particle dispersion in large scale turbulent structures generated by free shear flows. 

Free shear flow is the unbounded region of a large body of fluid flow, which have either 

excess momentum or momentum deficit (Sreenivas, N.D). The future experiment may not be 

a free shear flow as it does not have an unbounded region of large body of fluid. Thus the 

calculation of Stoke number may not be able to give a clear answer.   

 

The question needs to be asked is whether it is possible to relate the rheological 

characteristics of the continuous medium carrier fluid to the transport of solid phase in the 

suspension. Thus determine the conditions that allow transported particles to stay in 

suspension in turbulent open channel flow. 

 

2.5.1.2 Sediment transportation 

Yalin (1977) made a very thorough review on the mechanisms of sediment transport. 

Nevertheless, the models presented in the book are empirical and only applicable to dilute 

systems. There is no theoretical correlation to accurately describe the mechanism associated 

with transportation of coarse particles to date.  
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The best-known and most widely used investigation on initiation of motion is Shields (Yalin, 

1977). This parameter is very frequently used to relate the suspended sediment to the dynamic 

parameters of flowing slurry. Shields found that the dimensionless critical shear stress is: 

( )dg fs

c
ρρ

τ
τ

−
=  

 

(56) 

 

This parameter addresses the critical stage of a mobile bed and the initiation of grain motion 

en masse, not the detachment of an individual grain. In most of the studies, this model is used 

in diluted sediment slurries. The Shield parameter is just a way to describe the incipient 

motion of particles. It is not equivalent to the critical deposition velocity condition described 

in pipelines for concentrated systems. It is not entirely sure whether this can be used in non-

Newtonian suspensions.  

 

Schaflinger et al (1995) used a factor which resembled the Shields parameter to study viscous 

re-suspension of settled particles in laminar flows. The author investigated viscous re-

suspension for a two-dimensional Hagen-Poiseuille channel flow. The methods described in 

the paper are only applicable to viscous Newtonian carrier fluid.  

 

Muste and Patel (1997) conducted experiment in a 30 metres long rectangular flume with a 

concrete bed. They used the sand from Iowa River in their experiment with a size range of 

0.044-0.710 mm. The authors measured velocity profile and turbulence characteristics of the 

liquid and sediment particles. Unfortunately they did not mention any rheology parameters of 

the sediment or the relationship between the rheology parameters and turbulence 

characteristics.  

 

2.5.2 Turbulence & Particle interaction 

From literature, it is discovered that the behaviour of solid particles in the wall region of a 

turbulent boundary layer is extremely important for the understanding of deposition, 

entrainment and re-suspension in different industrial processes. Three different types of 

coherent wall structures have been observed by many researchers (Blackwelder and Kaplan, 

1976; Robinson, 1991; Jeong et al, 1997; Kumar et al, 1998; Liu et al, 2001; Rouson and 
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Eaton, 2001; De Angelis et al, 2002; Nezu, 2005.). One type consists of low velocity streaks 

very close to the wall. The second are streamwise and quasistreamwise vortices and the third 

type are ‘active’ periods usually referred as ‘bursts’ (Kaftori et al, 1995). 

 

Sumer and Oguz (1978) investigated particle behaviour during the bursts using photographic 

techniques. The authors found that the particles moved along the bottom of the channel and 

were randomly ejected into the flow up to heights of 100-200 wall units or more. They also 

discovered that the ejected particle was within a low-velocity streak prior to the ejection.  

 

Sumer and Deigaard (1981) argued that the mechanism which prevents the particle from 

settling is closely associated with the turbulence structure near the bottom of the channel. The 

authors used particles with diameters between 2.9-3.1 mm and specific gravity between 

1.0029-1.0258 in the experiment. The heavy particles have the highest specific gravity of 

1.0258. They used stroboscope and high speed camera to record particle paths in three 

dimensions.  

 

It was noted that the particle ejected from the wall region could reach y
+
 of 54 on average. 

The particle ejected from the wall region falls out of the lifted fluid with the burst before the 

burst break up. Then the particle starts to return back near the bottom and finally swept into 

low speed wall streak from where it is ejected again into the flow (Sumer and Deigaard, 

1981).  

 

Rashidi and Banerjee (1988) have used oxygen bubble technique and video camera to capture 

and trace the turbulent structure in a channel. However oxygen bubble flow visualization was 

only employed at Re < 10000 since at a high Reynolds number the bubbles dispersed through 

the flow very fast. After analysing the velocity-fluctuation amplitude distributions, they have 

found out that “bursts” lead to an overall rotational structure in the liquid stream that rolls 

with the flow (Rashidi and Banerjee, 1988). By plotting the intensities of vertical fluctuations, 

the region near the interface showed higher intensities than the ejection events. It is 

interesting to see that after the burst fluid reaches the interface; the velocity field becomes 

more chaotic.  
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Figure 9  Sketch of burst evolution in a flowing liquid layer between a wall and a free surface 

(Rashidi and Banerjee, 1988) 

 

In their next paper, Rashidi et al (1990) conducted experiments on particle-laden fully-

developed pipe flow and free shear flow. They used a Plexiglas rectangular channel and liquid 

recirculating facilities. They have used water as the carrier fluid in the experiment. The solid 

particles were larger than 0.5 µm glass or polystyrene spheres. The structure of turbulence 

was visualized by the use of oxygen bubble tracers. The flow then was photographed using 

high-speed video analyser.  

 

Fluid and particle velocity profile were obtained by image processing. Velocity of fluid as 

well as particle was then plotted against non-dimensional distance from the wall. The result 

showed that as the particle size increases, the particle response to the fluid velocity decreases 

giving rise to an increase in the relative velocities. Particles with Rep (Particle Reynolds 

number) < 100 would suppress the turbulence and particles with Rep > 400 would enhance the 

turbulence. They also showed that light particles rather than heavy particles can bring about 

significant modulation of turbulence through changing the number of wall ejections. The 

larger particles cause an increase in the number of wall ejections as well as an increase of 

turbulent intensities and Reynolds stresses. The lighter and smaller particles cause a decrease 

in the number of wall ejections, hence causing a decrease in the turbulent intensities and 

Reynolds stresses. Furthermore, it has also been observed that the low-speed region, is 

periodically broken off near the wall, and then is ejected into the main stream. However the 

author only used water as the transportation medium. With a small concentration of particles, 

the suspension can only be assumed to be Newtonian.  
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Rogers and Eaton (1991) investigated two-dimensional turbulent boundary layer particle-

laden flow in air. The authors showed that particles damp fluid turbulence affecting all scales 

equally. There is a noticeable correlation of local particle concentration in the near- wall 

regions of high turbulent kinetic energy of the fluid and the suppression of the turbulence.   

 

Pedinotti et al (1992) used DNS simulation to investigate the motion of small particles in the 

wall region of turbulent channel flow. They used the well known method by Kim et al (1987) 

to simulate the channel flow. The simulation indicated that particles were ejected from the 

wall due to upflow caused by quasi-streamwise vortices. The author commented that there 

was difficulty in simulating high Reynolds number numerically. The Reynolds number used 

in this simulation is only around 147.   

 

Brooke and Hanratty (1993) presented that the flow-oriented vortical eddies were connected 

with large Reynolds stresses and the production of turbulence in the viscous region close to 

the wall. In their DNS simulation, the fluid velocity field for turbulent flow in a vertical 

channel was generated. According to the DNS velocity vector field, turbulence was generated 

by the unpaired vortices.  

 

From the DNS study, it is shown that large Reynolds stresses and large turbulence production 

occurred in the viscous wall region where Rashidi et al (1990) also noted as an area of 

interest. Brooke and Hanratty (1993) found a new mechanism of how new vortex is born at 

the wall. This mechanism can be related to the particle suspension in this study.  

 

Hetsroni (1993) described the coherent structure in more detail. He revealed that a boundary 

generates organized structures in the fluid. When the shear rate is increased at a boundary, 

either high speed or low speed regions can be observed near the boundaries. From the 

experimental data, the authors concluded that larger particles (about 500 to 1000 mm) 

enhance the turbulence of the fluid in a channel whereas the smaller particles suppress the 

turbulence. They claimed that in the boundary layer, the larger particles increase the 

frequency of ejections. This particular mechanism is associated with increasing velocity 

gradients in the flow, as the vortex may cause additional energy dissipation. 
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In their next paper Hetsroni and Rozenblit (1994) found experimentally that with particles of 

the order of 10 wall units, the particles tend to accumulate in the low velocity streaks. With 

the particles larger than 30 wall units, they were more randomly distributed on the bottom of 

the flume. However the method to calculate the wall unit or the definition of wall unit is not 

included in this paper.  

 

It is also shown from a number of studies that suspended particles may affect turbulent 

parameters and eventually the transportation properties. Kaftori et al (1998) suggested that 

small particles tend to suppress turbulence and large particles enhance the turbulence. “Close 

to the wall, particles exhibit a tendency to preferentially accumulate in certain regions. 

Heavier particles which settle to the wall in horizontal flow tend to migrate into the low speed 

regions…” (Kaftori et al, 1998, p360). This finding is parallel with Hetsroni (1993) and 

Rashidi et al (1990).  

 

The solid particles used in Kaftori et al (1998) were polystyrene with diameters of 100, 275, 

and 900 µm, with distributions of 90-106 µm, 212-300 µm, and 850-1000 µm, and specific 

density of 1.05. The investigated experiments were conducted at Reynolds numbers of 5000, 

10000 and 14000. Hetsroni (1993) claimed that larger particles enhance the turbulence of the 

fluid. It is suggested that in the future experiment the point of interest would be the larger 

particle size. E.g. from 800 to 1000 µm. 

 

Ljus et al (2002) investigated turbulent air flow with particles. The results showed that with 

spherical particles, the influence of the particles on the flow is significant. With a range of 

different velocities, the turbulent intensity data showed similar trend where at lower part of 

the pipe, the turbulence is attenuated by the particles. One of the possible reasons discussed 

by the author is that small particles can follow smaller scales in the turbulence. Therefore the 

turbulent energy is then transferred from the gas phase/liquid phase to the particles. The lower 

part of the pipe has a higher concentration of particles hence the turbulent intensity is reduced. 

The particles used in this experiment have a particle response time of 0.5 s. However it is still 

based on air flow rather than liquid flow. Further research needs to be done in order to 

discover a suitable formula for liquid flow particle response time. 
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Righetti and Romano (2004) indicated that in particle-laden flow, the fluid and solid phase 

mean velocities are reduced in the outer layer (y
+ 

> 20), but increased in the viscous sub-layer 

(y
+ 

< 5) in comparison to the clear water flow. In particle-laden flow, the flow velocity is 

smaller than the particle velocity close to the wall (y
+ 

< 15). In the outer layer, the opposite 

takes place. The authors also found that the Reynolds stress and turbulence intensities of the 

streamwise and vertical velocity are dampened for y
+ 

> 20, but enhanced in the near wall 

regions (y
+ 

< 5). 

 

Nezu et al (2004) claimed the coherent structures such as ejections and sweeps will influence 

fluid-particle interactions. Moreover, the fluid-particle interactions and the bursting 

phenomena all occur most violently in the inner-wall region of y/h  < 0.2. The difficulty is 

how to measure the velocity fluctuations or wall shear stress in the inner-wall region. 

Therefore in this study, DNS will be employed for this investigation. 

 

2.6 Summary 

To summarise, there are different areas of particle transportation in open channel flow that 

have not been adequately studied. Most of the studies presented in this chapter are 

investigations of Newtonian fluid such as water (Rashidi and Banerjee, 1998; Rashidi et al, 

1990; Hestroni, 1993; Hestorni and Rozenblit, 1994; Righetti and Romano, 2004; Nezu et al, 

2004) and pneumatic conveying (Ljus et al, 2002). Further, no paper in this area mentioned 

the visible secondary flow effect in the channel flow with non-Newtonian fluid. Some papers 

only discussed the secondary current in developing turbulent flow along a corner with water 

flow (Nezu et al, 2004; Yang et al, 2004; Yang, 2009).  

 

All the works discussed in this chapter have focused on velocity distribution in channels with 

Newtonian fluids, turbulent characteristic and turbulence and particle interaction in 

Newtonian fluids and air. Further study is required to improve the existing models for 

velocity distribution in non-Newtonian channel flow. Furthermore, the turbulence 

characteristics should be related to fluid rheology and the channel geometry in order to 

improve the understanding of particle transportation in open channels.  
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3 Chapter 3: DNS studies 
 

3.1 Introduction 

 

A Large Eddy Simulation (LES) has been used in computational fluid dynamics simulations 

since the 1960s (Smagorinsky, 1965). However, there are few problems with LES techniques. 

Firstly, because of the complex nature of the physical systems involved in process industry 

applications, the turbulent closures involve many equations with many unknown cross-

correlations having to be modelled. Secondly, the geometrically complicated nature of the 

application, simple computational meshes cannot be used. Finally, the computational expense 

of LES is significant when compared to many RANS techniques. Moreover, the near-wall 

regions cannot be properly resolved. 

 

Direct Numerical Simulation (DNS), a computational fluid dynamics method with all the 

details of the complex turbulent fluctuating motion are governed by the unsteady 3D Navier-

Stokes equation together with the continuity equation. This means that all the motions need to 

be resolved. The advantage of simulations relative for experiment is quite obvious as all 

quantities of interest can be obtained for the whole field (McIver et al, 2000). It basically 

means that velocity, pressure and their derivatives at any time and point in the instantaneous 

flow field can be obtained.  

 

However, with all motions needed to be resolved, the size of the numerical mesh must by 

smaller than the size of the small-scale motion where dissipation takes place (Rodi, 2006). It 

is said in Rodi (2006) that DNS is possible only for flows with low Reynolds numbers. In this 

study, DNS is attempted to simulate turbulent channel flow. This will be described in Chapter 

5. 

 

3.2 Literature review for DNS simulations 

Over the past fifty years, the study of turbulent non-Newtonian suspension flow in pipelines 

has received considerable attention because of its industrial relevance across a wide range of 

industries. In recent years, there has been a significant improvement in understanding of 



 

  Page 41 

 

pipeline flows as a result of improved instrumentation and computational techniques. The 

literature is presented in the following order: 

o Turbulent pipe/duct flow 

o Turbulent channel flow 

3.2.1 Turbulent pipe/duct flow 

In 1987, Kim et al applied DNS to investigate fully developed turbulent flow between two 

plates. They used almost 4 x 10
6
 grid points in the simulation. The authors simulated the flow 

field at a Reynolds number based on mean centreline velocity at only around 3300. The 

turbulence statistics agreed with experimental results of Eckelmann (1974) except at the near-

wall region. It was suspected that the disagreement might be due to the inaccurate 

measurement of the experimental values.  

 

In Eggels et al (1994), the authors used DNS and experiments to study fully developed 

turbulent pipe flow at a Reynolds number ≈ 7000 based on the centreline velocity and pipe 

diameter. They made comparison between a plane channel flow and an axisymmetric pipe 

flow. It is discovered that the differences in the mean velocity profile are related to the 

geometry. The change of geometry may cause the change in mean velocity because of the 

absence of side walls in plane channel. However, the authors did not mention anything in 

regards to the rheology of the fluid. It is suspected that the authors used a Newtonian fluid in 

the simulation. 

 

Shan et al (1999) simulated transitional pipe flow with direct numerical simulation at 

Reynolds number = 2200 and 5000. The authors mainly focused on the fluid structures 

presented in the simulation. The simulation was carried out with a spectral element method. In 

this study, the authors argued that puff has the characteristics of a wave phenomenon whereas 

the slug can be characterised as a material property which travels with the flow. The authors 

only used a Newtonian fluid for the simulation.  

 

Rudman and Blackburn (1999) used large eddy simulation on turbulent pipe flow. In the pipe 

flow geometry, the streamwise dimension is based on the integral correlation lengths of 

turbulence. In the paper, the authors concluded that the simulation of turbulent pipe flow is in 

good agreement with the experimental measurement at the same Reynolds number which is 
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around 1920. Rudman et al (2001) and Rudman et al (2003) described non-Newtonian 

turbulent pipe flow in their recent works. Both the papers used the experimental method and 

Direct Numerical Simulation (DNS) to investigate the turbulent behaviour of non-Newtonian 

fluids in a pipe.  

 

Rudman et al (2001) conducted the experiment in a 40m × 100mm diameter pipe loop. Laser 

Doppler velocimeter (LDV) was used to measure the axial velocity profiles across the 

horizontal and vertical diameter of the pipe. CMC solution was modelled using power law 

correlation. In conjunction with experiments, numerical simulation was also conducted to 

compare the results. It was discovered that CMC does not behave as a simple power law fluid. 

The simulation results showed some agreements as well as some differences with the 

experimental results. Authors argued that there might be a possibility of fundamental error in 

the numerical method, and also the power law model parameter fitting (Rudman et al, 2001). 

In the paper, the computer simulation revealed the contours of streamwise velocity. 

 

Figure 10  Near wall structure Re = 3964 (left) and Re = 5000 (right) (Rudman et al, 2001) 
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The above diagram showed some wall streaks and it revealed that there might be some 

bursting and not fully developed turbulence. The wall structure has some significant impacts 

on particle transportation. Therefore with current simulation method, a detailed wall structure 

can be simulated in order to examine the relationship between the structure and particle 

behaviour.   

 

Rudman et al (2003) used the same approach to investigate turbulent pipe flow. In this paper, 

power law model was considered as well as Herschel-Bulkley model. The authors compared 

the simulation results to the correction proposed by Clapp (1961). The logarithmic velocity 

profile for the turbulent flow of power law fluids is a function of the flow index, n. 
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The results by adopting Herschel-Bulkley model showed good agreement in terms of shape 

and magnitude when compared with the experimental data. The simulated results predicted by 

friction factors were 10-15% higher than the Dodge and Metzner (1959) friction factor 

correlation. It was commented that the reason might be that elastic or elongational effects are 

influencing the results. In this paper, the authors paid more attention on the wall structure 

simulated by DNS. It is revealed when n = 0.5, the structure seemed more transitional, when n 

= 1 (a Newtonian fluid) the structure is more random and the streaks shorter; this may indicate 

that it is a more developed turbulent flow.  

 

Rudman et al (2004) presented simulations on power law fluids as well as Herschel-Bulkley 

fluids. The rheology values were chosen to match some previous experimental results for a 

0.05 wt% Ultrez 10 solution and were estimated from a curve fit to a rheogram. The 

generalised Reynolds number was 7027 for the simulation in this paper. The authors 

concluded that the simulations were in good agreement compared to the experimental result. 

The Herschel-Bulkley fluid simulation showed similar behaviour to the power law simulation 

result. Yet, the simulations from this paper were still based on pipe flow.  
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Rudman and Blackburn (2006) conducted further experiment on turbulent non-Newtonian 

pipe flow using a spectral element method. This paper is the extended and updated version of 

the previous studies. The paper showed that pipe flow of yield stress fluids can make 

transition to turbulence via intermittency and slugs and puffs observed in Newtonian flow. It 

was then claimed that the results were not conclusive because of the insufficient domain 

length of the simulation. In the simulation, the particular domain length was 5πD. Therefore 

in the future computational experiment, it was suggested to increase the domain length in 

order to achieve a reasonable result. In this paper, the authors concluded that the simulation of 

a Carreau-Yasuda fluid showed very similar behaviour to the Herschel-Bulkley fluid result. 

Both of the fluids’ log-law profiles lay above the Newtonian velocity profile which suggested 

undeveloped flow. However, the authors made comments that by using polymer solutions to 

approximate idealised rheologies, difficulties can be encountered due to some unwanted 

rheological effects.  

 

Sharma and Phares (2006) made some interesting discoveries in their work. They simulated 

turbulent flow through a square duct. This particular study focused on DNS of turbulent 

particle transport through a square duct at a Reynolds number of 300 based on friction 

velocity. In the paper, the authors did not comment on the rheology of the fluid. It is then 

suspected that the author might have used a Newtonian fluid in the simulation rather than 

non-Newtonian fluid. It is pointed out by the authors that the off-axis secondary current in the 

square duct tends to enhance lateral mixing and turbulent dispersion of particles. 

Nevertheless, the authors only considered a closed duct in the investigation. 

 

Joung et al (2007) simulated turbulent flow in a square duct for a Reynolds number based on 

bulk streamwise velocity and duct height equal to 4440. The main aim for this study is to 

investigate the secondary flow effect in corner of square duct. In Joung et al (2007), the 

Navier-Stokes equation were discretized in time and space by using the fully implicit velocity 

decoupling procedure proposed by Kim et al (2002). However, the author did not compare 

their velocity profile with any of the existing models.  
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3.2.2 Turbulent channel flow 

Most of the DNS studies done on open channel flows are based on Newtonian fluid (i.e. 

water). Computational fluid dynamics methods such as DNS have not been readily used to 

examine the turbulent flow behaviour of non-Newtonian fluids. 

 

Kim et al (1987) published their DNS result for turbulent channel flow. Their Reynolds 

number based on the friction velocity and channel half width was 180. Since then, DNS for 

channel has been regularly performed because of simple geometry and fundamental nature to 

understand the transport mechanism. 

  

During that time, majority of the developed turbulent flow is simulated for flow between 

parallel walls. Since the geometry effect does not appear to have been taken into account in 

most of the turbulent pipe/duct flows, it is quite important to re-interpret the previous results. 

Therefore Antonia et al (1992) first examined turbulent channel flow at a Reynolds numbers 

of 3300 and 7900. They used numerical algorithm which was presented in Kim et al (1987). 

In their paper, it was found that both the DNS and experimental data show significant low 

Reynolds number effects. The original title of the paper is “turbulent channel flow”, however, 

in the conclusion; it was mentioned as duct flow.  

 

Sureshkumar et al (1997) simulated turbulent channel flow of a polymer solution with 

Reynolds number of 125 based on the friction velocity. The authors used an independently 

evaluated rheological model, the FENE dumbbell fluid model for the polymer chains 

(Sureshkumar et al, 1997). Reynolds number for this simulation equals 125 based on friction 

velocity due to computational constraints. The simulation results showed qualitative 

agreement with the experimental data associated with drag reduction. The author did not pay 

special interest in the geometry of the channel. 

 

Baron and Sibilla (1998) reported an investigation of DNS on turbulent channel flow of a 

dilute polymer solution. The DNS code was based on a second order finite difference scheme, 

with explicit time advancement by a 3
rd

 order Runge-Kutta Scheme. Continuity was then 

enforced at every Runge-Kutta step by solving a Poisson equation for pressure.  The authors 

presented the findings to suggest that the polymer molecules could affect the bursting cycle of 

turbulence by weakening the streamwise vortical structure (Baron and Sibilla, 1998). Only 
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Warner’s FENE dumbbell model was introduced to model the polymer’s non-linear modulus 

of elasticity.  

 

Wu et al (2000) conducted numerical modelling for sediment transport in open channels. 

They included free surface effect as well as the bed roughness to the original general-purpose 

flow solver FAST3D. The detail of their boundary conditions will be further discussed in 

Chapter 5. Moreover, Wu and his colleagues added a sediment transport model into the flow 

solver. This research is mainly a validation study for their new codes in sediment transport in 

open channels. The authors only used water as simulation fluid.  

 

Mei and Yuhi (2001) investigated flow of Bingham fluid in a shallow channel. The authors 

actually considered a thin layer of Bingham fluid flowing down an open channel of finite 

width. They assumed that the fluid is homogeneous. The cross section was considered into 

three different zones: around the centre plane of the channel there was a shear zone at the 

bottom and plug flow zone at the top, separated by the yield surface. The dependence on the 

initial flow depth, bottom geometry and the fluid property was investigated in this particular 

research. This developed numerical model can be applied only on slow flows in an 

unbounded incline. Moreover, it has been reported that the model is quite simple to modify in 

order to suit other fluid models.  

 

Abe et al (2001) performed DNS on fully developed turbulent channel for Reynolds number 

of 180, 395 and 640 based on friction velocity. They used finite difference method for the 

simulation. The authors obtained various turbulence statistics from the simulation and 

compared with DNS for turbulent boundary layer flow and experiments for channel flow. 

This particular paper is only based on air flow.  

 

Rouson and Eaton (2001) presented results from a DNS of the passive transport of solid 

particles in turbulent channel flow. The Reynolds number for this paper was around 180 

based on friction velocity and the channel half-width. The authors used DNS to resolve all the 

dynamically relevant scale of turbulence, and Lagrangian tracking for the particles. The 

authors found the particles tend to accumulate in the low-speed streaks which suppress the 

mean velocity below the fluid mean velocity in the near wall regions. It only indicated that 

particles slightly heavier than the fluid tend to segregate. This finding is extremely similar to 
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Hetsroni (1993) and Rashidi et al (1990) in their experimental work. This work however did 

not make any comments on the channel geometry or the rheological characters of the 

simulation fluid. 

 

In Narayanan and Lakehal (2003), DNS of a turbulent open channel was combined with 

Lagrangian particle tracking to study the mechanisms of particle deposition onto the channel 

wall. The authors divided the deposited particles into two different populations: those with 

large wall-normal deposition velocities and the small near-wall residence times referred to as 

the free-flight population. The particles depositing with negligible wall-normal velocities and 

large near-wall residence time were referred to as the diffusional deposition population. They 

then concluded that the free flight is the dominant mechanism for particle deposition in wall-

bounded flows. In this study, there was no discussion of the channel geometry or the rheology 

of the fluid.  

 

Tsukahara et al (2005) investigated a DNS of fully developed turbulent channel flow for low 

Reynolds number of 64 based on friction velocity and channel half width. The authors stated 

that the Reynolds number dependence of the mean velocity profile is quite significant in the 

outer region of the channel. Nevertheless, Tsukahara and his colleagues did not use any 

rheology parameters in the simulation.  

 

Li et al (2006) undertook DNS of dilute polymeric solutions in turbulent channel flow with 

Reynolds number of 125, 180 and 395 based on friction velocity. It was mentioned in this 

paper that for a given Reynolds number, the CPU-time and memory required for DNS of non-

Newtonian flows are an order of magnitude higher as compared to Newtonian cases. 

Therefore, the DNS turbulent flows are mainly limited to small Reynolds numbers. In this 

paper, the authors mainly investigated drag reduction effect of the polymer solutions only. 

One of the interesting findings from this paper is that the eddy viscosity varies with the 

distance from the channel wall. This can be related to particle transportation in the channel in 

this study.  

 

Kang et al (2007) simulated turbulent channel flows for Reynolds number up to 1270 based 

on friction velocity. They examined the clusters of vortices and their dynamics in the outer 

layer of the flow. The authors found that a large instantaneous Reynolds shear stress is carried 
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by the fine scale eddy structures. Further, a significant amount of turbulent kinetic energy is 

also dissipated in the eddy structure. They concluded that these eddy structures play a very 

important role in the production of the Reynolds shear stress. Yet, there are no comments 

made on the rheology of the simulation medium.  

 

3.3 Summary 

From the above review, it is quite obvious that computational fluid dynamics methods such as 

DNS have not (in the author’s knowledge) been used to examine the turbulent flow behaviour 

of non-Newtonian fluids in open channel flow. Other than turbulent pipe/duct flows (Eggels 

et al, 1994; Shan et al, 1999; Rudman and Blackburn, 1999, 2006; Rudman et al, 2001, 2003, 

2004; Sharma and Phares, 2006; Joung et al, 2007) most of the DNS turbulent studies are 

simulated assuming simple geometry (parallel plate) with relative low Reynolds number or 

using a diluted polymer solution which shows nearly Newtonian behaviour (Sureshkumar et 

al, 1997; Baron and Sibilla, 1998; Li et al, 2006). Also a number of studies investigated open 

channel flows (Kim et al, 1987; Antonia et al, 1992; Wu et al, 2000; Mei and Yuhi, 2001; 

Abe et al, 2001; Rouson and Eaton, 2001; Narayanan and Lakehal, 2003; Tsukahara et al, 

2005; Kang, et al, 2007); however, all of them used Newtonian fluid as the transported 

medium.  

 

Further, no paper in this area mentioned the visible secondary flow effect in the channel flow 

with DNS. No one used quadrant analysis for interpreting the results. Therefore there is a 

need to combine experiments with advanced application of mathematical computing 

techniques to give an insight into the problems of turbulent conveying in complex fluids in 

open channels.  
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4 Chapter 4: Experimental work 

 

4.1 Introduction 

Experimental and computational analyses have been attempted for Newtonian flows in 

channels (Kim et al, 1987) and non-Newtonian fluids in channel flow (Haldenwang et al, 

2002, 2004). The overall approach to this research will be to examine channel flows under 

controlled conditions using a fluid analogue (which is rheologically similar to a typical fine 

particle suspension) and gather potential information on channel behaviour and turbulent 

properties.  

 

This project used an established instrumented water flume built at CSIRO, Highett. The flume 

was then modified to fit the requirement of the current project. A set of experimental data 

were collected under different conditions of flow and channel slope. These data, combined 

with the fluid rheology were used as input to the DNS. The prediction of the velocity profile 

and other parameters such as Reynolds stresses and velocity fluctuations were compared with 

measurements of the same obtained on the open channel. This allowed refinements to the 

understanding of the nature of the turbulent flow that would not have been possible with 

physical measurements alone. These include the near wall velocity distribution and the 

characteristics of the near-wall turbulence structure. These results addressed the question of 

size, intensity and frequency of the turbulent structures. 

 

4.2 Experimental programme 

There are two experimental phases for this project. The first phase consisted of controlled 

laboratory experiments that were conducted at Highett, CSIRO. The second phase consisted 

of small scale flume laboratory work that was undertaken at RMIT University, Melbourne. 

DNS work was constantly running throughout the project.  
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4.3 First phase 

4.3.1 Experimental objectives 

The main objective for this phase of experimental work is to measure the necessary turbulent 

characteristics of non-Newtonian fluid flowing down a flume of known slope. There are a 

number of secondary objectives that were planned such as the measurement of velocity at 

different points within the flow. Depth measurements taken at different positions would 

indicate whether uniform flow conditions had been reached in the flume. Sample fluids from 

the flume were tested to check for rheology parameters. The test would allow the non-

Newtonian fluid to be characterised with rheological models.   

 

4.3.2 Test flume 

A return-circuit testing flume located at CSIRO, Highett, Australia was used for the initial 

experiment. Fluid was pumped through a straight measurement section containing a calibrated 

orifice plate, through a diffuser, and into a settling chamber containing filter material and a 

honeycomb distributor. The fluid passed through a 4:1 contraction and a working section of 

the tunnel which was 1870 mm long, 244 mm high and 244 mm wide. The walls of the 

channel were made of transparent acrylic material. The velocity of fluid in the tunnel could be 

varied using a variable speed controller. Then water passed into an outlet reservoir tank.  
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Figure 11  Closed-circuit test flume 

 

4.3.3 Acoustic Doppler Velocimeter 

In this experiment, Nortek Vectrino velocimeter was used to measure velocity fluctuations in 

the channel flow.  

4.3.3.1 Basic of ADV 

This type of velocimeter uses the Doppler effect to measure velocity. This is a versatile, high-

precision instrument that measures all three flow velocity components. The measurements are 

insensitive to water quality which allows for a wide range of applications. These kinds of 

velocimeters are used in laboratories, wave basins, rivers, estuaries and oceanographic 

research.  

In this case, the Doppler velocimeter measures three-dimensional flow velocities using the 

Doppler principle. The instrument consists of a sound emitter, three sound receivers and a 

signal conditioning electronic module (Garcia et al, 2005). The sound emitter generates an 

acoustic signal that is reflected back by sound-scattering particles present in the medium. 

Then the scattered sound signal is detected by the receivers and used to compute the Doppler 
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phase shift. In this case, the flow velocity in all three directions can be detected or calculated. 

A more detailed description of the velocimeter operation can be found in Nortek AS (2004). 

4.3.3.2 Vectrino Principles 

In contrast to the standard Doppler profilers, the Vectrino is a bistatic sonar. It means that the 

probe uses separate transmit and receive beams. It is obvious to see that it transmits through a 

central beam and receives through four beams displaced off to the side. 

 

Figure 12  Operating principle (Nortek AS, 2004) 

 

Figure 12 shows how the beams intersect each other 50 mm from the transmitter. The 

measurement volume is defined by this intersection (Nortek AS, 2004). The transmit 

transducer sends a short pulse that covers 3-15 mm vertically and receivers corresponds from 

this volume. The diameter of the volume is 6 mm (Nortek AS, 2004). The velocity probe uses 

four receivers and all receivers are focused on the same volume to obtain the three velocity 

components from that volume. It is stated that the velocity probe is more sensitive to the z- 

velocity than it is to the x- or y-velocity. Figure 13 shows the transmitter taking measurement 

from a flowing fluid.  
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Figure 13  Photograph of velocity probe in the fluid 

4.3.3.3 Velocity uncertainty 

The velocity is an average of many velocity estimates. The uncertainty of each estimate is 

dominated by the short term error. The short-term error of a single estimate depends on the 

size of the transmit pulse and the measurement volume. It also depends on the beam 

geometry. From the user manual, it was stated that the error in the velocimeter is typically a 

fraction of 1 cm/s (Nortek AS, 2004).   

