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Abstract 

 

The development of future wireless communication and information systems is driven 

towards small-scaled and lighter-weight systems with the capability of being more adaptable 

and reconfigurable. The emergence of ferroelectric materials such as barium strontium 

titanate (BST) which has high dielectric tunability and low microwave loss at room 

temperature has sparked research interest in the last 20 years due to the developments in 

device electronics and material technology. One of the major areas where BST can play a 

significant role is in the RF and microwave systems.  

BST thin film in paraelectric phase exhibits a nonlinear characteristic when an electric 

field is applied and the physical tuning of its dielectric permittivity is fundamental in realising 

an electronically tunable microwave component known as a variable capacitor or varactor.  

The aim of this PhD research is to investigate the large-signal performance of BST thin 

film varactors fabricated on sapphire substrates for microwave device applications. Sapphire 

exhibits excellent microwave properties with very low loss at microwave frequencies, 

presents close lattice match to BST thin film and has a relatively low cost.    

A novel method for the theoretical analysis of the third-order intermodulation distortion 

(IM3) in BST thin film interdigital capacitors (IDCs) was established. BST thin films were 

initially grown directly on r-plane sapphire substrates, which have the potential to be 
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integrated with existing semiconductor technologies through silicon-on-sapphire (SoS) 

process. Two circuit topologies - the “dual” and “series dual” BST varactor circuits - were 

proposed for linearity improvement and their theoretical models, along with simulated and 

measured results, were presented. Low IM3 was demonstrated and experimentally verified. By 

proper selective biasing, very low nulls were observed in both dual and series dual BST 

varactor circuit topologies. This indicated minimum distortion.  

An investigation of the power handling capability of BST thin film varactors fabricated on 

c-plane sapphire substrate was established. The research objective was to analyse the effects 

of varying the geometry of the BST IDC on the shape of the nonlinear C-V curves. Depending 

on the geometry selections, the C-V curves will become narrower or broader. The optimised 

narrow, broad and intermediate curves were demonstrated and their 1 dB compression points 

were extracted. The relationships between their tunabilities and 1 dB compression points were 

subsequently shown by simulations and measurements. 
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Chapter 1  

Introduction 

 

 

1.1 Motivation 

Complex-oxide thin films are gaining ground in the development of future wireless 

communication and information systems. The emergence of ferroelectric materials, in 

particular barium strontium titanate (BST) which has unique microwave properties of large 

dielectric tunability and low microwave loss at room temperature, has sparked research 

interest for the past 20 years. One of the major areas where ferroelectric materials can play a 

significant role is in the RF and microwave systems which are increasingly broadband, 

leverage digital solutions, and demand extremely high linearity, seeking also to minimize 

size, weight, power and cost (SWAP-C) [1]. Examples of the current device technologies are 

smartphones, laptops, tablet computers, video game consoles and smart television, which all 

have access to the internet. The growing demand for higher broadband/bandwidth and 
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multiple channels requires the current and future wireless systems to be more adaptable and 

reconfigurable.   

Ferroelectric materials are attractive to microwave and optical applications due to their 

physical properties that are sensitive towards external electric, magnetic and mechanical fields 

as well as to temperature. The physical properties include permittivity, permeability, 

polarization and refractive index [2]. BST thin film in paraelectric phase exhibits a nonlinear 

characteristic when an electric field is applied and the physical tuning of its dielectric 

permittivity is fundamental in realising an electronically tunable microwave component 

known as a variable capacitor or varactor. The two common parameters that are associated 

with the BST electric-field-dependent permittivity are tunability and lost tangent. The 

tunability, n is defined as the ratio of the dielectric permittivity at zero electric field bias to the 

permittivity under electric bias, E. The relative tunability, nr is defined as the change of the 

permittivity between zero bias and bias in a field E with respect to the zero-bias value. Both 

equations are expressed below [3]. 

     
)0(/))()0((

),(/)0(

'''

''





En

En

r 



                    (1) 

 

The second most important parameter is the lost tangent, tan δ or quality factor, which is the 

ratio of the imaginary and real parts of the permittivity and given as follows. 

     )(tan/1)(

),(/)()(tan '"

EEQ

EEE



 
      (2) 

 

The BST thin film can be grown using different thin film deposition techniques. The two 

most common are sputtering [4-6] and pulse laser deposition (PLD) [7-9]. These techniques 

are widely available in most research laboratories. The choice of the host substrates is 

essential and lattice-matched single crystal substrates such as MgO, SrTiO3 and sapphire 
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enable epitaxial growth of the BST film. They also exhibit low microwave loss at high 

frequencies which is attractive for the fabrication of high performance microwave devices.  

The BST thin film varactors have a significant impact on the realisation of many adaptive, 

flexible and reconfigurable microwave devices such as electronically tunable filters for 

receiver preselection and transmit filtering [10, 11], phase shifters for electronically steerable 

satellite communication and radar systems [12, 13], matching networks in amplifiers [14] and 

a varactor shunt switch for wireless sensor applications [15]. A plethora of research studies 

have focused on enhancing the tunability and lowering the microwave losses of the varactors 

to be implemented in these microwave devices. Only a few research studies have emphasized 

the large-signal performance of nonlinear BST thin film varactors. In this case, two other 

important device parameters are considered: linearity and power handling capability. This 

PhD thesis is therefore driven towards these parameters and consequently contributing to the 

body of knowledge.  

 

 

1.2 Objectives and Research Questions 

The aim of this research is to investigate the large-signal performance of tunable barium 

strontium titanate (BST) thin film varactors fabricated on both c-plane and r-plane sapphire 

substrates for frequency agile microwave applications. Therefore, several objectives were set 

which include the following. 

 Investigation and development of a novel method for the theoretical analysis of the 

third-order intermodulation distortion (IM3) in nonlinear BST thin film varactors 

fabricated on r -plane sapphire substrates. 

 Investigation and development of high dynamic range or highly linear BST thin film 

varactors fabricated on r-plane sapphire substrates. 
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 Material deposition and characterisation of BST thin films deposited on c-plane 

sapphire substrates. 

 Fabrication and microwave characterisation of BST thin film varactors fabricated on 

c-plane sapphire substrates. 

 Investigation and development of BST thin film varactors with high power handling 

capability fabricated on c-plane sapphire substrates. 

 

In order to achieve these objectives, several research questions were outlined. 

 What is the suitable theoretical model for analysing IM3 in nonlinear BST thin film 

varactors? And how to develop it? 

 What are the BST thin film varactor circuit topologies that could improve the IM3 and 

achieve highly linear varactors? And how to develop them? 

 What are the suitable methods for the material deposition and characterisation of BST 

thin film? 

 What are the variations in the BST interdigital capacitor (IDC) geometry that could 

achieve high power handling capability? And how to develop them?  

