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Summary

The challenge of making nano-scale quantum systems experimentally accessible is

being overcome for an increasing diversity of systems by improved fabrication tech-

niques and experimental control. Despite rapid progress, one of the main hindrances

in all experiments is the difficulty of isolating the quantum system from the sur-

rounding environment and its fluctuations. This experimental “noise” perturbs the

quantum system, a process that is generally referred to as decoherence: the system

slowly loses its distinguishing quantum features. This makes all controlled quantum

systems mesoscopic systems, which are close to the verge of quantum and classical

physics.

With ever growing experimental and computational capabilities, larger systems at

smaller spatial distances are being studied. Simple models of spatially uncorrelated

noise are therefore becoming increasingly questionable. In this thesis the effects

of spatial correlations in the noise environment with a finite correlation length are

investigated. The consequences for the experimental design of controlled quantum

systems as well as the dynamics of solid state systems are presented. We utilize

the Bloch-Redfield formalism, a Markovian master equation approach, which gives

a close connection to the underpinning system-environment model. We show how

to use this formalism to model any spatial correlation function of the noise en-

vironment. Using microscopic environmental models, several correlation functions

are derived and their properties connected to the environmental parameters. Sev-

eral phenomenological correlation functions are also studied and a mapping to the

Lindblad master equation is presented, which provides a test of positivity for phe-

nomenological models.

The study of spatial noise correlations is a novel but essential field of research in

quantum metrology. Noise correlations have been observed in experiments with

trapped ions, in which they limit the use of such experiments for metrology. Quan-

tum advantage, i.e. a better precision scaling than the standard quantum limit has

been proven impossible in the presence of uncorrelated Markovian noise only. We
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show that for certain optimized states the best possible quantum advantage, Heisen-

berg scaling, can be achieved in the presence of noise with a finite spatial decay

of correlations. We furthermore identify how dephasing effects change in strength

with increasing correlation length for entangled states in a general way. For finite

correlation length a topology dependence of entangled quantum states emerges, such

that the arrangement of the participating ions changes the decoherence properties.

For quantum transport through spin chains and networks, noise is generally detri-

mental. Spatial correlations however reduce the effect of dephasing noise and can

reinstate the transport dynamics. The critical correlation length proves to be closely

connected to the maximal packet width of one excitation in the transfer process. For

dissipation noise, relaxation-free states emerge with spatial correlations. The decay

of an excitation is therefore fundamentally modified into a fast decay towards an

intermediate relaxation-reduced state and a subsequent decay to the ground state

on a much longer time scale.

Biological photosynthetic complexes have recently been found to potentially include

quantum coherent dynamics, particularly in the process of transmitting an exciton

from the point of creation to the reaction centre. We show how the formalism of

spatially correlated decoherence adapts to this significantly different energy regime.

Typical effects of decoherence in this field are presented and we show how the light-

harvesting efficiency is influenced by spatial correlations in the noise.

Finally we investigate the influence of spatial noise correlations in the Heisenberg

model of a quantum ferromagnet. Here we focus on the calculation of macroscopic

properties of the crystal, such as the magnetisation and its dynamics, from a micro-

scopic master equation. We find that larger correlation length in the phonon noise of

the ferromagnetic lattice prolongs the out-of-equilibrium time of the magnetisation

and changes the shape of the decay to the equilibrium value.

This thesis highlights the fundamental relevance of noise correlations to several fields

of quantum physics and the importance of the efficient and comprehensive modeling

techniques presented.
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Chapter 1

Introduction

The study of open quantum systems and the concept of a density matrix master

equation is the basis for a variety of fields in modern physics, be it quantum op-

tics, photonics, condensed matter physics, quantum computation or even medical

imaging such as MRI and NMR. When deriving or assuming a particular form for

the master equation via the usual system-bath model [1], it is common to assume

each component of a system either couples to the same bath (correlated or collective

decoherence channels) or individual baths (uncorrelated or independent decoherence

channels), see e.g. [2–6]. We explore the regime between these two extremes, intro-

ducing the concept of a correlation length ξ and deriving a general master equation

method for treating such partially correlated environments.

Decoherence induced by a correlated environment is a commonly observed effect.

The early discovery of super- and sub-radiance in a radiating gas in 1954 [7, 8] was

the first effect based on several subsystems coupled to the same environmental mode.

More recently in the context of quantum computation, master equation modeling

has become an intensively studied field of research. The mathematical equivalent

of super- and sub-radiance was described for two qubits with dissipation to the

same bath [5, 9]. Furthermore the concept of decoherence-free subspaces [10–15]

relies on common environments. Even some of the foundational work on decoher-

ence in quantum computation considered both fully correlated and uncorrelated

environments [16–20]. A review discussing both methods is in [21]. Recently, the

ramifications of correlated environments have been discussed in such diverse situa-

tions as scalable quantum error correction [2, 22–28], photosynthesis and biological

chromophores [29–33] and multi-atom trapping experiments [34–37]. Especially in

earlier work it was common to derive a master equation for a particular system in
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1 Introduction

a particular environment [16, 17, 20], leading to common models such as the largely

employed spin-boson model [17,38–41]. In this thesis we present the Bloch-Redfield

equations in a more general way. Any environment can be reduced to its relevant

parameters, the spatial-temporal correlations contained in the spectral function and

the system-environment coupling operators. With this intermediate step the Bloch-

Redfield equations can be applied to any system without the need to derive a new

master equation each time.

The Lindblad equations [1, 42–44] are a common tool for open quantum systems

due to their simple form and well behaved mathematical properties. Yet, deriving

a general master equation of this form for (partially) correlated environments is

non-trivial. Lindblad operators can be derived or assumed to act individually, pair-

wise or collectively, yet how does one choose these in a physically sensible manner?

We use a general Bloch-Redfield approach, where environmental noise correlation

functions appear naturally in the formalism. Given sufficiently well behaved en-

vironmental correlations, a closed form master equation can be obtained with the

same form as the Lindblad equation but whose operators and rates are linked di-

rectly to the original physical system-bath Hamiltonian. Following this route we

consider a generalisation of the environmental correlation function which includes

spatial (as well as temporal) correlations and therefore derive a general master equa-

tion. This describes spatially correlated decoherence independent of the particular

bath Hamiltonian and purely based on environmental correlation functions. Follow-

ing this introduction (chapter 1) the master equation methodology is described in

chapter 2.

We also consider several examples where such spatial-temporal correlation functions

can be derived microscopically from an environmental model and derive the corre-

sponding spectral functions. This is a major stepping stone as it facilitates writing

down the Bloch-Redfield equations immediately for any system combined with the

respective environmental model. Furthermore it links the features of the spectral

functions to environmental parameters, which gives the intuition required to work

with phenomenological spectral functions. We present our example environmental

models in chapter 3.

Measuring the features and properties of environmental noise directly is difficult

because the environment is by definition the part of the experiment which is not

controlled and measured. Accordingly there are many experiments with little infor-

mation about the nature and properties of environmental noise. Despite this, recent
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experiments with trapped ions have shown evidence of strongly correlated environ-

mental noise [35,45]. This makes our work highly relevant to the ultrahigh-precision

measurements carried out in ion traps. Particularly since a lot of theoretical work

for these quantum metrology experiments has been based on the assumption of un-

correlated noise. For example there have been suggestions of experimental setups,

which achieve quantum advantage, i.e. a better precision scaling with the number of

measurements than can be achieved classically. Although quantum advantage has

been proven impossible in the presence of uncorrelated Markovian noise [46] there

have been first experiments confirming the existence of quantum advantage with two

and three entangled ions [47, 48]. This shows the need for a rigorous experimental

framework for spatially correlated noise. We extend the theoretical work to spatially

correlated decoherence and describe in detail an experimental setup which achieves

the best-possible quantum advantage in chapter 4.

Another field which involves coupled systems of many sites is the transport of ex-

citations and quantum states through spin chains and networks. This large field

of research is relevant to quantum information, quantum electronics and quantum

communication and ranges from the study of existing structures to the search for

ideal engineered spin networks [49–65]. Decoherence effects however are often either

neglected or assumed as spatially uncorrelated. We describe the effects of spatially

correlated noise for both state and excitation transfer generally in chapter 5.

A mathematically closely connected process in an very different class of systems is

the transport of photon-induced excitons in biological photosynthetic systems. This

originally biochemical field of research has recently been found likely to involve some

level of quantum coherent processes [66,67], causing an overlap with quantum trans-

port and decoherence modeling. In particular, the possibility of spatially correlated

noise has been discussed in several contexts [68–74]. Since the detailed knowledge

about photosynthetic systems is in the biochemical community and the systems are

on a largely different parameter scale than most controlled quantum systems, there

has been a lot of confusion about which master equation approach to use. While

some use very similar formalism to the one presented in this thesis [69, 75], others

are led to believe that Bloch-Redfield and/or Lindblad equations are insufficient to

describe transport in light-harvesting complexes [32,68,70,73,76]. This is fuelled by

the common practice in the biochemical community to use Bloch-Redfield equations

(which are there usually just referred to as ‘Redfield equations’) to describe purely

incoherent transition processes. A variety of alternatives and extensions has been

proposed [74, 77–81]. We describe how the Bloch-Redfield formalism adapts very
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1 Introduction

well to model Markovian noise in light-harvesting systems by a careful application

of the secular approximation and we describe the typical noise effects which occur

in the prototypical dimer system in chapter 6.

Using quantum master equations to calculate macroscopic properties of solid state

systems can yield details about the material properties and dynamics. This is a

distinctly different application from the calculation of expectation values in small

quantum systems of only a few states. For certain systems such as the quantum

ferromagnet, analytical solutions can be obtained from master equation approaches

[82]. We show the influence of phonon noise and its spatial correlations onto the

macroscopic properties of the quantum ferromagnet such as the magnetisation in

chapter 7.

Finally chapter 8 summarizes the results and gives the conclusions of the thesis.

Throughout this thesis we assume natural units ~ = 1 and only write ~ explicitly

for clarity when we write down fundamental equations, i.e. only in chapter 2.

6
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Chapter 2

Master equations

This chapter serves as ground work for the rest of the thesis. The Bloch-Redfield

equations are derived in detail and the mapping to the Lindblad form is discussed.

Then we explain how a model for spatially correlated noise arises naturally from

the formalism, how to implement and test spatial correlation functions and explain

the fundamental effects of spatial correlations in qubit systems. Finally we discuss

numerical methods to solve master equations. The material in this chapter has

appeared in references [83, 84] and has contributed to all of the other publications

listed on page vii.

Introduction

The Schrödinger equation is the equation of motion for the state vector of any quan-

tum system. For a statistical ensemble of quantum systems, described by a density

matrix, the equation of motion is called a quantum master equation. A quantum

master equation is used to describe open quantum systems which experience random

statistical perturbations from their environment.

For a closed quantum system the equation of motion for a density matrix derives

directly from the Schrödinger equation and is called the von-Neumann equation:

i~ ∂t |Ψ〉 = H |Ψ〉 Schrödinger equation (2.1)

−i~ ∂t 〈Ψ| = 〈Ψ|H
⇒ i~ ∂tρ = [H, ρ] von-Neumann equation (2.2)

7



2 Master equations

where the density matrix ρ =
∑

j pj |Ψj〉 〈Ψj| for a statistical ensemble which is in

state |Ψj〉 with probability pj. All master equations for open quantum systems are

derived from the assumption that the closed combination of system and environ-

ment are governed by the von-Neumann equation. The derivation then always aims

to trace out the environment, such that the master equation describes the evolution

for the reduced density matrix of the system alone and the environment is a per-

turbation incorporated in the form of the equation. There are several approaches to

simplify the process of deriving a new master equation for each system-environment

combination. We present the Bloch-Redfield equations here and discuss the mapping

to a second common form of the master equation, the Lindblad equations.

2.1 Theoretical background

2.1.1 The Bloch-Redfield equations

2.1.1.1 Derivation

The techniques used to set up what is now widely called the Bloch-Redfield equations

were developed in the 1950s by Felix Bloch’s student R. K. Wangsness [85], Bloch

himself [86, 87] and A. G. Redfield [88]. As these techniques have been generalised

since then, equations of a similar form are sometimes called Bloch-Redfield equations

[21,89], sometimes Bloch-Wangsness-Redfield theory [90], or at other times they are

just referred to as“the master equation in the Born-Markov approximation” [1,5,44].

This refers to the fact that in the derivation a Born-type approximation of the

integral is used and a second approximation (also called the Redfield-approximation)

which is based on the assumption that the system dynamics is a Markov-process.

Here we derive a general and compact notation based on [91–93].

To derive the Bloch-Redfield equations we start with the usual approach of tracing

out the environment of the von-Neumann equations for system and environment

with the help of the Born-Markov approximation [1,44]. The Hamiltonian is divided

into:

H = HS +HB +Hint

where HS describes the system, HB describes the bath and Hint the interaction

8



2.1 Theoretical background

between the two. The interaction is assumed to be of the form:

Hint =
∑

j

sjBj (2.3)

where each sj is an operator acting on the system and each Bj an operator acting on

the bath. We denote the combined density matrix for both system and environment

by χ. The density matrix follows the von-Neumann equation:

i~ ∂tχ(t) = [H,χ(t)] (2.4)

We change to the interaction picture with respect to Hint (see appendix F):

i~ ∂tχ̃(t) =
[
H̃int(t), χ̃(t)

]
(2.5)

We denote all transformed operators by a tilde and note that H̃int(t) can again be

divided into products of system and environment operators since operators acting

on different subspaces commute:

H̃int(t) = e
i
~ (HS+HB)tHinte

− i
~ (HS+HB)t =

∑

j

e
i
~HStsje

− i
~HS e

i
~HBBje

− i
~HB =

∑

j

s̃jB̃j

(2.6)

Integrating eq. 2.5 gives:

χ̃(t) = χ(0) +
1

i~

∫ t

0

dt′
[
H̃int(t

′), χ̃(t′)
]

(2.7)

Putting this back into eq. 2.5 yields its integro-differential form:

i~ ∂tχ̃ =
[
H̃int, χ̃(0)

]
+

1

i~

∫ t

0

dt′
[
H̃int(t),

[
H̃int(t

′), χ̃(t′)
]]

(2.8)

It is then assumed that at t = 0, system and environment are uncorrelated χ(0) =

ρ(0)⊗ρB(0). The environment is then traced out, the first term assumed to be zero1

1If the first term is not zero TrB [H̃int, χ̃(0)] =
∑
j sj〈Bj(0)〉 6= 0 then this average expecta-

tion value can be included into the system Hamiltonian HS → HS +
∑
j sj〈Bj(0)〉 and the

corresponding bath operators can be renormalised such that they only fluctuate around zero:
Bj → Bj − 〈Bj(0)〉.

9



2 Master equations

and we denote the density matrix for the system as ρ(t) = TrB χ(t).

∂tρ̃(t) = TrB
−1

~2

∫ t

0

dt′
[
H̃int(t),

[
H̃int(t

′), χ̃(t′)
]]

(2.9)

Based on the assumption that the environment is not influenced by the system since

it is much larger, the Born-approximation simplifies χ(t′) ≈ ρ(t′)⊗ρB(t′), which lets

us divide all terms into system and bath operators respectively:

∂tρ̃(t) =
−1

~2

∑

j,k

∫ t

0

dt′
{

[s̃j(t)s̃k(t
′)ρ̃(t′)− s̃k(t′)ρ̃(t′)s̃j(t)] Tr[B̃j(t)B̃k(t

′)ρ̃B]

+ [ρ̃(t′)s̃k(t
′)s̃j(t)− s̃j(t)ρ̃(t′)s̃k(t

′)] Tr[B̃k(t
′)Bj(t)ρ̃B]

}
(2.10)

Assuming that correlations Tr[B̃j(t)B̃k(t
′)ρ̃B] in the bath decay to zero with increas-

ing τ = t− t′ much faster than the typical scale of the system dynamics the Markov-

approximation furthermore simplifies χ(t′) ≈ ρ(t)⊗ ρB(t′) and
∫ t

0
dt′ ≈

∫∞
0
dt′. The

Markov approximation simplifies the differential equations enormously. At the same

time it limits the possible choices of environments because it assumes that any cor-

relations in the bath decay almost immediately on the time scale of any dynamics

in the system. In other words there is no coherent dynamics in the bath. Any

system-environment interaction where a particular excitation leaves the system to

the environment and then reoccurs in the system at a later point would therefore

break the Markov approximation2. Applying the Markov approximation one finds:

˙̃ρ =
−1

~2

∑

jk

∫ ∞

0

dt′ [s̃j(t)s̃k(t
′)ρ̃(t)− s̃k(t′)ρ̃(t)s̃j(t)] 〈B̃j(t)B̃k(t

′)〉

+
−1

~2

∑

jk

∫ ∞

0

dt′ [ρ̃(t)s̃k(t
′)s̃j(t)− s̃j(t)ρ̃(t)s̃k(t

′)] 〈B̃k(t
′)B̃j(t)〉 (2.11)

Eq. 2.11 is the typical form of the master equation in the Born-Markov-approximation

(see e.g. Carmichael [44] eq. 1.34).

The bath expectation values are assumed to only depend on the time difference

τ = t − t′, i.e. they can be written 〈B̃j(t)B̃k(t
′)〉 = 〈B̃j(τ)B̃k(0)〉. These are the

time correlation functions of the bath and can be written in the common form of a

2To consider non-Markovian environments one either needs to find a solution to the particular
non-Markovian integral kernel. Another way of considering non-Markovian dynamics is to
include certain environmental pockets of coherence into what is formally labelled the “system”
and solve the master equation with the new system-environment threshold which then can be
assumed to be Markovian.

10



2.1 Theoretical background

correlation function 〈B̃j(t)B̃k(t
′)〉− 〈B̃j(t)〉 · 〈B̃k(t

′)〉 because the expectation values

〈Bj(t)〉 = 0 are assumed to be zero3 in all noise-environments.

We then transform back to the Schrödinger picture (appendix F). We start with the

left-hand side of eq. 2.11:

∂t

(
e
i
~HStρe−

i
~HSt

)
= e

i
~HSt

i

~
HSρe

− i
~HSt + e

i
~HStρ̇e−

i
~HSt + e

i
~HStρ

(
− i
~
HS

)
e−

i
~HSt

= e
i
~HSt

(
ρ− 1

i~
[HS, ρ]

)
e−

i
~HSt (2.12)

We then multiply the whole eq. 2.11 from the left with e−
i
~HSt· and from the right

with ·e i~HSt,

ρ− 1

i~
[HS, ρ] =

−1

~2

∑

jk

∫ ∞

0

dt′ [sjQ(τ)ρ(t)−Q(τ)ρ(t)sj] 〈B̃j(τ)B̃k(0)〉

+
−1

~2

∑

jk

∫ ∞

0

dt′ [ρ(t)Q(τ)sj − sjρ(t)Q(τ)] 〈B̃k(−τ)B̃j(0)〉

Q := e−
i
~HSτske

i
~HSτ (2.13)

where τ = t − t′. We then change the integration variable
∫ t

0
dt′ =

∫ 0

t
(−dτ) =∫ t

0
dτ ≈

∫∞
0
dτ .

To simplify the matrix-exponentials in Q in an arbitrary basis {|an〉} we introduce

the transformation matrix V =
∑

n |ωn〉 〈an| to the system Hamiltonian’s eigenstates

HS |ωn〉 = ~ωn |ωn〉. In other words:

• V is the matrix which contains the eigenvectors of HS in its columns.

• ~ωn is the eigenvalue of HS which corresponds to the nth column of V

We insert unity operators V V † into the equations and find:

ρ− 1

i~
[HS, ρ] =

−1

~2

∑

jk

∫ ∞

0

dτ
[
sjV Q̂(τ)V †ρ(t)− V Q̂(τ)V †ρ(t)sj

]
〈B̃j(τ)B̃k(0)〉

+
−1

~2

∑

jk

∫ ∞

0

dτ
[
ρ(t)V Q̂(τ)V †sj − sjρ(t)V Q̂(τ)V †

]
〈B̃k(−τ)B̃j(0)〉

Q̂ := V †e−
i
~HSτV V †skV V

†e
i
~HSτV (2.14)

3This assumption becomes clearer when we remember that in a real physical system all expectation
values can be time-dependent but are then averaged over the whole ensemble of systems. The
assumption 〈Bj(t)〉 = 0 then simply means a fluctuation around zero as the only time evolution,
i.e. a static bath.

11



2 Master equations

Since V transforms into the HS-eigenbasis we can see that Q̂ is simply given by sk

multiplied with two diagonal matrices. We formally simplify Q̂ by inserting unity

operators
∑

n |ωn〉 〈ωn|:

Q̂ =
∑

lmnp

|al〉 〈ωl| e−
i
~HSτ |ωm〉︸ ︷︷ ︸

=e−iωlτ δlm

〈ωm| sk |ωn〉 〈ωn| e
i
~HSτ |ωp〉︸ ︷︷ ︸

=eiωnτ δnp

〈ap| (2.15)

=
∑

mn

|am〉 〈ωm| sk |ωn〉 〈an| ei(ωn−ωm)τ (2.16)

〈am| Q̂ |an〉 = 〈ωm| sk |ωn〉 ei(ωn−ωm)τ = 〈am|V †skV |an〉 ei(ωn−ωm)τ (2.17)

The τ -dependency in each element is now just a scalar. The τ -integration can then

be performed element-wise and we find:

ρ̇ =
i

~
[ρ,Hs] +

1

~2

∑

j,k

(
−sjV qjkV †ρ+ V qjkV

†ρsj − ρV q̂jkV †sj + sjρV q̂jkV
†)

(2.18)

with 〈am|qjk|an〉 = 〈an|V †skV |am〉
∫ ∞

0

dτ ei(ωn−ωm)τ 〈B̃j(τ)B̃k(0)〉 (2.19)

〈am|q̂jk|an〉 = 〈an|V †skV |am〉
∫ ∞

0

dτ ei(ωn−ωm)τ 〈B̃k(−τ)B̃j(0)〉 (2.20)

If the one-sided Fourier transforms in eq. 2.19 and 2.20 contain an imaginary part,

this imaginary part purely leads to additional coherent dynamics (which in the

secular approximation can even be written as a correction of the system Hamiltonian,

see section 2.1.4).

Only the real part causes decoherence. Assuming the property
(
〈B̃j(τ)B̃k(0)〉

)∗
=

〈B̃j(−τ)B̃k(0)〉 this real part can be rewritten in terms of the two-sided Fourier

transform:

Re

[∫ ∞

0

dτ eiωτ 〈B̃j(τ)B̃k(0)〉
]

= (2.21)

=
1

2

∫ ∞

0

dτ eiωτ 〈B̃j(τ)B̃k(0)〉+
1

2

∫ ∞

0

dτ e−iωτ
(
〈B̃j(τ)B̃k(0)〉

)∗
(2.22)

=
1

2

∫ ∞

0

dτ eiωτ 〈B̃j(τ)B̃k(0)〉+
1

2

∫ ∞

0

dτ e−iωτ 〈B̃j(−τ)B̃k(0)〉 (2.23)

=
1

2

∫ ∞

0

dτ eiωτ 〈B̃j(τ)B̃k(0)〉+
1

2

∫ 0

−∞
dτ̂ eiωτ̂ 〈B̃j(τ̂)B̃k(0)〉 (2.24)

=
1

2

∫ ∞

−∞
dτ eiωτ 〈B̃j(τ)B̃k(0)〉 (2.25)

12



2.1 Theoretical background

For the transform in eq. 2.20 we furthermore substitute the integration variable

τ̂ = −τ a second time and assign the resulting minus sign to the frequency:

1

2

∫ ∞

−∞
dτ eiωτ 〈B̃j(−τ)B̃k(0)〉 =

1

2

∫ ∞

−∞
dτ̂ ei(−ω)τ̂ 〈B̃j(τ̂)B̃k(0)〉 (2.26)

Note that the limits need to be adapted and then swapped, which cancels the minus

sign from dτ̂ = −dτ .

2.1.1.2 The equations

We then find a compact and general form of the Bloch-Redfield equations:

ρ̇ =
i

~
[ρ,Hs]+

1

~2

∑

j,k

(
−sjV qjkV †ρ+ V qjkV

†ρsj − ρV q̂jkV †sj + sjρV q̂jkV
†) (2.27)

with 〈an|qjk|am〉 = 〈an|V †skV |am〉
1

2
Cjk(ωm − ωn) (2.28)

〈an|q̂jk|am〉 = 〈an|V †skV |am〉
1

2
Ckj(ωn − ωm) (2.29)

Cjk(ω) =

∫ ∞

−∞
dτ eiωτ 〈B̃j(τ)B̃k(0)〉 (2.30)

These equations are true for any basis |an〉. If the eigenbasis of the Hamiltonian HS

is chosen |an〉 = |ωn〉 then the matrix V becomes the identity matrix. Note that

the matrix qjk (or q̂jk) is simply given by an element-wise multiplication of sk in the

eigenbasis of Hs and the matrix of Cjk(ωm − ωn) (or Ckj(ωn − ωm)), where n is the

row and m the column of the matrix.

2.1.1.3 Superoperator Form

The Bloch-Redfield equations can be written in superoperator form, such that:

~̇ρ = R~ρ

where ~ρ = vec(ρ) is the vector representation of ρ and R is the Redfield tensor

written as one large matrix of dimensions (d2, d2) where d is the number of states

in the system. In our notation the Redfield tensor R includes both the coherent

dynamics due to the system Hamiltonian HS and the decoherent dynamics due to

the coupling to the bath.

13



2 Master equations

Note that a matrix can be formed into a vector in two non-equivalent ways (column-

or row-ordered), resulting in different superoperators. We use the column-ordered

convention here, that is:

M :=

(
1 3

2 4

)
⇒ vec(M) =




1

2

3

4




Column-ordered form is the default for the Matlab function reshape. Note that

the Mathematica functions Partition and Flatten use row-ordered form by default

(speaking in rows and columns of the display produced by MatrixForm).

Using the mathematical relation for column-ordered vector representation [94,95]

vec(AXB) = (BT ⊗ A)vec(X)

we can write the Bloch-Redfield equations in superoperator form:

~̇ρ = R~ρ (2.31)

=
i

~
(
HT ⊗ 1− 1⊗H

)
~ρ (2.32)

+
1

~2

∑

jk

(
−1⊗ sjV qjkV † + sTj ⊗ V qjkV † − sTj V ∗q̂TjkV T ⊗ 1+ V ∗q̂TjkV

T ⊗ sj
)
~ρ

where 1 is the unity matrix of the dimension of H.

2.1.2 Bloch-Redfield approach to spatial correlations

Spectral function In the Bloch-Redfield equations the spectral functions (eq. 2.30)

define the environment. The only restriction on the spectral functions in the formal-

ism is placed by the Markov approximation.

For the Markov approximation the correlation functions of the bath operators B̃j at

different times 〈B̃j(τ)B̃k(0)〉 were assumed to decay with increasing time difference

τ to zero. This decay of the correlation function was assumed to occur over a faster

time scale than the system-environment interaction. For the Fourier transform of

the correlation function Cjk(ω) the Markov approximation means that Cjk(ω) cannot

vary on the scale of the frequency of the system dynamics (i.e. be “smooth” on that

14
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



Qubits

independent
baths

Figure 2.1: Illustration of the independent baths approach for three qubits. Each box
symbolises a bath which couples to the qubits above it. Two different
boxes are uncorrelated.

scale) because a restriction on the signal width in the time domain is a restriction

on the resolution in the frequency domain (and vice versa).

That does not mean that spatial correlations break the Markov approximation. A

Markovian noise environment can have a long spatial correlation length, such that

several qubits “feel”a correlated noise, as long as the temporal correlations are short-

lived.

Independent baths One approach to describing spatially correlated decoherence

is to introduce a series of independent baths. The bath operators Bj (see eq. 2.3)

can be grouped such that

Cjk(ω) =

{
Cjk(ω) if j and k are in the same group

0 if j and k are in different groups

We call each group an independent bath since they are not correlated with the

other baths. Independent baths may be due to either groups of different types of

coupling operators (see appendix C) or the assumption of a certain structure in the

environment.

Such a structure could for example be given in the case where very different, i.e. un-

correlated, sources of decoherence are present. In a system consisting of several sub-

systems (e.g. qubits, spins) the different sources might affect different subsystems,

i.e. we can differentiate independent noise, which affects each subsystem separately,

and collective noise. Figure 2.1 illustrates this approach where each individual bath

is drawn as a box underneath the qubits which couple to it.

Individual coupling strengths for each qubit and each bath can easily be used in this

model if necessary. The simplest method of implementing correlated decoherence is

15



2 Master equations

using independent baths and assuming all spectral functions within one bath to be

equal. The amount of correlation is then governed by the relative coupling strength

of the common and the independent baths.

Spatial-temporal correlation functions An alternative approach is to regard

the environment as a continuum in which the spatial correlations in the noise decay

over a certain correlation length. A more flexible model in this case is to generalise

the concept of a bath correlation function 〈Bj(τ)Bk(0)〉 and its Fourier transform

Cjk(ω) to the case of a spatial-temporal correlation function 〈Bj(τ, r1)Bk(0, r2)〉 and

the corresponding spectral function:

Cjk(ω, rj, rk) :=

∫ ∞

−∞
dτ eiωτ 〈B̃j(τ, rj)B̃k(0, rk)〉

where the components of the system couple to the environment at positions rj, rk.

These ‘spectral functions’ in time can also be regarded as ‘correlation functions’ in

space and the latter name is also used, particularly when speaking about the spatial

aspect for a given frequency. The functions are similar but distinct from the van-Hove

functions [96] as we do not transform into k-space to define the spectral function. As

in conventional Bloch-Redfield theory, this spectral function can be derived from a

more fundamental microscopic model or its form can be phenomenologically assumed

based on the physical nature of the environment in question.

Often one considers a homogeneous environment in which the spatial correlations

depend only on the distance between the spatially localised subsystems. In that case

one can simplify the spectral function to:

Cjk(ω, rj, rk) = C(ω, |rj − rk|) (2.33)

When both transversal and longitudinal coupling at the same spatial position are

considered then one needs to work with two independent homogeneous spectral

functions C⊥(ω, |rj − rk|) and C‖(ω, |rj − rk|) respectively. See appendices B and C

for details. When considering a system spatially localised at one point (e.g. a single

qubit), the spatial aspect disappears C(ω, |rj − rj|) = C(ω, 0) = C(ω). For a pair

of subsystems with some spatial separation r1− r2, we now have contributions from

both the individual self-correlations (|rj − rj| = 0) and collective decoherence terms

(|rj − rk| > 0).

16



2.1 Theoretical background

As is usual with Bloch-Redfield theory, we can define a correlation decay time τ

over which the correlation function decays to zero. We now also have a correlation

length ξ over which the correlations decay in space. If the two qubits are separated

such that |r1− r2| � ξ then the qubits’ noise is uncorrelated, whereas |r1− r2| � ξ

implies fully correlated decoherence.

As a basic example we could choose the following form for the spectral function:

C(ω, x) = exp

(
−ω

2

ω2
0

)
exp

(
−x
ξ

)

This spectral function is a Gaussian peaked around zero in frequency, which means

it will mainly lead to dephasing. Spatially it decays exponentially with the decay

rate 1/ξ, i.e. the correlation length ξ.

2.1.3 Secular approximation of the Bloch-Redfield equations

We show now that the secular approximation largely simplifies the mathematical

form of the Bloch-Redfield equations (to eq. 2.51) in all generality. This is im-

portant for mapping the Bloch-Redfield equations to Lindblad form and helps to

understand the effect of complex correlation functions. The secular approximation

is based on assumptions about separated (secular) time scales of the dynamics of

system and environmental coupling. To clearly link assumptions about certain sys-

tem parameters to the corresponding approximations it is more useful to apply the

secular approximation by the technique outlined in the appendix of [6] than in the

general formal way presented here.

First we separate the system operators sj into several operators by multiplication

with projection operators onto the Hamiltonian eigenstates |ωn〉.

sj(ε) =
∑

ωm−ωn=ε

|ωn〉 〈ωn| sj |ωm〉 〈ωm| (2.34)

The sum extends over all Hamiltonian eigenvalues ωn and ωm with a fixed difference

ε. In other words we split up the matrices qjk, q̂jk in the Bloch-Redfield equations

(eq. 2.27) by collecting all elements with the same frequency dependence.
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2 Master equations

Assuming all sj to be Hermitian 4 we find:

sj(−ε) = sj(ε)
† (2.35)

Using Eq. 2.34, we write:

sj =
∑

ε

sj(ε) (2.36)

qjk = V †
∑

ε

sj(ε)
1

2
Cjk(ε)V (2.37)

q̂jk = V †
∑

ε

sj(ε)
1

2
Ckj(−ε)V (2.38)

Replacing eq. 2.36 to 2.38 in the Bloch-Redfield equations (eq. 2.27) and changing

to the interaction picture (appendix F)

eiHStsj(ε)e
−iHSt = e−iεtsj(ε) (2.39)

One then finds:

˙̃ρ =
∑

jkεε′

e−i(ε+ε
′)tCjk(ε) (−sj(ε′)sk(ε)ρ̃+ sk(ε)ρ̃sj(ε

′))

+
∑

jkεε′

e−i(ε+ε
′)tCkj(−ε) (−ρ̃sk(ε)sj(ε′) + sj(ε

′)ρ̃sk(ε))

Since ε includes negative frequencies the only non-oscillating terms are for ε′ = −ε.
In the secular approximation, the oscillating terms which are neglected are fast

oscillating on the time scale of the dynamics in the interaction picture. This time

scale of the oscillations τo = 1/|ε − ε′| for ε 6= ε′ must be much shorter than the

decoherence time scale set by the terms Cjk and the magnitudes of the sj. Roughly

this can be restated as HS � Hint. More precisely the condition is that |ε− ε′| must

be large (for all ε 6= ε′) compared to the relevant system times, which are set by the

magnitude of the elements of Cjk(ω)sjsk, i.e. Hint. Since zero is a possible value for

ε the condition means that the differences ε of the energy levels of the system must

4In systems where non-Hermitian ladder operators are chosen for the sj their transform to the
interaction picture turns out to oscillate at plus and minus the same frequency, i.e. they also are
a pair, which complies with sj(−ε) = sj(ε)

†. In systems where more complicated non-Hermitian
operators are chosen, one could derive the Bloch-Redfield equations by replacing one occurrence
of Hint =

∑
j sjBj =

∑
j s
†
jB
†
j in eqs. 2.9 and 2.10 and continuing analogously otherwise. Note

that this means that the correlation functions take the form 〈B̃†j (τ)Bk(0)〉.
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be large as well as the differences of the differences ε − ε′. For cases where this is

not fulfilled for certain pairs ε − ε′ the secular approximation is usually applied by

assuming ε ≈ ε′ for those differences. Applying the secular approximation one finds:

˙̃ρ =
∑

jkε

[Cjk(ε) (−sj(−ε)sk(ε)ρ̃+ sk(ε)ρ̃sj(−ε))

+ Ckj(−ε) (−ρ̃sk(ε)sj(−ε) + sj(−ε)ρ̃sk(ε))]
(2.40)

Since the sum over ε extends over all positive and negative energy differences we

can replace −ε → ε in the second line of eq. 2.40. Note that this makes the last

two terms the Hermitian conjugate of the first two terms. Furthermore we swap the

equivalent indices j and k in the last two terms. This together with eq. 2.35 yields

the Bloch-Redfield equations in the secular approximation:

˙̃ρ =
∑

ε

∑

jk

Cjk(ε)

(
sk(ε)ρ̃sj(ε)

† − 1

2

{
sj(ε)

†sk(ε), ρ̃
})

(2.41)

In several cases one finds only one frequency in the elements of qjk and q̂jk in which

case the summation over ε contains only one summand and can be omitted, simpli-

fying eq. 2.41 (back in the Schrödinger picture) to:

ρ̇ =
i

~
[ρ,Hs] +

1

~2

∑

j,k

Cjk

(
skρs

†
j −

1

2
{s†jsk, ρ}

)
(2.42)

For ease of notation, the form of Eq. (2.42) is used in section 2.1.5 without loss of

generality. For cases where the summation over ε in eq. 2.41 is relevant, each fre-

quency component is added independently and all further results apply analogously.