  

4.3.4 Calibration of the test flume 

Water was used as calibration for the loop. It was pumped through a straight measurement 

section containing a calibrated orifice plate and diffuser, and into a settling chamber 

containing filter material and a honeycomb. The fluid passed through a 4:1 contraction and a 

working section of the flume. Velocities were measured at specific points in order to avoid 

exit effect in the flume.  

 

Velocity range was set to cover the range of the velocities anticipated during the data 

collection. It was said that a higher velocity range would give more noise in the data and vice 

versa. However, it was unknown that which velocity range is suitable in this experiment. 

Therefore, majority of the velocity ranges were tested in this experiment. For this probe, the 
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presence of a boundary close to the probe sampling volume may give rise to problems; 

especially when the boundary is hard (rocks, concrete, glass, etc).  

 

From initial testing, it was discovered that for each velocity range, there are one or two 

distances that give rise to problems. The existence of these ‘weak spots’ can be identified in 

the data record by a decrease in the correlation and an increase in the velocity variance. The 

problem is mostly seen in flumes with a hard bottom but has also been observed in the field 

(Nortek AS, 2004), especially at the higher velocity ranges.  

 

Table 3 Vectrino weak spots 

Range Weak spots 

4 m/s 2 cm and 5 cm 

2.5 m/s 3 cm and 10 cm 

1 m/s 5 cm and 12 cm 

0.3 m/s 10 cm and 23 cm 

0.1 m/s 23 cm and 45 cm 

0.03 m/s 38 cm and 75 cm 

 

These weak spots are related to the spatial separation between the pulse pairs transmitted by 

the velocimeter. The weak spot usually occurs when the first pulse hits the bottom as the 

second pulse goes through the sampling volume.  

 

Moreover, transmit length is also another variable in the velocimeter. The effect of increasing 

the transmit pulse length is that the signal-to-noise ratio is increased. It is said that as 

sampling volume decreases and/or get closer to boundaries, the transmit length needs to be 

reduced as well. However, the optimal combination of nominal velocity range and transmit 

length is not concluded previously.  

 

Seeding particles also need to be added in water flow experiment as sound does not reflect 

from water. These particles move with the same average speed as water. Therefore the 

velocity that is measured is consequently the velocity of water. In this case, particles made up 

by Borosilicate glass (< 1 gram) were added as seeding particles. The mean particle size was 

around 8-13 µm, with density equals to 1000 kg/m
3
.  
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The velocity –depth profiles presented in Figure 14 to Figure 17 show the axial velocity at 

18.75 l/s of water flow, at a maximum depth of 154 mm. Due to the velocity probe’s 

limitation, velocity probe’s transmitter position needs to be at least 50 mm from the bottom of 

the flume. All the measurements were taken from the middle of the flow. NV stands for 

nominal velocity range (m/s) and TL stands for transmit length (cm). 

 

 

Figure 14  Axial velocity profile for nominal velocity range = 0.3 m/s and different transmit 

lengths 
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Figure 15  Axial velocity profile for nominal velocity range = 1.0 m/s and different transmit 

lengths 

 

Figure 16  Axial velocity profile for nominal velocity range = 2.5 m/s and different transmit 

lengths 
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Figure 17  Axial velocity profile for nominal velocity range = 4.0 m/s and different transmit 

lengths 

 

The theoretical velocity curve was calculated by the velocity distribution equation in equation 

(30). Figure 14 shows that with a nominal velocity of 0.3 m/s, none of the transmit lengths 

would work on the current flow conditions. The actual average velocity was around 0.5-0.6 

m/s. It is very surprising that a nominal velocity range of 0.3 m/s is not suitable for this 

experiment. In Figure 15, the measured velocity profile is slightly higher than the theoretical 

velocity profile. However, all the data points are aligned in a similar way to the theoretical 

velocity profile. All four different transmit lengths gave similar velocity readings. In Figure 

16, the measurements are somewhat scattered. When transmit length is set to 0.6 mm, the data 

points look more scattered. For transmit lengths 1.2 mm, 1.8 mm and 2.4 mm, the data points 

are closer to the theoretical velocity profile. It also shows that the axial velocity in the flume 

decreases with depth. Similarly in Figure 17, transmit length of 0.6 mm does not give a good 

indication of the velocity distribution. On the other hand, for the other transmit lengths, the 

measurements show that the maximum velocity in this flume occurs below the water surface.  

 

Overall, the best nominal velocity range and the transmit lengths combinations are: Nominal 

velocity range = 2.5 m/s with transmit lengths = 1.2 mm and 1.8 mm. This is shown in Figure 

18. 
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Figure 18  Axial velocity profile for nominal velocity range = 2.5 m/s and different transmit 

lengths = 1.2 mm and 1.8 mm 
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Where M is parameter of velocity distribution equation. It can be calculated by  
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The results of prediction of maximum velocity below water surface for nominal velocity 

range of 4.0 m/s is shown in Table 4. 
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Table 4 Comparison between actual velocity and calculated velocity 

Transmit length (mm) Actual velocity measurement 

(m/s) 

Calculated velocity 

(m/s) (Chiu and Tung 

2002) 

1.2 0.486 0.553 

1.8 0.484 0.568 

2.4 0.481 0.581 

 

It is seen from the table that the calculated maximum velocity below water surface is higher 

than the measured velocity. One possible reason for this is that particles other than seeding 

particles were detected by the receiver. Before the commission of the experiment, the whole 

set up was unused for number of years. Therefore there was a large amount of dirt stuck on 

the honeycomb structure. It was not viable to take the honeycomb structure out and there was 

no way to completely clean it within the limited time. These foreign matters not only caused 

the fluids to get discoloured, but also disturbed the signals from acoustic velocity probe. The 

dirt was mainly deposited in the honeycomb structure in the settling chamber. With a low 

volumetric flow rate, the dirt did not detach from the honeycomb. However, with a high 

volumetric flow rate at around 20 l/s, dirt and large particles were flushed out by the strong 

force and were floating into the system. This might have caused some inevitable error to the 

velocity measurements. Figure 19 shows considerable amount of dirt located in the upstream 

end of the flume. When the flow rate increased, some of the dirt would get suspended and 

transported itself through the channel. Such action would have caused large velocity 

uncertainties when measured by the velocimeter.  

 



 

  Page 60 

 

 

Figure 19  Photograph of dirt in the flume 

 

The velocities presented here are time averaged points. These were measured over a minute 

period at the rate of 200 Hz. This is extremely important as the measured instantaneous 

velocities fluctuate as a result of the turbulence in the channel. An example of this can be seen 

in Figure 20.  

 

In conclusion, Vectrino velocity probe can be used in measuring velocity in this particular set 

up. From water measurements, it is recommended that the following nominal velocity range 

should be used: 1.0 m/s, 2.5 m/s and 4.0 m/s. For transmit length, the following should be 

used: 1.2 mm, 1.8 mm, and 2.4 mm.  
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Figure 20  Raw axial velocity data at a rate of 200Hz 

 

4.3.5 Channel for the flume 

One semi-circular acrylic channel of 198 mm internal diameter was constructed by cutting a 

commercial pipe lengthwise in two halves. The semi-circular channel was inserted into the 

original square flume. The channel was then supported by three supports to prevent it from 

bending. Figure 21 and Figure 22 show the upstream end of the semi-circular insert. The 

insert was glued on the black shaped supporting structure by silicone gel. Therefore when 

fluid came out from the contraction, it would flow into the semi-circular insert instead of the 

original rectangular flume.  

 

The bottom end of the insert however was not fixed to the square flume. Figure 23 shows a 

gap between the support and the bottom of the flume; hence blocks of wood could be inserted 

in order to change the slope. The gap was needed for adjusting the slope of the semi-circular 

channel. The calibration of the slope of the channel was achieved with the use of an automatic 

level. 
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Figure 21  Photo of top stream end of the semi-circular insert 

 

 

 

Figure 22  Photo of top stream end of the semi-circular insert 2 
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Figure 23  Photo of downstream end of the semi-circular insert 

 

4.3.6 Test fluid 

The actual test fluid consisted of a clear solution of carboxymethylcellulose sodium salt 

(CMC) (D.S. 0.9). The concentrations used were between 0.01% and 0.015% by weight. The 

fluid exhibited shear-thinning characteristics. Shear thinning behaviour means that the 

viscosity of the fluid reduces as shear rate increases. Slow viscosity degradation was observed 

as temperature increased (Cancela et al, 2005). It was also expected that the shearing 

experienced by the circulation of the fluid in the flume might cause a change in rheological 

parameters. Therefore samples were taken every hour and rheological measurements were 

conducted for each sample.  

 

Preparation of CMC test fluid 

1. Transfer known amount of water into the mixing tank 

2. Set up mechanical stirrer, power on the stirrer 

3. Pour known amount of sample slowly into the mixing tank 
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4. Wait till the solution has fully dissolved (this may take more than 24 hours) 

 

Water was used for calibration purposes. Large volumes of tap water were used, but that was 

the only option.  

4.3.7 Fluid Temperature 

The temperature was also monitored to ensure that the experimental temperature was 

maintained within 20
o
C + 1

o
C. This was measured by the Vectrino velocimeter. The 

velocimeter was directly linked to the computer that read the temperature in degrees Celsius. 

As the computer read the thermocouple directly, no signal calibration was required. The 

accuracy of the thermocouple is in the order of 0.1 degree Celsius. Most of the non-

Newtonian fluid tests were done during autumn months. The fluid temperature during the 

tests varied from 15-20 degrees Celsius. Generally speaking, temperature increases rapidly 

only with outside weather as most of the pipe fittings are located outside of the lab. The pump 

did not heat up the fluid significantly. If the temperature increased to higher than 20
o
C during 

the experiment, the pipe loop was then shut down in order to maintain a stable temperature.  

 

4.3.8 Local velocity measurement 

Velocities were measured at specific points within the flume. From previous sections, the 

limitation of the probe was discovered investigating water flow. The velocity probe senses 

fluid motion in a region reaching out about 50 mm from the receivers. It was also found that 

the angle and width of the receiver head of the probe prevented velocity measurements from 

being taken within 20 mm of the boundaries of the half pipe.  

4.3.9 Local depth measurement 

Depth measurements were made using a ruler. It was used to measure the distance from the 

fluid surface to fixed points above the fluid surface. The offset distances to the flume bed 

from the fixed points were recorded in order to calculate the true depth. This method enabled 

the measurements to be made without immersing the ruler into the testing fluid.  Figure 24 

shows an illustration of a ruler taking measurement by above method. 
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Another ruler was glued to the side of the channel to measure the depth of the velocity probe. 

This measurement was later compared to the automatic depth measurement by Vectrino 

software.  

 

Figure 24  A depth measurement  

 

4.3.10 Experimental procedure 

A certain volume of fluid was pumped into the reservoir tank. The pump was then run at 

different speed settings. Six different measurements were recorded for each run: 

• Volumetric flow rate 

• Position of the velocity probe 

• Temperature of the fluid 

• Slope of the flume 

• Depth of the fluid 

• Velocity 

With the pump running at a very high speed, the volumetric flow rate could reach 30 l/s. 

However, with a high flow rate, the fluid from the upstream would have splashed out of the 
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flume into the surroundings. This would cause a significant amount of surface disturbance. 

The maximum flow rate was kept used is less than 19 l/s in order to eliminate any obvious 

surface disturbance. 

 

 

Figure 25  Photograph of flume entrance 

 

4.3.11 Rheological analysis 

Rheology test was performed on samples of the testing fluid to determine the fluid behaviour. 

A rheological model was then fitted for further use in the analysis of the fluid flow in relation 

to velocity distributions. 

 

Rheological analysis for the testing fluid was done using the Rheosys Merlin II rheometer 

with cup and bob measurement system. This instrument is classed as a Couette rheometer (or 

concentric cylinder rheometer). It means that it shears a fluid sample in the annular space that 

is formed between a cup and a cylindrical bob that is inserted into the cup and rotated about 

the vertical axis. In this case, the bob has a vertical length of 36 mm and a diameter of 25 mm. 

The shear rates applied to the fluid ranged from 2 to 800 l/s. The testing fluid was kept at a 

temperature of 20
o
C.  

 



 

  Page 67 

 

The rheological testing done on the testing fluid has been presented in the standard shear rate 

vs shear stress plots in Figure 26. The first four digits from the legend mean sample collection 

date. The last four digits mean the collection time. This rheogram shows that CMC exhibits 

shear thinning behaviour. It is interesting to see that the rheological behaviour of the fluid 

from the same day is similar in different time intervals. It was suspected that the rheological 

behaviour would vary because of the constant shearing of the fluid in the flume and pump.  

 

Figure 26  Rheogram for different samples on the same day 
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Figure 27  Apparent viscosity against shear rate for fluid tested on one day 

 

 

Figure 28  Rheogram for different samples on the same day but tested on a later date 
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4.3.11.1 Rheological modelling 

Rheological parameters are used as inputs for semtex code. In this case, a power law model is 

applied to the rheology data measured for the testing fluid. Some introduction of the model 

can be found in Chapter 2. In this case, the power law rheological model was applied to the 

rheology data measured for the fluid.  

 

Note that the concentration of the fluid was not important in this experiment. In the 

computational code, only the flow behaviour index and flow consistency index were used. 

Fitton (2007) used experimental data to calculate the effective shear rate region in open 

channel flows. The shear rate was found to by typically between 40/s and 140/s. This shows 

that the shear rate range used in the rheological measurement was adequate.   

 

4.3.11.2 Power law model fit 

CMC is often modelled as a power law fluid. This model suits a fluid without yield stress that 

exhibits non-linear behaviour. This was implied by the linear relationship shown in the log-

log plot in Figure 29. The equation for the power law model is presented in equation (1). 

Where τ is the shear stress (Pa), K is the power law consistency index (Pa.S
n
), n is a power 

and  is shear rate applied to the fluid (1/s). Table 5 shows the summarised power law 

parameters for the non-Newtonian fluids tested in the Highett loop. The first half of the fluid 

ID means the date and month of the collection, the second half of the ID means the collection 

time.  
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Figure 29  Rheology of CMC in log-log plot 

 

Table 5 Power law parameters for the non-Newtonian fluids tested 

Fluid test number K (Pa.S
n
) n 

0405.1100 (DD/MM.time) 0.237 0.596 

0405.1200 0.230 0.594 

0405.1300 0.197 0.623 

0405.1500 0.204 0.615 

0705.1015 0.186 0.624 

0705.1140 0.177 0.630 

1105.1030 0.239 0.620 

1105.1140 0.227 0.629 

1105.1400 0.228 0.630 

1405.1145 0.238 0.655 

1405.1400 0.244 0.653 

1405.1430 0.247 0.651 

1705.1130 0.127 0.716 

1705.1400 0.134 0.706 
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1705.1530 0.132 0.712 

1805.1015 0.168 0.675 

1805.1140 0.157 0.688 

2405.1300 0.159 0.703 

2405.1430 0.158 0.703 

2805.1100 0.094 0.758 

2805.1230 0.256 0.702 

2805.1330 0.122 0.713 

 

 

4.4 Second phase 

The objective for this smaller scale flume experiments was to check the particle behaviour in 

analogue non-Newtonian slurries by measuring the equilibrium slope. Winterwerp et al 

(1990) referred to a critical slope of the channel as the “equilibrium slope” where the slope is 

sufficiently steep to enable the transportation of all of the slurry particles. If the slope is lower 

than the equilibrium slope, it means that one or more particles will deposit in the flume. This 

experiment allows the observation of the particle behaviour in the transparent pipe. Each 

equilibrium slope with different flow rate will be recorded. This will produce some qualitative 

results for particle transportation.  

4.4.1 Test flume 

The pipe was 4 metres in length and had 50 mm internal diameter. The pipe was made of 

transparent glass thus it was possible to observe the flow behaviour qualitatively. A U-bend 

fitting was fitted on the upstream end of the glass pipe. The flume set up could be tilted to 

slopes between horizontal to 6
o
. The holding tank had a capacity of 40 litres and was fitted 

with an electrically driven mixer that ran continuously during the tests. A progressive cavity 

pump was used to pump the fluid mixture through the pipe loop. The flow capacity of the 

pump was between 2 and 32 litres per minute.  

 

Flow measurement and density measurement were made by a Micro motion F050 Mass and 

Volume flow and density sensor coriolis meter. The coriolis meter was located downstream of 

the pump. A schematic diagram of the set up is presented in Figure 30. Several other 
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photographs of the apparatus appear in Figure 31 to Figure 34. Figure 32 shows the flume 

entrance at the upstream end. Figure 33 shows the 40 litre holding tank and the smaller 

calibration tank. Figure 34 shows the inclinometer used to measure the angle of slope with 

respect gravity. 

 

 

 

Figure 30  Diagram for small scale flume 

 



 

  Page 73 

 

 

Figure 31  Small scale flume, downstream end 

 

 

 

Figure 32  Photograph of flume entrance, taken from the upstream end 
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Figure 33  Photograph of calibration tank and holding tank 
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Figure 34  Photograph of inclinometer 

 

 

 

Figure 35  Photograph taken from side of the flume. Note: bed formed on the bottom of the pipe 
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4.4.2 Test fluid 

The test fluid consisted of a clear solution of carboxymethylcellulose (CMC). Different 

concentration CMC solutions mixed with water were used in this experiment. Two different 

groups of sand particles (coarse and medium) were chosen for the experiment. Previously 

crushed glass particles were used for the same set up. However, it was discovered that the 

crushed glass particles damaged the rubber stator when the pump was running at a high speed. 

This allowed the introduction of foreign matter into the flume overtime. It was then confirmed 

other than actual foreign matters, rubber particles were also in the system because of the 

constant contact between rubber and glass particles. Hence, sand particles replaced the 

crushed glass particles in this experiment.  

 

4.4.3 Fluid density 

Fluid density ρ was calculated as follows 

• Take a 100 ml beaker  

• Take a fluid sample from the holding tank. This can be done by taking a few different 

samples from different places in the tank 

• Fill the beaker with the fluid sample and weigh (A) 

• Empty the beaker, clean and fill with water to the same mark, and weigh (B) 

• The procedure is repeated at least three times to check the accuracy of testing 

• The relative density (Sm) is defined as: 

w

mS
ρ

ρ
=  

 

(61) 

And this can also be written as: 

MassB

MassA
Sm =  

 

(62) 

 

From equation (61) 

wmm S ρρ =   

(63) 
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4.4.4 Particle size analysis 

Sieve analysis of the sand particles was carried out to generate a particle size distribution 

curve. All the sand particles went through the sieve. The coarse particles consisting of 

particles passing a 1000 µm sieve but caught in 850 µm sieve.  The medium particles were the 

particles passing an 850 µm sieve but caught in 500 µm sieve. Figure 36 shows that the 

particle diameter (d50) for the sand particles was about 560 µm. 

 

 

Figure 36  Particle size curve for sand particles 

 

4.4.5 Experimental procedure 

A certain volume of fluid was transferred into the holding tank. A measured quantity of sand 

particles was added to the fluid to create the analogue slurry. The pump was then run at a high 

speed setting. The recirculation valve was used to divide the flow to send part of the flow into 

the flume, the remainder into the holding tank. This was easier and more accurate to control 

the flow rate. With a lower pump speed, the pump tends to vary the speed because of small 

fluctuations. With a higher pump speed, the fluctuations were minimised. Therefore, it was 

decided to run the pump at higher speed setting to enable a more stable flow rate during the 

experiment. Equilibrium slope observation was then conducted through the transparent pipe. 
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To find an equilibrium slope, the flume was initially set at a steep slope, and then the flume 

was raised to yield flatter slopes. When the slope was flat enough to allow one or more 

stationary deposits of sand particles to form in the bottom of the pipe, then the slope was 

recorded as the equilibrium slope for the particular flow rate.  

 

Four different measurements need to be recorded for each run. 

• Volumetric flow rate 

• Equilibrium slope of the flume 

• Depth of the fluid 

• Fluid sample for each equilibrium slope 

 

The slope of the flume was measured by an inclinometer. The inclinometer was fixed to the 

support beam in order to measure the angle of the tilted pipe. 

 

The depth of the flow in the glass pipe was measured from outside the glass pipe. In a 

previous study conducted by Fitton (2007), a mathematical expression was used to enable all 

the data to be corrected for refractive errors. In this current study, the same expression was 

also used to eliminate the errors. This expression was adopted throughout the depth 

measurement for determining the actual depth as a function of the apparent depth 

measurement from outside the pipe with a ruler. The expression is presented below: 

 

71.190.0 +×= pthMeasuredDehActualDept   

(64) 

 

4.4.6 Equilibrium slope testing 

Different particles and flow rates were used to measure the equilibrium slope for the small 

scale experiment.  
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Figure 37  Plot of equilibrium slope data 

 

Figure 37 shows the equilibrium slope for this experiment. It is very interesting to see that this 

graph shows some very different trend when compared to the previous experiment done by 

Fitton (2007). In Figure 37, the legends show the fluid name and particle size. The fluid name 

with a letter ‘c’ means coarse sand particle were used; the others were medium particles. In 

Figure 37, it is shown that an increased particle size produced steeper equilibrium slopes. For 

the data series 20a_c, 20b_c, 21_c and 26b_c, most of them are located in the upper half of 

the graph. This is also consistent with the finding of Durand (1953) and Wasp et al (1977).  

 

In Fitton (2007) it was observed that an increased flow rate results in steeper equilibrium 

slopes. Interestingly, the same behaviour was not observed in this case. From Figure 37, it is 

shown that an increased flow rate caused flatter equilibrium slope. The reason behind the 

previous counter-intuitive observation is that the particles were depositing in the feed line 

rather than the testing glass pipe. However, such phenomenon was not observed in this set up 

where majority of the particles went through the glass pipe without any difficulties. It was 

suspected that the particle concentration for the previous study was not as high as 20%. 
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Moreover, the nature of the particle is also different; in Fitton (2007) glass particles were used 

whereas in current study sand particles were used.  

4.4.7 Rheological analysis 

The 11 non-Newtonian fluids used in the flume were tested in Rheosys Merlin II rheometer 

with bob and cup measurement system. Rheograms for the fluid 1307 is presented in Figure 

38 with the rheological model curves inscribed. Error bars are presented on one of the tests of 

the fluid for a 95% confidence interval. ‘t1,t2 and t3’ in the legend mean the fluid was tested 

for three times. It is seen from the figure that the rheological model fits well within the error 

limits. Figure 39 presents the same data sets as Figure 38 but on a viscosity versus shear rate 

plot. It is quite obvious that fluid 1307 shows shear thinning behaviour. Individual graphical 

fits of the rheological model curves for all the fluids are presented in Appendix. The shear 

rates applied to the fluid ranged from 2 to 800 1/s. The testing fluid was kept at a temperature 

of 18
o
C.  

 

Table 6 presents the rheological parameters for the 11 non-Newtonian fluids used in the 

experiment. K and n values are also presented.  

 

 

Figure 38  Rheograms for fluid 1307 with the rheological model fit curve inscribed 
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Figure 39  Apparent viscosity against shear rate of fluid tested 

 

Table 6 Power law parameters for the non-Newtonian fluids tested 

 

Fluid K (Pa.S
n
) n 

1307 0.156 0.741 

1407a 0.113 0.78 

1407b 0.11 0.749 

1507a 0.141 0.885 

1507b 0.131 0.851 

1907 0.108 0.782 

2007a 0.108 0.73 

2007b 0.108 0.706 

2107 0.112 0.808 

2607a 0.107 0.755 

2607b 0.376 0.507 
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4.5 Error in experimental results 

Experimental errors have been analysed by two different methods. Firstly, statistical analysis 

of the data was undertaken to estimate the random error for different measurements. 

Secondly, an estimation of instrument and human errors was also undertaken for different 

measurements.  

4.5.1 Random error analysis 

Random errors arise from the fluctuations that are easily observed by multiple readings of a 

given measurement. There are different ways to make a reasonable estimate of the random 

error in a particular measurement. The best way to estimate the random error is to calculate 

the mean ��, and the standard deviation from the data.  

 

The standard deviation is defined as 

( )
5.0

1

21








−= ∑

=

N

i

ix xx
N

σ  

 

(65) 

Where σ is the standard deviation, N is the number of measurements, and xi is the result of the 

i
th

 measurement.  

 

Further, the random error can be presented in terms of a confidence interval. 









±

N
Px

σ
 

 

(66) 

Where P is the area under a normal distribution curve. 

For the first phase experiment, it was quite difficult to set a consistent flow rate from the 

pump speed controller. When the speed of the pump was adjusted, it would take a minute to 

achieve a steady flow rate. With a larger increase of the pump speed, longer time was needed 

to stabilise the flow rate. The results of the random error analysis are presented in Table 7. It 

shows that the random error for the flow rate can be presented as Q + 0.96%, which covers all 

three different flow rate.  

 

The shear stress measured at a shear rate of 125/s was chosen as the test statistic from the 

rheological data. Higher shear rate measurement does not show an appropriate representation 

of the typical shear rates experienced in the experiment. The results of the random error 
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analysis of rheological data from the first phase experiment are presented in Table 8. It shows 

that the random error for the rheological data can be presented as + 2.4% of shear stress value. 

 

Table 7 Summary of first phase experiment flow rate random errors 

Mean flow rate 95% Confidence level CL/Mean 

8.62 0.083 0.0096 

7.50 0.013 0.0017 

10.55 0.10 0.0096 

 

Table 8 Summary of mean shear stress and confidence limit statistics for the four different fluids 

tested in first phase experiment 

Name Mean τ at 125/s 95% Confidence level CL/Mean 

0405.1100 3.48 0.039 0.011 

0405.1200 3.32 0.078 0.024 

0405.1400 3.84 0.001 0.0003 

0405.1500 3.75 0.071 0.019 

 

The shear stress measured at a shear rate of 134/s was chosen as the test statistic for the data 

collected from the small flume experiment. The results of the random error analysis of 

rheological data from the small flume experiment are presented in Table 9.  It shows that the 

random error for the rheological data can be described as + 3.4% of shear stress value. 

 

Table 9 Summary of mean shear stress and confidence limit statistics for the seven different 

fluids tested in small flume experiment 

Name Mean τ at 134/s 95% Confidence level CL/Mean 

1307 8.85 0.30 0.034 

1407a 5.03 0.020 0.0040 

1507a 12.21 0.13 0.011 

1907 5.17 0.16 0.031 

2007a 3.92 0.034 0.0087 

2107 10.14 0.20 0.020 

2607b 3.55 0.039 0.011 
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4.5.2 Instrument errors and human errors 

Experimental errors have been identified as instrument errors and human errors. Usually the 

data recorded for each variable during the experimental work was done repeatedly. The 

accuracy of the individual measurements contributing to the logging of the recorded variable 

was estimated. For simplicity reasons, the estimates were just based on the resolution of the 

instrument.   

Table 10 Summary of instrument errors and human errors for recorded variables 

 

Variable Description of measurement Accuracy 

 First phase experiment  

Flow rate Magflo electromagnetic flowmeter +0.5% 

Depth Ruler +1 mm (1.6%) 

Vectrino velocimeter +1 mm (1.6%) 

Slope Initial mark (ruler) +1 mm  

Accuracy of level +2 mm  

Finial measurement (ruler) +1 mm 

Position of the probe Ruler +1 mm 

Temperature Vectrino velocimeter +0.1
o
C 

   

 Second phase experiment  

Flow rate Measurement from coriolis meter +0.15% 

Depth Ruler +1 mm 

Slope Initial mark (ruler) +1 mm 

Accuracy of level +2 mm 

Final measurement (inclinometer) +0.5
o
 

Temperature Measurement from coriolis meter +1
o
C 

Particle size Sieves +5% 

   

 Rheological measurement  

Rheology Rheosys Merlin II rheometer +1% 
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4.6 Summary 
 

The equipment discussed in this thesis was not particularly designed and built for this project. 

However, all the equipments were modified to fit the aim of this project. The equipments 

were equipped with the necessary instrumentation to measure flow rate, temperature, velocity 

and depth. All the equipments were commissioned with clear water tests. Calibration of the 

velocimeter was done to produce water flow data to establish the sample volume size and 

weak spot. Additional water flow tests were done in order to check whether the modified 

flume was working. Rheology tests were conducted on all test solutions to yield a rage of 

rheological properties. The random error analysis and experimental error estimation were also 

presented in this section.  
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5 Chapter 5: Numerical Modelling of Turbulent 

Flow in Open Channels with Semtex 

 

5.1 Introduction 

This is a parallel study of the experimental investigation presented in this thesis. A three-

dimensional numerical procedure is presented for modelling the turbulent non-Newtonian 

open channel flow. The use of DNS provides a significant amount of information for scientist 

and researchers to better understand the physics of turbulent flows. Usually computational 

fluid dynamics simulations of turbulent flow are more difficult than laminar flow. Rudman 

and Blackburn (2006) developed a numerical model using Fourier method (SEM) for Direct 

Numerical Simulation (DNS) of the turbulent flow of non-Newtonian fluids. This 

computational code is referred to as Semtex in this study.  

 

Spectral methods are usually implemented for the numerical simulations of three-dimensional 

and time-dependent flow. They are both very accurate (converging exponentially with mesh 

refinement) and efficient (allowing the use of fast solvers and Fourier transforms). The 

spectral methods are particularly suited for problems having many fine scales, such as 

turbulent flow simulations. Combining high accuracy (exponential convergence) with 

computational high efficiency has made spectral methods the methods of choice within high 

accuracy domains of applications such as homogeneous turbulence (Orszag and Patterson, 

1972) and turbulence in a channel flow (Orszag and Kells, 1980). 

 

The code used in this study - Semtex is a family of spectral Fourier simulation codes. 

Blackburn (2007) refers the spectral element method as a high order finite element technique 

that combines the geometric flexibility of finite elements with the high accuracy of spectral 

methods.  
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5.2 Numerical method 

The spatial discretisation employs a spectral element - Fourier formulation, which allows 

arbitrary geometry in the (x, y) plane and assumes periodicity in z (axial) direction (Rudman 

et al, 2004). A second-order-in-time mixed explicit-implicit technique is employed for time 

integration of the incompressible momentum equations, which for a spatially variable 

viscosity η read as.  

 

( ) ( ){ }




 ∇+∇∇+∇−=+∂ −−

T

uuPuNut ηρρ 11
 

 

(67) 

0=⋅∇ u  
 

(68) 

 

The non-linear terms ( )uN  are implemented in skew-symmetric form as this has been found 

to reduce aliasing errors.  

 

The equations are written in the Cartesian coordinate system. x, y and z denote the spanwise, 

wall normal and axial directions respectively. The numerical scheme employed is detailed in 

Blackburn and Sherwin (2004). The velocity u can be directly projected onto a set of two-

dimensional complex Fourier modes.  

 

The time integration scheme is based on a second-order velocity-correction projection scheme 

by Guermond and Shen (2003) and Karniadakis et al (1991). The simulation used Fourier 

expansions in the channel axis direction referred as Cartesian simulation. To allow a semi-

implicit treatment of the viscous terms, the non-Newtonian viscosity is decomposed into a 

spatially constant component, ηr, and a spatially varying component η-ηr. The basic concept 

is to ensure that the reference viscosity is larger than the local (varying) viscosity throughout 

most of the domain at most of the time. An initial estimate of the reference viscosity ηr is 

chosen. If the value of ηr leads to numerical instability, it can be adjusted during the 

computation without adverse effects. Too small a value of ηr will lead to most of the viscosity 

being treated explicitly with either stability problems or very small time steps. Choosing a 

large value of ηr may lead to instability for reasons that are not clearly understood (Rudman 

et al, 2004). In this case, it is found that ηr, should be increased as n decreases.  
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Since both of the power law and Herschel-Bulkley rheology models have a singular viscosity 

at zero shear rate, a ‘cut-off’ value is used, below which the shear rate is assumed to be 

constant when computing the viscosity. The cut-off value is chosen to be 10
-5

 times the mean 

shear rate.  

 

Furthermore, in order to drive the flow in the axial (z) direction, a body force per unit mass 

equivalent to the pressure gradient measured in the experiments is applied to the z-momentum 

equation. This approach allows the pressure to be periodic in the axial direction. 