 

In this PhD thesis, the development of a novel method for the theoretical analysis of the 

IM3 in BST thin film varactors fabricated on r-plane sapphire substrates was demonstrated. A 

polynomial equation related to the measured capacitance values of the BST thin film varactor 

was initially derived and converted into the general nonlinear capacitor equation. The 

coefficients extracted from this equation were subsequently substituted into the well-known 

IM3 model for varactor diodes, where it was found to be ideal for the analysis of BST thin 

film varactors. The IM3 model along with its mathematical expansions was slightly modified 

in order to implement two BST thin film varactor circuit topologies proposed for linearity 
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improvement. The details of this work can be viewed in Chapter 4. The development of BST 

thin film varactors with high power handling capability fabricated on c-plane sapphire 

substrates was also demonstrated. The effects of varying the physical IDC geometry on the 

shape of the nonlinear C-V curves were investigated. The optimised C-V curves were 

identified and the relationship between their tunabilities and 1 dB compression points were 

established. The details of this work can be viewed in Chapter 5.   

 

 

1.3 Original Contributions   

This PhD research has led to a number of significant findings which contribute to the body of 

knowledge in the field of BST thin films varactors for frequency agile microwave 

applications. The research findings can be summarised as follows. 

 A novel method for the theoretical analysis of IM3 in BST thin film varactors 

fabricated on r-plane sapphire substrates was established.  

The theoretical analysis of IM3 in BST thin film varactors was demonstrated for the 

first time in single, dual and series dual varactor circuit topologies. The conversion 

from the polynomial equation, C(Vsum) to the general nonlinear capacitor equation 

C(v) was successfully solved. The original IM3 theoretical model and its equation 

expansions were slightly modified by redefining IM3 as average output power, Pav to 

match the simulated data. The exclusion of the inductance contributions for the 

mathematical expansions of this equation was also implemented. 

 

 Two BST varactor circuit topologies were proposed to improve IM3 and 

subsequently highly linear varactors fabricated on r-plane substrates were 

established. 
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Both topologies were theoretically analysed, simulated and experimentally verified for 

the first time. The simplified topologies were successfully implemented with DC 

blocking capacitors for biasing purposes. 

 

 The relationship between the varactor’s tunability and the 1 dB compression 

point was established. 

The relationship between the tunability and the 1 dB compression point of BST thin 

film varactors was demonstrated for the first time. The modelling of the BST IDC 

geometry using commercial 3D software (CST) was successfully implemented. 

Parametric analysis was successfully demonstrated. The effects of changing the IDC 

geometry on the shape of the nonlinear C-V curves were analysed. Three distinct C-V 

curves were optimised and the 1 dB compression points were extracted.  

 

 BST thin film varactors with high 1 dB compression points fabricated on c-plane 

sapphire substrates were established. 

The transformation of the C-V curves into the physical form of varactors was 

implemented. The narrow, broad and intermediate varactors were fabricated and the 

high 1 dB compression points achieved were comparable to the simulated results.  

 

 

1.4 Author’s Achievements 

The significant findings in this research have successfully contributed to a number of 

publications. 

1.4.1 Peer-Reviewed Journal Publications 
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 M. F. Abdul Khalid, E. A. Fardin, J. R. Scott, A. S. Holland and K. Ghorbani,  

"Low Third-Order Intermodulation Distortion in Ba0.6Sr0.4TiO3 Interdigital 

Capacitors," Progress in Electromagnetics Research C, vol. 44, pp. 225-238, 

2013. 

 M. F. Abdul Khalid, K. Latham, A. S. Holland and K. Ghorbani, “BST 

Varactors with High 1 dB Compression Points Fabricated on Sapphire 

Substrates” (In Preparation). 

 

1.4.2 Peer-Reviewed Conference Publications 

 M. F. Abdul Khalid, A. S. Holland, J. R. Scott and K. Ghorbani, “Analysis of 

Third-Order Intermodulation Distortions in BST Varactors”, Proc. 2010 Asia-

Pacific Microwave Conference (APMC 2010), 7 – 10 December 2010, 

Yokohama, Japan. 

 M. F. Abdul Khalid, A. S. Holland and K. Ghorbani, “Barium Strontium 

Titanate Varactors with High 1 dB Compression Points”, Proc. 2012 European 

Microwave Conference (EuMC 2012), 29 October – 1 November 2012, 

Amsterdam, Netherlands. 

 

 

1.5 Thesis Outline 

This PhD thesis focuses on investigating the large-signal performance of BST thin film 

varactors fabricated on sapphire substrates. The main chapters of this thesis are outlined as 

follows. 

Chapter 2 presents the literature review of BST thin film. This chapter begins with a brief 

introduction to BST thin film varactor and other competing microwave varactor technologies. 
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The overview of BST material properties and various thin film deposition techniques are 

discussed. Two types of BST varactor configurations - co-planar and parallel-plate varactors - 

are considered and their implementations in a diversity of agile microwave devices are 

outlined. Several research works relating to the intermodulation distortion and power handling 

capability of BST thin film varactors are reviewed.       

Chapter 3 begins with the material deposition and characterisation of BST thin film fabricated 

on c-plane sapphire substrates. RF magnetron sputterer is utilised to deposit the films and 

different analytical techniques are employed to characterise the deposited films. The influence 

of post-annealing the BST thin films in vacuum oven and air is investigated. Fabrication of 

the BST thin film varactors using standard photolithography process and eventually gold 

electroplating for the electrodes are outlined. Microwave characterisations are performed on 

both unannealed and annealed varactors and the correlation between the microwave and 

material properties of the BST thin films are discussed.      

Chapter 4 introduces a novel method for the theoretical analysis of IM3 in BST thin film 

varactors fabricated on r-plane sapphire substrates. Two varactor circuit topologies are 

proposed for linearity improvement and their theoretical model, simulated and measured 

results are presented. 

Chapter 5 describes the BST thin film varactors with high power handling capability 

fabricated on c-plane sapphire substrates. Parametric analysis was performed by varying the 

BST IDC geometry, leading to the optimisation of three C-V curves and the relationship 

between their tunabilities and 1 dB compression points are investigated. 

Chapter 6 concludes the thesis and presents significant findings along with possible future 

work.  
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Chapter 2  

Literature Review 

 

 

2.1 Introduction 

The potential applications of ferroelectric materials in microwave devices have been studied 

since the 1960s [16] but only in the last 20 years have intensive efforts been made due to the 

developments in device electronics and material technology [17]. The driving force behind 

this is the potential for miniaturization of microwave components and integration with 

microelectronic circuits due to the developments of thin and thick film ferroelectric 

technologies [17].  

Barium Strontium Titanate (BST) continues to be one of the most studied ferroelectric 

materials due to its strong electric-field-dependent high permittivity and relatively low 

dielectric loss at microwave frequencies [3]. It exhibits a nonlinear response which can be 

controlled by applying an electric field. This tunable nonlinear response can be exploited by 

realising electronically variable capacitors which is also known as varactors. The high 

dielectric constant (for thin films > 100) is crucial for size reduction of device components. 
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The main advantages of BST thin film varactors in microwave applications include high 

tunability (at least 50 %), relatively low loss (Q-factor > 100 at 10 GHz), high tuning speed 

(<1 ns), low tuning voltage (< 30 V), extremely small leakage currents and high breakdown 

field [2, 3].  A comparison between BST thin film varactors and competing microwave 

varactor technologies such as GaAs and MEMS are shown in Table 2.1. 

 

Table 2.1: Comparison of GaAs, MEMS and BST varactors [3].  