The general arguments above are analogous to the derivation of the Lindblad form

on page 128 ff. in Breuer [1].

We rewrite eq. 2.41 in column-ordered superoperator form (sec. 2.1.1.3) again by

using

vec(AXB) = (BT ⊗ A)vec(X)
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and convert back to the Schrödinger picture by adding the coherent part:

~̇ρ =
i

~
(
HT ⊗ 1− 1⊗H

)
~ρ

+
1

~2

∑

jk

Cjk(ε)

(
s∗j(ε)⊗ sk(ε)−

1

2
1⊗ s†j(ε)sk(ε)−

1

2
sTk (ε)s∗j(ε)⊗ 1

)
~ρ (2.43)

This is the master equation in the secular approximation in superoperator form.

In superoperator form, when the density matrix is written as a vector and the

Redfield tensor R as a matrix, the secular approximation can be illustrated with

this matrix. First the density matrix elements in the vector should be ordered by

putting the diagonal elements first and the off-diagonal elements after. The secular

approximation then sets all off-diagonal elements in the Redfield tensor matrix to

zero except for the upper left submatrix which links the diagonal elements of the

density matrix. More details about this are published in appendix A of reference [97].

Eq. 2.41 gives enormous insight into the decoherent dynamics of quantum systems

because it shows that no mixed terms between operators which belong to different

energy splittings ε1 and ε2 exist. We demonstrate this with an example. For a

single qubit in its eigenbasis Hs = ωqσz the most general form of an environmental

interaction is given by

Hint =
3∑

j=1

sjBj = σxB1 + σyB2 + σzB3 (2.44)

since the Pauli matrices, together with the unity operator 1 form a complete basis

of the operator space. In the interaction picture (appendix F) the system operators

s̃1, s̃2, s̃3 become:

σ̃x =

(
0 e2iωq

e−2iωq 0

)
; σ̃y =

(
0 −ie2iωq

ie−2iωq 0

)
; σ̃z =

(
1 0

0 −1

)

According to eq. 2.34 and 2.39 we break the system operators up into the sj(ε) with

three values for ε ∈ {2ωq,−2ωq, 0}. We find only three relevant operators5, which

5Note that s2(2ωq) and s2(−2ωq) are neglected because they are linearly dependent s2(2ωq) ∝
s1(2ωq) and s2(−2ωq) ∝ s1(−2ωq). Any complex coefficient in eq. 2.41 can be absorbed into
the spectral function assuming a complex spectral function (see section 2.1.4).
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turn out to be σ−, σ+, σz:

s1(2ωq) =

(
0 0

1 0

)
; s1(−2ωq) =

(
0 1

0 0

)
; s3(0) =

(
1 0

0 −1

)
(2.45)

Eq. 2.41 tells us that no mixed terms between these three operators occur because

they each belong to a different energy ε. The operators cause relaxation, excitation

gain and dephasing respectively.

Furthermore for a system of N qubits we find N operators corresponding to each

of the three values6 of ε. Again operators corresponding to different values of ε

are not combined in eq. 2.41. Therefore dephasing, relaxation and excitation gain

can always be regarded as coupling to different independent baths. In other words,

the indices j and k are purely spatial indices and in all generality there are three

independent baths for qubit systems, each with its own spatial correlation function:

C(2ωq, rj, rk) for relaxation (energy loss), C(−2ωq, rj, rk) for excitation gain (energy

gain) from the environment and C(0, rj, rk) for dephasing. The master equation 2.41

takes the form:

ρ̇ =
i

~
[ρ,Hs] +

1

~2

∑

j,k

C(2ωq, rj, rk)

(
σ

(k)
− ρσ

(j)
+ −

1

2
{σ(j)

+ σ
(k)
− , ρ}

)

+
1

~2

∑

j,k

C(−2ωq, rj, rk)

(
σ

(k)
+ ρσ

(j)
− −

1

2
{σ(j)
− σ

(k)
+ , ρ}

)

+
1

~2

∑

j,k

C(0, rj, rk)

(
σ(k)
z ρσ(j)

z −
1

2
{σ(j)

z σ(k)
z , ρ}

)
(2.46)

The same observation of different independent baths is made more explicitly in

appendix C. The secular approximation is mathematically analogous to the rotating-

wave approximation, typically made for a fast-oscillating external driving field [98].

6For N qubits the coupling energies between qubits need to be considered. However, the Markov
approximation forces us to regard the spectral function as smooth on the scale of all coupling en-
ergies. Energy splittings which differ only by these coupling energies are therefore approximated
as the same value for ε.
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2 Master equations

2.1.4 Complex spectral functions and correlated decoherence
lead to environment-induced couplings

Strictly speaking the spectral function Cjk(ω) is only the real part of a one-sided

Fourier transform Djk(ωn − ωm) :=
∫∞

0
dτ ei(ωn−ωm)τ 〈B̃j(τ)B̃k(0)〉 (see eq. 2.19)

which can in general be complex. Taking that into account eq. 2.40 becomes7:

˙̃ρ =
∑

jkε

Djk(ε) (−sj(−ε)sk(ε)ρ̃+ sk(ε)ρ̃sj(−ε))

+
∑

jkε

(Djk(ε))
∗ (−ρ̃sk(−ε)sj(ε) + sj(ε)ρ̃sk(−ε))

(2.47)

Dividing the expression into its real and imaginary components Djk(ε) = Cjk(ε) +

iFjk(ε), one finds additional terms to eq. 2.41:

˙̃ρ =
∑

ε

∑

jk

1

2
Cjk(ε)

(
2sk(ε)ρ̃sj(ε)

† −
{
sj(ε)

†sk(ε), ρ̃
})

(2.48)

+
∑

ε

∑

jk

iFjk(ε)
(
ρsj(ε)

†sk(ε)− sj(ε)†sk(ε)ρ
)

(2.49)

which (back in the Schrödinger picture) can be regarded as a correction to the system

Hamiltonian.

ρ̇ =
i

~
[ρ,Hs +Hcor] +

1

~2

∑

ε

∑

jk

1

2
Cjk(ε)

(
2sk(ε)ρ̃sj(ε)

† −
{
sj(ε)

†sk(ε), ρ̃
})

Hcor =
1

~
∑

ε

∑

jk

Fjk(ε)sj(ε)
†sk(ε) (2.50)

A correction Hamiltonian of this form is sometimes called a“Lamb shift term” [1]. In

cases of uncorrelated decoherence (all terms for which j 6= k are zero) this correction

of the system Hamiltonian is generally neglected since the terms s†jsj in qubit systems

are diagonal in the system eigenbasis. In cases of correlated decoherence however the

correction Hamiltonian Hcor for qubit systems can lead to interaction terms between

the qubits, i.e. oscillations due to environmentally induced interactions.

7The fact that the spectral function in the second term becomes simply the complex conjugate of
the first can either be derived assuming B†j = Bj or following the procedure mentioned in the

footnote on page 18 and noting that 〈B̃†j (τ)Bk(0)〉∗ = 〈B̃†k(0)Bj(τ)〉.
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2.1 Theoretical background

2.1.5 Mapping the master equation to the Lindblad form

Our model is based on the Bloch-Redfield equations. Their core strength is the un-

derpinning physical model, which is set by the system operators which couple to the

environment and by environmental correlation functions. A different master equa-

tion, which is equally if not more commonly used is the Lindblad master equation.

It was independently published by Göran Lindblad [42] and Gorini, Kossakowski,

Sudarshan [43]. Contrary to the Bloch-Redfield equation they do not necessarily

connect directly to a physical model of the environment, but are often used with

phenomenologically assumed decoherence rates for the system. However, the Lind-

blad form of a master equation is known to be“the most general form of the generator

of a quantum dynamical semigroup” [1, 42, 43]. This means that the evolution due

to a certain master equation preserves complete positivity of the density matrix if

and only if there exists a basis in which the master equation takes on Lindblad form.

The Bloch-Redfield equations do not guarantee complete positivity by their mathe-

matical form but depend on a consistent model of the environment’s temporal and

spatial correlation functions. When assuming a phenomenological spatial-temporal

correlation function Cjk(ω, rj, rk), highly non-trivial physical conditions apply for

multipartite correlations.

We will therefore now present a method to test whether or not our master equa-

tions can be mapped to Lindblad form and then prove for chains of equidistant

two-level systems that this mapping is possible and straight-forward for all master

equations which are based on either any Gaussian spatial correlation function or any

exponentially decaying spatial correlation function. This proof will be true for an

arbitrary number of two-level systems (TLSs) with an arbitrary (but equal for all

nearest neighbours) distance between them. Furthermore we will show that a master

equation based on a step correlation function cannot in general be mapped to Lind-

blad form, which reflects the physical contradiction arising from a step correlation

function.
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2 Master equations

2.1.5.1 General conditions for the mapping

To map our master equations to the Lindblad form [1, 42, 43] we take the Bloch-

Redfield equations in the secular approximation8 (eq. 2.42):

ρ̇ =
i

~
[ρ,Hs] +

1

~2

∑

j,k

Cjk

(
skρs

†
j −

1

2

{
s†jsk, ρ

})
(2.51)

Equation 2.51 can be mapped to the Lindblad form if the coefficient matrix Cjk is

positive semi-definite, i.e. can be diagonalised with non-negative eigenvalues. The

coefficient matrix is real and symmetric, i.e. Hermitian. The matrix of its eigenvec-

tors u (if it exists) is therefore unitary. If the coefficient matrix Cjk is furthermore

positive semi-definite then u exists and

u†Cjku =




γ1 0 0 . . .

0 γ2 0

0 0 γ3

...
. . .




(2.52)

with only positive semi-definite γj ≥ 0. In that case eq. 2.51 is finally brought into

Lindblad form by defining a new set of operators:

Lk :=
∑

j

ujksj ⇒ sj =
∑

k

(u†)kjLk =
∑

k

u∗jkLk (2.53)

because
∑

k

(u†)klLk =
∑

jk

(u−1)klujksj =
∑

j

δljsj = sl

Expressing all sj and sk in eq. 2.51 with Lk we find terms of the form:

∑

jk

Cjksjs
†
kρ =

∑

jklm

Cjk(u
†)ljLlukmL

†
mρ =

∑

lm

γlδlmLlL
†
mρ =

∑

l

γlLlL
†
lρ

Analogous simplification for all terms finally yields the usual Lindblad form:

ρ̇ =
i

~
[ρ,Hs] +

1

~2

∑

j

γj

(
LjρL

†
j −

1

2

{
L†jLj, ρ

})

8Note that instead of taking the secular approximation one can also assume an immediate decay
of the correlation function 〈B̃j(τ)B̃k(0)〉 = δ(τ), which makes the spectral function frequency
independent and also simplifies the Bloch-Redfield equations to the form of eq. 2.51
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2.1 Theoretical background

The Lindblad rates γj are non-negative if the coefficient matrix is positive semi-

definite (eq. 2.52). If one or more eigenvalues of the coefficient matrix are negative

then according to Sylvester’s law of inertia [99] 9 all diagonalising transforms u†Cjku

(including non-unitary matrices u) will have the same number of negative values on

the diagonal, i.e. there is no mapping to Lindblad form.

2.1.5.2 Exponentially decaying, Gaussian and step-function spatial
correlations

System sites which are far apart are likely to be exposed to uncorrelated noise, but

when sites are situated close enough the noise sources will inevitably overlap. In this

section we investigate valid functional forms for this transition and find exponential

as well as Gaussian decay generally physically valid for Markovian noise by mapping

to Lindblad form. Furthermore we find that a step-function cutoff of spatial noise

correlations cannot be used as a homogeneous correlation function for Markovian

noise.

To map our master equations to Lindblad form the coefficient matrix in equation

2.51 must be positive semi-definite. This coefficient matrix is given by the spatial

correlation function Cjk, where j and k are the indices of two different bath operators.

Assuming a one-dimensional system of equidistant TLS simplifies the expression for

Cjk to be only dependent on the magnitude of the difference Cjk = C(d ∗ |j − k|)
with j and k natural numbers and d the distance between neighbouring subsystems.

Absorbing d into the functional form of C(|j − k|) the coefficient matrix takes the

9To facilitate the understanding of Sylvester’s law of inertia: many algebra books give Sylvester’s
law of inertia in terms of bilinear forms. Reference [99] states it for the more general case
(needed here) of a sesquilinear form Φ(x, y) and an orthogonal basis xj with respect to Φ. Note
that any Hermitian matrix A defines a sesquilinear form for two vectors x, y by Φ(x, y) = y∗Ax.
An orthogonal basis with respect to Φ means Φ(xj , xk) = 0 for j 6= k. This is equivalent
to eq. 2.52 using the xj as the columns of a matrix u. This matrix (different to eq. 2.52) is
potentially non-unitary but invertible (since xj form a basis). Sylvester’s law of inertia states
that the number of positive and negative Φ(xj , xj) is independent of the choice of the basis. In
terms of matrices that means that the number of positive and negative diagonal elements γj in
eq. 2.52 is independent of the choice of any invertible matrix u. This is non-trivial because non-
unitary transformations are included which are not basis transformations in the usual sense.
In other words, if the matrix is diagonalised and one or more negative diagonal elements are
found than all diagonalising invertible matrices u will lead to a negative diagonal element.
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2 Master equations

form:

(Cjk) =




C(0) C(1) C(2) C(3) . . .

C(1) C(0) C(1) C(2)
. . .

C(2) C(1) C(0) C(1)
. . .

C(3) C(2) C(1) C(0)
. . .

...
. . . . . . . . . . . .




In this matrix all elements on a line parallel to the diagonal are equal. This type of

matrix is called Toeplitz matrix. A short notation of a Toeplitz matrix is defined by

Tn = [tk; k = −n,−n+ 1, ..., n− 1, n]

with the convention:




t0 t−1 t−2 t−3 . . . t−n+1

t1 t0 t−1 t−2
. . .

t2 t1 t0 t−1
. . .

t3 t2 t1 t0
. . .

...
. . . . . . . . . . . .

...

tn−1 . . . t0




For increasing size n a sequence of Toeplitz matrices is defined by the same tk. In

this notation all possible coefficient matrices are given by the sequence defined by

tk = C(|k|). A helpful tool to determine whether Toeplitz matrices are positive

semi-definite is given by Gray [100] in Chapter 4.2, Lemma 6:

The eigenvalues of a Hermitian Toeplitz matrix with absolutely summable elements

tk,
∞∑

k=−∞

|tk| <∞

are not smaller than the minimum and not greater than the maximum of the Fourier

series (appendix G) f(λ) defined by

f(λ) =
∞∑

k=−∞

tke
−ikλ.
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2.1 Theoretical background

Using this Lemma it can be shown that exponentially decaying spatial correlations as

well as Gaussian spatial correlations lead to coefficient matrices with positive semi-

definite eigenvalues and the corresponding master equations can therefore always be

mapped to Lindblad form.

Exponentially decaying spatial correlations
Assume a sequence of Toeplitz matrices given by the elements:

uk = e−a|k| with a > 0

The elements are absolutely summable:

∞∑

k=−∞

|uk| =
∞∑

k=0

e−ak +
∞∑

k=1

e−ak =
1

1− e−a +
∞∑

k=0

e−ak − 1 =
2

1− e−a − 1 <∞

The Fourier series could be proven to be greater than zero easily with Mathematica

by evaluating the code:

Simplify[FullSimplify[Sum[Exp[Ikλ]Exp[−aAbs[k]], {k,−∞,∞}]] > 0, a > 0]

This evaluates to cos[λ] < Cosh[a], which is true since a > 0.

However without the help of Mathematica, the Fourier series can be evaluated:

g(λ) =
∞∑

k=−∞

uk exp(−ikλ) =
∞∑

k=−∞

exp(−ikλ− a|k|)

=
∞∑

k=0

exp[k(−a− iλ)] +
−1∑

k=−∞

exp[k(a− iλ)]

=
1

1− exp(−a− iλ)
+
∞∑

k=0

exp[k(−a+ iλ)]− 1

=
1

1− exp(−a− iλ)
+

1

1− exp(−a+ iλ)
− 1

=
1

1− exp(−a− iλ)
+ c.c.− 1

= 2 Re

(
1

1− e−a(cosλ − i sinλ)

(1− e−a cosλ− i e−a sinλ)

(1− e−a cosλ− i e−a sinλ)

)
− 1

= −1 +
2(1− e−a cosλ)

1− 2e−a cosλ+ e−2a
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The extrema of this function are at sinλ = 0. Defining u := e−a leads to 0 < u < 1

and the extrema then give the values:

gmax = −1 +
2(1− u)

1− 2u+ u2

gmin = −1 +
2(1 + u)

1 + 2u+ u2
> −1 +

2(1 + u)

1 + 2u+ 1
= 0

Since the Fourier series g(λ) is greater than zero, the eigenvalues of the corresponding

Toeplitz matrices are greater zero. Any master equation based on an exponentially

decaying spatial correlation function Cjk = exp(−a|j− k|) can therefore be mapped

to Lindblad form.

Gaussian spatial correlations
Assume a sequence of Toeplitz matrices given by the elements:

vk = e−ak
2

The elements are absolutely summable:

∞∑

k=−∞

vk =
∞∑

k=−∞

e−ak
2

= 2
∞∑

k=0

e−ak
2 − 1 ≤ 2

∞∑

k=0

e−ak − 1 = 2
1

1− e−a − 1 <∞

The Fourier series is:

h(λ) =
∞∑

k=−∞

vke
ikλ =

∞∑

k=−∞

e−ak
2+ikλ =

∞∑

k=1

e−ak
2+ikλ + 1 +

∞∑

k=1

e−ak
2−ikλ

= 1 + 2
∞∑

k=1

e−ak
2

cos(kλ)

This can be written in terms of the third Jacobian theta-function. Its definition and

a helpful formula can be found in Whittaker and Watson [101], chapter 21, p.463f,

p.475:

ϑ3(z, q) := 1 + 2
∞∑

n=1

qn
2

cos(2nz)

ϑ3(z|τ) := ϑ3(z, eiπτ )

ϑ3(z|τ) = (−iτ)−
1
2 exp

(
z2

πiτ

)
ϑ3

(z
τ

∣∣∣ −1

τ

)
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2.1 Theoretical background

The last formula can be applied to h(λ):

h(λ) = ϑ3

(
λ

2
, q = e−a

)
= ϑ3

(
λ

2

∣∣∣∣ τ = i
a

π

)

=
(
−ii a

π

)− 1
2

exp

(
λ2π

4πiia

)
ϑ3

(
λπ

2ia

∣∣∣∣
−π
ia

)

=

√
π

a
exp

(−λ2

4a

)
ϑ3

(
λπ

2ia

∣∣∣∣
−π
ia

)

=

√
π

a
exp

(−λ2

4a

)(
1 + 2

∞∑

k=1

exp

(−π2k2

a

)
cos

(
kλπ

ia

))

=

√
π

a
exp

(−λ2

4a

)

︸ ︷︷ ︸
>0


1 + 2

∞∑

k=1

exp

(−π2k2

a

)

︸ ︷︷ ︸
>0

cosh

(
kλπ

a

)

︸ ︷︷ ︸
>0




> 0

The Fourier series h(λ) consists of a positive coefficient multiplied with a sum over

only positive summands and is therefore positive itself. The eigenvalues of the

corresponding Toeplitz matrices must therefore be greater zero. This means that

any master equation based on a Gaussian correlation function Cjk = e−a(j−k)2
can

be mapped to Lindblad form.

Step-function spatial correlations
Assume a sequence of Toeplitz matrices given by the elements:

wk =

{
1 for |k| < 2

0 otherwise

The elements are absolutely summable since there are only three, k ∈ {−1, 0, 1}.
The Fourier series however has negative values:

∞∑

k=−∞

wke
ikλ = eiλ + e−iλ + 1 = 1 + 2 cosλ

In fact one finds

det




1 1 0

1 1 1

0 1 1


 = −1,
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which proves that the matrix is not positive semi-definite. This matrix is a principal

submatrix to all larger Toeplitz matrices based on wk or on a similar step function

with the step at k = k0 > 2. All of these matrices are therefore not positive semi-

definite either. This can be proven with the help of Pemberton/Rau [102], p.239,

statement b), which reads:

An n× n symmetric matrix is positive semi-definite if and only if the determinant

of its principal submatrices are all non-negative.

This means that master equations based on a spatial correlation function with a non-

trivial step (i.e. other than the step below k0 = 1) cannot be mapped to Lindblad

form. This reflects the physical contradiction induced by step-function spatial cor-

relations: Suppose three subsequent TLS A,B and C with the correlation function

C(k) = wk, which means perfect correlation with nearest neighbours, no correlation

to further neighbours. That means that the noise of A and B is perfectly corre-

lated, the noise of B and C is perfectly correlated, however the noise of A and C

is not correlated at all, which is contradictory. Similarly any step function induces

a contradiction, which is reflected in the negative eigenvalues of the corresponding

coefficient matrix.

In conclusion we find that for partially correlated environments a spatial decay of

correlations in exponential or Gaussian shape is a realistic phenomenological model,

while a step function is not.

2.2 Spatially correlated effects in qubit systems

After discussing the derivation and intricate details of the Bloch-Redfield equations

we will now give a practical, general approach for spatially correlated decoherence.

We will then point out very generally the new dynamics and effects that emerge from

spatial noise correlations in systems of several TLSs (qubits, spin-1/2 etc.), without

defining the system parameters such as interqubit coupling or dimensionality more

closely. These results give an intuition and form a starting point for the analysis

of any particular system. As we pointed out in the previous section dephasing and

relaxation generally couple to separate baths and we will discuss them separately.
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2.2 Spatially correlated effects in qubit systems

2.2.1 The quick users’ guide to Bloch-Redfield equations

Our approach is applicable to systems of any number of spatially located sites.

We will use the language of qubits here, however it is equally applicable for systems

with any number of sites (e.g. harmonic oscillators, spins, photonic modes, molecules,

pigments in light-harvesting complexes etc.) as long as these states have large on-site

energies compared to the couplings between sites.

Consistent with the majority of controllable quantum systems we work with the

secular approximation based on large on-site energies (i.e. qubit level splittings)

compared to the couplings between sites. This removes any couplings other than

longitudinal and transversal coupling (appendix B). The secular approximation fur-

thermore guarantees independent baths for dephasing, relaxation and excitation gain

(eq. 2.46 and appendix C) even for spatially correlated noise. Note that this is a

very common parameter regime, however the secular approximation can be applied

to any regime where parameters of different orders of magnitude appear. To gen-

eralize, it decouples the subspaces, which differ in the number of excitations in the

large order of magnitude and guarantees independent (i.e. uncorrelated) baths for

the groups of operators which belong (in the sense of eq. 2.39) to different energies

ε (on that large scale).

Without loss of generality (w.l.o.g.) we choose the uncoupled qubits’ eigenbasis,

i.e. the system Hamiltonian reads Hs =
∑

j(ωq + δ(j))σ
(j)
z + couplings. For the

secular approximation it is necessary, that the differences δ(j) between the qubits’

eigenenergies are small compared to ωq, i.e. only of the order of the interqubit cou-

plings. The master equation can then immediately be written as (eq. 2.46):

ρ̇ =
i

~
[ρ,Hs] +

1

~2

∑

j,k

C(2ωq, rj, rk)

(
σ

(k)
− ρσ

(j)
+ −

1

2
{σ(j)

+ σ
(k)
− , ρ}

)

+
1

~2

∑

j,k

C(−2ωq, rj, rk)

(
σ

(k)
+ ρσ

(j)
− −

1

2
{σ(j)
− σ

(k)
+ , ρ}

)

+
1

~2

∑

j,k

C(0, rj, rk)

(
σ(k)
z ρσ(j)

z −
1

2
{σ(j)

z σ(k)
z , ρ}

)
(2.54)

The spectral function of positive frequency C(2ωq, rj, rk) determines the strength

of the relaxation (energy loss), while negative frequency C(−2ωq, rj, rk) determines

the strength of excitation gain from the environment. The zero frequency noise

C(0, rj, rk) determines the dephasing strength. The spectral function at these three
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frequencies forms three independent spatial correlation functions.

The indices j, k are spatial indices and run over all qubits in the system. The three

spatial correlation functions can be derived from a particular microscopic model of

the environment or simply set to phenomenologically reasonable functions. Phe-

nomenological spatial correlation functions are usually assumed to be homogeneous

C(ω, |rj−rk|) and normalised such that self-correlations C(ω, 0) = 1 and any magni-

tude is defined by an additional system-environment coupling strength. For spatially

uncorrelated noise they turn into Kronecker-deltas C(ω, rj, rk) = δjk C(ω). For per-

fect spatial correlations one sets C(ω, |rj − rk|) = C(ω). For anything in between

these extremes one needs to assume a functional form, e.g. exponential decay or

Gaussian decay on a correlation length ξ. Not all functional forms are necessarily

physically possible, so one needs to choose carefully. Section 2.1.5.1 gives a method

to test any assumed spatial correlation function and section 2.1.5.2 proves exponen-

tial and Gaussian decay as valid forms. Examples of microscopic models for the

environment and respective derivations of the spatial correlation functions can be

found in chapter 3.

2.2.2 Spatially correlated dephasing

For n qubits in an uncorrelated environment the dephasing rate between two states

is proportional to the number nf of flipped qubits between the two states. In a

perfectly correlated environment however the dephasing rate between two states

with a difference of ne excitations is proportional to n2
e and nf is irrelevant. This

is shown in detail in appendix D. Therefore the dephasing rate between states with

equal excitation number is reduced to zero when the noise correlation length increases

well beyond the qubits’ separation. In other words each subspace of states with equal

numbers of excitations becomes a decoherence-free subspace. On the other hand for

states such as the GHZ state |111...〉+|000...〉)/
√

2 which have nf = ne the dephasing

rate increases enormously in spatially correlated environments. These effects of

spatially correlated dephasing have also been mentioned in references [16,48,75,103].

Taking four qubits as an example, an off-diagonal density matrix element of the form

|0011〉〈1100| will decay with rate Γ = nfγ = 4γ for correlation length ξ → 0 and as

Γ = n2
eγ = 0 for ξ → ∞, where γ is the corresponding single qubit dephasing rate.

In contrast, the coherence |0000〉〈1111| also decays as Γ = nfγ = 4γ for ξ → 0, but

will decay as Γ = n2
eγ = 16γ for ξ → ∞, i.e. the rate increases immensely for long
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2.2 Spatially correlated effects in qubit systems

correlation length (compare figure 2.2).

two states |0000〉, |1111〉 |0011〉, |1100〉 |0000〉, |0001〉
dephasing rate for ξ → 0 4γ 4γ γ
dephasing rate for ξ →∞ 16γ 0 γ

Figure 2.2: With increasing correlation length the change of the dephasing rate is
strongly dependent on the pair of states.

2.2.3 Spatially correlated relaxation

We will now regard qubit systems with only the relaxation (energy loss) part of

eq. 2.46, which is proportional to C(2ωq, rj, rk).

In an uncorrelated environment relaxation is easily understood. A state with mexc

qubits in the excited state and mgr qubits in the ground state will have mexc tran-

sition rates10 into lower energy states and mgr rates from higher energy states. In

other words the time-derivative of its corresponding diagonal density matrix element

will depend on mexc other diagonal elements with a negative coefficient and on mgr

other diagonal elements with a positive one.

In a fully correlated environment the dynamics is much harder to grasp. For two

qubits [5] one finds the state (|↑↓〉 − |↓↑〉)/
√

2 to be relaxation-free, i.e. stationary.

The state (|↑↓〉 + |↓↑〉)/
√

2 on the other hand decays twice as fast to the ground

state as for uncorrelated decoherence. Furthermore the state |↑↑〉 has only one decay

rate (instead of two) into the state |↑↓〉+ |↓↑〉. This effect was mentioned in [9] and

is completely analogous to Dicke’s model of super- and sub-radiance in an atomic

gas [7].

Regarding the part of eq. 2.46 which determines the excitation gain from the envi-

ronment and is proportional to C(−2ωq, rj, rk) we find qualitatively the same effects

with the inverse rates for two qubits in a fully correlated environment.

This result for two qubits however does not generalize to more qubits easily. The

analogy to the Dicke model can be used to understand the dynamics for more qubits

via the Clebsch-Gordan coefficients. Regarding the qubits as spin-1/2 particles one

can for example always find a relaxation-free state. It is the eigenstate |Ψ〉 with

10A transition rate or relaxation rate from state |a〉 to state |b〉 means that d
dtρaa = −γρaa + ...

and d
dtρbb = γρaa + ....
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|↑↓〉
|↓↑〉

|↓↓〉

|↑↑〉

|↑↓〉+ |↓↑〉
|↑↓〉 − |↓↑〉

|↓↓〉
uncorrelated energy exchange fully correlated energy exchange

γ↓ 2γ↓ 2γ↑

2γ↓ 2γ↑

γ↓
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γ↓ γ↑

γ↑
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γ↑

Figure 2.3: Relaxation rates and excitation rates for a qubit pair in uncorrelated
(left) and fully correlated (right) environments. For uncorrelated deco-
herence all states in the subspace {|↑↓〉 , |↓↑〉} decay at the same rate.
For fully correlated noise there is one stationary (i.e. decoherence-free)
state and one that decays twice as fast. The rates are γ↓ = C(2ωq, 0)
and γ↑ = C(−2ωq, 0).

Sz |Ψ〉 =
∑

j σ
(j)
z |Ψ〉 = 0 and zero total spin S2 |Ψ〉 = S2

x + S2
y + S2

z |Ψ〉 = 0 (see

ref. [7]).

Single excitation subspace In low-temperature systems the equilibrium state is

very close to the ground state and the dynamics of a single excitation in a system of

n qubits is often of interest. For this subspace of states with only one excitation the

two qubit example gives us a good understanding of the dynamics. The subspace is

spanned by the n states:

|↑↓↓ . . . ↓〉
|↓↑↓ . . . ↓〉
|↓↓↑ . . . ↓〉
. . .

|↓↓↓ . . . ↑〉

(2.55)

Since all but one qubit are in the ground state we can immediately identify n − 1

decoherence-free, i.e. stationary states:

|s1〉 = v2 |↑↓↓ . . . ↓〉 − v1 |↓↑↓ . . . ↓〉 (2.56)

|s2〉 = v3 |↑↓↓ . . . ↓〉 − v1 |↓↓↑ . . . ↓〉 (2.57)

. . . (2.58)

|sn−1〉 = vn−1 |↑↓↓ . . . ↓〉 − v1 |↓↓↓ . . . ↑〉 (2.59)
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2.2 Spatially correlated effects in qubit systems

where vj is the coupling strength of the jth spin to the environment. Of course we

could also choose any other pair, however with the given set of states we have chosen

n− 1 linearly independent (but not orthogonal) states. Further pairs would only be

superpositions of the given set of stationary states. The linear independence becomes

clear when we note that each stationary state is a superposition of |↑↓↓ . . . ↓〉 with

respectively one other state of the orthogonal set 2.55.

The master equation is linear for the density matrix (see superoperator form, section

2.1.1.3). This means that for two density matrices which are stationary, a linear com-

bination of them is also stationary. Such a linear combination however is not a pure

state but a statistical mixture of the two states. The density matrix corresponding

to a superposition of stationary states has additional coherences (i.e. off-diagonal

elements). Since we do not regard dephasing here these superpositions are in fact

decoherence-free (or more precisely relaxation-free). In other words the stationary

states span a decoherence-free subspace.

To find the one last state that is required to make the stationary states a basis (of the

single excitation subspace) we first orthonormalise the stationary states via Gram-

Schmidt orthogonalisation, then start with |↑↓↓ . . . ↓〉, again subtract the existing

orthonormal states weighted with their overlap and find the one decaying state for

four qubits:

|d〉 = v1 |↑↓↓↓〉+ v2 |↓↑↓↓〉+ v3 |↓↓↑↓〉+ v4 |↓↓↓↑〉 (2.60)

This pattern can be generalised to n qubits:

|d〉 = v1 |↑↓↓ . . . ↓〉+ v2 |↓↑↓ . . . ↓〉+ v3 |↓↓↑ . . . ↓〉+ · · ·+ vn |↓↓↓ . . . ↑〉 (2.61)

We have now found an orthogonal basis that describes the single excitation subspace

by n − 1 stationary states and only 1 state decays to the ground state. In other

words there is a relaxation-free subspace of n− 1 states within the single-excitation

subspace.

Relaxation blocking by uncoupled spins The combination of many relaxation-

free states and one decaying state leads to a paradoxical effect. Uncoupled spins in

their ground state reduce the relaxation of one spin in its excited state if they are

all coupled to the same bath (i.e. their noise is perfectly correlated). We investigate

this phenomenon numerically by measuring the 〈σz〉 expectation value of the excited
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Figure 2.4: Relaxation of a single spin, which is initially in its excited state 〈σz〉 = 1.
Other spins in their ground state are coupled to the same environment.
Plotted is 〈σz〉 of the excited spin in the final state of the system de-
pendent on the total number of spins. The relaxation of the spin is
partially blocked because a relaxation-free subspace is formed, which
overlaps more and more with the initial state.

spin for very large times. We do so with an increasing number of spins in their

ground state which are not coupled to the excited spin but coupled to the same

environmental noise. Figure 2.4 shows that the uncoupled spins block the relaxation

of the one excited spin.