 

The computations reported here were carried out using 16-32 processors on Tango cluster 

from VPAC (Victorian Partnership for Advanced Computing). Tango is a large AMD 

Opteron system and it is VPAC’s fourth and largest cluster. Its final configuration has 96 

compute nodes, each with two AMD Barcelona 2.3 GHz quad core processors for a total of 

760 CPUs (VPAC, 2010). 

 

5.3 Boundary condition 

In Semtex, the boundary conditions can only be Dirichlet or Neumann type as the mixed 

boundary conditions are not implemented in the code yet. For the velocity field, the Dirichlet 

condition is applied on the side and bottom walls, and the Neumann condition is applied on 

the surface, except for the normal component of velocity (v) which is set to zero. Similarly, in 

Wu et al (2000), their free surface condition treatment is also to set the velocity normal to the 

surface to zero.  

 

In Figure 40, <D> denotes Dirichlet condition and <N> denotes Neumann condition. For 

pressure, type <H> is used. It is an internally computed Neumann boundary condition as 

described in Kariadakis et al (1991). This is supplied at all places except on outflow 

boundaries. In Figure 40, it is clearly seen that Dirichlet condition is applied on the walls. In 

the surface section, Neumann condition is applied, except for the normal component of 

velocity (v) which is set to zero. 
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Figure 40  Boundary condition section in Semtex session file 

 

5.4 Mesh generation 

In this code, unstructured mesh is used to define the cells on which flow variables are 

calculated throughout the computational domain. It means the elements of the mesh can be 

anywhere. The elements do not have to maintain a certain pattern but the connectivity of the 

elements are important. An illustration of a 2-D mesh is shown in Figure 41 and Figure 42. 

Figure 43 shows a hand drawn mesh with 38 elements. To construct this mesh, 10 nodes are 

specified on the bottom edge; these nodes correspond to nine intervals along these edges. 

Similarly sixteen nodes are specified on the surface, corresponding to fifteen intervals along 

these edges. An internal mesh is then generated by connecting nodes one-for-one across the 

domain such that rows and columns are defined.  

 

 

Figure 41  Sample structured 2-D mesh for 43 elements 

Wall section 

Surface 

section 
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Figure 42  Computer generated 2-D mesh for 43 elements 

 

 

 

 

Figure 43  Hand drawing of 2-D mesh for 38 elements 
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Figure 44  Elements with different skewness 

 

However, if there is a cell with slightly skewness, the computational simulation would 

encounter some unexpected errors. Therefore, it is recommended that all the elements should 

be constructed with the lowest skewness as possible. In general, mesh generation is the most 

important procedure in the simulation.  

5.5 Wall viscosity and wall unit 

5.5.1 Wall viscosity 

When the viscosity varies in space and time, the appropriate viscosity scale to use in order to 

define a Reynolds number is obvious. Therefore in this paper, the Reynolds number is defined 

by mean wall viscosity. It is calculated from the mean wall shear stress, τw. It is determined 

directly from the applied axial pressure gradient. 
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Figure 45  Simulation channel geometry 

Where  

θRC =   

(70) 

 

A is the cross-sectional area. 

Assuming a Herschel-Bulkley rheology,  
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For a power law rheology 
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(72) 

 

5.5.2 Wall units 

Wall units are introduced with the wall viscosity replacing of the non-Newtonian viscosity. 

Therefore the friction velocity is defined as ρτ /* wU = , the non-dimensional velocity is 

*/UUU =+
 and the non-dimensional distance from the wall is written yUy w )/*( ηρ=+

. 
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5.6 Session file 

In session file, a number of variables need to be identified. In this section, second-order 

accurate time integration is selected (N_TIME = 2) and the number of Lagrange knot points 

along the side of each element is set to desired value (N_P = 15). The code will integrate for a 

number time steps (N_STEP) with a time step of a value (D_T).  

 

 

Figure 46  Part of session file 

 

The shape of the mesh is defined by the NODES and ELEMENTS sections. Each element 

obtained by connecting the corner nodes. The x, y, and z locations of the nodes are given. The 

SURFACE section describes how the edges of elements which define the boundary of the 

solution domain are dealt with.  

5.7 Wall fluxes and modal energies 

Figure 47 and Figure 48 show the total stress profile of the simulation of a set of Herschel-

Bulkley rheological parameter over a period of time. The file containing stress data is called 

.flx file. The .flx file contains the volume integrated pressure and viscous terms in the three 
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coordinate directions. This file has nine columns of data after the time column. It includes 

pressure, viscosity, and total stress in the x-direction, y-direction and z-direction. Figure 47 

shows a stress file of a simulation with constant oscillation. This means the simulation result 

is converged and the iteration could be stopped. In Figure 48 the stress curve shows an 

increasing trend thus it means that the simulation needs to keep running until the curve starts 

constant oscillation.  

 

 

 

Figure 47  Simulation stress profile over a period of time (converged) 
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Figure 48  Simulation stress profile over a period of time (not converged) 

 

Figure 49 and Figure 50 illustrate the same behaviour with the simulation’s modal energy 

profile. The modal energy output file is called the .mdl file. This file has the energy in each of 

the Fourier modes in the z-direction. This is one of the time consuming task for this numerical 

simulation. Sometimes the simulation takes weeks get converged results. Once the data points 

begin constant oscillation, the simulation could be stopped and the next step would be data 

extraction.  
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Figure 49  Simulation energy profile (converged) 

 

 
Figure 50  Simulation energy profile (not converged) 
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Figure 51  Instantaneous contours of z plane velocity vectors for the channel flow 

 

 

Figure 52  Symmetrised z plane velocity u 
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Figure 53  Symmetrised y plane velocity v 

 

 

Figure 54  Symmetrised x plane velocity w 

 

Tecplot360 (commercial software by Tecplot Inc.) is used to visualise the numerical 

simulation data. Figure 51 to Figure 54 show symmetrised plot of the simulation velocity. The 

geometry and boundary conditions of the simulation has been set up as symmetric. Therefore 

the expected time mean flow should also be symmetric. However, the actually simulated flow 

was not as symmetrical as expected. It is suggested that it could be a fundamental oddity in 

the flow or the simulation has not be averaged for long enough. By symmetrising the flow, a 

better averaged velocity can be obtained.  
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5.8 Summary 

In this chapter, a three-dimensional numerical procedure is developed for modelling the 

turbulent non-Newtonian open channel flow. Computational modelling of non-Newtonian 

fluids using DNS shows good signs in helping to understand the physics of turbulent flows. 

More results of validation of the code and other simulation with different rheological 

parameters are shown in Chapter 6.   
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6 Chapter 6: Experimental results and simulation 

results 

 

6.1 Introduction 

This chapter will be divided into five different parts. 

• Discussion of initial experimental results 

• Presentation and discussion of experimental results 

• Validation of simulation results 

• Investigation of different simulation variables 

• Secondary flow effect 

The simulation parameter is mainly based on the actual experimental conditions and tested 

rheology parameters from Fitton (2007) due to current experimental limitations.  

 

6.2 Initial calculation 

6.2.1 Initial prediction 

Before the actual commission of the experiment, it is essential to check whether the proposed 

setup could achieve turbulent condition. Therefore, this section shows a method to predict the 

turbulent condition in open channel flows. The variables in this calculation are slope of the 

channel and fluid flow rate. The tested diameter of this calculation is 200mm. It is assumed 

that in this calculation, the testing pipe is filled at half capacity therefore it would have the 

characteristic of an open channel, i.e. a free surface. The maximum flow rate used in this 

calculation was assumed to be 25 l/s.  Figure 3 shows the diagram of the open channel shape 

use in this experiment. The shear thinning non-Newtonian fluids used in this experiment are 

CMC solutions. Three different CMC solutions are chosen for predicting flow conditions.  

Table 11 presents the rheological parameters for the CMC used in the experiment. Yield stress, 

K and n values are also presented.  
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Figure 3 Schematic illustration of the cross-sectional view of open channel flow in a 

circular flume 

 

Table 11 CMC solution parameter 

CMC Yield stress (Pa) K (Pa.s
n
) n 

A 0 0.23 0.60 

B 0 0.125 0.70 

C 0 0.09 0.70 

 

A non-Newtonian fluid was investigated using Reynolds number in non-Newtonian open 

channel flow proposed by Haldenwang et al (2004). In this case, D was replaced by Rh for 

open channel conditions.  

n
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(20) 

 

Where V is the mean velocity, ρ is the fluid density, τy, K, and n are fluid parameters and Rh is 

the hydraulic radius.  

 

The literature values of Reynolds number for the onset of transition to turbulent flow in open-

channels vary greatly (800 to 2000) for Newtonian fluids and are ill defined for non-

Newtonian fluids. Transition to turbulence for non-Newtonian fluid in channel flow is still a 

practical problem. One method that addresses this confusion is that of Haldenwang et al 

(2004), draws a locus of transition points, which is a function of channel slope.  
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Figure 55  Haldenwang et al (2004) transition locus for open channel flow (4.6% bentonite in 150 

mm flume) 

 

Figure 55 shows a Reynolds number against Froude number graph for 4.6% bentonite in 150 

mm flume from Haldenwang et al (2004) paper. The bentonite data was fitted with Bingham 

plastic rheology model. Haldenwang’s locus indicates the start of transition from laminar to 

turbulent and the bend at higher Reynolds number indicates full turbulence. This shows a 

relationship between the Reynolds number and Froude number for each slope tested. The 

points of inflection were connected and Haldenwang et al (2004) established a linear 

relationship between these points. However, it appears that these are both speculative as the 

means of determining the presence of turbulence is not outlined in the paper. The model is 

only an empirical correlation. In this study, Haldenwang’s locus is used to predict turbulent 

for the experiment because it is easy to apply on non-Newtonian open channel flow.  

 

The prediction method is presented here for predicting flow condition in an open channel 

flow.  

1. Chose an initial for channel depth 

2. Calculate the free board and the angle 

Bend 
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3. Calculate cross sectional area of the flow and the wetted perimeter in order to calculate 

Rh 

4. Calculate average velocity (Q/A) 

5. Calculate Reynolds number by using equation (20) 

6. Calculate friction factor. It is discovered that due to the implicit nature of the Colebrook-

White equation, the friction factor should be determined by an explicit relation 

developed by Haaland in 1983 (Wilson, 1988) 
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7. Calculate friction factor using Colebrook-White equation (equation (16)) 

8. Calculate Rh from the friction factor value calculate from step 7 

9. Adjust the initial depth value until the two Rh values calculated in steps 3 and 7 equate 

10. Calculate the channel width from Rh value calculate from step 9 

11. Calculate Froude number as 

5.0
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A
g

V
Fr  

 

(74) 

 

Different flow rates were used to obtain a range of Reynolds number and Froude number. The 

maximum flow rate 25 l/s used in the calculation is based on the maximum capacity of the 

proposed pump. The plot of Reynolds number against Froude number with CMC solution A 

is shown in Figure 56. The Haldenwang locus is drawn in relation to channel slope. In Figure 

56 different groups of plots present different slopes. In this investigation, 2%, 5%, 10% and 

20% slopes were chosen. With a slope of 2%, the CMC solution A can reach Haldenwang’s 

locus without any difficulty. It means that with the pipe operating at half capacity i.e. half 

pipe, it is quite easy to get the flow into turbulent region. The plot with slope of 5%, 10% and 

20% intersect with Haldenwang’s locus and it can be predicted as the flow is in turbulent 

region. As there is a presence of a bend above Haldenwang’s locus, a high Reynolds number 

also indicates the flow is turbulent. Similarly in Figure 57 and Figure 58 with CMC solution 
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B and CMC solution C, with a slope of more than 5%, most of the flow rate can easily bring 

the fluid to turbulent region according to Haldenwang’s locus.  

 

Figure 56  Predicted relationship for CMC solution A for different slopes. Haldenwang’s locus is 

plotted and lies below the data points. 
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Figure 57  Predicted relationship for CMC solution B for different slopes. Haldenwang’s locus is 

plotted and lies below the data points. 
 

 

Figure 58  Predicted relationship for CMC solution C for different slopes. Haldenwang’s locus is 

plotted and lies below the data points. 
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Furthermore, a group of Ultrez solution was also tested with the mentioned calculation 

method. The major difference between Ultrez solution and CMC solution is that the presence 

of yield stress in Ultrez solution.  

 

Table 12 Rheological parameters for Ultrez solution 

Ultrez Yield stress (Pa) K (Pa.s
n
) n 

0.1% 0.31 1.08 0.51 

0.15%A 1.52 4.29 0.54 

0.15%B 1.19 6.56 0.54 

 

 

Figure 59  Rheogram of Ultrez solution tested 

 

The plot of Reynolds number against Froude number for 0.1% Ultrez solution is shown in 

Figure 60. For slope of 2%, the 0.1% Ultrez solution could just reach Haldenwang’s locus. 

This simply means that with 2% slope, this solution could not generate enough turbulence 

with the assumed maximum flow rate of 25 l/s. With the pipe operating at half capacity, it is 

very difficult to bring the flow into turbulent region. The plot with slope of 5%, 10% and 20% 

intersect with Haldenwang’s locus and it can be predicted as turbulent flow. With high 

Reynolds number, it is determined that the flow is turbulent.  
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However, in Figure 61 and Figure 62, none of the calculated data can intersect with 

Haldenwang’s locus. Even with 30% slope, 0.15% Ultrez B can only reach a Reynolds 

number approximately at 1000 from the formulas, which does not provide sufficient evidence 

for turbulence. Therefore it is concluded that with 0.15% Ultrez solution, turbulence cannot 

be achieved by increasing the flow rate without overflowing the pipe. It is suggested that a 

slope higher then 30% is very difficult to obtain because of the physical limitation of the 

equipment. Moreover, in Figure 61 and Figure 62, the curves of the predicted Ultrez solutions 

have small bends which are very similar to the bend presented in Haldenwang’s data. 

However, all the data points were below the Haldenwang’s locus. This suggests the locus may 

not be suitable for this set of solutions.  

 

 
Figure 60  Prediction of turbulent region for 0.1% Ultrez solution 
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Figure 61  Prediction of turbulent region for 0.15% Ultrez A solution 

 
 
Figure 62  Prediction of turbulent region for 0.15% Ultrez B solution 
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6.2.1.1 Wang and Plate data (1996)  

Wang and Plate (1996) used clay suspension to study the turbulence structure of non-

Newtonian channel flow. They observed that transition from laminar to turbulent flows 

occurred when a Reynolds number Re is between 2000 and 10000. Their measurements of 

fluctuating velocity were obtained with a total pressure velocimeter. The measurements were 

carried out at the centre of the channel (Wang and Plate, 1996). The fluids used for this 

experiment were Clay-R (cohesive reservoir deposit) and Clay-W (from Wiesloch, Germany). 

Both of the fluids were tested to be Bingham fluid from Wang and Plate (1996).  

 

Figure 63 is plotted from the data obtained by a smaller channel with the dimension (length × 

width × height) 10 m × 10 cm × 20 cm. Round shaped data points are plotted by previously 

discussed calculation method in section 6.2. Other black coloured data points were Wang and 

Plate (1996)’s measurements.  

 

Figure 63 Combined Plot of Wang and Plate (1996) and calculated points by previous 

methodologies Small flume data 

 

 

From Figure 63, the data points calculated by previous methodologies and Wang and Plate 

(1996)’s plot are almost identical. All the data points appeared above the Haldenwang’s locus. 
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According to Haldenwang et al (2004), all the data in this plot should be in turbulent or 

transition region. This however shows some disagreement between Wang and Plate (1996)’s 

experimental results and Haldenwang’s locus because some of the points from the laminar 

flow data of Wang and Plate (1996) fell into Haldenwang’s turbulent and transition region.  

 

Figure 64 uses Wang and Plate (1996)’s measurement from larger channel with the dimension 

of (length × width × height) 24 m × 60 cm × 65 cm. Round data points were obtained by the 

previous method (see section 6.2). Diamond shape and triangular shape data points were 

Wang and Plate (1996)’s measurement.   

 

 
Figure 64  Combined Plot of Wang and Plate (1996) and calculated points by previous 

methodologies using large flume data 

 

Reynolds number calculated by previous method do not fit particularly well with Wang and 

Plate (1996)’s data. Haldenwang’s experiment was conducted with 3 different shaped flumes, 

a rectangle, a semi-circle and trapezoid; whereas Wang and Plate has only used rectangle 

shaped flumes. Therefore Kozicki and Tiu’s shape factor can be used to check if the shape of 

the flume does affect the experimental result. The general trend of both turbulent and 

transition data sets are quite similar to the calculation. Therefore it is generally agreed that 

Haldenwang’s locus can be used as a tool to predict flow conditions.   
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6.2.1.2 Kozicki and Tiu shape factor (1967) 

Kozicki and Tiu (1967) investigated the effect of shape in laminar flow in open channels 

using.  
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Where a and b are the shape factors. For a semi-circular open channel, a = ¼ and b = ¾, and 

for rectangular open channel a = 0.2123 and b = 0.6759. 

 

These shape factors however have not been tested against any valid experiment dataset. In 

fact, Kozicki and Tiu’s shape factors can only predict the flow rate and maximum velocity in 

laminar flow of an incompressible, time-independent non-Newtonian fluid in a straight open 

channel (Kozicki and Tiu, 1967). Table 13 presents the rheological parameters for the Ultrez 

solution used in the calculation. Yield stress, K and n values are also presented.  

 

Table 13 Rheological parameters of Ultrez solution  

Ultrez Yield stress (Pa) K (Pa.s
n
) n 

0.06% 0.194 0.097 0.72 

0.08% 0.72 0.61 0.58 

0.10% 0 2.07 0.48 

0.15% 1.56 6.65 0.49 

 



 

  Page 112 

 

 
Figure 65  Prediction of turbulent region for 0.06% Ultrez solution with Kozicki and Tiu shape 

factor 

 

 

Figure 66  Prediction of turbulent region for 0.08% Ultrez solution with Kozicki and Tiu shape 

factor 
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Figure 67  Prediction of turbulent region for 0.1% Ultrez solution with Kozicki and Tiu shape 

factor 

 

Figure 68  Prediction of turbulent region for 0.15% Ultrez solution with Kozicki and Tiu shape 

factor 

 

Reynolds number is then calculated in consideration with Kozicki and Tiu’s shape factor i.e. a 
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0.25 and b = 0.75. The ‘a’ and ‘b’ values are approximate values from Kozicki and Tiu (1967) 

for semi-circular open channels only. In Figure 65 to Figure 68, the points present the 

calculated Reynolds number by the method described in section 6.2, the dotted lines present 

the Reynolds numbers calculated with Kozicki and Tiu’s shape factor. From the graph, it is 

shown that the lines and points fitted quite well. The points didn’t fit so well are mostly at the 

lower Reynolds number region, i.e. laminar region on the Haldenwang locus. The low yield 

stress of the 0.06%, 0.08% and 0.1% Ultrez solution may not have sufficient yield stress 

effect on power law based shape factor formula. Therefore the plot in Figure 65 to Figure 67 

showed significant amount of similarities.  

 

6.2.2 Entrance length debate 

In the first phase of experiment, it was conducted in a 2 m long semi-circular channel. 

However, there is little information in the literature concerning turbulent entrance length for 

non-Newtonian fluid. Here, three different calculations were used to show the desirable 

entrance length for this experiment. 

 

In Laufer (1952), the author worked on turbulent pipe flow and claimed that full flow 

development is at a length of 30 diameters based on “the measured mean velocity 

distribution” (p.421). Similarly, in Nikuradse (1966)’s paper, he concluded from a 

comparison of mean velocity profiles at successive streamwise lengths, that the flow was fully 

developed by 40 diameters.  

 

In Lien et al (2004), the authors investigated fully developed turbulent flow in a smooth 

channel. It was estimated by Lien et al (2004) that the minimum length of 130h (h denote 

channel height) is required for flow to become constant with streamwise direction. However, 

the authors used air as the testing material in experimental channels. 

 

Colwell and Shook (1988) presented a study of entrance length for sand slurries in pipelines. 

It was found that the entrance length required for horizontal turbulent slurry flow to become 

fully developed is around 50 pipe diameters for sand slurries. It was also found that with a 

high particle settling velocities; it requires shorter entrance lengths than that for intermediate 

settling velocities.  
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The most related paper for an effective entrance length is that of Shenoy and Mashelkar 

(1983). The authors proposed a design equation for estimating the turbulent entrance lengths 

for non-Newtonian fluids.  
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In this case, αs = 0.079 and βs = 0.25. And n is the flow behaviour index.  

 

For all the entrance length calculations, Rh is used instead of diameter of pipe. Geometric 

conversion of D = 4 Rh is applied to all the calculations. Rh = 0.0311 for the first phase 

experiment. Reynolds number is calculated by equation (21) 

 

Table 14 Summarised table for entrance length 

 Calculated Entrance length 

Laufer (1952) 3.73 m 

Nikuradse (1966) 4.98 m 

Colewell and Shook (1988) 6.22 m 

Lien et al (2004) 7.15 m 
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Table 15 Entrance length calculated by Shenoy and Mashelkar (1983) equation 

Reynolds number Xe/D Xe (m) 

4000 10.09 1.25 

4400 10.33 1.28 

4840 10.58 1.31 

5324 10.53 1.34 

5856 11.10 1.38 

6442 11.36 1.41 

7086 11.64 1.45 

7794 11.92 1.48 

8574 12.21 1.52 

 

Table 16 Entrance length calculated by Shenoy and Mashelkar (1983) equation 

n (Flow behaviour 

index) 

Xe/D Xe (m) 

0.50 7.96 0.99 

0.55 8.61 1.07 

0.61 9.30 1.15 

0.67 10.02 1.27 

0.73 10.77 1.34 

0.81 11.57 1.44 

0.88 12.40 1.54 

0.97 13.26 1.65 

 

Table 14 shows the calculated entrance length for this experiment with different methods. It is 

seen that by Laufer (1952) method, the entrance length needs to be 3.73 m and by Lien et al 

(2004) method; the entrance length needs to be at least 7.15 m. It is very surprising to see the 

large differences between the results. It is interesting to see that Shenoy and Mashelkar (1983) 

equation is Reynolds number and flow behaviour index dependent. Therefore in this 

investigation, Reynolds number and flow behaviour indices were varied in order to examine 

the full effect of these variables. Table 15 presents the calculated entrance length by Shenoy 
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and Mashelkar (1983)’s method. Reynolds number was calculated by equation (20). Table 16 

presents similar information, the only difference is that Table 16’s entrance lengths were 

calculated by a fixed Reynolds number of 4000 and different n values. It was found that the 

entrance length calculated by Shenoy and Mashelkar (1983) equation is sensitive to flow 

behaviour index of the fluid. When n increases by 10%, the entrance length would increase by 

7-8%. However, when n approaches 1, the entrance length increases by a slightly smaller 

percentage. For example, when n increases from 0.5 to 0.55, the entrance length increases 

from 0.99 m to 1.07 m, that is around 8%.  When n increases from 0.88 to 0.97, the entrance 

length increases from 1.54 m to 1.65 m, that is an increase of 7.1%. If there is a change in 

Reynolds number, the entrance length would change as well. In general, when Reynolds 

number increases by 10%, the entrance length increases about 2.4% with a fixed flow 

behaviour index n.  

 

The length of the semi-circular channel used in the experiment is 2 metres. With the flow 

condition and rheology measurement, the entrance length calculated by Shenoy and 

Mashelkar (1982)’s equation is around 1.05 m. If the exit length in the flume is assumed to be 

equal to the entrance length, then the 2 metres long flume is extremely marginal for the 

experiment.  

 

This analysis shows that entrance length of flume calculation varies significantly. Yet, there is 

a distinct scarcity of thorough investigations on the minimum entrance length of fully 

developed channel flow. Future investigation on this particular subject is much encouraged.  

 

6.3 Experimental results 

6.3.1 Presentation of initial results 

This section will present the results obtained at CSIRO Highett lab where the first phase of 

experimental program took place. The amount of data obtained from ADV measurement is 

quite extensive. A number of figures have been plotted. The presentation and analysis of these 

data and some of these figures are given in this section. All the velocity measurements were 

collected with 4.70% slope.  
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6.3.1.1 Velocity measurements 

Figure 69 shows the velocity against depth plot for measurement of 1405 (refer to Table 5) 

and 1705 at cross section of the channel. It can be seen that the velocity profiles are quite 

similar with the same flow rate. Figure 70 shows the rheogram for the solutions 1405 and 

1705. It is seen that the 1705 solution had a lower viscosity compare to 1405 solution. There 

is a slight inconsistency in the rheogram at the high shear rate region. This could be caused by 

slippage at the high shear rate. Figure 69 also reflected the velocities for 1405 were about 

15% less than 1705’s velocity measurement at given height.  

 

 

Figure 69   Velocity against depth plot at centreline of the channel for fluid samples 1405 and 

1705 with slope equals 4.70% 
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Figure 70  Rheogram for test samples 1405 and 1705 CMC solution at 18
o
C 

 

 

Figure 71 shows the centreline velocity against depth plot for CMC solution (Test number.  

1405, 1705 and 1805) at open channel cross section. It is seen that most of the velocities 

collapsed on a similar curve with small variation between them. In general, 1405 solution has 

a slight lower velocity than the other two solutions. From Figure 72, it is easy to see that the 

solutions viscosity slowly reduced with time over a scale of day. It is believed that some 

difference of solution viscosities might have contributed to the fluctuations in velocity 

measurements in Figure 71.  

 

Figure 73 shows the velocity against normalised depth plot with different flow rates. The 

depths are normalised by maximum depth. It reinforces that higher flow rate causes a higher 

average velocity in the channel. One of the interesting aspects of the data in Figure 73 is that 

for 7 l/s flow rate, the velocities are lower than those for 8.5 l/s and 10 l/s. Whereas for flow 

rates of 8.5 l/s and 10 l/s, the difference in velocity profiles was less pronounced. The 

Reynolds number is then calculated for these three different flow rates. Reynolds numbers for 

7 l/s, 8.5 l/s and 10 l/s flow rate are 3975, 4068 and 4325 respectively.  
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Further tests were conducted to see whether the flow is symmetrical in the channel. A number 

of measurements were recorded at different spanwise positions with a slope of 4.70% and 

flow rate at 7.30-7.50 l/s. The position for this measurement was 30 mm from the centreline 

of the channel. The exact distance was used to measure on both left and right side of the 

centreline. From Figure 74 it is interesting to see that there is not a vast difference between 

the different measurements from either left or right side from the channel centreline. The size 

of the velocimeter’s transmit transducer prevented velocity measurement from being taken 

within about 50 mm of the boundaries of the half pipe. Therefore it was quite difficult to take 

any other measurements at a various spanwise positions. 

 

Figure 71  Velocity against depth plot at centreline of the channel for test samples 1405, 1705 

and 1805 with slope equals 4.70% 
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Figure 72  Rheogram for test samples 1405, 1705 and 1805 CMC solutions 

 

 

Figure 73  Velocity against normalised depth plot at centreline of the channel at different flow 

rate with slope equals 4.70% 
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Figure 74  Velocity against depth plot at different positions of the channel with slope equals 

4.70% 

 

6.3.1.2 Summary of initial observations 

From the above results, the discussion can be summarised as follows: 

• With change in rheological parameters (thus a change in viscosity), the velocity 

profile will change. Increase in viscosity shows a slight decrease in velocity, decrease 

in viscosity shows an increase in velocity. This means rheology of the fluid is 

important in order to study turbulent behaviour in open channel flows.  

• Figure 71 shows the velocity profile for solutions with different rheological 

parameters. It is interesting to see that the differences between the velocities are 

minimal for the different rheological parameters. It suggests that even when viscosity 

has changed by 15-20%, there has not been a significant change in velocity profile.  

• With different flow rate, the velocity profile does not shift noticeably. The main 

reason for this is a minimum change in Reynolds number. It is shown earlier that 

Reynolds numbers for 7 l/s, 8.5 l/s and 10 l/s flow rate are 3975, 4068 and 4325 

respectively.  
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• The flume’s velocity at different spanwise position seemed to be symmetrical. A 

number of measurements were recorded at different positions. From Figure 74 it is 

seen that there is not a large difference between the different measurements. Due to 

the limitation of velocimeter and flume size, it was very hard to take velocity 

measurement at other spanwise positions.  

• It was mentioned in the previous sections that there are limitations with the Vectrino 

acoustic Doppler velocimeter. Due to the velocity probe’s limitations, the velocity 

probe’s transmitter position needs to be at least 50 mm from the bottom of the flume. 

This was noticed in the initial water testing in the rectangular shaped flume. The depth 

of the rectangular flume is 154 mm yet the velocity measurement can only reach 100 

mm. However in the semi-circular flume, the maximum depth of flow is only 70 mm. 

This means that to measure velocity very close to the wall, the velocimeter needs to be 

placed at least 50 mm from the channel wall. Therefore, the maximum vertical 

movement allowed for the velocimeter was 20 mm.  

• Figure 75 shows the initial experimental measurements together with measurement 

data from Fitton (2007)’s experiment. From the plot, it’s apparent that current 

measurement only covers a small range of the velocity profile. With Fitton (2007) 

measurements, a full velocity profile could be established.  

• There was a considerable amount of air bubbles presented in the fluid. In the 

downstream end, when the fluid was pouring from flume into the holding tank, the 

splashing would create a lot air bubbles over time (Figure 76). When the air bubbles 

reached a certain concentration, the fluid turned from transparent to unclear (Figure 

77). There is no easy method to totally eliminate the air bubbles. Usually when the 

flow rate equals to more than 3 l/s, the fluid would start to splash at downstream. The 

only possible way to eliminate some of the air bubbles is to fill the system up with 

large volume of fluid so the fluid in the holding tank would cover the flume’s outlet in 

order to avoid splashing. This method was then implemented; however, the effect of 

elimination of air bubbles was minimal. 
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Figure 75  Velocity against depth plot at centreline of the channel for test samples 1405, 1705, 

1805 and 2405 CMC solution with experimental data of Fitton (2007) 

 

 

 

 

Figure 76  Splashing at downstream end of the experiment setup  
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Figure 77  Air bubbles caused unclearness in the fluid 

 

6.4 Validation of Simulation results 

6.4.1 Use of previous experimental data (Fitton, 2007) 

Due to the limited range of data gathered from the experimental programme discussed above, 

a set of available data based on channel flow was chosen as simulation validation parameter. 

The experimental data were taken by a former RMIT PhD student, Tim Fitton in 2004. The 

experiment was conducted at the Sunrise Dam Gold Mine, in Western Australia. The 

experimental set up consisted of a flume channel of 340 mm internal diameter with semi-

circular cross section. The tailings slurry was supplied to the plunge box which was located at 

the upstream end through a 150 mm HDPE pipe with an outlet 20 cm above the plunge box 

floor. A diaphragm valve was installed in the pipe to adjust the flow rate of the tailing. 

Further details of this experiment and associated instrumentation are given in Fitton (2007). 

 

Rheometric analysis was performed on samples of the mineral slurries at different 

concentrations to determine its rheological parameters. This enabled the fitting of a Herschel-

Bulkley rheological model. Rheological parameters based on the experimental data were used 

in the simulation. The modelling presented in the next section has been compared with 

experimental work presented by Fitton (2007) 



 

  

 

6.4.2 Initial results 

The simulation was originally designed to allow comparison to experiments undertaken in 

Fitton (2007) and the parameters were chosen to match with previous experiments. 

study, the computational domain consists of 51 fifteenth order elem

section and 384 Fourier modes in the axial direction, with domain lengths of 0.5

reason for choosing a small domain length is because with a longer domain length and current 

number of planes (384) the simulation time would 

can increase the resolution of the contour thus the observation of the result become a lot 

easier. Therefore the domain length has been shortened to meet the demand of number of 

planes. This is the summary of sim

because of the completeness of the data range and the quality of the data.

 

Table 

Model n 

Herschel-Bulkley 0.81 

 

In terms of wall units, the near-

resolution is quite marginal in y
+

significantly increasing the streamwise resolution had little effect on the turbulence statistics. 

However, it would be interesting to see if 

 

 

 

 

 

 

 

Figure 78  Near wall structure revealed in contours of streamwise velocit

velocity regions, blue shows low velocity regions

 

 

The average velocity calculated from the experiment is 1.06 m/s

Based on the simulation, the average velocity 

differences may be due to experimental

The simulation was originally designed to allow comparison to experiments undertaken in 

Fitton (2007) and the parameters were chosen to match with previous experiments. 

study, the computational domain consists of 51 fifteenth order elements in the channel cross 

section and 384 Fourier modes in the axial direction, with domain lengths of 0.5

reason for choosing a small domain length is because with a longer domain length and current 

number of planes (384) the simulation time would be too great. A larger number of 

can increase the resolution of the contour thus the observation of the result become a lot 

easier. Therefore the domain length has been shortened to meet the demand of number of 

planes. This is the summary of simulation parameter. This particular set of data was chosen 

because of the completeness of the data range and the quality of the data. 