 

 

Semiconductor varactors such as GaAs and Si based are widely used in tunable microwave 

devices since they are easily integrated with monolithic microwave integrated circuits 

(MMICs). However, their Q-factor decreases drastically (Q ~ 1/f) at frequencies above 10 

GHz and this region, known as a „varactor gap‟, can be filled by the BST varactors where the 

Q-factor remains quite high. Other advantages of BST varactors over semiconductor varactors 

include higher tuning speed, power handling and lower cost. The key feature of MEMS 

varactors is their very high Q-factor compared to GaAs and BST varactors. However, they 

suffer from lower tuning speed, higher control voltage, higher cost and reliability issues 

affected by vibrations, temperature and moisture compared to the other two [3].  
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To date, BST thin film varactors have been employed in various tunable microwave 

devices such as filters, phase shifters, matching networks and switches [10, 12, 15, 18]. 

However, while most publications have addressed the issues of tunability and dielectric loss, 

only a few have discussed the intermodulation distortion that can occur within the BST thin 

film varactors [19, 20]. Intermodulation distortion can be a significant problem in nonlinear 

devices such as BST and semiconductor varactors as it causes distortion of the output signals 

and reduces the dynamic range. Whilst some unwanted frequency components can be easily 

removed by filtering, the third-order intermodulation products 2f1 - f2 and 2f2 - f1 occur very 

close to the fundamental signals and are therefore difficult to remove [21]. Power handling 

capability is another field that needs further investigation. Research about the behaviour of 

ferroelectric thin films under elevated microwave power is currently limited [22-25]. Tunable 

microwave devices such as BST thin film varactors have good power handling capabilities 

compared to GaAs varactors and this is promising for implementation in high power 

microwave systems [24]. 

In this chapter, an overview of the material properties of BST bulk ceramic and thin films 

is presented, followed by the most common BST thin film deposition techniques. The current 

research of BST thin films for agile microwave applications is then outlined. Next, a review 

of the intermodulation distortion issue along with the research techniques to analyse and 

improve the linearity of the BST thin film varactors are presented. A review of the limited 

research on the power handling capability of BST varactors is also discussed. Finally, based 

on these findings, prospects for further investigations are discussed.  

 

 



14 
 

2.2 BST Material Properties 

BST is a type of complex metal oxide ferroelectrics with a perovskite structure similar to 

BaTiO3 shown in Figure 2.1. Perovskites are characterised by a chemical formula, ABO3 and 

have the same crystal structure with the oxygen located in the face centers. For BST, Ba and 

Sr atoms occupy the A positions while Ti atoms occupy the B positions.  In the non-polar or 

paraelectric phase above the phase transition temperature as illustrated in Figure 2.1 (a), it has 

a cubic crystal structure with no spontaneous polarization that contributes to hysteresis.  In 

this region, it has a high dielectric permittivity which can be tuned by an electric field and is 

also temperature and mechanical stress dependent. The tuning of the dielectric permittivity is 

used in tunable microwave components such as a tunable capacitor. 

Figure 2.1 (b) shows the polar or ferroelectric phase below the phase transition 

temperature. Its crystal structure becomes non-cubic with the center atoms of negative and 

positive charges per unit cell slightly shifted to the top or bottom. This is called spontaneous 

polarization which defines the hysteresis loop. Under the influence of an electric field, the 

center atoms may be shifted from top to bottom or vice versa, thus changing the direction of 

the polarization vector. However, changing the direction of the electric field will shift the 

center atoms back to their original positions. This reversing mechanism is useful in building 

nonvolatile memory cells [26-28]. 
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Figure 2.1: 3D unit cell of BaSrTiO3 perovskites in (a) paraelectric and (b) ferroelectric 

phases. 

 

Figure 2.2 shows the temperature-dependent dielectric constant of bulk ceramic 

Ba0.7Sr0.3TiO3 in comparison with its thin film of the same composition [29]. The bulk 

ceramic has a sharp dielectric constant peak at the polar to non-polar phase transition near 

room temperature while the thin film has no peak and maintains its dielectric constant over a 

wide temperature range. BST bulk material has a very high dielectric constant compared to 

the thin film. The lower dielectric constant and tunability of the thin film are attributed to 

stresses, “dead” layers at the interfaces with the electrodes (of a tunable capacitor), non-

stoichiometry, misfit strains, voids in the granular or columnar structures and also 

fundamental effects in relation to the surfaces or interfaces near the film [2].  

The thickness of the “dead” layer is assumed to be of the order of several nanometers and 

its effect is prominent if it has comparable thickness to the thin film [30]. In [31], the pure 

bulk single crystal SrTiO3 has no polar phase at any temperature. However, it is observed that 

at 155 K, polar phase transition occurred near the surface layer. This explains that the surface 

of the bulk crystals do not necessarily have the same properties as the bulk crystals 

themselves. 
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Figure 2.2: Variations of the dielectric constant of BST ceramic and thin film as a function of 

temperature [29]. 

 

In general, the tunable microwave devices of ferroelectrics, specifically BST should be in 

non-polar (paraelectric) phase. BST in polar (ferroelectric) phase is also piezoelectric and this 

transformation can lead to high dielectric losses at relatively low microwave frequencies of 

less than 10 GHz. Domain wall motion in piezoelectric causes mechanical damping that can 

also contribute to the dielectric losses. Another factor not to pursue microwave applications in 

the polar phase mode is due to the hysteresis behaviour. However, some microwave devices 

in polar phase have been demonstrated. Reasonable tunability and high Q-factor of 13% and 

15 to 80 respectively at 40 GHz were achieved in the Na0.5K0.5NbO3 /SiO2/Si structure [32]. 

An interesting finding from this research was the low dielectric losses achieved above 20 

GHz. This is in contrast with BST and other semiconductor varactors where the Q-factor 

deteriorates with increased frequency.   
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Microwave losses in the paraelectric phase of ferroelectrics including BST are separated 

into intrinsic and extrinsic losses as shown in Figure 2.3 [2]. In a perfect crystal, intrinsic 

losses occur due to the interaction between phonons and microwave energy. The free charge 

carriers also absorb the microwave energy but their contribution is too small and can be 

ignored. The microwave energy is absorbed by thermal phonons and heats up the crystal and 

the absorption process takes three- and four - quantum mechanisms. Three-quantum and four-

quantum mechanisms involve the interaction of microwave energy with two and three 

phonons respectively. However, in the paraelectric phase, the three-quantum mechanism 

becomes dominant. Apart from the fundamental losses, induced DC field on ferroelectrics can 

also contribute to intrinsic losses. When a DC field is applied, the centre ions of the cubic 

crystal structure are shifted and the microwave energy experiences similar losses to that of a 

non-cubic crystal structure. The induced DC field introduces a Quasi-Debye mechanism and 

microwave to acoustic transformation losses. These intrinsic losses are unavoidable and 

represent the minimum value of the whole microwave losses or loss tangent of the 

ferroelectrics. 