For four qubits we calculate the final state analytically by dividing the initial state

|↑↓↓↓〉 into a stationary part and a decaying part. The stationary part is found

by projection onto the orthonormalised basis of the relaxation-free subspace, the

decaying part by projection onto the normalised decaying state. The final state is

then found by replacing the decaying part with the ground state. We then find 〈σz〉
(i.e. the energy in the qubit) in that final state:

〈σz(t→∞)〉 = −1 +
2 (v2

2 + v2
3 + v2

4)
2

(v2
1 + v2

2 + v2
3 + v2

4)
2 (2.62)

where again vj is the coupling of the jth spin to the environment. The pattern can
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2.3 Solving master equations numerically

be easily generalised to n spins:

〈σz(t→∞)〉 = −1 +
2
(∑n

j=2 v
2
j

)2

(
∑n

k=1 v
2
k)

2

all vj equal−→ −1 + 2
(n− 1)2

n2
(2.63)

The second expression is obtained when the coupling of all spins to the environment

is equally strong (as assumed in our numerics). This generalisation for n spins

describes the numerical calculations quite well as can be seen in figure 2.4. In

collaboration with Nicolas Vogt it has been analytically proven to be correct, which

can be found in our publication, reference [104].

2.3 Solving master equations numerically

The quantum master equation, just as any other first order, linear, homogeneous

differential equation, can always be written as a constant matrix multiplied with the

vector of variables, i.e. superoperator form:

d

dt
~ρ = L~ρ (2.64)

where ~ρ is a vector containing all elements of the density matrix and L is a matrix,

which is often called a Liouvillean operator since this is the quantum equivalent of

the classical Liouville equation. It can also be called a “superoperator” which purely

names the mathematical object. To obtain an analytical solution the superoperator

matrix needs to be diagonalised, which decouples the equations yielding complex

exponential solutions. Imaginary eigenvalues lead to oscillations and real eigenvalues

to exponential decay. The diagonalisation however can quickly become analytically

infeasible with increasing system size, even with simplifications from the secular

approximation, because the superoperator matrix has d4 elements, where d is the

number of system states.

In cases where the analytical diagonalisation is infeasible the equations can always

be solved with numerical diagonalisation. This means to assign values to all system

parameters and then diagonalise the resulting matrix L in eq. 2.64. This is an ex-

act calculation to the precision to which numbers are stored during the calculation

(e.g. double precision with approx. fifteen significant numbers in Matlab). When

the matrix is diagonalised, any point in time can easily be calculated. Addition-

ally the eigenvalues can help to identify frequencies and transition rates between
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states and effective decay rates can be calculated because the individual exponential

rates (eigenvalues) and corresponding coefficients (eigenvectors) are calculated. For

small system sizes this can even be a faster calculation than a numerical integra-

tion of the differential equation (see below). However the diagonalisation process is

computationally highly time-consuming for large systems.

An alternative method is a step-by-step numerical integration with for example the

trapezoidal rule, a Runge-Kutta algorithm or a Krylov subspace algorithm [105,106].

The computation time for these algorithms scale better with increasing system size,

measured in number of states, resulting in enormous efficiency for large systems.

These algorithm need to be calculated step-by-step from the initial state and bear a

numerical error in each time step. However the precision can be set to a necessary

minimum to further increase computation speed.

In computational science different solution methods to differential equations are often

compared by the scaling of error with the step size h. For example the fifth-order

Runge-Kutta method used here has an error that scales as O(h5) [107]. We take a

more applied measure here and regard scaling of the computation time for a given

error.

2.3.1 Comparing computation times in Matlab

The computation times for both methods are compared for a system of coupled two-

level systems (spin chain) in the single excitation subspace, where the number of

spins equals the number of states. This system is well suited for computation time

measurements as it is easily scalable and highly relevant to this thesis.

All calculations were performed in Matlab 7.13(Release 2011b). The “tic” and “toc”

functions were used to measure the computation times displayed in figure 2.5. We

ran all calculations on one core of our quad-core machine “Fenchurch” with an Intel

Xeon W3550 chip @3.07 GHz with 16 GB RAM.

The diagonalisation method consists of the construction of the superoperator matrix

L, the actual diagonalisation and the calculation of the density matrix for each time

step which is of interest. In our computation time measurements the last step was not

performed as it is dependent on the number of points to be obtained (and typically

takes up a negligible amount of time anyway). Matlab’s “eig”-function was used for

the diagonalisation.
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Figure 2.5: Scaling of computation times with increasing chain length (i.e. number
of states in the system) for different computation methods. Additional
to the actual measurements (marked by dots) a linear fit is obtained and
plotted in the range where the dots scale linearly for each method. For
the numerical integration this fit is extrapolated for longer chain lengths
and can be compared to a second run (pink/ black) with logarithmi-
cally equidistant and longer chain lengths. We find that diagonalisation
method scales as l6, while the ode-integration method scales as l4. Split-
ting up the calculation into the construction of the superoperator only
and the ode-integration only we see that the ode-integration actually
scales as l3. The construction of the superoperator causes the l4 scaling
and takes up larger part of the computation time.

The numerical integration method consists of the construction of the superoperator

matrix and the numerical integration of the density matrix. The time for this inte-

gration was chosen as the time for one perfect state transfer through the chain in

this set up (see section 5.1). The multiplication with the constructed superoperator

matrix was defined as a function and given to the Matlab “ode45”-solver for the

integration which uses an explicit Runge-Kutta(4,5) formula [108].

Figure 2.5 shows the computation time over the chain length l both in logarithmic

scaling which is ideal to determine scaling behaviour as polynomial scaling converts

to the gradient of linear scaling and exponential scaling stays exponential:
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Figure 2.6: Computation times with normal scaling. Here the enormous advantage
of numerical integration for large systems becomes apparent.

y = c1x
a y2 = eax2

ỹ : = log y = log(c1x
a) = a log x+ log c1 ỹ2 : = log y2 = ax2 = aelog x2

= ax̃+ log c1 = aex̃2

The diagonalisation method (red / dark blue in figure 2.5) is faster than the nu-

merical integration for a chain length of up to 15 spins. For longer chain lengths it

scales with approximately l6. The use of the sparse matrix format11 (dark blue) for

the superoperator matrix decreases the computation time considerably but does not

change the scaling. The numerical integration method (green) scales approximately

with l4 and enables calculations well above l = 100. Splitting up the computation

time into the time for the construction of the superoperator matrix (grey/ black) and

the time for the numerical “ode45”-integration (light blue) we find that the former

becomes the limiting factor as the “ode45”-integration scales with approximately l3.

The computation times with normal scaling are plotted in figure 2.6 and 2.7. Al-

though these curves look similar to an exponential increase exponential scaling can

be clearly ruled out in figure 2.8.

To summarize, numerical integration is enormously faster than numerical diagonal-

isation for large systems. Numerical diagonalisation bears an advantage for special

11In the sparse matrix format only non-zero elements and their positions are stored.
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Figure 2.8: We can see that for both methods the points do not form a linear curve
but a logarithmic curve. Although the numerical integration (green)
might be misinterpreted as linear in the end an extrapolation does not
match the two points of the extra-long run (pink). Therefore the com-
putation time definitely does not scale exponentially but polynomial.
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cases: when the time of interest is unusually long after the initial state or when fur-

ther information about the rates and frequencies of the system is wanted e.g. effective

rates need to be calculated.

2.4 Chapter summary

In section 2.1 we found a general form for the Bloch-Redfield equations, a Marko-

vian master equation with efficient but comprehensive modeling options. A core

strength is the direct link back to the interaction and bath Hamiltonian, which give

an underpinning physical model. The relevant environmental properties are con-

tained in the spectral functions, which define temporal and spatial correlations of

the environment. The derived form eq. 2.27 facilitates a faster and more clearly laid

out calculation than the common element-wise notation. We laid out an efficient,

consistent method of investigating spatial correlations with this formalism, which

is particularly useful for large systems. This straightforward approach offers more

flexibility than the ‘several baths’ approach since any correlation function can be

used.

The secular approximation has been shown generally to simplify the mathematical

form of the equations. This approximation is based on the existence of two different

time scales in the system dynamics, which is a common occurrence in controlled

quantum systems. Applying the secular approximation for spatially uncorrelated

decoherence directly yields the Lindblad form of a master equation. For spatially

correlated decoherence we presented the required additional step: the diagonalisa-

tion of the coefficient matrix. This step also provides a test of physicality for phe-

nomenological spatial correlation functions in the Markovian regime and we showed

that exponential and Gaussian decay with arbitrary correlation length proves to be

a physical model for spatial noise correlations. The secular approximation is fur-

thermore a great tool in finding analytical solutions to the Bloch-Redfield equations

as it helps identify elements of the superoperator which can be approximated by

zero. It is important to point out that while it is common to apply the full secular

approximation, which bears the danger of neglecting physical features, we present

a more detailed general approach by which we only neglect justified elements based

on the respective system at hand.

In section 2.2 we first gave a rather instructive summary on how to model spatially

correlated noise in systems of several qubits/spins. This also forms the basis of chap-
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ter 5. We then investigated very generally the effects of spatial noise correlations.

These results are essential to this thesis as they provide a fundamental understand-

ing of correlated noise effects, which can be applied to several different systems in

following chapters: While for short correlation lengths the dephasing rate between

two states is proportional to the number nf of flipped spins one finds that for long

correlation lengths it becomes proportional to n2
e, where ne is the difference in the

number of excitations. This leads to much stronger dephasing between certain states

with large ne but also to the creation of dephasing-free subspaces for ne = 0.

For relaxation the dynamics becomes rather complex for long correlation lengths.

Characteristic is the fact that a pair of spins in the state (|↑↓〉+|↓↑〉)/
√

2 contributes

a decay rate, which is twice as high as the relaxation rate in uncorrelated noise. In

contrast, a pair in the state (|↑↓〉 − |↓↑〉)/
√

2 does not contribute a decay rate from

that state. In the single excitation subspaces all of these n − 1 states are therefore

relaxation-free, meaning that the whole subspace only contains one decaying state.

This leads to the paradoxical effect that a qubit’s relaxation can be blocked by other

qubits in their ground state, which are not coupled to the excited qubit but only to

the same environmental noise.

In section 2.3 we presented two numerical solution methods for master equations:

Numerical diagonalisation yields more information such as steady states, eigenfre-

quencies, decay rates and the ability to calculate any time point in the evolution

without a step-wise integration. However with increasing number of states l the

computation time for the diagonalisation scales as l6. For large systems numerical

integration is therefore enormously faster, scaling as l3. With this method the con-

struction of the superoperator actually becomes the computationally most expensive

process as it scales as l4.
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Chapter 3

Microscopic models of the
environment

In this chapter the correlation function Cjk(τ) = 〈B̃j(τ)B̃k(0)〉, which characterizes

the environment in the Bloch-Redfield formalism (eq. 2.27) is calculated for certain

simplified microscopic models of the environment. These examples help to connect

the properties of the correlation function to a physical picture. This chapter is in

contrast to the rest of this thesis where the environment is only characterised by

the correlation function and the system is modelled in detail. The material in this

chapter has appeared in reference [83]. Other interesting work on large dissipative

systems can be found in references [20, 109, 110].

3.1 Coupled quantum harmonic oscillators

We begin by considering a chain of coupled quantum harmonic oscillators as a model

for the environmental bath of one-dimensional systems. This can be seen as an exten-

sion of the well known spin-boson model [17,38–41], which describes a system of spins

coupled to an environmental bath of uncoupled harmonic oscillators. We consider

a nearest-neighbour coupling and derive the spectral function for this environment.

Once the spectral function is calculated it can be inserted in the Bloch-Redfield equa-

tions and can be combined with any system, that is placed in this environmental

model. Furthermore obtaining the spectral function from an environmental model

shows us which environmental parameters determine which features of the spectral

function. We are particularly interested in the spatial correlations of the bath and
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we will show that the strength of spatial correlations is determined by the coupling

of the environmental sites. The environmental bath Hamiltonian for a linear chain

of harmonic oscillators with nearest-neighbour coupling is given by:

HB =
N∑

x=1

ωqa
†
xax +

N−1∑

x=1

g
(
a†xax+1 + a†x+1ax

)
(3.1)

ax is the annihilation operator of the harmonic oscillator at position x, satisfying

the bosonic commutation relation [ax, a
†
x′ ] = δxx′ with δxx′ the Kronecker-Delta.

Furthermore ωq is the level splitting and g is the coupling strength.

Hamiltonians of coupled bosons are uncoupled (i.e.“diagonal”) in Fourier space when

the coupling depends only on the relative distance. Therefore a Fourier lattice

transformation is employed changing the description to travelling modes rather than

localized excitations:

ak =
1√
N

∑

x

e−ikxdax ax =
1√
N

∑

k

eikxdak

a†k =
1√
N

∑

x

eikxda†x a†x =
1√
N

∑

k

e−ikxda†k

(3.2)

where d is the lattice constant of the chain and the position x ∈ N is dimen-

sionless. For simplicity of notation the wave number k is not dimensionless here.

In a more detailed discretization the inverse transformation in eq. 3.2 is a†x =
1√
N

∑N/2
n=−N/2 exp(−iknxd)a†k with kn = 2π

Nd
n and dimensionless n ∈ N.

Since we assume a finite chain with largeN the Fourier lattice transform for operators

is analogous to a discrete Fourier transform. Further details can be found in [111,112]

and appendix G. Note the commutation relations for the transformed operators are
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preserved for bosons and fermions but not for spins:

bosons: [ax, a
†
x′ ] = δxx′ (3.3)

[ak, a
†
k′ ] =

1

N

[∑

x

e−ikxdax,
∑

x′

eik
′x′da†x′

]
=

1

N

∑

x,x′

eid(k′x′−kx)[ax, a
†
x′ ] = δkk′

(3.4)

fermions: {cx, c†x′} = δxx′ (3.5)

{ck, c†k′} =
1

N

∑

xx′

eid(k′x′−kx){ax, a†x′} = δkk′ (3.6)

spins: [s+
x , s

−
x′ ] = δxx′s

z
x (3.7)

[s+
k , s

−
k′ ] =

1

N

∑

xx′

eid(k′x′−kx)[s+
x , s

−
x′ ] =

1

N

∑

x

eidx(k′−k)szx = szk′−k (3.8)

It can be seen here that making the chain infinitely long and changing to a Fourier

series (appendix G) does not make a significant difference. The chain length only

sets how closely spaced the k-values are in the Brillouin zone.

Replacing ax and a†x with their transforms in the Hamiltonian (eq. 3.1) one finds:

HB = ωq
∑

k,k′

1

N

∑

x

ei(k
′−k)xd

︸ ︷︷ ︸
δkk′

a†kak′ + g
∑

kk′

1

N

∑

x

ei(k
′−k)xd

︸ ︷︷ ︸
δkk′

eikda†kak′ (3.9)

+ g
1

N

∑

x

ei(k
′−k)xd

︸ ︷︷ ︸
δkk′

e−ikda†kak′

= ωq
∑

k

a†kak + g
∑

k

a†kak(e
ikd + e−ikd) (3.10)

=
∑

k

(ωq + 2g cos kd)a†kak (3.11)

=
∑

k

ωka
†
kak (3.12)

The Hamiltonian is diagonal in Fourier space with the dispersion relation ωk =

ωq + 2g cos kd.

Note that an arbitrary dispersion relation represents the Fourier lattice transform of

the coupling coefficients in space. This is seen by insertion of the inverse transforms
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(eq. 3.2) into:

HB = ωk
∑

k

a†kak =
∑

xx′

∑

k

1

N
ωke

ikd(x−x′)

︸ ︷︷ ︸
=:gx−x′

a†xax′ (3.13)

The coupling constant gx−x′ is the Fourier lattice transform (appendix G) of the

dispersion relation and vice versa1.

ωk =
∑

u

gue
ikud with u := x− x′ (3.14)

By choosing nearest-neighbour coupling gx−x′ = gδx,x′+1 + gδx+1,x′ we obtain in x-

space the Hamiltonian (eq. 3.1) and in k-space a cosine dispersion relation (eq. 3.12).

If we assume the correlations in the chain are dominated by propagating (i.e. dispersion-

free) excitations, we may also linearise the dispersion relation (cos kd ≈ −|kd|+π/2)

and find the simpler:

ωk ≈ ωq + 2g
(
−|kd|+ π

2

)
with k ∈

[
−π
d
,
π

d

]
(3.15)

3.1.1 Space-time correlation function

In order to understand the decohering influence of a chain of coupled harmonic

oscillators in general, we calculate the space-time correlation function of typical

coupling operators. They contain all information which is relevant for the Bloch-

Redfield equations; their Fourier transform is the spectral function.

The bath operators whose correlation functions are typically of interest are B1x =

a†x, B2x = ax and B3x = ax+a†x because they are typically involved in the interaction

Hamiltonian of a system coupling to particular spatially located parts of the bath.

Using the inverse Fourier transforms (eq. 3.2) the calculation can be carried out

1Note that in this general notation the function gx−x′ also has negative arguments x−x′ < 0 and

therefore the Fourier transform needs to run over the entire interval: ωk =
∑N−1
u=−N+1 gue

ikud.
For the dispersion relation ωk the larger interval makes a difference and must be considered.
Generally a symmetric gu = g−u guarantees a real dispersion relation. The fact that the
interval is twice as long in x-space means in k-space a resolution which is better by a factor of
two (cf. eq. 3.13):
x− x′ = 0, . . . , N ←→ kn = 2π

Ndn with n = −N/2, . . . , N/2
x− x′ = −N, . . . , N ←→ kn = 2π

2Ndn with n = −N, . . . , N
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3.1 Coupled quantum harmonic oscillators

completely in Fourier space.

B1x = a†x =
1√
N

∑

k

e−ikxda†k =:
∑

k

gkxa
†
k (3.16)

B2x = ax =
1√
N

∑

k

eikxdak =:
∑

k

g∗kxak (3.17)

Changing to the Heisenberg picture (appendix F) the time-dependent bath operator

reads:

B̃1x(t) = e(i
∑
k ωka

†
kakt)

∑

k′

gk′xa
†
k′ e

(−i
∑
k′′ ωk′′a

†
k′′ak′′ t) (3.18)

=
∏

k

e(iωka
†
kakt)

∑

k′

gk′xa
†
k′

∏

k′′

e(−iωk′′a
†
k′′ak′′ t) (3.19)

=
∑

k

e(iωka
†
kakt)gkxa

†
ke

(−iωka†kakt) (3.20)

=
∑

k

∑

n

1

n!
(iωkt)

ngkx (a†kak)
na†ke

(−iωka†kakt) (3.21)

=
∑

k

∑

n

1

n!
(iωkt)

ngkx a
†
k(aka

†
k)
ne(−iωka

†
kakt) (3.22)

=
∑

k

gkxa
†
k eiωkaka

†
k︸ ︷︷ ︸

=e
iωk(1+a

†
k
ak)t

e(−iωka
†
kakt) (3.23)

=
∑

k

gkxa
†
ke
iωkt (3.24)

We rewrote the first exponential as a power series and combined it with a†k. The

operator B̃2x(t) is found similarly, by rewriting the second exponential as a power

series, combining it with ak and writing ak(a
†
kak)

n = (aka
†
k)
nak. This leads to:

B̃2x(t) =
∑

k

g∗kxake
−iωkt = B̃†1x(t) (3.25)

The four different correlation functions involving B̃1x and B̃2x can now be calculated
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3 Microscopic models of the environment

using the quantum regression theorem [44,113,114].

〈B̃1x(t)B̃1x′(t
′)〉 = Tr

(
B̃1x(t)B̃1x′(t

′)ρB

)
(3.26)

= Tr

(∑

kk′

gkxgk′x′a
†
ka
†
k′e

i(ωkt+ωk′ t
′)ρB

)
(3.27)

=
∑

kk′

gkxgk′x′e
i(ωkt+ωk′ t

′)Tr(a†ka
†
k′ρB) (3.28)

= 0 (3.29)

The last step requires the assumption that the environment is in a steady state which

is the fully mixed state with no non-zero off-diagonal elements in ρB (using the Fock

basis of the k-modes). This seems reasonable for an equilibrium state of bath modes

with a diagonal Hamiltonian (eq. 3.12). Then follows analogously:

〈B̃2x(t)B̃2x′(t
′)〉 =

∑

kk′

g∗kxg
∗
k′x′e

−i(ωkt+ωk′ t′)Tr(akak′ρB) (3.30)

= 0 (3.31)

The mixed correlation functions however are given by:

〈B̃1x(t)B̃2x′(t
′)〉 =

∑

kk′

gkxg
∗
k′x′e

−i(ωk′ t′−ωkt) Tr(a†kak′ρB)︸ ︷︷ ︸
=δkk′ 〈nk〉

(3.32)

=
∑

k

gkxg
∗
kx′e

iωk(t−t′)〈nk〉 (3.33)

〈B̃2x(t)B̃1x′(t
′)〉 =

∑

kk′

g∗kxgk′x′e
−i(ωkt−ωk′ t′) Tr(aka

†
kρB) (3.34)

=
∑

k

g∗kxgkx′e
−iωk(t−t′)(1 + 〈nk〉) (3.35)

where 〈nk〉 is the expectation value of the occupation number of mode k given by

the Bose-Einstein distribution 〈nk〉 = 1/(exp(~ωk
kT

) − 1). For large energies this can

be approximated by the Boltzmann distribution exp(−~ωk
kT

). The calculation from

eq. 3.16 to eq. 3.35 is similar to [20]. It is done more generally and with more detail

in appendix A.

Replacing gkx with its definition (eq. 3.16) we find the two space-time correlation
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3.1 Coupled quantum harmonic oscillators

functions for a coupled chain of harmonic oscillators:

〈B̃1x(τ)B̃2x′(0)〉 =
∑

k

1

N
e−ik(x−x′)deiωkτ 〈nk〉 (3.36)

〈B̃2x(τ)B̃1x′(0)〉 =
∑

k

1

N
eik(x−x′)de−iωkτ (1 + 〈nk〉) (3.37)

Markovianity For Markovian system dynamics the correlation functions of the

bath have to decay faster than the relevant system dynamics. To check whether

the correlation functions (eq. 3.36) decay we calculate the sum explicitly. For sim-

plicity linear dispersion ωk = ωq + 2g
(
−|kd|+ π

2

)
and the Boltzmann distribution

are assumed here〈nk〉 = exp(−βωk) with β = 1/(kBT ) is the inverse of Boltzmann

constant kB and temperature T . Furthermore the sum is changed to an integration

assuming closely spaced k-values, i.e. a long chain:

1

N

N/2∑

n=−N/2

f(kn) =
1

N

Nd

2π

∫ π/d

−π/d
dkf(k) with kn =

2π

Nd
n (3.38)

Then eq. 3.36 can be evaluated:

〈B̃1x(τ)B̃2x′(0)〉 = (3.39)

=
d

2π

∫ π/d

−π/d
dk e−ik(x−x′)de(iτ−β)(ωq+πg)e−u|k| with u := (iτ − β)2gd (3.40)

=
d

2π
e(iτ−β)(ωq+πg)

(∫ π/d

0

dk e(−ixd+ix′d−u)k +

∫ 0

−π/d
dk e(−ixd+ix′d+u)k

)
(3.41)

=
d

π

u

u2 + (x− x′)2d2

︸ ︷︷ ︸
decay ∝ 1

2πgτ
for large τ

e(iτ−β)ωq
[
(−1)x−x

′
e−(iτ−β)πg − e(iτ−β)πg

]

︸ ︷︷ ︸
oscillating with τ

(3.42)

∝ 1

2πgτ
(3.43)

For the last step it was used that exp(i(x − x′)π) = (−1)x−x
′

as (x − x′) ∈ Z is an

integer.

The correlation function decays in time with an algebraic decay. The same is found

for the correlation function 3.37 analogously. While an algebraic decay by definition

has no decay scale (unlike an exponential decay), it will be further away from zero

than an exponential decay for large enough time. The fact that the correlation
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3 Microscopic models of the environment

function in time is not a delta function but an algebraic decay indicates the potential

for non-Markovian memory effects of this environment. The coefficient of the 1/τ

decay is given by the coupling strength g, which is an environmental parameter and

in the limit where g is orders of magnitude larger than the relevant system energies,

this model of the environment can be used in Markovian master equations.

spatial decay for τ = 0 Looking at one moment in time t = t′ ⇔ τ = 0 the

spatial correlation function (eq. 3.43) takes the form of a Lorentzian:

〈B̃1x(t)B̃2x′(t)〉 =
1

π
e−βωq

−2βg

(2βg)2 + (x− x′)2

(
e−βπg − (−1)x−x

′
eβπg

)
(3.44)

The coefficient is a Lorentzian with width gβ = g
kBT

i.e. the correlation length is

given by g
kBT

. For strong environmental coupling g compared to the temperature

kBT the correlation length is long and one of the two exponentials exp(±πgβ)→ 0

depending on the sign of g, i.e. nearest neighbours are correlated (anticorrelated) for

attractive (repulsive) coupling with strongly negative (positive) coupling strength

g. For weak environmental coupling βg (which is only possible for large βωq since

the Bose-Einstein distribution was approximated as the Boltzmann distribution)

the Lorentzian has a short width and exp(2πgβ)→ 1 i.e. every second neighbour is

uncorrelated. Note that for x = x′ one finds a non-zero lim
g→0
〈B̃1x(t)B̃2x(t)〉 = e−βωq .

Dividing eq. 3.44 by its value for x = x′ we find the relative spatial correlation

function:

〈B̃1x(t)B̃2x′(t)〉
〈B̃1x(t)B̃2x(t)〉

=
(2βg)2

(2βg)2 + (x− x′)2
·
{

1 for x− x′ even

coth(−πgβ) for x− x′ odd
(3.45)

This function is shown in figure 3.1 and demonstrates clearly the decay of correlations

due to the interplay of correlation hopping along the chain and thermal noise.

The second correlation function (eq. 3.37) (with the Boltzmann distribution 〈nk〉 =

e−βωk) can be expressed in terms of the first:

〈B̃2x(τ)B̃1x′(0)〉 =
(
〈B̃2x(τ)B̃1x′(0)〉

)†
+ lim

β→0

(
〈B̃2x(τ)B̃1x′(0)〉

)†
(3.46)
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3.1 Coupled quantum harmonic oscillators
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Figure 3.1: Correlation function 〈B̃1x(t)B̃2x′(t)〉 (eq. 3.45) normalised by its value at
x = x′ over spatial distance |x − x′|. These plots are for weak coupling
(gβ = ±0.1), intermediate coupling (gβ = ±1) and strong coupling
(gβ = ±10).

Combining 3.46 and 3.44 leads to:

〈B̃2x(t)B̃1x′(t)〉 =

{
1 + e−βωq for x = x′

〈B̃1x(t)B̃2x′(t)〉 for x 6= x′
(3.47)

3.1.2 Spectral function

In the Bloch-Redfield equations the spectral function (defined in eq. 2.30) is used,

i.e. the Fourier transform of the time correlation function. For the bosonic chain

(eq. 3.36) the spectral function can be written in terms of Dirac delta functions:

C1x2x′(ω) =

∫ ∞

−∞
dτeiωτ 〈B̃1x(τ)B̃2x′(0)〉 (3.48)

=
∑

k

δ(ω + ωk)
2π

N
e−ik(x−x′)d〈n(|ω|)〉 (3.49)

C2x1x′(ω) =

∫ ∞

−∞
dτeiωτ 〈B̃2x(τ)B̃1x′(0)〉 (3.50)

=
∑

k

δ(ω − ωk)
2π

N
eik(x−x′)d(1 + 〈n(|ω|)〉) (3.51)
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3 Microscopic models of the environment

since the inverse Fourier transform of these expressions yield back eq. 3.36 and 3.37.

The spectral function can then be calculated for specific dispersion relations ωk,

changing from summation to integration (eq. 3.38) and using for the Delta-functions

[115]:

δ (f(x)) =
∑

j

δ(x− xj)
|f ′(xj)|

with ∀j : f(xj) = 0 (3.52)

As examples we calculate the spectral function for linearised dispersion (eq. 3.15)

and cosine dispersion (eq. 3.10).

Linear dispersion With linearised dispersion for propagating excitations ωk =

ωq + 2g
(
−|kd|+ π

2

)
with k ∈

[
−π
d
, π
d

]
the corresponding spectral function (eq. 3.49)

is obtained (using eq. 3.38 and 3.52):

C1x2x′(ω) = d

∫ π/d

−π/d
dk δ(ω + ωq + πg − 2g|k|d)e−ikd(x−x′)〈n(|ω|)〉 (3.53)

k0 = ±ω + ωq + πg

2gd
(3.54)

f2(k) = ω + ωq + πg − 2g|k|d (3.55)

|f ′2(k0)| = 2|g|d (3.56)

C1x2x′(ω) = d
1

2|g|d
(
ei
ω+ωq+πg

2g
(x−x′) + e−i

ω+ωq+πg

2g
(x−x′)

)
〈n(|ω|)〉Θ(−|ω + ωq|+ π|g|)

(3.57)

=
1

|g| cos

(
ω + ωq + πg

2g
(x− x′)

)
〈n(|ω|)〉Θ(−|ω + ωq|+ π|g|) (3.58)

Analogously one finds:

C2x1x′(ω) = d

∫ π/d

−π/d
dk δ(ω − ωq − πg + 2g|k|d)eikd(x−x′) (1 + 〈n(|ω|)〉) (3.59)

=
1

|g| cos

(
ω − ωq − πg

2g
(x− x′)

)
(1 + 〈n(|ω|)〉) Θ(−|ω − ωq|+ π|g|)

(3.60)
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3.1 Coupled quantum harmonic oscillators

Cosine dispersion For a cosine dispersion relation (see eq. 3.12) the correspond-

ing spectral function (eq. 3.49) is obtained using 3.38:

C1x2x′(ω) = d

∫ π/d

−π/d
dk δ(ω + ωq + 2g cos kd)e−ikd(x−x′)〈n(ω)〉 (3.61)

k0 = ± arccos

(
−ω + ωq

2g

)
1

d
⇔ ω + ωk0 = 0 (3.62)

f(k) = ω + ωq + 2g cos kd (3.63)

|f ′(k0)| = |2gd sin k0d| =
∣∣∣∣2gd sin

(
± arccos

−ω − ωq
2g

)∣∣∣∣ (3.64)

=

∣∣∣∣∣±2gd

√
1− (ω + ωq)2

4g2

∣∣∣∣∣ = d
√

4g2 − (ω + ωq)2 (3.65)

C1x2x′(ω) =
1√

4g2 − (ω + ωq)2

(
ei(x−x

′) arccos(... ) + e−i(x−x
′) arccos(... )

)
〈n(ω)〉

·Θ (−|ω + ωq|+ 2|g|) (3.66)

C1x2x′(ω) = Θ (−|ω + ωq|+ 2|g|) 2√
4g2 − (ω + ωq)2

· cos

[
(x− x′) arccos

(
−ω + ωq

2g

)]
〈n(ω)〉 (3.67)

Analogously one finds:

C2x1x′(ω) = Θ (−|ω − ωq|+ 2|g|) 2√
4g2 − (ω − ωq)2

· cos

[
(x− x′) arccos

(
ω − ωq

2g

)]
(1 + 〈n(ω)〉) (3.68)

The spectral function shows that the noise consists of frequencies around the oscil-

lators eigenenergies ωq. The Heaviside Θ-functions mark the noise cut-off at 2g left

and right of this frequency due to the band gap of the chain.

For any fixed frequency ω the spatial correlation is a cosine oscillation with increasing

distance |x − x′|, allowing points of negative correlations. This is quite different to

the time-correlation function (eq. 3.43 and 3.44) because the spatial and temporal

part of the correlation function are not separable into a product in this example.
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3 Microscopic models of the environment

Taking for example two qubits and placing them at different relative distances in

this environment one will find points, where the cosine is zero, and the decoherence

will appear completely uncorrelated. At points where the cosine is 1 the noise is fully

correlated and correlated decoherence effects will be the strongest. At the points

where cosine is -1 the noise is fully anticorrelated and some effects of correlated

decoherence will be reversed. See section 4.4.1 for an example.

3.1.3 Decoherent environmental evolution

We now introduce decoherence into the evolution of the environment and show how

this changes the mixed correlation functions and the conditions for Markovianity.

We regard the same coupled bosonic chain given by the Hamiltonian in eq. 3.1 or

Fourier lattice transformed in eq. 3.12:

HB = ωk
∑

k

a†kak with ωk = ωq + 2g cos kd (3.69)

However contrary to section 3.1 the time evolution is not assumed to be coherent.