Table 17 Parameters for simulation 1 

K(Pa.s
n
) τy  (Pa) δp/δz Length 

0.0506 2.249 0.147 0.5πD 

-wall mesh spacing is y
+
 ≈ 4.1, θ

+
 ≈ 16, and 

+
 and z

+
. In Rudman et al (2004), the authors suggested that 

amwise resolution had little effect on the turbulence statistics. 

However, it would be interesting to see if y
+
 can be reduced in future studies.  

Near wall structure revealed in contours of streamwise velocity, red shows high 

velocity regions, blue shows low velocity regions 

he average velocity calculated from the experiment is 1.06 m/s according to Fitton (2007)

Based on the simulation, the average velocity for the channel flow is 1.39 m/s. The 

experimental error. With approximately 15% error of the flow 

Low velocity streaks 
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The simulation was originally designed to allow comparison to experiments undertaken in 

Fitton (2007) and the parameters were chosen to match with previous experiments. In this 

ents in the channel cross 

section and 384 Fourier modes in the axial direction, with domain lengths of 0.5πD. The 

reason for choosing a small domain length is because with a longer domain length and current 

be too great. A larger number of z planes 

can increase the resolution of the contour thus the observation of the result become a lot 

easier. Therefore the domain length has been shortened to meet the demand of number of z 

This particular set of data was chosen 
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amwise resolution had little effect on the turbulence statistics. 

, red shows high 

according to Fitton (2007). 

is 1.39 m/s. The 

. With approximately 15% error of the flow 
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measurement from them (Fitton, 2007), the measured average velocity can go up to 1.355 

m/s.  

 

The simulated near wall structure of the channel flow is shown in Figure 78. The above 

diagram showed some wall streaks near bottom of the channel. The question needs to be 

answered is how may the wall structure have significant impact on particle transportation.  

                                                                                                                                                                                

6.4.3 Velocity distribution 

The instantaneous point velocity from the centreline is investigated to validate the 

computational method. In Figure 79, the plot represents velocity against depth along the 

centre line of the channel for the field experimental data from Fitton (2007). The depth 

measurement starts from 0 mm at the surface to 70 mm at the bottom of the channel. In Figure 

79 depth starts from -0.34 m, that is 0.34 m below half of the channel height. The bottom of 

the channel is at -0.41 m which means the actual depth of the channel flow is still 70 mm 

overall.  The field data shows a maximum velocity of 1.65 m/s at the channel surface. 

Whereas the simulation data shows around a maximum velocity of 1.80 m/s at the surface. 

The difference between the velocities could be caused by measurement error from the field 

experiment. Yet, both plots demonstrate similar pattern except for the small bend towards to 

the channel surface. More discussion on secondary current will be presented in the following 

sections. Thus, it is suggested that simulation and field experiment are of the same order of 

magnitude and it provided some agreement between the two results. 
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Figure 79  Instantaneous point velocity at the centre line of the channel 

 

The velocity is then non-dimensionalised using the wall viscosity (equation (10)). The wall 

viscosity is calculated by wall shear stress. The wall shear stress is found from: 

 

hw Rg ⋅⋅⋅= θρτ sin  (10) 

 

In this case, the logarithmic profile used for the plot is: 

++ += yU ln5.25.5  (78) 

 

The mean axial velocity data at the centreline for the slurry is presented in Figure 80, in wall 

units, together with the logarithmic velocity profile. The experimentally measured velocity 

profile has a linear relationship between U
+
 and y

+
 in the near wall region. In the logarithmic 

region, the actual velocity profile for the slurry is slightly higher than the logarithmic velocity 

profile. At the free surface region, the measured velocity profile declined after a maximum. 

According to Joung et al (2007) and Nezu (2005), this could be concluded as a secondary 

flow effect where the lower velocity/momentum fluid has been dumped into the high 

velocity/momentum region. Therefore there is a dip in the axial velocity profile after 

maximum velocity has been reached. This happens regularly in non circular channel flow. It 
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is also suggested by Nezu and Nakagawa (1993) that this phenomenon is called the “velocity-

dip”, and it is peculiar to open channel flows. 

  

Figure 80  Experimentally measured velocity profile for slurry Fitton (2007). 

 

The computationally predicted profile for the control Simulation at Reynolds number = 8182 

is presented in Figure 81. The velocities have been non-dimensionalised. The non-

dimensionalisation is undertaken using the wall viscosity give in equation (71). All profiles 

have a linear relationship between U
+
 and y

+
 in the near wall region. It is seen that some 

disagreements between simulation and measurement do exist. Not only is the predicted 

average bulk velocity is approximately 39% higher than experimental, but the velocity profile 

has somewhat different shape to the experimental profiles. The simulation profile and 

experimental profile have the same magnitude in the near wall region. In the free surface 

region, the simulation profile does not show any velocity dip.  
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Figure 81  Experimentally measured velocity profile in conventional wall units for slurry in 

comparison of Simulation results 
 

The next section will evaluate the data compiled for this thesis using the velocity profiles 

found in the literature review section.   

 

6.4.3.1 Coles wake function (1956) 

In Coles (1956) it was said that the log law equation (78) is only valid for the wall regions. 

The deviation of the velocity distribution in the outer region of open channel flows from the 

log-law can be accounted by adding a wake function. 
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(38) 

 

Where w(ξ) accounts for the deviation and termed the wake function, and П is termed the 

Coles wake strength parameter. It was previously mentioned that П is about zero at low 

Reynolds number < 500. At small values of Re but greater than 500, П increases rapidly with 

Reynolds number Re and it remains nearly constant, i.e. П =0.2 for Re > 2000. In this case, П 

= 0.2 is used as the Reynolds number is well exceeding 2000.  
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Figure 82  Simulation velocity profile in conventional wall units for slurry in comparison of 

Simulation results with Coles wake function 

 

Figure 82 shows the Coles wake function from y
+
 > 5. The wake function plot shows almost 

identical curvature when compared to the simulation velocity profile. Coles wake function 

plot is generally moving away from the logarithmic profile. This behaviour is also observed in 

Figure 83. From Figure 82 it shows that the Coles wake function overestimate the velocity 

slightly then converges with the simulation velocity profile at around y
+
 = 257.  There is a 

slight curvature towards y
+
 > 300 from both the simulation profile and the wake function plot 

(Figure 83 and Figure 84). The magnitude of the curvature is very similar for both plots. This 

could be a presentation of very small secondary current but the magnitude of this small 

curvature is nothing compared to the visible experimental secondary current presented in 

Figure 81. It is certainly of interest to note that the simulation result suits quite well with 

Coles wake function in the outer region of the velocity profile plot. With the limited 

suitability of logarithmic velocity profiles, Coles wake function could be a better indication 

for channel flows. Despite the fact that the Coles wake function is used in water flows, it is 

observed here that the wake function also suits the outer region of non-Newtonian flow. 
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Figure 83  Enlarged plot for Simulation velocity profile in conventional wall units for slurry 

 

 

Figure 84  Enlarged plot for Simulation velocity profile in conventional wall units for slurry in 

comparison of Simulation results with Coles wake function  
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6.4.3.2 Clapp’s velocity profile (1961) 

Clapp (1961) reports the results of experimental measurements of the turbulent pipe flow of 

power law fluids with flow indices in the range of 0.698-0.813. Clapp determines that the 

logarithmic velocity profile for the turbulent flow of power law fluids is a function of the flow 

index, n, and satisfies 

 

++ += y
n

B

n

A
U ln  

 

(79) 

 

According to Clapp (1961), following the accepted division of turbulent flow of Newtonian 

fluids into three different regions, the laminar sublayer, the buffer layer and the turbulent core, 

the following equations and their limits are obtained for non-Newtonian fluid. 

 

Viscous 

sublayer 

( ) n

yU
/1++ =  ,

ny 50 << +
 

 

(34) 

Buffer sublayer 
05.3ln

5
−= ++

y
n

U , 25 ++ << yy
n

 
(35) 

Turbulent layer 
Hy

n

G
U += ++ ln , 2

++ > yy  
(36) 

 

Where n is the flow index, and G and H are empirical constants to be obtained. By Clapp’s 

investigation, G and H are 2.78 and 3.8 respectively. y
+

2 = 30 is used for Clapp’s (1961) 

paper; therefore it is also used in this calculation. 

 

Using Clapp’s velocity distribution equation and experimental rheology parameters, a new 

velocity profile is presented in Figure 85 with the mean axial velocity for the simulation. The 

simulation velocity profile is plotted with wall viscosity non-dimensionalisation. The 

simulation velocity profile showed reasonable agreement in term of overall shape. It is quite 

easy to distinguish all three separate regions i.e. laminar sublayer, buffer layer and turbulent 

core. In the laminar sublayer, the non-dimensionalised simulation velocity profile is a good fit 

to logarithmic profile. However, the velocity distribution curves in the buffer layer and 

turbulent core are much higher than the simulation data. Moreover, this velocity profile is 

based mainly on pipe experimental results. Therefore no secondary current related feature is 

considered in the velocity distribution equation. Lastly, Clapp (1961) only incorporated n, the 

flow behaviour index into the velocity distribution equations as the author only tested power 
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law fluids. In fact, it is expected that the yield stress of a non-Newtonian fluid will have some 

impact on velocity distribution.  

 
Figure 85  Simulation velocity profile in conventional wall units for slurry in comparison of 

Simulation results with Clapp’s velocity distribution equation 

 

6.4.3.3 Use of Yalin’s roughness height  ks (1977) 

In different pipe and channel flows, for a smooth surface, the no-slip condition requires that 

the relative velocity of the fluid at the surface of the pipe/channel to be zero. For a rough 

surface, the extension of the roughness elements into the flow complicates the interaction with 

the surface. A simplistic way to treat fully rough boundary layers is to replace the viscous 

length scale of the smooth wall with the mean roughness height, ks. The mean velocity profile 

in the overlap region then becomes: 
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(80) 

 

Yalin (1977) introduced a set velocity distribution equation in turbulent flow with roughness 

of the channel considered. The author stated that: 

• if U
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ks/υ < ≈ 5, then the velocity distribution is 
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(42) 

 

• if U
*
ks/υ > ≈ 70, then the velocity distribution is 

s

s

B
k

y

k
U +=+ ln

1
, 5.8=sB  

 

(43) 

 

Where ks is Nikuradse’s original uniform sand grain roughness factor; it represents the 

equivalent sand roughness for any type of rough surface. Bs is a dimensionless property of the 

flow in the vicinity of the bed.  

 

In an open channel, especially in a self formed open channel, the channel has been eroded into 

a deposit of tailings. The roughness of the channel boundaries must be defined by the size of 

the grains in the channel bed material. Abulnaga (2002) mentioned that ks in an open channel 

is equal to twice the grain diameter. Ikeda et al (1988) also stated an approximation for ks as 

equal to 1.5 × d90. In Yalin (1977); the author used the absolute size of the grain for ks. 

Therefore, in this investigation, the following value will be used for the roughness ks. ks is 

calculated using the particle characteristic from Fitton (2007). 

 

• ks = d50 = 14 µm 

• ks = 2 × d50 = 28 µm 

• ks = d90 = 170 µm 

• ks = 1.5 × d90 = 255 µm 

• ks = 2 × d90 = 340 µm 

 

With Bs less than 5, equation (42) was used to create the velocity profiles in Figure 86. The 

mean velocity profiles in outer coordinates and normalised by the friction velocity are shown 

in Figure 86. This shows a simulation velocity profile and velocity profiles with roughness 

considered. For the simulation results, no roughness value was used. All the other velocity 

profile with roughness value considered exhibit downward shift with respect to the log law. 

This finding is very similar to the work done by Bergstrom et al (2002) which involves air 

flow in a wind tunnel. ks = d50 shows the smallest shift from the simulation data while ks = 2 × 

d90 shows the highest roughness shift. Therefore it is concluded that the roughness of the 
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channel does have an effect on mean velocity profile. The roughness effects actually penetrate 

into the overlap region, and the outer region velocity profile suggests that the turbulence 

model for rough wall flows needs to incorporate the effects of roughness at the surface. 

However, due to data limitation, the results presented here only show the same specific 

roughness geometry (shape) and same roughness conditions.  

 

Figure 86  Simulation mean velocity profile with different roughness value 

 

 

6.4.3.4 Barenblatt’s Power law profile (1993) 

Barenblatt (1993) introduced a specific power law for the velocity profile in pipe flow. These 

equations are presented in chapter 2 as equations (39) to (41)  and are repeated below: 

 

α++ = AyU     
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Where Red = Vd/υ. The Red is based on the average pipe velocity V and the pipe diameter d = 

2R. For open channel flow, the hydraulic radius is used to replace the pipe diameter in the 

equations. In this case, the Reynolds number used in equation (40) and (41) is based on 

equation (22). From the calculation, A = 7.70 and α = 0.166. The velocity profile is then 

compared with the simulation profile as well as the conventional logarithmic velocity profile.  

From Figure 87 it is of interest to note that the power law velocity profile in the overlap 

region and turbulent region is very similar to the logarithmic law. The power law profile is 

slightly curved and positioned below the simulation velocity profile. The outer region of the 

conventional logarithmic velocity profile almost overlaps with power law profile.  

 

It is found that the value of α decrease with increasing Reynolds number. However, even with 

a large increase in Reynolds number, the velocity profile does not shift significantly.  Figure 

88 shows the simulation results with different yield stresses. Reynolds numbers for +50% 

yield stress simulation and -50% yield stress simulation are 6481 and 9258 respectively. As 

yield stress τy increases, the velocity profiles for the simulation are moving away from the 

logarithmic profile. Power law profiles for these two different simulations are also drawn in 

the same graph. The power law profiles are almost identical for these two different flows with 

quite different Reynolds number 6481 and 9258. It is suspected that this power law velocity 

profile is not very sensitive to change of rheological parameters. The power law profile gives 

quite accurate results for turbulent flow through a pipe. However, it may not be appropriate 

for non-Newtonian open channel flow. 
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Figure 87  Simulation velocity profile in conventional wall units for slurry in comparison to 

Simulation results with Barenblatt (1993)’s power law velocity profile 

 
Figure 88  Different simulation velocity profiles with different yield stresses in comparison to 

Barenblatt (1993)’s power law velocity profile 
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6.4.3.5 Best fit model 

From above sections, it is easily seen that the mean velocity distribution of turbulent channel 

flow is been studied in different conditions. In this section, a combined velocity distribution 

method is proposed to suit different velocity profiles in different conditions.  

 

Firstly, in the viscous layer, all profiles have a linear relationship between U
+
 and y

+
 in the 

near wall region. Therefore, the best fit velocity distribution equation is still the U
+
 = y

+
 

model. 

 

In Clapp’s paper, the author renamed the buffer layer, overlap layer and outer layer into just 

buffer layer and the turbulent core. From Figure 85, the simulation velocity profile shows 

good agreement in terms of shape. The velocity distribution profiles calculated by Clapp’s 

equations are much higher than the actual simulation profile with n = 0.81. With a different n 

value, Clapp’s velocity distribution profile does fit the simulation in different ways. In Figure 

89, velocity profile of n = 0.79 is plotted with Clapp’s velocity distribution equation. In this 

plot, velocity profile in the turbulent core region fits very well with Clapp’s velocity profile. 

The buffer layer crosses with each other around y
+
 = 10, which is an improvement from 

Figure 85. The difference in laminar sublayer can be an error in the simulation. This is further 

discussed in latter sections. Overall, Clapp’s velocity distribution fits better with a slight 

decrease in flow behaviour index. It can be concluded that Clapp’s velocity distribution 

equation can capture the variation in flow behaviour index quite well.  However, it ignores the 

existence of the flow consistency index and yield stress.  
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Figure 89  Simulation velocity profile in conventional wall units with Clapp’s velocity 

distribution equation 

 

With secondary flow effect, it was previously mentioned in the literature review that Yang et 

al (2004) proposed a velocity distribution profile for secondary current in rectangular open 

channel.  









−+








=+

h

y

ky

y

k
U

o

1lnln
1 α

 

 

(48) 

 

Where α is the factor to predict secondary current, and is given by  









−=

h

b

2
exp3.1α  

 

(49) 

 

When α = 0, then the above equation reverts to the classical log law. The second term on the 

RHS plays an important role in the outer region. However, it is negligible in the inner region 

as ln(1-y/h) ≈0. So if it is plotted for the outer layer instead of Clapp’s turbulent core, the new 

velocity profile will appear as presented in Figure 90.  
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Figure 90  Simulation velocity profile of n = 0.79 and Yang et al (2004) equation 

 

With a large velocity dip presented around the outer layer, this should fully capture the real 

effect of secondary current. However, Yang et al (2004)’s equation can be only used in the 

outer regions. Therefore it would be better if the combination of Clapp’s equation and Yang’s 

equation are used to plot the velocity profile. In Figure 91, Clapp’s turbulent core equation is 

replaced by Yang’s secondary flow equation. The velocity dip is fully presented in the graph. 

It is recommended that when plotting non-Newtonian channel flow velocity profile, both of 

Clapp and Yang’s equation should be applied.  
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Figure 91  Simulation velocity profile in conventional wall units with Clapp’s velocity 

distribution equation and Yang et al (2004) equation 

 

Furthermore, for a more accurate plot, the mean velocity gradient of (dU
+
/dy

+
) should be 

used. First of all, the logarithmic velocity distribution equation is presented as 
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(81) 

 

In Zanoun et al (2003), the authors used this method to calculate k and A. Their values of k = 

0.37 (≈ 1/e) and A = 3.7 (≈ 10/e) are independent of Reynolds number. Hence, the same 

method is used to see if the results are any better than the previous methods. 
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In the viscous layer, the original U
+
 = y

+
 is still applied; therefore it is not shown in Figure 92. 

The calculated velocity profile in Figure 92 is constructed by calculating k and A using the 

existing simulation results. It is only applied in the buffer and overlap layer. With k = 0.34 

and A = 3.4, the calculated velocity profile fits the original logarithmic profile better than the 

simulation profile. In general the calculated velocity profile shows general agreement with the 

shape and shows no secondary current feature. However, with this method, the calculated 

profile would have a very close fit to the results because the values of k and A are calculated 

by dU
+
/dy

+
. Therefore, this method only provides a good way to calculate values of k and A 

according to existing data rather than a velocity distribution model. 

 

Figure 92  Simulation velocity profile in conventional wall units with calculated velocity profile 
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6.4.4.1 Wallace et al (1972) data 

In this paper, the author used oil as the test fluid in open channel flow. The channel used in 

the experiment was of a rectangular shape. Hot film anemometer probe was used for extensive 

turbulence measurements. Figure 93 shows the experimental measurement, simulation results 

and also data from Wallace et al (1972). The Reynolds number for Wallace et al (1972) 

experiment was around 7150 based on the width of the channel and the centreline velocity. 

This is equivalent to a pipe Reynolds number 11000. It can be seen from the plot that Wallace 

et al (1972) data have a good fit from the viscous region to the overlap region of logarithmic 

velocity profile. It can be noted that some of the data are scattered around in the viscous 

region; this may be caused by measuring toward in the wall region of the channel. In the 

region close to the surface, there is no visible secondary current feature (i.e. the velocity dip). 

 

In Wallace et al (1972) paper, the authors did not report any secondary flow and velocity dip 

phenomenon. From the channel dimensions given in the paper, the aspect ratio is 0.25 which 

is less than the critical value 5. From Nezu (2005), it was predicted that with aspect ratio less 

than 5, some secondary currents should be noticed close to the surface as well as corner flows. 

However the experiment failed to capture any velocity dip features. It is noted that Wallace et 

al (1972) paper’s focus was mainly on the turbulent characteristics of the channel flow rather 

than details of any secondary current.  
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Figure 93  Experimentally measured velocity profile in conventional wall units for slurry 

and in comparison of Simulation results (Wallace et al, 1972)  

 

6.4.4.2 Eckelmann (1974) data 

Eckelmann (1974) used similar experimental setups to Wallace et al (1972)’s experiment. The 

flume was 22 cm wide and 1 m deep. It was filled with oil to 0.85 m deep. The Reynolds 

number based on channel width was 8200. The equivalent pipe Reynolds number was about 

15000 based on the pipe radius. Figure 94 shows the experimental measurement, simulation 

results here compare to data from Eckelmann (1974). Eckelmann (1974) data also have a very 

good fit in the viscous region of logarithmic velocity profile. Their data in the viscous region 

is almost perfect fit to the logarithmic profile. Interestingly, Ecklemann (1974) profile 

overlaps the simulation profile rather than the overlap region of the logarithmic profile. With 

very similar experiment, Ecklemann (1974) and Wallace et al (1972) do not agree with each 

other on the velocity profile. Wallace et al (1972) are closer to the logarithmic profile whereas 

Ecklemann (1974) data are closer to the present simulation results. The only major difference 

between the data is Reynolds number. Ecklemann (1974) reported to have a larger Reynolds 

number of 8200 whereas Wallace et al (1972) reported a slightly smaller Reynolds number of 

7150.  
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Similar to Wallace et al (1972) paper, the Ecklemann study also did not account for any 

velocity dip phenomena. Eckelmann (1974) reported an aspect ratio of 0.25, which is also less 

than the critical value (refer to section 2.4.2) reported by Nezu (2005). It is therefore 

concluded that the author have not observed the velocity dip phenomena in their paper.  

 

Figure 94  Experimentally measured velocity profile in conventional wall units for slurry 

in comparison to the Simulation results and Eckelmann (1974) data 
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authors did not mention anything about secondary current in their paper as the paper’s main 

purpose was the measurement of streamwise vorticity fluctuations.  

 

Figure 95  Experimentally measured velocity profile in conventional wall units for slurry 

in comparison to the Simulation results and Kastrinakis and Eckelmann (1983) data 

 

6.4.4.4 Antonia et al (1992) data 

In Antonia et al (1992) paper, the authors investigated channel flow by both experiments and 

simulation. The aspect ratio of the channel is 18 which is quite large when compare to other 

papers. The fluid used for simulation was Newtonian in nature. Velocity measurements were 

made at four different Reynolds number values ranging from 3300 – 21500. The authors used 

channel half width to calculate Reynolds number.  
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Figure 96  Simulation velocity profile in conventional wall units for slurry in comparison 

to the experimental data (Antonia et al, 1993) 

 

It is seen first from Figure 96 that in the viscous region, the measured velocities from Antonia 

et al (1993) agree reasonably well with current experimental and simulation results. However, 

there are not many data points around viscous region. This could be due to equipment 

limitation, yet the authors did not comment on this. The DNS profile from Antonia et al 

(1993) also is in reasonable agreement with the measured velocity profile. From Figure 96 

and Figure 97, it is noted that both profiles fell below the simulation results obtained here for 

non-Newtonian slurry’s velocity profile. From Figure 97, it is seen that the high Reynolds 

number velocity profile (Re = 7900) is located lower than Re = 3300 profile.  The Re = 7900 

profile is expected to be closer to the overlap region of logarithmic velocity profile.  

 

Figure 96 and Figure 97 show that, there are no obvious secondary current patterns observed 

from both experiments and simulations.  
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Figure 97  Simulation velocity profile in conventional wall units for slurry in comparison 

to the simulation data (Antonia et al, 1993) 
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whereas Rudman et al (2004) investigated pipe flow. Hence, there are no secondary current 

features predicted from the data provided by Rudman et al (2004).  

 

 

Figure 98  Simulation velocity profile in conventional wall units for slurry in comparison 

to Rudman et al (2004) data 

 

6.5 Further DNS investigation of current simulation results 

From the previous section, the simulation results showed general agreement with other data 
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6.5.1 Reynolds number used  

It was mentioned earlier that the Reynolds number is defined by mean wall viscosity. The 

main reasons for using mean wall viscosity instead of average viscosity are: 

• The near-wall scaling is no longer U
+
 = y

+
 

• The value of the Reynolds number for flows that are transitional and weakly turbulent 

falls below the Newtonian transitional Reynolds number of 2100 for some fluids 

• The turbulence statistics do not collapse as neatly  

(Rudman et al, 2004) 

 

The wall viscosity is calculated from the mean wall shear stress, τw. It is determined directly 

from the applied axial pressure gradient. Assuming a Herschel-Bulkley rheology, the wall 

viscosity is calculated as follows: 

n
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)( ττ
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(71) 

 

Therefore Reynolds number is calculated as follows: 
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(82) 

 

Usually the bulk velocity and flow depth are used to calculate the Reynolds number for 

simulations. Both Broglia et al (2003) and Joung and Choi (2010) used bulk velocity and flow 

depth in their Reynolds number calculation. The Reynolds number used in this study is 

proposed in Rudman et al (2004) and has also been compared with that of Haldenwang’s  

(2003) study. Friction factor used here is calculated by modified Fanning friction factor for 

open channels: 

2

sin2

V

gR
f h α

=  
 

(83) 

 

Where g is the constant of gravity, Rh is the hydraulic radius and V is the bulk velocity of the 

flow. The deviation of the friction factor from the 16/Re line, used for the laminar region, was 
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calculated and compared for different Reynolds numbers. Blasius equation for flume flow is 

used for Reynolds number from transition region to fully developed flow region with 

Reynolds number up to 10
6
. It is show as follows: 

25.0Re

079.0
=f  

 

(84) 

 

Three non-Newtonian fluids were used in Haldenwang (2003) study. Kaolin was classified as 

a yield pseudoplastic fluid; CMC as a pseudoplastic fluid and bentonite as a Bingham fluid. 

The following is an example of 4.5% bentonite in the 300 mm flume from Haldenwang 

(2003). It is seen in Figure 99 that Rudman’s Reynolds number has very similar values in 

comparison to Haldenwang’s Reynolds number in the transition and turbulent regions. 

However, in the laminar region, Rudman’s Reynolds number falls below the 16/Re line. This 

is more obvious in the laminar region in Figure 100. Likewise, the Reynolds number values 

calculated by Rudman’s method and Haldenwang’s method are similar in the turbulent 

region.  

  

Figure 99  Comparison of Haldenwang Reynolds number with Rudman Reynolds number for 

4.5% Bentonite in 300 mm flume  
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Figure 100  Comparison of Haldenwang Reynolds number with Rudman Reynolds number for 

1.0% CMC in 300 mm flume 

 

With 6% of Kaolin in 150 mm flume, calculated Rudman’s Reynolds number shows 
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numbers show some slight differences. Interestingly in Figure 101, the Rudmans’s Reynolds 

numbers extended to higher values (i.e.10
5
) in the turbulent region, whereas Haldenwang’s 

values reach to a maximum around 10
4
. The nature of this discrepancy may be due to the use 

of different definitions of Reynolds number. This aspect should be further explored. However, 

the current study is mainly based on turbulent region of the flow; therefore Rudman’s 

Reynolds number is used here for the analysis of the simulation.  
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Figure 101  Comparison of Haldenwang Reynolds number with Rudman Reynolds number for 

6.0% Kaolin in 150 mm flume 
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denoted by U, the radial velocity by V and the azimuthal velocity by W. 
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This is the summary of simulation parameters. 

 
Table 18 Parameters for simulation 

Simulation run n K (Pa.s
n
) τy (Pa) Reynolds 

number 

Wall 

viscosity 

Control Simulation - 

Simulation result based 

on Fitton (2007) 

experiment 

0.81 0.0506 2.249 8182 0.01998 

Simulation A  

Yield stress +20% 

0.81 0.0506 2.698 7295 0.02149 

Simulation B  

Yield stress +30% 

0.81 0.0506 2.923 7022 0.02232 

Simulation C  

Yield stress +50% 

0.81 0.0506 3.374 6481 0.02419 

Simulation D  
Yield stress -20% 

0.81 0.0506 1.799 8405 0.01865 

Simulation E  
Yield stress -30% 

0.81 0.0506 1.574 8688 0.01805 

Simulation F  
Yield stress -50% 

0.81 0.0506 1.124 9258 0.01693 

 

Increased Yield Stress 

Mean flow profile 

The mean axial velocity for these three simulations for τy = 2.698, 2.923, 3.374 are shown in 

Figure 102. They are plotted with conventional ‘law of the wall’ non-dimensionalisation and 

are compared to control yield stress profile. As yield stress τy increases, the profiles are 

moving away from the logarithmic profile obtained by theoretical analysis. All three 

simulations plus the control simulation show indications of a log-layer profile with a greater 

slope than the theoretical logarithmic profile. The results for τy = 3.374 fall above the 

theoretical profile.  
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Figure 102  Mean axial velocity profiles for the turbulent flow of three different Herschel-

Bulkley fluids. The profiles have been non-dimensionalised using the conventional non-

dimensionalisation with the mean wall viscosity taking the place of the Newtonian viscosity 

 

 

Turbulence statistics 

The turbulence intensities and turbulence production are plotted in Figure 103 to Figure 106 

in wall units and in Appendix F 1 to Appendix F 4 to in physical coordinates. The root-mean-

square of the turbulent velocity fluctuations were used as turbulence intensities. In fact for 

turbulent intensities, simulation C and the control simulation are very similar. With azimuthal 

velocity and radial velocity fluctuations, both are lower than Newtonian case. This is in 

agreement with results in Rudman et al (2004). In fact, the axial velocity fluctuations are 

slightly higher than the Newtonian case with increase of yield stress. The differences are 

insignificant, as all the axial turbulence intensities are close together.  

 

After non-dimensionalisation, low and high Reynolds number flows produce almost identical 

axial, radial and azimuthal velocity fluctuations. However, from Rudman and Blackburn 

(2006), it is discovered that the presence of a yield stress has the effect of reducing the cross-

stream intensities more. From Figure 105, it is clearly seen that the azimuthal velocity 

fluctuations actually increased slightly with the increase of yield stress. It could be a result of 
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not fixing the Reynolds number to a certain value. In theory, with increased yield stress, the 

flows should be less developed in the channel.  

 

The production of turbulence is given by 

r

U
VUPzr

∂

∂
= ''  

(85) 

 

and it is plotted in Figure 106. From Figure 106, the maximum production occurs at a value of 

y
+
 ≈ 6.5 for these simulations. In Rudman et al (2004), it was concluded that the maximum 

production in wall unit decreased slightly with a decreased n value. In their case, the 

maximum turbulent production occurs at y
+
 ≈ 10. From Figure 106, Simulation C has shifted 

the maximum to a slightly smaller y
+
 value. 

 

 

Figure 103  Axial turbulence intensities plotted in wall coordinates 
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Figure 104  Radial turbulence intensities plotted in wall coordinates 

 

 

 

Figure 105  Azimuthal turbulence intensities plotted in wall coordinates 
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Figure 106  Turbulence production plotted in wall coordinates 

 

Contours of axial velocity at y
+ 

= 8 are shown in Figure 107. These black structures (Figure 

107) represent low velocity streaks. As the yield stress increases, the turbulent structures in 

simulation C are longer than the control simulation. In simulation A and B (Appendix F 5), 

the difference between the velocity streaks is quite similar to the control simulation. These 

black structures (Figure 107) represent low velocity streaks. It is more obvious to see in 

simulation C that the streaks are longer and wider. Therefore it is further suggested that the 

flow is not yet fully developed for the Herschel-Bulkley fluid. The structure in the Newtonian 

case is small scale and more random; this indicates the flow is more developed. However, in 

simulation C the streaks are becoming wider and larger; it would be recommended to increase 

the simulation domain length. In certain cases, longer domain length simulations were not 

feasible because of computational usage limitation. 
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Control Simulation 

 

+50% yield stress (Simulation C) 

 

Newtonian 

Figure 107  Predicted axial velocity at y
+ 
≈ 8. From top to bottom, Control, Simulation C and 

Newtonian simulation. White represents high velocity and black represents low velocity. 
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Table 19 Velocity streak size comparison 

 

Simulation run Typical 

velocity 

streak 

length 

Typical 

velocity 

streak 

width 

Control- Simulation 

result based on 

experiment (Fitton, 

2007) 

2 units 0.5 units 

Simulation C 

+50% Yield stress 

2.2 units 0.6 units 

Newtonian Simulation 1.4 units 0.1~0.2 

units 
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Table 19 shows a comparison between different simulation velocity streaks size and length. 