In real crystals with defects, the extrinsic losses associated with these defects are much 

higher than the intrinsic losses. However, these losses can be decreased by reducing the 

density of the defects. The most common extrinsic loss that occurs in all dielectrics is the 

Universal (Curie-von-Schweidler) relaxation mechanism. On the other hand, charged defects 

create a local static electric field and within this field, the microwave waves generate acoustic 

waves which cause microwave losses in the crystal. The loss tangent in this case is 

proportional to the permittivity which indicates that it is also temperature and electric field 

dependent. These charged defects can be found at the interfaces of grains and electrodes or 

uniformly distributed in the crystal. Oxygen vacancies are known to be the main charged 

defects. Other forms of extrinsic losses are due to the local polar regions that usually occur at 

the interfaces between the grains, electrodes, dielectric and metallic layers.  
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It is worth noting that a crucial distinction between intrinsic and extrinsic losses in relation 

to the loss tangent dependence on the electric field is that the intrinsic and extrinsic losses 

become stronger and weaker respectively under the influence of an electric field. More details 

of these losses in the paraelectric phase can be found in these references [2, 33].   

 

 

Figure 2.3: Microwave losses in paraelectric phase of ferroelectrics [2].  

 

Strain can have significant effects on the properties of ferroelectric thin films compared to 

their bulk counterparts. In [34], polar (ferroelectric) behaviour is observed at room 

temperature in SrTiO3 thin films epitaxially grown on a closely matched DyScO3 substrate. 

As mentioned earlier, bulk SrTiO3 has no polar phase at any temperature but in this case, 

strain can actually shift its Curie temperature.  

Strain is also caused by misfit strain due to the lattice and thermal expansion coefficients 

mismatch between the thin film and substrate. A phenomenological thermodynamic theory 

using a thermodynamic potential approach is developed for BaTiO3 and PbTiO3 thin films 

epitaxially grown on different cubic substrates [35]. It is shown that the misfit strain between 
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these films and substrates not only shifts the Curie temperatures but can also change the 

phase diagrams significantly. In [36, 37], based on the Landau-Devonshire phenomenological 

model, the phase diagrams for BST thin films on cubic substrates are developed and the 

relations between misfit strain, film thickness and tunability are demonstrated. It is shown that 

by proper selection of substrate and film thickness, a high tunability can be achieved.  

 

 

2.3 BST Thin Film Deposition 

There are two methods for BST thin film deposition; the chemical deposition and physical 

deposition methods. The chemical depositon method includes the chemical solution 

deposition (CSD) and chemical vapour deposition (CVD): both employ chemical precursors 

which experience chemical reactions for the production of BST thin films [2].  There is quite 

a lot of research depositing BST thin films using sol-gel technique [38-51] and metal-organic 

CVD (MOCVD) [10, 22, 26, 52-56], where both are part of the CSD and CVD families 

respectively. 

The sol-gel technique has the advantages of low-cost, effectiveness and large-area 

deposition capability [3]. It involves preparation of a suitable solution from precursors 

according to the designated BST composition and chemical route. BST thin film is then 

realised by spin-coating the solution on a substrate, in which the wet film will experience 

condensation, drying and hydrolysis relating to the chemical route [2]. The thin film is 

subsequently annealed to achieve crystallinity.  

The MOCVD system is suitable for the synthesis of multilayer thin films on selective 

substrates [3]. It involves three pressure-regulated, temperature-controlled liquid-source 

bubblers containing metalorganic precursors of Ba, Sr and Ti. They are then mixed and 
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flowed into the cold-wall quartz reactor containing the substrate; thin film will then be 

deposited onto the substrate which is located on the resistively heated inconel susceptor [2]. 

Combustion CVD (CCVD) technique is another deposition method initially developed by a 

research group from Georgia Institute of Technology. Intensive research based on this 

technology has progressed in recent years [12, 20, 57-66]. This technique has the advantage 

of utilising a wide variety of deposited materials and substrates. The deposition of thin film on 

substrate is done in an open atmosphere with no vacuum chamber needed. Precursors are 

dissolved in a solution (combustible fuel) and the solution is atomised to form microscopic 

droplets. These droplets are carried by an oxygen stream to the flame where they are 

combusted. The flame is moved above the surface of the substrate to be coated and the heat 

from the flame provides energy which vaporises the droplets, the precursors react and deposit 

on the substrate.  

The physical deposition method includes physical vapour deposition (PVD). The 

deposition of thin film on substrate usually follows these common steps: 

a) The deposited material is converted into vapour by physical means; 

b) The vapour is carried from the target source to the substrate across a low pressure 

area, and 

c) Condensation (deposition) of vapour on the substrate produces the thin film. 

There is a vast amount of literature on the synthesis of BST thin films using sputtering [4-

6, 67-91] and pulse laser deposition (PLD) [7-9, 92-118] as these two are the most common 

techniques of PVD. Table 2.2 below summarises the advantages and limitations of the BST 

thin film deposition techniques.  
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Table 2.2: Comparison of different methods for the synthesis of BST thin film [119]. 

GROWTH METHOD ADVANTAGES LIMITATIONS 

SOLUTION 

Sol-Gel and Chemical 

Deposition 

 Inexpensive 

 Rapid turnaround and 

sampling 

 Phase control 

 Composition control 

 Morphology 

 Reproducibility 

 Scalability 

ENERGETIC   

Sputtering  Uniformity 

 Scalability 

 Low thermal budget 

 Point defect 

concentrations 

 Limited compositional 

control 

 High residual stress 

 Poor conformality 

 

Pulse Laser Deposition 

(PLD) 

 Rapid sampling 

 Quickly produce new 

materials 

 Morphology (bouldering) 

 Point defect 

concentrations 

 Scalability 

 Uniformity 

 High residual stress 
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VAPOUR   

Metal Organic Chemical 

Vapour Deposition 

(MOCVD) 

 Uniformity 

 Morphology 

 Composition control 

 Low thermal budget 

 Scalability 

 High conformality 

 Expensive 

 Precursor availability 

 Precursor stability 

 Still a relatively immature 

technology 

 

 

 

2.4 BST Thin Film Varactors for Agile Microwave 

Applications 

BST thin film varactors are commonly fabricated in parallel-plate and co-planar plate varactor 

configurations. The parallel-plate varactor configuration has a structure in which the BST thin 

film is sandwiched between the top and bottom metal electrodes. On the other hand, the co-

planar plate configuration has metal electrodes patterned directly on top of the BST thin film 

and it is easier to fabricate and integrate it into circuits compared to the parallel-plate 

varactors. Further, it allows epitaxial growth of BST thin films directly on close-matched 

crystalline substrates. Agile microwave devices such as filters, phase shifters, switches and 

matching networks usually employ varactors as their tuning circuit elements. 

 

2.4.1 Co-planar plate BST Thin Film Varactor Configuration 

Figure 2.4 shows the general fabrication process of a co-planar plate varactor. The first step is 

the growth of BST films, whether epitaxially or on a deposited buffer layer substrates as 
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shown in Figure 2.4 (A). The next step is the metal deposition and finally the patterning of the 

electrodes, either by lift-off or wet/dry etching processes (Figure 2.4 (B) and (C)).  

For the route of the lift-off process, the electrodes are initially patterned through a basic 

photolithography process. This involves spin coating a thin photoresist on top of the 

BST/substrate or BST/buffer layer/substrate followed by UV light exposure through a chrome 

mask and, finally, soaking it in a suitable developer which creates the openings for metal 

deposition. The suitable deposition of the metal layers is by electron beam evaporation which 

allows a very thin layer to be deposited.  The sample is then immersed in an ultrasonic bath 

filled with acetone and the agitation will assist in washing away the photoresist together with 

the metal layers on top of it and eventually the patterning of the electrodes. Prior to this, the 

formation of undercuts of the photoresist as in Figure 2.4 (B) is important to separate the 

deposited metal layers on the BST/substrate and the metal layers on the photoresist. A 

suitable photoresist is therefore required to create these undercuts such as AZ5214E or 

soaking the already exposed AZ1512 photoresist sample in a chlorobenzene solution before 

developing the pattern.  

