
Behavior Composition Optimisation

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Nitin Kumar Yadav

M.B.B.S, Ms.CS

School of Computer Science and Information Technology,

College of Science, Engineering, and Health,

RMIT University,

Melbourne, Victoria, Australia.

January 6, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/32228432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of the thesis is the result of work which has

been carried out since the official commencement date of the approved research program;

and, any editorial work, paid or unpaid, carried out by a third party is acknowledged.

Nitin Kumar Yadav

School of Computer Science and Information Technology

RMIT University

January 6, 2014

i

Acknowledgments

I am grateful to my supervisor, Dr. Sebastian Sardina, who introduced me to the fasci-

nating world of theoretical computer science. He taught me to appreciate the beauty in

elegant mathematics and to consistently strive for perfection. His encouragement, guid-

ance and support made this endeavour possible.

I thank Prof. Giuseppe De Giacomo and Dr. Paolo Felli for hosting my research visit

at La Sapienza University in Rome. Discussions with Dr. Giuseppe De Giacomo provided

me with further in-depth understanding in areas related to this thesis. I am thankful to

Dr. Lawrence Cavedon for helping me in polishing the thesis and for his support and

encouragement throughout my candidature.

I would also like to thank my thesis reviewers, Professor Wiebe van der Hoek and

Associate Professor Diego Calvanese, who provided encouraging and detailed feedback,

and for their insightful thoughts.

Finally, I am grateful to my family for all their encouragement, love, and understand-

ing. My parents, who have for ever supported me in all my ventures. My brother, who

always stood by me. My partner, Anita, who had to bear the highs and lows, and for

always believing in me. Rudra Vijai Singh for his guidance and wisdom, and Umang

Mahindra for always providing the guiding force to make unconventional conventions. A

heartfelt thank you.

ii

Credits

Portions of the material in this thesis have previously appeared in the following publica-

tions:

• N. Yadav and S. Sardiña. Decision theoretic behavior composition. In L. Sonenberg,

P. Stone, K. Tumer, and P. Yolum, editors, Proceedings of Autonomous Agents and

Multi-Agent Systems (AAMAS), pages 575–582. IFAAMAS, 2011

• N. Yadav and S. Sardiña. Qualitative approximate behavior composition. In L. F. del

Cerro, A. Herzig, and J. Mengin, editors, Proceedings of the European Conference on

Logics in Artificial Intelligence (JELIA), volume 7519 of Lecture Notes in Computer

Science, pages 450–462. Springer, 2012. ISBN 978-3-642-33352-1

• M. Ramirez, N. Yadav, and S. Sardiña. Behavior composition as fully observable non-

deterministic planning. In Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS). AAAI Press, 2013

• N. Yadav, P. Felli, G. DeGiacomo, and S. Sardiña. On the supremal realizability of

behaviors with uncontrollable exogenous events. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI). AAAI Press, 2013

The thesis was written in the Eclipse editor on Linux Mint, and typeset using the LATEX 2ε doc-

ument preparation system.

All trademarks are the property of their respective owners.

iii

Contents

Abstract 1

1 Introduction 3

1.1 The behavior composition problem . 5

1.1.1 Components of behavior composition 5

1.1.2 Modelling behavior composition components 6

1.2 An open issue in behavior composition . 8

1.3 Behavior composition optimisation . 9

1.3.1 Qualitative behavior composition optimisation 9

1.3.2 Quantitative behavior composition optimisation 10

1.4 Contributions . 10

1.5 Publications . 11

1.6 Thesis outline . 12

2 Background 13

2.1 Transition systems . 13

2.2 Behavioral equivalence of transition systems 15

2.2.1 Language equivalence . 15

2.2.2 Simulation . 16

2.2.3 Bisimulation . 17

2.3 The classical behaviour composition problem 18

2.3.1 Classical framework . 19

2.4 Composition – solution to the problem . 25

2.5 Synthesising compositions . 29

2.5.1 Synthesising compositions via PDL-satisfiability 29

2.5.2 Synthesising compositions via search 30

2.5.3 Synthesising compositions via simulation 31

2.5.4 Synthesising compositions via LTL-synthesis 33

2.5.5 Synthesising compositions via ATL model checking 34

2.6 Variations of the classical behavior composition problem 35

2.7 Summary . 37

iv

3 Supremal Realizable Target Fragments 39

3.1 Extended framework . 40

3.2 Maximal compositions . 43

3.3 Supremal realizable target fragments (SRTFs) 45

3.4 Uniqueness of SRTFs . 52

3.5 Imported controllers . 56

3.6 Deterministic RTFs . 59

3.7 Summary . 62

4 Computing supremals 65

4.1 Computing SRTFs for deterministic systems 66

4.1.1 Safety games . 66

4.1.2 ATL model checking . 76

4.2 Computing SRTFs for nondeterministic systems 86

4.3 Summary . 94

5 Composition with Exogenous events 95

5.1 Framework with exogenous events . 96

5.2 Conditional SRTFs . 97

5.3 Conformant SRTFs . 103

5.4 Discrete event systems . 109

5.5 Summary . 110

6 Decision theoretic composition 113

6.1 Markov decision processes . 114

6.2 Probabilistic framework for behavior composition 116

6.3 Decision theoretic controllers . 121

6.3.1 Value of a controller and compositions 122

6.3.2 Exact compositions . 123

6.4 Computing optimal controllers via MDP reduction 125

6.4.1 From behavior composition to MDPs 126

6.4.2 Exact compositions . 131

6.5 Summary . 134

7 Conclusion 135

Bibliography 141

v

List of Figures

1.1 A factory setting for behavior composition. 4

2.1 A simple model of a vacuum cleaner. 15

2.2 Example depicting different behavioral equivalences for transition systems. . . 16

2.3 Behavior composition in a garden. 20

2.4 Enacted cleaner bot and partial enacted system for the garden example. 23

3.1 Behavior composition in ambient spaces. 40

3.2 Example to differentiate e-simulation between behaviors and simulated be-

tween enacted behaviors. 47

3.3 Realizable target fragments for the ambient spaces example. 49

3.4 Union of two target specifications. 53

3.5 Union of two target specifications restricted to deterministic RTFs. 60

3.6 Concatenation of deterministic RTFs T1d and T2d. 61

4.1 Instance where safety game synthesis and ATL model checking approaches are

not sufficient. 86

4.2 Full enacted system and belief level system for behavior composition problem

shown in Figure 4.1. 89

5.1 Media room scenario consisting of a projector, speaker and a target specifica-

tion (see text for details). Dashed transitions denote uncontrollable exogenous

events. 96

5.2 Relating DES and behavior composition. 109

6.1 The garden bots system SGarden = 〈BCleaner,BMulti,BPicker, E〉 and the target

specification T . The transition t1
〈water:0.7,1〉−→ t2 in target T means that action

water has a reward of 1 and it is requested 70% of the time from state t1. . . . 117

vi

Abstract

The behavior composition problem involves automatic synthesis of a controller that is

able to “realize” (i.e., implement) a desired target specification by suitably controlling

a collection of already available, partially controllable, behaviors running in a partially

predictable shared environment. A behavior in our context refers to an already existing

functionality such as the logic of a device, a service, a standalone component, etc; whereas

a target specification represents the desired non-existent functionality that is meant to

be obtained through the available behaviors. Previous work in behavior composition has

exclusively aimed at synthesising exact controllers, those that bring about the desired

specification completely. One open issue has resisted principled solutions: if the target

specification cannot be completely implemented, is there a way to realize it “optimally”?

In this doctoral thesis, we propose qualitative and quantitative optimisation frameworks

that are able to accommodate composition problems that do not admit the “perfect”

coordinating controller. In the qualitative setting, we rely on the formal notion of simu-

lation to define realizable fragments of a target specification and show the existence of a

unique supremal realizable fragment for a given problem instance. In addition, we extend

the qualitative framework by introducing exogenous uncontrollable events to represent

observable contingencies. In the quantitative setting, we provide a decision theoretic ap-

proach to behavior composition by quantifying the uncertainties present in the domain.

In all cases, we provide effective techniques to compute optimal solutions and study their

computational properties.

CHAPTER 1
Introduction

“Not to be absolutely certain is, I think, one of the

essential things in rationality.”

–Bertrand Russell

Utilizing simple reusable modular components to obtain a complex functionality is a

well known design methodology across various fields, e.g., software engineering [Heineman

et al. 2005, Sametinger 1997], robotics [Brooks et al. 2005, Brugali et al. 2007], and

hardware such as consumer electronics [Van Ommering et al. 2000]. For example, a recent

study1 shows that an average U.S. household owns more than 20 electronic devices such as

televisions, tablets, phones, game consoles, etc. As the uptake of such devices continues

to increase, these themselves are becoming smarter, as is the case, for example, with

automatic vacuum cleaners [Kim et al. 1998] and smart televisions. Usually, each electronic

device will offer its own separate control mechanism. For instance, to operate a vacuum

cleaner one has to use the buttons provided on it. Of course, as the number of devices

used in day-to-day lives will increase, handling each one of them individually will become

impractical, thereby requiring home automation systems [Humphries et al. 1997, Gill et al.

2009]. For example, an automated home user could dim the lights, decrease the speaker

volume, and ask a robot to make coffee [Tsai et al. 2010] from her mobile phone, while

sitting on a couch and communicating with her friend. Other domains of applicability

where modular components are used to build complex systems include composition of

web services [Berardi et al. 2003a; 2005], factory robotic settings [Saffiotti and Broxvall

2005] and agent programming [De Giacomo et al. 2010a]. At the core, be it a home

automation system, web service composition, or a factory setting, the challenge is to build

complex functionalities by integrating and reusing available simpler devices. A desirable

feature in such cases is to provide an abstract framework to model all these scenarios and

automatically generate the required glue that integrates the available components.

1http://www.reuters.com/article/2012/04/05/idUS164780+05-Apr-2012+BW20120405

3

CHAPTER 1: INTRODUCTION

Fitter

Factory Environment

Cleaner Tester
Available Behaviors

Target Specification

Controller

Figure 1.1: A factory setting for behavior composition.

As an example consider a factory scenario to manufacture cars, as pictured in Fig-

ure 1.1, where a part of the assembly line consists of robotic arms including a fitter,

cleaner, and a tester. The fitter arm cuts and fits metallic sheets for the car’s roof, the

cleaner arm cleans off the metal scraps and fillings, and the tester arm tests the car roof

for any faults. Additionally, both fitter and cleaner robots consumes cold water: the fitter

arm uses it for cutting metal and the cleaner arms uses it to clean. Instead of operating

each of these devices individually, the user wishes to operate just one global robotic device

(the “target” device). Of course, such a device does not exist in reality. However, from an

automation perspective, since the user knows what functionality she desires (the target

device), one looks for a controller which can control and coordinate the installed devices

such that it appears as if the user is actually using a global robotic arm. Then, we say that

the target specification can be “realized” using the devices the user owns. The controller

in this setting is the “glue” integrating the installed devices and providing an interface

between them and the end user. For example, if the user asks the controller to clean, it is

the responsibility of the controller to delegate the request to a device that can execute it

(e.g., cleaner robot). In other words, as desired, the end user will only interact with the

controller and not with the individual devices present.

Similarly, an ecommerce system, such as a travel booking site or an online merchandise

store, may be built using a collection of web services. For example, a travel booking system

may require third-party web services to book flights, arrange for local transport, search

for accommodation, and transfer money via payment gateways. Each of these individual

4

SECTION 1.1: THE BEHAVIOR COMPOSITION PROBLEM

services may be called on to perform a specific function which may be a part of the

complete system. For example, the payment gateway service can be used to accept money

from the user when she buys flight tickets. Moreover, such systems will often require

interaction between multiple services in order to complete a task. For instance, repeated

search listings may require calling the payment gateway service multiple times in order

to get the current minute exchange rates. The motivation in such a scenario is to look

for an orchestrator, i.e. a controller, that can co-ordinate and monitor the individual web

services in order to implement the complete online store functionality.

The question then is: how to generate such a controller module automatically? The

behavior composition problem address this question formally.

1.1 The behavior composition problem

Since any of the individual devices owned by the end user is insufficient for achieving

the overall desired functionality, the end user requires a controller that is able to manage

the available devices to help her implement it. One could either build such a controller

manually by a “try-test” procedure or construct it automatically in a way that guarantees

it to be correct. Manual construction of such controllers is tedious, time consuming,

and error prone; moreover it is difficult to check if one actually does exist. Automatic

construction, on the other hand, does not need every output controller to be verified for

correctness if a sound technique ensures this. The behavior composition problem deals

with automatic construction of such a controller that is able to manage the devices a user

owns in order to implement a complex functionality she desires.

1.1.1 Components of behavior composition

The term behavior in behavior composition refers to the abstract operational logic of

a device or program. For example, a behavior could represent the dynamics of how

a web service operates, or the internal logic of a vacuum cleaner, or the operational

mechanics of a robot. Hence, the existing installed devices are called available behaviors;

the desired complex functionality is called the target specification; and the glue which

serves to coordinate between the components is called the controller. In addition, the

available behaviors together with the shared environment are referred to as the available

system.

In many instances, the dynamics of the available behaviors depends on shared re-

sources; for example, a robot can clean only if water is available in a shared tank. More-

over, a behavior’s actions may in turn affect shared resources (after an exhaustive clean,

the water tank may become empty). To model this shared space where behaviors are

meant to operate, the notion of an environment is used. The environment serves to model

shared resources and the preconditions/effects for the execution of actions by the devices.

5

CHAPTER 1: INTRODUCTION

Hence, the execution of a behavior may depend on the state of the environment, but not

directly on the presence of other available behaviors. For instance, the presence of a fitter

robot does not affect the working of a cleaner robot but the water tank in the environment

affects both fitter and cleaner robots.

In addition, one may have incomplete information about the shared environment and

the available behaviors. For instance, one may not know beforehand if the shared wa-

ter tank will become empty after a single round of cutting. However, one can observe

when the water tank is empty. Thus, in general, the environment is fully observable and

partially predictable. Similarly, the cleaner robot may stop working if its waste collection

bin becomes full with metal scraps. Hence, we say that the available behaviors are par-

tially controllable. On the other hand, since the user knows what she desires, the target

specification is fully controllable.

The composition problem is challenging not only because each of the available devices

could themselves be complex (e.g., a robotic arm), but also, in order to realize the target

functionality, one might need to consider multiple permutations of how each of the devices

could be used. For instance, it may only be possible to use a cleaner after the fitter arm

has finished cutting the metallic sheet or one may not be allowed to view available seat

numbers before purchasing the flight ticket. Partial predictability of the environment and

partial controllability of the available behaviors imposes further challenges as a controller

will need to be intelligent enough to ensure the complete target can be implemented

irrespective of such uncertainties arising in the domain.

Informally, the behavior composition task can be stated as follows:

Given the set of behaviors available to the user, the (partially predictable)

shared environment in which these (partially controllable) available behaviors

are to operate, and the target specification the user wants to achieve, automat-

ically build a controller that will be able to honor all the user’s requests (as per

the target specification).

1.1.2 Modelling behavior composition components

From a problem perspective, the available system (consisting of available behaviors and

the shared environment) and the desired target specification constitute the inputs to a

behavior composition problem. If a problem instance has a solution, then one obtains a

controller that will realize (i.e., achieve) the desired target specification. Otherwise, we

say that the problem instance is unsolvable; in other words, the target specification cannot

be achieved with the devices at hand.

Technically, the components of the behavior composition problem are modeled using

transition systems [Baier et al. 2008]. Transitions systems are similar to automata and can

be understood as directed graphs with nodes representing states and edges representing

6

SECTION 1.1: THE BEHAVIOR COMPOSITION PROBLEM

transitions. The transitions help in modelling how the states evolve as a result of actions

performed by the device. In behavior composition, the available behaviors are modelled as

nondeterministic transition systems to represent partial controllability; the environment is

modelled via a nondeterministic transition system to depict partial predictability; and the

target specification is a deterministic transition system to model full controllability. Intu-

itively, nondeterminism in this setting means that after executing an action it may not be

possible to know how a behavior or the environment may evolve. Hence, nondeterminism

helps in modeling the uncertainty in the problem. On the other hand, with deterministic

behaviors one knows exactly how the device will evolve after an action execution.

To illustrate the above, consider two transitions systems shown below representing

light devices:

off on

Light1

toggle

toggle

off on

fuse

Light2

toggle

toggle

togglechange-bulb

Both lights have a toggle switch to turn them on and off. However, Light2’s bulb may blow

as a result of turning it on (it will need a change of bulb if that happens). Hence, Light2 is

modelled by a nondeterministic transition system to represent the incomplete information

regarding the effect of switch toggling. In contrast, Light1 is modelled via a deterministic

transition system as we know its precise state after every action. Observe the devilish

nature of nondeterminism in this context as compared to angelic nondeterminism as in

the case of language acceptance in automata theory [Hopcroft et al. 2007].

Using a formal model to ground the core components of the behavior composition

problem provides multiple advantages. First, it provides a clean framework for represent-

ing abstract scenarios such as home automation, service composition, agent planning, etc.

Second, it provides a basis for developing computational approaches to automatically build

controllers. Third, a formal framework is receptive to detailed mathematical analysis over

properties such as computation complexity and component compatibility [Bordeaux et al.

2005]. For example, properties such as robustness to device failures [Sardina et al. 2008]

of different approaches can be evaluated. Fourth, it allows use of formal notions such as

simulation [Milner 1971] to capture solution concepts, as well as leveraging existing state-

of-the-art tools for other formal frameworks, such as automated planning [Ghallab et al.

2004] and model checking [Alur et al. 2002], for controller synthesis. Finally, it serves as

a basis to develop and evaluate various extensions to the problem.

Formally, the (classical) behavior composition problem can be stated as follows:

Given an available system S composed of a set of behaviors B1, . . . ,Bn, n ≥ 1,

meant to operate in a shared environment E, and a target specification T ,

7

CHAPTER 1: INTRODUCTION

automatically compute a controller C that will realize target specification T in

the available system S.

We shall say a controller C is an exact composition of target specification T in system

S if C realizes T in S.

1.2 An open issue in behavior composition

The behavior composition problem has been extensively investigated in the AI literature

(see [De Giacomo et al. 2013] for an extensive review). In fact, various techniques [De

Giacomo and Felli 2010, De Giacomo and Sardina 2007, Lustig and Vardi 2009, Sardina

et al. 2008, Stroeder and Pagnucco 2009] already exist to compute exact compositions.

However, one important open issue has resisted principled solution:

If the target behavior specification cannot be realized in the available system, is

there a way to realize it “optimally”?

Many (if not most) realistic problem instances will have no complete realization and a

(merely) “no solution” output may be extremely unsatisfactory, especially in large problem

instances where one may have spent large amounts of time and resources in attempting

to solve the problem. For example, in our factory automation scenario, the user might

want to delay the cleaning of the roof after its testing has been done in order to conserve

water (faulty parts will not need cleaning). However, this may not be possible as the

tester robot may move the faultless part to the next assembly line right after testing.

In such a case, the classical composition framework will simply convey that the problem

instance is unsolvable because the motivation there is to solve the problem in its totality.

In other words, if a composition problem is solvable, the classical framework will provide

the user with an exact composition that will realize the desired target specification in the

given system. However, for unsolvable instances the classical framework does not compute

anything meaningful. The need for dealing with approximate solution concepts was first

recognized by Stroeder and Pagnucco [2009], but the authors left this as important future

work and this open issue has resisted principled approaches till now. Since many realistic

scenarios will lack a technically complete solution, the ability to deal with such problems

in better ways by providing optimal solutions will make behaviour composition applicable

to a wider range of scenarios. Thus the overarching objective of this doctoral thesis is to

address the following question:

What is an optimal solution if the target specification T cannot be realized in

available system S?

8

SECTION 1.3: BEHAVIOR COMPOSITION OPTIMISATION

1.3 Behavior composition optimisation

For an unsolvable behavior composition problem, the “optimal solution” could be found in

multiple ways. One could suggest additional behaviors or extra functionality required in

existing behaviors that will render the given target specification realizable. Alternatively,

one could construct non-exact controllers which will achieve the target specification to the

best possible extent by utilizing only the existing behaviors. One could also require extra

domain information such as which parts of the target are more important and then build

a controller that maximizes the implementation of the essential target parts. In this thesis

we focus on the last two approaches by proposing qualitative and quantitative frameworks

for behavior composition optimisation.

1.3.1 Qualitative behavior composition optimisation

The core of this thesis focuses on a qualitative approach to behavior composition optimi-

sation. An optimal solution in this setting is found by checking how much of the target

specification can be realized without requiring any further domain knowledge or addi-

tional available behaviors. The underpinning idea in the proposed approach is to shift

the focus from synthesising a controller to synthesising parts of the specification which

can be fully realized in the given system. Intuitively, the focus is to look for those parts

of the target specification that can be realized with the available modules, and provide the

maximal of them as a solution. We name such parts of target specifications as Realizable

Target Fragments (RTFs) and show that RTFs are closed under their union. This union

property is key in the sense that it allows more general (better) RTFs to be obtained from

smaller RTFs and forms the basis for showing that the union of all possible RTFs is the

largest possible realizable fragment - the Supremal Realizable Target Fragment (SRTF). In

contrast to classical behavior composition, the qualitative optimisation framework ensures

that a meaningful and practically useful solution is always returned.

In order to compute the SRTF for instances involving only deterministic available be-

haviors, we reduce the qualitative optimisation problem to a particular safety game [Bloem

et al. 2011]. In such a game the target and controller jointly play against the available

system. Intuitively, the target and the controller “win” the game if they can always en-

sure that only those actions that can be executed by an available behavior (in the context

of the environment) are requested. Unfortunately, the two player game approach works

only for deterministic available behaviors. Therefore, for computing the SRTF for the

general case, we rely on a “belief-space” [Bonet and Geffner 2000] construction technique

to compute the possible states where a system could be from the target’s perspective.

Observe that similar to the classical setting, all the uncertainty (nondeterminism) in

the qualitative optimisation framework remains unobservable. However, in actual settings

a user can often observe the contingencies, e.g., blowing of a light bulb or running out

9

CHAPTER 1: INTRODUCTION

of fuel. In order to embed such uncertain but observable effects, inspired by literature

on discrete event systems [Wonham and Ramadge 1987, Cassandras and Lafortune 2006],

we introduce uncontrollable exogenous events in the qualitative optimisation framework.

These events are uncontrollable in the sense that their occurrence is not under the control

of the available behavior and so they cannot be requested by the end user. Importantly,

we show how to compute SRTFs involving exogenous events by parsimoniously adapting

the belief-space construction approach used in the non-exogenous qualitative optimisation

framework.

1.3.2 Quantitative behavior composition optimisation

Our second approach to behavior composition optimisation is a quantitative one relying

on extra domain knowledge. If such extra information is available, then one can quantify

the sources of uncertainty in the behavior composition problem (nondeterminism in the

available system and importance of target requests) and develop a stochastic framework

in which the task will be to generate a controller that has maximum likelihood to realize

the target specification. Note, availability of extra domain information to the modeller is

a reasonable assumption in many settings. For example, domain knowledge for a garden

setting may include that watering plants is a more frequent and important action request

than collecting fruits, or the failure rate of a garden cleaner due to sand deposition.

The outcome of the quantitative approach is a decision-theoretic [French 1986] be-

havior composition framework, in which the task is to maximize the so-called expected

realizabability of a target behavior in the given available system. Expected realizabil-

ity then implies the probability that a target specification will be realized in the system

by a given controller. The optimal solution in the quantitative framework is an optimal

composition controller that maximizes the expected target realizability. Clearly, such a

stochastic framework is able to output “optimal” controllers even for problems that do

not allow exact controllers. In addition, we characterize when an optimal controller is also

an exact composition, thus subsuming the classical setting. We provide a technique to

compute optimal composition controllers by encoding the problem as a particular kind of

Markov decision process [Puterman 2005].

1.4 Contributions

This thesis is the first example of behavior composition optimisation frameworks that are

equipped to cater for unsolvable composition problem instances. The main contributions

of this thesis are as follows:

1. We provide a qualitative optimisation approach to address unsolvable composition

problems without requiring extra domain knowledge.

10

SECTION 1.5: PUBLICATIONS

• We show the soundness and completeness of supremal realizable target frag-

ments (SRTFs) with respect to controllers.

• We prove key desirable properties of the framework such as the uniqueness of

SRTFs (up to simulation equivalence).

• We provide effective techniques for computing SRTFs and discuss their respec-

tive computational complexity.

– We use LTL synthesis and ATL model checking techniques to build SRTFs

for problems involving only deterministic available behaviors.

– We provide a “belief-space” construction technique for the general case

involving nondeterministic available behaviors.

2. We extend the qualitative optimisation model by introducing uncontrollable exoge-

nous events for modelling cases where uncertainties can be observed by the user.

• Based on the user’s observability of exogenous events we provide two solution

types, namely, conditional and conformant SRTFs.

– If the user has the capability to observe such events, then she can use a

conditional SRTF.

– If the user does not have observability over exogenous events, then the

SRTF must be conformant.

• We show that conditional and conformant SRTFs can be generated by par-

simoniously modifying the “belief-space” technique for non-exogenous based

SRTFs.

3. We develop a decision theoretic framework for quantitative behavior composition

optimisation for cases where extra domain information is readily available.

• We develop a probabilistic framework based on quantification of sources of

uncertainty in the behavior composition problem.

• We introduce a notion of “expected realizability” of target specifications to

evaluate controllers.

• We provide a technique for computing optimal controllers for the decision the-

oretic setting by reducing the problem to Markov decision processes.

1.5 Publications

Many of the results presented in this thesis have already been published in mainstream

AI venues including IJCAI, JELIA, and AAMAS. The qualitative optimisation approach

to behavior composition was first introduced in [Yadav and Sardiña 2012] and further

11

CHAPTER 1: INTRODUCTION

refined in [Yadav et al. 2013]. The quantitative optimisation approach has been published

in [Yadav and Sardiña 2011].

1.6 Thesis outline

The rest of the thesis is organized as follows:

• Chapter 2 provides the relevant background to this thesis. In this chapter, we

formally introduce the classical behavior composition problem and define what con-

stitutes a solution to the problem, along with outlines of different techniques to

compute such solutions. In addition, we discuss interesting extensions of the behav-

ior composition problem found in the literature.

• In Chapter 3 we present our qualitative optimisation framework and prove its key

properties. We formally define realizable target fragments (RTFs), and supremal

realizable target fragments (SRTFs), along with their union operation. We prove that

SRTFs are unique up to simulation equivalence, a surprising though desired property.

In addition, we argue for the nondeterministic relaxation of target specifications.

• In Chapter 4 we present effective techniques for computing the supremal target

behaviors for both deterministic and nondeterministic available systems. To that

end, we rely on LTL synthesis and ATL model checking for computing SRTFs for

deterministic available systems and provide a sort of “belief-space” construction

technique for nondeterministic available systems.

• Chapter 5 introduces the notion of uncontrollable exogenous events as events that

may occur spontaneously in available behaviors. We extend the qualitative optimi-

sation framework with such exogenous events and show how the definition of, and

techniques to compute, SRTFs can be parsimoniously adapted.

• In Chapter 6 we provide a quantitative optimisation framework for behavior compo-

sition by viewing the problem from a decision theoretic perspective. The quantitative

framework relies on extra domain knowledge to quantify uncertainties in the domain.

We introduce the notion of maximal controllers as optimal controllers that maximize

the target realizability and show how to compute them by using MDP solvers.

• Finally, in Chapter 7 we conclude the thesis by discussing the contributions and

describing possible future work.

12

CHAPTER 2
Background

“The point of philosophy is to start with something so

simple as not to seem worth stating, and to end with

something so paradoxical that no one will believe it.”

–Bertrand Russell

To understand any problem, its components and key ingredients must be precisely

stated. We begin by introducing transition systems, the core ingredient for the formalisms

presented in this thesis, along with some of their properties. We formally define the be-

havior composition problem and briefly discuss the relevant literature on behavior com-

position. The aim here is not to present all the results on the topic, but to paint a picture

with enough formal, and intuitive, detail to appraise this thesis. Note that some of the

formal definitions are borrowed from [Baier et al. 2008, De Giacomo et al. 2013, Sardina

et al. 2008].

2.1 Transition systems

Transition systems are widely used in computer science to model abstract behavior of

real devices [Baier et al. 2008]. They can be understood as directed graphs with nodes

representing states and edges representing transitions among those states. For a given

model of a device, its states portray the possible internal situation the device could be

in, whereas, the transitions model how these situations can change as a result of actions

performed using the device. Intuitively, transitions encode the effects on the device as

a result of action execution. Consider a simplistic model of a vacuum cleaner with two

states, as shown in Figure 2.1. The states, empty and full, represent the status of the

vacuum cleaner’s dust bin. When there is a lot of dust to be collected, a clean action may

cause the bin to fill. If this happens, the vacuum cleaner will evolve to the state full after

a clean action. Otherwise, the vacuum cleaner remains in the empty state. Notice that

13

CHAPTER 2: BACKGROUND

the rest of the vacuum cleaner’s functionalities are not captured by this model. Indeed,

one only models the aspects of the device relevant to the given problem, the rest being

abstracted away. Formally:

Definition 2.1 (Transition system). A finite transition system is a tuple T = 〈S,A, s0, δ〉
where:

• S is the finite set of T ’s states;

• A is the finite set of T ’s actions;

• s0 ∈ S is T ’s initial state; and

• δ ⊆ S ×A× S is T ’s transition relation.

A transition 〈s, a, s′〉 ∈ δ, also written as s
a−→ s′ in T , denotes that action a executed

in state s may lead the system to successor state s′. Based on the constraints over the

transition relation, one may define two kinds of transition systems: deterministic and

nondeterministic. A transition system is deterministic if there is no state s ∈ S and

action a ∈ A for which there exists two transitions s
a−→ s′ and s

a−→ s′′ in T with

s′ 6= s′′. Intuitively, after executing an action, a deterministic transition system evolves

to at most a single successor state. On the other hand, in a nondeterministic transition

system, after executing an action the number of possible successors may be more than one.

Note that the device is always in a single state at any point in time, even after executing

a nondeterministic action. For instance, given two transitions s
a−→ s′ and s

a−→ s′′ in

T , after executing action a from state s, T will evolve to either s′ or s′′. However, before

executing action a from state s one cannot determine if the successor state will be s or s′;

it is only after the transition system has evolved that one knows whether s or s′ ensued.

Example 2.1. The transition system for the vacuum cleaner depicted in Figure 2.1 can

be formally represented by the tuple Tvc = 〈{empty, full}, {clean, reset}, empty, δ〉 where

δ = {〈empty, clean, empty〉, 〈empty, clean, full〉, 〈full, reset, empty〉}. T is a nondeterministic

transition system since after executing the clean action from the empty state the vacuum

cleaner may either remain in the same state or evolve to the full state.

To represent the execution of a transition system, we introduce the notion of traces

and histories of a transition system. Informally, a trace of a transition system is an

alternating sequence of states and actions, capturing a possible evolution that the system

may go through. Formally, a trace of a transition system T = 〈S,A, s0, δ〉 is a, possibly

infinite, sequence of the form τ = s0 a1−→ s1 a2−→ · · · such that (i) s0 = s0; and (ii)

〈si a
i+1

−→ si+1〉 ∈ δ, for all i ≥ 0. A history is a finite prefix of a trace ending in a state.

14

SECTION 2.2: BEHAVIORAL EQUIVALENCE OF TRANSITION SYSTEMS

empty full

clean

clean

reset

Figure 2.1: A simple model of a vacuum cleaner.

Let h = s0 a1−→ · · · a`−→ s`, with ` ≥ 0, be a history of T . The length of h, denoted

by |h|, is the number of transitions included in it; that is, |h| = `, and the ith state of

the history h, where 0 ≤ i ≤ |h|, is denoted by h[i]; that is, h[i] = si. The notions of

length and state index can be extended to infinite traces. Given a, possibly infinite, trace

τ = s0 a1−→ s1 a2−→ · · · , its ith state, where i ≥ 0, is denoted by τ [i]; that is τ [i] = si.

Observe that the notion of traces and histories is akin to words of languages in the context

of automata theory [Hopcroft et al. 2007], with actions corresponding to the alphabet of

the automaton. However, here we include both states and actions as part of the system

executions, whereas a word in a language only contains alphabet symbols. In fact, as we

will see later, states play an important role when it comes to describing the behavior of a

transition system.

Example 2.2. One of the possible traces of the vacuum cleaner Tvc is empty
clean−→ empty

clean−→
full

reset−→ empty · · · and a possible history of length 2 is empty
clean−→ empty

clean−→ full.

2.2 Behavioral equivalence of transition systems

Transition systems are abstract machines used to model devices or components of in-

terest. One is often interested to know how two given models compare; for example, is

one more general than the other or are they equivalent. Two well known measures for

comparing transition systems throughout Computer Science are the notions of language

equivalence [Hopcroft et al. 2007] and simulation [Milner 1971]. We start by formally

defining these concepts and then discuss their properties in the context of (possibly non-

deterministic) transition systems.

2.2.1 Language equivalence

Language equivalence for transition systems is the analogue of language equivalence for

automata. Let T = 〈S,A, s0, δ〉 be a transition system. We denote the set of all traces of

T by ∆T , that is:

∆T = {s0 a1−→ s1 a2−→ · · · | s0 a1−→ s1 a2−→ · · · is a trace of T }.

15

CHAPTER 2: BACKGROUND

s0

s1

s2T1

a

b

c, e

s0

s1

s2 s3T2

a

b

c

b

e

s0

s1

s2 s3

s4

s5

T3

a

b

c

b

e

a

b
c

Figure 2.2: Example depicting different behavioral equivalences for transition systems.

Given a trace τ = s0 a1−→ s1 a2−→ · · · of T , we denote by τ↑S the sequence a1a2 · · · obtained

by projecting out T ’s states. We extend this projection to the set of all traces of T :

∆↑ST = {τ↑S | τ ∈ ∆T }.

Given two transition systems Ti = 〈Si, Ai, si0, δi〉, for i ∈ {1, 2}, T1’s language is included

in T2’s language iff ∆↑ST1 ⊂ ∆↑ST2 and T1 and T2 are language equivalent iff ∆↑ST1 = ∆↑ST2 . Note

that we ignore states when comparing language. The following example clarifies this.

Example 2.3. Figure 2.2 depicts three language equivalent transition systems T1, T2 and

T3 over a common set of actions. Observe that T2 and T3 are nondeterministic and have

a branching structure, whereas, T1 is deterministic and has a linear structure. Observe

that state s1 in T2 and T3 offers more options when selecting the transition with label b

as compared to transition system T1.

As we can see, the syntactic and the branching structure of the transition systems

play no role when comparing their language equivalence. To compare the branching nature

of transition systems, we need a stronger measure of equivalence – simulation.

2.2.2 Simulation

The formal notion of simulation was introduced by Milner [1971] and provides a finer

comparison of nondeterministic transition systems than provided by language equivalence.

Intuitively, a transition system T1 “simulates” another system T2 if T1 is able to match all

of T2’s moves. Algebraically, simulation is a relation that captures the similarity in the

behavior of two transition systems.

Definition 2.2 (Simulation). Let Ti = 〈Si, Ai, si0, δi〉, where i ∈ {1, 2}, be two transition

systems. A simulation relation of T2 by T1 is a binary relation Sim ⊆ S2 × S1 such that

〈s2, s1〉 ∈ Sim implies that:

• for all transitions 〈s2, a, s
′
2〉 ∈ δ2 in T2, there exists a transition 〈s1, a, s

′
1〉 ∈ δ1 in T1;

such that

16

SECTION 2.2: BEHAVIORAL EQUIVALENCE OF TRANSITION SYSTEMS

• 〈s′2, s′1〉 ∈ Sim.

We say that a state s2 ∈ T2 is simulated by a state s1 ∈ T1 (or s1 simulates s2), denoted

by s2 � s1, iff there exists a simulation relation Sim of T2 by T1 such that 〈s2, s1〉 ∈ Sim.

The relation � is a preorder and is the largest simulation relation, in that all sim-

ulation relations are contained in it. Informally, s2 � s1 is intended to mean that state

s1 in T1 can “mimic” all moves of state s2 in T2, and that this property is propagated in

their corresponding successor states. The transition system T1 simulates T2, denoted by

T2 � T1, iff their initial states are in simulation; that is, s20 � s10. The notation T1 ≺ T2

implies T1 � T2 and T2 6� T1. In addition, we say two transition systems are simulation

equivalent if they simulate each other. Formally:

Definition 2.3 (Simulation equivalence). Two transition systems T1 and T2 are sim-

ulation equivalent , denoted by T1 ∼ T2, if T2 � T1 and T1 � T2.

Example 2.4. Consider the three transition systems shown in Figure 2.2. Although, T1,

T2 and T3 are language equivalent, they are not simulation equivalent. One can verify that

T1 simulates both T2 and T3 but the opposite is not true; that is, T3 � T2 ≺ T1. After the

action sequence a · b, transition system T1 will be in state s2 and T2 could be in state s2

or s3. State s2 of T1 is able to execute actions c and e, whereas state s2 of T2 can execute

only c and state s3 of T2 can execute only e. In addition, the transition systems T2 and

T3 are simulation equivalent; that is, T2 ∼ T 3.

Below, we formally state the well known result that simulation is a stricter notion of

equivalence than trace equivalence.

Theorem 2.1 (Baier et al. [2008], Theorem 7.70). Let Ti = 〈Si, Ai, si0, δi〉 for i ∈ {1, 2}
be two transition systems. If T2 � T1, then ∆↑ST2 ⊆ ∆↑ST1 .

2.2.3 Bisimulation

Finally, we introduce bisimulation [Milner 1989, Baier et al. 2008], a behavioral equivalence

notion even stricter than simulation equivalence. Intuitively, bisimulation requires the two

transition systems to exactly match each others’ moves.

Definition 2.4 (Bisimulation). Let Ti = 〈Si, Ai, si0, δi〉, where i ∈ {1, 2}, be two tran-

sition systems. A bisimulation relation of T2 by T1 is a binary relation Bisim ⊆ S2 × S1

such that 〈s2, s1〉 ∈ Bisim implies that:

• for all transitions 〈s1, a, s
′
1〉 ∈ δ1 in T1, there exists a transition 〈s2, a, s

′
2〉 ∈ T2, such

that 〈s′2, s′1〉 ∈ Bisim; and

17

CHAPTER 2: BACKGROUND

• for all transitions 〈s2, a, s
′
2〉 ∈ δ2 in T2, there exists a transition 〈s1, a, s

′
1〉 ∈ T1, such

that 〈s′2, s′1〉 ∈ Bisim.

We say that a state s2 ∈ T2 is bisimulated by a state s1 ∈ T1 (or s1 bisimulates s2),

denoted by s2
∼= s1, iff there exists a bisimulation relation Bisim of T2 by T1 such that

〈s2, s1〉 ∈ Bisim.

Note that the ∼= relation is an equivalence relation; that is, it is reflexive, transitive,

and symmetric. Two transition systems T1 and T2 are bisimilar, denoted by T2
∼= T1, iff

their initial states are in bisimulation; that is, s20
∼= s10. Reverting to the three transition

systems shown in Figure 2.2, see that T2 and T3 are simulation equivalent, however, they

are not bisimilar. The transition s0
a−→ s4 of T3 can only be matched by transition

s0
a−→ s1 of T2. Next, observe that transition system T3, after executing b from s4, cannot

match the move s3
e−→ s0 of T2 by any transition. Hence, transition systems T2 and T3

are not bisimilar.

Theorem 2.2 (Baier et al. [2008], Theorem 7.64). Let Ti = 〈Si, Ai, si0, δi〉 for i ∈ {1, 2}
be two transition systems. If T2

∼= T1, then T2 ∼ T1. However, T2 ∼ T1 and T2 6∼= T1 is

possible.

Theorem 2.2 shows that bisimulation is a stronger measure of equivalence than sim-

ulation in general. Note, all these notions collapse for deterministic systems; that is, for

deterministic systems language equivalence, simulation equivalence, and bisimulation are

equally powerful [Girard and Pappas 2007, Baier et al. 2008]. In terms of computational

complexity, checking if a transition system simulates (bisimulates) another transition sys-

tem can be performed in polynomial time [Baier et al. 2008, Balcázar et al. 1992] with

respect to the size of the input transition systems. In comparison, checking for language

equivalence is pspace-complete [Kanellakis and Smolka 1990].

2.3 The classical behaviour composition problem

Behavior composition deals with checking for the existence of a controller for a collection

of available devices to realize a desired complex functionality. For example, consider

a scenario where one has multiple robots to maintain a garden at home. The regular

maintenance of the garden requires cleaning of the dirt, watering of the plants, plucking

the ripe fruits and flowers, etc. Now, instead of operating multiple garden robots, it will

be ideal to have just one super-bot that can do all these tasks as required by the user.

However, since this super-bot does not exist in reality, one can then look for a controller

that is able to manage the available devices for the user in order to achieve the desired

functionality of garden maintenance. The idea is that the user will interact only with

the controller rather than the individual robots she has, and it will appear as if she is

18

SECTION 2.3: THE CLASSICAL BEHAVIOUR COMPOSITION PROBLEM

operating just one device. The problem in behavior composition is to check if such a

controller can be automatically generated given the devices the user owns and the desired

complex (non-existent) functionality she requires.

The composition problem itself has attracted interest from multiple research commu-

nities such as LTL synthesis [Lustig and Vardi 2009], web services [Berardi et al. 2003b;a],

and reasoning about action [Sardina and De Giacomo 2009]. Roots of behavior compo-

sition lie in the area of automated service composition [Berardi et al. 2003b, Rao and

Su 2005, Berardi et al. 2003a, Calvanese et al. 2008, Sirin et al. 2004], where Berardi’s

thesis [Berardi 2005] formalised web services as finite state automatons and provided tech-

niques to compute such controllers. Later, Patrizi’s doctoral work [Patrizi 2009] extended

the service composition framework to include general nondeterministic devices, thereby,

making the problem relevant to a wider range of audience. Interested readers can find a

detailed survey of behavior composition by De Giacomo et al. [2013].

We shall present the behavior composition framework from [Sardina et al. 2008, De

Giacomo et al. 2013] along with the relevant variations studied in the literature. We call

the framework presented in this section the classical behavior composition framework to

differentiate from the extensions we introduce in the later chapters.

2.3.1 Classical framework

In behavior composition terminology, the available devices at hand which need to be

controlled, in order to obtain a given complex functionality are called the available be-

haviors. A target specification stands for such a complex functionality that is desired but

not directly available and is therefore meant to be “realized” by suitably composing the

available behaviors in the system. These available behaviors and the target are meant to

be executed in a shared space called the environment. The environment can be viewed as

a common playground where the available behaviors and the target operate. As such, the

environment serves as a common medium to share information and resources between de-

vices, and to reflect uncertainties that may arise outside of them. From a modelling point

of view, the environment, available behaviors, and the target specification are represented

using transition systems.

Environment

The available behaviors and the target operate in a shared fully observable space called

the environment. This allows the modelling of preconditions and effects of actions as well

as providing means of communication between the behaviors. Consider a garden scenario

consisting of a common garbage bin and a number of robots which empty the bin when

full. A required constraint to conserve energy is that a robot should only be able to execute

the empty action if the garbage is full. Obviously, the garbage bin cannot be modelled as

part of a single robot. Instead, the environment has to be used to provide such a shared

19

CHAPTER 2: BACKGROUND

e0 e1

e2 e3

clean

pick, water
empty, clean

p
ick

p
ick

empty

water
pick

clean

empty

water, clean

em
pty

water

Environment E

a0 a1
clean : e0∨e2

clean : e0∨e2
empty

Cleaner Bot BC

b0 b1
pick

water

empty

water
Multi Bot BM

c0 c1
pick

clean

Picker Bot BP

t0 t1

t2

t3

clean
pick

wate
r

empty

empty

Target T2

t0 t1 t2
clean pick

empty

water

Target T1

Figure 2.3: Behavior composition in a garden.

resource. That is, before attempting to empty the garbage bin, a robot will check if it is

full or not in the environment. In other words, the precondition of the empty action is

dependent on the shared garbage bin, which is a part of the environment. Formally:

Definition 2.5 (Environment). An environment is a tuple E = 〈E,A, e0, ρ〉, where:

• E is the finite set of environment’s states;

• A is a finite set of shared actions;

• e0 ∈ E is the initial state;

• ρ ⊆ E×A×E is the transition relation among states: 〈e, a, e′〉 ∈ ρ, or e
a−→ e′ in E ,

denotes that action a performed in state e may lead the environment to a successor

state e′.