Instead we assume a Lindblad equation with two Lindblad operators ax, a
†
x on each

site in space:

ρ̇ = −i[HB, ρ] +
∑

x

Γ↓

(
axρa

†
x −

1

2
{a†xax, ρ}

)
+
∑

x

Γ↑

(
a†xρax −

1

2
{axa†x, ρ}

)

(3.70)

Replacing the spatial ladder operators with their Fourier lattice transform (eq. 3.2)

we find that the Lindblad equation transforms easily to k-space. Explicitly for the

first decoherent term:

∑

x

axρa
†
x =

1

N

∑

kk′

∑

x

eixd(k−k′)

︸ ︷︷ ︸
=Nδkk′

akρa
†
k′ =

∑

k

akρa
†
k (3.71)

Analogous for all other terms we find:

ρ̇ = −i[HB, ρ] +
∑

k

Γ↓

(
akρa

†
k −

1

2
{a†kak, ρ}

)
+
∑

k

Γ↑

(
a†kρak −

1

2
{aka†k, ρ}

)

(3.72)

= Lρ (3.73)

56



3.1 Coupled quantum harmonic oscillators

where we have defined the superoperator L. Again our aim is to find correlation

functions of the bath operators

B1x = a†x =
1√
N

∑

k

e−ikxda†k =:
∑

k

gkxa
†
k (3.74)

B2x = ax =
1√
N

∑

k

eikxdak =:
∑

k

g∗kxak (3.75)

Contrary to the coherent case (eq. 3.18) we calculate the Heisenberg picture time

evolution of these operators by solving the adjoint master equation (see chapter 3.2.3

in [1]) which for an arbitrary Heisenberg operator AH(t) reads:

d

dt
AH(t) = L†AH(t) (3.76)

where L is the Lindblad superoperator that defines the differential equation for

the density matrix. For this system it is given by eq. 3.73. First we solve the

time evolution of ãk(t) which is the time-dependent Heisenberg-picture operator of

Schrödinger picture operator ak:

d

dt
ãk′(t) = i

[∑

k

ωka
†
kak, ãk′(t)

]
+
∑

k

Γ↓

(
a†kãk′(t)ak −

1

2

{
a†kak, ãk′(t)

})

+
∑

k

Γ↑

(
akãk′(t)a

†
k −

1

2

{
aka

†
k, ãk′(t)

}) (3.77)
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3 Microscopic models of the environment

To solve this differential equation we calculate L† ak. Keeping the bosonic commu-

tation relation in mind [ak, a
†
k′ ] = δkk′ we find that all terms for k 6= k′ vanish:

L† ak = i
[
ωka

†
kak, ak

]
+ Γ↓

(
a†kakak −

1

2

{
a†kak, ak

})
(3.78)

+ Γ↑

(
akaka

†
k −

1

2

{
aka

†
k, ak

})
(3.79)

= iωk(a
†
kakak − aka

†
k︸︷︷︸

=a†kak+1

ak) + Γ↓


a
†
kakak −

1

2
a†kakak −

1

2
aka

†
k︸︷︷︸

=aka
†
k+1

ak


 (3.80)

+ Γ↑


akaka

†
k −

1

2
ak a†kak︸︷︷︸

=aka
†
k−1

−1

2
akaka

†
k


 (3.81)

=

(
−iωk −

1

2
Γ↓ +

1

2
Γ↑

)
ak (3.82)

This result motivates our ansatz for the time-dependent Heisenberg-picture operator:

ãk(t) = e

(
−iωk−

Γ↓−Γ↑
2

)
(t−t0)

ak (3.83)

which is easily confirmed to be correct by insertion into eq. 3.77. Analogously we

find for a†k:

iωk[a
†
kak, a

†
k] = iωk


a
†
k aka

†
k︸︷︷︸

=a†kak+1

−a†kaka†k


 = iωka

†
k (3.84)

Γ↓


a
†
ka
†
kak −

1

2
a†k aka

†
k︸︷︷︸

=a†kak+1

−1

2
a†ka

†
kak


 = −1

2
Γ↓a

†
k (3.85)

Γ↑


aka

†
ka
†
k −

1

2
aka

†
ka
†
k −

1

2
a†kak︸︷︷︸

=aka
†
k−1

a†k


 =

1

2
Γ↑a

†
k (3.86)
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3.1 Coupled quantum harmonic oscillators

which confirms that the two Heisenberg-picture operators are the Hermitian conju-

gate of each other:

ãk = e

(
−iωk−

Γ↓−Γ↑
2

)
(t−t0)

ak (3.87)

ã†k = e

(
iωk−

Γ↓−Γ↑
2

)
(t−t0)

a†k (3.88)

To find the Heisenberg-picture bath operators B̃1x(t), B̃2x(t) we note that the adjoint

master equation is a linear differential equation and can be solved for each summand

in eq. 3.75 individually, leading to:

B̃1x(t) =
1√
N

∑

k

gkxe

(
iωk−

Γ↓−Γ↑
2

)
(t−t0)

a†k (3.89)

B̃2x′(t
′) =

1√
N

∑

k′

g∗k′x′e

(
−iωk′−

Γ↓−Γ↑
2

)
(t′−t′0)

a†k (3.90)

We can then calculate all four correlation functions. Analogous to eq. 3.29 two of

these are zero

〈B̃1x(t)B̃1x′(t
′)〉 ∝ 〈a†ka†k′ρ0〉 = 0 (3.91)

〈B̃2x(t)B̃2x′(t
′)〉 ∝ 〈akak′ρ0〉 = 0 (3.92)

The mixed correlations follow from eq. 3.90 as 2:

〈B̃1x(t)B̃2x′(t
′)〉 =

1

N

∑

kk′

gkxg
∗
k′x′e

iωk(t−t′)e−
Γ↓−Γ↑

2
|t−t′| 〈a†kak′〉︸ ︷︷ ︸

=δkk′ 〈nk〉

(3.93)

=
1

N

∑

k

gkxg
∗
kx′e

iωk(t−t′)e−
Γ↓−Γ↑

2
|t−t′|〈nk〉 (3.94)

〈B̃2x(t)B̃1x′(t
′)〉 =

1

N

∑

k

g∗kxgkx′e
iωk(t′−t)e−

Γ↓−Γ↑
2
|t−t′|(〈nk〉+ 1) (3.95)

2The initial times t0, t
′
0 in eq. 3.90 are both given by the time at which the initial condition

ρ(t) = ρ0 is fulfilled because at this time the Heisenberg operators have to equal the time-
independent Schrödinger operators ,i.e. t0 = t′0. For the calculation of correlation functions of
the form Tr(B1x(t)B2x′(t′)ρ0) the initial condition (a diagonal ρ0) is fulfilled for the earlier of
the two times t or t′. Note that these two cases lead to different oscillating exponentials but
the same decaying exponential in eq. 3.90. This is the reason for a magnitude sign around the
relative time τ = t− t′ only in the decaying exponential.
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3 Microscopic models of the environment

Replacing gkx with its definition (eq. 3.75) we find:

〈B̃1x(t)B̃2x′(t
′)〉 =

1

N

∑

k

eikd(x−x′)eiωk(t−t′)e−
Γ↓−Γ↑

2
|t−t′|〈nk〉 (3.96)

〈B̃2x(t)B̃1x′(t
′)〉 =

1

N

∑

k

e−ikd(x−x′)e−iωk(t−t′)e−
Γ↓−Γ↑

2
|t−t′|(〈nk〉+ 1) (3.97)

The introduced decoherence leads to an additional factor which is a decaying expo-

nential in time (cf. eq. 3.36 and 3.37). This can potentially lead to a much faster

temporal decay of the correlation function since this decaying exponential is just a

coefficient in the k integration of eq. 3.43, i.e. remains unchanged in the spectral

function. This can make the noise Markovian even when the coupling strength g

between the environmental harmonic oscillators is not large.

3.2 One-Dimensional Ising model

As a second example of an environmental model we consider a linear chain of N

spins without external field, i.e. a one-dimensional Ising model [116]. While the

two-dimensional Ising model has a ferromagnetic phase transition [117], the one-

dimensional model always stays in a single phase. In contrast to the previous model

of quantum harmonic oscillators this model is purely classical. Each spin is assigned

a stochastic variable which can only take on the values Sj = ±1 with j = 1, 2, ..., N .

The Hamiltonian reads:

HB = −J
N−1∑

j=1

SjSj+1 (3.98)

The thermal equilibrium steady state correlation is (eq. 6.19 in [118])

〈SjSj+k〉 = tanhk(βJ) = exp

{
ln[tanh(βJ)]

d
(x− x′)

}
(3.99)

where β is the inverse Boltzmann constant and temperature β = 1/(kBT ). The

distance k = (x − x′)/d was rewritten as the spatial distance over the spacing

between spins d to exhibit an exponentially decaying spatial correlation function (at

one point in time).

This was extended to a space-time-correlation function in [109] by making each spin

switch between the two states Sj = ±1 (due to a heat bath) at random intervals but
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3.2 One-Dimensional Ising model

with a known rate per unit time α/2. This leads to (eq. 76 in [109])

〈Sj(0)Sj+k(τ)〉 = e−α|τ |
∞∑

l=−∞

η|k+l|Il(γα|τ |) (3.100)

where η := tanh(βJ); γ := tanh(β2J) and the modified Bessel functions of the

first kind In(x) = i−nJn(ix) with the Bessel functions of first kind Jn(x). Note that

setting τ → 0 in eq. 3.100 yields back eq. 3.99.

The spin operators Sj typically couple longitudinally to a system, causing dephasing

noise. We are therefore interested in the corresponding spectral function, i.e. the

Fourier transform of eq. 3.100. Since eq. 3.100 is an even function of τ the Fourier

transform is simply given by 2 times the one-sided Fourier transform.

Since dephasing noise is caused by the zero-frequency component of the spectral

function, we simplify the calculation by settting ω ≈ 0. The one-sided Fourier

transform then simplifies to an integral:

∫ ∞

0

dτeiωτ 〈Sj(0)Sj+k(τ)〉 →
∫ ∞

0

dτ〈Sj(0)Sj+k(τ)〉 (3.101)

This integral of one summand in eq. 3.100 can be calculated with conditions:

∫ ∞

0

dτe−α|τ |Il(γα|τ |) =

(
γ

1+
√

1−γ2

)l

α
√

1− γ2
=
ζηl

α
for γ > 0, α > 0 and l ≥ 0

(3.102)

where ζ = cosh(2Jβ). The rate α > 0 is always true. The condition γ > 0 is

true for positive coupling J > 0. We will now rearrange eq. 3.100 to formally fulfil

the integration criterion l ≥ 0. First we note properties of the Bessel functions for

integer l [119]:

Jl(τ) =
∞∑

m=0

(−1)m

22m+lm!(l +m)!
τ 2m+l Il(τ) = i−lJl(iτ) (3.103)

J−l(τ) = (−1)lJl(τ) ⇒ I−l(τ) = i−l+2lJ−l(iτ) = Il(τ) (3.104)

Jl(−τ) = (−1)lJl(τ) ⇒ Il(−τ) = (−1)lIl(τ) (3.105)
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3 Microscopic models of the environment

Using these relations we make l ≥ 0 as follows:

∞∑

l=−∞

η|k+l|Il(γα|τ |) =
−1∑

l=−∞

η|k+l|Il(γα|τ |) + η|k|I0(γα|τ |) +
∞∑

l=1

η|k+l|Il(γα|τ |)

(3.106)

=
∞∑

l=1

η|k−l|Il(γα|τ |) + η|k|I0(γα|τ |) +
∞∑

l=1

η|k+l|Il(γα|τ |)

(3.107)

In this form we can perform the integration on each summand using eq. 3.102.

∫ ∞

0

dτ〈Sj(0)Sj+k(τ)〉 =
Cosh[2Jβ]Tanh[Jβ]|k|

α
+
∞∑

l=1

Cosh[2Jβ]Tanh[Jβ]l+|k−l|

α

+
∞∑

l=1

Cosh[2Jβ]Tanh[Jβ]l+|k+l|

α
(3.108)

Since this expression is invariant to the operation k → −k we can assume w.l.o.g.

k > 0. We then remove the magnitude sign accordingly:

∫ ∞

0

dτ〈Sj(0)Sj+k(τ)〉 =
Cosh[2Jβ]Tanh[Jβ]k

α
+

k∑

l=1

Cosh[2Jβ]Tanh[Jβ]l+k−l

α

+
∞∑

l=k+1

Cosh[2Jβ]Tanh[Jβ]l+l−k

α
+
∞∑

l=1

Cosh[2Jβ]Tanh[Jβ]l+k+l

α
(3.109)

The first sum is independent of l and simply yields a factor k. The other two can

be calculated with the geometric series:

∫ ∞

0

dτ〈Sj(0)Sj+k(τ)〉 =
Cosh[2Jβ]Tanh[Jβ]|k|(Cosh[2Jβ] + |k|)

α
(3.110)

=
ζη
|x−x′|
d

(
ζ + |x−x′|

d

)

α
(3.111)

where we have replaced some substitutions again. The magnitude sign for |k| is put

in to allow for negative k again. Note that this is the integral from 0 to ∞. For the

standard spectral function we add a factor of 2 (see eq. 2.25 and 2.30):

C(ω = 0, |x− x′|) =
2

α
ζη
|x−x′|
d

(
ζ +
|x− x′|

d

)
(3.112)
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Figure 3.2: The spectral function C(ω = 0, |x − x′|) from eq. 3.112 normalised by
its value for |x− x′| = 0. The coupling strength J determines the width
and is set to the values J = {0.5β, β, 2β, 3β}.

with ζ = cosh(2Jβ) and η = tanh(Jβ). The spectral function decays with distance

as |x| exp(−|x|). The effective correlation length in this example increases with the

coupling J of the environmental spins and decreases with temperature kBT . Strongly

coupled environmental spins lead to spatially correlated noise, while thermal effects

can destroy the spatial correlations of the noise. The spectral function is plotted in

figure 3.2.

3.3 Two qubits placed in these environmental

models

We have now calculated spectral functions for two classes of models for the envi-

ronmental noise: an ensemble of coupled quantum harmonic oscillators and a spin

ensemble in a classical Ising model. From both model classes we have obtained the

spectral function which characterises the environment entirely as required for the

Bloch-Redfield equations. To illustrate how these spectral functions can now be

used as an environmental model for any system and to illustrate the physical prop-

erties of these spectral functions we now assume a system of two uncoupled qubits,

which are placed in these environments.

The two qubits HS =
∑2

j=1 ωqσ
(j)
z are each interacting longitudinally with the envi-

ronment Hint =
∑2

j=1 σ
(j)
z Bj. With the four states |1, 1〉,|1, 0〉,|0, 1〉,|0, 0〉 we find a

63



3 Microscopic models of the environment

reduced dephasing rate γ− for the single excitation subspace {|1, 0〉 , |0, 1〉} and an

enhanced dephasing rate γ+ between the states |1, 1〉 and |0, 0〉 while all other pairs

dephase at a rate γ0. These rates are obtained in terms of C(ω, |rj − rk|) as,

γ− = C(0, 0)− C(0, l) (3.113)

γ+ = C(0, 0) + C(0, l) (3.114)

γ0 = C(0, 0)/2 (3.115)

where l = |r1− r2| is the distance between the qubits. For uncorrelated decoherence

only the self-correlations are non-zero, i.e. C(0, l) = 0, and all coherences decay

at the rate γ0 or 2γ0. With increasing noise correlation length and fixed qubit

distance the single excitation subspace’s dephasing rate γ− is reduced by C(0, l)

while γ+ is increased by C(0, l). This reduction of γ− is the basis of a decoherence-

free subspace [10].

If the two qubits are placed in an Ising model environment as discussed in section

3.2, we simply use the respective spectral function eq. 3.112 and find the rates:

γ− =
2ζ

α

[
ζ − ηl/d( l

d
+ ζ)

]
(3.116)

γ+ =
2ζ

α

[
ζ + ηl/d(

l

d
+ ζ)

]
(3.117)

γ0 = ζ2/α (3.118)

where ζ = cosh(2Jβ) and η = tanh(Jβ); and the qubit distance l is given in units of

the environmental Ising spins’ nearest-neighbour distance d. For close distances d�
Jβ the correlated decoherence effects are the strongest and the reduced dephasing

rate γ− is close to zero. As the qubits are put increasingly further apart the correlated

decoherence terms vanish and γ− ≈ γ+.

If the two qubits are placed in the environment of coupled harmonic oscillators as

discussed in section 3.1 we use the respective spectral function eq. 3.67 and find:

γ− = [1− cos(lπ/2d)]〈n(0)〉/(2πg) (3.119)

γ+ = [1 + cos(lπ/2d)]〈n(0)〉/(2πg) (3.120)

γ0 = 〈n(0)〉/(πg) (3.121)

where the qubit distance l is given in units of the environmental nearest-neighbour
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3.4 Chapter summary

distance of the harmonic oscillators d and we assume ω0 ≈ 0 on the scale of the

system energies making their energy spectrum approximately continuous. There

are now three types of system dynamics: For cos(lπ/2d) = 1 one finds the qubits

fully (positively) correlated and γ− → 0, similar to the previous Ising model for

short distances. At the points where cos(lπ/2d) = 0 the collective terms are zero

and all correlated decoherence effects vanish. For cos(lπ/2d) = −1 the collective

terms are negative and γ+ → 0, i.e. the reduced and enhanced rates swap roles.

This means the subspace {|1, 1〉 , |0, 0〉} becomes decoherence-free and the subspace

{|1, 0〉 , |0, 1〉} has an enhanced dephasing rate. This rare case only occurs at points

where the environmental noise of the two qubits is negatively correlated.

This unusual behaviour, where the roles of decoherence-reduced and decoherence-

enhanced subspaces are swapped plays an important role in section 4.4. A similar

effect was described in reference [103] for entangled states of two different transitions

with anticorrelated noise.

3.4 Chapter summary

We investigated two environmental models and derived their respective spectral

functions. In section 3.1 we modeled the environments with a large number of

quantum harmonic oscillators with nearest-neighbour coupling. This can be regarded

as an extension of the common spin-boson model, which assumes an environment of

uncoupled quantum harmonic oscillators.

We found that the space-time correlation function does not necessarily reflect the

spatial correlation of the spectral functions (frequency domain), which enter the

Bloch-Redfield equations. The spatial correlations are only the same if the space-

time correlation function is a product of a spatial and a temporal part, i.e. they are

separable.

Markovianity of the environment is guaranteed when the time correlations decay fast.

For this environment the time-decay is polynomial with the inverse coupling strength

1/g of environmental harmonic oscillators, i.e. the environment is only Markovian if

it is very strongly coupled relative to the system energies of interest. However, the

assumption of an intrinsic decoherence in the environment can be used to reinforce

Markovianity regardless of g.

Spatial correlations at any single point in time are given by a Lorentzian spatial decay
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3 Microscopic models of the environment

with a correlation length given by the environmental coupling strength g/(kBT )

and nearest neighbours are correlated or anticorrelated depending on the sign of g.

Since space-time correlations are non-separable the spectral function shows a very

different, cosine-shaped spatial correlation. The noise frequencies are centred around

the oscillators eigenenergies with a noise cut-off at 2g left and right of this frequency

due to the band gap of the chain.

In section 3.2 the environment was regarded as a one-dimensional Ising model. The

spectral function at zero frequency was purely positive and showed monotonically

decaying spatial correlations in the functional form |x| exp(−|x|). The correla-

tion length is determined by the coupling strength J/(kBT ) of the environmental

Ising spins. The environmental correlation length increases with stronger coupling

between the environmental spins. It decreases with thermal effects, which grow

stronger with temperature.

In section 3.3 we showed how two qubits, coupled longitudinally to each of these

environmental models respectively would be affected by them. When the qubits

are close together we find that in both environments there emerges a decoherence-

free subspace and decoherence-enhanced subspace. Increasing the distance between

the qubits in the Ising model environment weakens these correlated decoherence

effects and reverts back to uncorrelated decoherence. In the environment of cou-

pled harmonic oscillators the spatial correlations oscillate with increasing distance

of the qubits, leading to certain distances for the qubits where the correlated deco-

herence effects are zero, but also some distances where the noise is anticorrelated

and the correlated decoherence effects are inverted, i.e. the decoherence-free and

decoherence-enhanced subspaces are swapped. This has important implications in

quantum metrology (see section 4.4).
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4
Chapter 4

Quantum metrology with
correlated decoherence

We investigate how spatially correlated decoherence affects quantum metrology with

entangled states. We find that for suitable n-entangled states the precision scales

with the best-possible, Heisenberg-limited scaling. This is in contrast to a large body

of work which is concerned with uncorrelated decoherence and has found this type

of noise to fundamentally limit the scaling by the standard quantum limit. We find

that this limit can be overcome in spatially correlated noise environments and the

Heisenberg-limited setup is robust even for finite spatial correlations. With finite

correlations the dephasing rate becomes dependent on the order in which the ions

are arranged and how the array is scaled up relative to the correlation length.

Introduction

Quantum metrology deals with high precision measurements of quantum mechanical

parameters [120]. A particular focus is the measurement of time and frequency with

accuracies of the order 1 part in 1014 − 1018. The standard experiment is Ramsey

spectroscopy [46,121], where the frequency of the relative phase of a superposition of

two quantum states is measured. Statistics are obtained by measuring n times (either

repeatedly on one atom/ion or on an array of n identical atoms/ions). The frequency

uncertainty is found to be 1/(
√
nt) where t is the time for one measurement. This

scaling is called the standard quantum limit [120] or sometimes shot noise limit [122].

The standard quantum limit can be overcome with maximally entangled initial states
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4 Quantum metrology with correlated decoherence

yielding an improved frequency uncertainty of 1/(nt) [123–125], which coincides

with the best possible scaling allowed by the energy/time uncertainty relation, the

Heisenberg limit [125]. First experimental precision measurements with entangled

input states have been performed [47,48]. However, in the presence of uncorrelated

Markovian noise both entangled states and product states were found to have an

uncertainty of 1/(
√
nt), i.e. the standard quantum limit [46]. These findings were

recently reinforced by a rigorous mathematical framework [126,127].

Investigations of precision scalings are generally made assuming an uncorrelated de-

coherence source even though some noise sources, for example in ion traps, have been

found to be correlated [35, 48]. We investigate here the scaling behaviour of both

initial product states and initial entangled states in the presence of correlated deco-

herence and point out advantages and disadvantages in comparison to uncorrelated

decoherence.

First we will discuss a setup in which correlated decoherence is advantageous: electric

quadrupole measurements for which maximally entangled states are used, which are

of relevance for the calibration of optical frequency standards [128]. In this setup

correlated decoherence restores the Heisenberg limit in certain circumstances, which

is discussed in sections 4.2 and 4.3. In section 4.4 we will show that correlated

decoherence is disadvantageous in Ramsey spectroscopy setups with Greenberger-

Horne-Zeilinger (GHZ) states.

4.1 Measurement of the electric quadrupole

moment of hydrogen-like ions

We consider a system of n hydrogen-like ions with a Zeeman splitting term of the

sublevels Jz of the total angular moment and a small correction term due to the

interaction of the atomic electric quadrupole moment with the external electric field

gradient. These correction terms are quadratic in Jz [48,129].

Hs = ω0

n∑

j=1

J (j)
z + α

n∑

j=1

(J (j)
z )2 (4.1)

The electric quadrupole moment can be measured by entangling two states which

have the same expectation value for the first term in eq. 4.1 but different expectation

values for the second. The relative phase of the two states then oscillates at the
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4.1 Measurement of the electric quadrupole moment of hydrogen-like ions

quadrupole frequency. This has been done experimentally by C. Roos [48] for two

D5/2 systems with Jz |mj〉 = mj |mj〉 and mj ∈ [−5
2
, −3

2
, −1

2
, 1

2
, 3

2
, 5

2
]. Out of the six

states only three were occupied however. They initialised an entangled state of the

form 1√
2
(|m1,m2〉+ |m3,m4〉) where m1 +m2 = m3 +m4. Particularly their state is:

1√
2

(|−5/2, 3/2〉+ |−1/2,−1/2〉)

We generalise this quadrupole measurement scheme for two ions to an even number

n of ions but reduce each ion to an effective three state system (because only three

states are relevant) and generalise the Jz operator for these three states to be

Jz =




m+ 0 0

0 m0 0

0 0 m−


 (4.2)

with m+ = m0 + m∆ and m− = m0 −m∆. In other words m+ and m− differ from

m0 by the same arbitrary natural number m∆. We investigate two entangled states,

each composed of two components which have the same expectation value for the

first term in eq. 4.1, i.e. n
2
m−+ n

2
m+ = nm0 and different expectation values for the

second term in eq. 4.1. In particular we will look at the two initial states:

∣∣∣Ψ(1)
0

〉
=

1√
2

(|m−,m−, ...,m−︸ ︷︷ ︸
n/2

,m+,m+, ...,m+︸ ︷︷ ︸
n/2

〉+ |m0,m0,m0, ...,m0〉) (4.3)

∣∣∣Ψ(2)
0

〉
=

1√
2

(|m−,m+,m−,m+,m−...,m+〉+ |m0,m0,m0, ...,m0〉) (4.4)

These states look equivalent since the ions are simply in a different order. However

for partially correlated decoherence we will find a difference in their dephasing rates.

For the coherent time evolution ∂t |Ψ〉 = −iHs |Ψ〉 of the relative phase of our

initial states the Zeeman shift cancels and the quadrupole moment gives the only
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contribution. We demonstrate this explicitly for
∣∣∣Ψ(1)

0

〉
:

ω0

n∑

j=1

J (j)
z |m−,m−, ...,m−,m+,m+, ...,m+〉 = ω0

n∑

j=1

J (j)
z |m0,m0,m0, ...,m0〉

(4.5)

α
n∑

j=1

(J (j)
z )2 |m−,m−, ...,m−,m+,m+, ...,m+〉 = α

n

2
(m0 +m∆)2 + α

n

2
(m0 −m∆)2

= nα(m2
0 +m2

∆) (4.6)

α

n∑

j=1

(J (j)
z )2 |m0,m0,m0, ...,m0〉 = nαm2

0 (4.7)

Omitting the global phase, the coherent time evolution is given by:

∣∣Ψ(1)(t)
〉

= |m−,m−, ...,m−,m+,m+, ...,m+〉+ eiωt |m0,m0,m0, ...,m0〉 (4.8)

with ω = nαm2
∆ (4.9)

This frequency is the same for
∣∣∣Ψ(2)

0

〉
. These states provide a means of measur-

ing the electric quadrupole moment via a Ramsey-like measurement of the relative

frequency. Note that it scales linearly with the number of ions n which contribute

to the entangled state. These states are two examples of many entangled states

which show Heisenberg precision scaling for purely unitary evolution, i.e. when all

decoherence is neglected [123, 124]. The precision scalings for all entangled states

collapse to the standard quantum limit in the presence of spatially uncorrelated

dephasing [46, 126, 127]. In the next two sections we will investigate the precision

scalings of the two states considering spatially correlated dephasing.

4.2 Fully correlated dephasing for quadrupole

measurements

To study the effects of spatial correlations we begin with the mathematically simple

case of a perfectly correlated noise environment throughout the entire ion array. The

system-environment coupling is of the form

Hint =
∑

j

J (j)
z Bj (4.10)
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4.2 Fully correlated dephasing for quadrupole measurements

and the spectral function for a perfectly correlated environment is:

∀j, k : Cjk(ω) = C(ω) (4.11)

4.2.1 Decoherence-free subspace

Using the spectral function above we set up the Bloch-Redfield equations (eq. 2.27).

Since both the Hamiltonian and the system operators which couple to the bath are

diagonal operators (pure dephasing) these equations simplify to

ρ̇ =
i

~
[ρ,Hs] +

1

~2

C(ω = 0)

2

∑

j,k

(−sjskρ+ skρsj − ρsksj + sjρsk) (4.12)

where the system operators sj = J
(j)
z . Taking the sums into each term we define a

new Hermitian operator S =
∑

j sj with S† = S. We therefore find the equations to

be of the simple Lindblad form:

ρ̇ =
i

~
[ρ,Hs] +

1

~2

C(ω = 0)

2

(
2SρS − {S2, ρ}

)
(4.13)

We are interested in the coherence of the two states which make the constituents of

our initial state (eq. 4.3). For these two states we find:

S |m−,m−, ...,m−,m+,m+, ...,m+〉 = S |m0,m0,m0, ...,m0〉 (4.14)

In other words for their subspace S ∝ 1 and the master equation becomes:

ρ̇ =
i

~
[ρ,Hs] +

1

~2

C(ω = 0)

2

(
21ρ1− {12, ρ}

)
(4.15)

=
i

~
[ρ,Hs] + 0 (4.16)

This means our entangled initial state is in a decoherence-free subspace (for a per-

fectly correlated bath). For a perfectly correlated bath this result applies to the

second initial state
∣∣∣Ψ(2)

0

〉
equally, which is not surprising since it is the same state

with simply a different order of the ions. Note that in the next section the two initial

states will show different dephasing rates.

The time evolution of our initial state is coherent and simply given by the relative
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4 Quantum metrology with correlated decoherence

phase which equals the energy difference of the two states (see eq. 4.9):

|Ψ(t)〉 = |m−,m−, ...,m−,m+,m+, ...,m+〉+ eiωt |m0,m0,m0, ...,m0〉 (4.17)

with ω = nαm2
∆ (4.18)

The precision scaling with increasing number n of ions used in the entangled state

is given by the coherent Heisenberg scaling since fully correlated dephasing does

not affect the subspace of the entangled state. This is the first theoretical analysis

where Heisenberg scaling is found in the presence of environmental noise and in stark

contrast to spatially uncorrelated noise. However fully (i.e. perfectly) correlated

noise will only persist to a certain number of ions. In the next section we investigate

the realistic case of partially correlated dephasing with finite correlation length and

find the Heisenberg scaling to persist under certain conditions.

4.3 Partially correlated dephasing in quadrupole

measurements

We now regard the ions as a linear, equidistant (uncoupled) chain and assume homo-

geneous correlations in the bath, which decay exponentially with increasing relative

distance:

Cjk(ω = 0) = C(ω = 0, |j − k|) = exp

(
−|j − k|d

ξ

)
(4.19)

where ξ gives the correlation length and d is the nearest-neighbour distance between

ions. Putting this into the Bloch-Redfield equations (eq. 2.27) we find:

ρ̇ =
i

~
[ρ,Hs] +

1

~2

1

2

∑

j,k

exp

(
−|j − k|d

ξ

)
(−sjskρ+ skρsj − ρsksj + sjρsk) (4.20)

where again the system operators sj = J
(j)
z and the indices j and k run from 1

to n. In this dephasing environment the time-derivative of off-diagonal ρ-elements

depends only on themselves. We therefore investigate only two elements of ρ, namely

the ones associated with the coherence of our two initial states (eq. 4.3 and 4.4).
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4.3 Partially correlated dephasing in quadrupole measurements

The elements are:

r = |m−,m−, ...,m−,m+,m+, ...,m+〉 〈m0,m0,m0, ...,m0| (4.21)

r2 = |m−,m+,m−,m+, ...〉 〈m0,m0,m0, ...,m0| (4.22)

We will now continue the calculations for r and only point out the different results

for r2. To calculate eq. 4.20 for r we note how sj = J
(j)
z acts from the left and from

the right onto this element

J (j)
z r =

{
(m0 −m∆)r if j ≤ n/2

(m0 +m∆)r if j > n/2
(4.23)

rJ (j)
z = m0r (4.24)

We now calculate the time derivative of our first element of interest with the help

of equation 4.20 and find for all n an equation of the form:

ṙ = (−inαm2
∆ + Γ(n, ξ))r (4.25)

We calculate this function Γ(n, ξ) for increasing numbers of ions and also calculate

the Taylor series of Γ(n, ξ) for large ξ/d to first order of each function, replacing

ex ≈ 1 + x. We present our results in the following table:

n Γ(n, ξ) (analytic) Γ(n, ξ) (Taylor series)

2
(
−1 + e−d/ξ

)
m2

∆ −m2
∆d/ξ +O [d/ξ]2

4
(
−2 + e−3d/ξ + 2e−2d/ξ − e−d/ξ

)
m2

∆ −6m2
∆d/ξ +O [d/ξ]2

6
(
−3 + e−5d/ξ + 2e−4d/ξ + 3e−3d/ξ − 3e−d/ξ

)
m2

∆ −19m2
∆d/ξ +O [d/ξ]2

We find for n (details of the calculation in the appendix E):

n
6e

d
ξ + 2e

(1−n)d
ξ − 8e

(2−n)d
2ξ + n− e 2d

ξ n

2
(
−1 + e

d
ξ

)2 m2
∆ −n(2 + n2)d

12ξ
m2

∆ +O
[
d
ξ

]2

Note that to zero order in d/ξ the decay rate Γ(n, ξ) vanishes, corresponding to our

result of a decoherence-free subspace for a fully correlated bath.
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4 Quantum metrology with correlated decoherence

The analytic decay rate Γ(n, ξ) was calculated from the sum (appendix E)

Γ(n, ξ) =


−n

2
+

n/2∑

x=1

−(n− 3x)e−xd/ξ +
n∑

x=n/2+1

(n− x)e−xd/ξ


m2

∆ (4.26)

=
6e

d
ξ + 2e

(1−n)d
ξ − 8e

(2−n)d
2ξ + n− e 2d

ξ n

2
(
−1 + e

d
ξ

)2 m2
∆ (4.27)

Similarly we find for the element r2 the decay rate (appendix E):

Γ2(n, ξ) =


−n

2
+

n/2∑

xc=1

(n− 2xc + 1)e(2xc−1)d/ξ +

n/2∑

xc=1

(2xc − n)e2xcd/ξ


m2

∆ (4.28)

=
−2e

d
ξ + 2e

(1−n)d
ξ + n− e2d/ξn

2
(

1 + e
d
ξ

)2 m2
∆ (4.29)

Here it becomes clear that ordering the ions in a different way makes a significant

difference for partially correlated environments. For perfect correlations all the terms

in each of the two rates add to zero. As the correlation length decreases this cancel-

lation is not perfect any more. In the case of Γ(n, ξ) all positive terms involve large

distances x and all negative terms involve short distances. In the case of Γ2(n, ξ)

positive and negative terms alternate with increasing distance x. Since the correla-

tions for long distances are weaker than for short distances, the second rate Γ2(n, ξ)

is more robust against partial correlations and the initial state |Ψ(2)
0 〉 is better pro-

tected against dephasing. This corresponds to the fact that pairs of ions with one

ion in m+ and one ion in m− are generally further apart in |Ψ(1)
0 〉 and closer together

in |Ψ(2)
0 〉. Compare eq. 4.3 and 4.4.

Note that we can calculate both dephasing rates for other functional forms than

exponential decay (eq. 4.19) by replacing exp(xd/ξ) → C|j−k|=x(ω = 0) in the re-

spective sum (eq. 4.26 or 4.28).

The master equation 4.25 is now solved

r(t) = r0 exp (−iωt+ Γ(n, ξ)t) (4.30)

(4.31)
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4.3 Partially correlated dephasing in quadrupole measurements

with ω = nαm2
∆ and Γ(n, ξ) given in eq. 4.27. For the two-state subspace of the

initial state (eq. 4.3) the density matrix follows as:

ρ(t) =

(
1/2 1

2
e−iωt+Γ(n,ξ)t

1
2
eiωt+Γ(n,ξ)t 1/2

)
(4.32)

Performing a parity measurement on the ion array results in the two probabilities

for an even or odd parity:

Peven = Tr

[
1

2

(
1 1

1 1

)
ρ(t)

]
=

1

4
+

1

4
eiωt+Γ(n,ξ)t +

1

4
e−iωt+Γ(n,ξ)t +

1

4
(4.33)

=
1

2
+

1

2
cos(ωt)eΓ(n,ξ)t (4.34)

Podd = Tr

[
1

2

(
1 −1

−1 1

)
ρ(t)

]
(4.35)

=
1

2
− 1

2
cos(ωt)eΓ(n,ξ)t (4.36)

again with ω = nωmeas = nαm2
∆ and Γ(n, ξ) given in eq. 4.27.