Newtonian simulation obviously has the smallest low velocity streaks length and width. There 

is not a significant qualitative difference between control simulation and simulation C’s 

velocity streaks. In general, simulation C’s velocity streaks are long and wider than the 

control simulation. This may reinforce that with an increase of yield stress, the flow is not as 

developed as the control simulation. 

 

Contours of the axial velocity on a cross-section for one instant in time are presented in 

Figure 108. A low resolution of plotting of the velocity vectors is also plotted. According to 

the legend, the red colour represents velocity at a 2 m/s range, blue colour represents low 

velocity range. Simulation C shows very similar axial velocity contours when compared with 

the control simulation. However, with the low resolution in-plane velocities, there is not as 

much turbulence presented in simulation C plot. Note, there are two localised groups of 

eddies observed in the control simulation plot. The one on the left is very close to the surface 

and the other group is close to the bottom of the channel. In simulation C plot, there is no 

obvious localised eddies close to the channel surface. The only noticeable disturbance is the 

group close to the channel wall. With a smaller Reynolds number and very small disturbance 

along the channel wall, it is concluded that with +50% yield stress, the flow becomes less 

developed than the control simulation.  
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Axial velocity 

 

In-plane velocities (low resolution)  

Control Simulation  

 
Axial velocity 

Figure 108 continued 
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In-plane velocities (low resolution) 

 

+50% yield stress (Simulation C) 
Figure 108  Contours of instantaneous axial velocity and in-plane velocity vectors 

 

Decreased Yield Stress 

Mean flow profile for Herschel-Bulkley fluids 

The mean axial velocity for these three simulations for τy = 1.799, 1.574, 1.125 are shown in 

Figure 109. They are plotted with conventional ‘law of the wall’ non-dimensionalisation and 

are compared to control yield stress profile using the code. As yield stress τy decreases, the 

profiles for the Herschel-Bulkley fluids move closer to the theoretical logarithmic profile. 

From Figure 109, it is quite obvious that Simulation F (which represents -50% yield stress) is 

closer to the logarithmic profile than the other two simulations (Simulation D and Simulation 

E). 
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Figure 109  Mean axial velocity profiles for the turbulent flow of three different Herschel-

Bulkley fluids  

 

Turbulence statistics 

Turbulence intensities and turbulence production are plotted in Figure 110 to Figure 113 in 

wall units and Appendix F 6 to Appendix F 9 in physical coordinates. For axial velocity 

fluctuations, the decreased yield stress simulations and the control simulations are very 

similar. Moser et al (1999) have done direct numerical simulation for turbulent channel flow 

with Reτ = 590 based on friction velocity (where as Reτ is around 900 for this simulation). 

They have discovered that with an increase in Reynolds number, from 180 to 500, the peak of 

u' increased by 4.5%. Also, the u' profile appears to be the same as the high Reynolds number 

for y
+ 

> 80 in Moser et al (1999). In Figure 110, the u' profile for Simulation F is shifted 

slightly to the left. Despite the shift, the shape and magnitude of the profile is quite similar to 

the control simulation. With azimuthal velocity and radial velocity fluctuations, both are quite 

higher than control simulation. In radial velocity fluctuation, Simulation F is closely 

approaching Newtonian case, especially in the wall regions. Interestingly, with a decreased 

yield stress, the axial velocity fluctuations are lower than the control simulation but closer to 

Newtonian case.  
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From both turbulent production plots, the maximum production occurs at a value of y
+
 ≈ 6 to 

6.5. From Figure 113, it is noted that the simulation with smaller yield stress has higher 

turbulent production values than the control simulation. Simulation F has maximum turbulent 

production at similar y
+
 value. When the turbulent production values are compared together in 

Figure 114, simulation C has lower turbulent production value in comparison with simulation 

F. This also shows in Table 18, where simulation C has a relatively low Reynolds number 

than simulation F.  

 

 

Figure 110  Axial turbulence intensities plotted in wall coordinates 
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Figure 111  Radial turbulence intensities plotted in wall coordinates 

 

 

Figure 112  Azimuthal turbulence intensities plotted in wall coordinates 
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Figure 113 Turbulence production plotted in wall coordinates 

 

 

Figure 114  Turbulence production of control simulation and simulation C and F plotted in wall 

coordinates 
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Contours of axial velocity at y
+ 

= 8 are shown in Figure 115. The distribution of wall streaks 

becomes more homogeneous as the yield stress decreases. The velocity streaks in simulation 

F are shorter and more random than the control simulation. Simulation F shows a higher 

degree of unsteadiness in the flow compared with the control simulation. Hence it is 

suggested that as the yield stress decreases, the flow exhibits shorter and random flow 

structures. Simulation F’s contour is not completely Newtonian like, yet, the flow tends to 

become more developed compared to the control simulation. With the current domain length, 

a full length turbulent structure can be observed in Figure 115. This shows that the domain 

length used here is adequate and reasonable.  
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Control Simulation 

 

-50% yield stress (Simulation F) 

 

Newtonian 

Figure 115  Predicted axial velocity at y+ 
≈ 8. From top to bottom, Control simulation, 

Simulation F and Newtonian simulation. White represents high velocity and black represents 

low velocity. 
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Table 20 Velocity streak size comparison 

 

Simulation run Typical 

velocity 

streak 

length 

Typical 

velocity 

streak 

width 

Control- Simulation 

result based on 

experiment 

2 units 0.5 units 

Simulation F 

-50% Yield stress 

2.2 units 0.2~0.3 

units 

Newtonian Simulation 1.4 units 0.1~0.2 

units 
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Table 20 shows a comparison between different simulations’ velocity streak size and length. 

Similar to Table 19 Newtonian simulation has the smallest low velocity streaks length and 

width. From observation, simulation F’s velocity streaks’ intensity and occurrence are very 

alike in the Newtonian case. Further, simulation F’s velocity streak’s length is longer than 

Newtonian simulation as well as control simulation. This information combines with Figure 

115 reinforce that with a decrease of yield stress, the flow is more developed than the control 

simulation.   

  



 

  Page 173 

 

 

 
Axial velocity 
 

 

In-plane velocities (low resolution) 
 

Control Simulation 

 
Axial velocity 

Figure 116 continued 
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In-plane velocities (low resolution) 

 

-50% yield stress (Simulation E) 

Figure 116  Contours of instantaneous axial velocity and in-plane velocity vectors 

 

Cross sections of velocity contour and velocity vectors are presented in Figure 116. With -

50% yield stress, Simulation E shows slightly different axial velocity contours when 

compared with the control simulation. From axial velocity contour, the high velocity regions’ 

colour is less intense in Simulation E plot. This means Simulation E has a smaller average 

velocity than control simulation.  

 

In the low resolution in-plane velocity plot, there are many of small clusters of eddies 

presented in simulation E. Majority of them are locating next to the channel wall. From the 

high resolution plot, these eddies are much more intense than these eddies in the control 

simulation. There is also one large localised eddy structure sitting very close to the channel 

surface. Simulation E has a larger Reynolds number and the flow should be more developed 

than the control simulation. Combined with Figure 115 it is then concluded for -50% yield 

stress, the flow is more turbulent with more eddies and high turbulent production.  

 

The bulk velocity for changing yield stress simulations vary between 1.50 m/s and 1.60 m/s. It 

is still a lot higher than the bulk velocity recorded by Fitton (2007) of 1.06 m/s. Therefore 

change in yield stress does not explain the velocity discrepancy in the bulk velocity. From 

observation, it is seen that increased yield stress decreases Reynolds number hence the flow 

will become less developed. Decreased yield stress increases Reynolds number therefore the 

flow will become more turbulent.   
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6.5.3 Flow behaviour index (n) effect 

The results from four simulations with different flow behaviour indices are presented here. 

The values of n chosen are presented in Table 21. Any n values that is less than 0.75 or larger 

than 0.90 was not chosen for the simulation.  From previous experience, with n decreasing, 

the simulation would get very unstable. These four simulations are carried out at generalised 

Reynolds number of 4200-12900.  

 

The mean axial velocity profiles for n = 0.75 and 0.79 are shown in Figure 117. It is also 

plotted with conventional ‘law of the wall’ non-dimensionalisation and is compared to base-

case flow behaviour index profile. In the overlap region, the profile of n = 0.79 is above the 

control profile as well as theoretical logarithmic profile. This is consistent with results 

presented in Pinho and Whitelaw (1989) for different concentration of CMC solutions. 

However, in Pinho and Whitelaw (1989), the authors did not comment on the near wall region 

of the velocity profile. Further, the most puzzling feature of Figure 117 is the n = 0.75 

velocity profile. This velocity profile is sitting between n = 0.79 profile and control simulation 

profile. This is disagreed with Rudman and Blackburn (2003) paper where a number of power 

law fluid was tested. The authors claimed that with a decreased n, the smaller n velocity 

profile should fall above larger n velocity profile. It is therefore expected to have n = 0.75 

profile fall above n = 0.79 profile as well as control profile. It is still unknown why the 

velocity profiles behave in an unexpected way.  It is also extremely surprising to see the 

velocity profile did not follow the linear profile U
+
 = y

+
 in the viscous region. This could be 

an error caused by a very high Reynolds number because the resolution of simulation is 

insufficient to obtain good results. In Rudman and Blackburn (2003), the Reynolds number 

was kept at a constant value with changing n.  
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Table 21 Parameters for simulation 

Simulation run n K (Pa.s
n
) τy (Pa) Reynolds 

number 

Wall 

viscosity 

Control Simulation - 

Simulation result based 

on Fitton (2007) 

experiment 

0.81 0.0506 2.249 8182 0.01998 

n = 0.75 0.75 0.0506 2.249 12910 0.0124 

n = 0.79 0.79 0.0506 2.249 9185 0.0171 

n = 0.85 0.85 0.0506 2.249 5853 0.0267 

n = 0.90 0.90 0.0506 2.249 4210 0.0370 

 

  

Figure 117  Mean axial velocity profile for the turbulent flow of n = 0.75 and 0.79 
 

The mean axial velocity profiles for n = 0.85 and 0.90 are shown in Figure 118. As the flow 

behaviour index n increases, the profile for the Herschel-Bulkley fluids shifted upward from 

the logarithmic profile. The results for n = 0.90 fall above control simulation whereas n = 0.85 

fall in between the other two velocity profiles. Rudman et al (2001) showed similar result 

with weakly turbulent flow of a power law pipe flow. It was concluded by Rudman et al 

(2001) that the mean flow profile approaches the theoretical profile as Reynolds number 

increases. In Rudman et al (2001) paper, the Re = 3,964 velocity profile also fell above their 
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control simulation Re = 5500.  In this case, the Reynolds number for n = 0.90 simulation is 

4,636, which is considerably smaller than the control simulation i.e. 8182. However, it is very 

difficult to make any comparison with different n values with changing Reynolds number. For 

velocity profiles, if n decreases, then velocity profile would shift upwards. If Reynolds 

number decreases, the velocity profile also would shift upwards. Therefore, to have a better 

understanding of changing of n values, Reynolds number must be kept at a relatively constant 

value.  

 

Figure 118  Mean axial velocity profile for the turbulent flow of n = 0.85 and n = 0.90 

 

n = 0.85, 0.79, and control simulation’s turbulent intensities are plotted in Figure 119 to 

Figure 121 in wall units and Appendix G 1 to Appendix G 3 in physical coordinates. In 

Appendix G 1 the axial turbulent intensity of n = 0.79 is higher than the control simulation 

from h/R = 0 to 1. For radial and azimuthal turbulent intensity, it is only higher than control 

simulation in the region where h/R = 0 to 0.2. In Figure 119 to Figure 121, when y
+
 < 10, 

turbulent intensities for n = 0.79 are at least 50-100% higher than the control simulation. 

When y
+
 > 10, turbulent intensities decrease dramatically. In Figure 120 and Figure 121, the 

radial and azimuthal turbulent intensities are almost identical to the control simulation. 
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Therefore, it is concluded that when n is smaller, the wall region is mostly affected by the 

change of n, especially in the region 0 < y
+
 < 10.  

 

On the other hand, when n = 0.85, turbulent intensities are almost identical to the control 

simulation. For the radial turbulent intensity, it is lower than control simulation’s radial 

intensity at h/R < 0.2 - 0.25 then increased to just below control simulation. However, the 

magnitude of the downward shift is considerably smaller than the upward shift resulted by n = 

0.79. With a Reynolds number of 5853, n = 0.85 is expected to have smaller turbulent 

intensities than the control simulation. In Figure 119 to Figure 121, turbulent intensities for n 

= 0.85 are always higher than the control simulation at y
+
 < 10. After it reaches a peak, the 

turbulent intensities then decrease to values lower than the control simulation turbulent 

intensities. This is observed in all three different turbulent intensity plots.  

 

 

Figure 119  Axial turbulence intensities plotted in wall coordinates 
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Figure 120  Radial turbulence intensities plotted in wall coordinates 

 

 

Figure 121  Azimuthal turbulence intensities plotted in wall coordinates 
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Contours of axial velocity of control simulation and all four different n simulations plus 

Newtonian simulation at y
+ 

= 8 are shown in Figure 122. For n = 0.90 contour, it is seen that a 

large region of turbulent activity exists from the left of the domain to the middle of the 

domain. The region near the right of the flow is devoid of unsteady structure. As the n 

increases, the low speed streak (the grey/black shaded area) in simulation n = 0.90 are more 

visible than the control simulation. It is further suggested that the flow is not fully developed 

for the Herschel-Bulkley fluid. For contours of n = 0.85 and 0.79, the reduction of low 

velocity streaks is clear and visible. In n = 0.75 velocity contour, the black/grey coloured low 

velocity streaks are almost invisible. The low velocity streaks in n = 0.75 velocity contour is 

very short and have a small width. There are also weak white spots presenting in n = 0.75 

velocity contours which represent the high velocity streaks. A higher volume of high velocity 

streaks denote a more turbulent flow characteristic.  
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Control Simulation 

 

n=0.90 

 

n=0.75 

Figure 122  Predicted axial velocity at y+ 
≈ 8. From top to bottom, Control, n = 0.90, and n =0.75. 

White streaks represent high velocity and black streaks represent low velocity. 
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In-plan velocities 

 

n = 0.90, Re = 4210 

 
Axial velocity  

 

 
In-plan velocities 

 

n = 0.75, Re = 12910 

Figure 123  Contours of instantaneous axial velocity and in-plane velocity vectors 

 
 

Cross sections of velocity contour and velocity vectors are presented in Figure 123. For n = 

0.90, the axial velocity’s colour is less intense with a bulk velocity of 1.55 m/s and the in-
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plane velocity vectors plot has only small size eddies along the bottom of the channel. In 

Appendix G 5, the plots corresponding to n = 0.85 do not share any recognisable difference 

when compared with control simulation. Similarly, plots for n = 0.79 shows similar axial 

velocity contours when compared with the control simulation. The most dissimilar plot out of 

the above five sets is where n = 0.75 with a Reynolds number of 12910.  In n = 0.75 in-plane 

velocity vector plot, there is a number of strong turbulent eddies at the bottom of the channel. 

This observation is also supported by the turbulent intensity profile from Figure 119 to Figure 

121 that the turbulent intensity peak at y
+
 ≈ 10 - 50 which is very close to the channel wall. 

Further, this simply means that the instantaneous velocity for n = 0.75 is the highest among 

these five sets of plots. Obviously all of this is expected as n = 0.75 simulation has a relatively 

high Reynolds number of 12910. 

 

The simulated bulk velocity for n = 0.79 and n = 0.85 is 1.61 m/s and 1.54 m/s respectively. 

These velocities are higher than the experimental value of 1.48 m/s. However, with all the 

mean velocity profiles showing shifting velocity profile upward in this investigation, it is very 

difficult to see the real effect of flow behaviour index in relation to bulk velocity.  Therefore 

change in flow behaviour index is not one of the contributing factors of the different bulk 

velocity between simulation and experiment. 

 

Table 22 shows a comparison between changes in n value with change in Reynolds number. 

From this table, it is easily seen that a small decrease of n can result a large increase in 

Reynolds number. That is why the simulations were getting very unsteady during the n = 0.75 

and 0.79 investigation.  

 

Table 22 Changes in n value in relation to change in Reynolds number 

n Change in n (%) Change in Reynolds 

number (%) 

0.75 -7.5% +57.8% 

0.79 -2.5% +12.3% 

0.85 +5.0% -28.5% 

0.90 +11.1% -48.5% 
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6.5.4 Fluid consistency index (K) effect 

The results from four simulations with different flow consistency indices are presented here. 

The values of K chosen are presented in Table 23. These four simulations are carried out at 

generalised Reynolds number of 4200-12900.  

 

Table 23 Parameters for simulation 

Simulation run n K (Pa.s
n
) τy (Pa) Reynolds 

number 

Wall 

viscosity 

Control Simulation - 

Simulation result based 

on Fitton (2007) 

experiment  

0.81 0.0506 2.249 8182 0.01998 

K +20% 0.81 0.0608 2.249 6781 0.025 

K +50% 0.81 0.0760 2.249 5635 0.033 

K -20% 0.81 0.0405 2.249 11450 0.015 

K -50% 0.81 0.0253 2.249 21991 0.0085 

 

The mean axial velocity profiles for K = 0.0608 and 0.0405 is shown in Figure 124. It is also 

plotted with conventional ‘law of the wall’ non-dimensionalisation and is compared to 

controlled fluid consistency index profile. In viscous region, both of K = 0.0608 and 0.0405 

velocity profile fit very well with the simulation velocity profile. This actually reinforces that 

there are some errors associated with flow behaviour index investigation where there is a shift 

in velocity profile in the viscous region. In the literature reviewed, all of the velocity profile 

shifts happen in the overlap region rather than viscous region.  

 

In the overlap region, the general trend of K = 0.0608 and 0.0405 velocity profile almost 

matches with the control simulation. The profile for K = 0.0608 is above the control profile as 

well as theoretical logarithmic profile whereas the profile for K = 0.0405 falls below the 

control simulation profile. From Rudman et al (2001), it was discovered that mean flow 

profile approaches the logarithmic profile as Reynolds number increase. From Table 23, for K 

= 0.0608 it has a higher Reynolds number of 11450 than for K = 0.0405, where Reynolds 

number is 6781. Therefore, the plot is consistent with Rudman et al (2001)’s statement. 
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Figure 124  Mean axial velocity profiles for the turbulent flow of two fluids with different K 
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Turbulent production plotted as a function of wall unit can be seen in Figure 125. From all 

simulations, the maximum production occurs at a value of y
+
 ≈ 10. From Figure 125, the 

simulation with smaller K has higher turbulent production values than the control simulation. 

In this case, when K = 0.0405 (-20%), the Reynolds number is 11450. Therefore at this point, 

it can be concluded that with K = 0.0405 (-20%), the turbulent production is the highest 

compared with control simulation.  

 

0

5

10

15

20

25

30

0.1 1 10 100 1000

U+ = y+

U+ = 5.5+2.5 ln y+

Control k = 0.05068

k=0.0608

k=0.0405

y+

U+



 

  Page 187 

 

 

Figure 125  Turbulence production plotted as a function of wall unit 

 

 

Contours of axial velocity of control simulation and all four different K simulations plus 

Newtonian simulation at y
+ 

= 8 are shown in Figure 126. 

 

For K + 20% and K +50% contour, it is seen that the low velocity streaks are very thick, wide 

and very long. Especially on the side of the channel, these low velocity streak almost runs 

through the majority of the domain length. It is further suggested that the flow is not fully 

developed for increased K values. As K decreases, the low velocity streaks gradually 

disappear and become invisible. The low velocity streaks in K -20% velocity contour is short 

and have a small width. With K - 20%, the Reynolds number is already reaching 11450. This 

means the flow is very turbulent. In the next plot, there are some bright white spots present in 

K - 50% velocity contour which represent the high velocity streaks. This is not seen in the 

previous four velocity contours. This basically shows a more turbulent flow characteristic for 

K -20% and K -50% velocity contour. 

 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 10 20 30 40 50 60 70 80 90 100

Control simulation

K +20%

K -20%

Pzr

y+



 

  Page 188 

 

 

Control Simulation 

 

K+50% 

 

K-50% 

Figure 126  Predicted axial velocity at y+ 
≈ 8. From top to bottom, Control simulation,  K +50%,  

and K -50%. White represents high velocity and black represents low velocity. 
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Control Simulation, Re = 8182 
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Figure 127 continued 
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In-plane velocities 

 

 

K +50%, Re = 5635 

 

 
Axial velocity 

 
In-plane velocities 

 

K -50%, Re = 21991 
Figure 127  Contours of instantaneous axial velocity and in-plane velocity vectors 

 

Cross sections of velocity contours and velocity vectors are presented in Figure 127. The in -

plane velocity vector plot for K +20% shows some small disturbance along the channel wall. 

Other than that, there is little to distinguish the plot from when compared with control 

simulation. Overall, the contour scales are identical for each K and the magnitude of the 
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cross-sectional velocity scales are equal. In K -20% in-plane plot, there is a large cluster of 

eddies in the left side of the channel. There is a significantly increased degree of structure in 

the core region of the K -50% plot where Reynolds number = 21991. This means that the 

instantaneous velocity for K -50% is highest among these five sets of plots with a bulk 

velocity of 1.67 m/s. However, it is also noted that with the Reynolds number at 21991, the 

resolution is insufficient to obtain good results from the simulation.  

 

Fixed Reynolds number 

Parallel investigation was conducted with similar Reynolds number. A number of K values 

were chosen for these simulations. K values of +50% and -50% of K values were not chosen 

because from previous experience, these simulations might become very unstable. However, n 

values also needed to be changed in order to have a relatively constant Reynolds number.  

 

Table 24 Parameters for simulation 

Simulation run n K (Pa.s
n
) τy (Pa) Reynolds 

number 

Wall 

viscosity 

Control Simulation - 

Simulation result based 

on Fitton (2007) 

experiment  

0.81 0.0506 2.249 8182 0.01998 

K +20% 0.781 0.0608 2.249 8278 0.0200 

K +30% 0.763 0.0659 2.249 8630 0.0192 

K -20% 0.846 0.0405 2.249 8295 0.0200 

K -30% 0.861 0.0354 2.249 8682 0.0191 

 

The mean axial velocity profiles for K = 0.0608 and 0.0658 are shown in Figure 128. In the 

viscous region, K = 0.0608 velocity profile fits very well with the control simulation velocity 

profile. In the overlap region, K = 0.0608 velocity profile is slightly higher than the control 

simulation velocity profile. On the other hand, K = 0.0658 velocity profile falls above control 

simulation velocity profile as well as K = 0.0608 velocity profile. The general shape of the 

velocity profile fits very well with each other. Even with the K = 0.0658 velocity profile 

shifted upward, the shape of this profile is exactly the same as the other two profiles. From 

this plot, it is expected that with increase of K, the velocity profile will shift upward in both 

viscous region and overlap region. However, more values need to be tested in order to make 

the conclusion valid.  
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In Figure 129, the mean axial velocity profiles for K = 0.0405 and 0.0354 are plotted. In the 

overlap region, K = 0.0405 velocity profile fits quite well with the control simulation velocity 

profile. In the viscous region, K = 0.0405 velocity profile is slightly higher than the control 

simulation velocity profile. Surprisingly, K = 0.0354 velocity profile falls sufficiently above 

control simulation velocity profile as well as that of K = 0.0354 velocity profile. One of the 

distinct features of the K = 0.0354 velocity profile is that the shape of the profile is quite 

different to the other velocity profiles. There is no curvature in the viscous region for K = 

0.0354 velocity profile. This could be a problem with simulation itself caused by simulation 

instability. This is also much unexpected as the Reynolds numbers are kept at a similar value. 

Other than that, the general shape of the rest of the velocity profiles fit very well. As stated 

previously, more values need to be tested in future work. 

 

 

Figure 128  Mean axial velocity profiles for the turbulent flow of two fluids with different K 

values 
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Figure 129  Mean axial velocity profiles for the turbulent flow of two fluids with different K 

values 

 

 

Turbulent production plotted as a function of wall unit can be seen in Figure 130. From all 

simulations, the maximum production occurs at a value of wall unit ≈ 5. From Figure 130, the 

simulation with smaller K value has higher turbulent production values than the control 

simulation. In this case, Reynolds number for both simulations is very similar.  Hence, the 

difference in turbulent production is caused by change in K values only. Therefore at this 

point, it can be concluded that with decreased K value, the turbulent production will increase 

in comparison with control simulation. With increased K value, the turbulent production will 

decrease in comparison with control simulation. 
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Figure 130  Turbulent production plotted as a function of wall unit 
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Control Simulation 

 

K+30% 

 

K-30% 

Figure 131  Predicted axial velocity at y
+ 
≈ 8. From top to bottom, Control simulation, K +30%, 

and K -30%. White represents high velocity and black represents low velocity. 

 

Contours of axial velocity of control simulation K +30% and K -30% simulations plus 

Newtonian simulation at y
+ 

= 8 are shown in Figure 131. Contours of axial velocity of control 

simulation K +20% and K -20% simulations at y
+ 

= 8 are shown in Appendix H 3. 

 

In Appendix H 3 and Figure 131, for K + 20% and K +30% contour, it is seen that a large 

region of low velocity streaks exists towards both end of the domain. The streaks are very 
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thick and very wide. It is very interesting to see that with a similar Reynolds number (around 

8200-8600), the flow structures are still somewhat different. From K + 20% and K +30% 

contours, it is further suggested that the flow is not fully developed for increased K values.  

 

Similar to Figure 126, as K decreases, the low velocity streaks gradually disappear and high 

velocity streaks appear. From Appendix H 3 with Reynolds number at around 8200, the low 

velocity streaks in K -20% velocity contour is quite short and random. This means regardless 

of Reynolds number effect, the flow is still very turbulent. In Figure 131, the bright white 

spots in K -30% velocity contour represent the high velocity streaks. This is not seen in the 

previous four velocity contours. This plot simply shows a more turbulent flow characteristic 

for K -20% and K -30% velocity contour. Moreover, the K -50% in Figure 126 and K -30% in 

Figure 131 show very similar velocity contours. Both of them have a number of high velocity 

streaks yet the Reynolds number for those two simulations is extremely different. This shows 

that without Reynolds number effect, a decreased K value will give more developed and more 

turbulent flows.  
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Figure 132 continued 
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In-plane velocities 

K +30% 

 

 

 
Axial velocity 

 
In-plane velocities 

 

K -30% 

Figure 132  Contours of instantaneous axial velocity and in-plane velocity vectors 

 

 

Cross sections of velocity contours and velocity vectors are presented in Figure 132. In-plane 

velocity vector plot for K +20% shows some small cluster of eddies along the channel wall. 

The axial velocity contour looks the same as the control simulation on both intensity and 
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shape. In K +30% plot, the in-plane velocity vector shows the smallest disturbance out of all 

five plots. This means that with increased K value, and increased viscosity in the core region, 

the turbulence is not as fully developed. Overall, the contour scales are identical for each K 

and the magnitude of the cross-sectional velocity scales are equal. In K -20% in-plane plot, 

there is a large cluster of eddies in the left side of the channel, which means the flow is 

becoming more turbulent. There is a significantly increased degree of structure in the core 

region of the K -30%. In the axial velocity plot, the velocity is around 2 m/s whereas in other 

simulations velocities are in a range of 1.6-1.8 m/s. This means that the instantaneous velocity 

for K -30% is the highest among these five sets of plots. This further shows the full effect of K 

without the effect of Reynolds number.  

 

Table 25 shows a small comparison between changes in K values with change in Reynolds 

number. From this table, it is easily seen that a small decrease of K can results a large increase 

in Reynolds number. And an increase of K value can result in a large decrease in Reynolds 

number.  

 

Table 25 Changes in K values in relation to change in Reynolds number 

K Change in K 

(%) 

Change in Reynolds 

number (%) 

0.0608 +20% -17.1% 

0.0659 +50% -31.1% 

0.0405 -20% +40.0% 

0.0354 -50% +168.7% 

 

6.5.5 Depth effect 

In the experiment, the flow rate is usually set and depth is estimated. In the simulation, it is 

the opposite that the geometry is set (i.e. fixed depth) and Reynolds number (i.e. flow rate) is 

estimated. Different depths cause different Reynolds numbers therefore different flow rate can 

be recorded with unchanged forcing (i.e. slope). However, because of the nature of simulation 

and assumed grid, the depth is fixed under different conditions.  
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The question is quite obvious: If the depth is changing and rheology stays the same, how does 

the Reynolds number change and how does the bulk velocity change? Hence, depth of 0.06 m 

and 0.08 m were chosen to be tested in this investigation.  

 

Table 26 Parameters for simulation 

 

Simulation run Bulk 

velocity 

(m/s) 

Depth 

(m) 

Hydraulic 

radius 

(m) 

Cross- 

sectional 

Area 

(m
2
) 

Reynolds 

number 

Control Simulation - 

Simulation result based 

on Fitton (2007) 

experiment 

1.48  0.07  0.0429 0.0151 8182 

Depth = 0.08 m 

Increased depth 

1.46  0.08  0.0484 0.0182 10024 

Depth = 0.06 m 
Decreased depth 

1.52  0.06  0.0372 0.0120 6663 

 

The mean axial velocity profiles for depth = 0.06 m and 0.08 m is shown in Figure 133. In the 

viscous region, the velocity profile for depth = 0.06 m is identical with control simulation. 

Whereas for depth = 0.08 m the velocity profile is sitting above the control simulation profile. 

In the overlap region, for depth = 0.06 m the velocity profile is moving above the base 

simulation profile whereas for depth = 0.08 m the velocity profile is falling below. However, 

there is no clear explanation on this behaviour as the general trend of the velocity profile is 

almost identical.  
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Figure 133  Mean axial velocity profiles for the turbulent flow of two fluids with different depths 

 

It is also interesting to see the real effect of Reynolds number to the simulation. In this 

investigation, all the rheological parameters and slope are kept consistent; the only variable is 

the flow depth. So if the slope is not changing, change in depth will change the flow rate 

hence the Reynolds number of the flow.  

 

Contours of axial velocity at y
+ 

= 8 are shown in Figure 134. As the Reynolds number 

increases, the low velocity streaks in the simulation of depth equals to 0.08 m are less in 

quantity than the control simulation. This is expected as the flow become more turbulent thus 

the instantaneous velocity increases. As the Reynolds number decreases, the low velocity 

streaks in the simulation of depth equals to 0.06 m are slightly apparent than the control 

simulation especially around the side of the channel. However, with Reynolds number of 

6663 for depth equates 0.06 m, the flow is still quite turbulent.  

 

According to Table 26, with an increased depth (i.e. Increasing from 0.07 m to 0.08 m), the 

bulk velocity changed from 1.48 m/s to 1.46 m/s. In this case, when the depth of the flow 

increases; the area of the flow increases by 20.5% and the estimated flow rate increases by 

16.6%. With fixed flow rate, an increase in depth would lead to a decrease in bulk velocity. In 
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the current simulation, with a decreased bulk velocity, the estimated flow rate is still higher 

than the control simulation. There is no likely explanation for such behaviour. Comparing the 

bulk velocity from simulation with that of experimental value (Fitton, 2007); it is found that 

the simulation value is still a lot higher than 1.06 m/s. The bulk velocity difference between 

simulation and experiment changed from 39% to 37% by change the depth. It is very unlikely 

that the measurement error is this large during the experiment. Therefore depth measurement 

error is not the major contributing factor of the different bulk velocity between simulation and 

experiment. 
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Control Simulation, depth = 0.07 m 

 

Depth = 0.08 m 

 

Depth = 0.06 m 

Figure 134  Predicted axial velocity at y
+ 
≈ 8. From top to bottom, Control simulation, depth = 

0.08 m and depth = 0.06 m. White represents high velocity and black represents low velocity 
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6.5.6 Side measurements 

From previous sections, all the simulation velocity profiles were obtained from channel’s 

centre line. So what is the magnitude of velocity in different x (side) locations?  

 

Figure 135  Mean axial velocity profiles for the turbulent flow of with different side 

measurements 

 

Three different x positions x = 0.04 m, 0.065 m and 0.088 m were chosen in this 

investigation. The mean axial velocity profiles for all three different x positions and the 

centreline velocity profile is shown in Figure 135. All three x positions measurements fall 

below of the centreline velocity profile. This should be expected as the centreline velocity is 

the highest in the channel flow. Interestingly, in Figure 137 and Figure 139, there is a small 

velocity dip appearing at y
+
 close to 230-300. It was suspected previously that in the 

centreline velocity profile, there was a very small velocity dip. With x moving out from the 

centreline, the velocity profile’s velocity dip becomes more apparent and visible. 