Observe that the environment is modelled as a nondeterministic transition system.

This is essential to model incomplete information about the effects of actions, similar to

action theory [Reiter 2001]. For instance, in the garden scenario, after a clean action, the

garbage bin may become full or it may still have more space. That is, there is uncertainty

about the status of the garbage bin before a clean action. Therefore, to be able to represent

settings like this, we allow the environment to be nondeterministic in general. Below, we

present this gardening scenario of ours which will be used as an example of a behavior

composition problem.

20

SECTION 2.3: THE CLASSICAL BEHAVIOUR COMPOSITION PROBLEM

Example 2.5. Let us consider behavior composition applied in a garden setting. Fig-

ure 2.3 presents such a scenario, where multiple gardening bots are used to keep the garden

healthy. The garden environment E allows picking the fruits, watering and cleaning the

garden, and emptying the waste bins. In our garden, after a single clean (pick) action the

garden may be cleared of all the dirt (fruits) or it might still contain some dirt (fruits).

This uncertainty is modeled by the nondeterminism of clean and pluck actions. Take for

instance the clean action. In state e0 and e2 the garden is dirty whereas in states e1 and e3

it is clean. A single clean (pick) action from e0 may result nondeterministically in either

e0 or e1. One can observe similar dynamics for the pick action in states e0 and e1. The

other two actions, water and empty, are deterministic. In addition, as defined by system,

emptying the waste bins always resets the environment.

Available behaviors and system

An available behavior is basically an abstraction of a program, operational dynamics, or

logic of a device. The available behaviors are considered to be passive; that is, they do

not execute actions on their own, instead they are operated by an external agent. The

agent directs the behavior to perform one of the allowed actions, execution of which may

cause the behavior to evolve, thereby providing the agent a new set of available actions.

Obviously, behaviors interact with, and operate within, the environment. Hence,

they are equipped with the ability to test conditions (i.e., guards) on the environment,

to determine applicability as needed. For instance, a cleaning robot can check if the

garden is dirty. We use guards only on the environment states and not on states of other

behaviors because the internal working of an available behavior, and hence information

about its states, is hidden from other available behaviors. For example, a vacuum cleaner’s

functionality cannot depend on the internal state of a light bulb as the vacuum cleaner

does not have means to access the bulb’s internal state. In case it requires a room to be lit

for cleaning, it can only do so by checking if the environment is in a state with adequate

lighting.

Definition 2.6 (Behavior). A behavior over an environment E = 〈E,A, e0, ρ〉 is a tuple

B = 〈B, b0, G, %〉, where: 1

• B is the finite set of behavior’s states;

• b0 ∈ B is the initial state;

• G is a set of guards; that is, Boolean functions g : E 7→ {true, false};
1Some formalisations [De Giacomo and Sardina 2007, De Giacomo and Felli 2010] use final states in

the behavior definition, we omit them wlog.

21

CHAPTER 2: BACKGROUND

• δ ⊆ B × G × A × B is the behavior’s transition relation, where 〈b, g, a, b′〉 ∈ %,

or b
g,a−→ b′ in B, denotes that action a executed in behavior state b, when the

environment is in a state e such that g(e) = true, may lead the behavior to a

successor state b′.

We say that a behavior B = 〈B, b0, G, %〉 over an environment E = 〈E,A, e0, ρ〉 is

deterministic if there is no behavior state b ∈ B and no environment state e ∈ E for

which there exist two transitions b
g1,a−→ b′ and b

g2,a−→ b′′ in B such that b′ 6= b′′ and g1(e) =

g2(e) = true. In general, similar to the environment, behaviors are nondeterministic;

that is, given a state and an action, there may be several transitions to different successor

states whose guards evaluate to true. Nondeterminism in available behaviors is strongly

tied to the notion of controllability. Before executing a nondeterministic action, the agent

is uncertain of the resulting state of the behavior, and hence, also of the next set of

available actions. As a consequence, nondeterministic behaviors are said to be partially

controllable by the agent. In comparison, in a deterministic behavior, the resulting state

is always known before executing an action, and hence, deterministic behaviors are fully

controllable. For brevity, we omit the guard from a transition if that transition can be

executed in all environment states. More formally, b
a−→ b′ in B represents b

a,g>−→ b′ such

that g>(e) = true for all e ∈ E.

We call the collection of the available behaviors at hand along with the environment

as the system. Formally:

Definition 2.7 (System). A system is a tuple S = 〈B1, . . . ,Bn, E〉 built from an envi-

ronment E and a number of predefined, possibly nondeterministic, available behaviors Bi,
where i ≤ n, over E .

Example 2.6. Consider again the garden scenario depicted in Figure 2.3. Our garden is

maintained by three garden bots, namely, a cleaner bot BC to clean the garden, a picker

bot BP to pick fruits, and a multipurpose bot BM . Observe that the clean action is

nondeterministic in the cleaner bot BC ; after a clean action the bot’s internal bin may be

full and the bot may evolve to the state a1, else it remains in the state a0. In addition,

to save energy the cleaner bot only cleans when it can sense dirt. This is reflected in the

guards present on the clean action in BC ; that is, the clean action can only be performed

when the environment is in states e0 or e2 where indeed the garden is dirty. The remaining

garden bots, picker bot BP and multipurpose bot BM , are deterministic.

Target specification

A target specification represents the fully controllable desired behavior to be obtained

through the available behaviors in the context of the shared environment.

22

SECTION 2.3: THE CLASSICAL BEHAVIOUR COMPOSITION PROBLEM

e0
a0

e1
a1

e0
a1

e1
a0

e2
a0

e3
a1

e2
a1

e3
a0

clean

empty
clean

clean

clean

empty

empty

empty

clean

clean

clean

empty
clean

empty

empty

empty

empty

Enacted behavior EBC

e0, a0
b0, c0

s0

e1, a1
b0, c0

s1

e0, a0
b0, c1

s2

e2, a0
b1, c0

s3

e3, a1
b1, c0

s4

e0, a0
b1, c1

s5

clean :1

pick :3

pick :2

empty :1

clean :1

empty :2

pick :2

clean :1

pick :2

Enacted system ES (Partial)

Figure 2.4: Enacted cleaner bot and partial enacted system for the garden example.

Definition 2.8 (Target specification). A target specification is a deterministic behavior

over a fully observable shared environment.

We say the target behavior to be virtual in the sense that it is not available, instead

its behavior ought to be actualized by using the available system at hand.

Example 2.7. Figure 2.3 shows two possible target behaviors for our garden example.

Both targets T1 and T2 start by cleaning the garden first, followed by either watering

the plants or picking the fruits, and finally emptying the waste bins. However, target T2

requires the empty action to be done after picking the fruits as well as after watering the

garden, whereas T1 requires emptying of waste bins only after picking.

Enacted behaviors

Behaviors do not function in a standalone manner, rather they operate in a shared envi-

ronment. As a result, some of the behavior actions may be not executable. For instance

in the garden example, if the environment is in state e3, then the cleaner bot BC cannot

execute the clean action. Hence, the actual capabilities of a behavior depend on both, the

behavior itself and the environment in which it operates. The functionality that emerges

from a behavior operating in an environment is denoted by its enacted behavior.

Definition 2.9 (Enacted behavior). Given a behavior B = 〈B, b0, G, %〉 over an en-

vironment E = 〈E,A, e0, ρ〉, we define the enacted behavior of B over E as a tuple

EB = 〈S,A, s0, δ〉, where:

• S = B × E is the finite set of EB’s states, given a state s = 〈b, e〉, we denote b by

beh(s) and e by env(s);

• A is the set of actions in EB;

23

CHAPTER 2: BACKGROUND

• s0 ∈ S, with beh(s0) = b0 and env(s0) = e0, is the initial state of EB;

• δ ⊆ S × A × S is the transition relation, where 〈s, a, s′〉 ∈ δ, or s
a−→ s′ in EB, iff:

(i) env(s)
a−→ env(s′) in E ; and (ii) beh(s)

g,a−→ beh(s′) in B, with g(env(s)) = true

for some g ∈ G.

Observe that an action is executable from an enacted behavior state if it is executable

from both the respective behavior and environment states, and there exists a behavior

guard which evaluates to true. Technically, enacted behavior EB is the synchronous prod-

uct of the behavior and the environment, and represents all possible executions obtained

from those of behavior B once guards are evaluated and actions are performed in the en-

vironment E . In general, the sources of nondeterminism in enacted behaviors are twofold:

the environment (effects of actions on the environment are nondeterministic); and the

behavior itself (which may be nondeterministic). For the enacted behavior ET of a target

specification T (enacted target) in environment E , we denote the state of the target in an

enacted target state s of ET by tgt(s) instead of beh(s).

Example 2.8. The enacted behavior of the cleaner bot BC over the garden environment

E is depicted in Figure 2.4. Note that after executing the clean action from the initial

state, the enacted behavior could evolve to 4 possible successor states. This is due to the

combined nondeterminism of the clean action in the environment and of the cleaner bot.

All available behaviors in a system act in the same environment in an interleaved

fashion; that is, at a single step an action is executed by only one behavior. As a result,

the behavior executing that action and the environment evolve; all other behaviors remain

stationary in their respective states. The so called enacted system is used to refer to the

joint behavior that emerges from such an interleaved execution of the available behaviors.

Definition 2.10 (Enacted system). Let S = 〈B1, . . . ,Bn, E〉 be a system, where E =

〈E,A, e0, ρ〉 and Bi = 〈Bi, bi0, Gi, %i〉, for i ∈ {1, . . . , n}. The enacted system behavior of

S is the tuple ES = 〈S,A, {1, . . . , n}, s0, δ〉, where:

• S = B1 × · · · × Bn × E is the finite set of ES ’s states, when s = 〈b1, . . . , bn, e〉, we

denote bi by behi(s), for i ∈ {1, . . . , n}, and e by env(s);

• s0 ∈ S with behi(s0) = bi0, for i ∈ {1, . . . , n}, and env(s0) = e0, is ES ’s initial state;

• δ ⊆ S × A × {1, . . . , n} × S is ES ’s transition relation, where 〈s, a, k, s′〉 ∈ δ, or

s
a,k−→ s′ in ES , iff:

– env(s)
a−→ env(s′) in E ;

24

SECTION 2.4: COMPOSITION – SOLUTION TO THE PROBLEM

– behk(s)
g,a−→ behk(s

′) in Bk, with g(env(s)) = true, for some g ∈ Gk; and

– behi(s) = behi(s
′), for i ∈ {1, . . . , n} \ {k}.

Note that the enacted system is analogous to the enacted behavior, except for being

suitably extended to a set of behaviors. Technically, the enacted system behavior ES is the

asynchronous product of the available behaviors plus the synchronous product with the

environment. The interleaved asynchronous execution of the behaviors is evident by the

presence of behavior index k in the transitions. The presence of this index makes explicit

which behavior in the system is the one performing the action in the transition—all other

behaviors remain stationary.

Example 2.9. A part of the enacted system for the garden example can be seen in

Figure 2.4. The indexes 1, 2, and 3 in the transitions refer to the cleaner bot BC , the

multipurpose bot BM , and the picker bot BP , respectively. From the initial state s0 the

pick action can be executed by two behaviors, the multipurpose bot BM or the picker bot

BP ; however, the clean action can only be performed by the cleaner bot BC .

Conceptually, the enacted system encompasses the complete functionality that can

be achieved by asynchronously operating all the available behaviors. Informally, then,

one checks if the given target specification can be achieved by choosing which behavior to

activate in a step by step manner such that it appears that the target is being executed

in the environment. When this is possible, we say the target is realizable in the given

system.

2.4 Composition – solution to the problem

A controller is an external agent able to activate, stop, and resume any of the available

behaviors, and to instruct them to execute an allowed action from their current state.

The controller has full observability on the available behaviors; that is, it can keep track

(at runtime) of their current states. As argued by De Giacomo and Sardina [2007], full

observability is the natural choice in this context. Since available behaviors are already

suitable abstractions for actual modules, if details have to be hidden, this can be done

by means of nondeterminism within the abstract behaviors exposed. Roughly speaking,

we look for a controller that can realize (i.e., implement) the target behavior by suitably

operating the available ones.

To formally define controllers, we first extend the notion of traces for transition

systems to enacted behaviors and enacted systems.

25

CHAPTER 2: BACKGROUND

Definition 2.11 (Trace and History). A trace for a given enacted behavior EB =

〈S,A, s0, δ〉 is a, possibly infinite, sequence of the form s0 a1−→ s1 a2−→ · · · , such that

(i) s0 = s0; and (ii) sj
aj+1

−→ sj+1 in EB, for all j > 0. A history is just a finite prefix

h = s0 a1−→ · · · a`−→ s` of a trace. We denote s` by last(h), and ` by |h|.

Notions of trace and history extend naturally to enacted system: system traces have

the form s0 a1,k1−→ s1 a2,k2−→ · · · , and system histories have the form s0 a1,k1−→ · · · a
`,k`−→ s`.

Functions last(·) and |·| are extended in the obvious way.

Definition 2.12 (Controller). Let S = 〈B1, . . . ,Bn, E〉 be a system and H be the set

of all histories of the enacted system ES . A controller for system S is a partial function

C : H× A 7→ {1, . . . , n} which, given a system history h ∈ H and a target action a ∈ A ,

returns the index of a behavior that will execute the requested action a.

Next, following De Giacomo et al. [2013], we define when a controller realizes the

given target specification in the available system.

Given a behavior composition problem, we say a controller is a solution to the problem

if starting from the initial states of the target and the system, the controller can always

delegate current and subsequent target action requests to an available behavior in the

system. Informally, one first defines when a controller realizes a single trace of the target.

Then, a controller is said to be exact if it can realize all the target traces. Note, since

the target is deterministic, its behavior is fully characterized by the set of its traces (see

Section 2.2 for details).

Due to nondeterminism present in the environment and the available behaviors, af-

ter executing an action the system may evolve to any of the possible successor states.

Therefore, there could be multiple enacted system histories induced by a controller while

realizing a target trace. Obviously, an exact controller will be able to delegate the next

target action to an available behavior in all of such possibilities. Let us next formalise

this notion of induced enacted system histories.

Definition 2.13 (Histories induced by a controller [De Giacomo et al. 2013]). Let

τ = s0
T

a1−→ s1
T

a2−→ . . . be a trace of the enacted target behavior ET of target specification

T in environment E . The set of histories of enacted system ES = 〈S,A, {1, . . . , n}, s0, δ〉
induced by controller C on trace τ is the set Hτ,C =

⋃
`≥0H`τ,C, where:

• H0
τ,C = {s0};

• Hj+1
τ,C is the set of all (j + 1)-length histories h

aj+1,kj+1

−→ sj+1 such that:

– h ∈ Hjτ,C;

– env(sj+1) = env(sj+1
T);

26

SECTION 2.4: COMPOSITION – SOLUTION TO THE PROBLEM

– kj+1 = C(h, aj+1); that is, at history h, action aj+1 in trace τ is delegated to

available behavior Bkj+1 ; and

– last(h)
aj+1,kj+1

−→ sj+1 in ES ; that is, behavior Bkj+1 can actually execute action

aj+1.

Informally, Hτ,C ⊆ H represents the set of all possible enacted system histories that

could result when controller C realizes target trace τ . Observe that we require the en-

vironment evolution to be synchronized over enacted target and enacted system traces.

This is natural because we expect the environment to behave consistently for the system

and the target. For instance, in the garden scenario, if the waste bin gets filled after two

clean actions, then it will be so for both the system and the target. Since the enacted tar-

get trace already encodes the environment evolution that occurred, the induced enacted

system histories ought to comply with the same environment evolution.

Example 2.10. Consider a controller C1 for the garden example, where C1 delegates

all clean action requests to the cleaner bot BC and pick action requests to the multi-

bot BM . Let τ = 〈t0, e0〉
clean−→ 〈t1, e1〉

pick−→ 〈t2, e3〉 be a trace of the enacted target ET1 .

Then, the set of enacted system traces induced by C1 on τ include 〈a0, b0, c0, e0〉
clean,1−→

〈a0, b0, c0, e1〉
pluck:2−→ 〈a0, b1, c0, e3〉 and 〈a0, b0, c0, e0〉

clean,1−→ 〈a1, b0, c0, e1〉
pick,2−→ 〈a1, b1, c0, e3〉,

where 1 and 2 are behavior indexes of the cleaner bot BC and multi-bot BM , respectively.

Intuitively, a controller realizes an enacted target trace, if starting from its initial state

and following the trace thereupon, all induced enacted system histories can be extended

by successfully delegating the next target request to one of the available behaviors in

the system.2 Since a deterministic transition system is characterized by all its traces, a

controller realizes a target specification if it realizes all its (enacted target’s) traces. Given

a behavior composition problem with system S and target T , a controller which realizes

T in S is called an exact controller for T in S. A solution to such a problem, that is an

exact controller, is called a composition.

Definition 2.14 (Composition). A controller C realizes enacted target trace τ if: for all

ES histories h ∈ Hτ,C it holds that; if |h| < |τ |, then C(h, a|h|+1) = k and last(h)
a|h|+1,k−→ s′

in ES for some s′, where k ∈ {1, . . . , n} and ES is the enacted system for system S =

〈B1, . . . ,Bn, E〉. A controller C realizes a target behavior T in a system S iff C realizes all

traces of enacted target ET in S. A controller C is a composition for a target specification

T in system S if C realizes T in S.

2Note, since we do not consider final states here (all states are final), there is no need to check the
synchronisation of the final states of the enacted target and enacted system [De Giacomo et al. 2013].

27

CHAPTER 2: BACKGROUND

We use the terms exact controller and composition interchangeably. Formally, the classical

behavior composition problem can be stated as follows:

Given a system S = 〈B1, . . . ,Bn, E〉 and a deterministic target behavior T over

E, synthesize a composition C for T in S.

Example 2.11. Returning to the garden example, note that Figure 2.3 depicts two target

specifications, T1 and T2. For T1 and T2, an exact controller exists only for the target spec-

ification T1. One can verify that the trace 〈t0, e0〉
clean−→ 〈t1, e0〉

water−→ 〈t3, e0〉
empty−→ 〈t0, e0〉 of

the enacted target ET2 cannot be realized in system S, hence, the target specification T2

does not have a solution in S.

Note that any controller that can fully realize a target in a given system is an exact

controller. In fact, for a given behavior composition problem there may be more than one

exact controller. This may be due to redundant functionalities present in the available

system or to having multiple copies of the same behavior. To formally capture all possible

exact controllers for a given composition problem, the notion of composition generator [De

Giacomo et al. 2013] is used.3 Here, we present a more general definition of composition

generator as compared to what is found in the literature.4

Definition 2.15 (Composition generator). LetH be the set of enacted system histories

of system S = {B1, . . . ,Bn, E} and T be a given target specification over joint actions A.

Then, a composition generator for T in S is the function CG : H×A→ 2{1,...,n} such that:

a controller C is an exact controller for T in S iff for all enacted system histories h ∈ H
and actions a ∈ A, C(h, a) ∈ CG(h, a).

Interestingly, if there exists a solution for a given behavior composition problem, then

its composition generator is unique [De Giacomo et al. 2013].

In terms of computational complexity, checking the existence of an exact composition

for given target specification in a system is EXPTIME-hard [Muscholl and Walukiewicz

2007, Sardina et al. 2007]. Muscholl and Walukiewicz [2007] show the lower exponen-

tial bound by reducing the problem of checking if an alternating Turing machine with

polynomial space bound loops on a given input to the problem of checking simulation

between deterministic behaviors and a given target specification. Interestingly, involving

nondeterministic behaviors does not change the computational complexity [Sardina et al.

2007].

3Note a slight departure from the terminology used in literature [Sardina et al. 2008, De Giacomo et al.
2013], we use the term composition generator instead of controller generator to clearly specify aggregation
of compositions rather than controllers (which may not be exact).

4The commonly used definition [Sardina et al. 2008, De Giacomo et al. 2013] relies on an extended
simulation relation and depends on the proven link between this extended simulation relation and exact
controllers.

28

SECTION 2.5: SYNTHESISING COMPOSITIONS

Theorem 2.3. Let S = 〈B1, . . . ,Bn, E〉 be a system and T a target specification. The

problem of checking the existence of a controller C able to realize T in S is EXPTIME-

hard.

Observe that both the exact controller and composition generator are defined as

mathematical functions. It still remains to be seen whether such functions can actually

be computed, and more importantly, represented finitely.

2.5 Synthesising compositions

Various techniques have been used to synthesise controllers for the classical behavior

composition problems, including PDL satisfiability [De Giacomo and Sardina 2007], direct

search-based approaches [Stroeder and Pagnucco 2009], ATL/LTL synthesis [Sardina and

De Giacomo 2008, De Giacomo and Felli 2010], safety games [De Giacomo et al. 2013],

and computation of special kind of simulation relation [Sardina et al. 2008, Berardi et al.

2008]. We briefly outline these techniques here.

2.5.1 Synthesising compositions via PDL-satisfiability

Propositional Dynamic Logic (PDL) is an extension of modal logic designed to reason

about computer programs over propositional variables [Harel et al. 2000]. Syntactically,

the language of PDL consists of two basic expressions: propositions and programs. Atomic

propositions are Boolean variables and atomic programs are single instructions that can

be executed in one step. Given a set of atomic propositions P and atomic programs

Φ, complex formulae and programs can be built inductively by using PDL operators as

follows [Harel et al. 2000]:

ϕ→ p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 ⇒ ϕ2 | [α]ϕ | 〈α〉ϕ | true | false;

α→ a | α1 ∪ α2 | α1;α2 | α∗ | ϕ?,

where, p ∈ P is an atomic proposition and a ∈ Φ is an atomic program. The modal

formula 〈α〉ϕ intuitively means that there is an execution of program α such that the

execution terminates in a state satisfying ϕ. Its dual [α]ϕ implies that ϕ holds in all

terminating executions of α.

Similar to modal logic, PDL formulae are interpreted over Kripke frames. A Kripke

frame is a pair 〈K,m〉 where, K is a non-empty set of states and m is a meaning func-

tion [Harel et al. 2000]. The meaning function m serves a dual purpose: for each atomic

proposition p ∈ P, m(p) ⊆ K returns the set of states in K in which p is true; and for

each atomic program a ∈ Φ, m(a) ⊆ K ×K returns a set of state pairs 〈k, k′〉 such that

executing program a from a state k may result in state k′. Intuitively, one can check

if a formula of the type 〈α〉ϕ holds in a state k by following the sequence(s) of states

inductively induced by m(α) and then checking if ϕ holds in the terminating state of any

29

CHAPTER 2: BACKGROUND

of these executions. Given a formula ϕ over a set of atomic propositions P and atomic

programs Φ, the satisfiability problem in PDL is to check for the existence of a Kripke

frame 〈K,m〉 such that ϕ is satisfiable in 〈K,m〉.
Observe that a non-atomic program is inductively built using regular expressions

(∪, ; , ∗) and the core components of behavior composition have automaton-like structures.

De Giacomo and Sardina [2007] leverage this similarity and provide an encoding schema

to model the dynamics of enacted system evolution, target specification, and controller

delegation via a PDL formula. In particular, given a behavior composition problem with

a system S = 〈B1, . . . ,Bn, E〉 and target specification T over joint actions A, the atomic

programs Φ consist of actions A and the atomic propositions P consist of (i) propositions

for each state in the behaviors, environment and the target; (ii) propositions for all possible

controller (action-behavior index) delegations; and (iii) a special proposition undef to

denote no behavior delegation is possible. Using these, a formula ϕS,T is built encoding the

transition relation of the available behaviors, environment, and the target. In addition, the

formula ϕS,T embeds constraints to ensure that only the delegated behavior, environment,

and target evolve after an action is executed. De Giacomo and Sardina [2007] show that

an exact controller exists for target T in system S iff the PDL formula ϕS,T is satisfiable.

As pointed out earlier, there may be more than one exact controller, consequently there

may be more than one model satisfying ϕS,T . However, PDL satisfiability returns only

one such model, therefore, only one possible exact controller can be computed at a time.

Every satisfiable formula in PDL admits a finite model which can be exponential in

size with respect to the formula size in worst case [Harel et al. 2000]. This property of

PDL, known as the small model property, implies that controllers for behavior composi-

tion, which were defined as mathematical functions, can indeed be computed and finitely

represented. Moreover, the satisfiability problem for PDL is EXPTIME-complete [Harel

et al. 2000], hence, one can check for existence of compositions in exponential time.

While, in theory, reduction to PDL provides a technique to solve behavior composition

problems, there are no efficient PDL theorem provers to leverage. In addition, for solvable

problem instances we obtain only a single controller instead of a composition generator.

2.5.2 Synthesising compositions via search

For a behavior composition problem, the enacted system represents the complete func-

tionality that can be achieved as a result of operating the available behaviors in the given

environment. Conceptually, the enacted system provides the feasibility boundary for a

given behavior composition problem; that is, any realizable target specification ought to

be within this boundary. Hence, in order to search for a composition (and composition

generator), one only needs to consider the possibilities contained within the enacted sys-

tem.

30

SECTION 2.5: SYNTHESISING COMPOSITIONS

Stroeder and Pagnucco [2009] suggest a forward search approach to search for com-

positions. A state in their search based technique encapsulates a snapshot of the given

composition problem [Stroeder and Pagnucco 2009]; it consists of the current state of

the target, current state of the enacted system, an action that was requested by target

in the previous step, a behavior that could have performed that action, and a set of

possible action requests that the target may request next. The search proceeds in two

phases [Stroeder and Pagnucco 2009]: an expansion phase and a marking phase. During

the expansion phase the algorithm generates successor search states, starting from the

initial state, allocating each possible target action request to an available behavior. In

the marking phase, the algorithm checks for illegal states amongst the expanded ones and

marks them. A state is considered illegal if there is no behavior which can be delegated

an action request, or if any of its nondeterministic successor states is illegal. An exact

controller exists for a given problem if the initial state is not marked.

Unlike the PDL-satisfiability approach, the search based technique computes the com-

position generator rather than a composition. Observe that, in practice, only the reachable

parts from the initial state of the enacted system need to be searched. Hence, the forward

search approach is efficient in cases where the target specification requires only a small

subset of the enacted system functionality.

2.5.3 Synthesising compositions via simulation

Recall that the behavior composition problem considers existence of a controller able to

control the available behaviors such that it appears as if one is actually executing the target

behavior. At a high level, the controller is restricting the enacted system behavior (see

Definition 2.10) to match the enacted target behavior. This “matching” of behavior very

closely resembles the well known notion of simulation [Milner 1971]. Berardi et al. [2008]

and Sardina et al. [2008] exploited this connection between behavior composition and

simulation to derive a technique to generate composition generators.

Due to the nondeterminism present in the environment and the available behav-

iors, the standard notion of simulation is inadequate; instead an extension, called nd-

simulation, is used. Informally speaking, the notion of nd-simulation requires the simu-

lation property to be maintained across all nondeterministic evolutions.

Definition 2.16 (ND-simulation [De Giacomo et al. 2013, Sardina et al. 2008]). Let S =

〈B1, . . . ,Bn, E〉 be a system, T be the target behavior, and let ES = 〈S,A, {1, . . . , n}, s0, δS〉
and ET = 〈T,A, t0, δT 〉 be the enacted system and enacted target, respectively. An nd-

simulation [Sardina et al. 2008] relation of ET by ES is a relation R ⊆ T × S such that

〈t, s〉 ∈ R implies:

1. env(t) = env(s);

2. for all a∈A, there exists a k∈{1, . . . , n} such that for all transitions t
a−→ t′ in ET :

31

CHAPTER 2: BACKGROUND

• there exists a transition s
a,k−→ s′ in ES with env(t′) = env(s′); and

• for all transitions s
a,k−→ s′ in ES with env(t′) = env(s′), it is the case that

〈t′, s′〉 ∈ R.

Intuitively, an enacted target-system state pair 〈t, s〉 is in R iff (i) t and s share

the same environment; and (ii) for all possible successors of t, there exists a behavior

which can evolve from s such that, despite nondeterminism, the corresponding successors

of t and s are in nd-simulation. We say an enacted target state t is nd-simulated by

enacted system state s, denoted by t �nd s, iff there exists an nd-simulation relation

R such that 〈t, s〉 ∈ R. The enacted system ES nd-simulates the enacted target ET ,

denoted by ES �nd ET , iff their initial states are in nd-simulation: that is, t0 �nd s0.

Similar to simulation, the relation �nd is the largest nd-simulation relation; that is, all

the nd-simulation relations are contained in it.

Coming back to composition controllers, Sardina et al. [2008] show that an exact

controller exists for a given problem instance, if the enacted system nd-simulates the

enacted target. This is an important result in the context of this thesis, so we state it

formally:

Theorem 2.4 (Sardina et al. [2008]). Let S = 〈B1, . . . ,Bn, E〉 be a system, T be the

target specification, and let ES = 〈S,A, {1, . . . , n}, s0, δS〉 and ET = 〈T,A, t0, δT 〉 be the

enacted system and enacted target, respectively. An exact controller C exists for T in S
iff ET �nd ES .

As noted earlier, there may be more than one exact controller for a given problem.

Consequently, there may be more than one nd-simulation relation between the enacted

target and the enacted system. However, all of these nd-simulation relations will be sub-

sumed by the �nd relation, the largest nd-simulation relation. This provides an impor-

tant characterisation of the composition generator. More importantly, the �nd relation

can be computed by an elegant regression algorithm called NDS [Sardina et al. 2008].

The NDS algorithm first constructs all possible enacted target-system state pairs, and

then iteratively removes the pairs which violate the local requirements of nd-simulation.

The algorithm terminates when no more such pairs can be removed, implying that all

remaining enacted state pairs are in nd-simulation.

In terms of time complexity, computing �nd is polynomial in the size of the model;

however, the model itself is exponential in the number of available behaviors. As a result,

the nd-simulation based technique uses exponential time. However, as compared to the

PDL based approach, we can now synthesize composition generators without an increase

in time complexity.

32

SECTION 2.5: SYNTHESISING COMPOSITIONS

Note that in order to compute the composition generator, the NDS algorithm con-

structs the enacted system and the enacted target separately. In contrast to the forward

search approach, this will be inefficient in practice for problem instances where the tar-

get may require a small subset of enacted system functionality. In addition, the NDS

algorithm uses explicit representations for the state pairs; thus it suffers from the state

explosion problem [Burch et al. 1992], very-well known to the model-checking community.

An efficient way to tackle state explosion is by using compact representations such as or-

dered binary decision diagrams (OBDD) [Meinel and Theobald 1998]. Hence, a practically

amenable method is to rely on tools already built by the verification and model checking

communities, such as jtlv [Pnueli et al. 2010](Java-based improved version of tlv [Pnueli

and Shahar 1996]), mocha [Alur et al. 1998], nugat (based on nusmv [Cimatti et al.

2002]), lily [Jobstmann and Bloem 2006], and mcmas [Lomuscio and Raimondi 2006,

Lomuscio et al. 2009]. We present two such techniques next, one relying on LTL synthesis

and the other on ATL model checking.

2.5.4 Synthesising compositions via LTL-synthesis

LTL synthesis involves automatic synthesis of programs from their specifications. De

Giacomo and Patrizi [2010] use the two player game [Piterman et al. 2006] approach to

LTL synthesis to automatically build the composition generator (i.e., a program) from

a given target and system (i.e., specification). Roughly speaking, the game is played

between two players, namely, the environment-player and system-player, where at each

turn, the former moves and the latter responds. In the context of behavior composition,

the environment-player is the target along with the system, and the system-player is the

controller. Intuitively, the moves of the target/system (that is, the environment-player)

involve requesting actions as per the target specification and evolving the enacted system

as per the controller delegation. The controller (that is, the system-player) responds by

delegating the requested action to an available behavior. The objective of the controller

is to always be able to reply to the target/system such that it can honor the requested

actions. Since the aim is to always satisfy a property, such a game is called a “safety”

game.

Technically, the game is played over a safety game structure which consists of a

mutually exclusive set of environment and system variables–let us call them X and Y,

respectively–and rules for updating their values. Let X (Y) be the set of all possible

evaluations of variables in X (Y). Then, a game state 〈x, y〉 ∈ X×Y consists of a complete

assignment of values to environment and system variables. The game proceeds as follows,

from a given initial state the environment-player updates its set of variables (i.e., variables

in Y); then the system-player responds by updating the variables it controls (i.e., variables

in X), and so on. It is assumed that the system-player can see the environment-player’s

move before playing. Both environment-player and system-player can only update their

33

CHAPTER 2: BACKGROUND

variables as per the rules defined as part of the game structure. The system-player wins

a game if it can ensure the given formula holds over infinite plays, else the environment-

player wins. The task is then to synthesize a winning reply-strategy for the system such

that the goal holds in all possible (infinite) “plays” that may ensue in the game when the

system-player follows such a strategy. A state is called “winning” if there is a winning

strategy from it.

De Giacomo and Patrizi [2010] show that the composition generator can be synthe-

sised by building a winning strategy for a particular safety-game. The core idea behind

the translation is as follows: the controller should always be able to satisfy the target’s

request, no matter how the system evolves (legally) or what action the target requests

(compliant with its specification). Appropriately, the environment, behaviors, and the tar-

get comprise the environment-player ; and the controller is the system-player. The formula

that the system-player must ensure is 2¬fail, where fail denotes an infeasible controller

delegation; that is, the delegated behavior cannot execute the requested action. Then, a

given problem instance accommodates an exact controller if the system-player can win

the game starting from the initial state, and a composition generator can be extracted

from the set of all winning states [De Giacomo and Patrizi 2010, De Giacomo et al. 2013].

2.5.5 Synthesising compositions via ATL model checking

Alternating-time temporal logic (ATL) [Alur et al. 2002] is a logic for reasoning about

the ability of a group of agents (i.e., a coalition) in a multi-agent game structure. In

the composition setting, each of the available behaviors, environment, target, and the

controller can be considered to be an agent.

ATL formulae are built by combining propositional formulas, the usual temporal

operators—namely, © (“in the next state”), 2 (“always”), 3 (“eventually”), and U
(“strict until”)—and a coalition path quantifier 〈〈Ag〉〉 taking a set of agents Ag as pa-

rameter. Intuitively, an ATL formula 〈〈Ag〉〉φ, where Ag is a set of agents, holds in an

ATL structure if by suitably choosing their moves, the agents in Ag can force φ true, no

matter how other agents happen to move. The semantics of ATL is defined in so-called

concurrent game structures where, at each point, all agents simultaneously choose their

moves from a finite set, and the next state deterministically depends on such choices.

De Giacomo and Felli [2010] show that the composition generator (i.e., a structure

representing all exact compositions) can be synthesised by resorting to ATL model check-

ing. In order to reduce a behavior composition problem, for a system S = 〈B1, . . . ,Bn, E〉
and target T , to an ATL model checking problem, they basically define an ATL structure

M〈S,T 〉 with one agent per available and target behavior, and one distinguished agent

contr representing the controller. A state 〈b1, . . . , bn, ts, a, e, ind〉 in such a model encodes

the current state bi of each available behavior, the current state ts of the target, the cur-

rent action a being requested by the target, the current state e of the environment, and

34

SECTION 2.6: VARIATIONS OF THE CLASSICAL BEHAVIOR COMPOSITION PROBLEM

the index of the available behavior to which the last action was delegated. The initial

states of M〈S,T 〉 encode all possible initial configurations of the composition framework,

i.e., initial states for all behaviors and a legal initial request. The transition function of

the structure M〈S,T 〉 is made to encode all legal evolutions of the composition instance.

The task then involves model checking the formula 〈〈contr〉〉2(
∧
i=1,...,n statei 6= error i)

(against structure M〈S,T 〉) which states that the controller agent has a strategy so that

none of the n available behaviors end up in an error state. A behavior arrives to a dis-

tinguished “error”state if it is ever delegated an action that it cannot perform. As a

result, the controller agent ought to ensure it always delegates actions in a way so as to

satisfy every potential request; that is, it has to solve the composition problem. Finally,

De Giacomo and Felli [2010] show how to extract a correct composition generator from

the set of winning states [ϕ]M〈S,T 〉 , namely, all those states q in M〈S,T 〉 from where the

controller has a winning strategy. Intuitively, a winning state for them is one in which

the current request is legally honored to some available behavior and all corresponding

successor states are winning.

2.6 Variations of the classical behavior composition problem

The assumptions used in the classical behavior composition framework can be relaxed

to cater for interesting problem extensions applicable to certain practical settings. For

example, one could consider the available behaviors to be partially observable by the

controller [De Giacomo et al. 2009], the available behaviors may act concurrently instead

of one at a time [Sardina and De Giacomo 2008], or the controller itself may be assumed

to be distributed [Sardina et al. 2007] instead of centralized. We briefly outline these

extensions next.

De Giacomo et al. [2009] drop the full observability assumption by restricting the

controller to have partial observability over the available behavior states. In order to do

so, they associate an observability function with each available behavior; this is a standard

way to handle partial observability in planning [Bertoli et al. 2001b] and decision theory

formalisms [Monahan 1982, Kaelbling et al. 1998]. Intuitively, an observability function

exports the perceivable information from each state. As a result, the controller may not

know the actual state of a behavior, but instead can only track the exported observation.

Hence, the authors [De Giacomo et al. 2009] extend the controller to consider histories over

such observations instead of histories over actual states. A controller in such an instance

is considered exact, if in spite of incomplete information it can guarantee the realisability

of the target specification. Interestingly, unlike for automated planning [Haslum and Jon-

sson 2000, Rintanen 2004], the complexity class of the problem with partial observability

remains the same as for the classical setting with full observability. This is due to the

fact that partial observability is not at the level of enacted system, but is at the behavior

35

CHAPTER 2: BACKGROUND

level. In comparison, in automated planning such a decomposition does not exist, and

therefore, the entire domain becomes partially observable.

There are cases [Lundh et al. 2008, Saffiotti and Broxvall 2005, Kim et al. 2004],

where one may want to realize multiple target specifications rather than just one. Sardina

and De Giacomo [2008] cater for this requirement by defining concurrent composition,

wherein multiple target specifications can be realized by allowing multiple actions to be

requested, one per target specification, at the same time. In this flavour of behavior

composition, a problem instance consists of a set of available behaviors and set of target

specifications, along with an environment. Here, a controller has two responsibilities: one,

as usual, to delegate one of the requested actions to an available behavior, and second to

progress one of the target agents, whose requested action was successfully delegated. To

prevent starving a target agent, only one pending request is allowed per target. That is,

a controller is supposed to be fair between the multiple targets. A controller is deemed

exact if it can ensure all target specifications can be eventually realized. Intuitively, an

exact controller carefully selects which action to realize next such that the other pending,

current and future, action requests are not jeopardized.

A third possible relaxation lies in the decentralisation of control. This is of partic-

ular interest in cases where the available behaviors are distributed and not present in

one central location, as in the case of the RoboCup domain [Bredenfeld 2006] and robot

ecologies [Tilden 1993]. Sardina et al. [2007] tackle this by modelling message exchange

between distributed controllers as a synchronisation mechanism. More importantly, they

show that for every decentralized exact controller there exists a central exact controller

and vice-versa.

In addition to the relaxation of the classical settings, behavior composition framework

has been extended in the context of advanced planning [De Giacomo et al. 2010a;b].

Observe that the target specification in the classical setting is of a procedural nature, that

is, the user of the target requires certain actions to be done. De Giacomo et al. [2010a]

consider target specifications involving declarative goals [van Riemsdijk et al. 2005]; that

is, the user requires certain goals to be achieved without specifying how to achieve them.

The task in such a setting is to synthesize plans that will achieve the current requested

goal in a way such that they will not compromise the feasibility of satisfying future goal

requests. Second, De Giacomo et al. [2010b] consider a component based framework

to solve a generalized planning problem under strong fairness. The behaviors used in

their framework are more expressive because of the use of strong fairness constraints. In

their framework, one can embed constraints such as: after several clean attempts the

garden will eventually be free of dirt. Allowing of such constraints accommodates more

expressive types of incomplete information which may impact the solvability of a problem

instance [De Giacomo et al. 2010b].

We close this chapter by highlighting that behavior composition has received consid-

36

SECTION 2.7: SUMMARY

erable attention in recent years. All the approaches outlined above synthesize an exact

controller, when one exists, but for unsolvable problem instances, as in the case of target

specification T2 in the garden example (Figure 2.3), these techniques do not output any

useful information. Stroeder and Pagnucco [2009] were the first to recognize the need to

cater for unsolvable problem instances. An important feature of their forward search based

approach is that it is suited for finding approximations to the problem by modifying the

marking phase. That is, one could potentially relax the marking of nondeterministic suc-

cessors or search states in which all action requests cannot be delegated, in order to return

close enough solutions. However, the authors did not provide any concrete modifications

or formalisations of such approximations, and left it as important future work.

2.7 Summary

The classical setting for the composition problem has been extensively studied and enjoys

efficient methods to solve the problem via state-of-the-art tools. However, a pressing

question has resisted concrete answers: How to deal with unsolvable problem instances?

The main focus of this thesis is to address this question in a principled manner. We shall

shift the perspective at the behavior composition problem from a feasibility perspective to

an optimisation one, thus providing meaningful (partial) solution concepts for unsolvable

problem instances.

To summarise:

• Behavior composition deals with control and coordination of available behaviors

(see Definition 2.6) to realize a complex, unavailable, target specification (see Defi-

nition 2.8) in a shared environment (see Definition 2.5).

• A controller is called a composition (see Definition 2.14), a solution to the problem,

if it realizes the given target specification in the system.

• Techniques to automatically synthesise compositions include PDL satisfiability [De

Giacomo and Sardina 2007], forward search [Stroeder and Pagnucco 2009], synthesis

of a special kind of simulation relation [Sardina et al. 2008], LTL synthesis [De

Giacomo and Patrizi 2010], and ATL model checking [De Giacomo and Felli 2010].

• The classical composition problem, along with the partial observable, distributed,

and concurrent extensions, are all EXPTIME-complete.

• No known technique(s) exist to handle unsolvable composition problem instances.

37

CHAPTER 3
Supremal Realizable Target Fragments

“The greatest challenge to any thinker is stating the

problem in a way that will allow a solution.”

–Bertrand Russell

Classical behavior composition can be seen as a yes/no (decision) problem. Wherein

the problem is to check the existence of an exact controller for a given target specifica-

tion to be implemented via a set of available behaviors acting in shared environment, and

the answer is either a “yes” or a “no.” Though the techniques for behavior composition

construct an exact controller if there exists one, unsolvable problem instances are not

accompanied by any useful information (except that a composition does not exist for the

given problem instance). Rather than just providing a negative answer, a more practi-

cally useful approach will be to provide additional insights into the unsolvability of that

particular problem instance: for example, information such as which part(s) of the target

specification is causing the problem to be unsolvable, or even better returning the best

possible solution(s). In other words, we would like to translate the decision problem in

behavior composition from a feasibility problem to an optimisation problem.

Recall that the behavior composition problem has three core components, namely,

the available system (built from a collection of existing modules and a shared environ-

ment), the target specification, and a controller. In unsolvable cases, one could potentially

“optimize” any of these elements. For instance, one could look at enhancing the system

with new capabilities, shrinking the target specification, or returning the best possible

controller. In the first case, the end user may be presented with additional capabilities

(new behaviors or extensions to existing behaviors) required to render the given target

specification realizable. Note that acquiring such capabilities may or may not be phys-

ically possible as these additional devices may not exist in reality. In comparison, the

second and third optimisation strategies involve ways of maximising the best that can

39

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

e0 e1

e3 e2

LightOn

Stop

σ ∈ Σ

LightOff
Stop

σ ∈ Σ

LightOff

S
to

p

σ ∈ Σ

S
to

p

LightOn
σ ∈ Σ

Environment E
Σ = {Movie,Music,Radio,Game,Web}

a0 a1

a2

a3

Movie
Game

Web

Stop

Web
Replug

Game Device BG

b0 b1 b2
Music Radio

Stop

Audio Device BA

d0 d1

LightOn

LightOff

Light Device BL

c0 c1 c2
Movie Radio

Stop

Movie Device BM

t0 t1 t2 t3 t4
LightOn

Movie
Music

Game
Radio

Web

Stop

LightOff

Target T

Figure 3.1: Behavior composition in ambient spaces.

be done with the existing devices at hand without requiring any further capabilities or

domain knowledge, and will be the focus of this thesis.