In the case of wet/dry etching alternatives, the metal layers are evaporated on top of the 

BST/substrate before patterning the electrodes using suitable etchants. However, this method 

is quite risky as it could potentially damage the BST layer and produce an underetch pattern. 
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Figure 2.4: The general fabrication process of the co-planar plate varactor. 

 

2.4.2 Parallel-plate BST Thin Film Varactor Configuration 

The high tunability at low tuning voltages is an attractive trait for the parallel-plate capacitor 

compared to the co-planar capacitor. However, this comes at a cost due to the complexity of 

its fabrication process. One of the methods of the fabrication proposed in [120, 121] is 

depicted in Figure 2.5. By using the crossover dielectrics in the process, it helps to lower the 

breakdown voltages. Premature breakdown is caused by the higher EM fields at the edges of 

the bottom electrode when high bias voltages or large RF signals are applied [2]. The bottom 

electrode in Figure 2.5 (A) was initially deposited with refractory metals such as Pt and/or Au 

which can tolerate the high temperature deposition of the BST thin film layer on top of it 

(Figure 2.5 (B)). E-beam evaporation and RF magnetron sputtering were used for the 

deposition of the Ti/Au/Pt bottom electrode and the 300 nm BST thin film respectively. The 

Pt/Au top electrode was deposited and patterned by lift-off process and the BST thin film was 

etched down to the bottom electrode using buffered hydrofluoric acid (HF) to facilitate ohmic 

contacts (Figure (C) and (D)). A 300 nm SiO2 in Figure (E) was used as a dielectric crossover 

to isolate the top contact from the edges of the bottom electrode (which was the main cause of 

the premature breakdown) and encapsulated the BST thin film from exposure to subsequent 
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contamination in processing or operation. The final step was to deposit a thick interconnect 

stack Ti/Au by e-beam evaporation and patterning by lift-off (Figure (F)). Nevertheless, this 

method may still suffer from the premature breakdown due to the vertical side walls in the 

bottom electrode. An alternative way to increase the breakdown voltage is for the bottom 

electrode to have sloped sidewalls which allows conformal coverage of the slope by 

subsequently deposited layers [2].  

 

 

Figure 2.5: The fabrication process of the parallel-plate BST varactor with crossover 

dielectrics [120, 121]. 

 

2.4.3 Agile Microwave Devices 

There is a great deal of literature on the applications of co-planar and parallel-plate BST thin 

film varactors in agile microwave devices. These potential devices include tunable filters, 

phase shifters, switches and matching networks. In this section, several potential devices 

based on BST thin film varactors are discussed. 

Tunable BST thin film lowpass and bandpass filters were developed by a North Carolina 

State University group. This filter used a parallel-plate capacitor as the tuning element which 

was fabricated on Si wafer coated with SiO2 followed by alternate layers of IrO2 and Pt. The 

MOCVD technique was used to deposit the 300 nm thick BST films. The filters operated at 
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low frequencies, between 100 and 300 MHz and low third-order intercept point (IP3) of 19 

dBm was achieved in the bandpass filter [10]. However, the tuning range is small, from 0 to  

9 V. An electronically tunable third-order combline bandpass filter was also achieved by the 

same group [11]. A 600 nm thick BST thin film was grown on c-plane sapphire by the RF 

magnetron sputtering technique and an interdigitated capacitor (IDC) was built. Three such 

capacitors were placed at the ends of the microstrip line resonators to tune the centre 

frequency of the bandpass filter.  Figure 2.6 shows the bandpass filter which operated from 

2.44 to 2.88 GHz with an applied voltage of 0 to 200 V and a high IP3 of 41 dBm was 

achieved. The maximum insertion loss was 5.1 dB at zero bias while exceeding 13 dB return 

loss over the bias range.  

Other combline bandpass filters operating at X-band and Ku-band were also reported 

[122]. The synthesis of compositionally graded BST thin film on alumina substrate was 

realised using CSD technique and then annealed. IDCs were then fabricated and integrated 

with the filters. Figure 2.7 shows the X- and Ku-band filters operated from 8.75 to 10.96 GHz 

and from 11.7 to 14.3 GHz within a tuning range of 0 to 100 V and maximum of 8 dB and 10 

dB insertion losses respectively.  

Several other BST-based tunable filters have also been developed. These include tunable 

dual-mode bandpass filter and tunable slotted ground structured bandstop filter [123, 124], X-

band back-to-back tunable resonator filters on flexible liquid crystal polymer substrates and 

X-band tunable quasi-elliptic bandpass filter [63, 65], and Ka- and U-band tunable bandpass 

filters [66].   

Tunable phase-shifters operating at 20 and 30 GHz were developed by nGimat Company 

in collaboration with the Georgia Institute of Technology [12]. A phase shifter is an important 

device in electronically-scanned phase array antennas. The IDCs as well as a low voltage gap 

capacitor [20] were fabricated on BST thin films on r-plane sapphire substrates, in which the 

300 nm films were deposited using the CCVD process. For the 20 GHz phase shifter shown in 
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Figure 2.8, the maximum phase shift achieved was 330º at 21.7 GHz. The insertion and return 

losses varied from 6.1 to 3.9 dB and from 15.2 to 4.7 dB respectively. The maximum phase 

shift for the 30 GHz phase shifter was 360º at 32 GHz, with the insertion and return losses 

varying from 7.0 to 4.3 dB and from 29 to 4.8 dB respectively. The former had a figure of 

merit of 54º/dB and the latter, 51º/dB. This group had also achieved low-voltage flip-chip 

mounted BST phase shifters operating at L- and C- bands from previous research work [125]. 

 

 

 

Figure 2.6: Schematic of the tunable third-order combline bandpass filter [11]. 

 

 

Figure 2.7: Optical micrographs of the a) Ku-band and (b) X-band tunable combline bandpass 

filter [122]. 
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Figure 2.8: (a) The fabricated 20 GHz phase shifter with a dimension of 0.95 x 1.32 x 0.5 

mm
2 

and (b) the measured phase shifts from 10 to 60 V [12]. 

 

 

 

Figure 2.9: (a) Schematic diagram and photographs of the BST phase shifter along with the 

schematic unit cell of the CPS-CPW structure and (b) the measured phase shifts 

[13]. 

 

Figure 2.9 (a) shows the bilateral CPW phase shifters employed in a power distribution 

network for Ku-band antenna array applications [13]. A 350 nm thick BST thin film was 

deposited on a surface-treated high resistivity silicon substrate by the sputtering method. The 

(b) (a) 

(a) (b) 
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maximum insertion loss achieved was 2.6 dB at 15 GHz. Continuous phase shifts from 0 to 

90º with a figure of merit of 36º/dB at 15 GHz are shown in Figure 2.9 (b). 

Several other works based on BST phase shifters have also been developed. A CPW line 

periodically loaded with BST IDCs where a few matching networks were connected in series 

to form a new phase shifter structure [126], a phase shifter with large phase shifts at low 

tuning voltage and BST/YIG bilayer for phase shifting applications [127, 128] and a digital 

reflection-type phase shifter was built [129]. 