Using these two probabilities we calculate the Fisher information (see [130] or eq. 5

in [131]) as:

F (ωmeas) =
∑

j=even,odd

1

Pj

(
∂Pj

∂ωmeas

)2

(4.37)

=
e2tΓn2t2 sin [ntωmeas]

2

4
(

1
2
− 1

2
etΓ cos [ntωmeas]

) +
e2tΓn2t2 sin [ntωmeas]

2

4
(

1
2

+ 1
2
etΓ cos [ntωmeas]

) (4.38)

=
n2t2 sin [ntωmeas]

2

e−2tΓ − cos [ntωmeas] 2
(4.39)

From that we calculate the uncertainty1 (see eq. 4 in [131])

∆ωmeas =

√
1

NF (ωmeas)
=

√
1

T
t
F (ωmeas)

(4.40)

=

√
e−2tΓ − cos [ntωmeas] 2

n2tT sin [ntωmeas] 2
(4.41)

1Note that this calculation of the uncertainty via the Fisher information (eq. 4.37 and 4.40) is
equivalent to the following simple considerations: In a binary (two outcomes only) process the
expectation value is the probability. The standard deviation for it is ∆P =

√
P (1− P )/N .

Propagation of error then yields the standard deviation of the frequency ∆ωmeas =

√
P (1−P )/N

|dP/dωmeas| .
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4 Quantum metrology with correlated decoherence

where the total number of measurements N = T/t is given by total time of all

repeated measurements T divided by the time for one measurement t.

4.3.1 Time-optimisation of the uncertainty

The uncertainty (eq. 4.41) is a function of the time at which the system is measured.

This raises the question of what is the optimal time to reduce the uncertainty to a

minimum. We rewrite the uncertainty in the form:

∆ωmeas =

√
e−2tΓ − cos [ntωmeas] 2

n2tT sin [ntωmeas] 2
=

√
e−2tΓ − 1 + sin [ntωmeas] 2

n2tT sin [ntωmeas] 2
(4.42)

=

√
exp(−2Γt)−1

sin2(nωmeast)
+ 1

n2tT
(4.43)

To minimize this uncertainty we want the sin2-term to be 1 by choosing a measuring

time:

nωmeast = mπ/2 (m odd) (4.44)

This yields the expression

∆ωmeas →
√

exp(2Γt)

n2tT
(4.45)

with the minimum

∆ωoptmeas =

√
2e|Γ(n, ξ)|

n2T
(4.46)

at t =
1

2|Γ(n, ξ)| (4.47)

We then find the total optimum by choosing that value for t (out of the options

given by eq. 4.44) which is closest to 1/(2|Γ|). An example is given in figure 4.1.

This time-optimised uncertainty is general for all entangled frequency measurements

(eq. 4.36) with ω = nωmeas and any dephasing rate Γ(n, ξ). For Ramsey spectroscopy

one finds this analogously (cf. eq. 14 in [46] or section 4.4 in this thesis).

Eq. 4.46 shows how the precision scaling with the number of ions n is determined by

the fundamental interplay between faster dynamics through entanglement (reducing
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5 10 15 20 25
t

0.006

0.008

0.010

0.012

0.014

0.016

DΩmeas

Figure 4.1: Time evolution of the uncertainty in eq. 4.43 (solid) and eq. 4.45 (dashed)
for the parameters: Γ = −0.1;n = 10;T = 100t;ωmeas = 0.2

the uncertainty) on the one hand and stronger dephasing on the other. An entan-

gled state of n ions oscillates n times faster than each ion by itself in an independent

measurement. This gives a scaling advantage of 1/
√
n. However, for many states

the dephasing rate also increases as more particles are entangled. If the rate scales

linearly Γ(n, ξ) ∝ n then the scaling advantage is entirely cancelled and the exper-

iment shows the standard quantum limit. This is true for uncorrelated Markovian

dephasing in all generality. For other types of noise the precision scaling is deter-

mined by the scaling of the dephasing rate. A constant dephasing rate (independent

of n) leads to Heisenberg scaling, a dephasing rate that scales linearly leads to the

standard quantum limit.

4.3.2 Scaling of the optimal uncertainty with n

We found before that the rate Γ2(n, ξ) for the second initial state (eq.4.4) is ad-

vantageous over Γ(n, ξ). We therefore continue using Γ2(n, ξ) from here on. To

judge whether entangled states give an advantage over the standard quantum limit

(∝ 1/
√
n) for quantum metrology in the presence of (exponentially decaying) corre-

lated noise we need to find out whether the dephasing rate Γ(n, ξ) scales faster or
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d

A

n = 4

n = 6

n = 8

L = d(n− 1)
B

n = 4

n = 9

n = 25

0 ξ = 3d
0

e
−1

1

0 ξ =
1

2
L L

0

e
−1

1

Figure 4.2: Three arrays with increasing numbers n of ions with two ways of scaling
them relative to the spatial correlation function C(0, x) = exp(−x/ξ): A
The distance d between ions is fixed and the array becomes longer with
increasing n. B The array length L is fixed and ions become more dense
with increasing number n.

slower than n (compare eq. 4.46). The rate is given by (eq. 4.29):

Γ2(n, ξ) =
−2e

d
ξ + 2e

(1−n)d
ξ + n− e 2d

ξ n

2
(

1 + e
d
ξ

)2 m2
∆ (4.48)

From the derivation in appendix E it follows clearly2 that for uncorrelated decoher-

ence the dephasing rate is given by:

Γu = −n
2
m2

∆ (4.49)

We can compare these two rates in two different ways (figure 4.2). On the one hand

we can scale the correlation length ξ = cL as a certain fraction of the whole array

length L which means that the correlations between the first ion and the last ion

in the array have a fixed value C(ω = 0, n) = exp(−1/c). On the other hand we

can set the correlation length ξ = cd to a fixed number of ions which means that

the array gets longer relative to the correlation length as we increase n. This will

ultimately restore the scaling of uncorrelated decoherence when n� ξ. We discuss

both types of scaling below and compare both with Γu in figure 4.3. In experiments

both types of scaling are possible, depending on whether the density or the array

length is kept fixed with increasing numbers; equidistant spacing between ions can

be achieved in segmented ion traps [132].

2For uncorrelated decoherence all mixed terms j 6= k are zero in eq. 9.21. Therefore only case 3
exists and all terms from case 1 and 2 are zero.

78



4.3 Partially correlated dephasing in quadrupole measurements
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Figure 4.3: Dephasing rates in units of m2
∆ and their scaling with n. Dashed lines are

the approximations for large n. Fixing the correlation length in terms
of the array length (here: ξ = L) the correlated dephasing rate Γ2(n, L)
(red) approaches a constant. Fixing the correlation length in terms of the
nearest-neighbour distance (here: ξ = 10d) the correlated dephasing rate
Γ2(n, ξ = 10d) (green) approaches linear scaling. Note the smaller slope
compared to the uncorrelated dephasing rate Γu (blue). This plot shows
that even partially correlated decoherence is strongly advantageous for
the chosen initial states.

4.3.2.1 Correlation length as a fraction of the whole array

Using d = L/(n − 1) (see figure 4.2B) in eq. 4.48 we find an expression where the

noise correlation length ξ is given relative to the array length L. We can see that

the correlated dephasing rate quickly approaches a constant (see figure 4.3):

lim
n→∞

−2e
L

(n−1)ξ + 2e−
L
ξ + n− e 2L

(n−1)ξn

2
(

1 + e
L

(n−1)ξ

)
2

= −m
2
∆

4
+
m2

∆

4
e−

L
ξ − m2

∆L

4ξ
(4.50)

For ξ/L > 1⇔ exp(−L/ξ) > 1/e this constant is always closer to zero than m2
∆/2.

For long correlation lengths ξ � L this constant can be approximated as m2
∆L/(2ξ),

i.e. for almost fully correlated noise the dephasing rate approaches zero with the

inverse correlation length.

The constant dephasing rate for large n results in a Heisenberg precision scaling.

Inserting the constant rate eq. 4.50 into eq. 4.46 yields the uncertainty for state
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∣∣∣Ψ(2)
0

〉
, which scales as 1/n:

∆ωoptmeas =

√
e1[1− exp(−L/ξ) + L/ξ]m2

∆

2T

1

n
(4.51)

This is Heisenberg scaling with n, i.e. the best possible which obeys the Heisenberg

uncertainty relation [125]. It is better by a factor of 1/
√
n than the standard quan-

tum limit. This scaling is in stark contrast to all quantum metrology experiments

in the presence of Markovian uncorrelated noise, which are fundamentally limited

by the standard quantum limit [46]. The 1/n scaling found here is also superior to

all quantum metrology experiments with uncorrelated non-Markovian noise as this

type of noise has a best-possible scaling of 1/n3/4 [131, 133]. Quantum metrology

experiments are currently strongly limited in the number of qubits which can be

entangled (maximum experimentally achieved is 14 qubits [35]). However, for the

next generation of high-precision quantum metrology experiments our results show

the best scaling behaviour of the uncertainty with n.

The 1/n scaling of the uncertainty equals the scaling of an experiment with coherent

evolution of the entangled state, i.e. when decoherence is entirely neglected. Quadru-

pole measurements in a partially correlated environment could therefore potentially

explore the full quantum advantage over the standard quantum limit. To quantify

and plot quantum advantage we want to compare to a quadrupole measurement,

which is in the standard quantum limit (SQL). The quadrupole frequency αm2
∆ in

Hamiltonian 4.1 cannot be measured with a single ion; one needs at least an en-

tangled state of two ions to realise it. To obtain a meaningful comparison for the

scaling of the frequency uncertainty this must be taken into account. We therefore

define two entangled ions as the minimum entanglement resource for measuring a

quadrupole moment. We then compare the scaling of the n–entangled state with a

product state of n/2 entangled pairs which contribute n/2 more measurements to

the statistics. For this minimal entangled array of ion pairs, we find an uncertainty

that scales with the SQL as we increase the number n/2 of pairs.

∆ωoptmeas,p =
√
eΓ(2, ξ)/(nT ) (4.52)

We then introduce the relative frequency resolution:

r =
∆ωoptmeas,p

∆ωoptmeas

(4.53)
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Figure 4.4: Relative frequency resolution r of a partially correlated environment with
ξ = L/10 (dot-dashed), ξ = L/5 (dashed), ξ = L (dotted) and a noiseless
environment (solid). An n–entangled state scales better by a factor of√
n than a pair-wise entangled state and approaches noiseless scaling for

increasing correlation length ξ.

where the full expression for r is given by equations 4.46, 4.48 and 4.53. We find

that with increasing correlation length ξ the uncertainty approaches the noiseless

Heisenberg scaling (figure 4.4). Even for partial correlations, which decay on the

length scale of the array, the Heisenberg scaling of the uncertainty is robust.

4.3.2.2 Correlation length as a certain number of ions

Since the number of ions which can be placed within the correlation length of the

environment might be limited we now regard the correlation length ξ = cd as given

in terms of a certain number of ions. Increasing the number of ions n now makes

the array longer compared to the fixed correlation length (figure 4.2 A). For this

situation we compare Γ2(n, 10d) from eq. 4.48 with Γu from eq. 4.49 in figure 4.3.

We can see that this situation quickly restores linear scaling with n, i.e. the standard

quantum limit:

lim
n→∞

−2e
d
ξ + 2e

(1−n)d
ξ + n− e2d/ξn

2
(

1 + e
d
ξ

)2 m2
∆ = − m2

∆e
d
ξ

(
1 + e

d
ξ

)2 +
m2

∆

(
1− e dξ

)
n

2 + 2e
d
ξ

(4.54)
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The standard quantum limit is restored because with this scaling the correlation

length, regardless how long, will ultimately be much smaller than the array length.

The proportionality factor for Γ2 however is always smaller than m2
∆/2 (compare

Γu) and approaches m2
∆d/(4ξ) for large ξ/d. The different gradients can be clearly

seen in figure 4.3. This is because even for nd � ξ the non-zero correlation length

reduces the dephasing-rate contribution of each ion slightly. So even though the

scaling follows the standard quantum limit, one finds a better coefficient than for

uncorrelated dephasing.

4.4 Ramsey spectroscopy of GHZ states with

correlated decoherence

In standard Ramsey spectroscopy [46, 121] an ion trap is filled with n ions. After

initialisation in the ground state |0〉 a π/2 pulse brings all ions in the superposition

state (|0〉 + |1〉)/
√

2. After a free evolution time t a second π/2 pulse is applied

and the probability to find state |0〉 is measured. The probability oscillates at the

frequency ω0 of the transition |1〉 ↔ |0〉. To gain more statistics the experiment is

repeated leading to a total time T for all repetitions. The measurement uncertainty

is ∆ω0 = 1/
√
nTt. Instead of acting independently on the ions one can start from

the GHZ state (|111...〉+ |000...〉)/
√

2. The relative frequency is then given by nω0

and the uncertainty is given by 1/(n
√
Tt) (see [46]).

This scaling behaviour changes once decoherence is considered. We quickly review

the situation for uncorrelated decoherence [46] and then regard correlated deco-

herence. Regarding the ions as pseudo-spins |0〉, |1〉 and coupling each ion to the

environment with σz = |1〉 〈1| − |0〉 〈0|,

Hint =
∑

j

σ(j)
z Bj (4.55)

we simplify the master equations analogous to eq. 4.20. We regard the time evolution

of the coherence r3 = |111...〉 〈000...|.
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Uncorrelated dephasing For uncorrelated dephasing the master equation (eq. 4.20

with ξ → 0) for the element r3 is:

ṙ3 = i[r3, H] + C(ω = 0)
∑

j

[
−
(
σ(j)
z

)2
r3 − r3

(
σ(j)
z

)2
+ 2σ(j)

z r3σ
(j)
z

]
(4.56)

= −inω0r3 + C(ω = 0) (−2nr3 + 2(−1)r3) (4.57)

= (−inω0 − C(ω = 0)4n)r3 (4.58)

Both the frequency nω0 and the dephasing rate nγ = C(ω = 0)4n are proportional

to the number of ions n and analogous to eq. 4.46 the time optimised uncertainty’s n-

scaling is equivalent to the standard quantum limit [46], i.e. ∆ω0 =
√

2enγ/(n2T ) =√
2eγ/(nT ).

Correlated dephasing For fully correlated dephasing the master equation (eq. 4.20

with ξ →∞) for the element r3 is:

ṙ3 = i[r3, H] + C(ω = 0)
∑

jk

(
−σ(j)

z σ(k)
z r3 − r3σ

(j)
z σ(k)

z + σ(j)
z r3σ

(k)
z + σ(k)

z r3σ
(j)
z

)

(4.59)

= −inω0r3 + C(ω = 0)
(
−n22r3 + n2(−1)2r3

)
(4.60)

= (−inω0 − C(ω = 0)4n2)r3 (4.61)

The frequency scales with n but the dephasing rate scales with n2, which means the

dephasing increases strongly. This scaling has been observed experimentally in ion

traps [35] and our analysis here shows that this scaling is clear indicator of strongly

spatially correlated noise in ion traps. The uncertainty becomes ∆ω0 =
√

2eγ/T and

an increase of ions in the GHZ state does not decrease the uncertainty any more. The

only way to decrease the uncertainty is by repetition of the measurement, in which

case the standard quantum limit scaling (1/
√
T ) applies. To reduce experimental

efforts it is therefore best to work on individual ions, i.e. product states in the ion

array. Ultimately the result is that GHZ states are strongly disadvantageous to

work with in spatially correlated environments. This result has also been found in

reference [103].
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A

x

B

x

C(0, x)C(0, x)

Figure 4.5: Two arrangements of ions in oscillating spatial correlations. Both ar-
rangements achieve Heisenberg scaling of the GHZ state: A) For small
oscillation length the ions are arranged to meet half the oscillation length.
B) For long oscillation length the whole array is arranged to match up
one oscillation length.

4.4.1 Oscillating spatial correlations

Until now we have considered perfect spatial correlations C(0, x) = 1 and decaying

spatial correlations C(0, x) = exp(−x/ξ). Both are positive functions for all x

and the n2 scaling of the dephasing rates found experimentally [35] for GHZ states

indicates that in ion traps these two functional forms are good approximations for the

noise correlations. However, it is also physically possible for the spatial correlations

to take the homogeneous form C(0, x) = cos(ksx), where points of certain distances

have noise with negative correlations. The environmental model discussed in section

3.1 is an example that yields cosine shaped spatial correlations in eq. 3.67 and 3.68.

In such an environment GHZ states can be engineered to be within a decoherence-

free subspace in two ways assuming the spatial oscillation length is known. One

way is to place the ions at half the oscillation length of the environmental spatial

correlations (figure 4.5A); the other way is to match the array length L with the

oscillation length L = 2π/ks (figure 4.5B).

For the GHZ state’s relevant coherence r3 = |111...〉 〈000...| all operator pairings j, k

in the master equation have the same effect. The only difference comes from the

cosine shaped correlation function:

ṙ3 = i[r3, Hs] +
∑

jk

cos(ks|j − k|d)
(
−σ(j)

z σ(k)
z r3 − r3σ

(j)
z σ(k)

z + σ(j)
z r3σ

(k)
z + σ(k)

z r3σ
(j)
z

)

(4.62)

where d is the distance between ions.

In the arrangement of figure 4.5A the correlation function becomes effectively cos(ks

|j − k| d) = (−1)|j−k|, i.e. alternates the sign with increasing distance. This recre-

ates the effect of the coherence r2 = |m−,m+,m−,m+, ...〉 〈m0,m0,m0, ...,m0|, cor-
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responding to the initial state 4.4. In fact the decoherent part of eq. 4.62 is math-

ematically equivalent to eq. 9.51 in appendix E. In the arrangement of figure 4.5A

the alternating sign comes from the correlation function and the operators produce

the same term for all pairs of j and k. In the case of the coherence r2 the alternating

sign comes from the operators and the correlation function is always the same for

ξ → ∞. From this equivalence one finds that the arrangement of figure 4.5A leads

to Heisenberg scaling for the GHZ state, even if the cosine correlation function has

an additional exponentially decaying envelop.

In the arrangement of figure 4.5B the length of the array matches the spatial os-

cillation length of the environmental correlations. Regarding eq. 4.62 we group the

pairs of the first ion j = 1 with all the other ions (including the self-correlation

j = k = 1). We find that for each positive contribution C(0, (1 − k)d) > 0 there is

an equal negative contribution from the k-value n/2 further down the chain. The

sum of all contributions of j = 1 therefore cancels (assuming an even number n of

ions). The same argument applies for the sum of all contributions for j = 2 or any

other value of j. For large numbers n of ions these summations for one value of j

approach an integration over one oscillation length of a cosine, which illustrates the

summation to zero even better.

In both arrangements of figure 4.5 the GHZ state (|111...〉 + |000...〉)/
√

2 turns out

to be a decoherence-free state or dark state for all n and frequency measurements

with it will therefore show Heisenberg scaling. The difficulty of an experimental

implementation of this is to find and map out a noise environment with cosine

spatial correlations.

After discussing purely positive and oscillating spatial correlations we would like to

point out that purely negative correlation functions, i.e. perfect anti-correlations are

impossible due to the necessity of positive self-correlations j = k and multipartite

correlation rules. Particularly negative noise correlations between any positions a

and b combined with negative correlations between positions b and c require positive

correlations between positions a and c.

4.5 Chapter summary

We have investigated quantum metrological measurements with n-entangled states

and their precision scaling with the number of ions n in a spatially correlated noise
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environment. We chose particular states, suitable for the measurement of the atomic

electric quadrupole frequency of trapped ions, a quantity relevant in frequency stan-

dard applications. We found these states to be protected against dephasing with

increasing correlation length of the noise.

For two ions this dephasing-free subspace has been experimentally observed [48].

This shows that the noise environment in ion traps must be in fact strongly spa-

tially correlated. Furthermore n-entangled GHZ-states have been reported to show

a dephasing rate with a quadratic dependence on the number of ions n [35]. We

found that this as well can only be caused by strongly correlated noise, which thus

seems to be the norm in ion trap experiments.

For fully correlated noise the entangled quadrupole states are dephasing-free and

the frequency uncertainty is therefore proportional to 1/n. This is the Heisenberg

limit, i.e. the best possible scaling allowed by the time-energy uncertainty relation

[125]. The emergence of dephasing-free subspaces in the correlated noise environment

enables a scaling, which outperforms all experiments with spatially uncorrelated

noise, which is fundamentally bound by the standard quantum limit [46, 126, 127],

i.e. an uncertainty which scales as 1/
√
n. The 1/n scaling found here is also superior

than any experiments in uncorrelated non-Markovian noise, which can have a best-

possible scaling of 1/n3/4 [131].

With increasing number of ions the correlations in the noise are likely to show

imperfections. We therefore investigated finite noise correlation length in depth.

In this case the topology of the state, i.e. the order in which ions are arranged

in the array becomes highly important for the dephasing properties of the state.

Furthermore there are two ways to increase n relative to the noise correlation length:

fixed array length and fixed density of the ions. Choosing an optimal topology and

keeping the array length fixed we find that Heisenberg scaling persists for finite

correlation length. With fixed ion density the uncertainty goes towards the standard

quantum limit for large n but compared to uncorrelated noise is better by a factor

of approximately d/(2ξ).

Spatially correlated, Markovian noise is the only type of noise so far, which has been

found to allow for Heisenberg-limited measurements with optimised states such as

the electric quadrupole measurement. It also seems to be the most realistic noise

model for ion traps. For GHZ states this noise environment is disadvantageous as it

increases the dephasing rate relative to uncorrelated noise [103]. However, if the en-

vironmental correlation function shows oscillations, such that certain distances have
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correlated and others anticorrelated noise, then GHZ states can also be engineered to

show Heisenberg scaling. Such environments are physically possible and were found

in the models of chapter 3 but are not yet found in the standard implementations

of quantum metrology.
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Chapter 5

Excitation and state transfer
via spin chains with correlated
decoherence

We investigate the effects of spatially correlated decoherence on quantum transport.

A spin chain with perfect state transfer serves as a model system and the trans-

port fidelity is calculated for both dephasing and relaxation with different correlation

lengths. Long correlation lengths are found to be advantageous to transport but in the

case of dephasing the state transfer turns into a classical bit transfer. New dynamics

is found to emerge for spatially correlated relaxation. The material in this chapter

has appeared in reference [104].

Introduction

The transfer of a quantum state is an important component for quantum technology.

While transfer via photons in optic fibres enables high-speed communication for

long-range communication and cryptography there has also been a large interest in

short-distance transfer via (pseudo-) spin chains [49–65]. Many promising quantum

technologies, such as optical lattices [134] and arrays of quantum dots [135,136], rely

on such transport. Furthermore, a quantum mechanically very similar mechanism

is the transfer of excitation energy in light-harvesting complexes in the context of

photosynthesis [137–140].
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5 Excitation and state transfer via spin chains with correlated decoherence

Within the many configurations for transport in spin networks, a linear spin chain

transversely coupled with a particular spatially varying coupling strength has been

found to provide perfect state transfer from one end to the other [53]. We will focus

on the case of perfect-state-transfer as this provides well defined analytical solutions.

However, our results are more general and apply to other spin-network problems and

spin-wave theory in general.

While the effects of correlated decoherence in photosynthetic systems have been

studied repeatedly [137–140], studies of environmental noise on perfect state trans-

fer are limited to spatially uncorrelated noise [141–144] or noise correlations between

repeated transfers through the same chain [145–149]. Here we investigate compre-

hensively the effects of decoherence on excitation and state transfer. Particularly we

assign a characteristic spatial correlation length ξ to the environmental noise and

display our results as continuous functions of ξ ∈ [0,∞).

5.1 The model system

We investigate the influence of decoherence in a linear chain of N transversely cou-

pled spins:

Hs =
N∑

j=1

ωqσ
(j)
z +

N−1∑

j=1

gj
2

(
σ(j)
x σ(j+1)

x + σ(j)
y σ(j+1)

y

)
(5.1)

where ωq is the level splitting of the spins and gj is the coupling strength of spin j

to its right neighbour. To guarantee perfect state transfer [53] the coupling strength

is chosen gj = g
√
j(N − j). Note that the coupling strength plotted as a function

of the position j describes a half circle (figure 5.1). Initially we choose the spin

at the start of the chain to be excited and all other spins in the ground state,

i.e. |↑↓↓↓ . . . 〉. The coherent dynamics of this system is shown in figure 5.2. The

excitation, initially at one end of the chain spreads out, travels through the chain

and, due to the particular profile of the coupling strength, refocuses at the other

end. Due to the symmetry of the system, the process then reverses. The time it

takes for the excitation to pass through the chain once is π/(2g). This system is

an ideal model system to test the influence of environmental noise with different

correlation lengths on excitation transfer because it has a clearly defined end point

of the transfer, while the transfer process depends on the coherence of the spins.
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spin j

gj

0 N

g1 g2 g3 g4 . . . gN

N
2

Figure 5.1: The coupling strength gj = g
√
j(N − j) between spins describes a half

circle, i.e. is strongest in the middle of the chain, to guarantee perfect
state transfer. For all numerical simulations we used the following pa-
rameters: ωq = 100, gj =

√
j(N − j), vj = 0 or 1, νj = 0 or 1.
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Figure 5.2: Coherent dynamics of the given spin chain (eq. 5.1). The excitation is
transferred from one end of the spin chain to the other and back. This
mechanism depends on the coherence of the spins because the excita-
tion spreads out before it refocuses at the other end. This is an ideal
model system to test the influence of decoherence with different spatial
correlation lengths on the excitation transfer.
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5 Excitation and state transfer via spin chains with correlated decoherence

As pointed out in section 2.2.1 longitudinal and transversal couplings to the envi-

ronment couple to independent baths (i.e. are not correlated). We therefore discuss

them separately.

5.2 Dephasing

First we regard longitudinal coupling to the environment:

Hint = v‖

N∑

j=1

σ(j)
z B

(j)
‖ (5.2)

with the coupling strength v‖. We assume a Gaussian shape of the corresponding

spatial correlation function:

C‖(ω = 0, |xj − xk|) = 2
−

(xj−xk)2

ξ2 (5.3)

which makes the correlation length ξ the half width at half maximum (HWHM).

As the dynamics of the excitation transfer depends on the coherence of the spins

we find that uncorrelated dephasing destroys the refocusing at the other end and

spreads the excitation out over the whole chain (figure 5.3, top). With increasing

correlation length ξ the detrimental influence of the environment is reduced and the

excitation transfer is restored without a change in the noise strength v‖ (figure 5.3).

For long correlations ξ →∞ the restored excitation transfer can be understood via

the analytical result in section 2.2.2, i.e. states with equal numbers of excitations

become dephasing-free in a perfectly correlated noise environment.

To quantify the excitation transfer and its dependence on noise correlation length,

we measure 〈σz〉 of the end spin after one passing through the chain at t = π/2. We

plot this result dependent on a logarithmically scaled correlation length ξ in figure

5.4 and find a clear step in the transfer quality, which means there is a particular

critical correlation length ξc. Noise with a correlation length below ξc destroys the

transfer, while above ξc the quality of the transfer is high. Numerical results show

that the critical correlation length does not depend on the noise intensity v‖ in the

weak coupling regime v‖ < min(gj).

Instead, the major determining influence is the chain length (figure 5.4). For the

perfect state-transfer protocol an increasing chain length also increases the maximum
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Figure 5.3: Dynamics of the spin chain with longitudinal bath coupling and different
correlation lengths, top: ξ = 0.2d, middle: ξ = 2d, bottom: ξ = 20d
where d is the distance between spins. The relatively strong environmen-
tal coupling leads to dephasing, which for uncorrelated decoherence (top)
makes the excitation spread out over the chain and destroys the transfer.
With increasing correlation length of the environment the coherent dy-
namics (cf. figure 5.2) is restored even though the system-bath coupling
is not decreased. In all simulations the following numerical values are
chosen: ωq = 100, g = 1, v‖ = 1.
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Figure 5.4: Transfer quality of an excitation through the spin chain dependent on
logarithmically scaled correlation length for different chain lengths (see
legend). The characteristic “step” in the transfer quality defines a crit-
ical correlation length ξc, which only changes with chain length and is
independent of other parameters.

spread (or packet width) of one excitation in the transfer, which occurs at half the

passing time t = π/4 (cf. fig. 5.2). In other words the critical noise correlation length

ξc depends on the maximal packet width in the chain, which is an intuitive result

since the transfer depends on the refocusing of that excitation packet. To quantify

this statement we determined both quantities numerically for the nine different chain

lengths given in figure 5.4. We determined the maximal packet width as the HWHM

of the excitation packet after t = π/4. We determined the position of the step ξc in

figure 5.4 by that correlation length (in number of spins) which corresponds to the

maximal gradient using interpolation in both cases to increase precision. We then

plotted both quantities in figure 5.5, which indeed shows linear dependence.

The linear dependence of ξc on the chain length suggests, that excitation transfer

is not impaired by noise as long as the noise is correlated on a length scale that

goes beyond the maximal packet width of the excitation. Similarly, the dynamics

of a single excitation in a spin network in general is not impaired by noise that is

correlated on a larger scale than the spread of the excitation.

Note that the long chain lengths in this case were numerically achievable by a re-

duction to the single-excitation subspace and numerical integration instead of diag-

onalisation (section 2.3).

The phase coherence to the ground state decays, regardless of the correlation length
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Figure 5.5: Critical correlation length ξc over maximal packet width for 9 differ-
ent chain lengths 21, 22, . . . , 29. The data suggests a linear dependence.
Excitation preserving dynamics seems to be immune to noise with a
spatial correlation length longer than the maximal packet width of the
excitation.

ξ, even when the excitation transfer is restored because the ground state has a differ-

ence of one excitation to the single-excitation subspace. This can be seen when 〈σx〉
(figure 5.6) or the purity (figure 5.7) is plotted. This loss of the phase information

in the given setup means that for spatially correlated noise the excitation transfer

is no longer a state transfer in the sense of quantum information but has become a

classical bit transfer. One way that this problem might be overcome is via a Hahn

echo technique, where a π/2 bit flip to the entire chain is incorporated after half of

the transfer time. However, this would be a more technologically challenging setup.

Outside quantum information there are applications in which the excitation transfer

with “classical information” is equally desirable. An example is the energy transfer

in light-harvesting complexes, which is discussed in chapter 6. In these situations

correlated dephasing enables the transfer at high qualities even for relatively strong

noise.

5.3 Relaxation

After the effects of longitudinal bath coupling in the previous section we will discuss

only transversal bath coupling in this section. Note that a combined appearance of

both couplings does not alter any of the effects described in this section but merely
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Figure 5.6: Top: Coherent evolution of the system where |〈σx〉| is plotted. The 〈σx〉
expectation value has a high frequency harmonic (∝ 2ωq) but here we
plot |〈σx〉| to focus on the slow dynamics. The other spins in their ground
state have zero expectation value. Bottom: In decoherent evolution, the
phase information is lost very quickly even for widely correlated noise
(here: ξ = 20d). Note that the bottom plot is the same evolution as the
bottom plot of figure 5.3, i.e. the excitation is transferred very well, but
the phase coherence to the ground state is lost very quickly at the same
time.
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Figure 5.7: Purity Tr(ρρ) as a function of time with dephasing noise for different
correlation lengths. The purity is partially restored for longer correlation
lengths, however there is a residual decay because the phase coherence
to the ground state is lost, despite the fact that excitation transfer is
fully restored for long correlation lengths (cf. fig. 5.3).

adds dephasing as discussed above.

The spin chain with Hamiltonian 5.1 is now coupled transversely to the environment:

Hint = v⊥

N∑

j=1

σ(j)
x B

(j)
⊥ (5.4)

with the coupling strength v⊥. We assume a vacuum or low temperature environ-

ment, i.e. the spectral function at negative frequency −ωq is approximately zero.

For positive frequency ωq we again assume Gaussian shaped spatial correlations:

C(−ωq, |xj − xk|) = 0 (5.5)

C(ωq, |xj − xk|) = 2
−

(xj−xk)2

ξ2 (5.6)

This means we will only find energy loss out of the spin chain and no excitation gain

from the environment will occur.

In the time evolution we find that longer correlation lengths ξ are advantageous for

the transfer quality (Figure 5.8). This is similar to dephasing. However, contrary

to dephasing the phase information is also preserved for longer correlation lengths ξ

(figure 5.9). This means long correlation lengths actually reinstate the perfect state
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Figure 5.8: Relaxation (due to transversal coupling v⊥ = 1) with different correla-
tion lengths: top: ξ = 0.2d, middle: ξ = 2d, bottom: ξ = 20d where d
is the distance between spins. Similar to dephasing (figure 5.3) long cor-
relation lengths are advantageous for the transfer quality. The following
numerical parameters were used: ωq = 100, g = 1, v⊥ = 1.

98



5.3 Relaxation

Figure 5.9: Evolution of the system undergoing pure relaxation, where |〈σx〉| is plot-
ted. top: ξ = 0.2d; bottom: ξ = 20d. For long correlation lengths
the phase information is also preserved and transferred through the spin
chain.
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Figure 5.10: Transfer quality for continuing evolution with several different correla-
tion lengths. For long correlation lengths two separate decay time scales
arise.
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Figure 5.11: 〈σ(j)
z 〉 expectation value after 40 passings through the chain with re-

laxation v⊥ = 1 and long correlation length ξ = 100d. The dynamics
shows the intermediate state (eq. 5.7) which occurs after the fast decay
and before the slow decay in figure 5.10.
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transfer in the absence of dephasing noise. Furthermore the relaxation is not entirely

slowed down for long correlations. Two relaxation time scales emerge, a fast one and

a slow one. This can be visualised by taking only the time points which are multiples

of π/2, where in the coherent dynamics the state should be refocused at the ends of

the chain. Plotting the expectation value of the respective spin displays a continuous

decay with two distinct regimes. Figure 5.10 shows this decay and the two separate

time scales are clearly visible. If we consider the dynamics of the spin chain at the

time after the fast decay has finished, and the slow decay is just starting, we find that

the excitation, which started initially at one end, is now split up and refocuses at

both ends simultaneously (figure 5.11). The corresponding density matrix at these

points in time is given by a statistical mixture of two states:

|Ψ1〉 = (|↑↓↓ . . . ↓〉+ |↓↓↓ . . . ↓↑〉)/
√

2 p1 = 0.5 (5.7)

|Ψ2〉 = |↓↓↓ . . . ↓〉 p2 = 0.5 (5.8)

In other words the relaxation has entangled the first spin and the end spin with an

efficiency of 50%. This entangled state then decays on a much slower time scale.