Example 3.1. Consider a smart home scenario with a media room that has a collection of

devices for entertainment of users, as shown in Figure 3.1. The media room environment

E allows toggling the lights on/off, and playing and stopping various media options. The

room is equipped with four devices, namely, a game device BG to play games, browse

the web, and watch movies; an audio device BA for listening music from compact discs

and radio; a movie device BM to watch movies and listen to radio; and a light device

BL to switch lights on and off. Observe that in the room environment, operating the

media devices and toggling the lights can be done independently. Amongst the devices

present, only the game device BG is nondeterministic: if the game device loses its Internet

connection, executing the Web action will necessitate replugging the network cable. One

can check that the target specification T does not have an exact controller. This is

because, after the t1
Music−→ t2 request, the t2

Game−→ t3 target request cannot be delegated to

any available device.

Informally, the best possible controller for the given target specification, is one that

may not be exact, but will realize as much of the original target specification as possible.

On the other hand, optimisation of the target specification results in a partial specification

that can be implemented fully in the given system. We formalize both these optimisation

strategies in this chapter, and in fact show that these are equivalent perspectives on

behavior composition optimisation.

3.1 Extended framework

We begin by extending the classical framework to cater for these optimised components.

We slightly relax the classical framework by allowing target specifications to be nondeter-

40

SECTION 3.1: EXTENDED FRAMEWORK

ministic. The objective for doing so is not so much to capture incomplete information,

or allow the target specification to be partially controllable. Instead, the aim is to allow

target requests to embed more implicit information, thus allowing more expressive speci-

fications to be obtained. For example, consider two target specifications T and T̂2 shown

in Figures 3.1 and 3.3, respectively. Target specification T̂2 forces the user to reveal their

choice of Game or Radio before choosing the Movie action; in comparison, specification

T allows the users to delay this choice to until the movie has finished. In this context,

we say that T̂2 has more information embedded into the specification as compared to

the target module T . In other words, target specification T allows greater “freedom of

choice” to the user. Technically, this means that the user of a nondeterministic target

specification has to choose in advance between different target traces having a common

prefix. Informally, such a pre-selection provides more information on subsequent action

requests to the controller. Indeed, in some cases this additional information may be the

difference between a problem being solvable or unsolvable.

To ensure nondeterministic targets are still fully controllable, we extend the definition

of a controller to account for target transition requests instead of action requests. For

the rest of this section let S = 〈B1, . . . ,Bn, E〉 be an available system, T = 〈T, t0, G, %〉
be a target specification, and H be the set of all histories of the enacted system ES
(Definition 2.10 on page 24).

Definition 3.1 (Nondeterministic transition-based controller). A controller for a

potentially nondeterministic target specification T in a system S is a partial function

C : H× (T ×G×A× T) 7→ {1, . . . , n} which, given a system history h ∈ H and a target

transition 〈t, g, a, t′〉 ∈ %, returns the index C(h, t, g, a, t′) of a behavior that will execute

the action a in the requested transition t
g,a−→ t′ of T .

For legibility, we write C(h, t
g,a−→ t′) to compactly denote C(h, t, g, a, t′). The defini-

tion of an exact controller (i.e., a composition) extends naturally to account for transition

requests instead of action requests.

Definition 3.2 (Histories induced by a transition-based controller). Let τ =

s0
T

a1−→ s1
T

a2−→ . . . be a trace of the enacted target behavior ET . We define the set of

histories of enacted system ES = 〈S,A, {1, . . . , n}, s0, δ〉 induced by controller C on trace

τ , as the set Hτ,C =
⋃
`≥0H`τ,C, where:1

• H0
τ,C = {s0};

• Hj+1
τ,C is the set of all (j + 1)-length histories h

aj+1,kj+1

−→ sj+1 such that:

– h ∈ Hjτ,C;

1Recollect that for a given enacted target state s = 〈t, e〉, t and e are denoted by tgt(s) and env(s),
respectively.

41

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

– env(sj+1) = env(sj+1
T);

– kj+1 = C(h, tgt(sj)
gj+1,aj+1

−→ tgt(sj+1)); that is, at history h, action aj+1 in trace

τ is delegated to available behavior Bkj+1 ;

– there exists gj+1 ∈ G such that gj+1(env(sjT)) = true; that is, target T can

execute action aj+1 from state tgt(sjT) when environment is in state env(sjT);

– last(h)
aj+1,kj+1

−→ sj+1 in ES ; that is, behavior Bkj+1 can actually execute action

aj+1.

Observe that the definition of induced enacted system traces is same as Definition 2.13

(see page 26), except for the fact that action requests are replaced by transition re-

quests. While this has no impact when dealing with deterministic targets, it guaran-

tees full controllability for nondeterministic ones. As before, we say that a controller

C realizes enacted target trace τ if for all ES histories h ∈ Hτ,C: if |h| < |τ |, then

C(h, tgt(s
|h|
T)

g|h|+1,a|h|+1

−→ tgt(s
|h|+1
T)) = k and last(h)

a|h|+1,k−→ s′ in ES for some s′, where

g|h|+1(env(s
|h|
T)) = true. Finally, we define a transition-based exact controller, the same

as before, as relying on the set of enacted target traces it realizes.

Definition 3.3 (Transition-based composition). A controller C realizes a possibly

nondeterministic target behavior T in a system S iff C realizes all traces of enacted target

ET in S. A controller that realizes T in S is called a transition-based composition (exact

controller) for T in S. ExactComp(S, T) denotes the set of all exact controllers for a

target T in system S.

Note that the definition of an exact controller still relies on enacted target traces,

even for nondeterministic target specifications. This is because, to ensure full controlla-

bility of the target module, we allow traversing of nondeterministic targets via transitions

instead of actions. Semantically, this is equivalent to treating nondeterministic targets as

deterministic ones as the successor state is always unique, and known. The next result

shows that one can easily obtain an action-based exact controller in the classical setting

from a transition-based exact controller.

Theorem 3.1. Let C be a transition-based exact controller for a deterministic target spec-

ification T and system S = 〈B1, . . . ,Bn, E〉. Then Cd is an action-based exact controller

for T in S (as in the classical setting), where Cd is defined as follows:

Cd(h, a) = C(h, t, g, a, t′) where h = s0 a1−→ · · · s` and there exists

t0
g1,a1−→ · · · g

`−1,a`−1

−→ t
g,a−→ t′ ∈ ∆T such that

gi(env(si−1)) = g(env(s`)) = true for 0 < i ≤ `.

42

SECTION 3.2: MAXIMAL COMPOSITIONS

Proof. First, note that Cd is well defined: since T is deterministic there is at most one

target trace to justify a given system history. Second, we show Cd is a composition for T
in S as follows. Assume that Cd is not an exact controller for T in S. Therefore, there

exists a trace τ = s0
T

a1−→ s1
T

a2−→ . . . of enacted target ET which cannot be realized by Cd.

Hence, there exists a system history h = s0 a1−→ · · · s`, where ` ≥ 0, induced by Cd, such

that Cd(h, a`+1) is undefined and Cd(h[0, i], ai+1) ∈ {1, . . . , n} for 0 ≤ i < `, where h[0, i] is

the i length prefix of history h. Consequently, C(h, t`, g`+1, a`+1, t`+1) is undefined, where

t` = tgt(s`T), t`+1 = tgt(s`+1
T), and g`+1(env(s`)) = true. However, this is absurd because

C is an exact controller, therefore it cannot be undefined for a legal transition request

compliant with a given system history. Thus, Cd is an exact controller for T in S.

Lastly, note that the framework presented here is a strict extension to the classical

framework. By definition, all deterministic target specifications are trivially valid nonde-

terministic specifications; however, the converse is not true.

Relaxation to nondeterministic target behaviors, along with suitable extension of

controller definition, is the only extension required to the classical composition framework.

Surprisingly, although this is a minor departure from the classical setting, it will enable

us to capture solution concept(s) for unsolvable problems in a principled manner.

3.2 Maximal compositions

Suppose that we are given a target specification T and an available system S, and that,

as expected for many problems, there is no exact composition for T in S—the target

specification cannot be fully realized in the system. Merely returning a “no solution”

outcome is clearly highly unsatisfactory. In such cases, what does it mean for a controller

C1 to achieve “a better realization” of T in S than a controller C2?

To answer such a question in a qualitative manner and without requiring further

domain knowledge, we first rely on the extent to which these two controllers are able to

honour arbitrarily long sequences of enacted target requests. Intuitively, we say that a

controller C1 dominates another controller C2 if C1 realizes all the traces of enacted target

ET in system S that are realized by C2, and possibly more. Let ∆C
〈S,T 〉 denote the set of

enacted target traces realized by a controller C in system S. Formally:

∆C
〈S,T 〉 = {τ ∈ ∆ET | C realizes τ in S}.

Recall that ∆ET is the set of all traces of transition system ET . Then:

Definition 3.4 (Controller dominance). Given two controllers C1 and C2 for a target

specification T in system S, C1 dominates controller C2, denoted by C1 ≥ C2, iff ∆C2

〈S,T 〉 ⊆
∆C1

〈S,T 〉.

43

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

As usual, C1 > C2 is equivalent to C1 ≥ C2 and C2 6≥ C1; that is, ∆C2

〈S,T 〉 ⊂ ∆C1

〈S,T 〉.

Then, maximal compositions, the “best” compositions, are those for which there is no

other controller that can realize strictly more traces of the enacted target in the system.

Definition 3.5 (Maximal composition). A controller C is said to be a maximal com-

position (for a target on a system) iff for every other controller C′, if C′ ≥ C, then C ≥ C′.

We use MaxComp(S, T) to denote the set of all maximal compositions for T in S.

Example 3.2. Consider two controllers C1 and C2 for the target specification T in our

smart house scenario (see Figure 3.1). Whereas controller C1 allocates all transition re-

quests to the light device BL, controller C2 delegates media requests to the audio device

BA and lights requests to the light device BL. Thus C1 realizes just one trace; that is,

∆C1

〈S,T 〉 = {〈t0, e0〉
LightOn−→ 〈t1, e1〉}. On the other hand, C2 realizes this trace as well as

trace 〈t0, e0〉
LightOn−→ 〈t1, e1〉

Music−→ 〈t2, e2〉
Radio−→ 〈t3, e2〉

Stop−→ 〈t4, e1〉 (and all its prefixes).

Therefore, ∆C1

〈S,T 〉 ⊂ ∆C2

〈S,T 〉 and C2 > C1 holds. Other dominant controllers exist when all

four behaviors are used.

As one would expect, in solvable problem instances, the set of maximal compositions

and the set of exact compositions (see Definition 3.3) coincide:

Theorem 3.2. Let S be a system and T a target specification such that T has a transition-

based exact controller in S. Then, ExactComp(S, T) = MaxComp(S, T).

Proof. We prove ExactComp(S, T) and MaxComp(S, T) are subsets of each other.

• ExactComp(S, T) ⊆ MaxComp(S, T): Let C be an exact controller for T in

S. Now, suppose that C is not a maximal composition of T in S; that is C 6∈
MaxComp(S, T). Then, there must exist a controller C′ ∈ MaxComp(S, T) such

that C′ dominates C; that is C′ > C. Hence, ∆C
〈S,T 〉 ⊂ ∆C’

〈S,T 〉. Therefore, there exists

a trace τ of enacted target ET such that τ ∈ ∆C’
〈S,T 〉 and τ 6∈ ∆C

〈S,T 〉. But this is

not possible; as C is an exact controller of T in S, it realizes all traces of T ; that is

∆C
〈S,T 〉 = ∆ET . Therefore, controller C′ does not exist. Thus, C ∈MaxComp(S, T).

• MaxComp(S, T) ⊆ ExactComp(S, T): Let C′ be a maximal composition and C

an exact controller for T in S (we know there is at least one). Since C′ is maximal,

we know that C′ ≥ C; that is ∆C
〈S,T 〉 ⊆ ∆C’

〈S,T 〉. Also, since C is exact for T in S, we

have ∆C
〈S,T 〉 = ∆ET . Hence, ∆ET ⊆ ∆C’

〈S,T 〉. Thus, C′ is also an exact composition

for T in S; that is C′ ∈ ExactComp(S, T).

44

SECTION 3.3: SUPREMAL REALIZABLE TARGET FRAGMENTS (SRTFS)

Indeed, maximal compositions serve as exact controllers for solvable behavior com-

position problems, and in cases for which a full realization is impossible, they capture the

optimal controllers that one could hope for.

Example 3.3. Consider two maximal non-exact controllers C1 and C2 for target T in

the smart home system depicted in Figure 3.1. Controller C1 allocates all Movie requests

to game device BG, whereas C2 uses movie device BM for Movie requests. Since target

specification T is not solvable in the smart home system, maximal controllers C1 and C2

do not realize all the enacted target traces. Indeed, C1 will not realize any trace with an

action sequence where Movie is followed by Radio. Similarly, C2 will not realize any trace

where request for Movie is followed by a request for Game. Of course, other maximal

controllers also exist for the target specification T that may utilize both game device BG
and movie device BM .

Whereas maximal compositions provide a way of capturing optimal solutions for in-

stances with no exact solution, they suffer from two important limitations. First, maximal

compositions do not convey any useful insights on how well the instance can be solved.

Even if we are given the set of traces that a maximal composition realizes, it will be

difficult to reconstruct what it means in terms of the problem specification. As a con-

sequence, using a maximal non-exact composition may yield dead-end executions where

no further actions can be performed; that is, a maximal composition may become stuck.

Second, the end user manages only the target specification; that is, the end user is the

one requesting the domain actions and not the one delegating them. Hence, providing the

end user with a maximal composition for the original target specification is not practically

useful since without knowing the internals of the controller, the user cannot know which

actions she may request next. For example, it may happen that no subsequent requests

can be delegated after a particular initial request, in that case the user may decide to

avoid this initial request. In comparison, for solvable problem instances, the user does

not need to distinguish between transition requests since irrespective of which one she

chooses, a maximal (exact) composition will always be able to honor the future requests.

In short, just obtaining maximal compositions is not enough; one has to know how to use

it because full realizability is no longer a guarantee in unsolvable problem instances.

In the next section, the most important in this thesis, we shall look at optimal so-

lutions from a different perspective that is arguably more intuitive and computationally

more amenable, than dealing with maximal controller functions.

3.3 Supremal realizable target fragments (SRTFs)

An alternative to maximal compositions, though related (as we will show later in Sec-

tion 3.5), perspective is to ask what parts or aspects of a target specification T can indeed

45

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

be brought about in system S. For instance, which part of the target specification should

be removed to render the remaining specification realizable. More concretely, we are

interested in the following task:

Given an available system S and a target specification T , find a fragment T̂
of T that can be fully realized in S (by a composition Ĉ for T̂ in S) where T̂
is “as close as possible” to the original target specification T .

Intuitively, a target fragment is simply a partial specification of the original target

behavior. A realizable target fragment is a partial specification (of the given target) that

is in fact solvable in the available system; that is, there exists an exact controller for it.

Then, a supremal realizable target fragment is the largest realizable target fragment. Of

course, in fully solvable problem instances, the original target and its supremal realizable

target fragment will coincide.

In this section, we make these high level concepts concrete in three incremental steps:

1. We define a target fragment ;

2. We define a realizable target fragment as a target fragment having an exact compo-

sition; and

3. We define a supremal realizable target fragment as the largest realizable target frag-

ment.

When it comes to comparing behaviors and their fragments, simulation is an ideal choice;

the preorder property of the simulation relation is well suited to defining behavioral hi-

erarchies. To account for the shared environment, we extend the notion of simulation as

follows:

Definition 3.6 (e-simulation). Given two target behaviors Ti = 〈Ti, Gi, ti0, %i〉, for

i ∈ {1, 2}, over an environment E = 〈E,A, e0, ρ〉, an e-simulation of T1 by T2 is a binary

relation Sim ⊆ T1 × T2 where 〈t1, t2〉 ∈ Sim iff

• for all transitions 〈t1, a, g1, t
′
1〉 ∈ %1 there exists a transition 〈t2, a, g2, t

′
2〉 ∈ %2, such

that for all states e ∈ E, if g1(e) = true then g2(e) = true; and

• 〈t′1, t′2〉 ∈ Sim.

We say a state t1 of T1 is e-simulated by a state t2 of T2 in the context of environment

E , denoted by t1 �E t2, if there exists an e-simulation relation Sim of T1 by T2 such that

〈t1, t2〉 ∈ Sim. Target behavior T1 is e-simulated by target behavior T2 in the context of

environment E , denoted by T1 �E T2, if their initial states are in e-simulation; that is

t10 �E t20.

46

SECTION 3.3: SUPREMAL REALIZABLE TARGET FRAGMENTS (SRTFS)

q0 q1 q2 q3
LightOn

Movie,
Music Stop

LightOff

Target specification T2

p0 p1 p2 p3
LightOn

Movie,
LightOn

Stop,
LightOn

LightOff

Target specification T1

e0
q0

e1
q1

e2
q2

e1
q3

LightOn

Movie,
Music Stop

LightOff

Enacted behavior ET2

e0
p0

e1
p1

e2
p2

e1
p3

LightOn Movie Stop

LightOff

Enacted behavior ET1

Figure 3.2: Example to differentiate e-simulation between behaviors and simulated be-
tween enacted behaviors.

Similar to the standard simulation notion, T1 ≺E T2 implies T1 �E T2 and T2 6�E T1;

and T1 ∼E T2 implies T1 �E T2 and T2 �E T1. Conceptually, for two target specifications T1

and T2, T1 ≺E T2 means that when target behaviors T1 and T2 are placed in the environment

E , the enacted behavior of T1 in E will be subsumed by the enacted behavior of T2 in E .

We use an e-simulation to define target fragments. Note that the definition of a target

fragment is extremely simple.

Definition 3.7 (Target fragment). A target specification T1 is a fragment of another

target specification T2 in the context of an environment E iff T1 �E T2.

Observe that Yadav and Sardiña [2012] consider target fragments for composition

problems in the absence of the shared environment, hence it is enough for them to de-

fine target fragments relying only on the standard notion of simulation between target

specifications. However, in the context of the environment, guards need to be considered

and hence the standard notion of simulation cannot be directly applied to compare target

behaviors. A naive way to extend their definition to incorporate environment is to con-

sider simulation between enacted targets. Indeed, doing so makes the definition of target

fragments simpler as guards are compiled away in the enacted behaviors. However, Defini-

tion 3.7 is not only stricter than considering simulation between enacted target behaviors,

but is also more natural in the sense that defining target fragments based on enacted

target behaviors may lead to counter-intuitive examples.

Example 3.4. Consider the target specifications T1 and T2 shown in Figure 3.2 for the

media room scenario. Target T1 allows requesting of multiple LightOn actions, whereas T2

allows LightOn only from its initial state. As a consequence, T1 is not e-simulated by T2;

that is T1 6�E T2, where E is the media room environment shown in Figure 3.1. Clearly,

and also intuitively, T1 is not a fragment of the target specification T2. However, note

47

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

that the media room environment only allows toggling the light switch; that is multiple

LightOn actions are not allowed, as is evident in the enacted system ET1 of the target

T1. Now, comparing the enacted systems ET1 and ET2 of respective target behaviors T1

and T2, one can check that ET2 strictly simulates ET1 , as ET2 allows an extra Music action

after turning the room lights on. Hence, if only simulation between enacted systems is

considered, then T1 will be a fragment of T2. This is counter-intuitive as specification T1

“seems” to allow more LightOn actions than specification T2.

The above example depicts the fineness of the e-simulation between target specifica-

tions as compared to simulation between enacted targets; we show this formally.

Theorem 3.3. Let Ti = 〈Ti, Gi, ti0, %i〉, where i ∈ {1, 2}, be two target specifications

over an environment E = 〈E,A, e0, ρ〉 and ETi be their respective enacted target behaviors.

Then, T1 �E T2 implies ET1 � ET2, but ET1 � ET2 and T1 6�E T2 may hold.

Proof. We show the strictness of e-simulation in two steps.

• T1 �E T2 implies ET1 � ET2 : Let ETi = 〈Si, A, si0, δi〉 for i ∈ {1, 2} be the respective

enacted target behaviors of T1 and T2 over environment E . We define a function

f : S1 → S2 where f(s1) = s2 such that env(s1) = env(s2) and tgt(s1) �E tgt(s2).

That is, f takes an enacted target state s1 of ET1 and returns a corresponding

enacted target state s2 of ET2 such that s1 and s2 are in the same environment state

and their respective target states are in e-simulation. Note, there may be multiple

such functions as a state in T1 could be e-simulated by multiple states in T2. We

nondeterministically pick one such f (there is at least one). Now, consider a relation

R ⊆ S1 × S2 such that 〈s1, s2〉 ∈ R iff s2 = f(s1). We show that R is a simulation

relation of ET1 by ET2 . Consider a tuple 〈s1, s2〉 ∈ R:

1. If there is no transition 〈s1, a, s
′
1〉 in ET1 , then 〈s1, s2〉 trivially obeys the simu-

lation requirement.

2. If there exists a transition 〈s1, a, s
′
1〉 in ET1 , then there exists:

– A guard g1 ∈ G1 such that g1(env(s1)) = true and 〈tgt(s1), g1, a, t
′
1〉 in

T1; that is action a can be executed from state tgt(s1) of target T1 when

environment is in state env(s1); and

– A transition 〈env(s1), a, e′〉 in E ; that is the environment itself allows the

execution of action a.

Since tgt(s1) �E tgt(s2), there exists a transition 〈tgt(s2), g2, a, t
′
2〉 such that

g2(env(s2)) = true and t′1 �E t′2. Moreover, as env(s1) = env(s2), there exists a

transition 〈s2, a, s
′
2〉 in ET2 with env(s′2) = e′ and tgt(s′2) = t′2. Hence, s′2 = f(s′1)

and so 〈s′1, s′2〉 ∈ R. Therefore, R is a simulation relation of ET1 by ET2 .

48

SECTION 3.3: SUPREMAL REALIZABLE TARGET FRAGMENTS (SRTFS)

u0 u1 u4 u5 u8
LightOn Movie Radio Stop

LightOff

Realizable fragment T̃1

u0 u1

u2 u3

u6 u7

u4 u5 u8
LightOn

Movie

Game
Stop

Music Radio
Stop

Movie Radio Stop

LightOff : e1∨e2
Supremal realizable fragment T̂2

Figure 3.3: Realizable target fragments for the ambient spaces example.

• ET1 � ET2 and T1 6�E T2: Example 3.4 shows such an instance.

In the enacted target behavior, the environment restricts the target specification

to only allowable transitions. Hence, if we rely on simulation between enacted target

behaviors to define target fragments, a target fragment will be legally allowed to contain

inoperative transitions in the context of the given environment as such transitions will be

compiled away in their respective enacted behaviors.

Example 3.5. Compare the target specifications T , T̃ , and T̂ shown in Figures 3.1

(page 40) and 3.3, respectively. Observe that, in the media room environment E , T̂ is

a fragment of T (T̂ ≺E T), and T̃ is a fragment of both T̂ and T (T̃ ≺E T̂ ≺E T).

Moreover, technically, T is a fragment of itself (T �E T).

An interesting issue arises if the original target specification (part of the problem

input) has transitions which can never be executed in the given environment; fragments

of such a target may still have these environment incompatible elements. Note that

classical behavior composition does not differentiate between target specifications having

such inoperative transitions. For example, both target specifications T1 and T2 shown in

Figure 3.2 have an exact controller in the media room system S = 〈BG,BA,BM ,BL, E〉.
However, interestingly, in the target specification T1, the end user cannot request the

LightOn action from state p1. The reason for this seemingly counter-intuitive notion lies

in the problem perspective taken. Classical behavior composition views the problem from

the controller perspective; that is, it answers the following question:

Given a system S and a target specification T , does there exist an exact

controller C for T in S?

As we have already seen, an exact controller (see Definition 3.3) is only interested

in the target traces that can actually occur (in the given environment), and as a result,

the controller is not affected even if the target specification has transitions which will

49

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

never occur in the context of the environment. In comparison, if we take the perspective

of the user agent using the target specification, then the agent must be able to request

any transition as per the specification if it accommodates an exact controller. However,

this may not be the case in classical composition as we saw in the example above, where

the specification allowed two consecutive LightOn actions but the environment disallowed

them.

This, of course, is not a shortcoming of classical behavior composition; there the

target specification to be realized is an input to the problem. That is, the end user

gives the specification that she wants to be realized and so the specification is assumed

to be meaningful in the given (fully observable) environment. On the other hand, when

optimising an unsolvable problem instance, a realizable target specification is an output

of the problem. Therefore, one needs to get rid of impossible transitions of the target.

Specially, in cases when the target specification is not realizable and the end user is given

a realizable fragment of the original specification, that fragment ought to be such that the

user of the fragment can request all what is given to her. In short, the question which we

are interested in is this:

Given a system S and a target specification T , which is the largest fragment

of T that can be fully realized in S.

To ensure that the realizable fragments of T do not have any parts incompatible

with the environment, we introduce the notion of effective fragments in the context of

the environment. Intuitively, a fragment is effective if each of its traces is matched by

some trace of the enacted system; that is, each target trace can be legally executed in the

environment. In order to formally define effective target fragments, we need a technical

notion of projecting environment guards from the target behavior. Let T = 〈T,G, t0, %〉
be a target specification over an environment E = 〈E,A, t0, ρ〉. The transition system

obtained by projecting out T ’s guards, denoted by T ↑G, is defined as T ↑G = 〈T,A, t0, %↑G〉,
where %↑G = {〈t, a, t′〉 | 〈t, a, g, t′〉 ∈ %}. Intuitively, we say that a target specification T
is effective in the environment E if the transition system obtained by projecting out T ’s

guards (that is, T ↑G) is simulated by the enacted behavior of T in E .

Definition 3.8 (Effective target fragment). Given a target specification T = 〈T,G, t0, %〉
over an environment E = 〈E,A, t0, ρ〉, we say T is effective in E iff T ↑G � ET , where ET
is the enacted behavior of target T in environment E .

Example 3.6. Consider the target specification T1 shown in Figure 3.2 operating in the

media room environment E . If we compare T ↑G and the enacted target ET1 , trivially,

T ↑G 6� ET1 . As evidence, see that the trace p0
LightOn−→ p1

LightOn−→ p2 of T ↑G cannot be

matched by any trace of ET1 . Hence, T1 is not an effective specification in the context of

the environment E .

50

SECTION 3.3: SUPREMAL REALIZABLE TARGET FRAGMENTS (SRTFS)

We now have all the required technical machinery to introduce the main notion of this

chapter, namely, realizable target fragments and supremal realizable target fragments.

Definition 3.9 (Realizable target fragment (RTF)). A realizable target fragment

(RTF) T̃ of target T = 〈T,G, t0, %〉 in system S = 〈B1, . . . ,Bn, E〉 with environment

E = 〈E,A, e0, ρ〉 is a tuple T̃ = 〈T̃ , G̃, t̃0, %̃〉, where:

1. T̃ �E T ; that is, T̃ is a fragment of target T ;

2. T̃ is effective in E ; that is, T̃ does not contain environment incompatible parts; and

3. T̃ has an exact composition in S; that is, T̃ can be realized (solved) in system S.

Despite being fully solvable, an RTF will generally provide “less” than the original

target specification. First, an RTF may be missing certain executions altogether. In the

smart house scenario, RTF T̃ does not account for the action sequence LightOn ·Music ·
Game · Stop · LightOff. Second, and more interesting, an RTF may require the user to

commit earlier to future possible request choices. In that sense, a user of target T̂ needs to

decide, when requesting Movie in state u1, if she will later play a Game or listen to Radio.

Notice such extra “temporal” information is not required at state t1 in the original target

T . It is exactly to accommodate this feature that we have departed from the standard

view of deterministic target specifications and allowed nondeterministic specifications.

Trivially, the smallest RTF for any problem instance is the “empty” one; that is, an

RTF with just one state and no transitions. Obviously, between full target specification

and the trivial empty one, there lies a spectrum of RTFs. Among these, we are interested

in those that are “closest” to the original target, in that the minimum possible is given up

and remain realizable. In other words, a “supremal” RTF is one which cannot be further

extended.

Definition 3.10 (Supremal realizable target fragment (SRTF)). A target behavior

T̂ is an supremal realizable target fragment (SRTF) of target T on system S iff :

1. T̂ is a realizable fragment (RTF) of T in S; and

2. there is no RTF T̂ ′ of T in S such that T̂ ≺E T̂ ′; that is, T cannot be optimized

any further than T̂ by a strictly more general target fragment.

That is, a supremal fragment is one such that there is no other realizable fragment

which accounts for a larger specification.

51

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

Example 3.7. Returning to the target specifications T̃ , T̂ , and T in the ambient spaces

example shown in Figures 3.1 and 3.3, T̃ and T̂ are realizable in the media room, whereas

T is unrealizable. Both T̃ and T̂ target specifications are realizable fragments of T .

However, T̂ is the supremal realizable behavior of T in the media room system.

3.4 Uniqueness of SRTFs

In the previous section, we saw that multiple distinct RTFs may exist for a given behavior

composition problem. What remains to be seen is whether these RTFs can be combined

in some way to generate more general realizable specifications. More importantly, one

would like to know if there exists a single unique SRTF (for a given problem instance),

or similar to RTFs one has to search for multiple distinct SRTFs. As one will observe,

allowing nondeterminism in the target specification is key to these issues. We start by

presenting an interesting property of RTFs: a union of two RTFs is an RTF. In other

words, the set of RTFs are closed under RTF union. To that end, let us first define what

such a union amounts to.

Definition 3.11 (Union of two RTFs). Let Ti = 〈Ti, Gi, ti0, %i〉, where i ∈ {1, 2}, be

two target specifications over a given environment E = 〈E,A, e0, ρ〉 such that T1 and T2

are disjoint sets of states (i.e., T1 ∩T2 = ∅).2 Then, the target specification resulting from

the union of T1 and T2 is given by the tuple T1∪T2 = 〈T1+2, G1+2, t0, %1+2〉 such that t0 6∈ T1

and t0 6∈ T2, where:

• T1+2 = T1 ∪ T2 ∪ {t0} ;

• G1+2 = G1 ∪G2;

• t0 ∈ T is the initial state;

• %1+2 = %1 ∪ %2 ∪ {〈t0, g, a, t′〉 | 〈t10, g, a, t
′〉 ∈ %1} ∪ {〈t0, g, a, t′〉 | 〈t20, g, a, t

′〉 ∈ %2} is

the transition relation.

Conceptually, when combining two target specifications T1 and T2, one creates a new

initial state and adds transitions from this initial state to states that can be reached by a

single action from initial states of T1 and T2.

Example 3.8. Figure 3.4 shows two target specifications, T1 and T2, and their union,

T1 ∪ T2, for the media room scenario. Observe that we create a new initial state t0 in the

union T1 ∪T2 and all the transitions of T1 and T2 are same in T1 ∪T2 except for additional

transitions from state t0. From the initial state t0, transition t0
LightOn−→ u1 takes the user

2The states can be renamed wlog to ensure T1 and T2 are disjoint.

52

SECTION 3.4: UNIQUENESS OF SRTFS

u0 u1 u2 u3 u4
LightOn

Movie Game

Stop

LightOff

RTF T1

p0 p1 p2 p3 p4
LightOn Music Radio Stop

LightOff

RTF T2

t0

u0

p0

u1 u2 u3 u4

p1 p2 p3 p4

LightOn

LightOn
Movie Game

Stop

LightOff

LightOn

LightOn Music Radio

Stop

LightOff

T1 ∪ T2

Figure 3.4: Union of two target specifications.

to target specification T1 whereas transition t0
LightOn−→ p1 takes the user to specification

T2. Observe that T1 and T2 are both e-simulated by their union T1 ∪ T2, but the opposite

is not true; that is T1 ∪ T2 6�E T1 and T1 ∪ T2 6�E T2.

Observe that given two target specifications T1 and T2, their union T1∪T2 will simulate

both T1 and T2. As evident from the transition relation of T1 ∪ T2, the new initial state

t0 mimics the behavior of initial states of T1 and T2. For all transitions 〈t10, g, a, t
′〉 in T1,

by definition, T1 ∪ T2 has a transition 〈t0, g, a, t′〉, hence t10 � t0. By similar reasoning we

can get that t20 � t0.

We now formally prove that the union of two RTFs is also an RTF.

Theorem 3.4. Let T̃1 and T̃2 be two RTFs for target specification T in system S =

〈B1, . . . ,Bn, E〉. Then T̃1 ∪ T̃2 is an RTF of T in S.

Proof. We show that the result of a RTF union, as defined above, adheres to the RTF

definition (see Definition 3.9). Let Ti = 〈Ti, Gi, ti0, %i〉, where i ∈ {1, 2}, be two RTFs of

target specification T = 〈T,G, t0, %〉 in system S and T1 ∪ T2 = 〈T1+2, G1+2, t
+
0 , %1+2〉.

• T1∪T2 �E T : We define a relation R⊆(T1+2×T) such that 〈t′, t〉 ∈ R iff (i) t′ �E t,
where t′ is a state in T1 or T2, or (ii) t′ = t+0 and t = t0. Note, R is not empty since

we know that T1 �E T and T2 �E T . In addition, for all states t′ such that t+0
g,a−→ t′

in T1 ∪ T2, there exists a state t ∈ T such that t′ � t. Moreover, by definition, R is

an e-simulation relation of T1 ∪ T2 by T with 〈t+0 , t0〉 ∈ R.

• T1 ∪ T2 �E T is effective in E : Since T1 and T2 are RTFs of T in S, T1 and T2 are

effective in E . Hence, T ↑G1 � ET1 and T ↑G2 � ET2 . Suppose R1 and R2 are simulation

relations between T ↑G1 –ET1 and T ↑G2 –ET2 , respectively. Then, by definition, R1∪R2∪
{〈t+0 , (t

+
0 , e0)〉} is a simulation relation of T1 ∪ T2 by E(T1∪T2). Therefore, T1 ∪ T2 is

effective in E .

53

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

• T1 ∪ T2 has an exact composition in S: Let C1 and C2 be exact compositions of T1

and T2 in S, respectively. We define a controller C1+2 as follows:

C1+2(h, t1
g,a−→ t2)=

C1(h, t1
g,a−→ t2) if t1 = t0 and t1 ∈ T1

C2(h, t1
g,a−→ t2) if t1 = t0 and t2 ∈ T2

C1(h, t1
g,a−→ t2) if t1

g,a−→ t2 in T1

C2(h, t1
g,a−→ t2) otherwise.

The controller C1+2 delegates the transition requests arising from T1 as per C1 and

transition requests arising from T2 as per C2. Since C1 and C2 realize all respective

enacted traces of T1 and T2, C1+2 realizes all enacted traces of T1 ∪ T2. Hence, C1+2

is an exact composition of T1 ∪ T2 in S.

Union of RTFs can be seen as the addition operation, and in fact, similar to addition,

the union of RTFs is commutative, associative, and has an identity element.

Theorem 3.5. Let T̃1 and T̃2 be two RTFs for target specification T in system S. Then:

1. T̃1 ∪ T̃2 ∼E T̃2 ∪ T̃1; that is, union of RTFs is commutative.

2. (T̃1 ∪ T̃2) ∪ T̃3 = T̃1 ∪ (T̃2 ∪ T̃3); that is, union of RTFs is associative.

Proof. We prove both the properties below:

1. Let T̃1∪ T̃2 = 〈T1+2, G1+2, t0, %1+2〉, T̃2∪ T̃1 = 〈T2+1, G2+1, t0, %2+1〉 and R ⊆ T1+2×T2+1

be a relation such that 〈t1+2, t2+1〉 ∈ R iff t1+2 = t2+1. Trivially, R is a e-simulation

relation of T̃1 ∪ T̃2 by T̃2 ∪ T̃1. Following same lines of reasoning a relation R will be

an e-simulation relation of T̃2 ∪ T̃1 by T̃1 ∪ T̃2.

2. Let us build the RTF (T̃1 ∪ T̃2) ∪ T̃3 of T in S. Resolving T̃1 ∪ T̃2 we get (T̃1 ∪
T̃2)∪ T̃3 = T1+2 ∪ T3, where T1+2 = 〈T1+2, G1+2, t

′
0, %1+2〉 is built as per the RTF union

definition. Similarly, T1+2∪T3 = 〈T1+2+3, G1+2+3, t0, %1+2+3〉. Following the same steps,

T̃1 ∪ (T̃2 ∪ T̃3) = T1 ∪ 〈T2+3, G2+3, t
′
0, %2+3〉 = 〈T1+2+3, G1+2+3, t0, %1+2+3〉.

Hence, RTFs can be combined in any order. To show the existence of an identity ele-

ment, it suffices to state that T̃ ∪T̃0 is simulation equivalent to T̃ , where T̃0 = 〈{t}, ∅, t, ∅〉.
Observe that T̃0 is an RTF of any target specification T in any system S; in fact, it is the

smallest universal RTF.

Importantly, RTFs, partial target specifications which can be fully implemented in the

given system, can be combined generate more general target specifications. Technically,

the union of two RTFs will e-simulate (Definition 3.6) both the individual RTFs.

54

SECTION 3.5: UNIQUENESS OF SRTFS

Theorem 3.6. Let T̃1 and T̃2 be two RTFs for target specification T in a system S. Then

T̃1 �E T̃1 ∪ T̃2.

Proof. Let T̃1 = 〈T1, G1, t10, %1〉, T̃1 ∪ T̃2 = 〈T1+2, G1+2, t0, %1+2〉 and R ⊆ T1+2 × T1 be a

relation such that 〈t1+2, t1〉 ∈ R iff t1+2 = t1 or t1+2 = t0 and t1 = t10. Since T̃1 is fully

contained in T̃1 ∪ T̃2; that is T1 ⊆ T1+2, %1 ⊆ %1+2 and t10 � t0, R is an e-simulation

relation of T̃1 by T̃1 ∪ T̃2.

Observe that since union of RTFs is an associative operation, it automatically implies

that if T̃1 and T̃2 are two RTFs for target specification T in a system S, then T̃2 �E T̃1∪T̃2.

Usually, the resulting union of two RTFs will be a better RTF as compared to the individual

RTFs with respect to the original target specification and the available system. Formally,

given two RTFs T̃1 and T̃2 of target specification T in a system S, T̃1∪ T̃2 6�E T̃1 may hold

(see Example 3.8 for such an instance). Since RTFs are closed under union (Theorem 3.4),

one can combine RTFs to build optimal RTFs.

Theorem 3.7. Let S be a system, T a target specification, and T ∗ =
⋃
T̃ is an RTF of T in S T̃ .

Then, T ∗ is an SRTF of target specification T in systen S.

Proof. Assume that T ∗ is not a SRTF of T in S and suppose T̂ is a SRTF of T in S. From

Theorem 3.4 we know that T ∗ is a RTF of T in S. Interestingly, note that by definition

T̂ is also a RTF of T in S, therefore T̂ is contained in T ∗. Applying Theorem 3.6 we get

that T̂ �E T ∗, which is a contradiction. Therefore, T ∗ is a SRTF of T in S.

A surprising and much desired consequence of Theorem 3.7 is that any T̃ which

is e-simulation equivalent to T ∗ is also “the” SRTF (we focus on semantics not syntax

here). It follows then that SRTFs are unique up to e-simulation equivalence. Indeed,

there might be two SRTFs that are syntactically (structurally) different, however, if they

are simulation equivalent then they express (semantically) the same target specification.

Theorem 3.8. SRTFs are unique up to e-simulation equivalence.

Proof. Let T̂ be a SRTF of target specification T in system S. From Theorem 3.7 we

know that T ∗, union of all RTFs, is a SRTF of T in S. Therefore, T̂ �E T ∗. Suppose that

T ∗ is not e-simulated by T̂ ; that is T ∗ 6�E T̂ . Then, it follows that T̂ ≺E T ∗. An absurd

since we know T̂ is a SRTF of T in S. Hence our assumption is wrong and T ∗ is indeed

e-simulated by T̂ . Consequently, it holds that T̂ and T ∗ are e-simulation equivalent.

Undoubtedly, uniqueness of SRTFs is an important desirable property as the target

specification’s user can be given a single (optimised) SRTF, and she can be sure that this

is the best possible specification that can be realized.

55

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

3.5 Imported controllers

In contrast with maximal controllers, supremal fragments are specified in the same lan-

guage as the original problem. The user can thus decide to request actions as per the

new target fragment with guaranteed full realizability. Nonetheless, one may still ask in

which sense these solutions are “correct.” To answer that, we show that using an exact

composition for a supremal target behavior amounts to using a maximal composition for

the original target. In other words, if the user wants to request actions as per the original

target specification, then a maximal composition can be computed using SRTF’s exact

composition. Once a supremal target behavior T̂ is obtained, one may either use such

new target directly or consider “importing” its exact compositions into the original tar-

get module T . Hopefully, in the latter case, the imported controllers will turn out to be

the best possible controllers for the original target; that is, a maximal composition. To

that end, we define what it means to “import” a controller CT ′ designed for one target

specification T ′ into another target specification T .

We start by defining the family of functions that are meant to explain sequences of

action requests in a target. Informally, the function ExplT (σ) outputs a history of the

target T compatible with the given sequence of actions σ. Formally, a function ExplT :

A∗ 7→ HT is a target explanatory function for a target T if for any action sequence

σ = a1 · · · · · a` ∈ A∗, with ` ≥ 0, it is the case that ExplT (σ) = t0
g1,a1−→ · · · g

`,a`−→ t` ∈ HT ,

where HT is the set of T ’s histories. In general, there will be many of such functions, since

the same sequence of action requests can arise from different runs of a nondeterministic

target. For instance, sequence LightOn ·Movie can be explained in two ways on target

specification T̂ (see the Figure 3.3), namely, via histories u0
LightOn−→ u1

Movie−→ u2 and

u0
LightOn−→ u1

Movie−→ u4.

Using target explanatory functions, we next characterize the set of so-called induced

controllers. Suppose we have a controller CT ′ for a target T ′ (in a system S). An induced

controller (from controller CT ′) for a target behavior T is one that handles requests from T
as if they were requests issued as per specification T ′. Recall that a controller for a system

S outputs the behavior index to which a given transition-action request is delegated to at

a certain system history.

Definition 3.12 (Induced controller). A controller CT
′
T is an induced controller (from

controller CT ′ on target T ′) for target T over system S if there exists a target explanatory

function ExplT ′(·) for T ′ such that for every system history h ∈ HS and transition t1
g,a−→ t2

in T , the following holds (recall that h↑S denotes the sequence of actions in history h):

CT
′
T (h, t1

g,a−→ t2)=

CT ′(h, t
′
1
g′,a−→ t′2) ExplT ′(h

↑S · a)= t0
g′1,a1−→ · · ·g

′|h|,a|h|−→ t′1
g′,a−→ t′2

undefined ExplT ′(h
↑S · a) is undefined

56

SECTION 3.5: IMPORTED CONTROLLERS

That is, T ’s request t1
g,a−→ t2 is delegated at history h as controller CT ′ would

delegate request t′1
g′,a−→ t′2 from target T ′ if h’s request leaves target T ′ in state t′1 and

the current requested action a is indeed explained by transition request t′1
g′,a−→ t′2 in T ′.

When there is no explanation in the T ′ for h—Expl(·) is undefined—the induced controller

is left undefined. Note that different ways of explaining the original target’s sequences of

requests (i.e., different explanatory functions) yield different induced controllers.

Finally, an imported controller is a maximal (i.e., non-strictly dominated) controller

within the family of induced controllers—the “best” induced controllers. Technically:

Definition 3.13 (Imported controllers). The set of imported controllers from C on T
into target T ′, denoted ΩT

′

〈C,T 〉 is the set of all controllers Ĉ for T ′ such that:

1. Ĉ is an induced controller from C on target T for T ′; and

2. there is no other induced controller C′ such that C′ > Ĉ.

First, we show that supremal target behaviors amount to better, or more precisely

“never worse,” imported controllers.