In addition to many potential applications of BST varactors in filters and phase shifters, 

they can also be implemented as part of matching networks and switches. In [14], a quad-

band tunable matching network loaded with off-the-shelf doped BST capacitors for cellular 

power amplifier applications was developed. This is presented in Figure 2.10 (a). The input 

impedance varied from 3.44 – j1.87 to 3.55 – j0.02 Ω and 4.28 – j0.06 to 4.31 + j0.97 Ω with 

a power gain variation of -1.35 to -1.62 dB and -2.05 to -1.79 dB when operated for 

GSM850/900 and DCS/PCS frequency bands respectively as shown in Figure 2.10 (b). BST 

thin film parallel-plate capacitors were also used as tuning elements in an impedance tuner, 

which consisted of a phase shifter and a variable transformer for adaptive matching 

applications [130].  

A switching mechanism based on the dielectric tunability of a shunted BST thin film 

varactor between two CPW ground lines is depicted in Figure 2.11 (a); the device was 

fabricated on a multilayer substrate [15]. The OFF- and ON-states mechanism were 

determined by the biasing voltage of the varactors, where the capacitance will be the highest 

at 0 V resulting in isolation between the output and input ports and lowest at 10 V due to the 

signal passing through between the ports. Figure 2.11 (b) shows the scattering parameters for 

the OFF- and ON- states. The resistive switching performance of BST thin films with 

tungsten and platinum electrodes were also investigated in [131], in which the application of 

tungsten electrodes revealed a performance that was superior to platinum electrodes. 



30 
 

 

 

 

 

 

 

 

 

 

Figure 2.10: (a) Fabricated tunable matching network loaded with doped BST capacitors (C1, 

C2 and C3) and (b) the input impedance (top) and power gain variation (bottom) 

for GSM850/900 frequency band [14].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: (a) Cross-sectional view of the multilayer substrate and the fabricated BST 

varactor shunt switch and (b) scattering parameters for the OFF-(top) and ON- 

(bottom) states [15]. 

(a) (b) 

(a) (b) 
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2.5 Intermodulation Distortion in Microwave 

Varactors 

BST is a high-permittivity material which exhibits a nonlinear C-V characteristic [132]. When 

an RF signal is applied across the BST varactor increases, the capacitance of the device tends 

to deviate from the value determined by the DC voltage, leading to signal compression [19]. 

If a single tone is applied, it will cause harmonics of the fundamental frequency that could 

easily be removed by proper filtering. However, when two or more tones are applied, 

intermodulation distortion will occur. In Figure 2.12, in the case of two-tone applied, the 

third-order intermodulation products 212    and 122    occur very close to the 

fundamental frequencies ( 1  and 2 ) and are difficult to remove by filtering [21]. This results 

in linearity degradation of the microwave devices and hence lowers the dynamic range. 

Therefore, it is important to analyse the intermodulation distortion in nonlinear devices and to 

develop promising techniques to suppress or - even better - to eliminate it completely. 

 

 

 

Figure 2.12: Output spectrum of second- and third-order two-tone intermodulation products, 

in which ω1 < ω2. 
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2.5.1 Intermodulation Distortion in Varactor Diodes 

Several research works related to intermodulation distortion in nonlinear microwave varactors 

have been demonstrated. The intermodulation distortion in varactor diodes were analysed 

using Volterra series approach and closed-form expressions for the intermodulation distortion 

were successfully derived [133]. Figure 2.13 shows the two main topologies, anti-series and 

anti-parallel varactor diode circuits which were proposed and experimentally verified for 

achieving minimum distortions. Based on Figure 2.13 (a), the capacitance of each diode in the 

anti-parallel topology can be represented by a power series as a function of the incremental 

voltage, v. 

 

                     (2.1) 

                  (2.2) 

 

The equation in (2.2) represents the diode operating in reversed-biased voltage. When both 

diodes are equal, the total capacitance yields 

 

                  (2.3) 

 

Here, it can be observed that the new second-order coefficient, C1 is totally eliminated but the 

new first- and third-order coefficients, C0 and C2 are doubled. 
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Figure 2.13: (a) Anti-parallel and (b) back-to-back (anti-series) varactor diode topologies with 

their calculated and measured intermodulation distortions [133].  

 

For the back-to-back (anti-series) topology in Figure 2.13 (b), the resulting total 

capacitance for matched diodes yields 

 

                      (2.4) 

 

where the new C0 =        , C1 = 0 and C2 =         are determined. It can be 

observed that the first-, second- and third-order coefficients are halved, eliminated and 1/8 of 

the single diode, leading to a much reduced intermodulation distortion. The term in the 
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parentheses shows the second-order interaction term and the possibility of eliminating this 

coefficient if the doping profile, n = 0.5 [133].  

Since this breakthrough, several research groups working in the varactor diode technology 

have implemented this idea. A research group from Delft University of Technology have 

conducted intensive research in developing various varactor diode topologies using highly Q 

silicon-on-glass (SOG) technology for semiconductor microwave devices. The anti-series and 

anti-parallel varactor topologies were first introduced in [134]. Figure 2.14 (a) shows the anti-

series topology which has a condition of n ≥ 0.5 for setting both C1 and C2 to zero. However, 

if n > 0.5, C2 will be zero but not C1. This can be resolved by placing an identical stack in 

anti-parallel topology as shown in Figure 2.14 (b). The anti-series varactor diode topologies 

were employed in a tunable matching network [135], multi-band multi-mode class-AB power 

amplifier [136], bandpass filter [137]  and a phase-shifter [138], all integrated on SOG 

technology.  

 

 

Figure 2.14: (a) Anti-series and (b) Anti-series/anti-parallel topologies for varactor diodes 

[134].  

 

2.5.2 Intermodulation Distortion in BST Thin Film Varactors 

A research group from the University of Michigan, Ann Arbor was among the first research 

groups to employ the anti-series topology concept in BST thin film varactors. In Figure 2.15 
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(a), the device architecture was modified by connecting several BST parallel-plate capacitors 

in an anti-series configuration [19]. The BST capacitors in Figure 2.15 (b) were fabricated on 

a sapphire substrate. Silicon chromium (SiCr) which served as thin film resistors that linked 

the top and bottom electrodes were sputtered to ensure equal biasing on each capacitor. As 

mentioned earlier, the capacitance values tend to deviate from the value set by the DC voltage 

when increasingly RF signal is applied. However, by connecting several parallel-plate 

capacitors in series, this effectively reduces the RF swing across each capacitor and thus 

improves the linearity of the overall device. An improvement of 16 dB of the third-order 

intercept point at input (IIP3) was achieved compared to the single capacitor. The drawback 

of this technique is the area of the device increased by N
2
 to the number of N capacitors being 

stacked together in order to maintain the same capacitance value as the single capacitor. 

 

 

 

Figure 2.15: (a) Illustration of a basic concept of a five-stacked capacitor and (b) Fabrication 

of five-stacked capacitor [19]. 