Again we can explain the behaviour with the analytical results for perfectly cor-

related environments from section 2.2.3. The coherent dynamics is entirely in the

single-excitation subspace, which consists of n states. For perfect correlations ξ →∞
the single-excitation subspace contains only one decaying state and a relaxation-free

(or subradiant) subspace of n− 1 states. The coherent dynamics of the chain moves

the excitation around and transfers probability between the relaxation-free states

and the decaying state. All population in the decaying state however relaxes into

the ground state on the short time scale. The only exception is the state |Ψ1〉,
which has a measurement probability in the initial state of | 〈Ψ1 | ↑↓↓ . . . 〉 |2 = 1/2.

Figure 5.11 shows that in this state the excitations on both ends travel through the

chain simultaneously. In other words the state |Ψ1〉 evolves almost entirely in the

relaxation-free subspace into itself, resulting in a much slower decay rate.

5.4 Chapter summary

For excitation transfer spatially correlated noise is strongly advantageous compared

to uncorrelated noise. The detrimental effects of dephasing on the transfer dynamics
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5 Excitation and state transfer via spin chains with correlated decoherence

vanish as the noise correlation length is greater than the maximal packet width of

the excitation in the transfer. The excitation can then be transferred with very high

fidelity even for strong noise. While the dynamics of the transfer is restored with long

correlation length the phase coherence to the ground state is still lost in the transfer

and the high-fidelity excitation transfer is no longer a perfect state transfer. With

relaxation the transfer also improves with increasing spatial correlation length of

the noise. The relaxation time increases and two separate time scales arise. Initially

the state |↑↓↓ . . . ↓〉 relaxes into the entangled state (|↑↓↓ . . . ↓〉 − |↓↓ . . . ↓↑〉)/
√

2.

This intermediate state is very robust and decays on a longer time scale. It can be

concluded that spatially correlated noise displays significantly different dynamics to

spatially uncorrelated noise. Longer correlation lengths are generally advantageous

to quantum transport as they reduce dephasing effects and produce an intermediate

entangled state with reduced relaxation rates.
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6
Chapter 6

Photosynthetic complexes
with correlated decoherence

Photosynthetic systems have recently been found likely to include a certain amount

of quantum coherent processes. In this chapter we show, that Bloch-Redfield equa-

tions are a good tool for modeling these systems. This is particularly timely because

the misconception that Bloch-Redfield equations are a less powerful tool than Lind-

blad equations for modeling exciton transport in photosynthetic complexes has been

published and cited several times [32]. We analyze a prototypical dimer system as

well as a 7-site FMO complex in regards to temperature, dephasing rate and spatial

correlation length of the noise and go beyond the capabilities of an ad-hoc Lindblad

approach.

6.1 Introduction

The chemical processes of photosynthesis are carried out in the reaction centre of

photosynthetic cells. The energy for it is provided by incoming photons, which

create excitons. These excitons are collected via light-harvesting complexes (LHCs),

which are much larger than the reaction centre. The function of an LHC is to cover

larger areas of incoming photons and to transfer the excitons towards the reaction

centres. Following experimental evidence of long-lived coherences in LHCs [66, 67],

there have been many studies on quantum coherence in LHCs and the effects of

decoherence [71, 137–139, 150, 151]. However, there is still some debate concerning

the correct formalism for modeling the dynamics of such systems.
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6 Photosynthetic complexes with correlated decoherence

As explained in section 2.1.5 Lindblad equations guarantee complete positivity of

the density matrix, i.e. a physical time evolution, by their mathematical form. This

made Lindblad equations a popular tool for investigating light-harvesting complexes,

as it enables one to get physical results for an open quantum system without the

necessity of deriving a master equation from a microscopic model. While Lindblad

equations are the mathematically simplest tool, a Bloch-Redfield approach allows a

closer connection to the microscopic parameters and the causes of decoherence.

Quantum coherence in light-harvesting complexes combines the research fields of

open quantum systems and biochemistry. While researchers with an open quantum

systems background are typically more familiar with the capabilities of modeling

quantum coherent evolution with Bloch-Redfield equations, researchers with a bio-

chemistry background typically use simplified versions of the Bloch-Redfield equa-

tions (sometimes labelled ‘Redfield equations’) to only model decoherent transitions

between states. In the context of light-harvesting complexes these simplified ver-

sions have previously been applied in a way that caused issues like non-positivity or

the inability to model coherent oscillations. This has lead to the misconception that

Bloch-Redfield equations are insufficient to model light-harvesting systems or are a

simplified case of Lindblad equations, which has explicitly been published [32] and

repeatedly been cited [68,70,73]. In this chapter we present how our Bloch-Redfield

approach adapts to model LHCs with none of the issues mentioned. It enables more

detailed models than Lindblad equations. As a simple example, we apply our for-

malism to a dimer system and show how coherent oscillations and decay arise from

the system and noise environment parameters.

One important advantage of the Bloch-Redfield approach is that both temporal and

spatial correlations in the environment can be modelled, assuming that the effect of

the environment is approximately Markovian. Using other models, the relevance of

spatial correlations in LHCs was pointed out in [70, 71], correlations were found to

enhance coherence [72,73,75], which is consistent with the more general result that

a decoherence-free subspace emerges in the single-excitation subspace for strongly

correlated environments (section 2.2.2). Some models found noise correlations to

slow transport down [73], others to speed up transport up to a certain optimal

value depending on the strength of the reorganisation energy [69]. The latter is in

agreement with our findings in this paper using Bloch-Redfield equations. We show

that the Fenna-Matthews-Olsen (FMO) complex, one example of a intesively studied

LHC, achieves maximum efficiency for a parameter regime with finite spatial noise

correlations.
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6.2 Lindblad vs. Bloch-Redfield equations for LHCs

In light-harvesting complexes the system Hamiltonian Hs describes the system and

all its quantum coherent features. It is typically of the form Hs =
∑

j εj |j〉 〈j| +∑
j 6=k gjk(|j〉 〈k|+ |k〉 〈j|, where the first term describes the sites at energy εj and the

second term the couplings between sites gjk. To then model the noise influence and

incoherent dynamics a master equation approach is often used. The Lindblad equa-

tions [1,42,43] are a popular tool for this because their mathematical form guarantees

that the populations, i.e. the diagonal density matrix elements, are positive at all

times (see section 2.1.5). This is physically necessary since they represent the prob-

abilities of measuring the corresponding state. However modeling beyond Lindblad

equations opens up new capabilities and does not need to violate positivity [89].

In difference to the Lindblad equations, the mathematical form of Bloch-Redfield

equations does not guarantee a priori complete positivity of the density matrix,

i.e. physicality. It is an underpinning consistent microscopic noise model that guar-

antees physical behaviour. This is however where the strength of the Bloch-Redfield

formalism lies. It connects system behaviours to physical properties of the noise

and the system-noise interaction type. Specifically the equations derive from the

interaction Hamiltonian (eq. 2.3) with the system operators sj and bath operators

Bj and j runs over the spatial sites in the system. The spectral function Cjk(ω) of

the noise environment defines both the noise spectrum and the strength of spatial

correlations between sites j and k. To model a Markovian environment, the spectral

function must be smooth on the scale set by the system evolution. This is a key

point in correctly deriving physical master equations, which will be detailed further

in section 6.2.3.

The system operators sj define which part of the system couples to the noise environ-

ment. There can be noise on site-operators (e.g. site-energy-noise σ
(j)
z = 2 |j〉 〈j|−1,

site recombination σ
(j)
x = |j〉 〈G|+h.c.) or there can be noise on the coupling opera-

tors between sites (e.g. transversal couplings |j〉 〈k|+ |k〉 〈j|, longitudinal couplings

σjzσ
k
z ) [68].

6.2.1 Measurement basis and oscillations

In light-harvesting complexes excitonic dynamics between spatial sites is of interest.

Populations should therefore be taken in the site basis (aka bare basis, defined as
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6 Photosynthetic complexes with correlated decoherence

the eigenbasis of the Hamiltonian without couplings between sites). Then the popu-

lations correspond to the probability of finding an exciton at the corresponding site.

If on the other hand the populations are taken in the eigenbasis of the Hamiltonian

(with couplings), as for example done in [32], their physical meaning is unclear and

oscillations in this basis do not correspond to excitonic movement any more. Sec-

ondly such oscillations are not caused by the system any more since it is the basis

of stationary states in the coherent system dynamics.

6.2.2 The secular approximation for LHCs

As for most controlled quantum systems the Bloch-Redfield equations for LHCs

can be simplified by means of the secular approximation based on the occurrence

of two different frequency scales in the system. Although the frequencies in LHCs

are typically three orders of magnitude larger (i.e. the time scales shorter) than in

controlled quantum systems, the on-site energies are again much larger relative to the

coupling energies. This is hugely advantageous in order to find analytical solutions

to the equations and it helps to map the Bloch-Redfield equations to Lindblad form

(sections 2.1.3 and 2.1.5), which can rid the equations of any physical inconsistencies

should they arise from the underlying model. However, we emphasize that with the

formalism presented throughout this thesis, this is in general unnecessary.

When the Bloch-Redfield equations are based on a consistent physical model, then

the secular approximation does not alter the results. It merely makes it easier to

find a solution to the equations by disregarding elements which don’t change the

solution significantly.

The secular approximation is based on different time scales. In section 2.1.3 we spoke

in general terms of a short system time scale (large system frequencies) and long

decoherence time scales (small decoherence rates). For LHCs the on-site energies are

the large system frequencies but the inter-site couplings are typically much smaller

and of the same order as the decoherence rates. Applying the secular approxima-

tion therefore requires a comparison of the elements of the superoperator (eq. 2.32)

for each respective system individually. If the magnitude of two diagonal elements

in the superoperator differ by more than their shared off-diagonal elements, then

those off-diagonal elements can be replaced with zero. The secular approximation

should be applied by a careful pairwise comparison of the elements. The full secular

approximation, which sets all dependencies between coherences and populations to
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6.2 Lindblad vs. Bloch-Redfield equations for LHCs

zero is rarely justified. Although this extreme case is guaranteed to rid the equa-

tions of any non-physical inconsistencies, it usually also rids the system of physical

coherent oscillations. The frequent use of this full secular approximation has lead to

the misconception that Redfield theory can not reproduce oscillations [32].

We recommend only using a partial secular approximation, which sets only those

elements to zero which are justified for the respective system. An example will be

given in section 6.3. A consistent connection of the equations to an interaction

Hamiltonian (eq. 2.3) and spectral function (eq. 2.30) as outlined in equations 2.27

to 2.29 should never lead to non-physical behaviour in the first place.

The occurrence of two separated energy scales is quite common in light-harvesting

systems. This is because the excitonic (on-site) energy, which is typically of the order

10,000 cm−1, is much larger than the coupling energies and the differences of the

on-site energies, both are typically on the order of 1 cm−1 to 100 cm−1. A secular

approximation based on this difference leads to two very general results: Firstly,

it decouples the one-exciton subspace from both the ground state and from states

with two or more excitons, see appendix B. This means that in LHCs states with

more than one exciton can generally be neglected in the time evolution. Secondly, it

separates the bath of the longitudinal couplings (e.g. sj = σ
(j)
z = 2 |j〉 〈j| − 1) from

the bath of the transversal couplings (e.g. sj = σ
(j)
+ σ

(j+1)
− + h.c. = |j〉 〈j + 1|+ h.c.),

see appendix C. This simplifies modeling since correlations in the noise of these

different types of coupling do not have any effects and can be neglected.

6.2.3 Detailed balance

In the equilibrium state, the populations of two sites are given by ρ11/ρ22 = e−~ε12/kBT ,

where ε12 is the energy difference of the two sites. This detailed balance condition

translates in the Bloch-Redfield formalism to the property

C(−ω) = e−~ω/kBTC(ω) (6.1)

of the spectral function. Spectral functions derived from a microscopic model such

as the spin-boson or related models can have this property already, see [20, 38] or

eqs. 3.49 and 3.51, where:

〈n(|ω|)〉 =
1

e~ω/kBT − 1
= e−~ω/kBT

e~ω/kBT − 1 + 1

e~ω/kBT − 1
= e−~ω/kBT (1 + 〈n(|ω|)〉) (6.2)
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6 Photosynthetic complexes with correlated decoherence

Regarding the detailed balance condition, eq. 6.1, at low temperatures the spectral

function for negative frequencies can be approximated by zero. This needs to be done

in a manner consistent with the Markov approximation. The Markov approximation

requires that the spectral function does not change on the scale relevant to the system

dynamics (typically gjk). Therefore one must obey C(0± gjk) ≈ const. This is one

of the subtle details which can cause issues with non-positivity. If there are other

larger scales (e.g. ωj � gkl) the spectral function has no restrictions on this scale

and can vary appreciably.

The detailed balance is consistent with the fact that excitons recombine but are

not spontaneously created even at room temperature from the surrounding noise

environment. This means once recombination is considered the long-time equilib-

rium will have almost all population in the ground state even at room temperature.

Neglecting recombination the detailed balance can be applied to the single exciton

subspace only [32], however this is somewhat artificial since the detailed balance is

typically driven by energy-exchanging noise on each site, i.e. recombination noise.

6.2.4 Spatial correlations

Through the spectral function Cjk(ω) the option to model spatially correlated noise

arises naturally in the formalism. As for other controlled quantum systems it allows

for a spatially decaying correlation function in the LHC with a distinctive correlation

length ξ, i.e. one can transition smoothly between infinite, finite and no spatial

correlations. This is advantageous over Lindblad and other approaches, which have

to assume several (common and individual) baths [68]. This advantage becomes

most apparent for systems with several sites (e.g. the realistic 7-site FMO model,

see section 6.5), where finite correlation length can be applied to the actual geometry

of the LHCs.

6.3 Example of a dimer system

As an illustrative example, we consider a dimer system with Hamiltonian

Hs =

(
εH g

g εB

)
(6.3)
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Figure 6.1: Ohmic spectral function for different temperatures T between 0 K (blue)
and 300 K (red). The noise around zero frequency determines the de-
phasing strength and is strongly temperature dependent. The noise at
higher frequencies determines the recombination and is largely unaffected
by temperature. For negative frequencies the spectral function is expo-
nentially damped, which leads to the detailed balance being preserved.

This system of two sites (labeled H and B) appears in many photosynthetic systems

[32], e.g. in the reaction centre of the purple bacteria Rhodobacter sphaeroides [66,68]

and serves as the most basic model of exciton transfer in light-harvesting complexes.

Neglecting all noise influences an exciton will oscillate between the sites with fre-

quency ~ω =
√
g2 + (εH − εB)2/4. The oscillation amplitude will be strongest for

εH − εB = 0. In other words, the stronger g, the faster the oscillations, but increas-

ing |εH − εB| decouples the sites. This role of off-diagonal couplings and diagonal

on-site-energies in the system Hamiltonian generalizes to more complex multiple-site

systems.

6.3.1 Constructing the superoperator

Next we consider dephasing noise coupling to the site-energies by setting the sys-

tem operators in the interaction Hamiltonian to s1 = v (2 |H〉 〈H| − 1), s2 =

v (2 |B〉 〈B| − 1), where v is the coupling strength. First we model spatially un-

correlated noise and an Ohmic spectral function [17, 38, 70, 75, 77, 139] Cjk(ω) =

αω coth(~ω/2kBT ) δjk, where α accounts for the noise strength (see figure 6.1). The

oscillations then show an envelope exponential decay, due to the loss of phase coher-
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Figure 6.2: Dynamics of the dimer at different temperatures. From top to bottom:
T=1K,100K, 200K, 298K. The oscillations decay due to dephasing. This
is stronger at higher temperatures. Recombination makes the popula-
tions in the two sites slowly decay and the population of the ground
state (red) rise. System-environment couplings are set to v = 5cm−1 and
ν = 0.1cm−1.
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6.3 Example of a dimer system

ence between the two sites. For sites with similar energy |εH − εB| � g the decay

rate is given by γ2 = v2[C(2g) +C(−2g)]/2. Since C(ω) is smooth on the scale of g

one can approximate C(±2g) ≈ C(0) ∝ T for the given spectral function. In figure

6.2 we can see a few numerical examples for different temperatures. With decreasing

temperature the environment fluctuates less, i.e. dephasing noise on the system is

reduced and coherent oscillations last for longer times. The oscillation frequency is

not affected by temperature since we have not considered a temperature dependency

of the system Hamiltonian HS.

We then add recombination noise into our considerations. To do so we need to add

the ground state, in which the exciton has vanished from all sites to the system

Hamiltonian.

Hs =




εH g 0

g εB 0

0 0 ε0


 =




0 71.3 0

71.3 46.4 0

0 0 −12210


 (6.4)

The energy ε0 of the ground state |G〉 is one excitonic energy lower than εH and εB.

This difference is typically two orders of magnitude larger [139] than all other relevant

parameters in HS. Therefore any couplings between the ground state and states |H〉
and |B〉 would only have a negligible effect and are neglected entirely by employing

the rotating wave approximation/ secular approximation. For simplicity we set them

to zero in the first place. We then extend the system operators of each site s1 =

v(2 |H〉 〈H|−1)+ν |H〉 〈G|+ν |G〉 〈H| , s2 = v(2 |B〉 〈B|−1)+ν |B〉 〈G|+ν |G〉 〈B|
and use the same spectral function as before. The excitonic energy is then lost from

the system at a rate of γ1 = ν2C(εH − ε0), where the spectral function is again

approximately constant around this frequency. While the dephasing rate is of about

the same order as the inter-site couplings, the recombination rate is typically much

slower and on the order of 1 ns [75, 152]. The recombination can be seen by a slow

decay of the populations in H and B to the ground state in figure 6.2. As the

ground state is considerably lower in energy almost all population is found in the

ground state at thermal equilibrium, which is reached for very long times. This

corresponds to the fact that the creation and existence of an exciton itself is a non-

equilibrium process. However the recombination processes are typically much slower

than dephasing processes due to a weaker noise coupling ν < v. Therefore the system

dephases first and then decays to the ground state on a longer time scale. In contrast

to dephasing the recombination strength is almost temperature independent. In an

Ohmic noise environment it is purely proportional to the excitonic energy.
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6 Photosynthetic complexes with correlated decoherence

6.3.2 Applying the secular approximation

The secular approximation is based on two largely different (i.e. ‘secular’) scales of

parameters involved. Usually these two scales are the large excitonic energy on the

one hand and the small couplings between sites and noise strength on the other.

The approximation should never alter the solutions but merely simplify the process

of finding a solution by setting those elements of the superoperator to zero, which

only have a negligible effect on the solution. This is true for those off-diagonal

superoperator elements, whose magnitude is much smaller than the difference of

their corresponding diagonal elements.

We demonstrate this numerically for the dimer system. To write the superoperator

as a matrix we first have to reorder the density matrix as a vector. We do so and

put the diagonal density matrix elements first in the vector (eq. 6.5). The Bloch-

Redfield equations are then given in eq. 6.5 without the secular approximation and

in eq. 6.6 with the secular approximation. To transform from one to the other one

needs to compare each pair of diagonal elements and if their difference is of the

order 10, 000 then the two corresponding off-diagonal elements are set to zero. This

detailed procedure yields what we call the partial secular approximation. The full

secular approximation would set all off-diagonal elements which are outside the red

rectangle in eq. 6.5 and 6.6 to zero and only leave behind those off-diagonal elements

which link ρ11, ρ22 and ρ33 (i.e. the elements inside the red rectangle). This full

secular approximation would change the evolution of the system. It would neglect

any coherent oscillations and only leave the transition rates un-altered (see figure

6.3).

The wide-spread usage of this full secular approximation has lead some to believe

that the Bloch-Redfield formalism is not capable of modeling coherent oscillations

at all. The partial secular approximation however leaves the non-negligible elements

behind, which cause coherent oscillations. Ishizaki [76] discussed furthermore how

the full secular approximation alters energy transfer rates between sites when the

reorganisation energy becomes greater than the electronic couplings. Ishizaki further

criticises [74, 76] that Bloch-Redfield equations in general are only second-order in

the noise strength although the noise and the couplings are of similar order in light-

harvesting systems. This criticism applies equally to Lindblad equations as typically

the Lindblad rates are derived from a second-order perturbation theory calculation

of the system-environment coupling.
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Figure 6.3: Time evolution of the dimer system. Left: No approximations are ap-
plied (eq. 6.5). Middle: The partial secular approximation is applied
(eq. 6.6) Right: The illegitimate full secular approximation is applied,
which sets all non-diagonal elements outside the red square in eq. 6.6 to
zero. We can clearly see that the partial secular approximation does not
alter the evolution and hence only sets negligible elements to zero. The
full secular approximation however sets relevant elements to zero and
hence the system’s oscillations are lost.




ρ̇11

ρ̇22

ρ̇33

ρ̇12

ρ̇13

ρ̇21

ρ̇23

ρ̇31

ρ̇32




=




−4 0 4 0−71i 3 0+71i 0 3 0

0 −4 4 0+71i 0 0−71i 3 0 3

4 4 −8 0 −3 0 −3 −3 −3

−1−71i 1+71i 0 −8−46i −1 0 0 0 −1

2 0 −2 −2 −9+12210i 0 0+71i 4 0

−1+71i 1−71i 0 0 0 −8+46i −1 −1 0

0 2 −2 0 0+71i −2 −9+12256i 0 4

2 0 −2 0 4 −2 0 −9−12210i 0−71i

0 2 −2 −2 0 0 4 −0−71i −9−12256i







ρ11

ρ22

ρ33

ρ12

ρ13

ρ21

ρ23

ρ31

ρ32




(6.5)



ρ̇11

ρ̇22

ρ̇33

ρ̇12

ρ̇13

ρ̇21

ρ̇23

ρ̇31

ρ̇32




=




−4 0 4 0−71i 0 0+71i 0 0 0

0 −4 4 0+71i 0 0−71i 0 0 0

4 4 −8 0 0 0 0 0 0

−1−71i 1+71i 0 −8−46i 0 0 0 0 0

0 0 0 0 −9+12210i 0 0+71i 0 0

−1+71i 1−71i 0 0 0 −8+46i 0 0 0

0 0 0 0 −0+71i 0 −9+12256i 0 0

0 0 0 0 0 0 0 −9−12210i 0−71i

0 0 0 0 0 0 0 −0−71i −9−12256i







ρ11

ρ22

ρ33

ρ12

ρ13

ρ21

ρ23

ρ31

ρ32




(6.6)
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6.4 Mapping to Lindblad equations

There are several ways by which one can map Bloch-Redfield equations to a Lind-

blad form. The correct approach depends on the level of modeling detail that one

wants to transmit to Lindblad form. We can map the Bloch-Redfield equations to

Lindblad equations by neglecting all time correlations (or taking the secular ap-

proximation) and neglecting all spatial correlations of the bath (or diagonalising

the coefficient matrix). Neglecting all time correlations means assuming a strong

form of Markovianity in that the bath correlations decay instantly and not just on

a time scale shorter than the system dynamics. The spectral function must then

be constant for all frequencies. This strong condition can however be replaced with

the secular approximation combined with a piece-wise flat spectral function which

only changes on the large scale of the secular approximation [84]. In section 2.1.3

we showed generally that the system operators can then be split up into the parts

which are dependent on the same flat piece of the spectral function sj =
∑

ε sj(ε)

and the Bloch-Redfield equations 2.27 simplify to eq. 2.41.

Neglecting all spatial correlations in the noise sets all mixed terms involving j 6=
k to zero since the corresponding spectral functions Cjk(ω) = 0. For correlated

environments a diagonalisation of the coefficient matrix (Cjk) is necessary, see section

2.1.5. This however is a non-trivial step and will yield non-local Lindblad operators,

eq. 2.53. The mapping is then merely a step to reassure physical behaviour of the

master equation. However it shows that the Bloch-Redfield formalism can model

more complex environments by considering different types of correlations.

If Lindblad equations are used without an underpinning Bloch-Redfield-like deriva-

tion the connection to a microscopic noise model is lost. This can lead to artificial

effects like noise-induced oscillations whose physical cause is unclear. These can

be misinterpreted as system oscillations [32] but a characteristic feature is that the

strength of such oscillations is purely dependent on the noise strength and shows

the same temperature dependency as the noise-induced decays.

6.5 Effects in large LHCs

The Fenna-Matthews-Olson (FMO) complex is a seven site light-harvesting complex,

in which the Hamiltonian governing the excitonic dynamics can be estimated [140,
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153], and which has therefore been studied by various groups [69, 73, 75, 137, 139,

150, 154]. In this section we demonstrate that the Bloch-Redfield equations are

an excellent tool to investigate large LHCs such as the FMO complex. We use site-

numbering that follows the original paper by Fenna et al [155]. The system operators

which couple to the noise and the spectral function are chosen analogously to the

dimer in the previous section, with an additional trapping rate of 1ps−1 from site 3

to the reaction centre (rc). We simulate the FMO complex at T = 77K and set the

recombination rate to γ1 = ν2C(12210cm−1) = 0.001ps−1. The time evolution for

different dephasing rates γ2 = v2C(0) is shown in figure 6.4.

We find that even for strong noise the solution shows physical behaviour, ie. non-

positivity is not an issue. The occurrence of an optimal dephasing rate is in agree-

ment with other models [69,137].

To demonstrate further the capabilities of the Bloch-Redfield equations we investi-

gate the influence of temperature and spatial correlations on the transfer dynamics

of the FMO. Recently Olbrich et al. did not find correlations within the system site

energies in a classical molecular dynamics simulation of a truncated version of the

FMO complex [156]. This can be seen as an indication of uncorrelated noise, how-

ever quantum simulations of the environmental space-time correlations of the full

FMO complex have not yet been performed.

Temperature is modeled via the Ohmic spectral function, figure 6.1. The influence of

spatial noise correlations is modelled via a homogeneous exponentially decaying func-

tion Cjk(ω) = exp(−|rj− rk|/ξ)C(ω), which we combine with the three-dimensional

relative distances of the FMO chromophores [157, 158]. Figure 6.5 shows the time

for a 90% probability of the exciton initially placed on site 1, to transfer to the

reaction centre as a function of temperature and spatial correlation length ξ. For

temperatures, which are not too close to zero we find that increasing the correla-

tion length of the noise from zero enhances the exciton transport by reinstating

the coherent transfer dynamics similar as in chapter 5. For γ2 = 20ps−1 the opti-

mal correlation length is approximately ξ = 100 Å. Even longer correlation lengths

are detrimental to the transfer, contrary to the spin chain in chapter 5. This is in

agreement with the finding that a certain level of dephasing is advantageous to the

transfer [137, 140, 150, 151] in the FMO complex as the coherent dynamics is not

ideal in regards to exciton transfer.

We found in sections 2.2.2 and 5.2, that increasing noise correlation length leads

to dephasing-reduced subspaces of states with equal excitation number. Transport
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Figure 6.4: Time evolution of the FMO complex at three different dephasing rates:
from top to bottom γ2 = 1ps−1, 10ps−1, 1000ps−1. Top: Within the
coherence time there are several oscillations between site 1 and 2. Mid-
dle: Around the optimal dephasing rate the exciton is transferred very
quickly. Bottom: Strong dephasing starts to “freeze” the system (quan-
tum zeno effect), which slows down the transfer.
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Figure 6.5: Transfer time as a function of temperature and spatial noise correlation
length for a dephasing rate γ2 = 20 ps−1. We find an optimal region
with short transfer times for finite correlation length ξ ≈ 100 Å.

processes are limited to the single-excitation subspace, therefore the optimal cor-

relation length is strongly dependent on the dephasing rate. We find in figure 6.5

that around the optimal correlation length the transfer time can be reduced to less

than 20ps. We plot the probability of transfer after this time in figure 6.6 as a func-

tion of correlation length and dephasing rate. We find that the optimal correlation

length, which is defined by the region of high transfer probability increases with the

dephasing rate. The dependence of the optimal correlation length on the dephasing

rate is consistent over many orders of magnitude. It shows that the effective re-

duction of dephasing caused by noise correlations can help to bring the system into

the regime of optimal dephasing strength. This is in agreement with the findings in

references [69,73].

6.6 Conclusions

We have presented how the Bloch-Redfield equations can be utilised to model exci-

tonic dynamics in chromophoric aggregates or light-harvesting complexes in a con-

sistent manner. The equations link back generally to a physical model of system-

environment interaction Hamiltonian and spatial-temporal correlations contained in

the spectral function, giving more flexible and adaptable modeling options than a

phenomenological Lindblad approach.
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6 Photosynthetic complexes with correlated decoherence

Figure 6.6: Probability of exciton transfer to the reaction centre after 20 ps−1. Since
correlation length reduces the dephasing noise effects, correlations can
help to reach the optimal parameter regime and hence be advantageous
to transport. Temperature was T = 300K in this simulation.

We have shown how issues of non-positivity and non-physicality or the loss of coher-

ent oscillations are not inherent to the Bloch-Redfield formalism, and can be ruled

out by an underpinning consistent physical model. If the secular approximation

is applied, it needs to be based on the occurrence of different scales and applied

carefully for the respective system at hand. Given these conditions, the secular

approximation will not change the equations but merely simplify them by setting

negligible elements to zero.

For a dimer system we have shown how coherent oscillations between the sites arise

from the coupling g and site-energy difference |εH−εB|. The oscillations are damped

when the site-energies couple to the noise environment causing dephasing noise in

the dimer and dissipation into the ground state arises from recombination noise. We

have shown how dephasing noise is linked to thermal effects, while recombination is

independent of temperature in an Ohmic noise environment.

In the FMO complex, we have combined a model with finite correlation length of

the dephasing noise with the actual relative positions of the chromophores in the

complex. We show the relative influences of correlation length, dephasing strength

and temperature on the transfer time and probability. No issues of non-physicality

arise, even for strong noise. We find an optimal noise correlation length, which is

particularly relevant at higher temperatures, and strongly dependent on the dephas-

ing rate. Our findings are both in agreement with and an extension of previous work
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6.6 Conclusions

by other groups. In conclusion the Bloch-Redfield equations are an excellent tool to

model Markovian noise in light-harvesting complexes.
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7
Chapter 7

The quantum ferromagnet with
correlated decoherence

The Heisenberg model for a quantum ferromagnet is extended to a master-equation

approach in order to model the effects of a bath such as the phonons which interact

with the spins in the ferromagnet. This enables us to study non-equilibrium dynamics

of material properties such as the magnetisation. We focus on the influence of

spatial noise correlations onto this dynamics and find analytical expressions for the

decay rate of magnons to equilibrium dependent on the correlation length. Longer

spatial noise correlations are found to prolong the out-of-equilibrium time of the

magnetisation. The unique approach of calculating properties of solid-state systems

with master equation techniques is based on collaborative work with Ángel Rivas [82].

7.1 Coherent spin wave theory for the quantum

ferromagnet

First we revisit the coherent quantum model of a ferromagnet as given in text-

books such as [118]. It is described by linear spin wave theory. In this section

we show how the Hamiltonian for the Heisenberg model can be diagonalised by a

Holstein-Primakoff transformation, combined with a linear spin wave approximation

and followed by a Fourier lattice transform, which yields the Hamiltonian describing

‘magnons’, the elementary collective magnetic excitations. We start with a Heisen-

berg model for the spins in the quantum ferromagnet with only nearest-neighbour
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7 The quantum ferromagnet with correlated decoherence

interaction:

H = J
∑

〈r,r′〉

SrSr′ (7.1)

where J < 0 for a ferromagnet. Antiferromagnetic behaviour (J > 0) has been

investigated similarly [82].

This Hamiltonian can be mapped to a system of interacting bosons via the Holstein-

Primakoff transformation [118,159] for spins S ≥ 1/2:

Szr = S − nr

S+
r =
√

2Sφ(nr)ar

S−r =
√

2Sa†rφ(nr)

(7.2)

where nr = a†rar and

φ =

√
1− nr

2S
(7.3)

This function is then approximated by a series expansion to first order in the normal-

ordered number operator [118]:

φ ≈ 1−
(

1−
√

1− 1/2S
)
nr for 〈a†rar〉 � 2S (7.4)

With this linear spin-wave approximation the Hamiltonian 7.1 becomes for a D-

dimensional system:

HLSW = JNDS2 − 2JDS
∑

r

a†rar + JS
∑

〈r,r’〉

(
a†rar′ + a†r′ar

)
(7.5)

This Hamiltonian is then diagonalized for D = 3 via a three-dimensional Fourier

lattice transform :

ar = ax,y,z =
1√
N

∑

k

eikrak =
1√

NxNyNz

∑

kx,ky ,kz

eikxxeikyyeikzzakx,ky ,kz

a†r =
1√
N

∑

k

e−ikra†k

(7.6)

We choose the nearest-neighbour parameterization r′ = r+d, where d = (dx, dy, dz)

is the vector containing the lattice constants in x-,y- and z-direction and
∑
〈r,r′〉 =
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7.2 Magnon decay rates and spatial correlations

∑
x,y,z. Analogous to the one-dimensional case (eqs. 3.9 to 3.12) one then diagonalises

the Hamiltonian in k-space.

HLSW = E0 +
∑

k,k′

JS
1

N

∑

x,y,z

exp [i(k-k′)r]
(
−2Da†kak′ + eik

′da†kak′ + e−ik
′da†

k′
ak

)

(7.7)

= E0 +
∑

k,k′

JSδkx,k′xδky ,k′yδkz ,k′z

(
−2Da†kak′ + eik

′da†kak′ + e−ik
′da†

k′
ak

)
(7.8)

= E0 +
∑

k

2JS [−D + cos(kd)] a†kak (7.9)

= E0 +
∑

k

ω(k)a†kak (7.10)

where E0 = JNDS2 is a constant energy shift.

This is the diagonal linear spin wave Hamiltonian. The excitations of these harmonic

oscillators are called magnons as they represent the elementary magnetic excitation.

7.2 Magnon decay rates and spatial correlations

In this section we extend the coherent description of the quantum ferromagnet by

adding a decoherent master equation part. Particularly our interest is to investigate

how the magnon decay rate of a particular master equation, and thereby the decay

rate of non-equilibrium magnetisation, can be linked to the spatial correlations of

the noise. To do so we start with a master equation for the ferromagnetic spins

in k-space, which we haven’t yet linked to a particular environmental model. This

master equation is of Lindblad form:

ρ̇ = −i[HLSW , ρ] +
∑

k

γk

(
akρa

†
k −

1

2

{
a†kak, ρ

})
(7.11)

We then replace operators with their Fourier lattice transforms:

ak =
1√
N

∑

r

e−ikrar a†k =
1√
N

∑

r

eikra†r (7.12)
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7 The quantum ferromagnet with correlated decoherence

where d is the spatial distance between sites and find:

ρ̇ = −i[HLSW , ρ] +
∑

r,r’

Cr−r′

(
arρa

†
r′ −

1

2

{
a†r′ar, ρ

})
(7.13)

where Cr−r′ =
∑

k

γk
1

N
e−ik(r−r′) =

π/dx∑

kx=−π/dx

π/dy∑

ky=−π/dy

π/dy∑

kz=−π/dy

γk
1

N
e−ik(r−r′) (7.14)

The actual discrete summations in eq. 7.14 are over the Nµ different values (µ =

x, y, z) for kµ,n = 2π
Nµdµ

n with the whole numbers n ∈
{
−Nµ

2
, . . . , Nµ

2
− 1
}

where Nµ

is the even number of sites in the µ-direction of the ferromagnetic crystal.