Theorem 3.9. Let T̃1 and T̃2 be two RTFs of target T in system S, and let C̃1 and C̃2

be exact compositions of T̃1 and T̃2, respectively. Suppose also that T̃2 �E T̃1 (i.e, T̃1 e-

simulates T̃2). Then, for every controller C1 ∈ ΩT〈C̃1,T̃1〉
, there is no controller C2 ∈ ΩT〈C̃2,T̃2〉

such that C2 > C1 holds.

Proof. Assume controllers C1 ∈ ΩT〈C̃1,T̃1〉
and C2 ∈ ΩT〈C̃2,T̃2〉

exist such that C2 > C1. Let

Expl1 and Expl2 be the target explanatory functions on which C1 and C2 are built upon,

respectively. Now, consider a target explanatory function Expl′1 for T̃1 such that Expl′1(h)

e-simulates Expl2(h) state-wise (i.e., at each step). Formally, for all histories h ∈ HS if

Expl2(h) = t02
g12 ,a

1

−→ · · · t|h|2 then, Expl′1(h) = t01
g11a

1

−→ · · · t|h|1 such that for all i ≤ |h| it is

the case that ti2 �E ti1. Note, such function Expl′1 exists since T̃1 e-simulates T̃2. Next,

consider the induced controller C′1 built upon target explanatory function Expl′1. Then,

the set of enacted behavior (ET) traces realized by C′1 subsumes the set of traces realized

by C2; that is ∆
C′1
〈S,T 〉 ⊆ ∆C2

〈S,T 〉. Hence, C′1 ≥ C2 holds (i.e., C′1 dominates C2). Since, by

assumption, C2 > C1, it follows that C′1 > C1, an contradiction since C1 is not strictly

dominated by any induced controller from C to T .

In other words, if T̃1 is as good a realizable fragment as T̃2, then T̃1’s imported

controllers will not be worse than those imported from T̃2. More importantly, the next

result demonstrates that importing controllers from a SRTF yields maximal compositions

57

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

(for the original target specification), and that, together, these maximal compositions

account for every trace of the original enacted target that could ever be realized. In other

words, ΩT〈C̃,T̂ 〉 is sound and “complete.”

Theorem 3.10. Let T̂ be an SRTF of target specification T in system S, and let Ĉ be an

exact composition for T̂ . Then,

• For all C ∈ ΩT〈Ĉ,T̂ 〉, it holds that C ∈ MaxComp(S, T); that is, C is a maximal

composition (Definition 3.5); and

•
⋃

C∈ΩT
〈Ĉ,T̂ 〉

∆C
〈S,T 〉 =

⋃
C∈MaxComp(S,T) ∆C

〈S,T 〉; that is, all imported controllers to-

gether account for all realizable enacted target traces.

Proof. The proof uses an auxiliary definition to enhance a behavior to account for a set

of enacted traces. If T = 〈T,G, t0, %〉 is a behavior and ∆ is a set of enacted target traces

of some other target behavior T ′ over environment E ∈ S (wlog we assume T ′ and T have

disjoint sets of states), we define T+∆ = 〈T+, G+, t0, %
+〉 as follows:

• T+ = T ∪ {tgt(s) | s is a state in some trace in ∆};

• G+ = G ∪ {gs | gs(env(s)) = true, where s is a state in some trace in ∆};

• %+ = % ∪ {〈t0, gs0 , a1, tgt(s1)〉 | gs0(env(s0)) = true, s0
a1−→ s1 · · · ∈ ∆} ∪

{〈tgt(si), gsi , ai+1, tgt(si+1)〉 |gsi(env(si)) = true, s0
a1−→ s1

a2−→ · · ·∈∆, i ≥ 1}.

Informally, we extend T with a disjoint sub-transition system that can produce ex-

actly those traces in ∆. See, this is well-defined as T ′ is finite, and so will T+∆. For the

first claim, we assume there exists C ∈ ΩT〈Ĉ,T̂ 〉 such that C 6∈ MaxComp(S, T). Hence,

there exists a controller C′ ∈ MaxComp(S, T) such that ∆C
〈S,T 〉 ⊂ ∆C′

〈S,T 〉. We next en-

hance T̂ with the set of traces realized by C′; that is, we build T̂
+∆C′
〈S,T 〉

, and extend Ĉ

to Ĉ′ such that Ĉ′ mimics C′ for transition requests arising out from T̂ ’s extension (i.e.,

requests from traces in ∆C′

〈S,T 〉). Formally,

Ĉ′(h, t1
g,a−→ t2)=

Ĉ(h, t1

g,a−→ t2) t1
g,a−→ t2 in T

C′(h, t1
g,a−→ t2) t1 = t10 and t2 6∈ T

C′(h, t1
g,a−→ t2) otherwise.

Observe, (i) T̂
+∆C′
〈S,T 〉

is e-simulated by T as T̂ �E T and ∆C′

〈S,T 〉 are the traces of

enacted target ET ; and (ii) Ĉ′ is an exact controller for T̂
+∆C′
〈S,T 〉

in S. Hence, the extension

T̂
+∆C′
〈S,T 〉

is an RTF of T in S. Moreover, since T̂ is an SRTF of T in S, it holds that

T̂
+∆C′
〈S,T 〉

�E T̂ . Because there is a way to evolve T̂ so as to mimic all traces in ∆C′

〈S,T 〉,

there must exist an induced controller C∗ from Ĉ into T such that ∆C′

〈S,T 〉 ⊆ ∆C∗

〈S,T 〉. This

58

SECTION 3.6: DETERMINISTIC RTFS

together with the original assumption implies that ∆C
〈S,T 〉 ⊂ ∆C∗

〈S,T 〉, or what is the same,

C∗ > C, which is a contradiction since C is an imported controller.

For the second claim, assume there exists a realizable trace τ of ET such that τ is

not realized by any imported controller. Let C′ be a controller realizing τ . We build the

enhanced behavior T̂+{τ} and extend Ĉ to Ĉ′ so that Ĉ′ mimics C′ for requests arising from

T̂ ’s extension. Now, T̂+{τ} is an RTF of T and T̂ does not e-simulate T̂+{τ} (otherwise τ

would be accounted for by some induced controller), which is a contradiction since T̂ is

an SRTF of T in S.

Theorems 3.9 and 3.10 are important as they establish the relationship between op-

timising the target specification and optimizing its controller. Optimizing target speci-

fications implies maximising controllers. Indeed, maximal compositions and SRTFs are,

somehow, equivalent perspectives at behavior composition optimisation. A direct, and ex-

pected, consequence is that if an SRTF is simulation equivalent to the target specification,

then there is an exact composition for the composition problem at hand.

Corollary 3.11. Let T̂ be a supremal target behavior of target specification (SRTF) T on

system S such that T̂ ∼E T , and let Ĉ be an exact composition for T̂ in S. Then, every

imported controller in ΩT〈Ĉ,T̂ 〉 is an exact composition for T in S.

Proof. Since T̂ has an exact composition and T̂ can mimic T (due to T �E T̂); T
has an exact composition: just delegate requests as done with T̂ . Let C be an exact

composition for T in S, and assume next that there exists C′ ∈ ΩT〈Ĉ,T̂ 〉 such that C′ is not

an exact composition for T in S. Hence, C > C′ follows, which is a contradiction since

C′ ∈MaxComp(S, T) due to Theorem 3.10.

To conclude, optimising the target specification results in the so-called supremal

realizable target behavior (SRTF), which is the best fragment of the original target spec-

ification accommodating an exact controller. While SRTFs and maximal compositions

are equivalent perspectives at behavior composition optimisation, SRTFs are more user

friendly than maximal compositions. Since SRTFs are in the same language as the prob-

lem input, an specifications designer can compare the original specification with its SRTF

(for example to know which parts require extra information). More importantly, since

SRTFs are unique up to simulation equivalence, a system user can be given the SRTF

with the guarantee that this is the best possible solution she could have.

3.6 Deterministic RTFs

The relaxation of target specification to nondeterministic, but fully controllable, behaviors

lead to some elegant properties of SRTFs, such as uniqueness up to simulation equivalence

59

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

u0 u1 u2 u3 u4
LightOn

Movie Game

Stop

LightOff

RTF T1d

p0 p1 p2 p3 p4
LightOn Movie Radio Stop

LightOff

RTF T2d

u0 u1 u2

u3 u4

p3 p4

LightOn

Movie
Game

Stop

LightOff

Radio

Stop

LightOffT1d ∪d T2d

Figure 3.5: Union of two target specifications restricted to deterministic RTFs.

(Theorem 3.8). However, one may ask if this introduction of nondeterminism is at all

necessary. An obvious question that arises is:

“What optimisation strategies exist while remaining strictly in the realm of

classical behavior composition; that is, only dealing with deterministic target

specifications?”

To answer such a question, we look at what properties of nondeterministic RTFs still

hold for deterministic RTFs. Note that we retain the same concept of what constitutes

RTFs and SRTFs. To recap, an RTF is a target fragment which has an exact controller

in the given system, and an SRTF is the largest amongst such fragments,

Definition 3.14 (DRTF and DSRTF). A DRTF (DSRTF) is a deterministic RTF

(DSRTF) for a given a deterministic target specification T and system S.

Recall that for deterministic transition systems, language equivalence and simulation

are equivalent notions [Girard and Pappas 2007] (also see Section 2.2). Therefore, we

define the union of two DRTFs as a target specification whose language is the union

of the languages of the given DRTFs. Formally, given two DRTFs Ti = 〈Ti, Gi, ti0, %i〉,
where i ∈ {1, 2}, for a target specification T and system S = 〈B1, . . . ,Bn, E〉, the target

specification resulting from the union of T1 and T2 is any deterministic target specification

T1 ∪d T2 such that (below ET denotes enacted system of T in E):

L(E(T1∪dT2)) = L(ET1) ∪ L(ET2).

Note that, structurally, multiple target specifications may depict such a union; however,

all of them are semantically equivalent (they generate the same language). Since language

equivalence and simulation are equivalent for deterministic transition systems, two deter-

ministic language equivalent target specifications will also be simulation equivalent [Girard

and Pappas 2007]. Then, as a consequence of Corollary 3.11, if one such union has an

60

SECTION 3.6: DETERMINISTIC RTFS

u0 u1 u2 u3 u4 p0 p1 p2 p3 p4
LightOn

Movie Game

Stop
LightOff

LightOn Movie Radio

Stop

LightOff

RTF T1d · T2d

Figure 3.6: Concatenation of deterministic RTFs T1d and T2d.

exact controller in a given system, then all possible unions will also accommodate an exact

controller.

Let us focus on what it means for the end user to use deterministic specifications.

Fundamentally, such a restriction on target specifications abolishes the user’s freedom to

pre-select, in advance, different target traces having a common prefix. For instance, com-

pare the nondeterministic RTF T̂2 shown in Figure 3.3 (see page 49) and the deterministic

target specification T1d ∪d T2d depicted in Figure 3.5. In specification T̂2, the user has a

choice to make at state u1: to select transition Movie resulting in u2 or u4 (there are two

ways to request Movie). As a result of such a selection, the controller has more infor-

mation on the possible future requests. In particular, if u1
Movie−→ u4 is selected, then the

only next possible request is the Radio action, and the controller knows that. From the

user’s perspective, she is committing in advance to certain future requests. Observe, due

to structural limitations in deterministic specifications, such an “advance” selection is not

possible. As a consequence, the target specifications will no longer be able to embed such

extra information related to sequencing of successor actions. Due to this, union of DRTFs

may not be a DRTF. More importantly, there might be more than one deterministic

DSRTF for a given composition instance.

Theorem 3.12. Let T1 and T2 be two DRTFs of a target specification T in system S.

Then:

• The union of T1 and T2 may not be a DRTF; and

• Multiple DSRTFs for T in S may exist.

Proof. Figure 3.5 presents such an instance for the smart home scenario with two DRTFs

T1d and T2d, and their union T1d∪dT2d. Observe that, first, the resulting union T1d∪dT2d is

no longer a DRTF as it is not realizable in the media room system. There is no controller

that can realize both the traces 〈e0, e0〉
LightOn−→ 〈u1, e1〉

Movie−→ 〈u2, e2〉
Game−→ 〈u3, e3〉 and

〈e0, e0〉
LightOn−→ 〈u1, e1〉

Movie−→ 〈u2, e2〉
Radio−→ 〈u3, p3〉. And second, check that T1 and T2

are both semantically distinct DSRTFs. L(ET1) 6= L(ET2); that is, they are not language

equivalent, and there is no other DRTF T ′ such that T1 ≺E T ′ and T2 ≺E T ′.

61

CHAPTER 3: SUPREMAL REALIZABLE TARGET FRAGMENTS

Although DSRTFs are no longer unique (semantically) for deterministic target speci-

fications, a user may still be given a set of distinct DSRTFs to choose from. Interestingly,

for a given problem instance, the set of all DSRTFs may not even be finite. For example,

consider DSRTFs T1d and T2d for the media room scenario (see Figure 3.5). The con-

catenation of T1d and T2d, as shown in Figure 3.6, is indeed a DSRTF (T1d 6∼E T1d · T2d

and T2d 6∼E T1d · T2d).3 Interestingly, multiple concatenations (with different ordering)

involving T1d and T2d result in unique DSRTFs of target specification T in media room

system S. Since the concatenation operation can be done any number of times, the set of

all DSRTFs is also infinite:

Theorem 3.13. There exists a behavior composition problem with target specification T
and system S such that the set of all DSRTFs is infinite.

These results show that significant desirable properties are lost if we restrict RTFs to

deterministic specifications.

One could consider different behavior restrictions, other than mentioned in this chap-

ter, to categorize partial target specifications. For example, target fragments which are

“cuts” of the original target specification. In such target cuts, one is only allowed to

remove transitions from the original target behavior. That is, the transition relation of a

target fragment is a subset of the transition relation of the original target behavior. In

such a framework, one will then look for minimal subsets of the transition relation (of the

original target) that should be removed in order to guarantee full realizability. Although

outside the scope of this thesis, we believe that the optimisation framework presented in

this chapter subsumes such syntactic restriction(s). Obviously, it remains to be seen, for

the nondeterministic case, if the SRTFs can actually be computed and represented finitely.

3.7 Summary

In this chapter, we defined two equivalent behavior composition optimisation notions,

namely, SRTFs and maximal compositions. To that end, we relaxed the classical com-

position setting by allowing for nondeterministic target specifications. SRTFs are the

alternate fully realizable specifications closest to the original target and are unique up to

e-simulation equivalence. On the other hand, maximal compositions are the best con-

trollers for the original target specification. We showed the correctness of SRTFs by

providing a technique to obtain maximal compositions by way of importing the exact

composition from the SRTF into the original target.

Initially, the work of Girard and Pappas [2007] appeared to be extremely related to

our objectives, as it proposes a notion of transition system approximation based on the

3Intuitively, we concatenate two DRTFs by joining the states terminating in the initial state of first
DRTF to the initial state of the second DRTF. Concatenation of DRTFs is not a DRTF in general.

62

SECTION 3.7: SUMMARY

notion of simulation. However, their work differs in what is being approximated. In the

most general notion of simulation, only some aspects of states are observable and two

states in simulation are meant to coincide on their observable aspects. In Girard and Pap-

pas’s account, an approximate transition system is allowed to differ on such observables

up to some extent: s simulates s′ implies s can (always) replicate all moves of s′ and s’s

observation is “similar” to that of s′. It follows then that the approximating transition

system must still be able to mimic all actions of the approximated system. In our frame-

work, there is no notion of state observations (every state has the same observations) and

hence we only focus on the similarities of states in terms of the potential behavior they

can generate.

To summarise:

• We relaxed the classical composition framework to allow nondeterministic target

specifications.

• Optimising controller and target specification are two different, but equivalent, per-

spectives to optimise the behavior composition problem.

• Optimising controllers results in maximal compositions - best possible controllers

that one can achieve for a given composition problem.

• e-simulation relation was used to capture target fragments (partial specifications)

for a given composition problem.

• A realizable target fragment (RTF) is a target fragment which accommodates an

exact controller.

• Optimising target specifications yields supremal realizable target behaviors (SRTFs)

- the union of all RTFs.

• SRTFs are unique up to e-simulation equivalence.

• A composition problem is solvable if the given target specification is e-simulation

equivalent to its SRTF.

• Important properties are lost if one restricts to deterministic target specifications

(classical framework).

63

CHAPTER 4
Computing supremals

“The problems are solved, not by giving new

information, but by arranging what we have known

since long.”

–Ludwig Wittgenstein

The behavior composition optimisation framework of Chapter 3 provides a construc-

tive algebraic definition of supremal realizable target fragments (SRTF). Briefly, given a

target specification T and system S, the SRTF of T in S is the union of all T ’s RTFs in

system S. Interestingly, for a given composition problem, there will be an infinite number

of RTFs due to structural variations.1 Obviously, one cannot take the union of all RTFs

in such a case. Hence, from a computational perspective, one is naturally interested in the

computability aspect of SRTFs. A pressing question is whether we can not only represent

SRTFs finitely, but also be able to compute them. We address such a question positively

in this chapter and focus on finding effective techniques to compute SRTFs for unsolvable

composition instances.

Various efficient techniques exist for computing exact compositions in the classical

composition setting (see Section 2.5 for a survey), including synthesis via safety games [De

Giacomo and Patrizi 2010, De Giacomo et al. 2013] and ATL model checking [De Giacomo

and Felli 2010]. However, all those techniques aim at synthesising exact composition

controllers that would solve a given instance completely. In the context of our work, we

are instead interested in computing SRTFs. A surprising result we show here is that one

can also use LTL synthesis and ATL model checking to synthesize an SRTF for a possibly

unsolvable composition problem, involving only deterministic available behaviors (and to

extract the corresponding composition generator). Unfortunately, when nondeterministic

behaviors are involved, reduction to these techniques proves to be insufficient. In order to

1Two transitions systems may be structurally different but still be simulation equivalent.

65

CHAPTER 4: COMPUTING SUPREMALS

compute SRTFs for target specifications meant to be realized in nondeterministic systems,

we provide an alternate approach via a particular “belief-level” system.

4.1 Computing SRTFs for deterministic systems

We start by tackling the problem of computing SRTFs for composition problems involving

only deterministic available behaviors. In particular, we present two techniques, namely,

LTL synthesis via safety games and ATL model checking. The motivation behind this is the

availability of software tools, such as tlv [Pnueli and Shahar 1996], nugat,2 Anzu [Job-

stmann et al. 2007], and mocha [Alur et al. 1998], providing effective procedures for

strategy computation and convenient languages for representing problem instances in a

modular and high-level manner.

4.1.1 Safety games

The classical behavior composition problem can be seen as an adversarial game played

between the controller on one side and the available system together with the target on the

other. In this game, the target requests actions in such a manner so as to make it difficult

for the controller to delegate these requests, and the available system (the target’s partner)

tries to evolve, after the controller’s delegation, such that the controller gets stuck (cannot

honor subsequent target requests). On the other side, the controller tries to delegate the

current target request in such a way that irrespective of how the system evolves after

the delegation and what subsequent target request arise, it can continue to successfully

delegate target requests.

To simplify, the controller tries to ensure it can always honor target requests, a safety

condition in the context of linear temporal logic. For classical composition, De Giacomo

and Patrizi [2010] showed how to compute the composition generator (i.e., a structure

representing all exact compositions) by building a winning strategy for a particular safety-

game (see Section 2.5.4). Inspired by such a reduction, we show how to synthesize the

SRTF, along with its composition generator, for a given composition problem containing

only deterministic available behaviors.

Preliminaries

Automatic synthesis of programs from a given specification has been extensively studied

in the literature [Bloem et al. 2011, Pnueli and Rosner 1989a;b, Manna and Wolper 1984,

Asarin et al. 1995]. Conceptually, the problem is to automatically synthesize a program

such that it satisfies a given temporal specification. One of the approaches to solve this

synthesis problem is via a two-player game. The game consists of two players, namely,

2https://es.fbk.eu/index.php?n=Tools.NuGaT

66

https://es.fbk.eu/index.php?n=Tools.NuGaT

SECTION 4.1: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

an environment-player and a system-player,3 where each player controls their respective

set of variables. To differentiate the game terminology from the one of behavior compo-

sition, we suffix the player names in the context of games with the word “player”, that

is, environment-player and system-player. Let us denote the set of variables controlled by

environment-player and system-player as X and Y, respectively. Moves of the players con-

sist of updating their respective variables according to certain pre-defined rules that are

specific to each game. At each step of the game, the environment-player moves by updat-

ing its variables in X and the system-player replies by updating its own set of variables in

Y. It is assumed that the system-player can see the environment-player’s previous move.

The goal of the system-player is for the game to satisfy a given temporal property, an LTL

formula, regardless of the environment-player’s moves. Similar to adversarial games, the

players respond to the opponent’s moves, each trying to constrain their opponent in order

to win the game.

The game itself is played over a game structure that defines (i) the set of variables

over which the game is played, with the rules governing how these variables are updated,

(ii) the start states of the game, and (ii) the temporal property capturing the winning

condition for the system-player. Formally, a game structure [Bloem et al. 2011] is a tuple

G = 〈V,X ,Y,Θ, %e, %s, ϕ〉, where:

• V = {v1, . . . vn} is the finite set of state variables that range over finite domains

V1 . . . Vn, respectively. A state ~s = 〈s1, . . . , sn〉 ∈ V is a possible assignment to the

variables, where V = V1×· · ·×Vn is the set of all possible valuations over V. X ⊆ V
is the set of input variables controlled by the environment-player, and Y = V \ X
is the set of output variables controlled by the system-player. Let X and Y denote

the set of all possible valuations over X and Y, respectively. By a slight abuse of

notation, we denote a state ~s = 〈~x, ~y〉, where ~x ∈ X is a valuation of variables in X
and ~y ∈ Y is a valuation of variables in Y.

• Θ is a formula representing the initial states of the game. It is a boolean combination

of expressions of the form (vi = si), such that vi ∈ V is a variable and si ∈ Vi is

its assignment, where i ≤ n. Given a game state ~s, we write ~s |= Θ if ~s satisfies Θ

in the standard way. In general, Θ may not contain all the variables from V, hence

there might be multiple initial states for a game.

• %e ⊆ V × X is the environment-player’s transition relation. A tuple 〈~s, ~x〉 ∈ %e

means that when the game is in a state ~s, then ~x is a possible legal move for the

environment-player.

• %s ⊆ V × X × Y is the system-player’s transition relation. A tuple 〈~s, ~x, ~y〉 ∈ %s

means that when the game is in a state ~s and the environment-player updated its

3The players are different from the environment and system components of behavior composition.

67

CHAPTER 4: COMPUTING SUPREMALS

variables to ~x, then ~y is a possible legal move for the system-player.

• ϕ is an LTL formula, denoting the winning condition for the system-player.

When the goal is a safety one; that is, one of the form “always φ,” the game is said

to be a safety game. Intuitively, the system-player’s objective is to always be able to

reply to the environment-player’s moves so as to satisfy a given (goal) temporal property,

while the environment-player tries to avoid this. Technically, the task is to synthesize a

winning reply-strategy for the system-player such that either the system-player enforces a

game state from which the environment-player has no more moves left, or the goal holds

in all possible infinite “plays” that may ensue when the system follows such a strategy. A

state is deemed “winning” if there is a winning strategy from it. We borrow the technical

notions from [Bloem et al. 2011] to formalize the notion of winning in such a game.

A game state 〈~x, ~y〉 is a successor of a state ~s iff %e(~s, ~x) and %s(~s, ~x, ~y) hold. A play

is a, possibly infinite, sequence of the form ~s0 ~s1 . . . such that (i) ~s0 |= Θ; that is, ~s0 is an

initial state; and (ii) for each i ≥ 0, ~si+1 is a successor of ~si. When a play σ = ~s0 . . . ~sn is

finite, we denote the last state of σ by last(σ); that is, last(σ) = ~sn. A play σ = ~s0~s1 . . .

is winning for the system-player [Bloem et al. 2011] if either: (i) σ is finite and there is

no assignment ~y over variables in Y such that %e(last(σ), ~y) holds; or (ii) σ is infinite and

it models ϕ. Otherwise, the play σ is winning for the environment-player. A strategy for

the system-player is a partial function f : V + × X → Y such that for every finite play

σ = ~s0 . . . ~sn if there exists ~x ∈ X where %e(~sn, ~x) holds, then %s(~sn, ~x, f(σ, ~x)) holds. A

play σ = 〈~x0, ~y0〉〈~x1, ~y1〉 . . . is compliant with a given system-player strategy f if for all

i ≥ 0 we have f(〈~x0, ~y0〉 . . . 〈~xi, ~yi〉, ~xi+1) = ~yi+1. A strategy f is winning for the system-

player from a state ~s ∈ V (winning state) if all plays starting from ~s that are compliant

with f are winning for the system-player. A strategy f is winning for a game if f is a

winning strategy from all the initial states of the game; and a game is winning for the

system-player if there exists a winning strategy for that game. The winning set of a game

G, denoted by GW , is the set of all winning states for the system-player in that game.

Computationally, the winning set for a game structure can be computed using a

fixpoint algorithm [De Giacomo et al. 2013, Bloem et al. 2011]. Intuitively, for a safety

game formula 2φ (where 2 is the temporal operator denoting “always”), the fixpoint

algorithm first computes the set of game states (W) that satisfy the formula φ. Then

from this set W , the algorithm iteratively removes game states from where the system-

player cannot ensure the successor states to be in W . The algorithm terminates when

no more states can be removed from W ; that is, when a fixpoint is reached. In terms

of computational complexity, the winning set for a safety game can be computed in time

polynomial to the state space (|V |) [Piterman et al. 2006, De Giacomo et al. 2013], which

is exponential in the number of variables in V.

68

SECTION 4.1: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

Synthesising SRTFs via safety games

We now encode a given (unsolvable) behavior composition problem containing only deter-

ministic available behaviors to a safety game structure, so that the problem’s SRTF and

its composition generator can be synthesized.

The key to achieving this resides in carefully selecting the variables under the system-

player’s control. The overriding idea in our encoding is to include both target requests

and controller delegations under the system-player’s control, whereas the environment-

player is only in charge of the evolution of the available behaviors and the environment.

Though having the system-player, which stood for the composition generator in the clas-

sical setting, select the request at each step may appear counter-intuitive, it yields the

right semantics for our objective. The intuition behind this is to allow the system-player

to control the game evolution in such a way that it can (always) choose only those tar-

get requests that can be successfully delegated to an available behavior. In contrast, in

De Giacomo and Patrizi [2010]’s encoding (c.f. Section 2.5.4), the system-player was in

charge only of the controller delegations; the target requests were under the environment-

player’s control. Indeed, in the classical setting one has to guarantee the realizability of

the complete target specification, and hence all legal target requests ought to be catered

for.

Let S = 〈B1, . . . ,Bn, E〉 be a system, with deterministic available behaviors Bi =

〈Bi, Gi, bi0, %i〉 for 1 ≤ i ≤ n, environment E = 〈E,A, e0, ρ〉, and let T = 〈T,G, t0, %〉 be a

target specification behavior. For technical convenience, we use a special “dummy” value

(]) to denote “no action” and to define the initial state of the game. The safety game

structure G〈S,T 〉=〈V,X ,Y,Θ, ρs, ρc,2ϕ〉 is defined as follows:

1. V = {b1, . . . ,bn, e, ts,g,a, td, ind} is the set of game variables where variables bi

can take values from Bi ∪ {]}, e ∈ E ∪ {]}, ts, td∈T ∪ {]}, g ∈ G∪ {]}, a∈A∪ {]},
and ind∈{1, . . . , n,]}. A game state is of the form w = 〈b1, . . . , bn, e, ts, g, a, td, ind〉
denoting that behavior Bi is in state bi where i ≤ n, environment is in the state e,

and that the current request ts
g,a−→ td is to be delegated to available behavior Bind.

2. X = {b1, . . . ,bn, e} is the set of environment-player controlled variables and Y =

{ts,g,a, td, ind} is the set of system-player controlled variables.

3. Θ =
∧n
i=1(bi =])∧(e =])∧(ts =])∧(g =])∧(a =])∧(td = t0) ∧(ind =]) defines

the initial distinguished state 〈], . . . ,],],],],], t0,]〉 of the game.

4. ρe is the environment-player’s transition relation, such that (~s, 〈b′1,. . ., b′n, e′〉) ∈ ρe,
where ~s = 〈b1, . . . , bn, e, ts, g, a, td, ind〉, iff one of the following holds:

a) ~s |= Θ; that is, ~s is initial, b′i = bi0 for i ∈ {i, . . . , n}, and e′ = e0;

b) ind 6=] and

69

CHAPTER 4: COMPUTING SUPREMALS

i. there exists guard gind ∈ Gind such that gind(e) = true and bind
gind,a−→ b′ind in

Bind; that is, behavior Bind can execute action a;

ii. there exists transition e
a−→ e′ in E ; that is, the environment allows execu-

tion of action a;

iii. bi = b′i for all i∈{i, . . . , n} \ {ind}; that is, all other behaviors remain still.

5. ρs is the system-player’s transition relation, such that (~s, ~x′, ~y′)∈ρs, where

~s = 〈b1,. . ., bn, e, ts, g, a, td, ind〉, ~x′ = 〈b′1,. . ., b′n, e′〉, and ~y′ = 〈t′s, g′, a′, t′d, ind′〉, iff

a) there exists guard g′ ∈ G where g′(e′) = true, t′s
g′,a′−→ t′d in T , and t′s = td; that

is, the target requests a next legal transition; or

b) a′ = g′ =] and t′s = td = t′d; that is, the target requests a (self loop) transition

containing dummy action.

6. Formula ϕ = ¬Θ ∧ a 6=] ∧ ind 6=] ⊃ (∃g, b′).%ind(bind, g, a, b
′) states that if a game

state is not initial, and a domain action is being requested and delegated to an

available behavior, then that behavior is capable of a transition on that action from

its current state.

Conceptually, a game state in our encoding captures a snapshot of a problem instance.

Structurally, a game state consists of the current states of the available behaviors and the

environment, a target request, and the behavior index which will execute the requested

action. The game evolves as follows: from the initial state the only move available for the

environment-player (4a) is to update the behaviors and environment to their respective

initial states and the system-player responds by updating the transition request (5a) to

any legal transition arising from the initial state of the target behavior. Alternatively, the

system-player can also update the transition request to contain the special no action (5b).

Note that there are no restrictions placed on the ind variable (controller delegations): the

controller is free to delegate the target request to any behavior (including behaviors which

cannot execute the action in the transition). If the system-player updates its variables to

denote a legal transition request and a behavior index such that the behavior with that

index can execute the requested action, then the environment-player updates its variables

(4b) as per the respective behavior and environment evolutions resulting from executing

the requested action. Otherwise, if the system-player updates the ind variable to] or

the target requests a transition with], then the environment-player has no legal moves

left. Intuitively, in this game, a winning state is either one in which the current request

is legally honored by some available behavior and it has a successor winning state, or

a state in which the target action or the controller delegation is] (after playing], the

environment-player has no moves defined).

Note the implicit existential quantification on the subsequent request, as compared to

the universal quantification implied in the case of classical composition [De Giacomo and

70

SECTION 4.1: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

Patrizi 2010, De Giacomo et al. 2013]. This is because, to compute an exact composition in

the classical setting, where from a target state all subsequent requests must be satisfiable.

Our encoding is, arguably, simpler than the one used in the classical case [De Gia-

como and Patrizi 2010, De Giacomo et al. 2013]. In particular, we drop the infinite-play

assumption that requires the game structure to be such that all the resulting plays are

infinite. This implies that at every step of the game, both the environment-player and

system-player should always be able to move legally.4 Dropping this infinite-play require-

ment results in an encoding intuitively closer to the actual composition problem in which

target specifications could be finite, eliminating the need for fake loops.

It is not a surprise that our game encoding is such that the system-player can always

win the game. Observe, if the system-player updates the target action to], then the

environment-player has no legal moves left. Once this happens the resulting play will be

finite and the system-player will win such a game. Note that we allow the system-player

to play the] target action at any step of the game (see condition 5b of the encoding).

Theorem 4.1. Let G〈S,T 〉 be a safety game, as defined above, where S = 〈B1, . . . ,Bn, E〉
is a system and T = 〈T, t0, G, %〉 is a target specification. Then, G〈S,T 〉 is always winning

for the system-player.

Proof. The proof amounts to showing the existence of a winning strategy from the initial

state of all game instances. We prove a stronger claim here: we show the existence of

a universal winning strategy for the system-player. Let ~s0 be the distinguished initial

state of the game and ~x1 the first move of the environment-player. Then, the strategy

fu(~s0, ~x1) = ~y1 = 〈t0,],], t0,]〉 is a winning strategy for the system-player. First, note that

the environment player has only one possible move from the initial state ~s0 (4a). Second,

~y1 is a legal move for the system-player (5b) because %e(~s0, ~x1) and %s(~s0, ~x1, ~y1) hold.

Finally, note that once the system-player moves as per the strategy fu, the environment-

player has no legal moves left. Hence, the play ~s0〈 ~x1, ~y1〉 is finite and winning for the

system-player. Thus, the strategy fu is a winning strategy for the game.

The above result may seem trivial or contrived, but it is strongly tied to the properties

of the optimisation framework presented in the previous chapter. To elaborate, first note

that all behavior composition problem instances have an RTF, namely, the universal

RTF (see page 54) consisting of just one state and an empty transition relation. This

is precisely what Theorem 4.1 depicts. In contrast with the classical setting, a problem

instance may have an exact composition or not; that is, a system-player may win or

lose the game. However, in the optimisation setting, since there always exists an RTF

(and an SRTF), a system-player ought to win the game. Secondly, at the conceptual

4In [De Giacomo and Patrizi 2010, De Giacomo et al. 2013] infinite plays are required for the winning
condition of the system-player.

71

CHAPTER 4: COMPUTING SUPREMALS

level, a universal winning strategy exists for the system-player because there exists a

universal RTF. Observe that this universal winning strategy is equivalent to the target

not requesting any action.

Of course, since the system-player can always win the game, it can do so at the initial

state or after successfully delegating a sequence of target transitions. Conceptually, each

of such winning plays corresponds to an RTF. As one would expect, the union of all these

winning plays should encode the SRTF. Again, this is strongly tied to the property of

the optimisation framework that states that the union of all RTFs results in the SRTF

(see Theorem 3.7). However, by encoding to a safety game, we now provide finiteness and

computability to the algebraic definition of SRTF; that is, SRTFs are indeed finite and

can actually be computed. To that end, let us define the transition system represented by

the winning set of an encoded safety game.

Concretely, given the maximal winning states W of the game G〈S,T 〉 for a system S =

〈B1, . . . ,Bn, E〉 with deterministic available behaviors Bi = 〈Bi, Gi, bi0, %i〉 for 1 ≤ i ≤ n,

environment E = 〈E,A, e0, ρ〉, and target behavior T = 〈T, t0, G, %〉, we define behavior

XtractBeh(W) = 〈T̂ , t̂0, G, %̂〉, where:

• T̂ = {〈b1, . . . , bn, e, ts〉 | 〈b1, . . . , bn, e, ts, g, a, td, ind〉 ∈ W}. Given a game state

w = 〈b1, . . . , bn, e, ts, g, a, td, ind〉 let st(w) = 〈b1, . . . , bn, e, ts〉.

• t̂0 = 〈b10, . . . , bn0, e0, t0〉 is the initial state of XtractBeh(W); and

• %̂(st(〈b1, . . . , bn, e, ts, g, a, td, ind〉), g, a, st(w′)) holds iff :

– 〈b1, . . . , bn, e, ts, g, a, td, ind〉, w′ ∈W ;

– a 6=], ind 6=]; that is, an action is delegated to an available behavior; and

– 〈w, ~x, ~y〉 ∈ ρs, where 〈~x, ~y〉 = w′.

Each state t̂ = 〈b1, . . . , bn, e, t〉 of the behavior XtractBeh(W) is extracted from a

winning state w = 〈b1, . . . , bn, e, t, g, a, t′, ind〉, where b1, . . . , bn are states of behaviors

B1, . . . ,Bn, e is the environment state, t
g,a,−→ t′ is a transition of behavior T , and ind is

the index of behavior that will execute the action a. Intuitively, the transition relation of

XtractBeh(W) encodes all the transition requests that can be honored while remaining in

the winning states. Note that there will be no outgoing transitions from a state st(w) in

XtractBeh(W) if w has] as the action request or an incorrect behavior delegation.

Given a game state w = 〈b1, . . . , bn, e, t, g, a, t′, ind〉, let compS(w) denote the enacted

system state 〈b1, . . . , bn, e〉 (i.e., compS(w) = 〈b1, . . . , bn, e〉), compreq(w) denote the tar-

get transition t
g,a−→ t′ (i.e., compreq(w) = t

g,a−→ t′), compT (w) denote the target state t

(i.e., compT (w) = t), compE(w) denote the environment state e (i.e., compE(w)=e), and

compI(w) denote the behavior index ind (i.e., compI(w) = ind). By a slight abuse of nota-

tion we extend the comp family of functions to the relevant components of XtractBeh(W)’s

states.

72

SECTION 4.1: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

We are now able to present our main claim formally, namely, that the set of all the

winning states encode the SRTF of the given target specification in the system.

Theorem 4.2. Let W be the maximal set of winning states for safety game G〈S,T 〉, where

S = 〈B1, . . . ,Bn, E〉 is a given available system with deterministic available behaviors Bi=
〈Bi, Gi, bi0, %i〉 for 1 ≤ i ≤ n, environment E = 〈E,A, e0, ρ〉, and T = 〈T, t0, G, %〉 is a

target behavior. Then, XtractBeh(W) is the SRTF for target T in system S.

Proof. For eligibility we represent the behavior XtractBeh(W) by T̂ = 〈T̂ , t̂0, G, %̂〉. The

proof amounts to showing that (i) T̂ is an RTF of T in S, and (ii) T̂ is the SRTF of T
in S.

1. T̂ is an RTF: Due to the definition of %̂ in T̂ and ρs in the safety game G〈S,T 〉, it

holds that t̂
g,a−→ t̂′ ∈ %̂ if compT (t̂)

g,a−→ compT (t̂′) ∈ %. Now, consider the relation

R ⊆ T̂ × T such that (t̂, t) ∈ R if compT (t̂) = t. Then, for a tuple (t̂, t) ∈ R, for all

transitions t̂
g,a−→ t̂′ in T̂ there exists a transition t

g,a−→ t′ in T such that (t̂′, t′) ∈ R.

Trivially, (t̂0, t0) ∈ R, thus, R is an e-simulation relation of T̂ by T , i.e., T̂ �E T .

Now, we show that T̂ is an effective target fragment (Definition 3.8). Let ET̂ =

〈S,A, s0, %S〉 be the enacted target behavior of T̂ in environment E and T̂ ↑G be the

transition system obtained by projecting T̂ ’s guards. Consider the relation P ⊆ T̂×S
such that (t̂, s) ∈ P if t̂ = tgt(s) and compE(t̂) = env(s).5 From condition 5a of the

safety game encoding, we know that for a transition t̂
a−→ t̂′ there exists guard g ∈ G

such that g(compE(t̂)) = true and compE(t̂)
a−→ compE(t̂

′) in E . Therefore, for a

tuple (t̂, s) ∈ P, t̂
a−→ t̂′ in T̂ ↑G implies that there exists a transition s

a−→ s′ in ET̂
such that tgt(s′) = t̂′ and env(s′) = compE(t̂

′). Clearly, 〈t̂0, s0〉 ∈ P. Thus, T̂ ↑G is

simulated by ET̂ .

Next, we show that T̂ has an exact composition in S; that is, T̂ is simulated by

the enacted system ES = 〈S,A, s0, %S〉.6 Let Z ⊆ T̂ × S be a relation such that

(t̂, s) ∈ Z iff compS(t̂) = s. Consider a tuple (t̂, s) ∈ Z, a transition t̂
g,a,−→ t̂′ from

t̂, and game states w,w′ such that st(w) = t̂ and st(w′) = t̂′. From (winning) game

states w and w′ we can conclude that s
a,compI(w)−→ s′ in ES where a is the action

in transition compreq(w), and s′ = compS(w′) = compS(t̂′). Thus, (t̂′, s′) ∈ Z, and

so Z is a simulation relation of T̂ by S. Clearly, (t̂0, s0) ∈ Z as compS(t̂0) = s0,

therefore T̂ � ES .

2. T̂ is the SRTF: Let T̃ = 〈T̃ , G̃, t̃0, %̃〉 be the SRTF of T in S. Therefore, by definition

of SRTFs (Definition 3.10, item (1)), we have that T̂ �E T̃ �E T . We use proof by

contradiction to show that T̂ and T̃ are e-simulation equivalent. Assume that T̂ does

5Recall that tgt(s) and env(s) denote the target state and environment state components of the enacted
state s, respectively.

6Note that for deterministic behaviors nd-simulation and simulation are equivalent.

73

CHAPTER 4: COMPUTING SUPREMALS

not e-simulate T̃ , i.e., t̃0 6≺E t̂0. Therefore, there exists a trace τ̃ = t̃0
g̃1,a1−→ · · · g̃

n,an−→ t̃n

of T̃ such that for all traces τ̂ = t̂0
g1,a1−→ · · · g

n,an−→ t̂n of T̂ , there exists a transition

t̃n
g̃n+1,an+1

−→ ˜tn+1 in T̃ for which there is no transition t̂n
gn+1,an+1

−→ ˆtn+1 in T̂ . That

is, τ̃ cannot be e-simulated by any trace of T̂ .

Let us consider the safety game G〈S,T̃ 〉 between T̃ and S. Since T̃ has an exact

composition in S, the maximal set of winning states W̃ will accommodate all T̃ ’s

transition requests. Let W̃τ̃ ⊆ W̃ be the set of winning states catering for τ̃ ’s

transitions; that is, 〈b1, . . . , bn, t̃s, g̃, a, t̃d, ind〉 ∈ W̃τ̃ if t̃s
g̃,a−→ t̃d = t̃i

g̃i+1,ai+1

−→ ˜ti+1 for

some i ≤ n. Note that the transition t̃n
g̃n+1,an+1

−→ ˜tn+1 which breaks the simulation of

T̃ by T̂ is also included. Now consider the set of states in the safety game between S
and T defined by: U = {〈b1, . . . , bn, e, ts, g, a, td, ind〉 | 〈b1, . . . , bn, e, t̃s, g̃, a, t̃d, ind〉 ∈
W̃τ̃ , t̃s �E ts, t̃d �E td, g(e)= g̃(e)=true}. That is, the states are identical to winning

states in W̃τ̃ except for the transition requests. The transition requests of T̃ are

replaced by the transition requests from T such that the corresponding states are in

simulation. Note that these states are not only legal game states but also winning

for the safety game G〈S,T 〉, i.e., U ⊆ W : allocation of simulating transitions to the

same indexes as in winning states of G〈S,T̃ 〉 will still be winning in G〈S,T 〉. Therefore,

U contains winning states having transition requests t
g,a−→ t′ of T , corresponding

to τ̃ ’s transition t̃n
g̃n+1an+1

−→ ˜tn+1 such that t̃n �E t and ˜tn+1 ≺E t′. Consequently,

there will be a transition t̂n
gn+1,an+1

−→ ˆtn+1 in trace τ̂ of T̂ where t̃n �E compT (t̂n)

and ˜tn+1 �E compT (ˆtn+1), which contradicts the assumption. Therefore, T̂ and T̃
are e-simulation equivalent and hence T̂ is the SRTF of T in S.

Observe that the winning states not only include the feasible transition requests, but

also the indexes of the behaviors that can execute the requested actions (in those transition

requests). Thus, it is not hard to see that the composition generator for XtractBeh(W)

can be extracted by keeping those behavior delegations that transition a winning game

state into another winning state in G〈S,T 〉.

Theorem 4.3. Given the maximal winning set W for the safety game between a system

S and target specification T , the composition generator for XtractBeh(W) in S is given

by the function:

CG(h, t̂, g, a, t̂′)={compI(w)|w ∈W, compS(w) = last(h), st(w)
g,a−→ t̂′ in XtractBeh(W)}.

Proof. We proceed in two steps. First, we show that a controller generated from CG is

an exact compositions for XtractBeh(W) in S. Second, we show that all composition of

XtractBeh(W) in S can be generated from CG.