Nevertheless, this could also be a possible feature of secondary current. More discussion of 

the secondary current phenomena will be presented in latter sections. In conclusion, with 

different x position measurements, the velocity is decreased with x shifting away from the 

centreline. Velocity dipping also appeared with x moving out towards to the channel 

boundary.  
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Figure 136  Mean axial velocity profiles for the turbulent flow at x = 0.04 m 

 

Figure 137  Mean axial velocity profiles for the turbulent flow at x = 0.065 m 
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Figure 138  Mean axial velocity profiles for the turbulent flow at x = 0.065 m. 10 < y

+
 <100 

 

 

Figure 139  Mean axial velocity profiles for the turbulent flow at x = 0.088 m 
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6.5.7 Finer mesh effect 

Previously, the computational domain consisted of 51 fifteenth order elements in the channel 

cross section and 384 Fourier modes in the axial direction, with domain lengths of 0.5πD. In 

the finer mesh, the computational domain changed to 177 twelfth order elements in the 

channel cross section and 256 Fourier modes in the axial direct, with domain lengths 

unchanged. The Fourier modes were already decreased, however; this simulation took at least 

double the time consumed for the previous mesh. Figure 140 and Figure 141 show the 

coordinates of the old mesh and finer mesh respectively. It is easy to see from Figure 141 that 

the mesh has a lot more coordinate points than Figure 140. 

 

Figure 140  Coordinates of old simulation mesh  
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Figure 141  Coordinates of finer simulation mesh 

 

The mean axial velocity profiles for two different meshes are shown in Figure 142. From the 

plot, it is seen that in the viscous region, the velocity profile for the finer mesh is below the 

older mesh (control simulation) velocity profile. It is very likely that the finer mesh can have 

a better resolution in the wall region because of redefined mesh. However, in the overlap 

region, both meshes produce identical velocity profile. There is also a small velocity dip at y
+
 

equal to around 450.  
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Figure 142  Mean axial velocity profiles for the turbulent flow of two different meshes 

 

The finer mesh simulation and control simulation’s turbulent intensities are plotted in Figure 

143 to Figure 145. All the plots show very similar trend with the finer mesh turbulence 

intensities fall below the control simulation. In Figure 143 and Figure 144, the turbulence 

intensities are not fully converged. In the radial turbulence intensities plot, finer mesh curve 

shows a smoother look than the control simulation curve. The small differences in turbulent 

intensities showing that the coarse mesh is not fully resolved, however the differences are not 

significant.  
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Figure 143  Axial turbulence intensities plotted in wall coordinates 

 

 

Figure 144  Radial turbulence intensities plotted in wall coordinates 
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Figure 145 Azimuthal turbulence intensities plotted in wall coordinates 

 

This is suggesting that the coarse mesh should give acceptable results. With no significant 

difference in velocity profiles, there is no reason to spend very high computational usage for 

the same simulation with the same result. Therefore the coarser mesh is still the preferred 

choice for this study. 

 

6.6 Secondary flow effect 

 

In the previous section 6.4.4, none of mentioned experimental and simulation results in open 

channel showed any secondary current features or velocity dip phenomenon. Hence, it is 

important to see if there is any possibility to achieve any sort of secondary current patterns 

from the simulation.  

 

In the literature, secondary current is normally defined as the temporal mean of currents 

which occur in the plane normal to the local axis of the primary flow (Gulliver and Halverson, 

1987). Secondary current can influence the mean turbulence quantities; this includes 

properties of the sweep and ejection cycle. Moreover, the secondary current plays an essential 
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addresses the type of secondary current which occurs in turbulent noncircular open channel. 

They are called secondary flows of Prandtl’s second kind (eds. Oertel, 2004).       

 

It was mentioned in the literature review that Yang et al (2004) proposed a velocity 

distribution profile for secondary current in rectangular open channel.  
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(48) 

 

Where α is the factor to predict secondary current, and is given by  
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(49) 

 

In Heays et al (2010), the authors used a flume that was 0.45 m wide, 0.5 m deep and 19 m 

long. The test section comprised of a fixed bed with a vertically adjustable recess filled with 

graded gravels. Obviously in the experiment, the authors used water as the testing medium. 

The authors provided the raw data for investigation via private communication. The velocity 

against depth plot is presented in Figure 146. The b/h ratio is at around 2.25. According to 

Nezu (2005) the secondary flow phenomenon occurs if b/h is less than a critical value of 5. 

Hence, a possible secondary current is expected to be visible in the experiment. However, 

from Figure 146 it is seen that there is no visible secondary current feature presented in plot. 

It is extremely surprising that with a low b/h ratio and a Newtonian fluid, there is still no 

secondary current present.  
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Figure 146  Field experimental velocity (Heays, 2010) against depth plot at centreline of the 

channel 

 

Equation (48) and (49) are used to generate two new plots in Figure 147. It can be seen from 

Figure 147 the new plots have curved away from the measured profile at around y
+
 = 100. 

This shows that if secondary current is present, there should be a velocity dip after the 

maximum velocity. There is also a possibility that the acoustic doppler velocimeter used by 

Heays et al (2010) has a similar measuring limitation as the current study. However, the 

detailed equipment limitation was not specified in the Heays et al (2010) paper.   
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Figure 147 Non-dimensionalised experimentally measured velocity profile  

 

The mean axial velocity data at the centreline for the slurry (Fitton, 2007) is presented in 

Figure 148 in wall units, together with the logarithmic velocity profile. The experimentally 

measured velocity profile has a linear relationship between U
+
 and y

+
 in the near wall region. 

In the logarithmic region, the actual velocity profile for the slurry is slightly higher than the 

logarithmic velocity profile. The computationally predicted profile for the control Simulation 

at Reynolds number = 8182 is presented in Figure 149. The velocities have been non-

dimensionalised. The non-dimensionalisation is undertaken using the wall viscosity gives in 

equation (71). It is seen that the simulation result does not show any velocity dip or secondary 

current features. As described earlier, the secondary current features show that the maximum 

velocity appears not at the free surface but rather just below it in open-channel flows. Nezu 

(2005) found that the velocity-dip phenomenon occurs if b/h is less than a critical value. The 

geometry of this open channel from Fitton (2007) gives a b/h ratio of 4.4 which is very close 

to the critical value proposed by Nezu (2005). Another plot generated by Yang et al (2004)’s 

equation showed similar secondary current features as the experimental results of Fitton 

(2007). This new line shows a similar maximum velocity at a slightly higher y
+
 value. The 

general trend of the new line and Fitton’s experimental results is quite the same. This shows 
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that experiment measurement from Fitton (2007) is valid and reasonably accurate. So did the 

simulation completely ignore the secondary current feature? 

 

Figure 148  Non-dimensionalised experimentally measured velocity profile (Fitton, 2007) 

 

Figure 149  Non-dimensionalised experimentally measured velocity profile, simulation profile 

and Yang et al (2004) equation 
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In section 6.5.6, an investigation of velocity measurement at different x positions was 

conducted. Three different x positions x = 0.04 m, 0.065 m and 0.088 m were chosen in this 

investigation. The mean axial velocity profiles for all three different x positions and the 

centreline velocity profile is already shown in Figure 135. All three x positions measurements 

fall below of the centreline velocity profile. This should be expected as the centreline velocity 

is the highest in the channel flow. It is found that there is a small velocity dip appearing at y
+
 

close to 230-300 in Figure 153 and Figure 155. With x moving out from the centreline, the 

velocity dip of the velocity profile becomes more apparent and visible. From Figure 150, the 

average velocity vectors are plotted with a red line at x = 0.04 m. The two secondary current 

patterns are very clear and visible. The red line at x = 0.04 m is just touching the outside 

boundary of the secondary current cell. In Figure 151, there is a very small velocity dip in the 

outer region of the velocity profile.  

 

From Figure 152, the average velocity vectors are plotted with a red line at x = 0.065 m. The 

red line at x = 0.065 m goes through the side of the secondary current cell. Interestingly, 

Figure 153 shows a little clearer velocity dip in the outer region of the velocity profile. 

Likewise, in Figure 154, the average velocity vectors are plotted with a red line at x = 0.088 

m. The red line at x = 0.088 m goes through the centre of the secondary current cell. Without 

surprise, Figure 155 shows a clearer velocity dip in the outer region of the velocity profile. 

With these figures, it is concluded that measurements at different x positions could capture 

the very weak secondary current.  

 

In Figure 150, the secondary current cells are very far apart. Their influence on the centreline 

velocity is almost minimal. However, when measurements were taken from various x 

positions, the velocity dip or secondary current became more apparent. Therefore it is 

concluded, the position of the secondary cells does have a significant effect on the secondary 

current feature in mean velocity profiles.  
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Figure 150  Illustration of velocity measurement (red line) taken at x = 0.04 m  

 

 

 

Figure 151 Mean axial velocity profiles for the turbulent flow at x = 0.04 m 
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Figure 152  Illustration of velocity measurement taken at x = 0.065 m 

 

Figure 153  Mean axial velocity profiles for the turbulent flow at x = 0.065 m 
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Figure 154 Illustration of velocity measurement taken at x = 0.088 m 

 

Figure 155  Mean axial velocity profiles for the turbulent flow at x = 0.088 m 

 

Moreover, more tests were conducted with different simulation parameters; first, with a half 

pipe simulation of a power law fluid where the width and depth ratio is 2. Secondary current 

feature from the simulation is still not as obvious as expected. In Figure 156 the half pipe 

simulation reaches a maximum velocity at y
+
 = 100 and then declines. 
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Figure 156  Simulation velocity profile in conventional wall units for slurry in comparison of 

half pipe simulation. 
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Figure 157 continues 

 

Half pipe simulation contour with power law model 

Maximum velocity 

just below the 

surface 



 

  Page 222 

 

 

Newtonian simulation contour  

High velocity 

area in the 

middle of the 

channel 

Low velocity 

area on the side 

of the channel 



 

  Page 223 

 

 

Control simulation contour  

Figure 157  Axial velocity contours for half pipe simulation, Newtonian simulation and control 

simulation 

 

Comparison of different axial velocity contours for half pipe power law simulation, a 

Newtonian fluid simulation and the control simulation are presented in Figure 157. From this 

figure, half pipe simulation shows the most obvious secondary current pattern, in both 

velocity contour and velocity vectors. In the half pipe contour map, the location of the 

maximum stremwise velocity occurs below the free surface. This shows the velocity-dip 

phenomenon, which is unique to turbulent open channel flow (Nezu and Nakagawa, 1993). 

As seen in Figure 157, the maximum velocity in the half pipe flow is just located below the 

free surface whereas the Newtonian simulation and control simulation do not exhibit the same 

behaviour. However, in the control simulation average velocity vectors, the secondary current 

cells are visible.  

 

In the Newtonian channel flow, two pairs of counter-rotating vortices can be observed in the 

channel. Close to the centreline, the size of pair of vortices is smaller than the pair close to the 

boundary of the channel. However, with non-Newtonian flow, only one large pair of vortices 

is observed. With the same aspect ratio, only possible explanation for the disappearance of 

one pair of vortices is because of change of rheology. However, the actual cause of this 

observation is still not fully understood.  
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+50% yield stress 

 

-50% yield stress 

Figure 158  Velocity vectors for different simulations with different yield stress 
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Figure 159  Mean axial velocity profiles for the turbulent flow at x = 0.065 m. 

 

Further test was conducted to see if there is any chance to get secondary current in the 

simulation at all. First, in Figure 158, average velocity vectors of control simulation and two 

different yield stress simulation are presented. From the plot, all three simulations show some 

kind of secondary current features. The most symmetrical secondary cell appeared in the 

control simulation. In +50% yield stress simulation, there are three cells located in the 

channel. One on the right is similar to the secondary current cell in control simulation; the 

other two is located at the left side of the channel. The next plot shows the -50% yield stress 

simulation. This plot has a slightly off centre secondary current cells. The general shape of the 

secondary current cells is still very much the same as the control simulation. In Joung and 

Choi (2010), it was mentioned that the asymmetrical secondary current cells are caused by the 

free surface. From above plots, it can be concluded that an increase in yield stress could result 

an asymmetrical secondary current cell placement. Figure 159 shows the mean axial velocity 

profile for +50% yield stress at x = 0.065 m. A small velocity dip shows in the outer region of 

the velocity profile and it was not present in Figure 102. This shows that a small secondary 

current is been simulated.  
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Change in n = 0.85 

 

Change in n = 0.79 

Figure 160  Velocity vectors for different simulations with different n 

 

In Figure 160, average velocity vectors of control simulation and two different n simulations 

are presented. From all these three plots, secondary currents are apparent and observable.  In n 

= 0.85 plot, other than the two secondary current cells, there is a weak turbulent region in the 

middle of the channel. Interestingly, this simulation has a smaller Reynolds number than the 

control simulation. The weak turbulent region could be caused by possible transitional 

behaviour in the channel. This is also observed in Figure 122 that there is a large region of 

unsteady structure present in the velocity contour. 

 

 For n = 0.79 simulation, the secondary current cells have a similar size compared with 

control simulation. However, the left secondary current cell has a smaller intensity than the 

right secondary current cell. It seems that the energy of the cell is already dissipated. 

Weak eddies 
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Change in K +20% 

 

Change in K -20% 

Figure 161  Velocity vectors for different simulations with different K 

 

Asymmetrical eddies 
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Figure 162  Mean axial velocity profiles for the turbulent flow at x=0.065 m. 

 

 

Figure 163  Mean axial velocity profiles for the turbulent flow at x=0.088 m. 

 

Average velocity vectors of control simulation and two different K simulations are presented 

in Figure 161. In K +20% plot, similar to the n = 0.85 plot, there is a weak turbulent region in 
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the middle of the channel. The other similarity between these two plots is that both of these 

simulations have a smaller Reynolds number than the control simulation. This could mean 

that with a smaller Reynolds number, there are large turbulent puffs present in the flow which 

are similar to the transitional regime in Newtonian fluids. 

 

The next plot shows the K -20% yield stress simulation. The secondary current cells have a 

similar size when compared with control simulation. This is very similar to n = 0.79 plot 

where there are only two noticeable secondary current cells located in the channel without 

other small disturbances. Both of these plots have high Reynolds numbers of 9185 and 11450 

respectively.  

 

Figure 162 and Figure 163 show the mean axial velocity profile for K +20% at x = 0.065 m 

and 0.088 m respectively. A small velocity dip shows in the outer region of the velocity 

profile, which was not observed in Figure 124. There is a noticeable difference between the 

intensity of these velocity dips in Figure 162 and Figure 163. Figure 162 has a more 

recognizable velocity dip feature whereas in Figure 163 the velocity dip is very weak and is 

extended into the majority of the overlap region. From these x positions (i.e. x = 0.065 m and 

x = 0.088 m), it appears that there is a little difference because both positions would only 

obtain the velocity at the boundary of the secondary current cells. So far, there is no likely 

explanation for such behaviour. More investigation needs to be conducted in future work. 

 

Another interesting observation from the secondary current cells is that the cell on the left 

hand side always has counter-clockwise rotation; the cell on the right hand side always has 

clockwise rotation. This is observed in all simulation results. No matter the size of the cell and 

other disturbances, the rotation directions are always counter-clockwise on the left and 

clockwise on the right. It is found that the flow is always driven to move along side wall to 

leave from the edges (close to the surface). This basically means that the secondary current 

transports the momentum and energy from the middle of the channel to the corners.   
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Figure 164 Velocity vectors for Newtonian simulation 

 

 

Figure 165  Velocity vectors for Newtonian simulation and rectangular duct flow from Yang 

(2009) 

 

In conclusion, at different x positions, small velocity dip can be observed from the mean axial 

velocity plot. With in-plane average velocity vectors plot, secondary current cells can be 

detected. In general, with a smaller Reynolds number, weak but large turbulent structures 

appear in the middle region of the channel. This is observed with increased yield stress, 

decreased n, and increased K plots. With a larger Reynolds number, the secondary current 

cells tend to be stable and located at the side of the channel. This is observed in decreased 

yield stress, increased n, and decreased K plots. The sizes of the secondary current cells are 

quite similar for the above plots. One interesting finding from the Newtonian simulation is 

that there are four different secondary current cells present in the channel. Two larger ones are 

Possible bisector 
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on both left and right sides and another two smaller ones are located near the bottom. This is 

not observed in any non-Newtonian plots presented in this study. There is a possibility that 

there is a bisector separating the two secondary current cells.  However, such bisector was 

only found in rectangular shaped channels (Figure 165, Yang, 2009). Further investigation 

needs to be conducted to explain this observation.  

 

6.7 Summary  

In this chapter, result of initial calculation for the experiment was first presented. Current 

experimental results were also presented and discussed. Computational simulation was 

validated against a number of different experimental and computational results. Different 

velocity distributions were tested to see the validity of the simulation. Major investigations 

were conducted to observe the effects of different rheological parameters to the simulation 

results. Some other variables were tested to further understand the discrepancy between the 

simulation and the experiments. It is believed that the simulation can produce reasonably 

good results for non-Newtonian turbulent open channel flow.  

 

Moreover, this simulation method provides the opportunity to examine the effect of changing 

one rheology parameter while keeping the other parameters constant.  It is such an advantage 

in the study of viscous behaviour of the tailings material. 

 

A further investigation on secondary current was also conducted. It appears that with a 

smaller Reynolds number, weak and large size turbulent structures appear in the middle 

region of the channel. This is observed with increased yield stress, decreased n, and increased 

K plots. This could be a result of increased viscosity of the non-Newtonian fluid. With a 

larger Reynolds number, the secondary current cells tend to be stable and locate at either side 

of the channel. This is observed with decreased yield stress, increased n and decreased K 

plots. 
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7 Chapter 7: Particle transportation characteristics 

 

7.1 Introduction 
 

In this section, several particle transportation parameters and their effect on particles 

transportation are discussed. This includes Stokes number, particle behaviour in relation to 

wall streaks and a possible relationship between particle behaviour and different quadrants of 

turbulence.  

 

7.2 Stokes number 

In literature review section, Stokes number was introduced by Crowe et al (1993). The 

authors proposed a Stokes number defined as: 

F

sSt
τ

τ
=  

 

(50) 

 

From Crowe et al (1993), it stated that if Stokes number is less than 1, then the particles will 

follow the fluid path lines. In terms of fluid flow, it means that the particles will follow the 

fluid vortex or eddy. If Stokes number is roughly equal to one, then the particles will be 

centrifuged by the cortices structures. If Stokes number is larger than one, the particles will 

continue its path and eventually settle via gravity. Similarly, in Rogers and Eaton (1991) the 

authors also mentioned that with small Stokes numbers St < 0.01, the particles will follow the 

flow exactly. For particles with large Stokes numbers St > 100, they will not respond 

significantly to turbulent velocity fluctuations. So with current simulation and experimental 

(Fitton, 2007) value, what is Stokes number for the particles in the flow? 

 

7.2.1 Particle behaviour and Stokes number 

In equation (52) δ is the size of the fluid structure. According to Nezu et al (2004), the size of 

the structure is defined as mixing length in the calculation. The first assumption needs to be 

made is the mixing length. It was introduced by Prandtl for the concept of the mixing length l, 
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which is related to the average size of the eddies. However, this concept is very limited 

because l is not constant for a given flow. Therefore, mixing length is written as a function of 

different variables, mostly a function of average flow variables and distance from the wall.  

 

From Nezu et al (2004), the mixing length (non-dimensionalised) l
+
 is obtained by using van 

Driest damping function: 

Γ= ++ kyl   

(53) 

 

Where k is the von Karman constant and has a universal value of 0.412. y
+
 is the distance 

from the wall. This method is also used in Aydin (2009) for open channel flow. 

  

)26/exp(1 +−−=Γ y   

(54) 

 

Stokes numbers are calculated using the particle characteristic from Fitton (2007). The d85 

particle size is 14 µm for the all the Stokes number calculation. Streamwise velocity 

fluctuating components was chosen for ∆U values. Firstly in Figure 166, Stokes number for 

the control simulation and two different simulations with increased yield stress is plotted 

against distance from the wall. All three lines are very close to each other. The values of 

Stokes number near the bed in this graph are at the maximum and decrease higher in the flow. 

With increased yield stresses, only the simulation with increased 50% yield stress has a 

slightly lower Stokes number. In previous section 6.5.2, increased 50% yield stress showed a 

decrease in Reynolds number hence a decrease in the turbulent characteristics. Therefore the 

value of Stokes number is decreasing slightly as well.  

 

Stokes number for decreased yield stress is presented in Figure 167. In this case, the 

magnitude of the Stokes number values is quite similar to the previous figure. Decreased 50% 

yield stress simulation has the largest Stokes number and the control simulation has the 

smallest Stokes number. With a high Reynolds number for decreased 50% yield stress 

simulation, a high Stokes number is likely. However, with very small Stokes number (i.e. St < 

0.01); particles will follow the direction of the flow regardless. 
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In Figure 168, Stokes numbers for n = 0.75 and n = 0.85 are plotted against distance from the 

wall.  This time n = 0.75 simulation has a higher Stokes number than the other two plots. It is 

also observed that n = 0.85 simulation possess a smaller Stokes number than the control 

simulation. This is expected as n = 0.75 has a larger Reynolds number and n = 0.85 has a 

smaller Reynolds number in comparison to control simulation. In fact, Stokes number is 

increased around 33% for the smaller n simulation. The increase of Stokes number for n = 

0.75 is expected to be higher as the average mean axial velocity plot in section 6.5.2 is 

significantly higher than the control velocity profile. It is also discovered from Rajitha et al 

(2006) that with flow behaviour index decrease below 1; the drag also decreases under the 

same Reynolds number. With less drag from the fluid, the particles would follow more the 

non-Newtonian fluid behaviour. However with a change in mixing length, the increase in 

Stokes number was not as much as expected.  

 

Stokes numbers for the control simulation and two different flow consistency index 

simulations are plotted against distance from the wall in Figure 169. The magnitude of the 

Stokes number values is also quite similar for all three plots. It is very difficult to differentiate 

the plotted points. Interestingly, the Reynolds number difference between these two 

simulations (increased and decreased K) is quite large. Yet, in Figure 169 the difference 

between Stokes numbers is minimal. On the other hand, Stokes numbers for two different 

flow consistency index simulations with fixed Reynolds number are plotted in Figure 170. 

With very similar Reynolds number, K +20% simulation has a higher Stokes number and K -

20% simulation has a smaller Stokes number. In this particular case, K +20% simulation 

makes the fluid more non-Newtonian like, than for K -20% simulation. Thus it is likely the 

particles would follow the fluid rather than settling in the fluid.  

 

In general, Stokes number increases with increase of Reynolds number because of increased 

turbulent characteristics. From above discussion, it can be concluded that change in yield 

stress (up to 50% of current value) does not affect Stokes number significantly. Change in 

flow consistency index also affects Stokes number in a limited way. Change in flow 

behaviour index causes noticeable change in Stokes number. Yet, with current values, Stokes 

numbers are quite small (i.e. St < 0.01). However, several errors may be associated with 

calculation of Stokes number, such as selection of appropriate mixing length formula. This 
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suggests the need for further experimental studies to more precisely define the value of Stokes 

number.  

 

 

Figure 166  Stokes number plotted as a function of distance from the wall with different 

increased yield stress 

 

Figure 167  Stokes number plotted as a function of distance from the wall with different 

decreased yield stress 
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Figure 168  Stokes number plotted as a function of distance from the wall with two different n 

values 

 

 

Figure 169  Stokes number plotted as a function of distance from the wall with two different K 

values  
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Figure 170  Stokes number plotted as a function of distance from the wall with two different K 

values with fixed Reynolds number 

 

7.3 Particle behaviour and flow relationship 

 

From literature, three different types of coherent wall structures have been observed. One type 

consists of low velocity streaks very close to the wall. The second is streamwise and 

quasistreamwise vortices and the third type is ‘active’ periods usually referred as ‘bursts’ 

(Kaftori et al, 1995). Bursts consist of sequences of ejections from the wall layer into the 

outer flow and sweeps of fluid from the outer region toward the wall. In this section, low 

velocity streaks and ejection/sweeps events will be investigated. 

7.3.1 Wall velocity streaks 

7.3.1.1 Minimum velocity  

 

In the simulation, low velocity streaks are very observable from the velocity contours. These 

low velocity streaks are quite regular and persistent at the bottom of the channel. The low 

velocity streaks form as a result of circulation in the viscous boundary layer. Generally, they 

have been seen in the viscous sublayer and to some extent in the logarithmic region (Lim and 

Banerjee, 1992).  In here, viscous sublayer is the region 0 ≤ y
+
 ≤ 5. There is another region 
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called generation region above the viscous sublayer. The generation region overlapped with 

the position of the majority of the ejection and sweep events (Sumer and Oguz, 1978). 

According to Sumer and Oguz (1978), the generation region is 5 ≤ y
+
 ≤ 70. 

 

From Kaftori et al (1995) and Narayanan and Lakehal (2003), it was discovered that particles 

tend to accumulate in low velocity streaks near the wall. So it is interesting to see what is the 

level of magnitude of the minimum velocities in these wall streaks. Different simulation 

contours were tested by Tecplot software. The minimum velocity in the wall streaks was 

obtained by the probing function of the software. The velocity layers tested were in between 

y
+
 = 4 and y

+
 = 8. Velocities at y

+
 = 0 to 4 were not mentioned here because the velocity 

presented in the very bottom of the channel is approaching zero for all contours and thus 

lacked comparability. The minimum velocities for 13 different simulations are presented in 

Table 27. The question is: are there any differences in velocity of different simulation’s wall 

streaks? 

 

It is quite obvious to see the velocity difference in Table 27. First for the yield stress 

simulations, +50% yield stress simulation have a smaller minimum velocity than -50% yield 

stress in the wall streaks. This is expected as the Reynolds number is higher for -50% yield 

stress simulation. It simply means at the same y
+
 position, -50% yield stress simulation has a 

higher velocity to transport particles close to the wall.  With +50% yield stress, as the fluid 

becomes more non-Newtonian like, the velocity close to the wall decreases. 

 

For the next two simulations, simulation 3 (n = 0.75) has a higher minimum velocity than 

simulation 4 (n = 0.90). Such finding is quite surprising as simulation 3 makes the fluid more 

non- Newtonian like. However, with a high Reynolds number, it is very likely for simulation 

3 to have a higher minimum velocity than simulation 4. Furthermore, from velocity contour, 

simulation 4 has a smaller minimum velocity than the control simulation. There is no valid 

explanation for this as simulation 4 has a lower Reynolds number than the control simulation. 

The velocity difference for these two simulations is very small and can be neglected for this 

instance.   

 

The next four simulations consist of change in the rheology parameter K. When K increases, 

the simulation produces a smaller minimum velocity in the wall streaks. When K decreases, 
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the simulation produces a larger minimum velocity than the control simulation. One 

interesting aspect of the result is that the increase of K caused a 53% decrease of the 

minimum velocity, and the decrease of K caused a maximum of 40% increase of minimum 

velocity.  

 

The minimum velocity for K +20% and +50% is very close. This means once K increased 

above 20%, the difference between the simulation velocity contours is not as noticeable. 

However, with only K +50% as the upper limit of the investigation, the full impact on 

increase in K is yet to be concluded.  When K decreased by 20%, the change in minimum 

velocity is very small when compared with control simulation. Similar minimum velocity 

values are obtained from the last four simulations with relatively constant Reynolds number. 

Without Reynolds number effect, the minimum velocity values show the same trend with the 

change in K simulations. Therefore, it is concluded that with increase in K, minimum velocity 

would decrease but the percentage of decrease declines when K move towards to +50%. On 

the other hand, with decrease in K, minimum velocity would increase slightly first then 

increase up 40%. 

 

In summary, high Reynolds number gives a higher velocity in velocity streaks. Lower 

Reynolds number gives a slightly lower velocity in velocity streaks. With a more constant 

Reynolds number (simulations 9 -12), the minimum velocity in the wall streaks behaves in the 

same ways as simulations 5 - 8. However, there is no way to measure the randomness of the 

ejection event by the simulation.  
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Table 27 Minimum velocity in low velocity streaks 

Simulation Minimum velocity 

(m/s) 

Reynolds 

number 

0 Control simulation 0.0739 8182 

1 +50% yield stress simulation 0.0563 6481 

2 -50% yield stress simulation 0.0840 9258 

3 n = 0.75 0.127 12910 

4 n = 0.90 0.0756 4210 

5 K +20% 0.0357 6781 

6 K +50% 0.0343 5635 

7 K -20% 0.0750 11450 

8 K -50% 0.104 21991 

9 K +20% (with fixed Re) 0.0366 8278 

10 K +50% (with fixed Re) 0.0305 8630 

11 K -20% (with fixed Re) 0.0790 8295 

12 K -50% (with fixed Re) 0.0920 8682 

 

7.3.1.2 Wall velocity streak size 

 

The wall streaks sizes for 14 different simulations (includes control simulation and Newtonian 

simulation) are presented in Table 28.  

 

It is seen from Table 28 that, there is not a significant quantitative difference between control 

simulation and simulation 1 and 2.  In general, the velocity streaks for simulation 1 are longer 

and wider than the control simulation. This means that with an increase of yield stress, the 

flow is not as developed as the control simulation. From observation, the velocity streaks 

intensity for simulation 2 and occurrence are very similar to the Newtonian case. This means 

with a decrease of yield stress, the flow is more developed than the control simulation.  

 

Simulations 3 and 4 show some extreme cases of the velocity streaks. Simulation 3 has very 

small low velocity streaks compared with the control simulation. For simulation 3, the low 

velocity streaks are less than 0.5 units in length, and less than 0.2 units in width. In Figure 
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171, the black coloured low velocity streaks are not very noticeable. Instead, there are spotted 

weak white high velocity streaks present in the velocity contour. Usually, a higher volume of 

high velocity streaks indicate a more turbulent fluid flow. For simulation 4, it is seen that a 

large region of turbulent activity exists from the left of the domain to the middle of the 

domain. It is further suggested that the flow is not fully developed for the Herschel-Bulkley 

fluid.  

 

For simulation 5 and 6, the velocity streaks have a length larger than 4 units and width of 1 

unit. It has also been illustrated in Figure 126 that most of the low velocity streaks were 

located on the side of the channel.  These low velocity streaks were very long and some of 

them run through the whole domain length. The main reason for this behaviour is that the 

Reynolds number is a lot lower than the control simulation. As K decreases, the low velocity 

streaks gradually disappear and become less visible. In Figure 126, the low velocity streaks in 

simulation 7 are short in the middle but longer and wider toward to the channel side wall.  In 

general, there are less low velocity streaks in simulation 7 than 5 and 6. Once again in Figure 

126, for simulation 8, there are some bright white high velocity streaks. The low velocity 

streaks in simulation 8 are extremely small and it is very difficult to quantify. This simply 

illustrates a more turbulent flow characteristic for simulations 7 and 8 than simulations for 5 

and 6.  

 

With a similar Reynolds number value, for simulation 9 and 10, the streaks are very thick and 

very wide. Size wise, simulation 9 and 10 have a smaller length than simulation 5 and 6. It 

confirms that Reynolds number effect is more significant than just change K. From simulation 

9 and 10, it is further suggested that the flow is not fully developed for increased K values. As 

K decreases, the low velocity streaks gradually disappear and high velocity streaks emerge. 

With very similar Reynolds number value, the low velocity streaks in simulation 11 have a 

length of 2 units but a very small width at 0.1-0.2 units. This means regardless of Reynolds 

number effect, the flow is still very turbulent. Similar to simulation 8, simulation 12 has some 

bright white high velocity streaks in spots in Figure 131.   

 

In summary, these low velocity streaks are strongly Reynolds number dependent. The flow 

with high Reynolds number simply exhibit shorter and smaller low velocity streaks and the 

flow with low Reynolds numbers show longer and wider low velocity streaks. With this 
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comparison between simulation 5-8 and simulation 9-12, it is also found that Reynolds 

number has more evident effect on the size of the low velocity streaks.  

 

Table 28 Velocity streak size comparison 

 

Simulation  Typical 

velocity 

streak 

length 

Typical 

velocity 

streak 

 width 

Control- Simulation result based on 

experiment (Fitton, 2007) 

2 units 0.5 units 

1 +50% Yield stress 2.2 units 0.6 units 

2 -50% Yield stress 2.2 units 0.2~0.3 units 

3 n = 0.75 < 0.5 units < 0.2 units 

4 n = 0.90 >4.5 units 1-1.5 units 

5 K +20% 4-4.5 units 0.5 units 

6 K +50% 4.5 units 0.5 units 

7 K -20% 2 units 0.2 units 

8 K -50% Very small Very small 

9 K +20% (with fixed Re) 3.5 units 0.5 units 

10 K +50% (with fixed Re) 3.5 units 0.5 units 

11 K -20% (with fixed Re) 2 units 0.1-0.2 units 

12 K -50% (with fixed Re) Very small Very small 

13 Newtonian simulation 1.4 units 0.1~0.2 units 
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n=0.90 

 

n=0.75 

Figure 171  Predicted axial velocity at y
+ 
≈ 8. n = 0.90 and n = 0.75 simulation. White represents 

high velocity and black represents low velocity. 