We find that the spatial correlation function Cr−r′ is the discrete Fourier transform

of the magnon decay rate γk. The correlation function only depends on the difference

r−r′ (not on the position r) because we assumed a k-space master equation (eq. 7.11)

with only one k-summation. The frequency dependence of the spectral function is

here neglected in agreement with a strict Markov approximation.

This relationship between Cr−r′ and γk is analogous to the relationship between

the coupling strength gx−x′ in a bosonic system Hbos =
∑

x,x′ gx−x′a
†
xa
′
x and the

dispersion relation ωk of that same system Hbos =
∑

k ωka
†
kak (see eq. 3.13).

The inverse Fourier transform yields the magnon decay rate corresponding to a

particular spatial correlation function. We substitute the relative distance u =

r− r′ = (ux, uy, uz):

γk =
∑

u

eikuCu (7.15)

The actual discrete summation in each direction is carried out in steps of the lattice

constants d = (dx, dy, dz):

∑

uµ

eikµuµ =
N−1∑

uµ=0

eikµdµuµ =

Nµ/2−1∑

uµ=−Nµ/2

eikµdµuµ =
0∑

uµ=−Nµ+1

eikµdµuµ (7.16)

where the periodicity of the exponential makes all three summations equivalent since
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7.2 Magnon decay rates and spatial correlations

kµ only takes on the discrete values kµ,n = 2π
Nµdµ

n. We therefore can also write:

N−1∑

uµ=0

eikµdµuµ =
1

2

0∑

uµ=−Nµ+1

eikµdµuµ +
1

2

Nµ−1∑

uµ=0

eikµdµuµ =
1

2

Nµ−1∑

uµ=0

(eikµdµuµ + e−ikµdµuµ)

=

Nµ−1∑

uµ=0

cos(kµdµuµ) (7.17)

Accordingly we can rewrite eq. 7.15:

γk =
∑

u

cos(ku)Cu (7.18)

For this transformation to work a homogeneous spatial correlation function Cu =

C−u must be assumed. We write out the three-dimensional discrete summation in

detail in the following equation and insert for each dimension the discrete values for

kµ,n = 2π
Nµdµ

n. For large N , smooth Cu and correlation functions which decay on a

length shorter than the three edge lengths of the ferromagnet the discrete summation

can be written as a continuous Fourier transform, which can be helpful to obtain

analytical expressions:

γk =

Nx/2−1∑

ux=−Nx/2

Ny/2−1∑

uy=−Ny/2

Nz/2−1∑

uz=−Nz/2

cos(kxdxux + kydyuy + kzdzuz)Cu (7.19)

=

Nx/2−1∑

ux=−Nx/2

Ny/2−1∑

uy=−Ny/2

Nz/2−1∑

uz=−Nz/2

cos

[
2π

(
nxux
Nx

+
nyuy
Ny

+
nzuz
Nz

)]
Cu (discrete)

(7.20)

γk ≈
∫ ∞

−∞
dux

∫ ∞

−∞
duy

∫ ∞

−∞
duz e

i(kxdxux+kydyuy+kzdzuz)Cu (continuous)

(7.21)

7.2.1 Magnon emission and magnon absorption

In the previous section we found how the magnon decay rate γk relates to the

spatial correlation function Cu of the noise. In the master equation 7.11 only magnon

emission was considered. We now consider both emission and absorption of magnons

and their relative strengths, which defines the equilibrium. Both processes are due to

the interaction of the quantum ferromagnet with its phonon environment. Note that

in this 3D model of a quantum ferromagnet the system-environment interaction is
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7 The quantum ferromagnet with correlated decoherence

not limited to the edges of the crystal but every site in the crystal interacts with the

noise environment because the noise is caused by phonon dynamics, which occurs

inside the crystal.

The general master equation describing both emission and absorption of magnons is

given by:

ρ̇ = −i[HLSW , ρ] +
∑

r,r′

Cem
r−r′

(
arρa

†
r′ −

1

2

{
a†r′ar, ρ

})

+
∑

r,r′

Cabs
r−r′

(
a†r′ρar −

1

2

{
ara
†
r′ , ρ
})

(7.22)

For a bosonic environment (phonons) where 〈n(ω)〉 is the mean number of phonons

in the bath at frequency ω one finds the relative strength of emission and absorption

to be (cf. eq. 3.49 and 3.51):

Cabs
r−r′ = Cr−r′〈n(ω)〉 (7.23)

Cem
r−r′ = Cr−r′(1 + 〈n(ω)〉) (7.24)

In eq. 3.49 and 3.51 these functions depend on the spatial distance u = r − r′ and

on the probing frequency ω with a dependence which is set by the environmental

dispersion relation ωenv
k . For the purpose of this chapter we assume in accordance

with strong Markovianity that on the scale of the system energies the frequency

dependence is negligible. Eq. 7.22 can be transformed into k-space analogous to

section 7.2:

ρ̇ = −i[HLSW , ρ] +
∑

k

γk(1 + 〈n(ω)〉)
(
akρa

†
k −

1

2

{
a†kak, ρ

})

+
∑

k

γk〈n(ω)〉
(
a†kρak −

1

2

{
aka

†
k, ρ
})

(7.25)

This form is advantageous because HLSW is diagonal in the Fock states of these

operators (see eq. 7.10). The magnon decay rate is given by eq. 7.18:

γk =
∑

u

eikuCu (7.26)

In the next section we will investigate how different spatial correlation functions Cu

influence the dynamics of the magnetisation of the ferromagnetic crystal that follows
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the given master equation for magnon emission and absorption.

7.3 Influence of spatial noise correlations on the

magnetisation

After constructing the master equation for the quantum ferromagnet we will now

solve it and consider the time evolution of the magnetisation. We will sum over all

sites and obtain the magnetisation of the entire ferromagnet rather than the micro-

scopic expectation value of a single site. The dynamics of a macroscopic quantity is

obtained from calculations of a microscopic quantum master equation. This applica-

tion of the master-equation approach to a many-body problem shows the versatility

of this approach which can be used beyond the usual applications of quantum optics

or quantum chemistry.

The magnetisation 〈mz〉 transforms via the Holstein-Primakoff transform:

〈mz〉 =
1

N

∑

r

〈Szr 〉 = S − 1

N

∑

r

〈a†rar〉 = S − 1

N

∑

k

〈a†kak〉 (7.27)

We solve eq. 7.25 for the expectation value 〈a†kak(t)〉 by using the adjoint master

equation in the Heisenberg picture. The same technique was used in section 3.1.3

and an example for a single harmonic oscillator can be found in section 3.4.6.2 of

reference [1]. The solution here is analogous once we keep in mind the bosonic

commutation relation [ak, a
†
k′

] = δkk′ . We therefore do not give the calculation in

detail but give the solution, which is analogous to eq. 3.319 in [1] and eq. 40 in [82]:

〈a†kak(t)〉 = 〈a†kak(0)〉 e−γkt + 〈n(ω)〉(1− e−γkt) (7.28)

Accordingly the time-evolution of a non-equilibrium state of the magnetisation is

given by:

〈mz(t)〉 = S − 1

N

∑

k

[
e−γkta†kak(0) + 〈n(ω)〉(1− e−γkt)

]
(7.29)
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Assuming that we start from the ground state 〈a†kak(0)〉 = 0 it simplifies to:

〈mz(t)〉 = S − 〈n(ω)〉
(

1− 1

N

∑

k

e−γkt

)
(7.30)

The discrete summations are explicitly given by a summation over the Brillouin

zone, where each kµ (where µ = x, y, z) is discretised as kµ,n = 2π
Nµdµ

n with the

whole numbers n ∈
{
−Nµ

2
, . . . , Nµ

2
− 1
}

. For large enough N we can change the

summation to an integral over the Brillouin zone volume:

〈mz(t)〉 = S − 〈n(ω)〉


1− 1

N

π/d∑

kx=−π/d

π/d∑

ky=−π/d

π/d∑

kz=−π/d

e−γkt


 (7.31)

〈mz(t)〉 ≈ S − 〈n(ω)〉
(

1− d3

(2π)3

∫ π/d

−π/d
dkx

∫ π/d

−π/d
dky

∫ π/d

−π/d
dkz e

−γkt

)
(7.32)

Using the continuous limit for the calculation of the magnon decay rate (eq. 7.21)

and the magnetisation (eq. 7.32) facilitates finding an analytical expression. However

we need to keep in mind, that this is only valid for large N and a correlation length

which is not too short (otherwise the correlation function is not smooth enough to

change the sum to an integral) and not too long (otherwise the correlations do not

decay over the length of the entire crystal and a finite summation cannot be changed

to an infinite Fourier transform.

Next we will give several different cases of spatial correlation functions Cr−r′ , the cor-

responding magnon decay rate γk, eq. 7.20 or 7.21, and a numerical plot of the decay

of the magnetisation to its equilibrium value where the parameters S = 1/2, 〈n(ω)〉 =

0.3 are chosen, which sets the starting and end point of the magnetisation decay.

Note that most variables are dimensionless in this chapter and the plots hence make

relative statements about the effects of spatial correlations. For those spatial corre-

lation functions with a correlation length ξ this length is given in units of the spacing

d between the system’s (equally spaced d = dx = dy = dz) sites, i.e. ξ = 10 means

a correlation length of 10 spins. Figure 7.1 shows all types of correlation functions

which will be discussed.
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Figure 7.1: The different types of spatial correlation functions discussed in this chap-
ter, plotted in units of the nearest-neighbour distance d. The correlation
lengths here is set to ξ = 10.

Spatially uncorrelated decoherence

For spatially uncorrelated decoherence we have

Cu = γ0δ
(3)
u,0 = γ0 δux,0 δuy ,0 δuz ,0 (7.33)

γk = γ0 (7.34)

〈mz(t)〉 = S − 〈n(ω)〉(1− e−γ0t) (7.35)

In this case the magnetisation decays exponentially. We will set the factor γ0 = 1

from now on for simplicity and plotting.

Spatial nearest-neighbour correlations of the noise

We now assume nearest neighbour correlations, which are half as strong as the self-

correlations:

Cu = δ
(3)
u,0 + 0.5δ

(3)
u,1 (7.36)

γk = 1 + 0.5 cos(kd) = 1 + 0.5 cos(2πnx/Nx + 2πny/Ny + 2πnz/Nz) (7.37)

〈mz(t)〉 = S − 〈n(ω)〉d3

8π2

∫ π/d

−π/d
dk(1− e−[1+0.5 cos(kd)]t) = S − 〈n(ω)〉[1− e−tI0(0.5t)]

(7.38)
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Figure 7.2: Magnetisation as a function of time for uncorrelated noise (blue)
and nearest-neighbour correlations of the noise (green). The nearest-
neighbour correlations slow down the decay to a non-exponential shape
(cf. eq. 7.38). Starting and final point of the decay are set by the param-
eters S = 1/2, 〈n(ω)〉 = 0.3. Note that all plots in this chapter give only
relative statements of correlation effects since we have used dimensionless
units in our calculations.

where I0(0.5t) denotes the modified Bessel function of the first kind. Note that

this Bessel function is the only difference to the previous case of uncorrelated noise.

Figure 7.2 shows a plot of the magnetisation as a function of time for both cases.

For the calculation of the magnon decay rate we have to use the discrete summation

since the decay is not a smooth function of the sites. For the calculation of the mag-

netisation however we have used integration assuming large enough N . A discrete

summation for Nx = Ny = Nz = 100 yields numerically the same plot.

Spatially fully correlated noise

We will now regard the extreme case that the noise is perfectly correlated over all

sites of the ferromagnet. This is an idealized and arguably pathological case but is
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7.3 Influence of spatial noise correlations on the magnetisation

discussed to understand the physical effects of spatial correlations.

Cu = 1 (7.39)

γk =
N−1∑

ux=0

N−1∑

uy=0

N−1∑

uz=0

cos

[
2π

(
nxux
Nx

+
nyuy
Ny

+
nzuz
Nz

)]
=

{
N if k = 0

0 else

(7.40)

〈mz(t)〉 = S − 〈n(ω)〉
(

1− 1

N
e−Nt − N − 1

N

)
(7.41)

lim
N→∞

〈mz(t)〉 = S (7.42)

In this extreme limit, the magnetisation does not decay to the equilibrium state

anymore. Note that for finite N there is a fraction of 1
N

that decays very fast, which

is due to one fast-relaxing (or super-radiant) state in the single-excitation subspace

(cf. section 2.2.3).

Furthermore the Holstein-Primakoff condition S � a†rar means that the system is

close to the ‘ground state’. For states which have many excitations (and do not fulfil

this condition) the fraction of fast-relaxing states would be higher (cf. section 2.2.3).

Lorentzian spatial decay of noise correlations

We now assume spatial correlations of Lorentzian shape (i.e. Cauchy-Lorentz dis-

tribution). For a one-dimensional ferromagnet the magnetisation can be calculated

analytically:

Cu =
1

|u|2
ξ2 + 1

(7.43)

γk = πξe−ξ|k|d (7.44)

〈mz(t)〉 = S − 〈n(ω)〉
[
1− Ei(−πξt)− Ei(−e−πξπξt)

πξ

]
(7.45)

where Ei(x) is the exponential integral function. Note that these results are obtained

via Fourier transform and integration. This is only valid for not too short ξ (or else

the decay is too steep to change the discrete sum to an integral) and not too long

ξ (or else the correlations do not decay to zero over the length of the ferromagnet

and the Fourier transform from −∞ to∞ does not agree with a finite ferromagnet).

Numerical comparisons with N = 1000 show that for 3d < ξ < L/10 discrete
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Figure 7.3: Magnetisation as a function of time for Lorentzian spatial decay of the
noise correlations in a 1D ferromagnet. Four different correlation lengths
ξ are shown for both continuous calculation (solid), eqs. 7.21 / 7.32, and
discrete calculation (dashed), eqs. 7.20 / 7.31. We see a slight difference
only for ξ = 1.

and continuous calculations agree very well. Figure 7.3 shows the decay of the

magnetisation with time for several correlation lengths.

For a three-dimensional ferromagnet the magnon decay rate can be calculated with

a three-dimensional Fourier transform for radial functions in spherical coordinates

(also called a 3D Hankel transform or 3D Fourier-Bessel transform) [160,161]. For the

calculation of the magnetisation however we need to resort to numerical integration.

Cu =
1

|u|2
ξ2 + 1

(7.46)

γk = 4π

∫ ∞

0

sin(kr)

kr

1

r2/ξ2 + 1
r2dr (7.47)

= 2π2ξ2 e
−ξ|k|

|k| (7.48)

〈mz(t)〉 = S − 〈n(ω)〉
[

1− d3

(2π)3

∫ π/d

−π/d
dk exp

(
− e−ξ

√
k2
x+k2

y+k2
z

√
k2
x + k2

y + k2
z

2π2ξ2t

)]
(7.49)

Figure 7.6 shows the numerical results for the 3D case for several correlation lengths.
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7.3 Influence of spatial noise correlations on the magnetisation
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Figure 7.4: Magnetisation as a function of time for Gaussian spatial decay of the
noise correlations and five correlation lengths. The solid lines are calcu-
lated via Fourier transform and numerical integration, the dashed lines
via discrete summation. Again we find only a slight difference for ξ = 1.

Gaussian spatial decay of noise correlations

For Gaussian spatial decay of noise correlations we find qualitatively similar results.

In a one-dimensional ferromagnetic chain the magnon decay rate is calculated easily:

Cu = exp(−u2/ξ2) (7.50)

γk =
√
πξ exp(−ξ2k2/4) (7.51)

The corresponding magnetisation is then calculated numerically and is displayed in

figure 7.4.

For a three-dimensional ferromagnet we find the rate very similarly:

Cu = exp(−|u|2/ξ2) (7.52)

γk = π3/2ξ3 exp

(
−k

2
x + k2

y + k2
z

4
ξ2

)
(7.53)

〈mz(t)〉 = S − 〈n(ω)〉
{

1− d3

(2π)3

∫ π/d

−π/d
dk exp

[
−tπ3/2ξ3 exp

(
−k

2
x + k2

y + k2
z

4
ξ2

)]}

(7.54)

Again the calculation of the magnetisation is only carried out numerically. Results

can be found in figure 7.6.
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7 The quantum ferromagnet with correlated decoherence

Exponential spatial decay

For exponential spatial decay of the noise correlations we also find qualitatively simi-

lar results. The magnon decay rate in a one-dimensional ferromagnet is a Lorentzian

in k-space. However we need to be aware that continuous and discrete calculations

do not agree as well here because the Lorentzian decay in k-space is the slowest

decay compared to the other cases. Therefore the differences between the discrete

and continuous calculation of γk, which are typically the strongest for large k-values

have a greater effect because γk does not decay to zero as quickly for large k values

as in the other cases. The differences are strongest for large k values because the

summands in eq. 7.20 are less smooth as a function of spatial distance u for large

k values. Small differences are enhanced in the calculation of the magnetisation by

the exponential in eq. 7.31.

In one dimension we find:

Cu = exp(−|u|/ξ) (7.55)

γk =
2ξ

1 + k2ξ2
(7.56)

γk =
√
πξ exp(−ξ2k2/4) (7.57)

The corresponding magnetisation can be found in figure 7.5.

For a three-dimensional ferromagnet we need to employ the three-dimensional Fourier

transform in spherical coordinates again:

γk = 4π

∫ ∞

0

sin(kr)

kr
exp

(
r

ξ

)
r2dr (7.58)

=
8πξ3

(k2ξ2 + 1)2
(7.59)

〈mz(t)〉 = S − 〈n(ω)〉
{

1− d3

(2π)3

∫ π/d

−π/d
dk exp

[
−t 8πξ3

(k2
xξ

2 + k2
yξ

2 + k2
zξ

2 + 1)2

]}

The magnetisation is calculated numerically and displayed in figure 7.6
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Figure 7.5: Magnetisation as a function of time for exponential spatial decay of the
correlations and four correlation lengths. The solid lines are calculated
via Fourier transform and numerical integration, the dashed lines via
discrete summation. The two methods agree only roughly because of the
slow decay of γk in k-space.

7.4 Chapter summary

We have investigated phonon-noise effects on the dynamics of a quantum ferromagnet

by using master equation techniques on a Heisenberg model. We were able to derive

analytical solutions by employing a Holstein-Primakoff transformation with a linear

spin-wave approximation. This is valid for states of the ferromagnet with a low

number of magnons.

Independent of the functional form we found that spatial correlations in the noise

generally slow down the time-decay of the magnetisation to its equilibrium value,

i.e. prolong the out-of-equilibrium time. The spatial correlations furthermore change

the shape of the magnetisation decay from purely exponential to a slower non-

exponential shape. For three-dimensional crystals a correlation length of just a

few crystal sites slows down the time-decay considerably while in one-dimensional

crystals the effect is not as immediate.

This effect of spatial noise correlations on the dynamics of ferromagnetic behaviour

can be attributed to the same microscopic origins as the increased transfer efficiency

found in chapter 5, namely the emergence of decoherence-reduced states with in-

creasing noise correlation length as generally discussed in section 2.2. The relaxation-

reduced states are of the form (|n〉 − |m〉)/
√

2 where |n〉 refers to the state with the
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Figure 7.6: Magnetisation of a 3D ferromagnet as a function of time for Lorentzian,
Gaussian and exponential spatial decay of the noise correlations and four
different correlation lengths respectively. The effects are qualitatively the
same but slightly less strong for exponential shape, which decays faster
than the Lorentzian and does not have the plateau around zero of a
Gaussian.
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7.4 Chapter summary

nth spin in the ‘up state’ (or second lowest state for S > 1/2) and all other spins

in their ‘down state’. In the limit of perfect correlations the emerging decoherence-

free subspace equates (for large N) the single-excitation subspace. In this limit the

phenomenon is also analogous to the effect of sub-radiance [7] in a radiating gas.

The analogy to quantum transport is most apparent for fully correlated decoherence,

where the magnetisation does not decay anymore except for a fraction of 1/N , which

decays N times faster. This is analogous to the emergence of two different time scales

in quantum transport for relaxation-reduced and relaxation-enhanced states. This

also hints at the behaviour of the ferromagnet outside the spin-wave regime, i.e. for

states with a high number of magnons: The fraction of the magnetisation that decays

faster will probably be higher and the two time scales would become visible for the

macroscopic magnetisation.
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Chapter 8

Conclusions

We investigated the effects of spatial correlations in the environmental noise of quan-

tum systems by comparing the effects of uncorrelated and fully correlated noise.

More importantly we employed a formalism that allows us to model any spatial

correlation of the environment. Particularly we focused on the intuitive situation

of correlation functions which decay with increasing distance, which was supported

by microscopic model calculations of the environment and proved to be a physically

valid model for Markovian noise by general mathematical considerations.

We employed the comprehensive Bloch-Redfield formalism, which allows us to model

both the noise spectra as well as the spatial correlations generally but efficiently via

the spectral functions, which contain all environmental properties. With these spec-

tral functions the Bloch-Redfield equations can be written down immediately for

systems of any type and size. For the examples of an environment of coupled har-

monic oscillators and an Ising model environment we have shown how to derive

these spectral functions analytically. The Ising model shows that in a solid state en-

vironment the spatial extent of correlations is determined by the coupling strengths

between environmental sites and is weakened by thermal effects for higher temper-

atures. The environment of coupled harmonic oscillators showed oscillating spatial

correlations which have qualitatively different features because points with anticor-

related noise exist, which is of relevance to quantum metrology. We furthermore saw

that the frequency of a noise mode is broadened by the respective coupling strength

of that mode.

When the spectral function is chosen phenomenologically based on the desired envi-

ronmental properties we have provided a mapping to the Lindblad form of a master
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8 Conclusions

equation, which provides a test of physicality for Markovian spectral functions. The

resulting non-local Lindblad operators show the capabilites and uniqueness of our

equations since there is no intuition to find these operators from an ad-hoc Lindblad

approach.

For the majority of controlled quantum systems, a secular approximation of the

Bloch-Redfield equations can be made based on large on-site energies relative to

the noise strength. This reduces the noise influences to longitudinal and transversal

system-bath couplings, which induce dephasing and relaxation respectively. In terms

of systems of spins the effects of spatial correlations can be discussed very generally.

For uncorrelated dephasing it is well known that the dephasing rate between two

states is proportional to the number of flipped spins between the two states. With

increasing noise correlation length this configuration transitions to a dependence

of the dephasing strength which is ∝ n2
e, where ne is the difference in number of

excitations between the two states. This can lead to a large increase of dephasing

for pairs of states with large ne but also leads to the emergence of dephasing-reduced

subspaces of states with equal ne. For relaxation we find similarly, that increasing

correlations in the noise can both increase or decrease the transition rates between

states. Pairs in the state (|↑↓〉+|↓↑〉)/
√

2 increase their transition rates up to a factor

of two, whereas pairs in the state (|↑↓〉 − |↓↑〉)
√

2 decrease their transition rates up

to zero. For larger systems this can lead to complex dynamics, where the system

evolves into intermediate relaxation-reduced states, and then slowly decays to the

equilibrium. An important counter-intuitive effect is that the relaxation of a single

spin can be reduced and even blocked when other uncoupled spins in their respective

ground state are exposed to the same noise environment due to the emergence of a

subspace of relaxation-reduced states.

For quantum metrology, high-precision measurements are typically carried out with

trapped ions, which are subject to dephasing noise. This noise has been found to be

strongly correlated. The dephasing-reduced subspace, which emerges from that can

be utilised in the measurements of atomic electric quadrupole moments. For finite

spatial noise correlations the order in which ions are placed within an ion trap be-

comes critically important to the dephasing rate. In order to reduce it it is necessary

to minimize the distance between pairs in different states, making an alternating or-

der of two types an optimised state. With this it is possible to beat the standard

quantum limit and gain quantum advantage in the precision scaling with increasing

number of measurements. This is in stark contrast to all metrology experiments

which are exposed to uncorrelated decoherence, where quantum advantage has been
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proven to be impossible. We have shown that even for partially correlated environ-

ments, it is possible to achieve the best possible quantum advantage, Heisenberg

scaling, which reduces the experimental error as 1/n with the number of entangled

ions n which is better by a factor of 1/
√
n than the standard quantum limit. Or-

dinary GHZ states however experience a stronger dephasing rate in the correlated

environment of an ion trap. In an environment with oscillating spatial correlations

however they can be arranged to be dephasing-reduced, i.e. also achieve Heisenberg

scaling.

For quantum transport an increasing correlation length reinstates the transport dy-

namics. Particularly destructive effects of dephasing on the coherent transport dy-

namics of a single excitation vanish entirely with increasing noise correlation length.

If relaxation is involved, two time scales arise: a fast decay into an intermediate

entangled state, which decays on a longer time scale to the ground state. In the

particular spin chain which we studied in detail the two end spins were entangled

in this relaxation-reduced state. A critical noise correlation length scale exists in

a transport process below which the transport dynamics is seriously affected. This

critical correlation length linearly depends on the maximal spread or delocalisation

of the excitation in the transport process. If the noise correlation length is longer

than the critical length the coherent dynamics is hardly perturbed even for strong

noise and the excitation is transported through the spin chain. This can again be

linked to the dephasing reduced single-excitation subspace which is involved in the

transport. However the phase coherence to the ground state is lost in a transport

process with correlated noise even when the excitation is transported unperturbed.

This is because the ground state has one excitation less than the dephasing-reduced

subspace and changes a coherent perfect-state transfer into a classical bit transfer

in the context of quantum information. This might be overcome with more sophis-

ticated dynamical decoupling methods.

In photosynthetic light-harvesting complexes, where dephasing is the main noise

source the effects of the previous paragraph apply similarly. Since the phase coher-

ence to the ground state is irrelevant in this context and only the energy transfer mat-

ters, long noise correlations reinstate the coherent dynamics of the light-harvesting

complex entirely. By weakening the perturbing influence of dephasing finite spa-

tial correlations can be advantageous to the speed and efficiency of light-harvesting

complexes. The noise correlations typically have an optimal correlation lengths be-

yond which the efficiency starts to decrease. The reason is that the purely coherent

dynamics is actually not optimal for the transport and a certain level of dephas-
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ing assists the transport process. We furthermore addressed the misconception in

the formalism for modeling light-harvesting complexes, that Bloch-Redfield equa-

tions are not capable of modeling coherent oscillations or are a subset of Lindblad

equations. In order to not lose the coherent dynamics in the modeling process one

needs to apply the secular approximation by comparing the Redfield-tensor elements

for each respective system individually, particularly because the noise is typically

smaller than the exciton energy but of similar strength as the intersite coupling in

light-harvesting complexes. Therefore only some level-splittings are large compared

to the noise strength. If the secular approximation is applied consistently the Bloch-

Redfield equations presented in this thesis are an excellent tool to model Markovian

noise in light-harvesting systems.

The quantum ferromagnet is a solid-state system where macroscopic properties can

be analytically calculated from a master equation approach, which takes the effects

of phonon noise in the crystal into consideration. Using this as an example we showed

the macroscopic influences of noise correlations on the non-equilibrium dynamics of

the magnetisation. Longer correlation lengths prolong the out-of-equilibrium time

of the magnetisation by slowing down the decay to equilibrium and changing the

shape to a non-exponential decay. This is true in both the one-dimensional and

three-dimensional case. The effect is stronger in the three-dimensional ferromagnet

since there are more neighbouring correlated sites for the same correlation length.

Correlated noise perturbs the coherent dynamics in a very different manner than

uncorrelated noise, which manifests in different ways in a variety of fields such as

quantum compuatation, metrology, photosynthetic systems and solid-state physics.

This thesis highlights the importance of modeling noise correlations, for which we

provide a formalism. With growing system sizes of controlled quantum systems and

continuing miniaturisation, noise correlations can be expected to be of increasing

relevance.
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Chapter 9

Appendix

A Spin-boson example

Here we replicate the spin-boson calculation in Zanardi [20] in our language of cor-

relation functions. We find a close correspondence of our correlation function and

Zanardi’s given decoherence rates. This is one example, where the correlation func-

tion can be calculated from an explicit bath Hamiltonian instead of being just phe-

nomenologically assumed.

Assume a bath Hamiltonian

HB =
∑

k

ωkb
†
kbk with ∀ k, k′ : [bk, b

†
k′ ] = δkk′

and ∀ k, k′ : [bk, bk′ ] = [b†k, b
†
k′ ] = 0

(9.1)

which defines bk as a bosonic destruction operator. Assume an interaction Hamilto-

nian

Hint =
∑

i

siBi =
∑

k j

gkjb
†
kAj + g∗kjbkA

†
j (9.2)

where bk is a bath operator,

Aj is a system operator with [HS, Aj] = −εAj with ε ∈ R+
0 and

gjk is a coupling strength.

We assume that the index j in eq. 9.2 refers to different subsystems (e.g. qubits)

in the system, the index k to bosonic modes in the environment. Notice that the

commutator definition of Aj is one of a “destruction operator” if ε > 0 (meaning
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9 Appendix

Aj → ε σ− for a qubit). For ε = 0 on the other hand Aj commutes with HS

(meaning Aj → σz for a qubit in its eigenbasis). In other words ε defines longitudinal

or transversal bath coupling. Going back to the notation of the first term in equation

9.2 the number of bath operators Bi is two times the number of subsystems. Instead

of index i we label them:

B1j =
∑

k

gkjb
†
k B2j = g∗kjbk

Temporal part of the correlation function

As we want to calculate the correlation function in the interaction picture we first

change the description to the interaction picture choosing the simple notation that all

operators in the interaction picture are denoted as the Schrödinger picture operators

with a tilde on top:

H̃int = e−i(HS+HB)tHinte
i(HS+HB)t

=
∑

i

e−iHStsie
iHSt e−iHBtBie

iHBt

=
∑

i

s̃i(t)B̃i(t)

This works because operators acting on the system and the environment (i.e. two

different subspaces of the total Hilbert space) always commute. We can therefore

transform our bath operators:

B̃1j(t) = exp

(
−i
∑

k

ωkb
†
kbkt

)∑

k′

gk′jb
†
k′ exp

(
i
∑

k′′

ωk′′b
†
k′′bk′′t

)

=
∏

k

exp
(
−iωkb†kbkt

)∑

k′

gk′jb
†
k′

∏

k′′

exp
(
iωk′′b

†
k′′bk′′t

)

=
∑

k

exp
(
−iωkb†kbkt

)
gkjb

†
k exp

(
iωkb

†
kbkt

)
(9.3)

The last step is justified because any combination of creation and destruction oper-

ators for different modes commute (eq. 9.1). Next we use the series definition of the

exponential function and the commutators (eq. 9.1) to manipulate the first part of

144



A Spin-boson example

the expression:

exp
(
−iωkb†kbkt

)
gkjb

†
k =

∑

n

1

n!
(−iωkt)ngkj(b†kbk)nb†k

=
∑

n

1

n!
(−iωkt)ngkjb†k(bkb†k)n

= gkjb
†
k exp

(
−iωkbkb†kt

)

= gkjb
†
k exp

(
−iωk(b†kbk + 1)t

)

Inserting this into eq. 9.3 we find:

B̃1j(t) =
∑

k

gkjb
†
ke
−iωkt

We calculate B̃2j(t) analogously but bring the second exponential to the front using

b(b†b)n = (bb†)nb

and find:

B̃2j(t) =
∑

k

g∗kjbke
iωkt = B†1j

We have now found a simple expression for the time-dependent bath operators in

the interaction picture. Now we can calculate the various correlation functions for

the bath operators. We start with the correlation functions for the same types of

bath operators:

〈B̃1j(t)B̃1j′(t
′)〉 = Tr

(
B̃1j(t)B̃1j′(t

′)ρB

)

= Tr

(∑

k k′

gkjgk′j′b
†
kb
†
k′e
−iωkte−iωk′ t

′
ρB

)

=
∑

k k′

gkjgk′j′e
−i(ωkt+ωk′ t′)Tr(b†kb

†
k′ρB)

= 0

where ρB is the density matrix of the bath. The trace in the expression is zero.

This becomes obvious when we write the density matrix in the occupation num-

ber representation of the environmental k-states |mj〉 = |nk=k1〉 ⊗ |nk=k2〉 ⊗ · · · =
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|nk=k1 , nk=k2 , . . . 〉 and assume that the environment is not in a superposition but in

one particular occupation number state for each element in the ensemble. In other

words we assume that the different bosonic modes of the environment are not inter-

acting with each other. Then we can write the density matrix of the environment

as ρB =
∑

j |nj〉〈nj|pj. Now b†kb
†
k′ increase the occupation number of modes k and

k′ by one and therefore we are left with a matrix which contains only off-diagonal

elements which are non-zero and we find:

Tr

(∑

j

b†kb
†
k′|nj〉〈nj|

)
= Tr

(∑

j

| . . . , nk + 1, . . . , nk′ + 1, . . . 〉〈. . . , nk, . . . , nk′ , . . . |
)

(9.4)

= 0 (9.5)

Analogously one finds:

〈B̃2j(t)B̃2j′(t
′)〉 = 0

Calculating a correlation function of different types of bath operators on the other

hand, i.e. correlation functions which contain creation and destruction operators, we

find

〈B̃1j(t)B̃2j′(t
′)〉 = Tr

(
B̃1j(t)B̃2j′(t

′)ρB

)

=
∑

k k′

gkjg
∗
k′j′e

i(ωk′ t
′−ωkt)Tr

(
b†kbk′ρB

)

=
∑

k

gkjg
∗
kj′e

−iωk(t−t′)〈nk〉 (9.6)

because Tr
(
b†kbk′ρB

)
= δkk′〈nk〉. As we have chosen independent bosons for the

environment the mean occupation number should be chosen as the Bose-Einstein-

distribution

〈nk〉 =
(
e

~ω
kT − 1

)−1

The Fourier transform of that correlation function C(ω) := 1
2π

∫∞
−∞ e

iωτ 〈B̃1jB̃2j′〉dτ
(i.e. the spectral function which is used in the B-R equations) is then given by

C(ω) =
∑

k

δ(ω − ωk)gkjg∗kj′〈nk(ω)〉
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because transforming this function back gives the correlation function:

∫
e−iωτC(ω)dω =

∑

k

gkjg
∗
kj′e

−iωkτ 〈nk〉 = 〈B̃1j(t)B̃2j′(t
′)〉

where τ := t− t′

Analogously we find:

〈B̃2j(t)B̃1j′(t
′)〉 =

∑

k k′

g∗kjgk′j′e
i(ωkt−ωk′ t′)Tr

(
bkb
†
k′ρB

)

=
∑

k

g∗kjgkj′e
iωkτ (1 + 〈nk〉) (9.7)

because: Tr
(
bkb
†
k′ρB

)
= δkk′Tr

(
(1 + b†k′bk)ρB

)
= δkk′ (1 + 〈nk〉)

With that we have found all correlation functions and we could set up the Bloch-

Redfield equations. Notice the correspondence between the two non-zero correlation

functions eq. 9.6 and 9.7 on the one side and the decoherence rates directly calculated

by Zanardi in equation 7 of reference [20].