74

SECTION 4.1: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

1. Let C be a controller for XtractBeh(W) in S = 〈B1, . . . ,Bn, E〉 such that for all

system histories h and target transitions t̂
g,a−→ t̂′ in XtractBeh(W) it is the case

that C(h, t̂, g, a, t̂′) ∈ CG(h, t̂, g, a, t̂′). Assume that C is not an exact composition

for XtractBeh(W) in system S. Hence, there exists a trace τ = s0
T

a−→ s1
T · · · of the

enacted target EXtractBeh(W) which cannot be realized by C in S. Suppose that C

can realize τ up to length `, but cannot delegate the next transition action a arising

from a target request t̂
g,a−→ t̂′. Let h be a system history resulting from realising

the ` length prefix of τ such that C(h, t̂, g, a, t̂′) and CG(h, t̂, g, a, t̂′) are undefined.

Since states t̂ and t̂′ are from XtractBeh(W), there exists winning states w,w′ ∈ W
such that st(w) = t̂, st(w′) = t̂′, and 〈w,w′〉 ∈ ρs, where ρs is the system-player’s

transition relation.

Consequently, there exists a behavior index compI(w) such that behavior BcompI can

execute action a when the enacted system is in a state compS(w) (the resulting en-

acted system state will be compS(w′)). Therefore, C(h, t̂, g, a, t̂′) and CG(h, t̂, g, a, t̂′)

will include compI(w). As a result, the transition request t̂
g,a−→ t̂′ resulting after

length ` prefix of τ will be realized, thereby contradicting our assumption. Hence,

C is an exact composition of XtractBeh(W) in system S.

2. We use proof by contradiction to show that all compositions for XtractBeh(W)

in S can be generated from CG. Assume that there exists a composition C of

XtractBeh(W) in S, such that C cannot be generated from CG. Thus, there ex-

ists a history h of system S and an h compatible transition request t
g,a−→ t′ such

that C(h, t̂, g, a, t̂′) 6∈ CG(h, t̂, g, a, t̂′). Let C(h, t̂, g, a, t̂′) = ind; that is, when the

enacted system is in a state last(h), behavior Bind can successfully execute action a.

Next, consider the game state w = 〈b1, . . . , bn, e, t, g, a, t̂′, ind〉 where 〈b1, . . . , bn, e〉 =

last(h). Clearly, there exists a game state w′ = 〈b′1, . . . , b′n, e′, t′, g′,], t̂′, ind′〉 where

〈b′1, . . . , b′n, e′〉 is a resulting enacted system state after executing action a by behavior

Bind from last(h). Moreover, note that w′ is a winning state (environment-player has

no moves defined when requested action is]) and 〈w,w′〉 ∈ ρs. However, w 6∈ W ,

or CG would have accounted for the behavior index ind. This is a contradiction,

since W is a maximal winning set, therefore any winning state w must be in W .

Therefore, CG is the composition generator for XtractBeh(W) in S.

Theorems 4.2 and 4.3 show that SRTFs along with their composition generators can

be computed by using synthesis via safety games. In terms of computational complexity,

synthesising the maximal set of winning states can be performed in polynomial time wrt

to the game state space [Bloem et al. 2011]. Once the maximal winning set has been

75

CHAPTER 4: COMPUTING SUPREMALS

computed, the SRTF can be extracted in polynomial time wrt the size of the set of

maximal winning states.

Theorem 4.4. Given the maximal winning set W for a safety game, the function XtractBeh(W)

can be computed in time polynomial to |W |.

Proof. To construct the states of XtractBeh(W), an algorithm needs only to visit each

winning state in W once. The initial state of XtractBeh(W) can be computed in constant

time. Finally, the transition relation of XtractBeh(W) can be built by visiting each winning

state pair w,w′ ∈W once; that is, |W |2 pairs in the worst case.

Analogously, the composition generator for XtractBeh(W) in S can be computed in

time polynomial in |W |. However, since the size of such space is exponential on the

number of available behaviors, computing the SRTF and its composition generator can

be performed in exponential time (for deterministic systems). Observe that, in the worst

case, the optimisation problem itself is (at least) exponential in time, since it subsumes

the classical behavior composition problem (which is exponential even under deterministic

behaviors). Specifically, to check if a problem has an exact composition one can compute

its optimal approximation and check if it is simulation equivalent to the original target

(which can be performed in polynomial time with respect to the target specifications [Baier

et al. 2008]).

Theorem 4.5. Checking if a given target specification is the SRTF of a given behavior

composition problem with only deterministic available behaviors is EXPTIME-complete.

Theorem 4.5 shows that, in a deterministic setting, the computational complexity

of optimising a behavior composition problem and checking the existence of an exact

composition is the same. This is desirable because within the same time complexity as

of the classical behavior composition problem, one can compute the optimal (best) target

specification (that can actually be realized) as well as check if the original composition

problem is solvable. Indeed, in the optimisation framework, unlike the classical setting,

the end user is always guaranteed to obtain a constructive outcome (i.e., the SRTF and

its composition generator) which can be used in practice.

4.1.2 ATL model checking

In this section, we consider yet another practically amenable way of implementing safety

games, namely, Alternating-time Temporal Logic (ATL) model checking, to synthesise

SRTFs. The advantage of reducing the composition problem to that of ATL reasoning

is that it provides access to advanced model checking techniques and tools, such as mc-

mas [Lomuscio et al. 2009], that are in active development within the agent community.

ATL has already been used in the classical setting to synthesize exact compositions [De

76

SECTION 4.1: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

Giacomo and Felli 2010] (see Section 2.5.5 for an overview). Here, we show how to syn-

thesise the SRTF, along with its composition generator, in the optimisation setting by

parsimoniously altering De Giacomo and Felli [2010]’s encoding.

Preliminaries

Alternating-time Temporal Logic [Alur et al. 2002] is a temporal logic for reasoning about

the ability of agent coalitions in multi-agent game structures. It is a widely used logic

to verify open systems where each component of the system can be modeled as an ATL

agent. ATL formulae are built by combining propositional formulas, the usual tempo-

ral operators—namely, © (“in the next state”), 2 (“always”), 3 (“eventually”), and U
(“strict until”)—and a coalition path quantifier 〈〈A〉〉 taking a set of agents A as parame-

ter. As in CTL, which ATL extends, temporal operators and path quantifiers are required

to alternate. Intuitively, an ATL formula 〈〈A〉〉φ, where A is a set of agents, holds in an

ATL structure if by suitably choosing their moves, the agents in A can force φ true, no

matter how other agents happen to move.

The semantics of ATL is defined in so-called concurrent game structures where, at each

point, all agents simultaneously choose their moves from a finite set, and the next state

deterministically depends on such choices. In comparison to well know Kripke structures,

transitions in concurrent game structures involve simultaneous moves by all the agents

(components) of the model, whereas a transition in a Kripke structure represents a single

step of a (closed) system. Thus, concurrent agent structures provide appropriate semantics

to model open (reactive) systems. More concretely, a concurrent game structure is a tuple

M = 〈A, Q,P,Act, d,V, σ〉, where:

• A = {1, . . . , k} is a finite set of agents;

• Q is the finite set of states;

• P is the finite set of propositions;

• Act is the set of all domain actions;

• d : A×Q 7→ 2Act indicates all available actions for an agent in a state. Given a state

q ∈ Q, D(q) = ×|A|i=1d(i, q) denotes the set of all legal joint-moves in q;

• V : Q 7→ 2P is the valuation function stating what is true in each state; and

• σ : Q × Act|A| 7→ Q is the transition function mapping a state q and a joint-move

~a ∈ D(q) to the resulting next state q′.

A path λ = q0q1 · · · in a structure M is a, possibly infinite, sequence of states such

that for each i ≥ 0, there exists a joint-move ~ai ∈ D(qi) for which σ(qi, ~ai) = qi+1. We

use λ[i] = qi to denote the i-th state of λ, Λ to denote the set of all paths in M, and

77

CHAPTER 4: COMPUTING SUPREMALS

Λ(q) to denote those starting in q. Also, |λ| denotes the length of λ as the number of

state transitions in λ: |λ| = ` if λ = q0q1 . . . q`, and |λ| = ∞ if λ is infinite. When

0 ≤ i ≤ j ≤ |λ|, then λ[i, j] = qiqi+1 . . . qj is the finite subpath between the i-th and j-th

steps in λ. Finally, a computation in M is an infinite path in Λ.

To provide semantics to formulas 〈〈·〉〉ϕ, ATL relies on the notion of agent strategies.

Technically, an ATL strategy for an agent agt is a function fagt : Q+ 7→ Act, where

fagt(λq) ∈ d(agt, q) for all λq ∈ Q+, stating a particular action choice of agent agt at

path λq. A collective strategy for a group of agents A ⊆ A is a set of strategies FA =

{fagt | agt ∈ A} providing one specific strategy for each agent agt ∈ A. For a collective

strategy FA and an initial state q, out(q, FA) denotes the set of all possible outcomes

of FA starting at state q. Intuitively, it is the set of all computations that may ensue

when the agents in A behave as prescribed by FA, and the remaining agents follow any

arbitrary strategy [Alur et al. 2002]. Formally, given a collective strategy FA for agents

A, a computation λ = q0q1 · · · is in the set out(q0, FA) if for all positions i ≥ 0, there is

a joint-move 〈a1, . . . , a|A|〉 ∈ D(qi) such that (i) aagt = fagt(λ[0, i]) for all agents agt ∈ A,

and (ii) σ(qi, 〈a1, . . . , a|A|〉) = qi+1. The semantics for the coalition modality is then

defined as follows (here φ is a path formula; that is, it is preceded by ©, 2, or U , and

M, λ |= φ is defined in the usual way [Alur et al. 2002]):

M, q |= 〈〈A〉〉φ iff there is a collective strategy FA such that for all computations

λ ∈ out(q, FA), we have M, λ |= φ.

Given a concurrent game structure M and an ATL formula φ, the model checking

problem of ATL asks for the set of states in M that satisfy formula φ. Let [φ]M denote

the maximal set of states of M that satisfy φ. A state q in M is said to be winning for

φ if q ∈ [φ]M. Computationally, such a desired set of states can be computed in time

polynomial in the size of the game structure and the length of the given formula [Alur

et al. 2002]. Observe that the coalition modality only allows for implicit (existential)

quantification over strategies. However, the model checking algorithms generally return

all satisfying states; that is, [φ] represents the outcome of all possible strategies which the

agents in coalition may follow to enforce the given formula.

Synthesising SRTFs via ATL model checking

For the classical setting (see Section 2.5.5), De Giacomo and Felli [2010] defined an ATL

structureM〈S,T 〉 with one agent for each available behavior and target specification, and

one distinguished agent contr representing the controller. The task then involves model

checking the special formula ϕ = 〈〈contr〉〉2(
∧
i=1,...,n statei 6= error i) (against structure

M〈S,T 〉), which states that the controller agent has a strategy so that none of the n

available behaviors end up in an error state. A behavior reaches a distinguished “error”

state if the controller delegates an unfeasible action to it.

78

SECTION 4.1: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

Surprisingly, it turns out that one can readily adapt De Giacomo and Felli’s reduction

to actually synthesize an SRTF for a, possibly non-solvable, deterministic composition

problem (and to extract the corresponding controller generator). In line with the LTL

synthesis approach, the key to this is to include the target behavior in the coalition so that

the joint-strategy also includes selecting which transition from the actual target may be

requested. We first show how to construct a concurrent game structure for ATL from a

given behavior composition problem. Following that, we present the formula to be checked

in such a model in order to get the SRTF.

Let S = 〈B1, . . . ,Bn, E〉 be an available system, with deterministic available be-

haviors Bi = 〈Bi, Gi, bi0, %i〉, for 1 ≤ i ≤ n, environment E = 〈E,A, e0, ρ〉, and let

T = 〈T,G, t0, %〉 be a target specification. In line with the encoding for the classical

setting, we modify each available behavior Bi by adding a new disconnected error state

error i, for each 1 ≤ i ≤ n, and environment E by adding a disconnected error state

errorenv . The error state captures wrong delegations by the controller, i.e., a behavior

reaches the error state if it cannot execute the delegated action from its current state.

We define the concurrent game structure, for a system S and target T , as the tuple

M〈S,T 〉 = 〈{1, . . . , n, env , tgt, contr}, Q,P,Act, d,V, δ〉, where:

• There are n + 3 agents: one per available behavior (agents 1, . . . , n), one agent for

the environment (agent env), one agent for the target module (agent tgt), and one

agent for the controller (agent contr).

• The states Q of the game structure consists of the following finite range functions:

– statei ∈ Bi ∪ {error i}, for i ≤ n, returns the current state of behavior Bi, and

stateE ∈ E ∪ {errorenv} returns the current state of the environment;

– sch ∈ {i, . . . , n, stop} returns the index of the available behavior that performed

the last transition request. A special action stop is included to denote that no

behavior was selected;

– req ∈ % ∪ {stop} returns the next transition request of the target. Given a

transition request r = 〈ts, g, a, td〉, we denote its action a by act(r). A special

request stop is included to indicate that the target wants to stop requesting

transitions;

• P is the set of propositions asserting value assignments to the above defined func-

tions;

• V is the mapping from a game state q to the values returned by the above defined

functions. For convenience, we write statei(q) = b instead of (statei = b) ∈ V(q);

• Act =
⋃
i≤nBi ∪ E ∪ {1, . . . , n} ∪ % ∪ {stop} is the set of domain actions;

79

CHAPTER 4: COMPUTING SUPREMALS

• The function d(j, q) captures the moves available to agent j at state q, and is defined

as follows:

– Available behaviors (j ∈ {1, . . . , n}):

d(j, q) =

{error j}, if there does not exist a transition statej(q)
gj ,a,−→ bj in Bj

where gj(stateE(q)) = true, a = act(req(q)), and req(q) 6= stop.

{b | b ∈ %j(statej(q), gj , act(req(q))), gj(stateE(q))=true},

if there exists a transition statej(q)
gj ,a,−→ bj in Bj where

gj(stateE(q)) = true and a = req(q) 6= stop.

{statej(q)}, if req(q) = stop.

– Environment:

d(env , q) =

{errorenv}, if there does not exist a transition stateE(q)
a−→ e′ in E

where a = act(req(q)) and req(q) 6= stop.

{e | e ∈ ρ(stateE(q), act(req(q)))}, if there exists a transition

stateE(q)
act(req(q))−→ e′ in E and req(q) 6= stop.

{stateE(q)}, if req(q) = stop.

– Target behavior:

d(tgt, q) =

{〈t, g, a, t′′〉∈% |g(stateE(q))=true, req(q)=〈t′, g′, a′, t〉 ∈%}

∪ {stop}, if req(q) 6= stop.

{stop}, if req(q) = stop.

– Controller:

d(contr , q) =

{1, . . . , n}, if req(q) 6= stop.

{stop}, otherwise.

• δ :Q×Act 7→ Q is the transition function, where δ(q, j1,. . ., jn, jenv , jtgt , jcontr) = q′

if:

– req(q) 6= stop (the target requested a transition from its specification) and

∗ sch(q′) = jcontr ; that is, we store the index of the behavior to which the

previous request was delegated by the controller;

80

SECTION 4.1: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

∗ statei(q
′) = ji if i = jcontr ; that is, we evolve the behavior which was

chosen by the controller;

∗ statei(q
′) = statei(q) for i ∈ {1, . . . , n} \ jcontr ; that is, all other behaviors

remain still;

∗ stateE(q
′) = jenv ; that is, we update the environment’s state; and

∗ req(q′) = jtgt ; that is, the target chooses its next transition request.

– req(q) = stop (the target requested stop) and

∗ sch(q′) = jcontr ;

∗ statei(q
′) = statei(q) for i ∈ {1, . . . , n}; that is, all behaviors remain in

their current states;

∗ stateE(q
′)=stateE(q); that is, environment state remains same; and

∗ req(q′) = stop; that is, the next target request is stop.

Conceptually, and structurally, a state in the encoded ATL game structure consists

of the current states of the available behaviors and the environment, the current pending

transition request from the target, and the previous controller delegation. Observe that

actions of each agents are strongly linked to the propositions set in the next state. Specif-

ically, an action of each available behavior and the environment is one of the following:

(i) the successor of the current state if it can execute the current requested action; or (ii)

an error state if the behavior cannot execute a legal (non stop) action; or (iii) the current

state if the current target request is stop.

The target behavior moves by requesting either a legal transition as per the speci-

fication or the special stop action. As one would expect, once the target agent chooses

the stop action, all future target agent actions are limited to the stop action. The last

agent in our encoding, the controller, selects one of the available behaviors to execute

the requested (non stop) action. The transition function of the game encodes the evo-

lutions of all the components; that is, available behaviors, environment, target request,

and the controller. To elaborate, for a state q, where req(q) 6= stop, and a move vector

〈j1, . . . , jn, jenv , jtgt , jcontr 〉, the next resulting state q′ is such that only the state of be-

havior Bjcontr in q′ is updated; all the other behaviors remain still. In addition to the

delegated behavior, the state of environment in q′ is updated to its action jenv . Similarly,

the target request and the controller delegation in q′ are updated to their actions jtgt

and jcontr , respectively. And for a state q, where req(q) = stop, a successor state of q

is such that all the available behaviors and environment stay in their current state. We

observe that our model is similar to the one used in [De Giacomo and Felli 2010] except

that the target agent’s requests involve transitions rather than actions and for inclusion

of the special request stop.

81

CHAPTER 4: COMPUTING SUPREMALS

Lastly, we model check the following ATL formula in the structure model M〈S,T 〉:

ϕ̃ = 〈〈contr , tgt〉〉2(
∧

i∈{1,...,n,E}

statei 6= error i).

Intuitively, the idea behind formula ϕ̃, as opposed to formula ϕ, is that the coalition is

now in control of what can be requested (and what should not be). This suggests that the

coalition has the ability to select which parts of the target can be executed without driving

the available system into an “error” state (due to an impossible fulfilment of a request).

In this case, similar to the LTL synthesis approach, a winning state in [ϕ̃]M〈S,T 〉 is one

in which either the target requests actions such that the controller can (always) legally

delegate them to an available behavior, or the target requests stop from a non error state.

By design, it is the case that the target agent can always do the stop action. Notably,

the game semantics is defined such that once a stop is requested, the behaviors and the

environment remain in their respective current states in the next, and all subsequent,

successor states. This approach empowers the target agent to decide on the stop action

when all available behaviors are in a state such that the next target transition cannot be

delegated, thus avoiding error states.

Aligned with the LTL synthesis approach where the safety game G〈S,T 〉 is always

winning for the system-player, in the ATL model checking technique, the formula ϕ̃ is

satisfiable in all encoded models M〈S,T 〉. This is not surprising, rather it is expected, as

in our encoding the tgt agent can do the stop action at any state, thereby continuously

remaining in the same non-error state. Therefore, even before model checking ϕ̃, one

knows that it will be satisfiable in any such encoded modelM〈S,T 〉. In fact, the aim here

is not to verify the satisfiability of ϕ̃, unlike in the classical setting where one checks the

existence of an exact composition, but rather to use the model checking technology to

compute the set [ϕ̃]. It follows then that one can extract an SRTF from the maximal

winning set [ϕ̃]M〈S,T 〉 , as the following result demonstrates.

Theorem 4.6. Let [ϕ̃]M〈S,T 〉 be the maximal set of states satisfying ϕ̃ in the encoded

concurrent game structureM〈S,T 〉 for a system S = 〈B1, . . . ,Bn, E〉 and target specification

T = 〈T,G, t0, %〉. Then, behavior T[ϕ̃] = 〈T̂ , G, t̂0, %̂〉 is the SRTF for T in S, where:

• T̂ = {〈state1(q), . . . , staten(q), stateE(q), t〉 |q ∈ [ϕ̃]M〈S,T 〉 , req(q) = 〈t, g, a, t′〉}∪ {t̂0}.
Given a state q ∈ [ϕ̃]M〈S,T 〉 we denote 〈state1(q), . . . , staten(q), stateE(q), t〉 by st(q),

enacted system state 〈state1(q), . . . , staten(q), stateE(q)〉 by stS(q), and target state t

by stT (q);

• t̂0 = 〈b10, . . . , bn0, e0, t0〉 is the initial state of T[ϕ̃];

• %̂(st(q), g, a, st(q′)), where req(q) = 〈stT (q), g, a, stT (q′)〉, iff it is the case that:

– q, q′ ∈ [ϕ̃]M〈S,T 〉; and

82

SECTION 4.1: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

– δ(q, j1, . . . , jn+3) = q′ for some j1, . . . , jn+3.

Proof. The proof amounts to showing that (i) T[ϕ̃] is an RTF of T in S, and (ii)

T[ϕ̃] is the SRTF of T in S.

1. T[ϕ̃] is an RTF: Due to the definition of %̂ in T[ϕ̃] and move function d for target

agent tgt in the encodingM〈S,T 〉, it holds that t̂
g,a−→ t̂′ ∈ %̂ if stT (t̂)

g,a−→ stT (t̂′) ∈ %.

Now, consider the relation R ⊆ T̂ × T such that (t̂, t) ∈ R if stT (t̂) = t. Then, for a

tuple (t̂, t) ∈ R, for all transitions t̂
g,a−→ t̂′ in T[ϕ̃] there exists a transition t

g,a−→ t′ in

T such that (t̂′, t′) ∈ R. Note that R is an e-simulation relation of T[ϕ̃] by T . Since

by definition (t̂0, t0) ∈ R , we have that T[ϕ̃] �E T .

Next, we show that T[ϕ̃] is an effective target fragment (Definition 3.8). Let ET[ϕ̃] =

〈S,A, s0, %S〉 be the enacted target behavior of T[ϕ̃] in environment E and T ↑G[ϕ̃] be

the transition system obtained by projecting T[ϕ̃]’s guards. Consider the relation

P ⊆ T̂ ×S such that (t̂, s) ∈ P if t̂ = tgt(s) and stateE(q) = env(s), where st(q) = t̂.7

Then, P is the simulation relation of T ↑G[ϕ̃] by ET[ϕ̃] : From the move function d for

target agent tgt defined in M〈S,T 〉, we know that for a transition t̂
g,a−→ t̂′ there

exists guard g ∈ G such that g(stateE(q)) = true, where st(q) = t̂, and since the

environment agent cannot be in the error state we know that stateE(q)
a−→ stateE(q

′)

in E , where st(q) = t̂ and st(q′) = t̂′. Hence, for a tuple (t̂, s) ∈ P, t̂
a−→ t̂′ in T ↑G[ϕ̃]

implies that there exists a transition s
a−→ s′ in ET[ϕ̃] such that (t̂′, s′) ∈ R. Trivially,

(t̂0, s0) ∈ R, therefore ET[ϕ̃] simulates T ↑G[ϕ̃] . Thus, T[ϕ̃] is an effective fragment of T
in S.

Next, we show that T[ϕ̃] has an exact composition in S; that is, T[ϕ̃] is simulated

by the enacted system ES = 〈S,A, s0, %S〉.8 Let Z ⊆ T̂ × S be a relation such that

(t̂, s) ∈ Z iff stS(q) = s, where st(q) = t̂. Consider a tuple (t̂, s) ∈ Z, a transition

t̂
g,a,−→ t̂′ from t̂, and game states q, q′ such that st(q) = t̂ and st(q′) = t̂′. From

(winning) game states q and q′ we can conclude that s
a,sch(q′)−→ s′ in ES where a is the

action in transition req(q), and s′ = stS(q′) such that st(q′) = t̂′. Thus, (t̂′, s′) ∈ Z,

and so Z is a simulation relation of T[ϕ̃] by S. Clearly, by definition of Z, (t̂0, s0) ∈ Z,

therefore T[ϕ̃] � ES .

2. T[ϕ̃] is the SRTF: Let T̃ = 〈T̃ , G̃, t̃0, %̃〉 be the SRTF of T in S. Therefore, by

definition of SRTFs (Definition 3.10), we have that T[ϕ̃] �E T̃ �E T . We use

proof by contradiction to show that T[ϕ̃] and T̃ are e-simulation equivalent. Assume

that T[ϕ̃] does not e-simulate T̃ , i.e., t̃0 6≺E t̂0. Therefore, there exists a trace

τ̃ = t̃0
g̃1,a1−→ · · · g̃

n,an−→ t̃n of T̃ such that for all traces τ̂ = t̂0
g1,a1−→ · · · g

n,an−→ t̂n of

7Recall that tgt(s) and env(s) denote the target state and environment state components of the enacted
state s, respectively.

8Note that for deterministic behaviors nd-simulation and simulation are equivalent.

83

CHAPTER 4: COMPUTING SUPREMALS

T̂ , there exists a transition t̃n
g̃n+1,an+1

−→ ˜tn+1 in T̃ for which there is no transition

t̂n
gn+1,an+1

−→ ˆtn+1 in T[ϕ̃]. That is, τ̃ cannot be e-simulated by any trace of T[ϕ̃].

Consider the concurrent game structureM〈S,T̃ 〉 for target specification T̃ and system

S. Since T̃ has an exact composition in S, the maximal set of winning states W̃ =

[ϕ̃]M〈S,T̃ 〉 will accommodate all T̃ ’s transition requests. Let W̃τ̃ ⊆ W̃ be the set of

winning states catering for τ̃ ’s transitions; that is, 〈b1, . . . , bn, e, t̃s, g̃, a, t̃d, ind〉 ∈ W̃τ̃

if t̃s
g̃,a−→ t̃d = t̃i

g̃a+1,ai+1

−→ ˜ti+1 for some i ≤ n. Note that the transition t̃n
g̃n+1,an+1

−→
˜tn+1 which breaks the simulation of T̃ by T[ϕ̃] is also included. Now consider the set of

states in the concurrent game structureM〈S,T 〉 for target T and system S defined by:

U = {〈b1, . . . , bn, ts, g, a, td, ind〉 | 〈b1, . . . , bn, t̃s, g̃, a, t̃d, ind〉 ∈ W̃τ̃ , t̃s �E ts, t̃d �E
td}. That is, the states are similar to winning states in W̃τ̃ except for the transition

requests. The transition requests of T̃ are replaced by the transitions requests from

T such the corresponding states are in e-simulation. Note that these states are

not only legal game states but also winning in the game structure M〈S,T 〉, i.e.,

U ⊆ W : allocation of simulating transitions to the same indexes as in the winning

states of M〈S,T̃ 〉 will still be winning in M〈S,T 〉. Therefore, U contains winning

states having transition requests t
gn+1,an+1

−→ t′ of T , corresponding to τ̃ ’s transition

t̃n
g̃n+1,an+1

−→ ˜tn+1 such that t̃n �E t and ˜tn+1 �E t′. Consequently, there will be a τ̂ ’s

transition t̂n
gn+1,an+1

−→ ˆtn+1 in T[ϕ̃] where t̃n �E stT (t̂n) and ˜tn+1 �E stT (ˆtn+1), which

contradicts the assumption. Therefore, T[ϕ̃] and T̃ are e-simulation equivalent and

hence T[ϕ̃] is the SRTF of T in S.

Given a composition problem, one can now use ATL model checking to compute

its SRTF. We denote the SRTF, of a target specification T in a system S, encoded in

[ϕ̃]M〈S,T 〉 , by T[ϕ̃]. Note that the concurrent game states also store the “good” controller

delegations that ensure the system never reaches an error state. From these, the con-

troller generator for T[ϕ̃] can then be extracted by keeping those behavior delegations that

transition a winning game state into another winning state in M〈S,T 〉.

Theorem 4.7. Given the SRTF T[ϕ̃] of a target specification T and system S, the com-

position generator of T[ϕ̃] in S is given by the function:

CG(h, t̂, g, a, t̂′)={sch(q′) |stS(q) = last(h), st(q′) = t̂′, st(q)
g,a−→ t̂′ in T[ϕ̃], q, q

′ ∈ [ϕ̃]}.

Proof. First, we show that a controller generated from CG is an exact composition for T[ϕ̃]

in S. Second, we show that all compositions of T[ϕ̃] in S can be generated from CG.

1. Let C be a controller for T[ϕ̃] in system S = 〈B1, . . . ,Bn, E〉 such that for all system

histories h and transitions t̂
g,a−→ t̂′ it is the case that C(h, t̂, g, a, t̂′) ∈ CG(h, t̂, g, a, t̂′).

84

SECTION 4.2: COMPUTING SRTFS FOR DETERMINISTIC SYSTEMS

Assume that C is not an exact composition for T[ϕ̃] in system S. Hence, there exists

a trace τ = s0
T

a−→ s1
T · · · of the enacted target ET[ϕ̃] which cannot be realized

by C in S. Suppose that C can realize τ up to length `, but cannot delegate the

next transition action a arising from a target request t̂
g,a−→ t̂′. Let h be a system

history resulting from realising the ` length prefix of τ , such that C(h, t̂, g, a, t̂′) and

CG(h, t̂, g, a, t̂′) are undefined. Since states t̂ and t̂′ are from T[ϕ̃], there exists winning

(non error) states q, q′ ∈ [ϕ̃] such that st(q) = t̂ and st(q′) = t̂′. Consequently, there

exists a behavior index sch(q′) such that behavior Bsch(q′) can execute action a when

the enacted system is in a state stS(q) (the resulting enacted system state will be

stS(q′)). Therefore, C(h, t̂, g, a, t̂′) and CG(h, t̂, g, a, t̂′) will include sch(q′). As a

result, the transition request t̂
g,a−→ t̂′ resulting after ` length prefix of τ will be

realized, thereby contradicting our assumption. Hence, C is an exact composition of

T[ϕ̃] in S.

2. We use proof by contradiction to show that all compositions for T[ϕ̃] in S can be

generated from CG. Assume that there exists a composition C of T[ϕ̃] in S, such that

C cannot be generated from CG. Thus, there exists a history h of system S and an h

compatible transition request t̂
g,a−→ t̂′ such that C(h, t̂

g,a−→ t̂′) 6∈ CG(h, t̂
g,a−→ t̂′). Let

C(h, t̂
g,a−→ t̂′) = ind; that is, when the enacted system is in a state last(h), behavior

Bind can successfully execute action a. Next, consider the game states q, q′ such that

stS(q) = last(h), req(q) = 〈t̂, g, a, t̂′〉 and also consider a move vector ~j where q′ is the

successor of q for move vector ~j. Clearly, q and q′ exist with sch(q′) = ind as we know

that behavior Bind can execute action a from last(h) = stS(q). Moreover, q′ 6∈ [ϕ̃]

else CG would have accounted for the behavior index ind. This is a contradiction: q′

is indeed a winning state as from q′ the target agent can move stop and since [ϕ̃] is

the maximal winning set, any winning state q′ must be in [ϕ̃]. Therefore, CG is the

composition generator for T[ϕ̃] in S.

In terms of computational complexity, the model checking task over ATL can be

performed in polynomial time wrt the size of the game structure [Alur et al. 2002]. One

can see, on the lines of Theorem 4.4, that T[ϕ̃] can be computed in time polynomial in

|[ϕ]|. Since the size of such space is exponential in the number of available behaviors,

computing the SRTF via ATL model checking can be performed in exponential time with

respect to the number of available behaviors (for deterministic systems).

To recap, in this section we provided two practically amenable techniques enjoying

efficient state-of-the-art tools to obtain SRTFs, but only for deterministic systems. How-

ever, it remains to be seen if these approaches are sufficient for handling composition

problems involving nondeterministic available behaviors.

85

CHAPTER 4: COMPUTING SUPREMALS

e0

a, b, c

Env. E

b0

b1

b2

a
a

b

c

Behavior B1

c0 c1
c

Behavior B2

t0

a, c

Target T

q0

q1

q2

q3

q4a
a

c

c
c

T[ϕ̃] (Partial)

u0 u1

u2

u3

u4

c

a

c

a

SRTF T̃

Figure 4.1: Instance where safety game synthesis and ATL model checking approaches are
not sufficient.

4.2 Computing SRTFs for nondeterministic systems

Unfortunately, when we consider nondeterministic available behaviors, safety game and

ATL model checking approaches are no longer sufficient. For systems with nondeterminis-

tic behaviors, the target specification T[ϕ̃] extracted from the encoded ATL game structure

M〈S,T 〉 (or XtractBeh(W) extracted from winning states W of safety game G〈S,T 〉) may

not be realizable in the given system; that is, an exact composition may not exist for

XtractBeh(W) in system S. Recall that for nondeterministic behaviors, a target specifica-

tion is realizable if the enacted target behavior is nd-simulated by the enacted system. To

briefly recap, an nd-simulation requires the simulation property to be maintained across

all nondeterministic behavior evolutions, whereas in plain simulation only one evolution

needs to satisfy the simulation property (see Section 2.5.3 for details). Indeed, there are

examples where ET[ϕ̃] �nd ES does not hold due to the nondeterminism present in ES . In

such cases, the computed target specification T[ϕ̃] is a sort of target behavior in which

agent transition requests are conditional on the nondeterministic execution of available

behaviors. However, the agent using the target is not meant to have observability on such

behaviors, and so it cannot decide its request upon such contingencies. To elaborate, in

contrast to the controller, the user of the target specification cannot observe the internal

state of the behaviors and its requests must be honored by an exact controller irrespective

of the nondeterminism in the available behaviors. An exact controller does this by bas-

ing its delegation on which nondeterministic evolution ensued. Thus, the same target’s

request may be delegated by a composition to different available behaviors in different

system histories.

Example 4.1. Figure 4.1 shows a simple behavior composition problem, with two be-

haviors B1 and B2, environment E , and target specification T = 〈t0, {g}, t0, %〉, where

g(e0) = true. Take T[ϕ̃] (only a part of T[ϕ̃] is shown in Figure 4.1) as a candidate for SRTF

of T in system S = 〈B1,B2, E〉. The trace τ = 〈q0, e0〉
g,a−→ 〈q2, e0〉

g,c−→ 〈q0, e0〉
g,a−→ 〈q2, e0〉

of enacted target ET[ϕ̃] cannot be realized in the enacted system ES because of nondeter-

minism present in behavior B1. See that behavior B1 may evolve to state b1 or b2 after the

86

SECTION 4.2: COMPUTING SRTFS FOR NONDETERMINISTIC SYSTEMS

first action a is delegated. If B1 evolves to its state b1, then the second action c can only be

executed by behavior B2. Once that happens, none of the behaviors B1 or B2 can execute

the third action a of trace τ . In terms of nd-simulation, note that 〈e0, q0〉 6�nd 〈e0, b0, c0〉
because action a can be executed from enacted target state 〈e0, q0〉 but not from enacted

system state 〈e0, b1, c1〉. Lastly, note that the target specification T̃ is actually the SRTF

of T in S.

The underlying reason for this conditionality in SRTFs lies in the semantics of game

structures and ATL model checking. The agents/players in safety games and ATL model

checking have full observability on the game states. Hence, the target agent can observe

the nondeterministic behavior evolution and act optimistically on such an evolution. This

issue does not arise in the classical case as there the complete target needs to be realized.

Hence, irrespective of the behavior evolution, the target will still seek to request all the next

actions. On the other hand, in our setting the target must request only those transitions

which can actually be executed in the system.

In reality, what we need is for the target to be conformant, i.e., independent of

conditions on the available behaviors states. That is, irrespective of how a behavior might

evolve due to nondeterminism, the same sequence of subsequent target requests must be

executable in the system. Hence inspired by the literature on planning under uncertainty

we construct a type of belief state [Bonet and Geffner 2000, Palacios and Geffner 2006],

and in turn, the “belief-level” full enacted system. The idea behind generating belief

states is to track the states where the enacted system could be in from the target agent’s

perspective.

Our technique for synthesizing the SRTF relies on two simple operations on transition

systems, namely, a specific synchronous product and a conformance enforcing procedure.

Roughly speaking, the technique involves two steps:

1. We take the synchronous product of the enacted system ES and the target T , yielding

the structure F〈S,T 〉.

2. We modify F〈S,T 〉 to enforce conformance on its states that cannot be distinguished

by the user of the target.

The full enacted system models the behavior that emerges from joint parallel execu-

tion of the enacted system and the target.

Definition 4.1 (Full enacted system). Given the enacted system ES = 〈S,A, s0, δ〉 for

a system S = 〈B1, . . . ,Bn〉 and a target specification T = 〈T,G, t0, %〉, the full enacted

system of T and S, denoted by ES × T , is a tuple F〈S,T 〉 = 〈F,A, f0, γ〉, where:

• F = S × T is the finite set of F〈S,T 〉’s states. When f = 〈s, t〉, we denote s by

esys(f), t by tgt(f), and we extend the env function to env(f) = env(s);

87

CHAPTER 4: COMPUTING SUPREMALS

• f0 = 〈s0, t0〉 ∈ F , is F〈S,T 〉’s initial state;

• A is the set of actions; and

• γ ⊆ F×G×A×{1, . . . , n}×F is F〈S,T 〉’s transition relation, where 〈f, g, a, k, f ′〉∈γ,

or f
g,a,k−→f ′ in F〈S,T 〉 iff :

– there exists guard g∈G such that g(env(f))=true, tgt(f)
g,a−→ tgt(f ′) in T ; and

– sys(f)
a,k−→ sys(f ′) in ES .

Conceptually, the full enacted system is the synchronous product of the enacted sys-

tem and the target behavior. Each state of the full enacted system consists of two compo-

nents, an enacted system state and a target state. Observe that the transition relation of

the full enacted system requires both the enacted system and the target to evolve jointly.

Structurally, this is made evident by including the target guard and behavior index in the

transition relation.

Example 4.2. Figure 4.2 shows the full enacted system of target specification T in

system S = 〈B1,B2, E〉. Note that from the initial state 〈〈b0, c0, e0〉, t0〉 action a executed

by behavior B1 may result in either s1 = 〈〈b1, c0, e0〉, t0〉 or s2 = 〈〈b2, c0, e0〉, t0〉. Clearly,

the sequences of actions that can be requested from s1 and s2 are different. For instance,

only the action c can be executed from s1; however, from s2 the sequence of actions c · c
and c · a both are executable.

Note the similarity between the full enacted system and the safety game structure

built in Section 4.1.1. First, a state in the full enacted system is exactly like a game

state, except for transition request and behavior delegation, which are used as transition

labels in the full enacted system. Second, by construction, the transition relation in the

full enacted system includes only target transitions which can be successfully delegated.

In fact, both LTL synthesis and ATL model checking are efficient approaches to build the

full enacted system. Also, from the construction of F〈S,T 〉 we can conclude that it can

be built in exponential time in the number of behaviors and polynomial in the number of

states in each behavior.

Definition 4.2 (Belief-level full enacted system). Given a full enacted system F〈S,T 〉 =

〈F,A, f0, γ〉 for a target T = 〈T,G, t0, %〉 and a system S = 〈B1, . . . ,Bn, E〉 where Bi =

〈Bi, Gi, bi0, %i〉 for i ≤ n and E = 〈E,A, e0, ρ〉, the belief-level full enacted system is a tuple

K〈S,T 〉 = 〈Q,G, q0, δK〉, where:

• Q = 2(B1×···×Bn) × E × T is K〈S,T 〉’s set of states. When q = 〈{s1, . . . , s`}, e, t〉 ∈ Q
we denote {s1, . . . , s`, e} by ksys(q) and t by tgt(q);

88

SECTION 4.2: COMPUTING SRTFS FOR NONDETERMINISTIC SYSTEMS

〈b0, c0, e0〉
t0

〈b2, c0, e0〉
t0

〈b1, c0, e0〉
t0

〈b0, c1, e0〉
t0

〈b1, c1, e0〉
t0

〈b2, c1, e0〉
t0

Full enacted system.

g, a, 1

g
,c
,2

g, a, 1

g, c, 1

g, c, 2

g, c, 2

g, a, 1

g,
a
, 1

g,
c,
1

〈b0, c0〉
e0, t0

u0

〈b1, c0〉
〈b2, c0〉
e0, t0

u2

〈b1, c1〉
〈b0, c0〉
e0, t0

u′3

〈b1, c1〉
〈b2, c1〉
e0, t0

u3

〈b0, c1〉
e0, t0

u1

Belief-level system.

g, a{1}

g, c

{2, 1}

g,
c

{2
, 2
}

g,
c

{2
}

g, a{1}

Figure 4.2: Full enacted system and belief level system for behavior composition problem
shown in Figure 4.1.

• q0 =〈{s0}, e0, t0〉 such that f0 =〈(s0, e0), t0〉, is the initial state; and

• δK ⊆ Q×G×A×Q is K〈S,T 〉’s transition relation such that 〈q, g, a, q′〉 ∈ δK , where

q = 〈S, e, t〉 and q′ = 〈S′, e′, t′〉, iff :

1. there exists a set Indx = {〈s1 : k1〉, . . ., 〈s` : k`〉} such that {s1, . . . , s`} = S; and

〈si ∪{e}, t〉
g,a,ki−→ 〈s′ ∪{e′}, t′〉 in F〈S,T 〉 for all i ≤ `. That is, the action a must

be executable from all full enacted system states in q; and

2. S′ =
⋃
〈s:i〉∈Indx{s′ | 〈〈s ∪ {e}, t〉, g, a, i, 〈s′ ∪ {e′}, t′〉〉 ∈ γ}. That is, S′ should

account for all (nondeterministic) evolutions from each full enacted system state

in q resulting from action a. Let fI(q
g,a−→ q′) be a function that returns the set

Indx associated with a transition q
g,a−→ q′ ∈ δK .

Intuitively, a belief state consists of all the states in which a nondeterministic full

enacted system could be after executing a sequence of actions. Syntactically, a belief state

consists of a set of enacted system states and a target state. To ensure that we maintain

consistent environment behavior, the environment state is shared with the target state

and the behavior (enacted system) states.

Observe that the transition relation of the belief-level system is the main ingredient

in its construction. A belief level state q transitions to another state q′ by executing action

a if two key constraints hold. First, we require that all underlying enacted system states

and the target state in q should be able to execute a. That is, there should be a set of

89

CHAPTER 4: COMPUTING SUPREMALS

behavior indexes, one per enacted system state in q, such that in each enacted system

state the indexed behavior can execute a (condition 1 of δK). Second, the resulting belief

state q′ should be such that all possible (nondeterministic) successor states, as a result of

execution a from enacted states in q, should be included in q′, along with target evolution

(with same environment evolution).

Example 4.3. Figure 4.2 shows the belief-level full enacted system for the target spec-

ification T and system S = 〈B1,B2, E〉. Note that the initial state u0 encodes the initial

state of the enacted system and the target behavior. Consider the evolution of the belief

level system for deterministic and nondeterministic behavior actions. If a behavior is de-

terministic, such as B2, the number of enacted system states in the successor belief state

remain the same. For example, from the initial state, if behavior B2 executes the action c,

then the resulting belief state u1 has only one enacted system state, which is 〈b0, c2, e0〉.
On the other hand, if an action is nondeterministic, the number of enacted system states

in the successor belief state may increase. For instance, if action a is executed from the

initial state by B1, then the successor belief state u2 encodes two enacted system states,

which are 〈b1, c0, e0〉 and 〈b2, c0, e0〉.

Note that if all the behaviors are deterministic, then the belief-level full enacted

system will be same as the full enacted system. In fact, and as expected, the belief system is

needed only when the system includes nondeterministic available behaviors. Surprisingly,

the belief level system K〈S,T 〉 is itself nondeterministic with respect to different behavior

delegations. This is by design: conceptually different behavior delegations capture two

aspects, different compositions and nondeterminism for transition selection in the resulting

SRTF. First, observe that a realizable target specification may have more than one exact

composition, hence the same request may be delegated to different behaviors. Second, the

SRTF itself, generally, will be nondeterministic (to allow embedding of more information)

and such a nondeterminism will be present in the belief-level system.

Example 4.4. The belief-level system (Figure 4.2) of target T and system S = 〈B1,B2, E〉
is nondeterministic for action c from state u2. From the set of enacted system states

{〈b1, c0, e0〉, 〈b2, c0, e0〉} two sets of delegations are possible. Since behavior B2 is capable

of executing c from both the enacted system states, the controller may decide either to

allocation c to B2 or to B1 for the enacted state 〈b2, c0, e0〉.