 

7.3.1.3 Eddy behaviour and Reynolds number 

 

This section provides more information about the properties of the turbulent eddies. The 

importance of this result is that it could provide physical basis for the development of 

different schemes to control turbulence.  

 

Cross sections of a typical eddy are viewed in Figure 172. The instantaneous velocity vectors 

at different z planes from z = 28 to z = 33 in streamwise direction are shown. The turbulent 

producing eddy is indicated by the highlighted square in Figure 172. This highlighted eddy 

has diameter of 0.024 – 0.026 m. The original eddy is generated from the wall by small 

vortices attached to the wall. In this case, the size of the eddy does not change much. This 

eddy moves upward from the bottom of the channel toward to the middle. During the move, 

smaller eddies appear at the bottom of the large eddy, and increase in size gradually. It is 
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possible that the turbulence is generated by these small eddies as they transport high 

momentum fluid to the wall and bring low momentum fluid away from the bottom and wall. 

Further downstream, the eddy shifts to the left, and the size does not change with the 

movement.  
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z = 28 
 

z = 29 

 

z = 30 
 

z = 31 

 

z = 32 

 

z = 33 

Figure 172  Typical eddy in x-y plane at Reynolds number = 12910 
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In Figure 173, the instantaneous velocity vectors at different z planes from z = 22 to z = 36 in 

streamwise direction are shown. This shows where a turbulence producing eddy appears to 

terminate at a given time. The eddy highlighted by red lines is produced with the 

disappearance of a previous eddy. Most of the wall generated eddies are well documented 

from the literature. However, according to the observations from this simulation results, there 

are many instances of an eddy disappearing and another one just generated below or next to 

the disappearing eddy. The old eddy grows in size then disintegrates into the surroundings. It 

is also argued that the ‘birth’ of one eddy is associated with the ‘death’ of another. Therefore, 

it is possible that the path of an eddy should end at a location where another eddy just begins. 

As shown in Figure 173, when the old eddy (highlighted by red lines) disintegrates, another 

eddy (highlighted by blue lines) lifts up from the wall region. This confirms that the claim of 

the ‘birth’ and ‘death’ of an eddy. 
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Figure 173  Typical eddy in x-y plane at Reynolds number = 12910 
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In Figure 174, the instantaneous velocity vectors at different z planes from z = 151 to z = 168 

in streamwise direction are shown. This basically shows the ‘birth’ and ‘death’ of one eddy. 

At z = 151, the eddy just generates from the wall region, then it moves upward at z = 157. 

This eddy gradually grows in size from z = 157 to z = 160. At z = 160, a small eddy lifts up 

from the wall region and follows the former large eddy. The small eddy also moves upward in 

a slow motion, and the large eddy moves toward the surface and slowly disintegrates.   

 

Furthermore, from Figure 172 and Figure 173, it is also observed that the speed of eddy 

movement is faster than that of Figure 174. For Figure 172, the centre of eddy moves from x,y 

= (-0.016, -0.186) to (-0.028, -0.176) in six z-planes. That is a movement of 0.0026 m per one 

z-plane. For Figure 174, the centre of eddy moves from x,y = (-0.028, -0.19) to (-0.008, -

0.172) in 18 z-planes. By calculation, it shows a movement of 0.0015 per one z-plane. This is 

most likely caused by the different simulation Reynolds number. For Figure 172 and Figure 

173, the Reynolds number equals 12910 whereas Figure 174 has a Reynolds number of only 

5635. Other than the speed of eddy movement, it is also seen that Figure 172 and Figure 173 

has larger and more intensified velocity vectors whereas in Figure 174 the velocity vectors are 

much organised and less random. Therefore it can be concluded that eddy’s movement is 

Reynolds number dependent.  
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Figure 174  Typical eddy in x-y plane at Reynolds number = 5635 
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7.3.2 Particle suspension and quadrant analysis 

Quadrant analysis was introduced earlier in the literature review section. It is used to 

investigate the Reynolds stress structures and features of the large eddy. In this research, 

quadrant analysis is used as a tool to quantify the near boundary behaviour of the fluid.  

 

Basically, quadrant analysis sorts out contributions to the Reynolds shear stress u'v' into 

quadrants of the u-v plane. The largest positive contributions to the turbulent energy were 

provided by the ejection (u'<0, v'>0) and sweep quadrants (u'>0, v'<0), while small and 

negative contributions were made by the interaction quadrants (u'<0, v'<0 and u'>0, v'>0). 

The first quadrant u'>0, v'>0, contains outward motion of high-speed fluid. The second 

quadrant u'<0, v'>0 contains the motion associated with ejections of low-speed fluid away 

from the wall. The third quadrant u'<0, v'<0 contains inward motion of low-speed fluid. The 

fourth quadrant u'>0, v'<0 contains an inrush of high-speed fluid (Kim et al, 1987). Figure 

175 shows a typical quadrant map for one of the channel velocity measurement at a specified 

position. The different quadrants are also shown in this plot.  

 

 

 

Figure 175  Typical quadrant map 
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Figure 176 to Figure 184 illustrate the quadrant analysis for the experimental data from Fitton 

(2007). These particular experiment parameters were also used for the simulation result. x 

represents different spanwise positions. Firstly, for Figure 176 to Figure 178, there is no 

noticeable Q2 and Q4 percentage different on average. However, analysing the result locally, 

it is clear from Figure 176, that there is a large percentage of Q4 at x = 0 cm (centreline) and 

depth = 60 cm. This equals around y/h = 0.14. Nezu and Azuma (2004) mentioned that the 

fluid particle interactions and bursting phenomena both occur in inner wall region of y/h < 

0.2. However, measurement from just one position could not provide a satisfactory 

conclusion. 

 

 

Figure 176  Quadrant analysis at x = 0 cm 
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Figure 177  Quadrant analysis at x = 20 cm 
 

 

Figure 178  Quadrant analysis at x = 40 cm 
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all four quadrants. In Figure 179, there is a large percentage of Q2 and Q4 action at depth = 

50 cm. At x = 60 cm and depth = 50 cm, it can be seen that 29.1% of the total event is the 

ejection event and 29.7% of the total event is the sweep (Q4) event. This indicates that the 

ejection and sweep event is dominant in the region at y/h = 0.28 which is just outside of Nezu 

and Azuma (2004)’s value of 0.2.  

 

This is a very interesting finding because from Figure 180, this measurement at x = 60 cm just 

passes through the secondary current cell boundary. The green circle pinpointed the position 

of x = 60, depth = 50 cm. It can be seen that the point is just located in the middle of some 

very intense velocity vectors. This could be one of the factors why Q2 and Q4 events 

dominate this particular region.  

 

 

 

Figure 179  Quadrant analysis at x = 60 cm 

 

20

21

22

23

24

25

26

27

28

29

30

1 2 3 4

Depth = 10 cm

Depth = 20 cm

Depth = 30 cm

Depth = 40 cm

Depth = 45 cm

Depth = 50 cm

Depth = 55 cm

Depth = 60 cm

Average

Quadrant

P
e
rc

e
n

ta
g

e

x = 60 cm



 

  Page 254 

 

 

Figure 180  Illustration of velocity measurement taken at x = 60 m and depth = 50 cm 

 

In Figure 181, there is a large percentage of Q2 and Q4 action at depth = 10 and 20 cm. At x = 

80 cm and depth = 10 cm, it can be seen that 25.8% of the total event is the ejection event and 

28.3% of the total event is the sweep event. At x = 80 cm and depth = 20 cm, there is 27.0% 

of the total event is the ejection event and 27.0% of the total event is the sweep (Q4) event. 

From literature (Nezu and Azuma, 2004), it is said that the ejection process transports the wall 

fluid toward the free surface. Therefore, the Q2 and Q4 events at close to the free surface is 

likely as ejection can interact with the free surface when wall ejections become more 

prominent.  

 

 

20

21

22

23

24

25

26

27

28

29

1 2 3 4

Depth = 10 cm

Depth = 20 cm

Depth = 30 cm

Depth = 35 cm

Depth = 40 cm

Average

Quadrant

P
e
rc

e
n

ta
g

e

x = 80 cm



 

  Page 255 

 

Figure 181 Quadrant analysis at x = 80 cm 
 

 

Figure 182  Illustration of velocity measurement taken at x = 80 m and depth = 10 cm 

 

Figure 183 and Figure 184 show similar trends with large percentage for Q2 and Q4 action 

closer to the surface. At x = 90 cm and depth = 10 and 20 cm, it can be seen that 27.1% and 

26.8% of the total event is the ejection event; 28.2% and 27.2% of the total even is the sweep 

event. At x = 100 cm and depth = 15 and 20 cm, there is 28.5% and 25.6% of the total event is 

the ejection event; 25.6% and 26.2% of the total event is the sweep event. Both Figure 183 

and Figure 184 show that there are Q2 and Q4 events closer to the surface. This reinforces the 

claim that ejection and sweep do interact with the surface as well as at position y/h = 0.2. 
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Figure 183  Quadrant analysis at x = 90 cm 
 

 

Figure 184  Quadrant analysis at x = 100 cm 
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Figure 185  Quadrant analysis at depth = 60 cm 

 

 

Figure 186  Quadrant analysis at depth = 50 cm 
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also quite strong at x = 20, 40 and especially at 60 cm. Ejection and sweeps are the foundation 

of the bursting process. From Sumer and Oguz (1978), the authors mentioned that the whole 

sequence of a burst started with the ejection. The ejection’s upwelling motion lifts up particles 

from the bottom of the channel. Then as the ejection progresses, the lifted fluid will move 

away from the wall and grow in size. Later, the lifted fluid breaks up as it interacts with the 

next ejection and the whole sequence of events repeats in a cycle.  

 

In simple words, particles rise by ejection, then terminates and the particle starts to return to 

the neighbourhood of the wall. On the way back to the wall, it is expected to meet new lifting 

fluid due to the next burst. This process makes it possible for the particle to stay in 

suspension. It is said that the bursting phenomenon has been shown to be responsible for most 

of the turbulence energy production and to be the major contributor to the transport of 

particles. (Sumer and Deigaard, 1981) 

 

Other than the interactions near the free surface, the rest of the ejection and sweep events can 

be said as bursting cycles. Without the bursting cycle, particles cannot be suspended in the 

fluid. Therefore, ejections and sweeps are essential for particle suspension in an open channel. 

From previous discussions, it is known that particles tend to deposit in the low velocity wall 

streaks. Figure 187 shows simulation carried out by Pan and Banerjee (1996) that the particles 

tend to segregate in the low velocity streaks. This behaviour is well observed experimentally 

by Kaftori et al (1995) and Pedinotti et al (1992). With a larger, longer and wider wall 

streaks, it is easier for particles to deposit and settle than the smaller and more random wall 

streaks.  
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Figure 187  Particle distribution on a horizontal plane at y
+
 = 3.6 from the wall (Pan and 

Banerjee, 1996) 

 

From this section, it is seen that the largest percentage of ejection and sweep events occurred 

at x = 60 cm, depth = 50-60 cm. It is possible that particles are more easily suspended and re-

suspended in those areas. It appears that particle transport is mainly controlled by the ejection 

events from the lift up and break-down of the low velocity streaks in the wall regions. 

 

Moreover, there is a secondary current cell located at the same position as the occurrence of 

largest ejection and sweep events. This begs the question: is there any relationship between 

secondary current and particle suspension?  

 

7.3.2.1 Particle suspension and secondary current 

 

There appears to be no research on secondary currents in a semi-circular open channel. Most 

of the research is associated with square or rectangular channel. Within the current 

investigation, the most interesting finding is that the majority of the ejection and sweep events 

occurred in areas surrounding of a secondary current cell.  
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Figure 188 Average velocity vectors for control simulation  

 

It is found that these secondary motions act to transfer fluid momentum from the centre of the 

channel to the side therefore causing a swelling of the streamwise velocity towards to the side 

of the channel. From previous section, it is seen that the secondary cell provides a mean 

upwards velocity at the bottom of the channel (see Figure 188). This creates a large percentage 

of ejection and sweeps events. Moreover, from Sumer and Oguz (1978), it is found that with 

continuous ejection and sweep (bursting cycle); particles can be suspended and re-suspended. 

It is also seen in Yao and Fairweather (2009) that the re-suspension is dominant in two 

regions, one close to the wall (y
+
 = 0), and one close to the side walls. Yao and Fairweather 

(2009) used square duct geometry, however, secondary currents were also observed in the 

corner of their square duct. Their results also showed that the secondary current provided 

strong upward motion which is very similar to this study.  Therefore, this secondary current 

cell has the potential to assist the re-suspension of particles.  

 

However, the relationship between the size of the secondary current as well as the strength of 

re-suspension is not investigated in this study.  

 

7.4 Summary 

In summary, Stokes number increases with increase of Reynolds number because of increased 

turbulent characteristics. Simulation with high Reynolds number gives a higher velocity in the 

velocity streaks. Flow with lower Reynolds number gives a slightly lower velocity in the 

velocity streaks. The low velocity streaks are very Reynolds number dependent. Simulation 
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with high Reynolds number exhibits shorter and smaller low velocity streaks and low 

Reynolds number shows longer and wider low velocity streaks. It is also concluded that 

Reynolds number has a more significant effect on the low velocity streak size. 

 

With the help of quadrant analysis, it is found that the largest percentage of ejection and 

sweep events occurred at away from the centreline at x = 60 cm, and close to the wall at a 

height 10-20 cm from the bottom. In theory the particles become easier to be suspended and 

re-suspended in those areas. Furthermore, it also reinforced that the secondary current cell can 

assist the re-suspension of particles. 
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8 Chapter 8: Conclusion and recommendation 

 

8.1 Conclusion 

The fundamentals of non-Newtonian open channel suspension flow have been investigated in 

this work. The following conclusions are based on both experimental and simulation work: 

 

• Simulation results show good agreement with literature data. This includes the work 

of: Wallace et al (1972), Eckelmann (1974), Kastrinakis and Eckelmann (1983), 

Antonia et al (1992) and Rudman et al (2004). 

• Computational results show good agreement with experimental data from Fitton 

(2007) except for the velocity dip phenomenon. 

• Change in yield stress does not show any large change in the flow characteristics. 

Increase in yield stress decreases Reynolds number under the same simulation 

condition hence the flow becomes less developed. Decrease in yield stress increases 

Reynolds number therefore the flow becomes more turbulent. It is found that the yield 

stress does not have a major effect on the bulk velocity. 

• For change in flow behaviour index, all the mean velocity profiles show shifting 

velocity profile upward in the simulation. It is still very difficult to see the real effect 

of flow behaviour index in relation to bulk velocity. With the help from velocity 

contour, it is concluded that increase in flow behaviour index makes the flow more 

developed under the same simulation condition. Decrease in flow behaviour index 

makes the flow less developed. The bulk velocity changes only slightly with change in 

flow behaviour index. 

• Increase in fluid consistency index causes less developed flow. Decrease in fluid 

consistency index shows bright white high velocity streaks in the velocity contour. 

Hence this suggests that decrease in fluid consistency index would present a more 

turbulent flow characteristic for the fluid.  

• With a more constant Reynolds number value, increase in fluid consistency index still 

suggests that the flow is not fully developed. Decrease in fluid consistency index also 

shows similar bright white high velocity streaks in the velocity contour. The same 
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conclusion can be made for flow without Reynolds number effect and the change in 

fluid consistency index with change in Reynolds number. From simulation, there is no 

significant change in bulk velocity with change in fluid consistency index. 

• This simulation method provides the opportunity to examine the effect of changing 

one rheology parameter while keeping the other parameters constant.  In practice, this 

kind of investigation is impossible to conduct. This is a major contribution to the study 

in rheological behaviour in tailings transportation.  

• With an increased depth (i.e. Increasing from 0.07 m to 0.08 m), the bulk velocity 

changes from 1.48 m/s to 1.46 m/s. With a decreased depth, the bulk velocity 

increases to 1.52 m/s. However, there is no significant difference in velocity profile 

between increase or decrease in depth.  

• With different x position measurements, velocity decreases with x moving away from 

the centreline. Velocity dipping also appears with x moving out towards the channel 

boundary.  

• With a high resolution mesh, the result shows no significant difference in velocity 

profile and turbulence intensities.  

• For secondary current, with smaller Reynolds number, weak and large size turbulent 

structures appear in the middle region of the channel. This is observed with increased 

yield stress, increased n, and increased K plots. This could be a result of increased 

viscosity of the non-Newtonian fluid. With a larger Reynolds number, the secondary 

current cells tend to be stable and locate at either side of the channel. This is observed 

in decreased yield stress, decreased n and decreased K plots. 

• Stokes number increases with increase of Reynolds number because of increased 

turbulent characteristics. It is concluded that change in yield stress (up to 50% of 

current value) does not affect Stokes number significantly. Change in flow consistency 

index also affects Stokes number in a limited way. Change in flow behaviour index 

causes noticeable change in Stokes number.  

• Simulation with high Reynolds number gives a higher velocity in velocity streaks. 

Simulation with lower Reynolds number gives a slightly lower velocity in velocity 

streaks. It is found that there is no major difference between simulation results with 

different Reynolds number and simulation results with relative constant Reynolds 

number.  
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• It is found that the size of low velocity streaks is very Reynolds number dependent. 

The flow with high Reynolds number demonstrates small and random low velocity 

streaks and low Reynolds number shows longer and wider low velocity streaks. With 

the comparison between simulation results with different Reynolds number and 

simulation results with relative constant Reynolds number, it is also found that 

Reynolds number has more significant effect on the size of the low velocity streaks.  

• With quadrant analysis on available data, it is concluded that the largest percentage of 

ejection and sweep events occurs away from centreline and close to the wall at a 

height of 10-20 cm from the bottom. In theory the particles could be easily suspended 

and re-suspended in those areas. 

• It is seen that the secondary cell provides a mean upward velocity at the bottom of the 

channel (see Figure 188). Therefore, in theory, this secondary current cell could assist 

the re-suspension of particles.  

 

8.2 Recommendation 

The following aspects, which are not covered in this thesis, should be further investigated for 

adding more benefit in related areas. 

• Test in a larger and longer channel that is able to run large flow rate from 30L/s. This 

is the magnitude of the discharge in large mine sites. 

• A longer domain length will influence the results. However, the implication of this 

change is unknown. A longer domain length could be adopted in the future, yet this 

may take a long time to simulate. 

• More research on secondary current with different size semi-circular flume would be 

of value. This would add further knowledge on the size of secondary current cells and 

their implications.  

• More research on different rheological parameters should be carried out. For example: 

high yield stress material and shear thickening material. 

• More research on re-suspension should be followed by the development of a 

relationship between particle size, and re-suspension. PIV technology should be used 

to conduct future research. This would be extremely helpful to see the particle re-

suspension in different fluids. However, the use of non-Newtonian fluid could make 

this more difficult. 
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• More research should be carried out to examine the effect of secondary current on re-

suspension, and to establish a relationship between secondary flow and re-suspension. 

This would be of benefit to the mining industry as secondary current has a significant 

influence on particle suspension and re-suspension. 

• More research should be carried out to examine the particle settling in non-Newtonian 

suspension under shear. This could be extremely helpful to the mining industry as this 

may lead to more accurate design of the structure of the tailing stack. 
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Appendix A Highett experimental data  
 

This appendix contains the detailed log of measurements made during Highett experiment. 

Statistical analysis for this set of data is also presented in this appendix. 

 

Date 04/05/2010       

      slope  

Name Depth (cm) 
Nominal 
velocity (m/s) Temp(

o
C) Flow rate (L/s) 2.23%  

110620 4.5 1.2 18.1 8.22    

110759 4.4 1.8  8.23    

110945 4.5 2.4 18.27 8.24    

        

111207 4.8 1.2 18.27 8.22    

111349 4.8 1.8  8.17    

111523 4.8 2.4  8.18    

        

111722 5 1.2  8.22    

111845 5.1 1.8  8.23    

112040 4.9 2.4 18.61 8.47    

        

112225 5.4 1.2 18.44 8.16    

112420 5.4 1.8  8.26    

112615 5.3 2.4 18.61 8.26    

        

112828 5.9 1.2 18.44 8.19    

112955 5.9 1.8 18.61 8.31    

113118 5.7 2.4  8.3    

        

113319 6 1.2 18.78 8.58    

113513 6.1 1.8 18.61 8.46    

113704 6 2.4  8.41    

        

113847 6.3 1.2  8.67    

114035 6.9 1.8 18.78 8.93    

114223 6.9 2.4  8.5    

        

114449 6.8 1.2 18.78 8.47    

114629 6.8 1.8  8.68    

114752 7.5 2.4  8.85  Entry Exit 

      4.4 4 

114943 8 1.2 18.78 8.89    

115123 7.1 1.8  8.73    

115331 8.1 2.4 18.96 8.85    

        

115619 5.3 1.2 18.96 8.33    

115744 5.2 1.8  8.39    

115925 4.7 2.4  8.35    
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120110 5.1 1.2 19.13 8.57    

120314 5.2 1.8  8.15    

120452 5.2 2.4  8.3    

        

120658 5.5 1.2 19.13 8.36    

120845 5.5 1.8  8.27    

121013 5.5 2.4 19.3 8.56    

        

121340 5.9 1.2 19.3 8.61    

121522 5.8 1.8  8.4    

121645 5.8 2.4  8.33    

        

121826 6.1 1.2 19.3 8.66    

121951 6.1 1.8  8.45    

122116 6.1 2.4  8.4    

        

122330 6.3 1.2 19.3 8.84    

122455 6.3 1.8  8.63    

122624 6.4 2.4  8.8    

        

122844 6.6 1.2 19.3 8.69    

123003 6.5 1.8  8.75    

123127 6.6 2.4 19.47 8.76    

        

123442 6.3 1.2 19.47 8.76    

123603 6.3 1.8  9.12  Entry Exit 

123733 6.7 2.4  8.9  4.3 3.8 

      Slope  

133714 4.5 1.2 19.47 8.1  4.70%  

134010 4.4 1.8  8.24    

134218 4.4 2.4  8.46    

        

134405 4.6 1.2 19.47 8.27    

131531 4.7 1.8 19.64 8.34    

134656 4.6 2.4  8.33    

        

134908 5 1.2 19.64 8.16    

135047 5 1.8  8.33    

135323 5 2.4  8.38    

        

135542 5.2 1.2 19.81 8.39    

140154 5.1 1.8 19.81 8.25    

140350 5.1 2.4  8.42    

        

140611 5.3 1.2 19.81 8.25    

140802 5.3 1.8  8.5    

140943 5.3 2.4 19.99 8.39    

        

141159 5.5 1.2 19.81 8.62    

141343 5.6 1.8  8.51    

141505 5.6 2.4  8.64    

        

141712 5.8 1.2 19.99 8.67    
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141850 5.7 1.8  8.57  Entry Exit 

142023 5.5 2.4  8.71  4.5 5.5 

        

143647 4.6 1.2 20.33 8.48   5.3 

143811 4.6 1.8  8.5    

143942 4.6 2.4 20.16 8.56    

        

144156 4.9 1.2 20.33 8.43    

144428 4.9 1.8 20.5 8.39    

144602 4.8 2.4  8.43    

        

144758 5.2 1.2 20.33 8.5    

144957 5.2 1.8 20.5 8.33    

145125 5.1 2.4  8.51    

        

145319 5.4 1.2 20.5 8.5    

145441 5.4 1.8  8.49    

145602 5.4 2.4  8.62    
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Date 07/05/2010       

      slope   

Name depth (cm) 
Nominal 
velocity (m/s) 

Temp 
(
o
C) Flow rate (L/s) 5.70%  

102746 4.9 1.2 16.91 7.44    

102910 4.8 1.8 17.08 7.5  Entry Exit 

103035 4.8 2.4 16.91 7.55  5.4 4.4 

        

103806 4.9 1.2 17.08 8.42    

104005 4.9 1.8  8.5    

105501 5 2.4  8.39    

        

105643 4.8 1.2 17.25 8.55    

105946 4.9 1.8  8.57    

110125 5 2.4  8.74    

        

110320 5.3 1.2 17.25 8.74    

110445 5.3 1.8  8.74    

110621 5.4 2.4 17.42 8.77    

        

111439 5.7 1.2 17.42 9.09    

111608 5.7 1.8  9.12    

111755 5.7 2.4  8.62    

      slope  

112449 5.7 1.2 17.59 8.78  4.70%  

112716 5.7 1.8  8.87    

112841 5.7 2.4 17.76 8.8    

        

113103 5.4 1.2 17.76 8.4    

113288 5.3 1.8  8.45    

113421 5.3 2.4  8.51    

        

113841 5 1.2 17.93 8.59    

114031 5 1.8 17.76 8.57    

114151 5 2.4  8.55    

        

114827 4.7 1.2 17.93 8.4    

114952 4.7 1.8  8.45    

115105 4.7 2.4  8.4    
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Date 11/05/2010       

      slope   

Name depth (cm) 
Nominal 
velocity (m/s) 

Temp 
(
o
C) Flow rate (L/s) 4.70%  

103938 5.1 1.2 17.08 8.79    

104111 5 1.8  8.65  Entry Exit 

104251 5.2 2.4  8.85  4.8 4.3 

        

104458 5.4 1.2 17.08 8.74    

104640 5.4 1.8  8.66    

104821 5.4 2.4  8.85    

        

105406 5.7 1.2 17.08 8.7    

105547 5.6 1.8  8.75    

105808 5.7 2.4  8.72    

        

110143 5.9 1.2 17.08 8.95    

110513 5.9 1.8  8.8    

110642 6 2.4 17.25 8.89    

        

111110 5.9 1.2 17.25 8.85    

111249 5.9 1.8  8.83    

111414 5.9 2.4  9.08    

        

111614 5.7 1.2 17.25 8.85    

111937 5.7 1.8  8.91    

112111 5.6 2.4 17.42 8.66    

        

112300 5.4 1.2 17.42 8.82    

112424 5.5 1.8  8.73    

112524 5.4 2.4  8.99    

        

132915 5.2 1.2 17.08 8.67    

133042 5.2 1.8  8.8    

133219 5.3 2.4  8.62    

        

133429 5.7 1.2 17.08 8.66    

133558 5.7 1.8  8.77    

133727 5.7 2.4  8.95    

        

133912 6 1.2 17.08 8.79    

134058 6 1.8  8.93    

134224 6 2.4  8.76    

        

134335 5.9 1.2 17.08 8.86    

134528 6 1.8  8.77    

134710 6 2.4  8.81    

        

134857 5.7 1.2 17.08 8.89    

135033 5.7 1.8  8.74    

135207 5.8 2.4 17.25 8.65    
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135343 5.5 1.2 17.25 8.84    

135513 5.5 1.8  8.8    

135630 5.5 2.4  8.76    

        

135809 5.3 1.2 17.25 8.8    

135927 5.3 1.8  8.83    

140055 5.3 2.4  8.76    

        

140541 5.4 1.2 17.25 8.97    

140659 5.4 1.8  8.82    

140908 5.5 2.4  8.75    

        

141101 5.7 1.2 17.42 8.73    

141250 5.7 1.8  8.75    

141408 5.7 2.4  8.71    

        

141602 5.9 1.2 17.25 8.99    

141728 5.9 1.8  8.86    

141851 5.9 2.4  8.96    

        

142110 6 1.2 17.25 9    

142323 6.1 1.8  8.92    

142456 6 2.4  8.86    

        

142757 6.1 1.2 17.42 8.85    

143318 5.8 1.8  8.77    

143519 5.8 2.4  8.7    

        

143700 5.6 1.2 17.42 8.85    

143828 5.5 1.8  8.81    

144007 5.6 2.4  8.74    

        

144145 5.4 1.2 17.42 8.83    

144312 5.3 1.8  8.73    
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Date 14/05/2010       

      slope   

Name depth (cm) 
Nominal 
velocity (m/s) 

Temp 
(
o
C) Flow rate (L/s) 4.70%  

115717 5.9 1.2 16.4 8.89    

115932 5.9 1.8  8.86  Entry Exit 

120153 5.9 2.4  8.84  6.8 6.3 

        

133644 5.5 1.2 16.4 8.69    

134134 5.5 1.8  8.67    

134456  2.4 16.57 8.65    

        

134625 5.5 1.2 16.57 8.61    

134759 5.5 1.8  8.6    

134935 5.5 2.4  8.59    

        

135121 5.8 1.2 16.57 8.59    

135257 5.8 1.8  8.56    

135436 5.8 2.4  8.6    

        

135612 5.9 1.2 16.57 8.58    

135746 5.8 1.8  8.57    

135914 5.9 2.4  8.59    

        

140209 6 1.2 16.57 8.58    

141922 6.1 1.8  9.2    

142059 6.1 2.4  8.8    

        

142223 6 1.2 16.57 8.83    

142408 6 1.8  8.85    

142534 6 2.4  8.85    

        

142730 5.9 1.2 16.74 8.84    

142850 5.9 1.8  8.84    

143017 5.9 2.4  8.85    
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Date 17/05/2010       

      slope   

Name depth (cm) 
Nominal 
velocity (m/s) 

Temp 
(
o
C) Flow rate (L/s) 4.70%  

113905 5.9 1.2 15.21 8.47    

114036 5.9 1.8  8.44  Entry Exit 

114219 5.9 2.4 15.38 8.44  6.1 5.1 

        

114353 6 1.2 15.38 8.45    

114525 5.9 1.8  8.45    

114659 5.9 2.4  8.47    

        

114845 5.7 1.2 15.38 8.44    

115039 5.7 1.8  8.45    

115222 5.7 2.4  8.45    

        

115408 5.4 1.2 15.38 8.47    

115531 5.4 1.8  8.49    

115722 5.5 2.4  8.46    

        

115900 5.1 1.2 15.38 8.45    

120027 5.2 1.8  8.4    

120219 5.2 2.4  8.45    

        

120708 5.2 1.2 15.38 8.44    

120830 5.2 1.8  8.27    

120956 5.2 2.4  8.48    

        

121134 5.4 1.2 15.38 8.49    

121301 5.6 1.8  8.47    

121428 5.5 2.4  8.45    

        

121608 5.8 1.2 15.38 8.47    

121755 6 1.8  8.45    

121914 5.8 2.4  8.46    

        

133428 5.8 1.2 15.38 8.46    

133548 5.8 1.8  8.45    

133726 5.9 2.4  8.53    

        

133901 5.4 1.2 15.38 8.56    

134042 5.4 1.8  8.51    

134225 5.5 2.4  8.53    

        

134421 5.3 1.2 15.38 8.52    

134549 5.2 1.8 15.55 8.53    

134716 5.3 2.4  8.53    

        

134900 5 1.2 15.55 8.42    

135030 5 1.8  8.45    

135207 5 2.4  8.43    

        

135353 4.7 1.2 15.55 8.2    
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135515 4.7 1.8  8.2    

135640 4.7 2.4  8.4    

        

135930 5 1.2 15.55 8.42    

140118 5 1.8  8.53    

140239 5 2.4  8.42    

        

140419 5.2 1.2 15.55 8.66    

140543 5.3 1.8  8.7    

140704 5.2 2.4  8.77    

        

141028 5.5 1.2 15.55 8.8    

141157 5.5 1.8  8.82    

141334 5.5 2.4  8.84    

        

144622 5.7 1.2 15.55 8.69    

144803 5.7 1.8  8.84    

145044 5.7 2.4 15.55 8.81    

        

145243 6.2 1.2 15.55 8.85    

145500 6.2 1.8  8.85    

145623 6.1 2.4  8.82    

        

145755 5.6 1.2 15.72 8.83    

145926 5.5 1.8  8.83    

150048 5.6 2.4  8.84    

        

150223 5.3 1.2 15.72 8.64    

150403 5.3 1.8  8.74    

150528 5.3 2.4  8.66    

        

150712 5.1 1.2 15.72 8.42    

150851 5.1 1.8  8.45    

151030 5 2.4  8.43    

      side 1  

151509 4.9 1.2 15.72 8.41    

151634 5 1.8  8.25    

151800 4.9 2.4  8.46    

        

151934 5.2 1.2 15.72 8.5    

152102 5.2 1.8  8.56    

152305 5.2 2.4  8.55    

        

153214 5.4 1.2 15.72 8.44    

153336 5.5 1.8  8.46    

153453 5.4 2.4  8.56    

        