 

A group from Georgia Institute of Technology had proposed a technique using separate RF 

and DC electrodes in their device architecture [20]. In Figure 2.16, the BST tunable capacitors 

were fabricated on sapphire substrates. The DC electrodes with a smaller gap were placed in 

between the wider gap of the RF electrodes. The two types of structure that produced a 6 dB 

(a) (b) 
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improvement of IIP3 compared to the conventional structure are the attached-bias-electrodes 

(ABE) and isolated-bias-electrodes (IBE) schemes as illustrated in Figures 2.16 (a) and (b) 

respectively. The DC electrodes were made from high resistivity materials of indium tin oxide 

(ITO) or lanthanum strontium cobalt oxide (LSCO) which decoupled the DC bias from the RF 

signals to ensure low intermodulation distortion. However, the tunability and Q-factor 

achieved were quite low. 

 

 

 

Figure 2.16: (a) Attached-bias-electrodes (ABE) and (b) Isolated-bias-electrodes (IBE) [20].  

 

Apart from potential techniques to improve the linearity of BST thin film varactors, the 

temperature and voltage impact on the third-order intermodulation distortion (IM3) in BST 

thin film varactors had also been experimentally demonstrated as shown in Figure 2.17 [139].  

A dip/sweet spot occurred near 20 dBm of input RF power was observed, indicating 

interference from the higher-order IM3 (5
th

 and 7
th

). This dip was shifted to higher voltages as 

bias voltage increased. Also, as the temperature increased with the bias voltage fixed at 0 V, 

the power level of the third-order IM3 decreased, which correlated to the overall compression 

of the C-V curve with increased temperature.      

 

(a) (b) 
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Figure 2.17: (a) The third-order intermodulation distortion, 2f1 – 2f2 (0.99 GHz) with 

increasing input RF power at different bias voltages and (b) the shifts in the dip 

at 25 ºC [139]. 

 

 

2.6 Power Handling Capability in BST Varactors 

Ideally, when an input RF/microwave signal is increasingly applied to nonlinear microwave 

components such as varactor diodes and transistors, gain compression would eventually occur 

and this led to increased microwave losses and signal distortions at the output terminal. This 

is an undesirable trait, particularly in the transmitter circuit where large output signal is 

expected. In order to quantify the linear operating range of the device, 1 dB compression 

point is defined where it is the power level in which the output power has reduced by 1 dB 

from its ideal characteristic [21]. This power level is important in observing how much power 

a certain microwave component could handle and still function properly. There is limited 

research discussing the importance of power handling capability (PHC) of BST varactors.  

In Figure 2.18 (a), BST thin film parallel-plate capacitors were fabricated on silicon wafers 

and single-tone RF signal amplitudes were increasingly applied to observe the effect on their 

tunability [22]. It is observed that in Figure 2.18 (b), the tunability decreases as RF signal 

amplitude increases from 0.69 to 2.58 Vrms. A similar method was demonstrated in [23], 

(a) (b) 
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where a 1.95 GHz single-tone excitation with increasingly input power levels was applied to a 

BST filter. The large signal, S21 of the BST filter, however, became distorted at certain input 

power levels due to the nonlinear behaviour of the BST varactor element.   

 

 

Figure 2.18: (a) BST parallel-plate capacitor and its equivalent circuit model and (b) Relative 

permittivity of BST for high RF voltages at frequency of 50 MHz and BST 

thickness of 700 Å [22]. 

 

A more detailed research of the PHC of BST thick film capacitors was demonstrated by a 

research group from the State Electrotechnical University. Microstrip resonators loaded with 

planar and parallel-plate BST varactors were investigated based on their nonlinear responses 

to the elevated microwave power [24, 25]. Figure 2.19 (a) shows the BST planar capacitor 

and experimental setup. One of the methods used was the measurement of the anharmonic 

response of the varactors to a pulsed microwave signal at 10 GHz where thermal and electric 

field effects that contribute to the nonlinearity of the varactors can be analysed separately. 

Figure 2.19 (b) shows that by increasing the microwave power, the peak of the resonance 

curve, S21 is shifted towards higher frequencies and becomes asymmetrical. This is obvious in 

the trailing front due to the thermal effect on the dielectric properties of BST film. Complex 

formulas of PHCs in terms of thermal and E-field effects were subsequently derived. It was 

(a) (b) 
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concluded that the PHC of the planar and parallel-plate varactors were limited by the thermal 

and electric field effects respectively. Therefore, parallel-plate varactors are useful in low 

power microwave systems. 

 

 

 

Figure 2.19: (a) The BST planar capacitor and experimental setup and (b) Frequency response 

of BST film capacitor-loaded resonator to pulsed microwave power of various 

levels measured at leading (top) and trailing (bottom) fronts. Incident power 

levels Pinc : (1) +6 dBm, (2) +26 dBm, (3) +32 dBm, and (4) +35 dBm [25]. 

 

 

 

 

(a) (b) 
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2.7 Conclusions 

The potential of barium strontium titanate in agile microwave devices was known about 50 

years ago but intensive research has only been made in the past 20 years due to the 

development of thick and thin film technologies. In the „varactor gap‟ region, BST thin film 

varactors have significantly higher Q-factor, power handling and tuning speed compared to 

the varactor diode technology. In comparison to its bulk material, BST thin film has a lower 

dielectric constant and higher dielectric loss. However, a low bias voltage is required to tune 

the capacitance of the BST thin film varactor, making it attractive to integrate it into 

semiconductor microwave circuits.     

The two most common deposition techniques are sputtering and PLD due to the 

availability in most research labs. Sputtering has a large-area deposition capability and precise 

thickness control. However, the stoichiometry of the sputtered thin films is usually difficult to 

control. In the research community, PLD is considered one of the cheapest deposition 

technique as the laser may be shared among several deposition systems. Sol-gel deposition 

technique has the advantage of a non-existent vacuum system which reduces cost. However, 

problems with surface roughness, non-uniform thickness, existence of cracks and voids limit 

its usage in thin film applications [3]. MOCVD technique offers composition control and high 

conformality but the system is rather expensive. It requires a high temperature furnace, thus 

limiting the choice of substrates. The CCVD technique is cost-effective; it requires no 

vacuum chambers or reaction furnace but it has been demonstrated that the synthesis of thin 

films is mostly oxide thin films [140].  

BST varactors usually have two basic structures, co-planar and parallel-plate 

configurations. Both structures require a DC voltage to tune the dielectric permittivity of the 

BST material which correlates to the change of its capacitance values. A co-planar varactor is 

easier to fabricate since the metal electrodes are built directly on top of the BST/substrate 
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structure but at the expense of a high tuning voltage due to the non-tunable partial 

capacitances [141]. On the other hand, a parallel-plate varactor provides low tuning voltage 

which compensates the complexity of its fabrication process. 

Several research groups have demonstrated the employment of BST thin film varactors in 

agile microwave devices. The most often-reported in literature are the tunable BST-based 

filters and phase shifters in which they have the potential to be implemented in wireless 

transceivers and phase array antennas respectively. Tunable matching networks and switches 

have also been reported for cellular power amplifier and wireless sensor applications. 

Intermodulation distortion in BST varactors has a significant effect within the passband if 

two or more RF signals are applied. This will lead to linearity degradation of the varactors. 

Anti-parallel and anti-series topologies were introduced for varactor diodes back in the 1970s. 