Note the difference in observability between the controller and the target. The user

of the target does not have observability over the behavior states; hence the target spec-

ification should be such that irrespective of how a behavior nondeterministically evolves,

all the subsequent target requests should be executable by some available behavior. In

contrast, the controller can observe each behavior’s current state, and therefore based on

90

SECTION 4.2: COMPUTING SRTFS FOR NONDETERMINISTIC SYSTEMS

behavior evolution it may choose to allocate the same target request to different avail-

able behaviors. In a nutshell, the controller is allowed to be conditional on the behavior

evolution; however the target has to be conformant. We note some similarities in the

use of belief-level behaviors with the work in [De Giacomo et al. 2009] for composition

under partial observability of the available behaviors. There the controller is required to

be conformant; here instead the target behavior must be so.

Next, we show that K〈S,T 〉 is indeed the SRTF of target T in system S, which is the

main result of this section.

Theorem 4.8. Let S be an available system and T a target specification behavior. Then,

K〈S,T 〉 is the SRTF of T in S.

Proof. We first define a few technical notions required for the proof. Given a trace τ =

s0
a1−→ · · · an−→ sn, we denote the state si by τ [i], the label ai by τ〈i〉, and prefix s0

a1−→
· · · ai−→ si by τ [0, i], for i ≤ n. Given a set of traces Γ, let Pos(Γ, i) = {s | s = τ [i], τ ∈ Γ}
be the function that returns the set of ith states from all traces in Γ.

We prove that K〈S,T 〉 and the SRTB T ∗ of T in S are e-simulation equivalent.

• Proof for T ∗ �E K〈S,T 〉: First, we show that all RTFs are e-simulated by K〈S,T 〉.
Let T ′ = 〈T ′, G′, t′0, %′〉 be an RTF of T in S. Assume T ′ 6�E K〈S,T 〉; that is, T ′

is not e-simulated by K〈S,T 〉. Let τT ′ = t′0
g′1,a1−→ · · · g

′n,an−→ t′n be a trace of T ′ such

that τT ′ cannot be e-simulated state-wise by any trace of K〈S,T 〉 and the simulation

breaks at state t′n−1. We show that this is impossible, since we can build a legal

trace of K〈S,T 〉 which can e-simulate the entire τ ′T .

As T ′ is an RTF of T in S, it holds that T ′ �E T (T ′ is e-simulated by T) and

E ′T �nd ES (T ′ has an exact solution in S). Therefore, there exists a trace of T

τT = t0
g1,a1−→ · · · g

n,an−→ tn

such that t′i �E ti for all i ≤ n;

Let us define ΓS as the maximal set of traces s0
a1,k1−→ · · · a

n,kn−→ sn of enacted system

ES of S, such that:

1. t′i �nd si, i ≤ n, i.e., the traces which copy the target trace τT ′ = t′0
g′1,a1−→

· · · g
′n,an−→ t′n;

2. they do so through transitions labelled by ai, ki for i ≤ n such that for any two

traces τ1, τ2 ∈ ΓS it is the case that:

– if τ1[i] = τ2[i], then τ1〈i〉 = τ2〈i〉; that is, they are induced by the same

controller; and

91

CHAPTER 4: COMPUTING SUPREMALS

– env(τ1[i]) = env(τ2[i]) for all i ≤ n; that is, τ1 and τ2 contain same envi-

ronment evolutions.

Since T ′ is realizable in S we know that at least one composition exists. Therefore,

ΓS will not be empty. Notice that, because of condition 2 above, there may be

several such maximal sets. We nondeterministically select one.

Now, consider a trace τK = q0
g1,a1−→ · · · g

n,an−→ qn such that qi = 〈Si, ei, τT [i]〉 for all

i ≤ n, where:

– ei = env(τ [i]) for some τ ∈ ΓS ; and

– s ∈ Si iff s ∪ {ei} ∈ Pos(ΓS , i).

The idea behind Pos is to return all states that the enacted system could be in. We

show τK is a legal trace of K〈S,T 〉; that is, it consists of legal states and transitions.

We start by observing that:

– τK[i]=〈{s1, . . ., s`}, e, t〉, where {s1∪{e}, . . . , s`∪{e}}=Pos(ΓS , i) and t = τT [i],

is a legal state of K〈S,T 〉 for all i ≤ n;

– τK[0] is the initial state of K〈S,T 〉.

We then proceed by induction on n.

– For n = 0, we have that the trace τK[0] consisting only of the initial state is

trivially legal.

– By inductive hypothesis let us assume that q0
g1,a1−→ · · · g

i,ai−→ qi (for i < n) is a

legal trace of K〈S,T 〉, and we show that q0
g1,a1−→ · · · g

i+1,ai+1

−→ qi+1 is also a legal

trace of K〈S,T 〉.

Consider the transition qi
gi+1,ai+1

−→ qi+1 of τK. Let Pos(ΓS , i) = {s1, . . . , s`}.

Since τ ′T is realizable, there exists sj
ai+1,ki+1

j−→ s′j in ES for j ≤ ` and ti
gi+1,ai+1

−→
ti+1 in T . Hence, there exists exactly one set of indices (see definition of

ΓS , condition 2), Indx = {〈s1 : k1〉, . . . , 〈s` : k`〉}, one per each element in

Pos(ΓS , i), such that 〈s ∪ {e}, τT [i]〉 g
i+1,ai+1,ki+1

−→ 〈s′ ∪ {e′}, τT [i+1]〉 in F〈S,T 〉
where s∪ {e} ∈ Pos(ΓS , i), s

′ ∪ {e′} ∈ Pos(ΓS , i+ 1) and 〈s : ki+1〉 ∈ Indx. That

is, qi
gi+1,ai+1

−→ qi+1 is in K〈S,T 〉.

So, RTF T ′ is e-simulated by K〈S,T 〉; that is, T ′ �E K〈S,T 〉. From Theorem 3.4 we

know that the union of two RTFs is an RTF, therefore T ∗ is also a RTF. Conse-

quently, T ∗ �E K〈S,T 〉.

92

SECTION 4.2: COMPUTING SRTFS FOR NONDETERMINISTIC SYSTEMS

• Proof for K〈S,T 〉 �E T ∗: we simply observe that K〈S,T 〉 is an RTF, since by con-

struction, we have K〈S,T 〉 �E T and K〈S,T 〉 �nd ES . Hence, by Theorem 3.4, K〈S,T 〉
is included in, and thus e-simulated by, T ∗.

The construction of the belief-level system K〈S,T 〉 is such that it serves as a witness

for both the SRTF and its composition generator. Note that the transition relation in

K〈S,T 〉 is such that it requires evidence in form of a set of behavior indexes, one per enacted

system state, to ensure an action can be executed from each of these enacted states. These

behavior indexes can then be extracted to compute the composition generator for K〈S,T 〉.

Theorem 4.9. The composition generator for SRTF K〈S,T 〉 of a target specification T in

system S is given by the function:

CG(h, q, g, a, q′) = {i | 〈s : i〉 ∈ fI(q
g,a−→ q′), s ∪ {env(q)} = last(h)}.

Proof. Let ExactComp(K〈S,T 〉,S) be the set of all exact compositions of K〈S,T 〉 in S.

1. ExactComp(K〈S,T 〉,S) ⊆ {C | ∀h, q, g, a, q′ C(h, q, g, a, q′) ∈ CG(h, q, g, a, q′)}. As-

sume there exists a composition C ∈ ExactComp(K〈S,T 〉,S) such that C cannot

be generated from CG. Hence, there exists an enacted system history h and an

h compatible transition q
g,a,−→ q′ of K〈S,T 〉 such that C(h, q, g, a, q′) = ind and

ind 6∈ CG(h, q, g, a, q′). Let last(h) = sh and q = 〈{s1, . . . , s`}, e, t〉. Since q
g,a−→ q′ is

an h compatible request, it follows that sh ∈ {s1, . . . , s`}. Since we know that K〈S,T 〉
has an exact composition in S, therefore there exists Indx = {〈s1 : i1〉, . . . , 〈s` : i`〉}
such that behavior Bij can execute action a from enacted state sij ∪ {e}, for all

j ≤ `. Since behavior Bind can also execute a from enacted state sh, therefore

Indx’ = {〈s1 : i1〉, . . . , 〈s′h : ind〉, . . . , 〈s` : i`〉} where s′h = sh \ {e}, is also a valid set

of indexes for executing a from q. Consequently, 〈s′h : ind〉 ∈ fI(q
g,a−→ q′), and hence

index ind will be in the set CG(h, q, g, a, q′). Hence, our assumption is wrong and

composition C is included in CG.

2. {C | ∀q, t, g, a, q C(h, q, g, a, q′) ∈ CG(h, q, g, a, q′)} ⊆ ExactComp(K〈S,T 〉,S). Let C

be a controller generated from CG such that C is not an exact composition of K〈S,T 〉
in S. Hence, there exists an enacted system history h and an h compatible transition

q
g,a−→ q′ of K〈S,T 〉 such that CG(h, q, g, a, q′) is undefined. This is a contradiction:

(i) since q
g,a−→ q′ is an h compatible transition, we know that last(h) ∈ ksys(q); and

(ii) K〈S,T 〉 has an exact composition in S, so fI(q
g,a−→ q′) 6= ∅. Hence, C is an exact

composition for K〈S,T 〉 in S.

93

CHAPTER 4: COMPUTING SUPREMALS

We now consider the complexity of computing SRTFs involving nondeterministic

systems. The belief-level system K〈S,T 〉 can be built in time 2O(|B|n), where |B| is the

number of states of the largest behavior in S, and n is the number of available behaviors in

S. Observe, however, that K〈S,T 〉 can be computed on-the-fly in a step-wise fashion: given

the current belief state q, we can generate the next possible states without considering any

other state in Q. This provides us with a double exponential upper bound on computing

SRTFs where the available system has nondeterministic behaviors. We conjecture that

the lower bound is Expspace. Showing the lower bound for the general case remains an

open question and important future work. Note that in the classical case, the problem of

checking for existence of an exact composition is Exptime-complete for both deterministic

and nondeterministic available behaviors. If the conjecture is proved to be true, it would

be the first result showing that nondeterminism affects computation complexity in the

context of behavior composition.

4.3 Summary

In this chapter, we showed the SRTF can be finitely represented and computed for both de-

terministic and nondeterministic available systems, and explored computational aspects of

the optimisation framework. In composition problems involving only deterministic avail-

able behaviors, one can utilize synthesis and model checking tools to effectively compute

the SRTF. For composition problems involving nondeterministic available behaviors we

introduced a kind of belief space construction technique. All the approaches presented

provide computable structures that facilitate the extraction of both the SRTF and its

composition generator.

Our main results were as follows:

• The SRTF can be finitely represented and effectively computed.

• Synthesis via safety games and ATL model checking tools can be employed to com-

pute SRTFs (and their composition generators) for deterministic systems.

• SRTFs for composition problems with nondeterministic behaviors can be computed

via a particular belief space construction.

• Checking whether a target specification is the SRTF of a composition problem is

Exptime-complete for deterministic behaviors.

• The SRTF for problems involving nondeterministic behaviors can be computed in

time double exponential in the number of behaviors. We conjecture that the problem

of checking whether a target specification is the SRTF for a problem with nondeter-

ministic behaviors is at least Expspace-hard.

94

CHAPTER 5
Composition with Exogenous events

“Mathematics rightly viewed possesses not only truth

but supreme beauty.”

–Bertrand Russell

In the previous chapter, we showed how to compute a supremal realizable target frag-

ment (SRTF) along with its composition generator for an unsolvable behavior composition

problem. We know that the alternate target specification obtained (SRTF) is the closest

to the original target that one can obtain in the given system. In addition, we saw that

techniques to compute the SRTFs for deterministic systems was insufficient when avail-

able behaviors were nondeterministic. The key purpose of allowing nondeterminism in the

system is to model uncertainty in the behaviors and the environment. In this chapter, we

study an orthogonal approach to handle uncertainty: uncontrollable exogenous events.

Inspired by discrete event systems [Cassandras and Lafortune 2006] and work on

reasoning about action for dynamic systems [Reiter 2001], we show here how to accommo-

date exogenous uncontrollable events into the composition framework in a parsimonious

manner. The overarching idea behind this is the fact that some of the uncertainty may

actually be observable in real world devices. For instance, one might not know when

the fuse of a light bulb will blow; however when it blows, one can observe it. In con-

trast, nondeterminism is used to model the internal hidden logic of behaviors; hence the

nondeterministic evolutions are assumed to be unobservable to the target’s user. In this

chapter, we equip the optimisation framework of Chapter 3 to allow such uncontrollable,

but potentially observable, exogenous events. In doing so, it will become clear how robust

and elaboration tolerant are the definition of SRTFs and the technique to compute them.

95

CHAPTER 5: COMPOSITION WITH EXOGENOUS EVENTS

p0

p1

p2

p3 p5

p4

warmup
source

source
warmup

fuse

fuse

error

reset

repair

off

Projector BP

e0 e1

e2e3

warmup

off, reset

repair

spk-on

sp
k-

o
ff

sp
k-o

n

spk-off

warmup

off, reset

repair

repair
error

source source

repair, error

source

repair
error

source

repair, error

Environment E

b0 b1

spk-on

spk-off

Audio BA2

a0

a1

a3

a2

sp
k-

on
spk-off

error

spk-off

spk-on

spk-off
Audio BA1

v0 v1 v2
spk-on

warmup

Conformant RTB. T̃1
t0 t1

t2

t3

t4

t6

t5
spk-on warmup

source

source
warmup

fuse

fuse

repair

spk-off

off

fu
seTarget T u0 u1

u2

u4

u6

u5
spk-on warmup

source fu
se

fuserepair

spk-off

off

fuse

Conditional RTB. T̃2

Figure 5.1: Media room scenario consisting of a projector, speaker and a target specifica-
tion (see text for details). Dashed transitions denote uncontrollable exogenous events.

5.1 Framework with exogenous events

We extend the composition framework to model exogenous uncontrollable events. These

are events that occur spontaneously in the available behaviors and are outside the behav-

ior’s control. To that end, we assume that the set of actions A in the system is partitioned

into controllable domain actions (AC) and uncontrollable exogenous events (AU); that is,

A = AC ∪ AU and AC ∩ AU = ∅. Furthermore, as is standard in discrete event systems,

we assume exogenous events to be deterministic.1

Example 5.1. Consider a presentation room with a projector and two audio devices as

shown in Figure 5.1. The projector allows setting of the source and warmup of the device

in any order, followed by turning it off. The project has two exogenous events, namely,

fuse and error. Suppose that when the projector’s light bulb is on—after warmup has

been executed—it may fuse at any time and requires the device to be repaired. Similarly,

if an unavailable source is selected before warming up the projector, an error may occur

and the projector will need to be reset. The occurrence of exogenous events fuse and error

may be observed by the user (a red light blinks on the projector when error occurs). The

speakers of the audio device BA1 can go into an error state, after which it needs to be

restarted. Audio device BA2 on the other hand can simply be toggled on/off.

The occurrence of such exogenous events, for example fuse and error in the presen-

tation room example above, is outside the control of the client or the controller, i.e., they

occur spontaneously. Hence, they are akin to exogenous events in reasoning about action

1Should this not be the case, we can model the various outcomes with different uncontrollable exogenous
events.

96

SECTION 5.2: CONDITIONAL SRTFS

literature [Reiter 2001] and uncontrollable events in discrete event systems [Cassandras

and Lafortune 2006].

We note that exogenous events play an inherently different role in available behaviors

than nondeterminism. Exogenous (uncontrollable) events may happen any time from a

relevant state (e.g., state p1 in projector BP), which allows modeling of concepts such as

delayed uncertainty. More importantly, whereas nondeterminism is not observable to the

target’s user, exogenous events may be. In fact, the user agent is not even aware of the

internal logic of available behaviors, so she cannot observe the internal evolutions of a

device. However, since exogenous events occur in the behaviors, the user can now receive

feedback from the behaviors in the form of observable exogenous events. Hence, the user

of the projector room may be able to observe the light bulb fusing and respond to that

accordingly.

When it comes to the target specification, exogenous event transitions represent those

transitions that are accounted for, that is accepted, by the target but outside the control of

the user of the target. Thus, when the target T is in state t2, it only allows one exogenous

event, namely, fuse, whose occurrence will cause the target to evolve to state t6 where its

user can only request repairing the projector. In that way, target T can adapt its behavior

based on the occurrence of observable exogenous event fuse.

The formal definitions of an enacted system and a full enacted system remain the

same, except that the action set is partitioned into controllable actions and uncontrollable

exogenous events. In addition, given a full enacted system F〈S,T 〉 = 〈F,AC ∪ AU , f0, γ〉
(see Definition 4.1 on page 87) for an enacted system ES = 〈S,AC ∪AU , s0, δ〉 and a target

specification T = 〈T,G, t0, %〉, we define the set Φ〈S,T 〉 as those states in F〈S,T 〉 from where

prohibited exogenous events may originate. Formally,

Φ〈S,T 〉 = {〈s, t〉 | 〈s, α, k, s′〉 ∈ δ, ∀gt′〈t, g, α, t′〉 6∈ % : g(env(s)) = true, α ∈ AU}.

The set Φ〈S,T 〉 contains full enacted system states 〈s, t〉 (s is an enacted system state

and t is a target state) such that enacted system state s allows occurrence of an exogenous

event that is not accounted for by target state t when the environment is in the state env(s).

Since the user may be able to observe exogenous events, we can now consider—

unlike standard composition—two types of composition solutions. Following planning

terminology [Ghallab et al. 2004], a conditional SRTF is one that assumes the user is able

to observe exogenous events, whereas a conformant SRTF is one where such events are

unobservable to the user.

5.2 Conditional SRTFs

As the exogenous events can be observed, the target’s user can have action requests

conditioned on their occurrence. Hence, inclusion of uncontrollable exogenous events in

97

CHAPTER 5: COMPOSITION WITH EXOGENOUS EVENTS

the targets should facilitate branching in the specifications conditioned on the observability

of such events. Note that the user of such a conditional target specification will never be

allowed to request an uncontrollable event, but she may merely be able to observe such

an event and based on its occurrence possibly issue a different request. Introduction

of such a capability in the target enables more flexible target specifications. First, the

end user can now take advantage of observable contingencies which would have otherwise

been hidden behind (unobservable) nondeterminism. And second, one can specify, in the

target, uncontrollable events that one would never like to occur by excluding them from

the specification.

Example 5.2. Consider the conditional target specification T shown in Figure 5.1. While

in state t2, if the fuse of the projector bulb is blown, then the end user can observe that

and request a repair, as the target state is updated to t6 after observing fuse. Otherwise,

if the fuse remains intact, she can continue with the source request. Observe, that target

specification T does not allow for any error events. Therefore, any composition of T
should be such that it guarantees that error never occurs.

Interestingly, the existing definition of SRTFs from the optimisation framework (see

Definition 3.10 on page 51) fits as is to formally capture the notion of conditional SRTFs.

However, we need to define exact solution in the context of exogenous events. We do this by

extending the nd-simulation [De Giacomo et al. 2013, Sardina et al. 2008] relation. Recall

that, nd-simulation extends the plain simulation relation for nondeterministic systems.

Briefly, there exists an exact composition for a target specification if the enacted system

nd-simulates the enacted target behavior.

Informally in the context of exogenous events, we say an enacted target behavior

is conditionally simulated by an enacted system iff the enacted system can match all

the moves, controllable and uncontrollable, of the enacted target behavior, and only the

permitted uncontrollable events as per the given target specification are allowed to occur.

Definition 5.1 (Conditional simulation). Let ET = 〈ST , AC ∪ CU , sT0 , %T 〉 be an

enacted target behavior of a target specification T in system S = 〈B1, . . . ,Bn, E〉 and

ES = 〈S,AC ∪ AU , s0, δ〉 be the enacted system behavior. Then, C ⊆ ST × S is a condi-

tional simulation relation of ET by ES such that 〈sT , s〉 ∈ C iff:

1. env(sT) = env(s);

2. for all transitions sT
a−→s′T in ET , where a∈AC ∪AU , there exists behavior Bi such

that:

a) there exists a transition s
a,i−→ s′ in ES with env(s′) = env(s′T); and

b) for all transitions s
a,i−→ s′ in ES with env(s′) = env(s′T), it is the case that

〈s′T , s′〉 ∈ C;

98

SECTION 5.2: CONDITIONAL SRTFS

3. for all transitions s
α,i−→ s′ in ES , where α ∈ AU , there exists a transition sT

α−→ s′T
in ET such that 〈s′T , s′〉 ∈ C.

As standard, we say that the enacted system ES conditionally simulates the enacted target

ET , denoted by ET �C ES , iff 〈sT 0, s0〉 ∈ C.

Note that the initial two conditions are analogous to nd-simulation (Definition 2.16);

that is, we require all actions of the RTF to be feasible. The third condition defines how

uncontrollable exogenous events should be treated: since they are uncontrollable, their

occurrences must be allowed in the target. If we want to prevent the occurrence of some

exogenous event this can only be done by forbidding some controllable action ahead of

exogenous event’s possible occurrence. This is related to the notion of controllability in

discrete event systems [Wonham and Ramadge 1987].

Example 5.3. Consider the enacted target behavior ET and enacted system ES , of target

specification T and system S in environment E , shown in Figure 5.1, respectively. Clearly,

ET is not conditionally simulated by ES . After selecting the media source, an error can

occur in state p2 of projector. However, the target does not permit any uncontrollable

event in state t3. Thus, the third condition of Definition 5.1 is violated, and therefore,

ET 6�C ES .

A conditional RTF can then be defined simply as a target fragment whose enacted

behavior is conditionally simulated by the enacted system.

Definition 5.2 (Conditional RTF). Formally, a target specification T̃ = 〈T̃ , G̃, t̃0, %̃〉
is a conditional-RTF for a target T = 〈T,G, t0, %〉 in a system S = 〈B1, . . . ,Bn, E〉 iff:

1. T̃ is effective in E (see Definition 3.8 for effective target fragments);

2. T̃ �E T ; that is, T̃ is a fragment of T ; and

3. ET̃ �C ES ; that is, the enacted behavior of T̃ is conditionally simulated by the

enacted system ES .

Example 5.4. Consider the conditional RTF T̃2 of target specification T in system S as

shown in Figure 5.1. The action repair is conditional on the uncontrollable event fuse and

it prohibits error from occurring in the available system. Check that T̃2 can be successfully

realized in system S. Since T̃2 does not require the setting of media source before warmup,

an error event can always be prevented.

As usual, a conditional RTF is supremal iff it is not strictly e-simulated by any other

conditional RTF. Observe that T̃2, in our presentation room example, is actually the

conditional SRTF of target specification T in system S.

99

CHAPTER 5: COMPOSITION WITH EXOGENOUS EVENTS

Computing conditional SRTFs

When it comes to computing conditional-SRTFs, we modify the belief level construction

(see Section 4.2) to allow for exogenous events. Notice that exogenous events are consid-

ered to be observable in this case, so we can use their occurrence to refine the belief states

in the belief-level full enacted system. This leads to the following definition:

Definition 5.3. Given a belief-level full enacted system K〈S,T 〉 = 〈Q,G, q0, δK〉 for full

enacted system F〈S,T 〉 = 〈F,AC∪AU , f0, γ〉, the conditional belief-level full enacted system

is a tuple KC〈S,T 〉 = 〈QC , G, q0, δ
C
K〉, where:

• QC = Q \ {〈S, e, t〉 | 〈(s, e), t〉 ∈ Φ〈S,T 〉, s ∈ S}; that is, prohibited exogenous events

should never occur;

• δCK ⊆ QC × G × A × QC is KC〈S,T 〉’s transition relation such that 〈q, g, a, q′〉 ∈ δCK ,

where q = 〈S, e, t〉 and q′ = 〈S′, e′, t′〉, iff :

– a ∈ AC and 〈q, g, a, q′〉 ∈ δK ; that is, action a should be executable from all

enacted states; and

– a ∈ AU and S′ = {s′ | 〈(s, e), t〉, g, a, k, 〈(s′, e′), t′〉 ∈ γ, s ∈ S}; that is, we revise

belief state if an exogenous event occurs.

Observe that the conditional belief-level system is similar to the belief-level full en-

acted system (Definition 4.2) except for two modifications. First, we exclude belief states

containing enacted system system states from where target prohibited exogenous events

may originate. Second, we suitably adapt the transition relation to account for the occur-

rence of exogenous events. Since these events are observable, when such an event happens

we can refine the belief state by only considering the enacted system states which could

have allowed it.

Example 5.5. Consider the belief state 〈〈(p0, a1, b0), e3, t1〉, 〈(p0, a3, b0), e3, t1〉〉 and as-

sume for the purpose of this example that error event is allowed by T when it is in state t1.

If exogenous event error occurs in the speaker BA1 , then we know that, after the spk-on

action BA1 , had evolved to state a1 (and not a2). Hence, after observing the event error

we can revise our belief state to only contain the enacted system state 〈p0, a2, b0, e3〉.

As one would expect, the conditional belief level full enacted system represents the

conditional SRTF.

Theorem 5.1. Let S be an available system and T a target specification. Then, KC〈S,T 〉
is the conditional-SRTB of T in S.

100

SECTION 5.2: CONDITIONAL SRTFS

Proof. We prove that KC〈S,T 〉 and the conditional SRTB T ∗ of T in S are e-simulation

equivalent.

Proof for T ∗ �E KC〈S,T 〉: We first show that all conditional RTFs are e-simulated by

KC〈S,T 〉. Let T ′ = 〈T ′, G′, t′0, %′〉 be a conditional RTF of T in S. Assume T ′ 6�E KC〈S,T 〉;

that is, T ′ is not e-simulated by KC〈S,T 〉. Let τT ′ = t′0
g′1,a1−→ · · · g

′n,an−→ t′n be a trace of

T ′ such that τT ′ cannot be e-simulated state by state by any trace of KC〈S,T 〉, and the

simulation breaks at a state t′n−1. We show that this is impossible, since we can build a

legal trace of KC〈S,T 〉 which can e-simulate the entire τ ′T .

As T ′ is a conditional RTF of T in S, it holds that T ′ �E T (T ′ is e-simulated by

T) and E ′T �C ES (T ′ has an exact solution in S). Therefore, there exists a trace of T

τT = t0
g1,a1−→ · · · g

n,an−→ tn

such that t′i �E ti for all i ≤ n;

Let us define ΓS as the maximal set of traces s0
a1,k1−→ · · · a

`,k`−→ s`, where ` ≤ n, of

enacted system ES of S, such that:

1. t′i �C si, i ≤ `, i.e., traces in ΓS copy the target trace τT ′ = t′0
g′1,a1−→ · · · g

′`,a`−→ t′`;

2. they do so through transitions labelled by ai, ki for i ≤ n such that for any two

traces τ1, τ2 ∈ ΓS it is the case that:

• if τ1[i] = τ2[i], then τ1〈i〉 = τ2〈i〉 for controllable actions in τ1 and τ2; that is,

they are induced by the same controller. Since exogenous events are uncontrol-

lable, we cannot put any restrictions on them; and

• env(τ1[i]) = env(τ2[i]) for all i ≤ n; that is, τ1 and τ2 contain same environment

evolutions.

Note, since exogenous events are uncontrollable, ΓS may include system traces where the

exogenous event may not occur as per τ ′. That is, for every exogenous event at location i

of τ ′, there will be a system trace of length exactly i. Since, T ′ is realizable in S we know

that at least one composition exists. Therefore, ΓS will not be empty. Notice that, because

of condition 2 above, there may be several such maximal sets. We nondeterministically

take one.

Now, consider a trace τK = q0
g1,a1−→ · · · g

n,an−→ qn such that qi = 〈Si, ei, τT [i]〉 for all

i ≤ n, where:

• ei = env(τ [i]) for some τ ∈ ΓS ; and

• s ∈ Si iff s ∪ {ei} ∈ Pos(ΓS , i) (see proof of Theorem 4.8 for definition of Pos).

The idea behind Pos is to return all states which the enacted system could be in. We

show τK is a legal trace of KC〈S,T 〉; that is, it consists of legal states and transitions.

We start by observing that:

101

CHAPTER 5: COMPOSITION WITH EXOGENOUS EVENTS

• τK[i] = 〈{s1, . . ., s`}, e, t〉, where {s1 ∪ {e}, . . . , s` ∪ {e}}= Pos(ΓS , i) and t = τT [i], is

a legal state of KC〈S,T 〉 for all i ≤ n;

• τK[0] is the initial state of KC〈S,T 〉.

We then proceed by induction on the length of trace τK.

• For n = 0, we have that the trace τK[0] consisting only of the initial state is trivially

legal.

• By inductive hypothesis let us assume that q0
g1,a1−→ · · · g

i,ai−→ qi (for i < n) is a legal

trace of KC〈S,T 〉, and we show that q0
g1,a1−→ · · · g

i+1,ai+1

−→ qi+1 is also a legal trace of

KC〈S,T 〉.

Let Pos(ΓS , i) = {s1, . . . , s`}. Consider the transition qi
gi+1,ai+1

−→ qi+1 of τK. There

are two possibilities: either a is a controllable action or an uncontrollable event.

1. a ∈ AC : Since τ ′T is realizable, there exists sj
ai+1,ki+1

j−→ s′j in ES for j ≤ ` and

ti
gi+1,ai+1

−→ ti+1 in T . Hence, there exists exactly one set of indices (see definition

of ΓS , condition 2), Indx = {〈s1 : k1〉, . . . , 〈s` : k`〉}, one per each element in

Pos(ΓS , i), such that 〈s ∪ {e}, τT [i]〉 g
i+1,ai+1,ki+1

−→ 〈s′ ∪ {e′}, τT [i+1]〉 in F〈S,T 〉
where s∪ {e} ∈ Pos(ΓS , i), s

′ ∪ {e′} ∈ Pos(ΓS , i+ 1) and 〈s : ki+1〉 ∈ Indx. That

is, qi
gi+1,ai+1

−→ qi+1 in K〈S,T 〉.

2. a ∈ AU : Since τ ′T is realizable, uncontrollable event a must have occurred in

at least one behavior state sm ∈ {s1, . . . , s`}. Let Sa ⊆ {s1, . . . , s`} be the

behavior states where a could have potentially occurred. Hence, by definition

of ΓS , Pos(ΓS , i+ 1) will contain (i+1)th states from only those traces that can

be extended by uncontrollable event a. Therefore, qi
gi+1,ai+1

−→ qi+1 in KC〈S,T 〉.

So, conditional RTF T ′ is e-simulated by KC〈S,T 〉; that is, T ′ �E KC〈S,T 〉. From Theo-

rem 3.4 we know that union of two RTFs is an RTF, therefore T ∗ is also a RTF. Conse-

quently, T ∗ �E K〈S,T 〉.

Proof for KC〈S,T 〉 �E T
∗: we simply observe that KC〈S,T 〉 is a conditional RTF, since by

construction, we have KC〈S,T 〉 �E T and KC〈S,T 〉 �C ES . Hence, by Theorem 3.4, KC〈S,T 〉 is

included in, and thus e-simulated by, T ∗.

In terms of computational complexity, conditional SRTFs can be computed in time

2O(|B|n) where |B| is the number of states of the largest behavior in S, and n is the number

of available behaviors in S. This gives us a double exponential upper bound for the

general case. However, note that the inherent complexity is due to nondeterminism in the

available behaviors and not due to the uncontrollable exogenous events. If we consider

102

SECTION 5.3: CONFORMANT SRTFS

exogenous events in a deterministic system setting; that is, where all available behaviors

are deterministic, then the conditional SRTF can be computed in time exponential to

the number of available behaviors. When restricted to deterministic available behaviors,

one just needs to compute the full enacted system and exclude the states from where

target prohibited exogenous events could occur. Since the user has observability on the

exogenous events and the available behaviors are deterministic, the available system will

always be in a single state with respect to the target. In other words, the belief-level

system and the full enacted system will coincide.

5.3 Conformant SRTFs

In this section, we present the case where the user of the target cannot observe exoge-

nous uncontrollable events. Though unobservable, the user is still allowed to define what

uncontrollable event are permitted to occur and which are prohibited. Inspired by plan-

ning under incomplete information [Smith and Weld 1998], we call such target fragments

conformant.

Example 5.6. The conformant RTF T̃1 of target T in system S, as shown in Figure 5.1,

contains a very restricted part of the target T . Since target T prohibits error, conformant

RTF T̃1, similar to conditional RTF T̃2, does not include the action sequence spk-on·source.

Observe that after the spk-on ·warmup action sequence, the enacted system reaches a state

from where the uncontrollable event fuse can happen. Though fuse is permitted as per

the specification T , the only action that can be performed after fuse is the repair action.

Since the user cannot observe fuse, neither source nor repair are guaranteed. Hence, unlike

conditional RTF T̃2, conformant RTF T̃1 does not include the action source after warmup.

Conformant RTFs are stricter than conditional since they promise execution of ac-

tions irrespective of which (permitted) uncontrollable exogenous events occur. This pro-

vides robustness in modelling as one can still prevent unacceptable conditions under non-

observability at runtime. Technically, we say an RTF is conformant if it does not include

any transitions with exogenous event. Note the target specification (problem input) is

allowed to have exogenous events; however, a conformant RTF must have compiled them

away.

In order to define conformant RTFs, we need to extend the nd-simulation to capture

realizability under non-observability of uncontrollable exogenous events. Informally, we

say that an enacted target behavior is under a conformant simulation with an enacted

system if the simulation property is maintained invariant of exogenous events.

Definition 5.4 (Conformant simulation). Let ET = 〈ST , AC , sT0 , %T 〉 be an enacted

target behavior of a target specification T = 〈T,G, t0, %〉 in system S = 〈B1, . . . ,Bn, E〉

103

CHAPTER 5: COMPOSITION WITH EXOGENOUS EVENTS

and ES = 〈S,AC ∪ AU , s0, δ〉 be the enacted system behavior. Then, Z ⊆ ST × S is a

conformant simulation relation of ET by ES such that 〈sT , s〉 ∈ Z iff:

1. env(sT) = env(s);

2. for all transitions sT
a−→s′T in ET , where a∈AC , there exists behavior Bi such that:

a) there exists a transition s
a,i−→ s′ in ES with env(s′) = env(s′T); and

b) for all transitions s
a,i−→ s′ in ES with env(s′) = env(s′T), it is the case that

〈s′T , s′〉 ∈ Z

3. for all transitions s
α,i−→ s′ in ES , where α ∈ AU , it is the case that 〈sT , s′〉 ∈ Z.

As standard, we say that there exists a conformant simulation of enacted target ET by

enacted system ES , denoted by ET �Z ES , iff 〈sT 0, s0〉 ∈ Z.

Since a conformant RTF does not include any exogenous events, its enacted behavior

is restricted only to controllable domain actions. The conformant simulation relation

enforces two properties. First, it requires that nd-simulation (first two conditions) should

be maintained for all controllable actions. Second, if any exogenous event occurs, it

should retain the simulation property (third condition); that is, the simulation property

should be an “invariant” of the exogenous events. What we mean by invariant is this:

assume a target in state t and an enacted system state s are in conformant simulation,

and a exogenous event α occurs such that the enacted system reaches a state s′. Then

it should be the case that t and s′ are also in conformant simulation; that is, we assume

the target to stay still in state t when enacted system evolves to s′. Observe that the

conformant simulation definition captures realizability in the absence of observability over

all uncontrollable events (both prohibited and permitted). To define a conformant RTF T1

for a target T in system S, one then needs to ensure that no T prohibited uncontrollable

event occurs while realizing T1. Of course, such a constraint cannot be embedded in the

RTF since conformant RTFs are free of any uncontrollable event. More precisely:

Definition 5.5 (Conformant RTF). A conformant target specification T̃ = 〈T̃ , G̃, t̃0, %̃〉
is a conformant-RTF for a target T = 〈T,G, t0, %〉 in a system S = 〈B1, . . . ,Bn, E〉 iff:

1. T̃ is effective in E ;

2. T̃ �E T ; that is, T̃ is a fragment of T ;

3. ET̃ �Z ES ; that is, there exists a conformant simulation relation between enacted

target ET̃ and enacted system ES ; and

104

SECTION 5.3: CONFORMANT SRTFS

4. for all tuples 〈sT̃ , s〉 ∈ Z and 〈sT̃ , sT 〉 ∈�, where Z is a conformant simulation

relation between ET̃ and ES and � is the largest simulation relation of ET̃ by ET , it

holds that: for all transitions s
α,i−→ s′ there exists a transition sT

α−→ s′T in T such

that 〈sT̃ , sT 〉 ∈�, where α ∈ AU .

The first three conditions are in the standard scheme of defining a RTF. The last

condition enforces only permitted exogenous events to ever occur in the system. A reach-

able enacted state should be such that all possible uncontrollable events from that state

should be accounted by the enacted states corresponding original target state. As usual, a

conformant RTF is supremal iff it is not strictly simulated by any other conformant RTF.

Computing conformant SRTFs

When it comes to computing conformant SRTFs one needs conformance over nondeter-

ministic evolutions as well as uncontrollable exogenous events. However, the belief level

full enacted system from Section 4.2 only ensures conformance over nondeterminism. In

order to include exogenous events in it, inspired by λ-closure in automata theory [Hopcroft

et al. 2007], we first define what we call the ε−closure of a state. Informally, the ε−closure of

a state is a set of all states where the system could be as a result of an exogenous event

from that state. Formally:

Definition 5.6. Given a full enacted system F〈S,T 〉 = 〈F,AC ∪ AU , f0, γ〉 and a state

f ∈ F , the ε−closure of f , denoted by ε(f), is defined recursively as follows:

1. f ∈ ε(f); that is, the state itself is in the closure;

2. for all transitions f1
g,α,k−→ f2 in F〈S,T 〉, where α ∈ AU and f1 ∈ ε(f), it is the case

that f2 ∈ ε(f); that is, all exogenous event reachable states are included; and

3. Nothing except for 1 and 2 should be in ε(f).

We next re-define the belief-level full enacted system to accommodate exogenous

events. Here, we consider the ε−closure in both the initial state and the transition relation.

Definition 5.7. Given a full enacted system F〈S,T 〉 = 〈F,AC∪AU , f0, γ〉 for a target T =

〈T,G, t0, %〉 and a system S = 〈B1, . . . ,Bn, E〉 with environment E = 〈E,AC ∪ CU , e0, ρ〉,
the conformant belief-level full enacted system is a tuple KZ〈S,T 〉 = 〈Q,G, q0, δK〉, where:

• Q = 2(B1×···×Bn×T×E) \ {S | s ∈ S, s ∈ Φ〈S,T 〉};

105

CHAPTER 5: COMPOSITION WITH EXOGENOUS EVENTS

• q0 =ε(f0) is KZ〈S,T 〉’s initial state;

• δK ⊆ Q×G×AC ×Q, where 〈S, g, a, S′〉∈δK iff :

– there exists a set Indx = {〈s1 : k1〉, . . ., 〈s` : k`〉} such that {s1, . . . , s`} = S;

si
g,a,ki−→ s′i in F〈S,T 〉 for all i ≤ `; and for all i, j ≤ ` if tgt(si) = tgt(sj), then

tgt(s′i) = tgt(s′j); and

– S′=
⋃
〈s:i〉∈Indx{ε(s′)|〈s, g, a, i, s′〉 ∈ γ}; that is, S′ should contain the ε−closure

of all successors of enacted system states in S resulting from action a ∈ AU .

Since the original target specification is free to contain exogenous events, the ε−closure

of an full enacted system state may include more than one target states. Hence, the belief

level full enacted system is now exponential in size also on target state. For example, if

we take target specification T shown in Figure 5.1, the ε−closure of any full enacted state

with t2 will include states with t2 and t6. Observe, if the target specification expresses

exogenous events in the form of self-loops; that is, all exogenous event transitions are of

the form t
g,α−→ t where t is a target state and g is a guard, then the complexity with

regard to the target will no longer be exponential. Note, the above construction is more

expressive as it not only enables excluding prohibited exogenous events but also allows

counting exogenous events, e.g., error should not occur more than 5 times. As one would

expect, the above construction of KZ〈S,T 〉 provides us with the conformant SRTF.

Theorem 5.2. Let S be an available system and T a target specification. Then, KZ〈S,T 〉
is a conformant SRTF of T in S.

Proof. We first define a number of additional technical notions required for the proof. The

function ω(s
a−→ s′, A) takes a transition s

a−→ s′ as input and returns the action a if

a ∈ A, else it returns ε (empty). Let the function act-seq(τ,A) return the action sequence

of τ consisting only of actions included in A. Formally,

act-seq(s0
a1−→· · · a

n

−→ sn, A) = ω(s0
a1−→s1, A) · · ·ω(sn−1

an−→ sn, A).

Given a state τ [i] of trace τ let ε(τ, i) be the set of τ [i]’s successor states in τ reachable

from τ [i] by zero or more exogenous events in AU . Formally,

ε(τ, i) = {s | τ [i]
αi+1−→ · · ·

αi+`−→ s, αi+j ∈ AU , 0 ≤ j ≤ `}.

We now proceed with the proof and show that KZ〈S,T 〉 and the conformant SRTF T ∗

of T in S are e-simulation equivalent.

Proof for T ∗ �E KZ〈S,T 〉: First, we show that all conformant RTFs are simulated by

KZ〈S,T 〉. Let T ′ = 〈T ′, G′, t′0, %′〉 be a conformant RTF of T in S. Assume T ′ 6�E KZ〈S,T 〉;

106

SECTION 5.3: CONFORMANT SRTFS

that is, T ′ is not e-simulated by KZ〈S,T 〉. Let τT ′ = t′0
g′1,a1−→ · · · g

′n,an−→ t′n be a trace of

T ′ such that τT ′ cannot be e-simulated state by state by any trace of KZ〈S,T 〉 and the

simulation breaks at a state t′n−1. We show that this is impossible since, we can build

a legal trace of KZ〈S,T 〉 which can simulate the entire τ ′T . As T ′ is a conformant RTF of

T in S, it holds that T ′ �E T (T ′ is e-simulated by T) and E ′T �Z ES (T ′ is realizable

in S). Note, since T ′ is a conformant RTF, because of exogenous events, τT ′ may be

e-simulated by more than one trace of T . Therefore, there exists a set of traces of T such

that τ = t0
g1,a1−→ · · · g

`,a`−→ t` ∈ ΓT , where ` ≥ n iff:

1. act-seq(τ ′T , A
C) = act-seq(τT , A

C), the sequence of controllable actions is same; and

2. if t′i �E tj , where i ≤ j, i ≤ n, j ≤ `, then either t′i �E tj+1 or t′i+1 �E tj+1; the

simulation relation is maintained across exogenous events in the target spec.

Let us define ΓS as the maximal set of traces τS = s0
a1,k1−→ · · · a

m,km−→ sm, where m ≥ n, of

enacted system ES of S, such that:

1. if t′i �Z sj , where i ≤ j, i ≤ n, j ≤ m, then either t′i �Z sj+1 or t′i+1 �Z sj+1;

2. act-seq(τ ′T , A
C) = act-seq(τS , A

C), the enacted system traces can copy the RTF trace

τ ′T ;

3. they do so through transitions labelled by ai, ki for i ≤ n such that for any two

traces τ1, τ2 ∈ ΓS it is the case that if τ1[i] = τ2[i], then τ1〈i〉 = τ2〈i〉.

Note, since only allowed exogenous events can occur, the induced system traces will cor-

respond to the target traces in ΓT . Since, T ′ is realizable in S we know that at least one

composition exists. Therefore, ΓS will not be empty. Notice that, because of condition 3

above, there may be several such maximal sets. We nondeterministically take one.

We observe that due to exogenous events the enacted system traces may be longer

than the trace τT ′ . Given an action sequence ~a = a1 . . . an and a trace τ1, let τ~a1 denote

the shortest prefix of τ1 such that act-seq(τ~a1 , A
C) = ~a.

Now, consider a trace τK = q0
g1,a1−→ · · · g

n,an−→ qn such that qi = 〈PosZ(ΓS ,ΓT , i)〉 for all

i ≤ n where:

PosZ(ΓS ,ΓT , i) =
⋃
τ1∈ΓF

{ε(τ1[j]) | j = |τ~a1 |,~a = act-seq(τT ′ [0, i], A
C)}

and,

ΓF = {〈s, t〉 g
1,a1,k1−→ · · · g

m,am,km−→ 〈s′, t′〉 |s a
1,k1−→ · · · a

m,km−→ s′∈ΓS , t
g1,a1−→ · · · g

m,am−→ t′∈ΓT }.

Note, since the system evolutions must match the original target specification, ΓF is

well defined. The idea behind PosZ is to return all states where the enacted system could

107

CHAPTER 5: COMPOSITION WITH EXOGENOUS EVENTS

be due to nondeterminism or exogenous events, after realizing a sequence of controllable

actions.