Spatial part of the correlation function

So far we have only spoken about the temporal part of the correlation function. At

the moment the only spatial dependence is hidden in the pairs of coupling strengths

gkjgkj′ of the jth and j′th subsystem located at a certain position rj and rj′ . Instead

of defining each coupling strength individually we can apply our continuous concept

of a spatial correlation function G(ω, |rj − rj′|). This adds complexity to the model

as we can now define a spatial correlation which depends on the distance instead of

the basic model in which only the local coupling strength of the particular subsystem

can be set. We extend our model accordingly and replace:

g∗kjgkj

gkjg
∗
kj

−→ G(ω, 0)
g∗kjgkj′

gkjg
∗
kj′

−→ G(ω, |rj − rj′|)

Now any spatial correlation function can be chosen and the Bloch-Redfield equations

can be derived from that in the usual manner.
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B General coupling operator between two arbitrary

two-level systems

In this section we discuss how a completely general coupling between two TLS can

be rewritten as just longitudinal and transversal coupling if the coupling strength

is small compared to the level splitting. Without loss of generality (w.l.o.g.) we

assume the uncoupled Hamiltonian to be:

H0 = ωqσ
1
z + (ωq + δ)σ2

z

In terms of spin-1/2 this means we assume individual coordinate systems for each

spin with the z-direction along the local magnetic field direction1. Since the operator

set {σx, σy, σz,1} is a complete basis of the operator space for a two-level system,

a completely general coupling between two TLS can be written as tensor products

of all combinations of these operators, excluding the unity matrix since it does not

define an actual coupling. The Hamiltonian reads

H = H0 +Hc = H0 + vxxσx ⊗ σx + vxyσx ⊗ σy + vxzσx ⊗ σz
+ vyxσy ⊗ σx + vyyσy ⊗ σy + vyzσy ⊗ σz
+ vzxσz ⊗ σx + vzyσz ⊗ σy + vzzσz ⊗ σz

where vjk are coupling strengths ∀j, k = x, y, z. Changing to an interaction picture

|Ψint〉 = exp(−iH0t) |Ψ〉 the Hamiltonian becomes2:

Hint = exp(iH0t)Hc exp(−iH0t)

1This simplification means we can no longer w.l.o.g. assume a simple coupling of the form
vxxσ

1
xσ

2
x + vyyσ

1
yσ

2
y + vzzσ

1
zσ

2
z since the two coordinate systems are not parallel.

2This is not to be confused with the interaction picture in the derivation of the Bloch-Redfield
equations. Here, a closed system without environment is discussed.
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Using the tensor product basis |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 this Hamiltonian can be evalu-

ated to the matrix:

Hint =




vzz ei2(ωq+δ)t(vzx − ivzy)
e−i2(ωq+δ)t(vzx + ivzy) −vzz
e−i2ωqt(vxz + ivyz) ei2δt(vxx − ivxy + ivyx + vyy)

e−i2(2ωq+δ)t(vxx + i(vxy + vyx + ivyy))

ei2ωqt(vxz − ivyz) ei2(2ωq+δ)t(vxx − i(vxy + vyx − ivyy))
e−i2δt(vxx + ivxy − ivyx + vyy) −ei2ωqt(vxz − ivyz)

−vzz −ei2(ωq+δ)t(vzx − ivzy)
−e−i2(ωq+δ)t(vzx + ivzy) vzz




The assumption ωq � δ, vjk(∀j, k = x, y, z) allows us to make the secular approx-

imation i.e. neglect all terms with a fast oscillating factor exp(±i2ωqt) since their

influence in the differential equation of the system averages to zero on the time

scales of the system (section 2.1.3). In the interaction picture the similarity to the

rotating wave approximation is very clear. With the secular approximation and the

definitions v⊥real := vxx + vyy and v⊥imag := vxy − vyx the Hamiltonian becomes:

Hint =




vzz 0 0 0

0 −vzz e−i2δt(v⊥real + iv⊥imag) 0

0 ei2δt(v⊥real − iv⊥imag) −vzz 0

0 0 0 vzz




(9.8)

This matrix is equivalent to the interaction-picture Hamiltonian of only longitudinal

and transversal coupling, i.e. a Schrödinger-picture Hamiltonian of the form

Hc = v⊥σ
1
+σ

2
− + v∗⊥σ

1
−σ

2
+ + v‖σ

1
zσ

2
z (9.9)

will lead to the exact same matrix (eq. 9.8) when transformed to the interaction

picture with the identification v⊥ = v⊥real + iv⊥imag. For symmetry reasons the

imaginary part of the transversal coupling strength will often be zero v⊥imag =

vxy − vyx = 0. In that case the Hamiltonian can also be written in this form:

Hc = v⊥
1

2
(σ1

xσ
2
x + σ1

yσ
2
y) + v‖σ

1
zσ

2
z (9.10)
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To model a general coupling, these simple forms (eq. 9.9 and 9.10) can therefore

be used. For systems of several TLSs the same argument applies in the subspace of

each pair of TLSs.
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C Separate baths for transversal and longitudinal

bath couplings of TLSs

In this section it is shown that for systems of TLSs all decoherence effects due to

correlations between a transversal and a longitudinal bath coupling operator can

be neglected if the level splitting is large compared to all coupling strengths. This

statement is true for the case of two coupling operators of the same TLS as well as

the case of two coupling operators acting on different TLSs.

Operators acting on the same TLS

The Bloch-Redfield equations in column-ordered superoperator form (eq. 2.32) for

a single TLS with the two system operators coupling to the bath

s1 = v⊥σx; s2 = v‖σz

where v⊥, v‖ are coupling strengths, read in the eigenbasis |↑〉 , |↓〉 of the Hamiltonian

H = (ωq/2)σz:

~̇ρ = R~ρ (9.11)

with:

R =




−v2
⊥C1,1 (−ωq) v‖v⊥C1,2(0)

v‖v⊥C2,1 (−ωq) iωq − 1
2
v2
⊥C1,1 (−ωq)− 1

2
v2
⊥C1,1 (ωq)− 2v2

‖C2,2(0)

v‖v⊥C2,1 (−ωq) 1
2
v2
⊥C1,1 (−ωq) + 1

2
v2
⊥C1,1 (ωq)

v2
⊥C1,1 (−ωq) −v‖v⊥C1,2(0)

v‖v⊥C1,2(0) v2
⊥C1,1 (ωq)

1
2
v2
⊥C1,1 (−ωq) + 1

2
v2
⊥C1,1 (ωq) −v‖v⊥C2,1 (ωq)

−iωq − 1
2
v2
⊥C1,1 (−ωq)− 1

2
v2
⊥C1,1 (ωq)− 2v2

‖C2,2(0) −v‖v⊥C2,1 (ωq)

−v‖v⊥C1,2(0) −v2
⊥C1,1 (ωq)




With the assumption of large level splitting compared to the bath coupling ωq �
v⊥, v‖ the secular approximation can be applied (section 2.1.3), i.e. off-diagonal el-

ements of R can be set to zero if their corresponding diagonal elements have a

difference of the order ωq or larger. The resulting Redfield tensor no longer contains
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any terms which arose from mixed correlations of B1 and B2:

R =




−v2
⊥C1,1 (−ωq) 0

0 1
2

(
2iωq − v2

⊥C1,1 (−ωq)− v2
⊥C1,1 (ωq)− 4v2

‖C2,2(0)
)

0 0

v2
⊥C1,1 (−ωq) 0

0 v2
⊥C1,1 (ωq)

0 0
1
2

(
−2iωq − v2

⊥C1,1 (−ωq)− v2
⊥C1,1 (ωq)− 4v2

‖C2,2(0)
)

0

0 −v2
⊥C1,1 (ωq)




For systems comprised of more than one TLS the same argument applies in the

respective subspace of each TLS and correlations between transversal and longitu-

dinal bath couplings of the same TLS can in general be neglected in the secular

approximation.

Operators acting on different TLS

Consider two TLSs

H0 =
ωq
2
σ1
z +

ωq + δ

2
σ2
z

with the general coupling term (eq. 9.10)

Hc =
g⊥
2

(σ1
xσ

2
x + σ1

yσ
2
y) + g‖σ

1
zσ

2
z

We use the tensor product basis, i.e. the four states |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉. The Bloch-

Redfield equations in column-ordered superoperator form(eq. 2.32) with the two

system operators which couple to the bath

s1 = v⊥σ
1
z ; s2 = v‖σ

2
x

result in a 16x16 superoperator matrix R. Assuming a large level splitting ωq �
g⊥, g‖, v⊥, v‖, δ the secular approximation can be applied, i.e. off-diagonal elements in

R can be neglected when the difference of the corresponding diagonal elements are of

the order of ωq or larger. The contribution of H0 determines these differences of the

diagonal elements because ωq only appears in this contribution. The contribution of
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C Separate baths for transversal and longitudinal bath couplings of TLSs

H0 is given by the diagonal matrix:

i diag (0, δ + ωq, ωq, δ + 2ωq,−δ − ωq, 0,−δ, ωq,−ωq, δ, 0, δ + ωq,−δ − 2ωq,−ωq,−δ − ωq, 0)

With the secular approximation all terms due to mixed correlations of B1 and B2

vanish from the Redfield tensor R. For several TLSs the argument is valid in the

subspace of each pair of TLSs.

The calculation was performed in Mathematica. The mixed correlation terms were

identified with the Mathematica function ‘Coefficient[v⊥v‖]’.

In conclusion, correlations between transversal and longitudinal coupling operators

can be neglected for systems of TLSs in the secular approximation based on large

level splittings compared to all coupling strengths. Formally this is equivalent to

two independent baths for all transversal coupling operators and all longitudinal

coupling operators respectively.
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D Spatially correlated dephasing rates in qubit

systems

In this appendix we calculate the effects of spatially correlated dephasing in qubit

systems and compare it to uncorrelated dephasing. In particular we give the de-

tailed derivation of the general result, stated in section 2.2.2, that in fully correlated

environments the dephasing rate between two states is proportional to n2
e, where

ne is the difference in the number of excitations between the two states, while for

uncorrelated environments the dephasing rate is proportional to the number nf of

flipped spins between the two states. For this derivation we take only the dephasing

part of eq. 2.54 and rewrite it slightly:

ρ̇ =
i

~
[ρ,Hs] +

1

2~2

∑

j,k

C(0, rj, rk)
(
σ(j)
z ρσ(k)

z + σ(k)
z ρσ(j)

z − σ(j)
z σ(k)

z ρ− ρσ(j)
z σ(k)

z

)

(9.12)

We use the Fock states of the qubit’s eigenbasis {|↑〉 , |↓〉}, and write use the short

notation |↑↓↓〉 = |↑〉 ⊗ |↓〉 ⊗ |↓〉. The σ
(j)
z operators doesn’t change the state:

σz |↑〉 = |↑〉 ; 〈↑|σz = 〈↑| (9.13)

σz |↓〉 = − |↓〉 ; 〈↓|σz = −〈↓| (9.14)

and we can regard eq. 9.12 for each element of the density matrix separately. Since

dephasing affects only the off-diagonal elements, the coherences, we only regard

them. By calculating their time-derivative we immediately find the dephasing rate

between the two corresponding states.

Self-contributions The self-contributions (j = k) for a particular qubit j in

eq. 9.12 are:

σ(j)
z ρσ(j)

z + σ(j)
z ρσ(j)

z − σ(j)
z σ(j)

z ρ− ρσ(j)
z σ(j)

z (9.15)

=2σ(j)
z ρσ(j)

z − 2ρ (9.16)
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For coherences where the jth qubit is in the same state |. . . ↑ . . . 〉 〈. . . ↑ . . . | the

contributions are zero:

2σz |. . . ↑ . . . 〉 〈. . . ↑ . . . |σz − 2 |. . . ↑ . . . 〉 〈. . . ↑ . . . | = 0 (9.17)

2σz |. . . ↓ . . . 〉 〈. . . ↓ . . . |σz − 2 |. . . ↓ . . . 〉 〈. . . ↓ . . . | = 0 (9.18)

For coherences where the jth qubit is flipped the contribution is:

2σz |. . . ↑ . . . 〉 〈. . . ↓ . . . |σz − 2 |. . . ↑ . . . 〉 〈. . . ↓ . . . | = −4 |. . . ↑ . . . 〉 〈. . . ↓ . . . |
2σz |. . . ↓ . . . 〉 〈. . . ↑ . . . |σz − 2 |. . . ↓ . . . 〉 〈. . . ↑ . . . | = −4 |. . . ↓ . . . 〉 〈. . . ↑ . . . |

We summarise: For any off-diagonal density matrix element we find ρ̇el = fρel. The

factor f is a sum of many contributions. We find the

self contributions of

{
spins that are the same = 0

spins that are flipped = −4
(9.19)

Mixed contributions The mixed contributions for a particular pair j 6= k, where

we choose w.l.o.g. j = 1, k = 2 in eq. 9.12 are:

σ(1)
z ρσ(2)

z + σ(2)
z ρσ(1)

z − σ(1)
z σ(2)

z ρ− ρσ(1)
z σ(2)

z (9.20)

Again we regard single elements of the density matrix but we now omit the ‘dots’

for the other qubits and write each element just in the subspace of the qubit pair.
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We calculate the contributions to the factor f in all three cases:

1) both spins are the same in both states





|↓↓〉 〈↓↓| : 1 + 1− 1− 1 = 0

|↑↑〉 〈↑↑| : 1 + 1− 1− 1 = 0

|↓↑〉 〈↓↑| : −1− 1 + 1 + 1 = 0

|↑↓〉 〈↑↓| : −1− 1 + 1 + 1 = 0

2) one is flipped, one is the same





|↓↓〉 〈↓↑| : +1− 1 + 1− 1 = 0

|↓↑〉 〈↓↓| : −1 + 1− 1 + 1 = 0

|↑↓〉 〈↑↑| : −1 + 1− 1 + 1 = 0

|↑↑〉 〈↑↓| : +1− 1 + 1− 1 = 0

3) both spins are flipped





equally

{
|↓↓〉 〈↑↑| :− 1− 1− 1− 1 = −4

|↑↑〉 〈↓↓| :− 1− 1− 1− 1 = −4

differently

{
|↓↑〉 〈↑↓| :1 + 1 + 1 + 1 = 4

|↑↓〉 〈↓↑| :1 + 1 + 1 + 1 = 4

In case 2 it was assumed w.l.o.g. that it is the second spin which is flipped.

We find that the only mixed contributions come from pairs, which are both flipped.

Having calculated all possible contributions we can now add them up and find the

factor f .

For uncorrelated decoherence ξ → 0 ⇔ C(0, rj, rk) → δjk all mixed contributions

are zero. The only contributions are self-contributions of spins, which are flipped.

The uncorrelated dephasing rate between two states is therefore proportional to the

number nf of spins that are flipped between the states.

For perfectly correlated decoherence ξ →∞ the spatial correlation function is equal

for all contributions C(0, rj, rk) → 1. We name ne the difference in the number of

excitations of the two states which are linked by the off-diagonal element ρel and

calculate f for this element. We note that:

• We have to add all self-contributions of spins that are flipped and all mixed

contributions of all pairs where both spins are flipped. Mixed contributions

have a factor of 2 relative to self-contributions since j = 1, k = 2 and j =

2, k = 1 both appear in the summation.

• There must be at least ne spins flipped between the two states.

• If there are more spins flipped, the additional ones must occur in pairs which

are flipped differently.
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• For such pairs their mixed contributions cancel their self-contributions. For

any other spins that are flipped one in the pair flips equally and one flips

differently, which cancels each other. Therefore the net contribution of these

pairs is zero and they can be ignored.

• Ignoring such pairs we are left with ne spins which all flip equally. These

ne spins form
(
ne
2

)
= ne(ne−1)

2
pairs which all give a contribution of 2(−4) =

−8. Their self-contributions sum up to −4ne. Summing self-contributions and

mixed contributions we find f = ne(ne−1)
2

(−8)− 4ne = n2
e.

We found that for spatially uncorrelated noise the dephasing rate between two states

is proportional to the number nf of spins which are flipped between the two states.

For spatially fully correlated noise environments the dephasing rate is proportional

to n2
e, where ne is the difference in the number of excitations between the two states.
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E Dephasing rates for n ions

We now present the calculation of the two dephasing rates given in eq. 4.27 and 4.29

for the two different initial states of the system (eq. 4.3 and 4.4). Starting from the

master equation (eq. 4.20) with the system operator sj = J
(j)
z

ṙ = i[r,Hs] +
1

2

∑

j,k

exp

(
−|j − k|

ξ

)
(−sjskr + skrsj − rsksj + sjrsk) (9.21)

for the respective density matrix element of interest (eq. 4.21 and 4.22):

r = |m−,m−, ...,m−,m+,m+, ...,m+〉 〈m1,m1,m1, ...,m1| (9.22)

r2 = |m−,m+,m−,m+, ...〉 〈m1,m1,m1, ...,m1| (9.23)

These two elements only differ in the order of the ions. The coherent part is the

same for both and easily calculated:

i(rHs −Hsr) = i(ω0nm1 + αnm2
1 − ω0nm1 − αn(m2

1 +m2
2)r = −inαm2

2r (9.24)

Dephasing rate for element r

To calculate the decoherent part we remember how sj acts from the left and from

the right onto element r

sjr =

{
(m1 −m2)r if j ≤ n/2

(m1 +m2)r if j > n/2
(9.25)

rsj = m1r (9.26)

The outcome of this calculation is going to be a sum over exponentials. We now

calculate the coefficients of exp
(
− |j−k|

ξ

)
for a fixed distance of ions |j − k| = x.

Regarding figure E.1 we can see that there are n− x pairs of ions with the distance

x between them.

We now calculate the four terms in eq. 4.20 for a fixed x. We have to distinguish

between three cases:

case 1) x > n/2 All pairs will have one ion in the left half and one ion in the

right half. We need to count each pair twice since j will be each ion once in the
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m1 +m2 m1 −m2

nn
2

Figure E.1: A chain of n ions. The operator sj = J
(j)
z acting from the left onto our

element (eq. 4.21 to 4.24) gives m1 +m2 for j in the left half and m1−m2

for j in the right half.

summation. Note that the contributions from sjrsk and skrsj must always be the

same because the two indices are equivalent.

∑

|j−k|=x

sjskr = 2(n− x)(m1 +m2)(m1 −m2)r = 2(n− x)(m2
1 −m2

2)r (9.27)

∑

|j−k|=x

rsjsk = 2(n− x)m2
1r (9.28)

∑

|j−k|=x

sjrsk = m1[(n− x)(m1 +m2) + (n− x)(m1 −m2)]r = 2(n− x)m2
1r (9.29)

∑

|j−k|=x

skrsj = 2(n− x)m2
1r (9.30)

1

2

∑

|j−k|=x

exp

(
−|j − k|

ξ

)
(−sjskr + skrsj − rsksj + sjrsk) = (n− x)m2

2 e
x/ξr

(9.31)

case 2) 0 < x ≤ n/2 There will now be n/2− x pairs which have both ions in the

left half. Equivalently n/2−x pairs will have both ions in the right half. In between

there are x pairs which have one ion in the left and one in the right half.

∑

|j−k|=x

sjskr = 2
(n

2
− x
)

[(m1 +m2)2 + (m1 −m2)2]r + 2x(m1 +m2)(m1 −m2)r

= (n− 2x)(2m2
1 + 2m2

2)r + 2x(m2
1 −m2

2)r (9.32)

= 2(n− x)m2
1r + 2(n− 3x)m2

2r (9.33)
∑

|j−k|=x

rsjsk = 2(n− x)m2
1r (9.34)
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∑

|j−k|=x

sjrsk = m1

[n
2

(m1 +m2) +
(n

2
− x
)

(m1 −m2) +
(n

2
− x
)

(m1 +m2)

+
n

2
(m1 −m2)

]
r (9.35)

= m1 [(n− x)(m1 +m2 +m1 −m2)] r = 2(n− x)m2
1r (9.36)

∑

|j−k|=x

skrsj = 2(n− x)m2
1r (9.37)

1

2

∑

|j−k|=x

exp

(
−|j − k|

ξ

)
(−sjskr + skrsj − rsksj + sjrsk) = −(n− 3x)m2

2 e
x/ξr

(9.38)

case 3) x = 0 For x = 0⇔ j = k there are n such cases in the summation (which

should not have the factor of 2 from the other cases).

∑

|j−k|=x

sjskr =
n

2
(m1 +m2)2r +

n

2
(m1 −m2)2r = n(m2

1 +m2
2)r (9.39)

∑

|j−k|=x

rsjsk = m1

[n
2

(m1 +m2) +
n

2
(m1 −m2)

]
r = nm2

1r (9.40)

∑

|j−k|=x

sjrsk = nm2
1r (9.41)

∑

|j−k|=x

skrsj = nm2
1r (9.42)

1

2

∑

|j−k|=x

exp

(
−|j − k|

ξ

)
(−sjskr + skrsj − rsksj + sjrsk) = −n

2
m2

2r (9.43)

We have now calculated all coefficients for the exponentials exp(x/ξ) in the deco-

herent part of the master equation and can now write it down in the form:

ṙ = −inαm2
2r + Γ(n, ξ)r (9.44)

r(t) = r(0) exp
(
−inαm2

2t+ Γ(n, ξ)t
)

(9.45)

(9.46)
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n

m−m+ m−m+ m−m+ m−m+ m−m+

Figure E.2: A chain of n ions. The operator sj acting from the left onto our element
(eq. 4.22 to 4.24) gives m+ = m1 +m2 for j odd and m− = m1−m2 for
j even.

The dephasing rate Γ(n, ξ) is given by:

Γ(n, ξ) =


−n

2
+

n/2∑

x=1

−(n− 3x)ex/ξ +
n∑

x=n/2+1

(n− x)ex/ξ


m2

2 (9.47)

=
6e

1
ξ + 2e

1−n
ξ − 8e−

−2+n
2ξ + n− e2/ξn

2
(
−1 + e

1
ξ

)2 (9.48)

Dephasing rate for element r2

To calculate the decoherent part of eq. 9.21 for the element r2 we regard how sj = J
(j)
z

acts from the left and from the right onto element r2 (figure E.2 ):

sjr2 =

{
m−r2 = (m1 −m2)r2 if j is odd

m+r2 = (m1 +m2)r2 if j is even
(9.49)

r2sj = m1r2 (9.50)

From that we find that the four terms for a given pair of j and k in the master

equation 9.21 have an alternating sign depending on whether |j − k| is odd or even:

− sjskr2 + skr2sj − r2sksj + sjr2sk

=

{
r2[−(m2

1 +m2
2) +m2

1 −m2
1 +m2

1] = −m2
1r2 if |j − k| is even

r2[−(m2
1 −m2

2) +m2
1 −m2

1 +m2
1] = m2

1r2 if |j − k| is odd
(9.51)

This alternation is the key to a better scaling because cancelling terms now have

similar values of x = |j − k| with similar values of the correlation function. We now

discuss this in mathematical detail.

Next we calculate the sum over each of the four terms in eq. 9.21 for a fixed distance

of ions |j − k| = x and then regard the coefficients of exp
(
−x
ξ

)
. The two terms∑

|j−k|=x sjr2sk and
∑
|j−k|=x skr2sj must always be the same. Again there are (n−x)
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pairs of ions with a distance x between them. Again for x > 0 each pair is counted

twice because j will be the right one and the left one once. We distinguish three

cases:

case 1) x is odd In each pair there is one spin in state m+ and one in state m−.

∑

|j−k|=x

sjskr2 = 2(n− x)(m2
1 −m2

2)r2 (9.52)

∑

|j−k|=x

r2sjsk = 2(n− x)m2
1r2 (9.53)

∑

|j−k|=x

sjr2sk = m2
1(n− x)2r2 (9.54)

For the last equation, note that j is each ion in the pair once and therefore give once

m+ and once m−. Furthermore m+ +m− = 2m1 for each pair.

1

2

∑

|j−k|=x

exp

(
−|j − k|

ξ

)
(−sjskr2 + skr2sj − r2sksj + sjr2sk) = +(n− x)m2

2 e
x/ξr2

(9.55)

case 2) x is even In each pair the ions are in the same state. There is an equal

number of (m+,m+) pairs and (m−,m−) pairs because (moving along the chain) the

pairs start with one type and finish with the other (n is even).

∑

|j−k|=x

sjskr2 = 2(n− x)(m2
1 +m2

2)r2 (9.56)

∑

|j−k|=x

r2sjsk = 2(n− x)m2
1r2 (9.57)

∑

|j−k|=x

sjr2sk = 2(n− x)m2
1r2 (9.58)

1

2

∑

|j−k|=x

exp

(
−|j − k|

ξ

)
(−sjskr2 + skr2sj − r2sksj + sjr2sk) = −(n− x)m2

2 e
x/ξr2

(9.59)
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case 3) x = 0 Analogous to eq. 9.43 one finds:

1

2

∑

|j−k|=x

exp

(
−|j − k|

ξ

)
(−sjskr2 + skr2sj − r2sksj + sjr2sk) = −n

2
m2

2r2 (9.60)

We have now calculated all coefficients for the exponentials exp(x/ξ) in the deco-

herent part of the master equation and can now write it down in the form:

ṙ2 = −inαm2
2r2 + Γ2(n, ξ)r2 (9.61)

r2(t) = r2(0) exp
(
−inαm2

2t+ Γ2(n, ξ)t
)

(9.62)

(9.63)

The dephasing rate Γ2(n, ξ) is given by:

Γ2(n, ξ) =


−n

2
+

n/2∑

xc=1

(n− 2xc + 1)e(2xc−1)/ξ +

n/2∑

xc=1

(2xc − n)e2xc/ξ


m2

2 (9.64)

=
−2e

1
ξ + 2e

1−n
ξ + n− e2/ξn

2
(

1 + e
1
ξ

)2 m2
2 (9.65)

Different functional forms

One can easily generalise eq. 9.47 and 9.64 for a different functional form than

exponential decay by replacing exp(x/ξ) → C|j−k|=x(ω = 0). As an example we

can replace the exponential decay with Gaußian decay exp(x/ξ) → exp(x2/ξ2) in

eq. 9.47, however the sum is not easily evaluated any more:

ΓGaussian(x, ξ) =


−n

2
+

n/2∑

x=1

−(n− 3x) exp(x2/ξ2) +
n∑

x=n/2+1

(n− x) exp(x2/ξ2)


m2

2

(9.66)
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F The von-Neumann equation in the Schrödinger,

interaction and Heisenberg pictures

In this appendix we will present the density matrix and operators in the three

different pictures and their respective differential equation, i.e. the von-Neumann

equation (also called Liouville equation) for the time evolution of the density matrix

ρ and the differential equation for the evolution of any operator A. The idea of using

different pictures is based on the fact that only expectation values of observables are

actual, physical and measurable. The state, operators and time evolution are merely

part of the theoretical description, which can be grouped in different ways:

〈A〉 = 〈ΨS(t)|AS |ΨS(t)〉 Schrödinger picture (9.67)

= 〈ΨH |U †(t)ASU(t) |ΨH〉 (9.68)

= 〈ΨH |AH(t) |ΨH〉 Heisenberg picture (9.69)

We assume that the Hamiltonian consists of two time-independent parts

H = H0 +W

where H0 is the bare uncoupled Hamiltonian and W contains the couplings.

Schrödinger picture The most common way to understand quantum mechanics

is the Schrödinger picture, where the states evolve in time and the observables are

represented by time-independent operators. The states follow the Schrödinger equa-

tion, from which we find the von-Neumann equation by Hermitian conjugation and

the product rule:

i~dt |Ψ〉 = H |Ψ〉 (9.70)

〈Ψ|←−dt (−i~) = 〈Ψ|H (9.71)

i~dt |Ψ〉 〈Ψ| = H |Ψ〉 〈Ψ| − |Ψ〉 〈Ψ|H (9.72)

i~dtρ = [H, ρ] von-Neumann equation (9.73)

Eq. 9.70 is a description with a state. Eq. 9.73 is a description with a density matrix.

In the Schrödinger picture all time evolution is in the density matrix and operators

are time independent except for the rare case of an explicitly time-dependent oper-
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ator:

i~ρ̇S = [H, ρS] ȦS =
∂

∂t
AS (9.74)

interaction picture In the interaction picture we define a new state vector, which

only describes the time evolution of the interaction. We define a time evolution op-

erator U0, which contains only the evolution due to H0, apply a backwards evolution

to the Schrödinger state vector and define this as the new state vector |ΨI〉 in the

interaction picture.

|ΨI〉 = U †0 |Ψ〉 with U0 = e−
i
~H0t (9.75)

AI = U †0AU0 (9.76)

ρI = |ΨI〉 〈ΨI | = U †0 |Ψ〉 〈Ψ|U0 = U †0ρSU0 (9.77)

d

dt
ρI =

i

~
H0ρI + U †0

(
d

dt
ρS

)
U0 −

i

~
U †0ρSH0U0 (9.78)

= U †0
1

i~
[H, ρS]U0 +

1

i~

(
−U †0H0U0U

†
0ρSU0 + U †0ρSU0U

†
0H0U0

)
(9.79)

=
1

i~

([
H̃, ρI

]
−
[
H̃0, ρI

])
=

1

i~

[
W̃ , ρI

]
(9.80)

where the tilde over an operator means the operator transformed into the interaction

picture Ã = AI = U †0AU0. In the interaction picture the time evolution due to the

interaction is in the state/density matrix and the time evolution due to H0 in the

operators:

i~ρ̇I =
[
W̃ , ρI

]
i~ȦI =

[
AI , H̃0

]
+ U †0

∂A

∂t
U0 (9.81)

Heisenberg picture In the Heisenberg picture the state at time t = 0 is used as

the only state/density matrix. All time evolution is in the operators:

|ΨH〉 = |ΨS(t = 0)〉 = U † |ΨS〉 with U = e−
i
~Ht (9.82)

AH = U †ASU (9.83)
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The subscript index means the operator transformed to the Heisenberg picture AH =

U †ASU . The equations of motion are:

i~ρ̇H = 0 i~ȦH = [AH , HH ] + i~U †(∂tAS)U (9.84)
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G Fourier transformation and Fourier series

Since both analytical as well as numerical Fourier transforms are used in several

places throughout this thesis for both discrete and continuous functions we give an

overview of consistent formulas in this appendix.

Non-periodic functions can be Fourier transformed into a continuous function. Pe-

riodic functions can be developed into a Fourier series, with discrete frequencies ωk.

Functions over a finite interval can be interpreted as periodic. For periodic functions

the integral needs to go over the entire length of the periodicity but one is free to

choose the starting point for the integration. Mathematically the equations are:

Analytically

Fourier transform Fourier series

F (ω) =

∫ ∞

−∞
dtf(t) exp (−iωt) Fk =

1

T

∫ T/2

−T/2
dtf(t) exp


−i

ωk︷︸︸︷
2π

T
k t




f(t) =
1

2π

∫ ∞

−∞
dωF (ω) exp(iωt) f(t) =

∞∑

k=−∞

Fk exp

(
i
2π

T
kt

)

The normalisations 1/(2π) and 1/N can be chosen to be in either of the transform. It

is only important, that after applying both transformations the normalisation factor

has been acquired. The equations give general rules for a function and its Fourier

complement: Finiteness (or periodicity) of the interval of a function corresponds

to discreteness in Fourier space. Infinity of the interval corresponds to continuity

(i.e. non-discreteness) in Fourier space. Discreteness of a function corresponds to

finiteness of the function interval in Fourier space. Non-discreteness corresponds

to an infinite function interval. The larger the interval T of a function the closer

together the frequencies ωk = 2πk/T in Fourier space. In other words, the better

the resolution in one domain, the larger the interval in the other and vice versa.

When considering measured signals they will always be only over a finite interval and

have discrete values although they usually represent a smooth, continuous function.

The finite interval can sometimes be interpreted as periodic (Fourier series applica-

ble) or as a function over an infinite interval (Fourier transform applicable) where

the rest of the function is zero. We discretize time and frequency in the Fourier
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transform and we discretize time in the Fourier series and find the same equations.

Discretization with step-size ∆ω = 2π/T directly results in limiting the time inter-

val to T . Discretization with step-size ∆t = 2π/Ω results in limiting the frequency

interval to Ω.

Numerically

Fourier transform Fourier series

Discretize t : Discretize t with T = N∆t

F (ω) = ∆t
∑

j

fje
−iωj∆t t→ j∆t

Discretize ω :

∫
dt→ ∆t

∑

j

Fk = ∆t
N−1∑

j=0

fj exp


−i

ωk︷ ︸︸ ︷
2π

N∆t
k j∆t


 Fk =

1

N∆t
∆t

N−1∑

j=0

fj exp

(
−i 2π

N∆t
kj∆t

)

1

2π

∫
dω → 1

2π
∆ω

∑

k

=
1

N∆t

∑

k

∆ω =
2π

T
=

2π

N∆t

fj =
1

N

N−1∑

k=0

Fk
∆t

exp

(
i

2π

N∆t
kj∆t

)
fj =

N−1∑

k=0

Fk exp

(
i
2π

N
kj

)

We find that the equations are the same except that the normalisation factor 1/N

is at a different position, which is purely conventional and that in the Fourier trans-

form the Fk have an additional factor of ∆t, which is cancelled divided out in the

transformation to fj.

These are the equations for numerical Fourier transformation as they are used e.g. in

Matlab. If the result is to be compared to an analytical Fourier transform of a

function the left convention should be used. If the result is to be compared to an

analytical Fourier series the right-hand convention should be used.

If the values fj are replaced by quantum mechanical operators, which correspond a

lattice structure the same transformation is usually called Fourier lattice transform.

See references [111,112].
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