153633 5.6 1.2 15.72 8.57    

153756 5.5 1.8  8.58    

153928 5.6 2.4  8.57    

        

154058 5.6 1.2 15.72 8.59    

154234 5.5 1.8  8.6    
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Date 18/05/2010       

      slope   

Name depth (cm) 
Nominal 
velocity (m/s) 

Temp 
(
o
C) Flow rate (L/s) 4.70%  

101003 4.6 1.2 15.04 8.12    

101130 4.6 1.8  8.13    

101258 4.7 2.4  8.15    

        

101557 4.9 1.2 15.04 8.17    

101718 4.9 1.8  8.2    

101837 4.9 2.4  8.28    

        

105038 5.4 1.2 15.04 8.79    

102219 5.4 1.8  8.78    

102338 5.5 2.4  8.74    

        

102524 5.7 1.2 15.04 8.75    

102654 5.6 1.8  8.77    

102814 5.7 2.4  8.77    

        

102949 6 1.2 15.04 8.77    

103140 6 1.8  8.81    

103304 5.9 2.4  8.83    

        

103434 5.9 1.2 15.04 8.83    

103603 5.8 1.8  8.85    

103721 5.9 2.4  8.85    

        

104006 4.7 1.2 15.04 10.06  Entry Exit 

104150 4.6 1.8  10.02  7.5 7 

104308 4.7 2.4  10.17    

        

104449 4.9 1.2 15.04 10.14    

104620 5 1.8  10.11    

104807 4.9 2.4  10.12    

        

105024 5.2 1.2 15.04 10.12    

105159 5.1 1.8  10.14    

105309 5.1 2.4  10.05    

        

105442 5.5 1.2 15.04 10.01    

105554 5.5 1.8  9.9    

105716 5.5 2.4  10    

        

105843 5.8 1.2 15.04 10.45    

110003 5.9 1.8 15.21 10.25    

110155 5.8 2.4  10.14    

        

110435 6.1 1.2 15.21 10.33    

110558 6.2 1.8  10.24    

110719 6.2 2.4  10.29    
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110435 6.1 1.2 15.21 10.33    

110558 6.2 1.8  10.24    

110719 6.2 2.4  10.29    

        

110851 6.5 1.2 15.21 10.71    

111007 6.5 1.8  10.25    

111153 6.6 2.4  10.38    

        

114042 4.7 1.2 15.21 7.5  Entry Exit 

114221 4.7 1.8  7.55  6 5.5 

114336 4.5 2.4  7.64    

        

114500 4.9 1.2 15.21 7.92    

114704 4.9 1.8  7.78    

114824 5 2.4  7.82    

        

115006 5.3 1.2 15.21 7.82    

115122 5.4 1.8  7.82    

115234 5.3 2.4  7.82    

        

115414 5.9 1.2 15.21 7.84    

115524 5.9 1.8  7.83    

  2.4      

        

115818 6.4 1.2 15.21 10.3    

115945 6.4 1.8  10.3    

120103 6.5 2.4  10.32    

        

120241 6.1 1.2 15.21 10.15    

120402 6 1.8  10.15    

120532 6 2.4  10.49    

        

120654 5.7 1.2 15.21 9.91    

120813 5.6 1.8 15.38 10.16    

120941 5.7 2.4  10.35    

        

121225 5.4 1.2 15.38 10.31    

121353 5.4 1.8  10.12    

121517 5.4 2.4  10.26    

        

121644 5.2 1.2 15.8 10.31    

121756 5.2 1.8  10.18    

121910 5.2 2.4  10.2    
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Date 18/05/2010       

      slope   

Name depth (cm) 
Nominal 
velocity (m/s) 

Temp 
(
o
C) Flow rate (L/s) 4.70%  

124533 5 1.2 14.7 8.39    

124718 4.9 1.8  8.48    

124909 5 2.4  8.48    

        

125108 5.3 1.2 14.7 8.52  Entry Exit 

125237 5.1 1.8  8.49  6.5 6 

125413 5.3 2.4  8.52    

        

125612 5.4 1.2 14.7 8.52    

125738 5.3 1.8  8.51    

125913 5.3 2.4  8.54    

        

130100 5.8 1.2 14.7 8.5    

130324 5.8 1.8  8.48    

130449 5.8 2.4  8.51    

        

130657 6.1 1.2 14.7 8.52    

130839 6 1.8  8.51    

133411 6.2 2.4  8.22    

        

133707 6.2 1.2 14.7 8.43    

133833 6 1.8  8.43    

133955 6.2 2.4  8.45    

        

134221 5.7 1.2 14.7 8.57    

134356 5.7 1.8 14.87 8.58    

134514 5.7 2.4  8.56    

        

134715 5.4 1.2 14.87 8.56    

134847 5.4 1.8  8.57    

135009 5.4 2.4  8.61    

        

135245 5.1 1.2 14.87 8.41    

135405 5 1.8  8.41    

135535 4.9 2.4  8.34    

        

135757 5 1.2 14.87 7.5  Entry Exit 

135940 5.1 1.8  7.5  6 5.5 

140101 5 2.4  7.48    

        

140304 5.2 1.2 14.87 7.51    

140428 5.3 1.8  7.51    

140542 5.2 2.4  7.5    

        

140740 5.5 1.2 14.87 7.5    

140913 5.6 1.8  7.4    

141045 5.6 2.4  7.45    

        

141238 5.9 1.2 14.87 7.53    
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141404 5.7 1.8  7.5    

141526 5.9 2.4  7.54    

        

141646 5.6 1.2 14.87 7.49    

141807 5.6 1.8  7.51    

141928 5.7 2.4  7.53    

        

143049 5.4 1.2 15.04 7.52    

143215 5.5 1.8  7.54    

144113 5.5 2.4  7.51    

        

144302 5 1.2 15.04 7.51    

144423 5 1.8  7.5    

144544 5 2.4  7.52    

        

144936 5 1.2 15.04 10.63  Entry Exit 

145103 5 1.8  10.35  7.5 8 

145221 5 2.4  10.21    

        

145358 5.3 1.2 15.04 10.16    

145532 5.3 1.8  10.55    

145654 5.3 2.4  10.5    

        

145848 5.7 1.2 15.04 10.51    

150007 5.6 1.8  10.33    

150131 5.6 2.4  10.7    

        

150320 6.3 1.2 15.04 10.71    

150432 6.4 1.8  10.65    

150541 6.1 2.4  10.74    

        

150726 6.6 1.2 15.04 10.74    

150842 6.5 1.8  10.74    

151007 6.5 2.4  10.74    
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Date 28/05/2010       

      slope   

Name depth (cm) 
Nominal 
velocity (m/s) 

Temp 
(
o
C) Flow rate (L/s) 4.70%  

105540 5 1.2 15.89 8.52    

105657 5 1.8  8.53  Entry Exit 

105815 5 2.4  8.47  6.5 6 

        

110022 5.3 1.2 15.89 8.49    

110156 5.2 1.8  8.45    

110315 5.2 2.4  8.44    

        

110455 5.5 1.2 15.89 8.46    

110623 5.5 1.8  8.47    

110747 5.5 2.4  8.5    

        

112939 5.8 1.2 15.89 8.65    

113105 5.8 1.8  8.5    

113222 5.8 2.4  8.62    

        

115558 5.4 1.2 16.06 8.63    

115720 5.4 1.8  8.63    

115855 5.4 2.4  8.65    

        

120034 5.1 1.2 16.06 8.62    

120202 5.1 1.8  8.62    

120329 5.1 2.4  8.61    

        

120505 4.8 1.2 16.23 8.74    

120622 4.8 1.8  8.75    

120753 4.8 2.4  8.75    

        

120937 5 1.2 16.23 8.73    

121102 5 1.8  8.74    

121225 4.9 2.4  8.73    

        

121414 5.3 1.2 16.23 8.76    

121545 5.4 1.8  8.75    

121713 5.4 2.4  8.76    

        

122240 4.9 1.2 16.23 8.67  side1  

122407 4.7 1.8  8.75    

122554 4.5 2.4  8.76    

        

122733 4.5 1.2 16.23 8.76    

122851 4.6 1.8  8.75    

123031 4.7 2.4  8.75    

        

123257 4.7 1.2 16.23 8.78    

123435 4.9 1.8 16.4 8.76    

123653 4.9 2.4  8.77    

        

123918 5 1.2 16.4 8.76    
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124120 4.9 1.8  8.75    

124300 4.9 2.4  8.76    

        

124459 5.4 1.2 16.4 8.76    

124625 5.3 1.8  8.77    

124809 5.3 2.4  8.75    

        

125021 5.7 1.2 16.4 8.75    

125148 5.8 1.8  8.77    

125350 5.8 2.4  8.75    

        

125910 4.8 1.2 16.4 8.75  side2  

130044 4.8 1.8  8.77    

130217 4.8 2.4  8.76    

        

130408 5.1 1.2 16.4 8.79    

130531 5.1 1.8  8.78    

130652 5.2 2.4  8.8    

        

130831 5.4 1.2 16.4 8.77    

130947 5.4 1.8  8.78    

131107 5.5 2.4  8.75    

        

131239 5.7 1.2 16.4 8.75    

131358 5.7 1.8  8.81    

131514 5.7 2.4  8.8    

        

131646 5.1 1.2 16.57 8.82    

131809 5.1 1.8  8.8    

131923 5.1 2.4  8.83    

        

132047 4.9 1.2 16.57 8.87    

132205 4.9 1.8  8.77    

132327 4.9 2.4  8.78    
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Table 29 to Table 31 present three different flow measurements that were recorded in the first 

phase experiment. Each series of measurement was recorded for a different flow rate.  

 

Table 29 Random error analysis on flow rate measured on 7/5/2010 

Date 7/05/2010 

Name 
depth 
(cm) 

Nominal velocity 
(m/s) 

Flow rate 
(L/s) Mean 8.625833 

103806 4.9 1.2 8.42 Standard deviation 0.207928 

104005 4.9 1.8 8.5 Count 24 

105501 5 2.4 8.39 Alpha 0.05 

105643 4.8 1.2 8.55 
Confidence level 
(95%) 0.083187 

105946 4.9 1.8 8.57 CL/Mean 0.009644 

110125 5 2.4 8.74 

110320 5.3 1.2 8.74 

110445 5.3 1.8 8.74 

110621 5.4 2.4 8.77 

111439 5.7 1.2 9.09 

111608 5.7 1.8 9.12 

111755 5.7 2.4 8.62 

112449 5.7 1.2 8.78 

112716 5.7 1.8 8.87 

112841 5.7 2.4 8.8 

113103 5.4 1.2 8.4 

113288 5.3 1.8 8.45 

113421 5.3 2.4 8.51 

113841 5 1.2 8.59 

114031 5 1.8 8.57 

114151 5 2.4 8.55 

114827 4.7 1.2 8.4 

114952 4.7 1.8 8.45 

115105 4.7 2.4 8.4 
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Table 30 Random error analysis on flow rate measured on 18/5/2010 

Date 18/05/2010 

Name depth (cm) 
Nominal velocity 
(m/s) 

Flow rate 
(L/s) Mean 7.502381 

135757 5 1.2 7.5 Standard deviation 0.030968 

135940 5.1 1.8 7.5 Count 21 

140101 5 2.4 7.48 Alpha 0.05 

140304 5.2 1.2 7.51 
Confidence level 
(95%) 0.013245 

140428 5.3 1.8 7.51 CL/Mean 0.001765 

140542 5.2 2.4 7.5 

140740 5.5 1.2 7.5 

140913 5.6 1.8 7.4 

141045 5.6 2.4 7.45 

141238 5.9 1.2 7.53 

141404 5.7 1.8 7.5 

141526 5.9 2.4 7.54 

141646 5.6 1.2 7.49 

141807 5.6 1.8 7.51 

141928 5.7 2.4 7.53 

143049 5.4 1.2 7.52 

143215 5.5 1.8 7.54 

144113 5.5 2.4 7.51 

144302 5 1.2 7.51 

144423 5 1.8 7.5 

144544 5 2.4 7.52 
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Table 31 Random error analysis on flow rate measured on 18/5/2010 

Date 18/05/2010 

Name depth (cm) 
Nominal velocity 
(m/s) 

Flow rate 
(L/s) Mean 10.55067 

144936 5 1.2 10.63 Standard deviation 0.201617 

145103 5 1.8 10.35 Count 15 

145221 5 2.4 10.21 Alpha 0.05 

145358 5.3 1.2 10.16 
Confidence level 
(95%) 0.102031 

145532 5.3 1.8 10.55 CL/Mean 0.009671 

145654 5.3 2.4 10.5 

145848 5.7 1.2 10.51 

150007 5.6 1.8 10.33 

150131 5.6 2.4 10.7 

150320 6.3 1.2 10.71 

150432 6.4 1.8 10.65 

150541 6.1 2.4 10.74 

150726 6.6 1.2 10.74 

150842 6.5 1.8 10.74 

151007 6.5 2.4 10.74 
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Appendix B Tensor converting from Cartesian format to 
cylindrical format 
 

If S is a tensor, with components 
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(86) 

 

In the cylindrical-polar basis and the Cartesian basis respectively. These two sets of 

components are related by  
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The simulation produces results in Cartesian format, therefore all the components needs to be 

converted into cylindrical format for plotting purpose.  
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Appendix C Mesh spacing calculation 

This is the sample calculation for mesh spacing.  
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Appendix D Highett experimental rheological data and 
model fitting 
 

This appendix contains all of the rheograms that were recorded for the tested fluids used in 

Highett experiments. The rheology testing was conducted at the same temperature that it was 

under the laboratory flume. Statistical analysis for this set of data is also presented in this 

appendix. 

 

Appendix D 1 Rheograms for fluid 0405 from Highett experiment 
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Appendix D 2 Rheograms for fluid 0705 from Highett experiment 

 

Appendix D 3 Rheograms for fluid 1105 from Highett experiment 
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Appendix D 4 Rheograms for fluid 1405 from Highett experiment 

 

 

Appendix D 5 Rheograms for fluid 1705 from Highett experiment 
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Appendix D 6 Rheograms for fluid 1805 from Highett experiment 

 

 

Appendix D 7 Rheograms for fluid 2405 from Highett experiment 
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Appendix D 8 Rheograms for fluid 2805 from Highett experiment 
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Table 32 to Table 35 present rheological data that was measured by Rheosys Merlin II 

rheometer at RMIT University. Each sample was tested twice. The 95% confidence level is 

showed in each table.  

 

Table 32 Rheological data for first phase experimental 0405.1100 

0405.1100a 0405.1100b 

Shear Rate (1/s) 
Shear stress 
(Pa) 

Shear stress 
(Pa) Mean 3.489 

0.985 2.009 2.059 Standard deviation 0.028284 

51.552 2.569 2.66 Count 2 

93.145 3.469 3.509 Alpha 0.05 

134.737 4.379 4.375 95% CL 0.039199 

176.329 5.128 5.204 CL/Mean 0.011235 

217.921 5.781 5.852 

259.513 6.387 6.531 

301.105 7.008 7.131 

342.588 7.603 7.688 

384.18 8.11 8.245 

425.773 8.696 8.787 

467.365 9.147 9.252 

508.847 9.679 9.821 

550.44 10.161 10.309 

592.032 10.607 10.765 

633.733 11.123 11.288 

675.326 11.638 11.759 

716.808 12.093 12.175 

758.4 12.619 12.57 

799.993 13.048 13.088 

 

 

  



 

  Page 309 

 

Table 33 Rheological data for first phase experimental 0405.1200 

0405.1200a 0405.1200b 

Shear Rate (1/s) 
Shear stress 
(Pa) 

Shear stress 
(Pa) Mean 3.328 

0.985 2 1.989 Standard deviation 0.056569 

51.552 2.454 2.508 Count 2 

93.145 3.288 3.368 Alpha 0.05 

134.737 4.254 4.121 95% CL 0.078399 

176.329 4.91 4.935 CL/Mean 0.023557 

217.921 5.497 5.646 

259.513 6.253 6.299 

301.105 6.667 6.843 

342.588 7.086 7.426 

384.18 7.503 8.003 

425.773 8.105 8.507 

467.365 8.366 8.994 

508.847 8.879 9.466 

550.44 9.367 10.026 

592.032 9.855 10.446 

633.733 10.339 10.923 

675.326 10.802 11.463 

716.808 11.261 11.943 

758.4 11.63 12.247 

799.993 12.134 12.836 

 

Table 34 Rheological data for first phase experimental 0405.1400 

0405.1400a 0405.1400b 

Shear Rate (1/s) 
Shear stress 
(Pa) 

Shear stress 
(Pa) Mean 3.8335 

0.985 2.109 1.879 Standard deviation 0.000707 

51.552 2.67 2.678 Count 2 

93.145 3.834 3.833 Alpha 0.05 

134.737 4.775 4.708 95% CL 0.00098 

176.329 5.594 5.598 CL/Mean 0.000256 

217.921 6.368 6.319 

259.513 7.121 7.056 

301.105 7.855 7.777 

342.588 8.491 8.45 

384.18 9.06 9.139 

425.773 9.723 9.887 

467.365 10.34 10.446 

508.847 11.014 10.948 

550.44 11.527 11.544 

592.032 12.072 12.136 

633.733 12.625 12.853 

675.326 13.339 13.442 

716.808 13.891 13.877 

758.4 14.407 14.292 

799.993 14.91 14.893 
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Table 35 Rheological data for first phase experimental 0405.1500 

0405.1500a 0405.1500b 

Shear Rate (1/s) 
Shear stress 
(Pa) 

Shear stress 
(Pa) Mean 3.753 

0.985 2.053 2.035 Standard deviation 0.050912 

51.552 2.735 2.674 Count 2 

93.145 3.717 3.789 Alpha 0.05 

134.737 4.764 4.65 95% CL 0.070559 

176.329 5.633 5.492 CL/Mean 0.018801 

217.921 6.396 6.222 

259.513 6.95 6.905 

301.105 7.806 7.623 

342.588 8.468 8.297 

384.18 9.012 8.846 

425.773 9.613 9.494 

467.365 10.185 10.052 

508.847 10.745 10.662 

550.44 11.425 11.249 

592.032 12.143 11.827 

633.733 12.554 12.266 

675.326 13.088 12.853 

716.808 13.639 13.475 

758.4 14.481 14.079 

799.993 14.879 14.547 
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Appendix E Small flume experiments rheological data  
 

This appendix contains all of the rheograms that were recorded for the tested fluids used in 

RMIT small flume experiments. The rheological model curve was also fitted. Each of the 

fluids was tested 3 times in the rheometer at the same temperature that it was under the 

laboratory flume. Statistical analysis for this set of data is also presented in this appendix. 

 

 

Appendix E 1 Rheograms for fluid 1307 from small flume experiment 
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Appendix E 2 Rheograms for fluid 1407a from small flume experiment 

 

 

Appendix E 3 Rheograms for fluid 1407b from small flume experiment 

y = 0.1542x
0.7258

R
2
 = 0.9977

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900

Shear rate (1/s)

S
h

e
a

r 
s

tr
e

s
s

 (
P

a
)

1407a_t1

1407a_t2

1407a_t3

Power (1407a_t3)

y = 0.1397x
0.7077

R
2
 = 0.9949

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900

Shear rate (1/s)

S
h

e
a

r 
s
tr

e
s

s
 (

P
a

)

1407b_t1

1407b_t2

1407b_t3

Power (1407b_t3)



 

  Page 313 

 

 

Appendix E 4 Rheograms for fluid 1507a from small flume experiment 

 

 

Appendix E 5 Rheograms for fluid 1507b from small flume experiment 
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Appendix E 6 Rheograms for fluid 1907 from small flume experiment 

 

 

Appendix E 7 Rheograms for fluid 2007a from small flume experiment 
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Appendix E 8 Rheograms for fluid 2007b from small flume experiment 

 

 

Appendix E 9 Rheograms for fluid 2107 from small flume experiment 
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Appendix E 10 Rheograms for fluid 2607a from small flume experiment 
 

 

Appendix E 11 Rheograms for fluid 2607b from small flume experiment 
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Table 36 to Table 42 present rheological data that was measured by Rheosys Merlin II 

rheometer at RMIT University. Each sample was tested three times. The 95% confidence 

level is shown in each table.  

 

Table 36 Rheological data for first phase experimental 1307 

Run 1 2 3 

Shear Rate 
(1/s) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) Mean 8.858667 

0.985 0 0 0 Standard deviation 0.264162 

43.125 4.183 3.972 4.011 Count 3 

85.045 6.748 6.365 6.544 Alpha 0.05 

127.184 9.128 8.6 8.848 95% CL 0.298921 

169.214 11.469 10.695 11.12 CL/Mean 0.033743 

211.244 13.516 12.669 13.244 

253.274 15.337 14.441 15.118 

295.414 17.309 16.181 16.963 

337.444 18.8 17.874 18.669 

379.474 20.561 19.457 20.358 

421.504 22.281 21.018 22.071 

463.534 23.918 22.595 23.648 

505.564 25.477 23.989 25.206 

547.703 26.987 25.493 26.705 

589.733 28.508 26.896 28.201 

631.763 30.048 28.271 29.671 

673.793 31.47 29.664 31.049 

715.823 32.712 30.966 32.503 

757.853 33.825 32.229 34.014 

799.993 35.184 33.865 35.304 
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Table 37 Rheological data for first phase experimental 1407a 

Run 1 2 3 

Shear Rate 
(1/s) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) Mean 5.03333 

0.985 0 0 0 
Standard 
deviation 0.01795 

43.125 2.085 2.527 2.581 Count 3 

85.045 3.886 3.762 3.779 Alpha 0.05 

127.184 5.04 5.013 5.047 95% CL 0.02032 

169.214 6.335 6.196 6.233 CL/Mean 0.00404 

211.244 7.425 7.285 7.339 

253.274 8.458 8.245 8.37 

295.414 9.529 9.24 9.376 

337.444 10.427 10.235 10.353 

379.474 11.423 11.218 11.325 

421.504 12.245 12.122 12.214 

463.534 13.292 13.075 13.244 

505.564 13.999 14.006 14.061 

547.703 14.982 14.984 14.986 

589.733 15.779 15.888 15.921 

631.763 16.618 16.755 16.777 

673.793 17.479 17.704 17.691 

715.823 18.245 18.6 18.524 

757.853 19.151 19.542 19.551 

799.993 20.004 20.373 20.321 
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Table 38 Rheological data for first phase experimental 1507a 

Run 1 2 3 

Shear Rate 
(1/s) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) Mean 12.21367 

0.985 0.1 0.1 0.1 
Standard 
deviation 0.114028 

43.125 5.448 5.506 5.501 Count 3 

85.045 9.135 9.113 9.126 Alpha 0.05 

127.184 12.082 12.28 12.279 95% CL 0.129032 

169.214 15.072 15.157 15.249 CL/Mean 0.010565 

211.244 17.806 17.864 17.957 

253.274 20.324 20.337 20.511 

295.414 22.756 22.752 22.906 

337.444 24.875 24.971 25.16 

379.474 27.012 27.061 27.298 

421.504 28.98 29.146 29.319 

463.534 31.013 31.127 31.279 

505.564 32.962 33.003 33.171 

547.703 34.861 34.88 35.094 

589.733 36.672 36.674 36.923 

631.763 38.258 38.424 38.715 

673.793 40.123 40.203 40.393 

715.823 41.942 41.938 42.093 

757.853 43.41 43.589 43.865 

799.993 44.641 45.241 45.381 
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Table 39 Rheological data for first phase experimental 1907 

Run 1 2 3 

Shear Rate 
(1/s) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) Mean 5.179667 

0.985 0.1 0.1 0.1 
Standard 
deviation 0.139733 

43.125 2.819 2.764 2.789 Count 3 

85.045 3.984 3.9 3.937 Alpha 0.05 

127.184 5.341 5.097 5.101 95% CL 0.15812 

169.214 6.391 6.302 6.248 CL/Mean 0.030527 

211.244 7.439 7.294 7.287 

253.274 8.444 8.261 8.274 

295.414 9.419 9.213 9.28 

337.444 10.383 10.192 10.232 

379.474 11.371 11.164 11.206 

421.504 12.364 12.086 12.159 

463.534 13.287 12.996 13.014 

505.564 14.224 13.924 13.903 

547.703 15.15 14.826 14.884 

589.733 16.103 15.689 15.815 

631.763 17.017 16.601 16.714 

673.793 17.972 17.489 17.555 

715.823 18.821 18.359 18.508 

757.853 19.44 19.284 19.518 

799.993 20.6 20.115 20.278 
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Table 40 Rheological data for first phase experimental 2007a 

Run 1 2 3 

Shear Rate 
(1/s) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) Mean 3.927 

0.985 0.1 0.1 0.1 
Standard 
deviation 0.03005 

43.125 2.292 2.48 2.28 Count 3 

85.045 3.047 3.029 3.058 Alpha 0.05 

127.184 3.958 3.925 3.898 95% CL 0.034004 

169.214 4.721 4.67 4.631 CL/Mean 0.008659 

211.244 5.473 5.377 5.351 

253.274 6.245 6.035 6.099 

295.414 6.877 6.749 6.731 

337.444 7.526 7.396 7.342 

379.474 8.187 8.089 8.028 

421.504 8.848 8.713 8.726 

463.534 9.457 9.357 9.293 

505.564 10.162 10.025 10 

547.703 10.807 10.601 10.59 

589.733 11.439 11.293 11.26 

631.763 12.127 11.895 11.854 

673.793 12.75 12.541 12.51 

715.823 13.39 13.167 13.198 

757.853 14.029 13.643 13.82 

799.993 14.617 14.434 14.432 
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Table 41 Rheological data for first phase experimental 2107 

Run 1 2 3 

Shear Rate 
(1/s) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) Mean 10.14133 

0.985 0.1 0.1 0.1 
Standard 
deviation 0.179305 

43.125 4.949 4.997 4.944 Count 3 

85.045 7.481 7.741 7.652 Alpha 0.05 

127.184 9.936 10.267 10.221 95% CL 0.202899 

169.214 12.345 12.643 12.646 CL/Mean 0.020007 

211.244 14.529 14.87 14.906 

253.274 16.627 17.013 17.078 

295.414 18.652 19.075 19.048 

337.444 20.624 20.968 21.022 

379.474 22.524 22.839 22.903 

421.504 24.385 24.708 24.705 

463.534 26.028 26.436 26.434 

505.564 27.747 28.386 28.167 

547.703 29.259 30.033 29.803 

589.733 30.582 31.571 31.466 

631.763 32.224 33.152 33.053 

673.793 33.738 34.707 34.709 

715.823 35.255 36.266 36.336 

757.853 36.738 37.847 37.875 

799.993 38.27 39.202 39.384 
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Table 42 Rheological data for first phase experimental 2607b 

Run 1 2 3 

Shear Rate 
(1/s) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) 

Shear Stress 
(Pa) Mean 3.552 

0.985 2.013 1.881 1.881 
Standard 
deviation 0.034641 

43.125 2.009 2.126 2.126 Count 3 

85.045 2.771 2.747 2.747 Alpha 0.05 

127.184 3.592 3.532 3.532 95% CL 0.039199 

169.214 4.158 4.317 4.317 CL/Mean 0.011036 

211.244 4.781 4.968 4.968 

253.274 5.417 5.544 5.544 

295.414 6.001 6.177 6.177 

337.444 6.651 6.788 6.788 

379.474 7.251 7.424 7.424 

421.504 7.893 8.048 8.048 

463.534 8.512 8.637 8.637 

505.564 9.128 9.29 9.29 

547.703 9.774 9.934 9.934 

589.733 10.368 10.569 10.569 

631.763 10.979 11.27 11.27 

673.793 11.609 11.856 11.856 

715.823 12.229 12.508 12.508 

757.853 12.795 13.145 13.145 

799.993 13.563 13.846 13.846 
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Appendix F Additional figures for investigation of change 

of yield stress  

 

Additional figures from section 6.5.2 for investigation of increase yield stress effect.  

 

Appendix F 1  Axial turbulence intensities plotted as a function of h/R. (Solid line for Newtonian 

DNS) 
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Appendix F 2  Radial turbulence intensities plotted as a function of h/R. (Solid line for 

Newtonian DNS) 

 

 

Appendix F 3  Azimuthal turbulence intensities plotted as a function of h/R. (Solid line for 

Newtonian DNS) 
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Appendix F 4  Turbulence production plotted as a function of h/R 
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+20% yield stress (Simulation A) 

 
+30% yield stress (Simulation B) 

 

+50% yield stress (Simulation C) 

Appendix F 5  Predicted axial velocity at y
+ 
≈ 8. From top to bottom, Simulation A, B and C. 

White represents high velocity and black represents low velocity. 

 

 

 



 

  Page 328 

 

 

Appendix F 6  Axial turbulence intensities plotted as a function of h/R. (Solid line for Newtonian 

DNS) 

 

Additional figures for investigation of decrease yield stress effect 

 

Appendix F 7  Radial turbulence intensities plotted as a function of h/R. (Solid line for 

Newtonian DNS) 
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Appendix F 8  Azimuthal turbulence intensities plotted as a function of h/R. (Solid line for 

Newtonian DNS) 

 

 

Appendix F 9  Turbulence production plotted as a function of h/R 
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-20% yield stress (Simulation D) 

 
-30% yield stress (Simulation E) 

 

-50% yield stress (Simulation F) 

 

Appendix F 10  Predicted axial velocity at y
+ 
≈ 8. From top to bottom, Simulation D, E and F. 

White represents high velocity and black represents low velocity. 
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Appendix G Additional figures for investigation of change 
of flow behaviour index 

 

Additional figures from section 6.5.3 for investigation of increase flow behaviour index 

effect. 

 

 

Appendix G 1 Axial turbulence intensities plotted as a function of h/R. (Solid line for Newtonian 

DNS) 
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Appendix G 2 Radial turbulence intensities plotted as a function of h/R. (Solid line for 

Newtonian DNS) 

 

 

Appendix G 3 Azimuthal turbulence intensities plotted as a function of h/R. (Solid line for 

Newtonian DNS) 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Control v'

Newtonian

n = 0.85

n = 0.79

v'

h/R

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Control w'

Newtonian

n = 0.85

n = 0.79

h/R

w'



 

  Page 333 

 

 

n=0.90 

 

n=0.85 

 

n=0.79 

 

n=0.75 

Appendix G 4  Predicted axial velocity at y
+ 
≈ 8. From top to bottom, n=0.90, n=0.85, n=0.79, 

and n=0.75. White represents high velocity and black represents low velocity. 
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Axial velocity 

 

 
 

In-plan velocities 

 

n = 0.90, Re = 4210 

 

 
Axial velocity 

 



 

  Page 335 

 

 
In-plane velocities 

 

n = 0.85, Re = 5853 
 

 
Axial velocity 

 

 
In-plan velocities 

 

n = 0.79, Re = 9185 
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Axial velocity  

 

 
In-plan velocities 

 

n = 0.75, Re = 12910 
Appendix G 5 Contours of instantaneous axial velocity and in-plane velocity vectors 
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Appendix H Additional figures for investigation of change 
of flow consistency index 
 

Additional figures from section 6.5.4 for investigation of change of flow consistency index 

(with different Reynolds number). 

 

 

K+20% 

 

K+50% 

 

K-20% 
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K-50% 

 

Appendix H 1 Predicted axial velocity at y
+ 
≈ 8. From top to bottom, K+20%, K+50%, K-20%, 

and K-50%. White represents high velocity and black represents low velocity. 
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Axial velocity 

 
In-plane velocities 

 

K +20%, Re = 6781 

 
Axial velocity 
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In-plane velocities 

 

 

K +50%, Re = 5635 

 

 
Axial velocity 

 
In-plane velocities 

 

 

K -20%, Re = 11450 
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Axial velocity 

 
In-plane velocities 

 

K -50%, Re = 21991 
Appendix H 2 Contours of instantaneous axial velocity and in-plane velocity vectors 
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Additional figures for investigation of change of flow consistency index (with fixed Reynolds 

number). 

 

 

K+20% 

 

K+30% 

 

K-20% 
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K-30% 

Appendix H 3 Predicted axial velocity at y
+ 
≈ 8. From top to bottom, K+20%, K+30%, K-20%, 

and K-30%. White represents high velocity and black represents low velocity. 
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K +20% 

 
Axial velocity  
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In-plane velocities 

 

K +30% 

 
Axial velocity 

 

 
In-plane velocities 

K -20% 
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Axial velocity 

 
In-plane velocities 

 

K -30% 
Appendix H 4 Contours of instantaneous axial velocity and in-plane velocity vectors 

 