We show τK is a legal trace of KZ〈S,T 〉; that is, it consists of legal states and transitions.

We start by observing that:

• τK[i]=〈{s1, . . ., s`}〉, where {s1, . . ., s`}=PosZ(ΓS ,ΓT , i), is a legal state of KZ〈S,T 〉 for

all i ≤ n;

• τK[0] is the initial state of KZ〈S,T 〉.

Then we proceed by induction of τK.

• For n = 0, we have that the trace τK[0] consisting only of the initial state is trivially

legal.

• By inductive hypothesis let us assume that q0
g1,a1−→ · · · g

i,ai−→ qi (for i < n) is a legal

trace of KZ〈S,T 〉. We show that q0
g1,a1−→ · · · g

i+1,ai+1

−→ qi+1 is also a legal trace of KZ〈S,T 〉.

Consider the transition qi
gi+1,ai+1

−→ qi+1 of τK. Let PosZ(ΓS ,ΓT , i) = {s1, . . . , s`}.

Since τT ′ is realizable, there exists esys(sj)
ap+1,kp+1

j−→ esys(s′j) in ES for j ≤ `, p ≥

i and ti
gp+1,ap+1

−→ tp+1 in T . Hence, there exists exactly one set of indices (see

definition of ΓS , condition 3), Indx = {〈s1 : k1〉, . . . , 〈s` : k`〉}, one per each element

in PosZ(ΓS ,ΓT , i), such that s
gp+1,ap+1,kp+1

−→ s′ in F〈S,T 〉 where s ∈ PosZ(ΓS ,ΓT , i),

s′ ∈ PosZ(ΓS ,ΓT , i + 1) and 〈s : kp+1〉 ∈ Indx. Note, we consider ε−closure when

evolving to successor belief state, in align with the definition of KZ〈S,T 〉. That is,

qi
gi+1,ai+1

−→ qi+1 in KZ〈S,T 〉.

Note that by construction of KZ〈S,T 〉, the last condition of the conformant simulation

definition is automatically satisfied.

So, RTF T ′ is e-simulated by KZ〈S,T 〉; that is, T ′ �E KZ〈S,T 〉. From Theorem 3.4 we

know that union of two RTFs is an RTF; therefore T ∗ is also a RTF. Consequently,

T ∗ �E KZ〈S,T 〉.

Proof for KZ〈S,T 〉 �E T
∗: We simply observe that since KZ〈S,T 〉 is a conformant RTF

by construction, we have KZ〈S,T 〉 �E T and KZ〈S,T 〉 �Z ES . Hence KZ〈S,T 〉 by Theorem 3.4

KZ〈S,T 〉 is included in, and thus e-simulated by, T ∗.

In terms of computational complexity, conformant SRTFs can be computed in time

2O(|B|n×|T |), where |B| is the number of states of the largest behavior in S, n is the

number of available behaviors in S, and |T | is the size of the target specification. Note,

in the conformant case, the inherent complexity is due to not only the nondeterminism

in the available behaviors but also the uncontrollable exogenous events. Indeed, even if

108

SECTION 5.4: DISCRETE EVENT SYSTEMS

a0

a1

a2

x

x

Behavior B1

b0 b1
x

Behavior B2

s0

s1

s2

s3

x : 1

x : 2

x : 1

System S

Figure 5.2: Relating DES and behavior composition.

we consider exogenous events in a deterministic system setting, the belief set construction

technique for conformant SRTFs will retain its double exponential upper bound.

5.4 Discrete event systems

A related, and seemingly similar, area to behavior composition is the engineering field of

Discrete Event Systems (DES) [Wonham and Ramadge 1987, Cassandras and Lafortune

2006]. Briefly, in a DES problem, given a plant (system) and a specification, the task is

to synthesize a supervisor that can control the plant such that the working of the plant

is as per the specification. The plant itself consists of controllable and uncontrollable

actions, and the supervisor is allowed to disable only the controllable actions. One then

constructs the most flexible supervisor which only disables the minimal number of control-

lable actions such that the restricted behavior of the plant matches the given specification.

If the specification cannot be met, then one can synthesize a supervisor which guarantees

a supremal sub-specification (maximal fragment of the specification). Interestingly, both

DES and behavior composition are concerned with controllability of a given plant or an

available system in order to meet a given language or a target specification.

From the outset, it may seem that behavior composition and DES are tackling the

same problem, maybe from different perspectives: DES from an Engineering perspective

and composition from a Computer Science perspective. Nonetheless, the inherent control

problem in SCT and behavior composition are different in nature. In the latter, one

seeks to control the available behaviors, whereas in the former one can prevent (some of)

the actions. Consider the simple example shown in Figure 5.2 with a nondeterministic

behavior B1 and a deterministic behavior B2. Note that both behaviors share the action x;

hence, in the enacted system S, x will be nondeterministic for B1 but not for B2 (as shown

by the indexes used in S). The input in DES is the whole plant, and it does not have a

notion analogous to available behaviors. Therefore, a component-based nondeterminism

cannot be captured (directly) in a plant, and one has to make events (i.e., indexes) explicit

in the plant [Balbiani et al. 2008].

109

CHAPTER 5: COMPOSITION WITH EXOGENOUS EVENTS

Another important mismatch relates to the semantics of nondeterminism: the non-

determinism of controllable actions in a plant is angelic, in the sense that the supervisor

can control its evolution. On the other hand, nondeterminism of available behaviors is

devilish, as it cannot be controlled. This is one of the reasons why, as far as we know, DES

frameworks do not have a notion similar to nd-simulation [Sardina et al. 2008]. Indeed,

uncertainty in DES is modelled via (deterministic) uncontrollable events [Wonham and

Ramadge 1987], whereas nondeterminism [De Giacomo et al. 2013] is used in behavior

composition.

In terms of terminology, the word “composition” differs considerably in DES: it refers

to synchronous product between automaton of sub-systems, instead of an asynchronous

construction. In addition, DES does not differentiate between the plant itself and the

environment in which it operates.

Lastly, in the context of this work, a closely related line of work from DES is the com-

putation of controllable sub-automata [Sun et al. 2010; 2012] for a given plant and speci-

fication. Briefly, an automaton T1 = 〈T1, A1, t0, %1〉 is a sub-automata of T = 〈T,A, t0, %〉
if T1 ⊆ T , A1 ⊆ A, and %1 is same as % but restricted to the states in T1 [Sun et al. 2010].

A sub-automaton is then considered a partial specification; that is, an RTF in our con-

text. Observe that besides being a very syntactic notion, the definition of sub-automaton

implies simulation between the automaton and its sub-automaton, but the reverse is not

true. In other words, if T simulates T1, then T1 may not be T ’s sub-automaton. Our

definition of target fragments subsumes the syntactic sub-automatons definition. Observe

that new (nondeterministic) branching cannot be introduced in sub-automatons, hence

they cannot embed more information regarding future requests as one can do in target

fragments.

5.5 Summary

Incorporating uncontrollable exogenous events provides us with a richer language to cap-

ture target specifications. Indeed, it provides the flexibility for defining uncertainties which

are out of control of the user but may still be observable and spontaneous. Arguably, it

provides additional semantics to the composition problem which is closer to real life set-

tings by only minimally modifying the composition framework from Chapter 3. Based

on the observability on such events, inspired by automated planning, we provided two

kinds of solutions - conditional SRTFs and conformant SRTFs. If the user of the target

is able to observe exogenous events, she can then condition her requests based on their

occurrence. On the other hand, if the user has no observability on such events, then she

can only define which exogenous events are allowed to occur and which are prohibited,

but her action requests ought to be conformant with respect to them.

110

SECTION 5.5: SUMMARY

To conclude:

• Uncontrollable exogenous events can be used to model uncertainties that are delayed

and potentially observable.

• Based on the user’s ability to observe such events, two kinds of solutions are defined:

conditional SRTFs and conformant SRTFs.

• Conditional and conformant SRTFs can be computed by suitably modifying the

belief-level full enacted system.

• The current technique to compute conditional and conformant SRTFs, for the gen-

eral case, is in complexity class 2-EXPTIME.

111

CHAPTER 6
Decision theoretic composition

“Not to be absolutely certain is, I think, one of the

essential things in rationality.”

–Bertrand Russell

So far we have seen how to deal with unsolvable behavior composition instances in a

qualitative manner without requiring any further user input. In this chapter, we propose

an extension to the classical composition problem that goes beyond strict uncertainty, by

accommodating ways of quantifying different uncertainties in the model. In the classical

composition setting, each available behavior is modelled as a nondeterministic transition

system to represent partial controllability; the target behavior is modelled as a deter-

ministic transition system to represent full controllability; and the environment, which is

fully accessible by all behaviors, is modelled as a nondeterministic transition system to

represent partial predictability. As one can recognize, in the classical framework, there are

three potential sources of uncertainty: the potential nondeterminism in both the shared

environment and the available behaviors; and the next target request arising from possible

different transitions from a target’s state. In the probabilistic behavior composition frame-

work to be developed here, all three uncertainties are quantified. Note this is a reasonable

assumption in many realistic settings, in which such information is readily available to the

modeller.

Consider a domain in which different bots are meant to maintain a garden by per-

forming various activities such as cleaning, watering, and picking flowers. Some of these

bots may be equipped with buckets that may nondeterministically get full after using

them. This nondeterminism can be quantified depending on various aspects of the do-

main (e.g., size of the bucket, average amount of dirt collected in a single clean action,

etc.). Similarly, execution of actions in the shared garden environment can also be repre-

sented stochastically. For instance, a single clean operation may not always successfully

clean the whole garden; factors affecting the probability of a successful clean include the

113

CHAPTER 6: DECISION THEORETIC COMPOSITION

size of the garden and the current season. More interestingly, given that the desired target

specification for maintaining the garden may involve more than one action from a given

state, probabilities can be assigned to these depending on their expected frequency. For

instance, in some states, the gardening target system is expected to request the picking

action only 30% of the time; the rest of the time it will just request watering the garden.

Here, we present a decision theoretic framework for behavior composition. In doing so,

we define the notion of optimal composition controllers using the “expected realizability” of

the target, as well as the notion of maximal compositions; that is, controllers that will solve

the composition problem robustly. Then, we provide a translation of a decision theoretic

behavior composition problem into a Markov decision process (MDP) [Puterman 2005,

French 1986], and show that finding an optimal policy for such MDP amounts to finding

an optimal composition. This problem reduction provides a readily available technique

for solving the new composition framework using the established MDP paradigm.

6.1 Markov decision processes

Markov decision processes provide a formal framework for decision making in stochastic

(probabilistic) domains. They are widely used in Artificial Intelligence as well as in areas

beyond computer science such as Operations Research. A Markov decision process (MDP)

is a discrete time stochastic control process [Puterman 2005, Boutilier et al. 1999]. At each

step, a process is in a state q, the decision maker chooses an action a, the process evolves

to a successor state q′ with some probability, and the decision maker receives a reward r.

The more preferred decision maker is one that collects maximum (potential) rewards over

time.

Definition 6.1 (Markov decision process (MDP) [Puterman 2005]). Formally, a Markov

decision process (MDP) is a tuple M = 〈Q,A, p, r〉, where:

• Q is a finite set of states;

• A is a finite set of domain actions;

• p : Q × A × Q 7→ [0, 1] is the transition probability function function: p(q, a, q′)

denotes probability of the process evolving to state q′ when action a is executed in

state q. We required that for all states q ∈ Q and actions a ∈ A it is the case that∑
q′∈Q p(q, a, q

′) = 1;

• r : Q×A 7→ R is the reward function: r(q, a) denotes the immediate reward obtained

when action a is executed in state q.

114

SECTION 6.1: MARKOV DECISION PROCESSES

The intuition is that the decision maker partially controls the evolution of the MDP

by selecting an action for execution to obtain maximum reward. Usually, in the MDP

terminology, decision epochs are associated with an MDP. Decision epochs are discrete

time steps at which decisions are taken. For instance, the first action is chosen at time t0,

next at time t1, and so on. A policy is a collection of state-action mappings stating which

action the decision maker should take at each time step of the process. A policy is called

stationary if the decision only depends on the state and not on the time step; that is, if

the process reaches the same state at two different time steps, then the policy prescribes

the same action. Additionally, a Markovian (memoryless) policy is one that depends only

on the current state of the system; that is, it is independent of the history. Formally, a

Markovian stationary policy is a function π : Q 7→ A; where π(q) denotes the action to

be taken in state q. Solving an MDP then involves computing a policy that accumulates

maximum reward over time. In doing so, one can be interested in finite horizon problems,

where the decision maker is meant to perform a fixed number of sequential decisions, or

infinite horizon problems, where rewards over infinite runs of the MDP are considered.

The expected value of a given policy π from a state q for a horizon t of an MDP

M = 〈Q,A, p, r〉 can be inductively calculated by the following value function [Boutilier

et al. 1999]:

V π
t (q) = r(q, π(q)) +

∑
q′∈Q

p(q, π(q), q′)× V π
t−1(q′),

where V π
0 (q) = 0. In words, the expected value of a policy is the sum of expected rewards

obtained by acting as per the policy. A policy π is optimal for an MDP M and a horizon

t if for all other policies π′ of M it is the case that V π
t (q) ≥ V π′

t (q) for all states q of M.

That is, an optimal policy has the highest expected value from all MDP states. Optimal

policies can be computed via Dynamic Programming approaches [Boutilier et al. 1999]

following Bellman’s principle of optimality [Bellman 1957], which states that an optimal

policy has optimal sub-policies. The value of an optimal policy in a state q for a finite

horizon k is given by:

V ∗k (q) = max
a∈A
{r(q, a) +

∑
q′∈Q

p(q, a, q′)× V ∗k−1(q′)}.

The above equation forms the basis of the well know value iteration algorithm [Put-

erman 2005] for finite horizon problems. Briefly, the value iteration begins by computing

V ∗0 , and uses the above equation to compute V ∗t (till the given horizon t) by successively

computing the action at each step which will maximize the value function.

Obviously, if the horizon is infinite, the cumulative rewards obtained will also be

infinite. In such cases, a discounting factor is often used to provide convergence. Similar

to the finite horizon case, the value of an optimal policy in a state q for infinite horizon

115

CHAPTER 6: DECISION THEORETIC COMPOSITION

relative to a discount factor of 0 ≤ γ < 1 is as follows [Howard 1960]:

V ∗(q) = max
a∈A
{r(q, a) + γ

∑
q′∈Q

p(q, a, q′)× V ∗(q′)}.

In order to ensure termination for computing the optimal policy for infinite horizon

problems, one defines a stopping criteria ε and stops when V ∗t − V ∗t−1 ≤ ε. Howard [1960]

showed that there always exists an optimal stationary policy for infinite horizon problems;

that is, one that does not depend on which stage a decision is taken. Since, in the general

case, a target specification is meant to be executed as a continuous (infinite) process, we

are interested in stationary policies over an infinite horizon.

Note, we do not differentiate cost and reward functions as classically described. In

our setting we do not model the cost of executing the action; hence only reward functions

are considered.

6.2 Probabilistic framework for behavior composition

In a classical composition problem, incomplete information on any component is modeled

by means of nondeterminism in the transition systems (in the available behaviors or in

the environment) or by different transitions per state (in the target). As such, all the

work so far on the problem of behavior composition has assumed a setting of strict uncer-

tainty [French 1986]. To elaborate, the space of possibilities; that is the possible effects of

actions, evolution of behaviors, and future action requests, is known, but the probabilities

of these potential alternatives are not quantified.

In this section, we extend the classical composition framework (see Section 2.3.1) to

accommodate stochastic measures in the different components, thus yielding a framework

for behavior composition under quantified uncertainty. In particular, we use probabilities

to represent uncertainty of the dynamics of the environment and of the available behaviors,

as well as of the preferences on actions in the target module. Such probabilities are

provided by a domain expert who is able to state how often a device is expected to fail,

an action brings about its expected effects, or certain requests arrive at the system. In

addition, we assume such probabilities to be stationary; that is, they do not change with

time.

Environment As is standard in behavior composition, we assume to have a fully ob-

servable shared environment, which provides an abstract account of actions’ preconditions

and effects, and a mean of communication among modules. Since, in general, we have

incomplete information about the actual preconditions and effects of actions, we shall use

a stochastic model of the environment. Thus, given a state and an action to be executed

in such state, different successor states may ensue with different probabilities.

116

SECTION 6.2: PROBABILISTIC FRAMEWORK FOR BEHAVIOR COMPOSITION

e0 e1

e2 e3

clean : 0.2

pick : 0.25
water : 1
empty : 1
clean : 0.8

p
ick

:
0
.7

5

p
ick

:
0
.7

5

empty

water : 1
pick : 0.25

clean : 0.2

empty

water : 1
clean : 0.8

em
pty

water : 1

Environment E

a0 a1
clean : 0.9

clean : 0.1
empty

Cleaner Bot BCleaner

b0 b1
pick

water
empty

water

Multi Bot BMulti

c0 c1
pick

clean

Picker Bot BPicker

t0 t1

t2

t3

〈clean, 1〉 〈pick : 0.3, 1〉

〈water : 0.7, 1〉

〈empty, 1〉

〈empty, 1〉

Target Specification T

Figure 6.1: The garden bots system SGarden = 〈BCleaner,BMulti,BPicker, E〉 and the target

specification T . The transition t1
〈water:0.7,1〉−→ t2 in target T means that action water has a

reward of 1 and it is requested 70% of the time from state t1.

Definition 6.2 (Stochastic environment). A stochastic environment is a tuple E =

〈E,A, e0,PE〉, where:

• E is the finite set of environment’s states;

• A is a finite set of shared actions;

• e0 ∈ E is the initial state of the environment; and

• PE : E × A × E 7→ [0, 1] is the probabilistic transition function among states:

PE(e, a, e′) = p, or just e
a:p−→ e′ in E , states that action a when performed in state

e leads the environment to a successor state e′ with probability p.

Furthermore, to ensure soundness, we require that for every e ∈ E and a ∈ A, it is

the case that
∑
e′∈E
PE(e, a, e′) ∈ {0, 1}. That is, either an action is not executable (the sum

is 0) or all possible evolutions of the environment are accounted for (the sum is 1).

Example 6.1. A scenario wherein a garden is maintained by several bots is depicted in

Figure 6.1. To keep the garden healthy one needs to regularly water the plants, pick the

ripe fruits and flowers, clean the garden by collecting fallen leaves and removing dirt, and

emptying the various waste bins. Whereas cleaning and emptying the bins is a regular

activity, picking and watering are done as required. The environment E models the states

the garden can be in. The environment allows picking and cleaning activities to be done

in any order, and plants can be watered in any state. The pick action results in the flowers

117

CHAPTER 6: DECISION THEORETIC COMPOSITION

and fruits been fully picked 75% of the time (i.e., 25% of the time the garden still remains

to be picked), whereas the clean action results in the garden being totally cleaned 20% of

the time (i.e., dirt still remains 80% of the time). A pick action from the initial state (e0)

results in the garden being picked but dirty (e2) with a probability of 0.75; a subsequent

clean action results in the garden being both picked and clean (e3), with a probability of

0.2. Similarly, a clean action from the initial state results in the garden being fully clean

but not picked (e1) 20% of the time, and a subsequent pick action causes the garden being

cleaned and picked (e3) 75% of the time. For simplicity, we assume that emptying the

bins always results in the environment evolving to its initial state.

Available behaviors Recall that a behavior essentially stands for the logic of some

available component (e.g., device, agent, plan, workflow), which provides its user with

a set of actions that can be performed step by step. The source of uncertainty in the

available behaviors is the nondeterminism that is used to represent their hidden logic. We

quantify this nondeterminism in the stochastic framework.

Definition 6.3 (Stochastic behavior). A stochastic behavior over an environment E =

〈E,A, e0,PE〉 is a tuple B = 〈B, b0,PB〉, where:

• B is the finite set of behavior’s states;

• b0 ∈ B is the initial state of the behavior;

• PB : B ×E ×A×B 7→ [0, 1] is the probabilistic transition function of the behavior:

PB(b, a, e, b′) = p, or e
a,e:p−→ e′ in B, denotes that action a executed in behavior state

b when the environment is in state e will result in the behavior evolving to state b′

with probability p.

Since all potential transitions are accounted for in the model, we require that for

every b ∈ B, a ∈ A, and e ∈ E,
∑
b′∈B
PB(b, a, e, b′) ∈ {0, 1}. Observe that we omit the

notion of guards in the definition of stochastic behaviors. In fact, guards are implicitly

compiled into the probabilistic transition function of available behaviors. This is evident

by the inclusion of the environment states in the definition of PB. For example, if an

action a cannot be executed from a behavior state b when the environment is in state e,

then PB(b, a, e, b′) will be 0 for all behavior states b′.

Example 6.2. In the gardening scenario, we assume there are three available garden

bots; see Figure 6.1. The cleaner bot BCleaner cleans the garden by collecting the fallen

leaves, dirt, waste, etc., into its own bucket. Most generally—90% of the time—its bucket

becomes full with a single cleaning session, and the bot has to empty it before cleaning

118

SECTION 6.2: PROBABILISTIC FRAMEWORK FOR BEHAVIOR COMPOSITION

again. We assume the empty action involves emptying all garden bins as well as the bots’

buckets. The picker bot BPicker can pick and clean the garden; since it is not equipped

with a bucket, it picks and collects from the ground directly. Finally, the multi-bot BMulti

has the capability to water the plants and pick fruits. It has a small bucket, and so it

needs to empty it after every picking action.

A behavior is deterministic if, given a state and a legal action in that state, the

next behavior state is unique—the behavior is fully controllable through the selection of

the next action to perform. Formally, a behavior B = 〈B, b0,PB〉 over an environment

E = 〈E,A, e0,PE〉 is deterministic iff for every b, b′ ∈ B, e ∈ E, and a ∈ A, it is the

case that PB(b, e, a, b′) ∈ {0, 1}. In such a case, the dynamics of the behavior can be

represented using a transition relation δB ⊆ B × E × A× B, where δB(b, e, a, b′) holds iff

PB(b, e, a, b′) = 1.

Target specification Similarly to the classical composition framework, a target be-

havior is basically a deterministic behavior over E that represents the fully controllable

desired behavior.

Definition 6.4 (Stochastic target specification). A stochastic target specification over

an environment E = 〈E,A, e0,PE〉 is a tuple T = 〈T, t0, δ, R,Preq〉, where:

• T is the finite set of the target’s states;

• t0 ∈ T is the initial state of the target;

• δ ⊆ T × E × A × T is the target’s deterministic transition relation: 〈t, e, a, t′〉 ∈ δ,
or t

e:a−→ t′ in T , states that action a executed in the target state t, when the

environment is in a state e, results in the target evolving to (unique) state t′;

• R : T × A 7→ R+ is the reward function of the target: R(t, a) denotes the reward

obtained when the action a is successfully executed in target state t;

• Preq : T × E × A 7→ [0, 1] is the probabilistic action request function: Preq(t, e, a)

denotes the probability of the target requesting the execution of action a when it is

in state t and the environment is in state e.

For consistency, we require that
∑
a∈A
Preq(t, e, a) ∈ {0, 1}, for every t ∈ T , e ∈ E (i.e.,

all possible requests are accounted for), and moreover, for all a ∈ A, we have Preq(t, e, a) =

0 whenever there is no state t′ ∈ T such that 〈t, e, a, t′〉 ∈ δ. Observe that a target

specification is accompanied by two additional functions: a reward function R and an

action request frequency function Preq. The reward function R denotes the importance of

119

CHAPTER 6: DECISION THEORETIC COMPOSITION

an action in a target state; generally speaking, more important actions will have a higher

reward. On the other hand, the function Preq denotes how frequently an action will be

requested from a given target and environment state. A uniform-reward target behavior

is one where all actions have the same reward; that is, there exists α ∈ R+ such that for

all a ∈ A and t ∈ T , we have R(t, a) = α.

Example 6.3. The desired behavior required to maintain the garden in a particular season

is not directly represented by any of the existing bots in the garden, and is modeled by the

deterministic uniform-reward target bot T shown in Figure 6.1. Intuitively, the garden

should always be cleaned first to remove any fallen leaves and dirt, followed by either

picking or watering the garden. Since flowers and fruits do not grow every day, picking is

required only 30% of the time; 70% of the time a request for watering the garden will be

issued. Finally, the bins are to be emptied, and the whole process can repeat again. All

requests are of equal value: 1 unit (the second component in each transition label).

This concludes the definition of the core components for a decision-theoretic behav-

ior composition problem. As the reader can see, this framework is similar to the classical

composition framework described in Section 2.3.1, except that stochastic probabilistic tran-

sitions are used instead of transition relations; a probability distribution over the potential

action requests is used in the specification of the target; and a reward function is used in

the target to state how “important” a particular request is. Note also that the probability

function Preq in the target is very different to the ones used in the available behaviors and

the environment. In the former, it denotes the probability of the target executing (i.e.,

requesting) an action from a given state, whereas in the latter the corresponding function

simply denotes the stochastic evolutions of the entity.

Enacted system Similarly to the classic composition and the qualitative optimisa-

tion framework, we compute the synchronous product of the environment with the asyn-

chronous product of all available behaviors to define a stochastic enacted system.

Definition 6.5 (Stochastic enacted system). Let S = 〈B1, . . . ,Bn, E〉 be a system,

where E = 〈E,A, e0,PE〉 and Bi = 〈Bi, bi0,PBi〉, for i ∈ {1, . . . , n}. The stochastic enacted

system behavior of S is the tuple ES = 〈S,A, {1, . . . , n}, s0,PS〉, where:

• S = B1 × · · · × Bn × E is the finite set of ES ’s states; when s = 〈b1, . . . , bn, e〉, we

denote bi by behi(s), for i ∈ {1, . . . , n}, and e by env(s);

• s0 ∈ S, with env(s0) = e0 and behi(s0) = bi0, for each i ∈ {1, . . . , n}, is ES ’s initial

state;

120

SECTION 6.3: DECISION THEORETIC CONTROLLERS

• PS : S ×A×{1, . . . , n}×S 7→ [0, 1] is ES ’s probabilistic transition function, defined

as follows:

PS(s, a, k, s′) = PE(env(s), a, env(s′))× PBk(behk(s), a, env(s), behk(s
′)),

if behi(s) = behi(s
′), for each i ∈ {1, . . . , n} \ {k};

and PS(s, a, k, s′) = 0, otherwise.

Observe that in the stochastic enacted system all the sources of nondeterminism in the

system, namely, nondeterminism in the available behavior and the environment, are quan-

tified. So, informally, the decision-theoretic (DT) behavior composition task is stated as

follows:

Given a system S and a target behavior T , find the “optimal” way of (partially)

controlling the available behaviors in S in a step-by-step manner so as to “best

realize” a specific deterministic target behavior.

6.3 Decision theoretic controllers

In this section, we make the problem of finding an optimal controller precise. In order

to bring about a desired virtual target behavior in an available system, we assume the

existence of a (central) controller module that is able to control the available behaviors, in

the sense that, at each step, it can observe all behaviors, instruct them to execute an action

(within their capabilities), stop, and resume them. In classical behavior composition, one

then looks for a controller that guarantees that the target will always be implemented in

the system; that is, no matter how the target happens to request actions within its logic

or how the available behaviors and the environment happen to evolve as a result of action

delegations. Such a controller is then deemed to be an (exact) solution to the problem.

However, when it comes to realizing a target module in a composition framework as

the one described above, one should not look just for exact solutions, as in general there

may be none. Instead, one should look for optimal ways of maximizing the “expected

realizability” of the target in the available system.

The definition of a controller remains unchanged (see Section 2.4), namely, a controller

for an available system S = 〈B1, . . . ,Bn, E〉 is a partial function C : H × A 7→ {1, . . . , n}
such that, given a system history h ∈ H and an action a ∈ A that ought to be performed,

returns the index of the behavior to which the action a is to be delegated for execution.

Informally, a “dead-end” is reached in a history if the controller selects a behavior which

is not capable of executing the delegated action. Then, given two controllers, one should

prefer the one that reaches a dead-end with lower probability, or put differently, the

121

CHAPTER 6: DECISION THEORETIC COMPOSITION

one that has the highest probability of honoring the target’s requests. In particular, a

controller that is guaranteed to never reach a dead-end will be an exact, and thus optimal,

solution.

We say that a history is reachable by a controller, if starting from the initial state

of the enacted system, the behavior executing the action at each state of the history is

indeed the one selected by the controller. More formally, a history h = s0 a1,k1−→ · · · a
`,k`−→ s`

is reachable by a controller C (in a system S) iff ki = C(s0 a1,k1−→ · · · a
i−1,ki−1

−→ si−1, ai), for

each i ∈ {1, . . . , `}. We denote by H`C the set of all reachable histories of length ` and

HC =
⋃
i≥0HiC the set of all histories reachable by C.

6.3.1 Value of a controller and compositions

In order to evaluate and compare controllers, we define the value of a controller for a

given target and system. Roughly speaking, a controller is “rewarded” for every target

request that it fulfills by a successful delegation to an available behavior. More specifically,

at every point, a controller gets a reward that depends both on the frequency of such a

request and the value of (fulfilling) it.

Let T = 〈T, t0, δ, R,Preq〉 be a target specification to be realized in a system S =

〈B1, . . . ,Bn, E〉. Let C be a controller for target T in system S, and ES be the enacted

system behavior as defined in the previous section. First, consider the case of evaluating

the performance of a controller over a finite number of requests. Intuitively, the value of a

controller is the total reward it can collect by successfully delegating the target’s actions

to the available behaviors.

Definition 6.6 (Value of a controller: k-steps). The value of a controller for k steps

of target T in a system S is defined as VCk = VCk (s0, t0), where the value of controller C for

k ≥ 1 requests, denoted by VCk (h, t), at system history h ∈ H when the target is in state

t ∈ T is given by VC0 (h, t) = 0, for k = 0 and all h ∈ H, and for k > 0 we have:

VCk>0(h, t) =
∑
a∈A

[Preq(t, env(last(h)), a)× IRC(h, t, a) +∑
s′∈S

〈t,e,a,t′〉∈δ

Preq(t, env(last(h)), a)× PS(last(h), a,C(h, a), s′)× VCk−1(h
a,C(h,a)−→ s′, t′)],

where IRC(h, t, a) stands for the immediate reward collected by the controller C when

requested to delegate action a at history h:

IRC(h, t, a) =

R(t, a) if ∃s′.PS(last(h), a,C(h, a), s′) > 0;

0 if C(h, a) is undefined;

−R(t, a) otherwise.

122

SECTION 6.3: DECISION THEORETIC CONTROLLERS

We say that a controller C∗ is k-maximal if for all other controllers C, VC∗k ≥ VCk .

In order to calculate a controller’s value, one then needs to sum the expected immediate

reward; that is, the probability of requesting a next action multiplied by the reward

gained for its execution, and all the expected future rewards. Observe that we include

the probability of a current action request when calculating the expected reward for the

next step; the expected probability of an enacted system evolving to a state includes the

probability of its own transition as well as the probability of the target actually requesting

that action.

Since a target may include infinite traces, we are in general interested in controllers

that are optimal for any number of potential requests; that is, for infinite executions of the

target behavior. To cope with unbounded executions of a target, we appeal to the use of a

discount factor, as is customary in sequential decision making over infinite episodes [French

1986, Boutilier et al. 1999]. The idea is that the satisfaction of later target-compatible

requests is less important than those issued earlier.

Definition 6.7 (Value of a controller: infinite steps). The value of a controller C

relative to a discount factor 0 ≤ γ < 1 for a system S and target specification T , is defined

as VCγ = VCγ (s0, t0) where:

VCγ (h, t) =
∑
a∈A

[Preq(t, env(last(h)), a)× IRC(h, t, a) +

γ
∑
s′∈S

〈t,e,a,t′〉∈δ

Preq(t, env(last(h)), a)× PS(last(h), a,C(h, a), s′)× VCγ (h
a,C(h,a)−→ s′, t′)].

The use of a discount factor plays the same role as for infinite horizon Markov decision

processes; namely, it allows convergence of the value of a controller [Boutilier et al. 1999,

Puterman 2005]. Note that the assumption that temporally closer rewards are more

important than distant ones is particularly suitable in the context of composition problems,

where behaviors may fail, the target and available system may be reset, or the problem

may not be fully solvable. Finally, we say that a controller C∗ is γ-maximal (of target T
in system S) if for all other controllers C, it is the case that VC∗γ ≥ VCγ .

Put together, the decision theoretic behavior composition problem, or simply DT-

composition problem, amounts to synthesizing a γ-maximal controller for a given target

specification T , given system S, and discount factor γ.

6.3.2 Exact compositions

A behavior composition problem has an exact solution when there exists a controller that

can fully realize the target; that is, a controller that can always honor the target’s requests,

no matter what happens. There have recently been various approaches in the literature to

123

CHAPTER 6: DECISION THEORETIC COMPOSITION

synthesize such a controller, called a composition, if any exists (see Section 2.4). Within

our decision theoretic setting, it is important to clearly define what an exact solution is

and its relationship with “optimal” controllers.

Since the target behavior is deterministic, its specification can be seen as the set of all

possible sequences of actions that can be requested, starting from the initial state. Thus,

given any finite run of the target, the most one could expect is that every single action

is successfully realized in the system. This would imply that all possible rewards in the

run have indeed been collected. Since one does not know a priori which actual run will

ensue, we consider the maximum expected reward when running the target. To make this

precise, we define the notion of maximum expected reward.

Definition 6.8 (Maximum expected reward). The maximum expected reward gained

for k ≥ 0 steps when executing a target specification from its state t when environment is

in a state e, denoted by Rmax
k (t, e), is given by:

Rmax
k≥1(t, e) =

∑
a∈A

[Preq(t, e, a)×R(t, a)+
∑
e′∈E

〈t,e,a,t′〉∈δ

Preq(t, e, a)× PE(e, a, e′)×Rmax
k−1(t′, e′)],

where Rmax0 (t, e) = 0 for k = 0.

As above, we take Rmax
k = Rmax

k (t0, e0), for any k ≥ 0. Note that this definition is

well defined for both cyclic and acyclic targets. Of course, for a cyclic target Rmax
k will

increase with the number of steps k. For an acyclic target with a longest path of length

`, it is easy to check that Rmax
k = Rmax

` , for every k ≥ `.
Thus, a controller C is an exact composition if VCk = Rmax

k , for all k ≥ 1, that

is, C can fully and always realize a target behavior in the available system. Note that

controllers are meant to have full observability of the current history. A Markovian (i.e.,

memoryless) controller C is one that only looks at the current state of the system to decide

the delegation; formally, for all histories h, h′ ∈ H such that last(h) = last(h′) and action

a ∈ A, C(h, a) = C(h′, a) applies. When it comes to exact solutions, Markovian controllers

are enough under full observability.

Theorem 6.1. Let S be a system and T be a target behavior. Then, if there exists an

exact solution for realizing T in S, then there exists a Markovian controller which is also

an exact solution.

Proof. Let C∗ be an exact solution for realizing T in S. For any h ∈ H and a ∈ A, we

define a new controller Ĉ(h, a) = C∗(h′, a) if h′ ∈ HC∗ is such that last(h) = last(h′) and

for all h′′ ∈ HC∗ such that last(h′′) = last(h), it is the case that C∗(h′, a) ≤ C∗(h′′, a).

Otherwise, if such a history h′ does not exist, we leave Ĉ(h, a) undefined.

Note that Ĉ is not only well-defined but also Markovian. Consider two histories

h1, h2 ∈ H such that last(h1) = last(h2), and suppose that Ĉ(h1, a) = k1. Then, C∗(h′1, a) =

124

SECTION 6.4: COMPUTING OPTIMAL CONTROLLERS VIA MDP REDUCTION

k1, for some h′1 ∈ HC∗ and Ĉ(h2, a) = C∗(h′1, a) = k1 as well; the same witness history

h′1 can be used for h2 too. Furthermore, because h′1 is reachable by C∗, together with

the fact that C∗ is indeed an exact solution, this implies that k1 ∈ {1, . . . , n} is a correct

delegation, in the sense that behavior Bk1 is able to perform a legal step on action a when

the environment is in state env(last(h)), and since last(h) = last(h′1), such a delegation is

also legal at history h2 and Ĉ is also exact.

Theorem 6.1 shows that memoryless controllers are sufficient when it comes to exact

compositions. More importantly, exact solutions are guaranteed to be always optimal

controllers under unbounded runs, independently of the discount factor chosen.

Theorem 6.2. If a controller is an exact composition for a decision-theoretic behavior

composition problem, then such a controller is a γ-composition, for any 0 ≤ γ < 1.

Proof. Let C∗ be an exact solution to a DT-composition problem, and assume, wlog, a

target with a uniform reward α. Then, at each step, C∗ collects the maximum possible

reward of α. If a discount factor γ is used, then C∗ will collect a reward of α ×
∑̀
n=1

γn−1

over ` steps, which is indeed the maximum possible reward for a γ-composition after `

steps. Hence, C∗ is also a γ-composition for the given composition problem.

Theorem 6.2 shows that exact compositions are invariant on the value of the discount

factor. To elaborate, if a controller is a γ1-composition for a composition problem accom-

modating an exact controller, then that controller will also be a γ2-composition for any

γ2 > 0.

6.4 Computing optimal controllers via MDP reduction

Various techniques have been used to actually solve the (qualitative) classical behav-

ior composition problems, including PDL satisfiability [De Giacomo and Sardina 2007],

search-based approaches [Stroeder and Pagnucco 2009], ATL synthesis [De Giacomo and

Felli 2010], and computation of special kinds of simulation relations [Sardina et al. 2008].

Unfortunately, in the context of the decision theoretic framework of Section 6.2, none of

these techniques can be applied. In this section, we show how to solve a decision theoretic

composition problem, by reducing it to a Markov decision problem in a natural man-

ner. We also demonstrate the reduction with a proof-of-concept implementation using an

existing off-the-shelf MDP solver.

125

CHAPTER 6: DECISION THEORETIC COMPOSITION

6.4.1 From behavior composition to MDPs

Informally, in our setting, the decision maker is the controller, and thus, the possible

actions that can be taken are those of behavior delegation. Consider then a system S =

〈B1, . . . ,Bn, E〉, with ES = 〈S,A, {1, . . . , n}, s0,PS〉 denoting the corresponding stochastic

enacted system behavior, and a target specification T = 〈T, t0, δ, R,Preq〉. We define the

corresponding encoded MDP M〈S,T 〉 = 〈Q, ind, p, r〉 as follows:

• Q = S × T × A ∪ {q]}, where for all 〈s, t, a〉 ∈ Q, Preq(t, env(s), a) > 0. Given

an MDP state q = 〈s, t, a〉 ∈ Q, we define sys(q) = s, tgt(q) = t, and req(q) = a.

A special, domain independent, state q] is used as a “dummy” initial state of the

process.

• ind = {1, . . . , n, u}; that is, an action in the encoded MDP stands for a behavior

selection, we include a special action u denoting no selection.

• The state transition function is defined as follows:

p(q, i, q′) =

Preq(tgt(q′), env(sys(q′)), req(q′)), if

q = q], sys(q′) = s0, tgt(q′) = t0;

PS(sys(q), req(q), i, sys(q′))×
Preq(tgt(q′), env(sys(q′)), req(q′)), if

q 6= q];

0, otherwise.

• The reward function is defined as:

r(q, i) =

R(tgt(q), req(q)) if PS(sys(q), req(q), i, sys(q′)) > 0

for some q′ ∈ Q and q 6= q];

0 if i = u or q = q];

−R(tgt(q), req(q)) otherwise.

In the resulting MDP, a state is built from the state of the enacted system behavior

(which includes the states of the environment and those of all available behaviors), the

state of target behavior, and an action being requested; in other words, a “snapshot” of

the whole composition problem. Each transition in the MDP represents the behavior—

through its index—to which the current request is delegated for execution. The dynamics

126

SECTION 6.4: COMPUTING OPTIMAL CONTROLLERS VIA MDP REDUCTION

of the MDP encodes both the dynamics of the enacted system behavior and the target

behavior, as well as that of the stochastic process (i.e., the user of the target) that is

requesting actions. Finally, the reward function in the MDP merely mimics that of the

encoded behavior composition problem; no reward is given from the initial dummy state,

and an unfeasible delegation (i.e., one where the chosen behavior may not perform the

action) receives a penalty (i.e., it is better to prescribe “u”).

Given a policy for the encoded MDP, one can then extract the controller induced by

it. Informally, an induced controller will mimic the decisions prescribed by its policy.

Definition 6.9 (Induced controller). Given a policy π : Q 7→ ind for the MDPM〈S,T 〉,

we define the π induced controller Cπ(h, a), where h = s0 a1,k1−→ · · · a
`,k`−→ s` is an enacted

system history, with ` ≥ 0 and a ∈ A, as Cπ(h, a) = π(q) if:

• sys(q) = last(h);

• a = req(q); and

• t0
env(s0):a1−→ · · · env(s

`−1):a`−→ tgt(q) in T .

Note that the output for histories that do not yield any legal evolution of the target is

irrelevant, and hence, for these cases the induced controller will be undefined. The encoded

MDP M〈S,T 〉 has a dummy start state q] used to initialize the enacted system and the

target behavior. As one would expect, the reward function of the encoded MDP and the

step-wise reward for calculating the value of the controller are strongly linked together.

Indeed, successfully delegating an action from a target and enacted system state will lead

to same reward for a policy and its induced controller. It is natural then to expect that

the value of an γ-optimal policy should equal the value of its induced controller oven an

infinite horizon.

Lemma 6.3. Let π be an γ-optimal policy for the MDP M〈S,T 〉 for a given target spec-

ification T and system S. Then, γVCπ` = V π
`+1(q]), where VCπ` is the value of policy π

induced controller Cπ for ` steps, V π
`+1(q]) is the value of policy π from state q] for ` + 1

steps, 0 ≤ γ < 1, and l > 0.

Proof. We use induction on ` to prove our claim. Let T = 〈T, t0, δ, R,Preq〉 be a target

specification and ES = 〈S,A, {1, . . . , n}, s0,PS〉 the stochastic enacted system of S. For

` = 1 we obtain the following equations.

V π
2 (q]) = r(q], π(q])) + γ

∑
q∈Q

p(q], π(q]), q)× V π
1 (q)

= r(q], π(q])) + γ
∑
q∈Q

p(q], π(q]), q)× r(q, π(q))

127

CHAPTER 6: DECISION THEORETIC COMPOSITION

Now, as per the encoded MDP definition, r(q], π(q])) = 0 and
∑
q∈Q

p(q], π(q]), q) ≡∑
a∈A
Preq(t0, env(s0), a).

Note, the reward functions for both the controller and the encoded MDP are depen-

dent only on the system state, chosen behavior index and the requested action, and both

will return the same reward1 (R(tgt(q), req(q)) or 0) for same set of inputs. Hence,

V π
2 (q]) = 0 + γ

∑
a∈A

[Preq(t0, env(s0), a)× IRCπ(s0, t0, a)]

= γVCπ1 (s0, t0)

= γVCπ1

For the inductive step, assume that γVCπk = V π
k+1(q]) holds for some k > 0. We will

show that γVCπk+1 = V π
k+2(q]) also holds. First, let us calculate the difference VCπk+1−V

Cπ
k by

expanding the general recursive definition of VCπ . Let C = Cπ, ei = env(si) for all i ≥ 0,

and hi = s0
a1,C(s0,a1)−→ s1 · · ·

ai,C(si−1,ai)−→ si for all i ≥ 0 in the equations below.

VCk =
∑
a1∈A

[Preq(t0, e0, a1)× IRC(h0, t0, a1)+

γ
∑
s1∈S

〈t0,e0,a1,t1〉∈δ

Preq(t0, e0, a1)× PS(s0, a1,C(s0, a1), s1)× VCk−1(h1, t1)]

=
∑
a1∈A

Preq(t0, e0, a1)× IRC(h0, t0, a1)+

γ
∑
a1∈A
s1∈S

〈t0,e0,a1,t1〉∈δ

Preq(t0, e0, a1)× PS(s0, a1,C(s0, a1), s1)× VCk−1(h1, t1)

=
∑
a1∈A

Preq(t0, e0, a1)× IRC(h0, t0, a1) + · · ·+

γi−1
∑
aj∈A
sj∈S

〈tj−1,ej−1,aj ,tj〉∈δ
j≤i

Preq(t0, e0, a1)× PS(s0, a1,C(s0, a1), s1)× · · ·×
PS(si−2, ai−1,C(si−2, ai−1), si−1)× Preq(ti−1, ei−1, ai)× IRC(hi−1, ti−1, ai)+

γi
∑
aj∈A
sj∈S

〈tj−1,ej−1,aj ,tj〉∈δ
j≤i

Preq(t0, e0, a1)× PS(s0, a1,C(s0, a1), s1)× · · ·×
Preq(ti−1, ei−1, ai)× PS(si−1, ai,C(si−1, ai), si)× VCk−i(hi, ti)

where i ≤ k.

We know that VC0 = 0; hence using the above expansion we get:

VCk+1 − VCk =

γk+1
∑

aj∈A,sj∈S,j≤k+1

[Preq(t0, e0, a1)× PS(s0, a1,C(s0, a1), s1)× · · ·×

Preq(tk, ek, ak+1)× PS(sk−1, ak,C(sk−1, ak), sk)× IRC(hk, tk, ak+1)] (6.1)

1Though the reward function for the MDP can return −R(tgt(q), req(q)), since the index u is always
applicable with a reward of 0, the reward function for an optimal policy will never return−R(tgt(q), req(q)).

128

SECTION 6.4: COMPUTING OPTIMAL CONTROLLERS VIA MDP REDUCTION

Similarly, we calculate the difference V π
k+2(q]) − V π

k+1(q]) by expanding the general

recursive definition of V π
k (q0), where q0 = q] and hence, r(q0, π(q0) = 0).

V π
k (q0) = r(q0, π(q0)) + γ

∑
q1∈Q

p(q0, π(q0), q1)× V π
k−1(q1)

= γ
∑
q1∈Q

p(q0, π(q0), q1)× [r(q1, π(q1)) + γ
∑
q2∈Q

p(q1, π(q1), q2)× V π
k−2(q2)]

= γ
∑
q1∈Q

p(q0, π(q0), q1)× r(q1, π(q1))+

γ2
∑

q1,q2∈Q
p(q0, π(q0), q1)× p(q1, π(q1), q2)× V π

k−2(q2)

= γ
∑
q1∈Q

p(q0, π(q0), q1)× r(q1, π(q1)) + · · ·+

γi
∑
qj∈Q
j≤i

p(q0, π(q0), q1)× · · · × p(qi−2, π(qi−2), qi−1)× r(qi−1, π(qi−1))+

γi
∑
qj∈Q
j≤i

p(q0, π(q0), q1)× · · · × p(qi−1, π(qi−1), qi)× V π
k−i(qi)

where i ≤ k.

We know that V π
0 (q) = 0 for any state q inM〈S,T 〉; hence using the above expansion

we get (q0 = q]):

V π
k+2(q0)−V π

k+1(q0)=

γk+2
∑
qj∈Q
j≤k+2

p(q0, π(q0), q1)×· · ·× p(qk, π(qk), qk+1)× r(qk+1, π(qk+1)) (6.2)

From the definition of M〈S,T 〉 we know that p(q0, π(q0), q1) = Preq(t0, e0, a1) and

p(qi, π(qi), qi+1) = PS(si, ai+1, π(qi), si+1) × Preq(ti+1, ei+1, ai+2) where ti = tgt(qi), si =

sys(qi), ei = env(si) and ai+1 = req(qi) for all i > 0. In order to substitute these in

Equation 6.2, note that sys(q1) = s0, sys(q2) = s1, and so on. Substituting these and

replacing π by induced controller C in Equation 6.2 we get:

V π
k+2(q0)−V π

k+1(q0)=

γk+2
∑
qj∈Q
j≤k+1

Preq(t0, e0, a1)× PS(s0, a1,C(s0, a1), s1)× Preq(t1, e1, a2)× · · ·×

PS(sk−1, ak,C(sk−1, ak), sk)× Preq(tk, ek, ak+1)×R′(tk, ak+1) (6.3)

where R′(tk, ak+1) is equal to R(tk, ak+1) if action a is executable from sk, otherwise

the value of R′ is 0. We do not need to consider negative reward since π is optimal.

129

CHAPTER 6: DECISION THEORETIC COMPOSITION

Similarly, from the definition of IRC we get IRC(hk, tk, ak+1) = R′(tk, ak+1). Combining

this with Equations 6.1 and 6.3 we get:

V π
k+2(q])−V π

k+1(q]) = γ(VCk+1 − VCk).

Since V π
k+1(q]) = γVCk we can conclude that V π

k+2(q]) = γVCk+1.

Using Lemma 6.3 we show that optimising a policy is similar to optimising its induced

controller. Hence, a γ-optimal policy will induce a γ-maximal controller.

Theorem 6.4. Let S be an available system and T a target behavior. Let M〈S,T 〉 be the

corresponding MDP encoding as described above. If π is an γ-optimal policy for M〈S,T 〉,
then its induced controller Cπ is a γ-maximal controller for realizing T in S.

Proof. Assume Cπ is not γ-maximal and there exists a controller C∗ such that VC∗γ > VCπγ .

Let π∗ be the policy that induces C∗. Applying Lemma 6.3 we get V π∗
γ (q]) > V π

γ (q]), a

clear contradiction since we know that π is an optimal policy.

Theorem 6.4 shows the correctness of the encoding, and provides us with a technique

for solving DT-composition problems, by using, for instance, policy-iteration implemen-

tations [Howard 1960].

Example 6.4. We generated the optimal policy for the garden scenario from Figure 6.1 by

using a simple existing MDP solver, called jMarkov.2 The problem does not actually have

an exact solution. To see that, consider the sequence of action requests clean ·water ·empty

compatible with the target TGarden. It is not hard to verify that the first and last actions

need to be delegated to bot BCleaner, whereas the second action water ought to be delegated

to bot BMulti. However, bot BCleaner will be able to perform the last action empty only if

it has evolved to state a1 after clean’s execution. Otherwise, if BCleaner happens to stay

in state a0 instead, the last action empty will not be realized in the system SGarden and a

dead-end will be reached.

Note, however, that the chances of BCleaner evolving to state a0 are indeed low (pre-

cisely, a probability of 0.1). Hence, an optimal controller—a decision theoretic composition—

should still choose BCleaner to execute the first clean action. This is indeed the controller

induced by the optimal policy found when solving the corresponding MDP. This is par-

tially listed below as output from jMarkov (BEH0, BEH1, and BEH2 stand for behaviors

BCleaner, BMulti, and BPicker, respectively):

Beh:0 0 0 | Tgt:0| Env:0|Act:CLEAN ------> BEH0

Beh:0 0 0 | Tgt:1| Env:0|Act:WATER ------> BEH1

Beh:1 0 0 | Tgt:1| Env:0|Act:WATER ------> BEH1

2http://copa.uniandes.edu.co/software/jmarkov/

130

http://copa.uniandes.edu.co/software/jmarkov/

SECTION 6.4: COMPUTING OPTIMAL CONTROLLERS VIA MDP REDUCTION

Beh:1 0 0 | Tgt:2| Env:0|Act:EMPTY ------> BEH0

Beh:0 0 0 | Tgt:2| Env:0|Act:EMPTY ------> U

...

Observe that if after performing a clean action, behavior BCleaner (BEH0) stays in its

state a0, the policy prescribes U, thus signaling a dead-end in the composition.

In turn, the following rules in the policy will successfully realize the request sequence

clean · pick · empty:

Beh:0 0 0 | Tgt:0| Env:0|Act:CLEAN ------> BEH0

Beh:0 0 0 | Tgt:1| Env:0|Act:PICK ------> BEH1

Beh:0 1 0 | Tgt:1| Env:0|Act:WATER ------> BEH1

Beh:0 1 0 | Tgt:3| Env:0|Act:EMPTY ------> BEH1

Finally, bot BPicker (BEH2) will be used by the induced controller in cases such as the

following ones:

Beh:0 1 0 | Tgt:1| Env:0|Act:PICK ------> BEH2

Beh:0 1 1 | Tgt:0| Env:0|Act:CLEAN ------> BEH2

Observe that in the configuration of the second rule, behavior BCleaner is also able to

perform the cleaning action; however, it is best to use the picker bot as this will bring it

to state c0, from where it is able to pick again if needed (note that bot BMulti is in state

b1 from where it cannot pick).

All the above rules are only for the cases in which the environment remains in its

state e0; other (similar) rules exist in the policy/controller for other environment states.

6.4.2 Exact compositions

As discussed, in a decision theoretic composition problem, one looks, in general, for the

“optimal” controller, since exact compositions may not exist. Nonetheless, the following

result states that if an exact controller does exist, it is enough to restrict to the finite

horizon case in the corresponding MDP (without losing optimality).

Theorem 6.5. If there exists an exact composition for realizing a given target specification

T in a system S, then the controller induced by any (|Q| + 1)-optimal policy for MDP

M〈S,T 〉 = 〈Q, ind, p, r〉 is an exact composition.

Proof. This follows from the fact that there exists an optimal policy for M〈S,T 〉 that is

stationary (there exists a Markovian exact composition due to Theorem 6.1), and the

fact that by optimizing the MDP up to Q + 1 steps, it is guaranteed that all possible

configurations of the whole composition framework—which includes both available system

and target—are taken into account.

131

CHAPTER 6: DECISION THEORETIC COMPOSITION

This result is important in that it provides a way of verifying whether a DT-composition

problem accepts an exact solution; namely, find an optimal policy π for horizon |Q|+1 and

check whether VCπ|Q| = Rmax
|Q| (recall the first step in the MDP involves no action request

and attracts no reward). Of course, it is possible to restate the above theorem in terms

of an infinite horizon problem:

Corollary 6.6. If there exists an exact composition for realizing a given target T in a

system S, then there exists a discount factor γ̂ such that for any γ-optimal policy π for

MDPM〈S,T 〉, with γ≥ γ̂, the induced controller Cπ is an exact composition of T in S.

When no exact composition exists, however, all one can do is to settle for the (optimal)

controller induced by an optimal policy in the encoded MDP. Since non-exact compositions

will include dead-ends; that is, possible histories where some target-compatible request

may not be fulfilled, other mechanisms will be required to bring the overall system to a

“healthy” configuration, such as resetting the whole system or even some parts of it.

We close this section by relating our approach to behavior composition to the “clas-

sical” approaches to the problem from the literature (e.g., [De Giacomo et al. 2013, De

Giacomo and Felli 2010]). In such approaches, the task amounts to deciding whether an

exact composition controller exists (and to synthesize one if any) in settings under strict

uncertainty. The dynamics of behaviors and that of the environment are represented by

means of transition relations, rather than probabilistic transition functions. As a result,

the designer can only model whether a transition is possible or not. In addition, the target

behavior does not include a probabilistic request function Preq, but simply a transition

relation stating what actions can be legally requested.

As expected, the following result states that our DT-composition framework is at

least as expressive as the classical one.

Theorem 6.7. For any instance of a classical behavior composition, there is a decision-

theoretic behavior composition instance such that there exists a composition solution for

the former iff there exists an exact composition for the latter.

Proof. Let 〈S, T 〉 be a classical behavior composition problem where T = 〈T,G, t0, %〉
is the target specification and S = 〈B1, . . . ,Bn, E〉 be the system with behaviors Bi =

〈Bi, Gi, bi0, %i〉, for i ≤ n, and environment E = 〈E,A, e0, ρ〉. We build a DT-composition

problem instance with target T d = 〈T, t0, δ, R,Preq〉, behaviors Bdi = 〈Bi, b0,PBi〉 for

i ≤ n, and environment Ed = 〈E,A, e0,PE〉 as follows:

• The environment probabilistic transition function is defined such that PE(e, a, e′) =

1/|∆(e, a)|, whenever 〈e, a, e′〉 ∈ ρ, where ρ is the transition relation of the original

classical environment and ∆(e, a) = {e′ | 〈e, a, e′〉 ∈ ρ}.

132

SECTION 6.4: COMPUTING OPTIMAL CONTROLLERS VIA MDP REDUCTION

• The probabilistic transition function for each available behavior Bdi is defined as

PBi(b, e, a, b′) = 1/|∆(b, e, a)|, whenever 〈b, g, a, b′〉 ∈ %i such that g(e) = true,

where %i is the transition relation of the original classical available behavior Bi and

∆(b, e, a) = {b′ | 〈b, g, a, b′〉 ∈ %i, g(e) = true}.

• The probabilistic action request function of the target behavior is defined as Preq(t, e, a) =

1/|∆(t, e)|, whenever 〈t, g, a, t′〉 ∈ % such that g(e) = true, where % is the transition

relation of the original target and ∆(t, e) = {a | 〈t, g, a, t′〉 ∈ %, g(e) = true}.

• The target reward function is defined as R(t, a) = 1 for all a ∈ A and t ∈ T such

that Preq(t, e, a) > 0 for some e ∈ E.

In all other cases, the probabilities are assumed to be zero. Assume the target specifica-

tion is realizable in system S and C is an exact composition for the classical composition

problem 〈S, T 〉. We show that C is also an exact composition for stochastic behavior com-

position problem 〈Sd, T d〉, where Sd = 〈Bd1 , . . . ,Bdn, Ed〉. Since C is an exact composition,

it will realize all traces of enacted target ET in system S. Using C on T d in Sd, after k

steps, it will gain a reward exactly equal to k (R(t, a)=1 in our reduction). Observe that,

as per the encoding above, Rmaxk = k. Hence, C is also an exact composition for T d in

Sd.

For the opposite direction, assume that C is an exact composition for T d in Sd but

not for T in S. Hence, there exists a trace τ of enacted system ET which C cannot

realize. Let τ = s0
T
a1,g1−→ · · · a

`,g`−→ s`+1
T , and h be a τ compatible system history such that

C(h, a`) is undefined; that is C cannot honor the action request a` when the system is in

last(h). Consequently, if C was used to realize T d in Sd then it will not gain the immediate

expected reward R(t`−1, a`). Therefore, after ` steps, V C
` < Rmax` : a contradiction since

C is an exact composition for T d in Sd, and so VCk = Rmaxk should hold for all k > 1.

Clearly, not every DT-composition problem can be mapped to the classical setting,

as is the case with our gardening scenario. It follows then that the framework developed

here, not surprisingly, is a strict extension of the classical one for behavior composition.

In terms of computational complexity, fully observable MDPs can be solved in time

polynomial in the size of state space and actions [Puterman 2005]. Since the size of

M〈S,T 〉’s state space is indeed exponential in the number of behaviors, checking if a

controller is maximal is exponential in the number of available behaviors. Observe that

this complexity bound is tight since checking the existence of an exact controller can be

reduced to a decision theoretic problem (see Theorem 6.7).

Note that the upper bound in the quantitative setting is in EXPTIME even for the

general case, which is less than the current upper bound for computing SRTFs in the qual-

itative optimisation setting involving nondeterministic available behaviors. However, the

decision theoretic framework suffers from two key limitations. First, qualitative properties

133

CHAPTER 6: DECISION THEORETIC COMPOSITION

such as dead-end avoidance cannot be guaranteed. A decision theoretic composition will

maximize the expected realizability of a target specification in a system. Hence, a system

may evolve nondeterministically to a low probability state from where subsequent target

requests will not be honored. Alternatively, a target specification may associate high re-

ward with an action that may be nondeterministic in the given system such that one of its

nondeterministic evolution causes the system to reach a dead-end. Second, the decision

theoretic framework does not provide insights into any extra information that could render

an unsolvable problem solvable. For instance, in the qualitative framework, SRTFs were

allowed to introduce extra branching to capture information such as advanced selection

of action requests. In the quantitative framework developed here, one seeks to maximize

the rewards based on the given target specification instead of proposing the best alternate

target specification.

6.5 Summary

In this chapter, we generalized the classical behavior composition problem to one that is

able to account for quantified uncertainties in the domain, both in the dynamics of the

behaviors and environment, as well as in the preferences over requests from the target

user. The task then is to find an optimal controller—a decision theoretic composition—

that maximizes the expected realizability of the target. In order to solve a DT-composition

problem, we showed how to reduce it to the problem of finding an optimal policy in

a Markov decision process, an established framework for sequential stochastic decision

making.

To summarise:

• We proposed a decision theoretic account of behavior composition based on quan-

tification of uncertainties.

• The probabilistic framework quantifies the nondeterminism in the available behav-

iors, environment, and the frequency of requests along with importance of actions

in target specification.

• We defined the notion of maximal compositions based on “expected realizability” of

the target specifications.

• We provided a technique to compute maximal compositions via reduction to Markov

decision processes.

134

CHAPTER 7
Conclusion

“We know very little, and yet it is astonishing that we

know so much, and still more astonishing that so little

knowledge can give us so much power.”

–Bertrand Russell

Behavior composition involves automatically synthesising a controller to implement

a desired target specification by utilising available behaviors that operate in a shared

environment. In the classical setting, one is only interested in exact controllers that are

able to completely realize a given target specification. A shortcoming of the classical

setting is its lack of capability of dealing with composition instances where an exact

controller does not exist; that is, where the target specification cannot be realized by

using the available behaviors. The focus of this thesis has been to develop behavior

composition frameworks and techniques that will cater for unsolvable problem instances,

thereby making behavior composition applicable to broader range of cases. With the

overarching idea to look for optimal solutions in unsolvable problem instances, we defined

what such optimal solutions are, and provided techniques to compute them, in qualitative

and quantitative settings.

In the qualitative approach, developed in Chapter 3, we focused on the target’s per-

spective and characterized supremal realizable target fragments (SRTFs)–optimal target

fragments that accommodate exact controllers in the given system. We proved that the

notion of SRTFs is both sound and complete with respect to controllers (Theorems 3.9 and

3.10). More importantly, we showed that SRTFs are unique up to simulation equivalence

(Theorem 3.8). In order to compute the SRTF for problem instances containing only

deterministic available behaviors (Section 4.1), we reduced the qualitative optimisation

problem to a particular safety game [Bloem et al. 2011]. For the general case involving

nondeterministic behaviors, we relied on sort of belief-space [Bonet and Geffner 2000] con-

struction technique (Section 4.2). In Chapter 5, we introduced uncontrollable exogenous

135

CHAPTER 7: CONCLUSION

events in our qualitative optimisation framework to represent observable uncertainties and

suitably adapted the solution concepts, along with the belief-space construction technique.

Throughout the qualitative approach, we formulated the notion of optimal solutions along

with their properties based on the formal notion of simulation [Milner 1971].

In comparison to the qualitative approach that assumed strict uncertainty [French

1986], the quantitative approach required additional domain knowledge. The outcome of

the quantitative approach, developed in Chapter 6, is a decision-theoretic behavior com-

position framework, in which the task is to maximize the so-called expected realizabability

of a target behavior in a given available system. To facilitate this, we quantified all sources

of uncertainty in the classical composition framework. First, the uncertainty on the non-

determinism in available behaviors and the environment needs to be measured. Second,

the relative importance of each potential target request at a given state is specified. With

the uncertainty quantified into the model, we proposed the notion of maximal composition

controllers as those which maximize the expected target realizability. We constructed a

technique to compute maximal composition controllers by encoding the problem into a

particular kind of Markov decision process [Puterman 2005]. Importantly, we showed how

to extract a maximal controller from an optimal policy of the encoded MDP (Theorem 6.4).

As one would expect, an optimal solution for solvable composition instances will

coincide with the exact one. In particular, for such cases, the SRTF of the qualitative

framework will be simulation equivalent to its target specification (Theorem 3.11); in

the quantitative framework a maximal controller will also be an exact controller (Theo-

rem 6.5). More importantly, we proved that the qualitative and quantitative optimisation

frameworks developed in this thesis strictly subsume the classic behavior composition

problem (Theorems 3.1 and 6.7).

The choice between using a qualitative or quantitative approach to behavior compo-

sition optimisation depends on user requirements and available domain information. The

qualitative approach aims at providing an optimal solution; that is, the SRTF, without

requiring any further domain knowledge or additional behaviors. In fact, the input to

the qualitative optimisation problem is the same as the classical behavior composition

problem (except for allowing nondeterministic targets). SRTFs have an advantage of be-

ing in the same language as the problem specification and they come with the guarantee

of full realizability; that is, there will exist a controller that will never get stuck while

honoring requests as per the SRTF. However, the current technique to compute SRTFs

for the general case has a time complexity of 2-EXPTIME, which is higher than the time

complexity of computing exact compositions for the classical behavior composition. In

contrast, the quantitative approach relies on the availability of additional domain knowl-

edge to quantify the sources of uncertainty in the domain. Though, in the quantitative

setting, one obtains a maximal composition that provides maximum realizability of the

target specification, a maximal controller may get stuck; that is, at a certain step the next

136

SECTION 7.0:

legal request may not be realizable. However, one can compute maximal compositions in

the same time complexity as computing exact compositions.

Behavior composition and related fields

From an AI perspective, automated planning [Ghallab et al. 2004], supervisory control

theory (SCT) [Wonham and Ramadge 1987, Cassandras and Lafortune 2006] and behavior

composition are all synthesis problems. The aim in planning is to build a plan, in SCT

to build a supervisor, and in behavior composition to generate a controller. Observe

that, at the core, these problems are concerned with qualitative temporal decision making

in dynamic domains and exhibit strong resemblance in how their problem components

are modeled (e.g., using transition system like models) and the techniques used to solve

the problem (e.g., model checking, search, etc). In fact, exploration of the relationship

between these three synthesis tasks has already gained attention [Balbiani et al. 2008,

Bertoli et al. 2010, Barbeau et al. 1995].

The task in classical planning [Ghallab et al. 2004] is to generate a plan for a given

goal that is meant to be achieved in a deterministic fully observable domain starting

from a known initial state. Advanced forms of planning formalisms include relaxing the

deterministic and fully observable assumptions on the domain [Bertoli et al. 2001a, Ghallab

et al. 2004] and synthesising plans for temporally extended goals [De Giacomo and Vardi

2000]. Classical behavior composition problem can be considered to be an advanced form

of planning with a maintenance goal, namely, to always satisfy the target’s request, in a

nondeterministic domain. From a planning perspective, a plan (i.e., a controller) prescribes

behavior delegations rather than domain actions [De Giacomo and Sardina 2007]. In

particular, classical behavior composition problems have been considered under various

planning frameworks, including planning as model checking [Pistore et al. 2004], planning

in asynchronous domains [Bertoli et al. 2010], and nondeterministic planning [Ramirez

et al. 2013].

Supervisory control theory [Wonham and Ramadge 1987, Cassandras and Lafortune

2006] concerns itself with restriction of a plant (modelled by an automaton) such that

the restricted plant’s language equals a given specification. As argued in section 5.4 with

respect to behavior composition and SCT, it may seem that both theses areas tackle the

same problem, possibly from different perspectives: SCT from an Engineering perspective

and composition from a Computer Science one. However, the core control problem in SCT

and behavior composition are different. In SCT one seeks to control the whole plant, hence

it does not have a notion analogous to available behaviors. Therefore, component-based

nondeterminism cannot be captured (directly) in a plant. Another important mismatch

relates to the semantics of nondeterminism: the nondeterminism of controllable actions in

a plant is angelic, in the sense that the supervisor can control its evolution. On the other

hand, nondeterminism of available behaviors is devilish, as it cannot be controlled. This

137

CHAPTER 7: CONCLUSION

is one of the reasons why, as far as we know, SCT frameworks such as DES do not have

a notion similar to nd-simulation [Sardina et al. 2008]. In fact, uncertainty is modelled

in SCT via (deterministic) uncontrollable events [Wonham and Ramadge 1987], whereas

nondeterminism [De Giacomo et al. 2013] is used in behavior composition.

From an automata theoretic viewpoint, behavior composition is related to shuffled

languages [Berglund et al. 2011]. Briefly, the shuffle of two strings u = ab and v = cd is the

set of all possible interleavings of symbols in u and v; that is, {abcd, acbd, cabd, cadb, cdab}.
The shuffle between two languages is then simply the shuffle between the words contained

in them [Berglund et al. 2011]. If we consider the domain actions as symbols, then the lan-

guage of the enacted system is the shuffle between the languages of the enacted behaviors.

Since the available behaviors act in an interleaved fashion, the enacted system encodes all

the possible interleavings that arise due to activating behaviors in different order. Con-

ceptually, a target specification can be realized in a system if the language of its enacted

target is a subset of the language of the enacted system (i.e., a shuffle of the languages

of the enacted behaviors). This will hold true only for deterministic available behaviors

due to different treatment of nondeterminism in automata and behavior composition. In

automata theory, a word is accepted if any of the nondeterministic evolutions reaches a

final state. However, in behavior composition (from an automata theoretic perspective)

all nondeterministic (system) evolutions should be accepted.

Future work

There are multiple lines of possible future work in the area of behavior composition opti-

misation. First and foremost, we aim to confirm the conjecture that our technique builds

SRTFs that are optimal with respect to worst-case complexity, thus implying that synthe-

sis of SRTFs is, in general, more difficult than synthesis of exact composition controllers.

Second, one may design anytime algorithms to compute SRTFs. The central idea will be

to begin with the universally smallest RTF (one with single state and no transitions) and

incrementally build better RTFs successively. Orthogonal to this anytime approach, since

RTFs are closed under union, one could compute various RTFs in parallel before taking

their union.

Third, one may propose approaches that trade optimality for faster computation, such

as restricting realizable target fragments to merely removing transitions from the original

target specification, or bounding its number of states. A resource bounded account of

behavior composition will be beneficial in situations such as embedded systems where

memory or computation might be limited. Fourth, it would be interesting to develop

a hybrid framework combining the qualitative and quantitative optimisation approaches.

The central idea in such a framework would be to use the qualitative approach to compute

the SRTF and the quantitative technique for maximising the realizability of the remaining

target specification. Such a hybrid framework would also highlight fragments of the target

138

SECTION 7.0:

specification that need extra domain knowledge (parts of the target that are included in

its SRTF will not require extra domain information). Finally, it will be of practical use

to go beyond the theoretical foundations of frameworks, as presented in this thesis, and

perform an empirical analysis on computing optimal solutions as attempted for classical

behavior composition [Ramirez et al. 2013].

One could encourage other approaches orthogonal to the optimisation techniques

when confronted with a behavior composition problem instance admitting no complete

solution. For example, one could look for additional available behavior modules or en-

hancement of existing ones with new capabilities to recover exact solvability. In some cases,

simply adding extra “copies” of existing modules would be enough. A related (open) is-

sue in behavior composition is with regard to redundancy of behaviors. All the current

techniques to compute an exact (or optimal) solution utilize all the available behaviors.

Presented with a problem having multiple copies of a behavior there is no technique that

can intelligently recognize if the target specification can be realized by a subset of those

copies. Of course, one would like to avoid naively calculating the required number of

copies by doing an iterative deepening style of computation by increasing the number of

copies used in each iteration. Since the computational complexity of the classical behavior

composition problem is exponential in the number of behaviors, an intelligent technique

able to include behaviors in the enacted system in an on-the-fly as required manner will

have a direct impact on the practical efficiency.

In all the approaches and suggestions discussed so far a target specification is assumed

to be final. One could relax this assumption and treat a target specification as partial.

Intuitively, a partial target specification would imply that the controller is allowed to

“fill-in” some actions in order to realize the next target request. This could be essential

in situations where the modeller may have forgotten to incorporate certain conditions.

For example, if the modeller misses the turn-off action, the controller will automatically

execute it on her behalf. In addition, this may provide an interactive approach to synthe-

sising practically meaningful target specifications by allowing the modeller and controller

to collaborate with each other.

We conclude by noting that the area of behavior composition poses interesting, and

important, research challenges (some of which are outlined above). In particular, this

thesis provides a first example of behavior composition frameworks that cater for target

specifications that do not have exact controllers in a given system. We proposed quali-

tative and quantitative approaches to formally define and construct optimal solutions in

these cases. We borrowed the idea of exogenous events from the fields of reasoning about

action [Reiter 2001] and supervisory control theory [Wonham and Ramadge 1987, Cas-

sandras and Lafortune 2006] to provide an interesting extension to the classical behavior

composition setting. Finally, we provided sound effective techniques to synthesize optimal

solutions for the various proposed frameworks.

139

Bibliography

R. Alur, T. A. Henzinger, F. Y. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran. Mocha:

Modularity in model checking. In Computer Aided Verification, pages 521–525. Springer,

1998.

R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal

of the ACM (JACM), 49(5):672–713, 2002.

E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete and timed

systems. In Hybrid Systems II, volume 999 of Lecture Notes in Computer Science

(LNCS), pages 1–20. Springer, 1995.

C. Baier, J.-P. Katoen, et al. Principles of model checking, volume 26202649. MIT press

Cambridge, 2008.

P. Balbiani, F. Cheikh, and G. Feuillade. Composition of interactive web services based

on controller synthesis. In Proceedings of the IEEE Congress on Services (SERVICES),

pages 521–528, 2008.

J. Balcázar, J. Gabarro, and M. Santha. Deciding bisimilarity isp-complete. Formal

aspects of computing, 4(1):638–648, 1992.

M. Barbeau, F. Kabanza, and R. St-Denis. Synthesizing plant controllers using real-time

goals. In Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI), pages 791–800, 1995.

R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1

edition, 1957.

D. Berardi. Automatic composition services: models, techniques and tools. PhD the-

sis, PhD thesis, SAPIENZA–Universita di Roma, Dipartimento di Informatica e Sis-

temistica, 2005.

D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic

composition of e-services that export their behavior. In Service-Oriented Computing-

ICSOC 2003, pages 43–58. Springer, 2003a.

141

CHAPTER : BIBLIOGRAPHY

D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. E-service

composition by description logics based reasoning. In Proceedings of the Int. Workshop

on Description Logics (DL03), 2003b.

D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic

service composition based on behavioural descriptions. International Journal of Coop-

erative Information Systems, 14(4):333–376, 2005.

D. Berardi, F. Cheikh, G. De Giacomo, and F. Patrizi. Automatic service composition via

simulation. International Journal of Foundations of Computer Science, 19(2):429–452,

2008.

M. Berglund, H. Björklund, and J. Högberg. Recognizing shuffled languages. In Language

and Automata Theory and Applications, pages 142–154. Springer, 2011.

P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeterministic domains

under partial observability via symbolic model checking. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), volume 2001, pages 473–478,

2001a.

P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeterministic domains

under partial observability via symbolic model checking. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), volume 17, pages 473–478.

Citeseer, 2001b.

P. Bertoli, M. Pistore, and P. Traverso. Automated composition of web services via

planning in asynchronous domains. Artificial Intelligence, 174(3):316–361, 2010.

R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive(1)

designs. Journal of Computer and System Sciences, pages 1–28, 2011.

B. Bonet and H. Geffner. Planning with incomplete information as heuristic search in

belief space. In Proceedings of Artificial Intelligence Planning Systems, pages 52–61.

AAAI, 2000.

L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are two web services com-

patible? In Technologies for E-Services, pages 15–28. Springer, 2005.

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions

and computational leverage. Journal of Artificial Intelligence Research, 11(1):94, 1999.

A. Bredenfeld. RoboCup 2005: Robot Soccer World Cup IX, volume 4020. Springer, 2006.

A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback. Towards component-

based robotics. In International Conference on Intelligent Robots and Systems (IROS),

pages 163–168, 2005.

142

SECTION .0: BIBLIOGRAPHY

D. Brugali, A. Brooks, A. Cowley, C. Côté, A. C. Domı́nguez-Brito, D. Létourneau,

F. Michaud, and C. Schlegel. Trends in component-based robotics. In Software En-

gineering for Experimental Robotics, pages 135–142. Springer, 2007.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang. Symbolic model

checking: 1020 states and beyond. Information and computation, 98(2):142–170, 1992.

D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, and F. Patrizi. Automatic service

composition and synthesis: the roman model. Bulletin of the IEEE Computer Society

Technical Committee on Data Engineering, 31(3):18–22, 2008.

C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer,

Secaucus, NJ, USA, 2006. ISBN 0387333320.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,

and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking. In

Computer Aided Verification, pages 359–364. Springer, 2002.

G. De Giacomo and P. Felli. Agent composition synthesis based on ATL. In Proceedings

of Autonomous Agents and Multi-Agent Systems (AAMAS), pages 499–506, 2010.

G. De Giacomo and F. Patrizi. Automated composition of nondeterministic stateful

services. In Proceedings of the International Workshop on Web Services and Formal

Methods (WSFM), volume 6194 of Lecture Notes in Computer Science (LNCS), pages

147–160. Springer, 2010.

G. De Giacomo and S. Sardina. Automatic synthesis of new behaviors from a library of

available behaviors. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), pages 1866–1871, 2007.

G. De Giacomo and M. Y. Vardi. Automata-theoretic approach to planning for temporally

extended goals. In Recent Advances in AI Planning, pages 226–238. Springer, 2000.

G. De Giacomo, R. De Masellis, and F. Patrizi. Composition of partially observable

services exporting their behaviour. In Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS), volume 9, 2009.

G. De Giacomo, F. Patrizi, and S. Sardina. Agent programming via planning programs. In

Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS), pages 491–498.

International Foundation for Autonomous Agents and Multiagent Systems, 2010a.

G. De Giacomo, F. Patrizi, and S. Sardina. Generalized planning with loops under strong

fairness constraints. In Proceedings of Principles of Knowledge Representation and Rea-

soning (KR), pages 351–361, Toronto, Canada, May 2010b. Proceedings of Principles

of Knowledge Representation and Reasoning (KR).

143

CHAPTER : BIBLIOGRAPHY

G. De Giacomo, F. Patrizi, and S. Sardina. Automatic behavior composition synthesis.

Artificial Intelligence Journal, 196:106–142, 2013.

S. French. Decision Theory: An Introduction to the Mathematics of Rationality. Ellis

Horwood, 1986.

M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice. Morgan

Kaufmann, 2004.

K. Gill, S.-H. Yang, F. Yao, and X. Lu. A ZigBee-based home automation system. Con-

sumer Electronics, IEEE Transactions on, 55(2):422–430, 2009.

A. Girard and G. J. Pappas. Approximation metrics for discrete and continuous systems.

Automatic Control, IEEE Transactions on, 52(5):782–798, 2007.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.

P. Haslum and P. Jonsson. Some results on the complexity of planning with incomplete

information. In Recent Advances in AI Planning, pages 308–318. Springer, 2000.

G. T. Heineman, I. Crnkovic, and H. W. Schmidt. Component-based software engineering.

Springer, 2005.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-

guages, And Computation. Addison-Wesley, 2007.

R. Howard. Dynamic Programming and Markov Process. MIT Press, 1960.

L. S. Humphries, G. Rasmussen, D. L. Voita, and J. D. Pritchett. Home automation

system, Apr. 15 1997. US Patent 5,621,662.

B. Jobstmann and R. Bloem. Optimizations for ltl synthesis. In Formal Methods in

Computer Aided Design, 2006. FMCAD’06, pages 117–124. IEEE, 2006.

B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for property syn-

thesis. In Proceedings of the International Conference on Computer Aided Verification

(CAV), pages 258–262, 2007.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially

observable stochastic domains. Artificial intelligence, 101(1):99–134, 1998.

P. C. Kanellakis and S. A. Smolka. Ccs expressions, finite state processes, and three

problems of equivalence. Information and Computation, 86(1):43–68, 1990.

J.-H. Kim, S.-J. Han, and J.-B. Lee. Vacuum cleaner and control method thereof, Nov. 24

1998. US Patent 5,841,259.

144

SECTION .0: BIBLIOGRAPHY

J.-H. Kim, Y.-D. Kim, and K.-H. Lee. The third generation of robotics: Ubiquitous robot.

In Proceedings of the 2nd Int Conf on Autonomous Robots and Agents, 2004.

A. Lomuscio and F. Raimondi. Mcmas: A model checker for multi-agent systems. In Tools

and Algorithms for the Construction and Analysis of Systems, pages 450–454. Springer,

2006.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verification

of multi-agent systems. In Proceedings of the International Conference on Computer

Aided Verification (CAV), pages 682–688, 2009.

R. Lundh, L. Karlsson, and A. Saffiotti. Automatic configuration of multi-robot systems:

Planning for multiple steps. In Proceedings of the European Conference in Artificial

Intelligence (ECAI), volume 8, pages 616–620, 2008.

Y. Lustig and M. Y. Vardi. Synthesis from component libraries. In Foundations of Software

Science and Computational Structures, pages 395–409. Springer, 2009.

Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic

specifications. ACM Transactions on Programming Languages and Systems (TOPLAS),

6(1):68–93, 1984.

C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design: OBDD-

foundations and applications. Springer, 1998.

R. Milner. An algebraic definition of simulation between programs. In Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI), pages 481–489, 1971.

R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

G. E. Monahan. State of the arta survey of partially observable markov decision processes:

Theory, models, and algorithms. Management Science, 28(1):1–16, 1982.

A. Muscholl and I. Walukiewicz. A lower bound on web services composition. In Pro-

ceedings of the 10th Int. Conf. on Foundations of Software Science and Computation

Structures (FoSSaCS), volume 4423 of Lecture Notes in Computer Science (LNCS).

Springer, 2007.

H. Palacios and H. Geffner. Compiling uncertainty away: Solving conformant planning

problems using a classical planner (sometimes). In Proceedings of the National Confer-

ence on Artificial Intelligence (AAAI), pages 900–905, 2006.

F. Patrizi. Simulation-based Techniques for Automated Service Composition. PhD the-

sis, PhD thesis, SAPIENZA–Universita di Roma, Dipartimento di Informatica e Sis-

temistica, 2009.

145

CHAPTER : BIBLIOGRAPHY

M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and moni-

toring web service composition. In Artificial Intelligence: Methodology, Systems, and

Applications, pages 106–115. Springer, 2004.

N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive (1) designs. In Verification,

Model Checking, and Abstract Interpretation, pages 364–380. Springer, 2006.

A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module. In

Automata, Languages and Programming, pages 652–671. Springer, 1989a.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the 16th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages

179–190. ACM, 1989b.

A. Pnueli and E. Shahar. The tlv system and its applications. Technical report, Weizmann

Institute, 1996.

A. Pnueli, Y. Saar, and L. D. Zuck. JTLV: A framework for developing verification

algorithms. In Computer Aided Verification, pages 171–174. Springer, 2010.

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming,

volume 414. John Wiley & Sons, Inc., 2005.

M. Ramirez, N. Yadav, and S. Sardiña. Behavior composition as fully observable non-

deterministic planning. In Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS). AAAI Press, 2013.

J. Rao and X. Su. A survey of automated web service composition methods. In Semantic

Web Services and Web Process Composition, pages 43–54. Springer, 2005.

R. Reiter. Knowledge in action: logical foundations for specifying and implementing dy-

namical systems. Cambridge University Press, 2001.

J. Rintanen. Complexity of planning with partial observability. In Proceedings of the

International Conference on Automated Planning and Scheduling (ICAPS), volume 4,

pages 345–354, 2004.

A. Saffiotti and M. Broxvall. Peis ecologies: Ambient intelligence meets autonomous

robotics. In Proceedings of the 2005 joint conference on Smart objects and ambient

intelligence: innovative context-aware services: usages and technologies, pages 277–281.

ACM, 2005.

J. Sametinger. Software engineering with reusable components. Springer, 1997.

146

SECTION .0: BIBLIOGRAPHY

S. Sardina and G. De Giacomo. Realizing multiple autonomous agents through schedul-

ing of shared devices. In Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS), pages 304–312, 2008.

S. Sardina and G. De Giacomo. Composition of congolog programs. In Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI), volume 9, pages

904–910, 2009.

S. Sardina, F. Patrizi, and G. De Giacomo. Automatic synthesis of a global behavior from

multiple distributed behaviors. In Proceedings of the National Conference on Artificial

Intelligence (AAAI), pages 1063–1069, 2007.

S. Sardina, F. Patrizi, and G. De Giacomo. Behavior composition in the presence of

failure. In Proceedings of Principles of Knowledge Representation and Reasoning (KR),

pages 640–650, 2008.

E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. Htn planning for web service compo-

sition using shop2. Web Semantics: Science, Services and Agents on the World Wide

Web, 1(4):377–396, 2004.

D. E. Smith and D. S. Weld. Conformant graphplan. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), pages 889–896, 1998.

T. Stroeder and M. Pagnucco. Realising deterministic behaviour from multiple non-

deterministic behaviours. In Proceedings of the International Joint Conference on Ar-

tificial Intelligence (IJCAI), pages 936–941, 2009.

Y. Sun, H. Lin, F. Liu, and B. M. Chen. Computation for supremal simulation-based

controllable subautomata. In Control and Automation (ICCA), 2010 8th IEEE Inter-

national Conference on, pages 1450–1455, 2010.

Y. Sun, H. Lin, and F. Liu. Computation for supremal simulation-based controllable

and strong observable subautomata. In Control Conference (CCC), 2012 31st Chinese,

pages 2128–2133, 2012.

M. W. Tilden. The evolution of functional robo-ecologies. Ars Electronica, 93:195–200,

1993.

C.-C. Tsai, Y.-S. Wang, Y.-Y. Li, and F.-C. Tai. Cooperation and task execution of

an anthropomorphous two-armed robot: An application to coffee making. In System

Science and Engineering (ICSSE), 2010 International Conference on, pages 239–244.

IEEE, 2010.

R. Van Ommering, F. Van Der Linden, J. Kramer, and J. Magee. The Koala component

model for consumer electronics software. Computer, 33(3):78–85, 2000.

147

CHAPTER : BIBLIOGRAPHY

M. B. van Riemsdijk, M. Dastani, and J.-J. C. Meyer. Semantics of declarative goals in

agent programming. In Proceedings of Autonomous Agents and Multi-Agent Systems

(AAMAS), pages 133–140. ACM Press, 2005.

W. M. Wonham and P. J. Ramadge. On the supremal controllable sub-language of a given

language. SIAM Journal on Control and Optimization, 25(3):637–659, 1987.

N. Yadav and S. Sardiña. Decision theoretic behavior composition. In L. Sonenberg,

P. Stone, K. Tumer, and P. Yolum, editors, Proceedings of Autonomous Agents and

Multi-Agent Systems (AAMAS), pages 575–582. IFAAMAS, 2011.

N. Yadav and S. Sardiña. Qualitative approximate behavior composition. In L. F. del

Cerro, A. Herzig, and J. Mengin, editors, Proceedings of the European Conference on

Logics in Artificial Intelligence (JELIA), volume 7519 of Lecture Notes in Computer

Science, pages 450–462. Springer, 2012. ISBN 978-3-642-33352-1.

N. Yadav, P. Felli, G. DeGiacomo, and S. Sardiña. On the supremal realizability of

behaviors with uncontrollable exogenous events. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI). AAAI Press, 2013.

148

	Abstract
	Introduction
	The behavior composition problem
	Components of behavior composition
	Modelling behavior composition components

	An open issue in behavior composition
	Behavior composition optimisation
	Qualitative behavior composition optimisation
	Quantitative behavior composition optimisation

	Contributions
	Publications
	Thesis outline

	Background
	Transition systems
	Behavioral equivalence of transition systems
	Language equivalence
	Simulation
	Bisimulation

	The classical behaviour composition problem
	Classical framework

	Composition – solution to the problem
	Synthesising compositions
	Synthesising compositions via PDL-satisfiability
	Synthesising compositions via search
	Synthesising compositions via simulation
	Synthesising compositions via LTL-synthesis
	Synthesising compositions via ATL model checking

	Variations of the classical behavior composition problem
	Summary

	Supremal Realizable Target Fragments
	Extended framework
	Maximal compositions
	Supremal realizable target fragments (SRTFs)
	Uniqueness of SRTFs
	Imported controllers
	Deterministic RTFs
	Summary

	Computing supremals
	Computing SRTFs for deterministic systems
	Safety games
	ATL model checking

	Computing SRTFs for nondeterministic systems
	Summary

	Composition with Exogenous events
	Framework with exogenous events
	Conditional SRTFs
	Conformant SRTFs
	Discrete event systems
	Summary

	Decision theoretic composition
	Markov decision processes
	Probabilistic framework for behavior composition
	Decision theoretic controllers
	Value of a controller and compositions
	Exact compositions

	Computing optimal controllers via MDP reduction
	From behavior composition to MDPs
	Exact compositions

	Summary

	Conclusion
	Bibliography