Since then, several research groups have demonstrated the effectiveness of implementing this 

idea in their respective fields to enhance linearity of the devices. BST-stacked parallel-plate 

varactors have been demonstrated by connecting several varactors in series which improved 

the overall linearity of the device structure. Apart from that, the introduction of new bias 

electrode schemes placed between the wider gaps of the RF electrodes has improved the IIP3 

of the device. However, the analysis of the intermodulation distortion in BST varactors is 

currently deficient. Although voltage and temperature impacts on the IM3 had been 

experimentally demonstrated in [139],  a further effort to improve the theoretical model of 

predicting the IM3 was emphasized. Since no research group has yet to develop it, hence this 

research work will focus on creating a reliable theoretical model for the analysis of IM3 in 

BST varactors and solutions to improve the linearity of the devices will be addressed.       

The information of power handling capability in BST varactors is also limited, especially 

in research relating to the 1 dB compression point. A few research groups have shown the 

compression of the BST tunability and the distortion of the S21 curve as increasingly single-

tone input power was applied. A more in-depth research relating to microstrip resonators 
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loaded with planar and parallel-plate BST thick varactors was experimentally demonstrated, 

using a pulsed microwave signal. Complex power handling capability formulas in terms of 

electric and thermal field effects were theoretically derived. However, no method has been 

reported to increase the 1 dB compression points of BST varactors and this will be another 

focus of this research work.   

The major objective of this research is to develop a novel method for the theoretical 

analysis of the third-order intermodulation distortion in BST thin film interdigital capacitors 

(IDCs). BST thin films are grown directly on r-plane sapphire substrates, which have the 

potential to be integrated with existing semiconductor microwave technologies. Two BST 

varactor circuit topologies are proposed to validate the theoretical analysis in comparison with 

the circuit simulation results. In both topologies, the third-order intermodulation distortion is 

also experimentally verified. The details of this work are thoroughly discussed in Chapter 4. 

Another objective of this research is to develop BST varactors with high 1 dB compression 

points. These varactors have the potential to be implemented in tunable filters of a high power 

transceiver system. The geometry of the IDC in terms of the finger gap, width, length and 

number of fingers is varied and its influences on the shape of the nonlinear BST C-V curves 

are analysed. From the parametric analysis, three distinct C-V curves are defined and the 

relationship between their tunabilities and 1 dB compression points are determined by circuit 

simulations and measurements. The details of this work are thoroughly discussed in     

Chapter 5.  
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Chapter 3 

Part I: Material Deposition and 

Characterisation of BST Thin Films  

Part II: Fabrication and Microwave 

Characterisation of BST Thin Film 

Varactors  

 

 

3.1 Introduction 

As reported in Chapter 2, many research groups have found applications of BST thin film 

varactors in agile microwave devices. Epitaxially-grown BST thin films on c- and r-plane 
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sapphire substrates have also been successfully employed as tuning elements [11, 12, 63, 65]. 

In this research, both orientations were used as the host substrates to fabricate the BST 

interdigital capacitors (IDCs). Sapphire is well-known to have excellent microwave 

properties; low loss at high frequencies (tan δ = 1x10
-4

) and a reasonably high dielectric 

constant. More importantly, it has a close lattice match to BST thin film which enables 

epitaxial growth [3]. The r-plane sapphire substrates were used for the BST varactor circuit 

topologies introduced in Chapter 4 and c-plane sapphire substrates were used for the BST 

varactors with fine geometries introduced in Chapter 5. The deposited BST on r-plane 

sapphire substrates were realised using Pulse Laser Deposition (PLD) [9, 142] in 

collaboration with Dr. Ernest Fardin and will not be discussed in this thesis.  

This chapter has two parts. Part I investigates the material deposition and characterisation 

of the BST thin films on c-plane sapphire substrates. BST thin films were initially deposited 

using the RF magnetron sputtering machine at RMIT University. The materials properties of 

these films were then characterised in terms of their physical and chemical properties by 

different analytical techniques such as X-Ray Diffraction (XRD), X-Ray Photoelectron 

Spectroscopy (XPS), and Scanning Electron Microscopy (SEM). Part II involves the 

fabrication and microwave characterisation of the BST IDCs. The multistep fabrication 

process was executed in the clean room facility and the performances of the IDCs produced 

were measured on a probe station connected to a Vector Network Analyser (VNA) at RMIT 

University.         
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3.2 BST Thin Film Deposition using RF Magnetron 

Sputtering System 

As mentioned in Chapter 2, sputtering is one of the most common PVD techniques for 

depositing perovskite ferroelectric thin films. It offers high uniformity, scalability, low 

thermal budget and compatibility with standard IC processing [2]. There are different types of 

sputtering methods, which includes DC sputtering, RF sputtering and DC/RF sputtering. RF 

sputtering is used to deposit highly insulating oxide or nitride films and magnetic fields 

(magnetron) can be applied to improve the sputtering performance [143].  

A schematic of a typical RF magnetron sputtering system is depicted in Figure 3.1. The 

sputtering system consists of a source/cathode and the substrate on which the film is to be 

deposited inside a vacuum chamber, two inlets for the inert (Ar) and reactive (O2) gases and 

vacuum pumps. Initially, the chamber is evacuated to a high vacuum, achieving the base 

pressure range of 10
-3 

to 10
-5

 Torr and Ar/O2 gas mixture is then flowed into the vacuum 

chamber. A few hundred Watts of RF power are applied to the sputtering target, creating a 

plasma discharge. This results in the positively charged Ar ions bombarding the target 

surface, which sputter off atoms from the surface into the gas phase. These atoms are then 

directed towards the substrate to form a thin film. Some electrons, known as secondary 

electrons, are also emitted from the target surface. The plasma discharge is sustained through 

the collisions of these secondary electrons with the gas atoms to form more ions. A 

magnetron, which is an array of magnets employed behind the sputtering target, generates a 

static magnetic field at the cathode. This magnetic field causes the secondary electrons to 

move in a current loop “parallel” to the cathode surface. Trapping these electrons close to the 

target leads to enhanced ionisation of sputtering gas and thus increases the deposition rate.  
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For sputtering of an insulating target material such as oxide ferroelectrics (e.g. BST), a 

high frequency plasma discharge must be applied to avoid the accumulation of electric load. 

This power supply operates at 13.56 MHz and an impedance matching network which 

consists of inductors and capacitors is also required. The material properties of the sputtered 

thin films depend on the parameters of the deposition runs. These include substrate 

temperature, substrate to target distance, process gas pressure, process gas mixture and the RF 

power applied [142]. 

 

 

Figure 3.1: Schematic of a typical RF magnetron sputtering system [2]. 

 

BST thin films were deposited for the first time using the Kurt J. Lesker RF magnetron 

sputterer at the Microelectronics and Materials Technology Centre (MMTC), RMIT 

University (Figure 3.2). A few deposition runs were completed using a stoichiometric 100 

mm diameter Ba0.6Sr0.4TiO3 target (purchased from William Advanced Materials). The 

deposition conditions were held constant as tabulated in Table 3.1. The deposition conditions 

of the previous deposition runs [6, 9, 142] and also from other research groups [4, 5] were 

also used as references. After setting the deposition conditions, the BST thin films were 
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sputtered on diced 10 x 10 mm
2
 single c-plane sapphire substrates (purchased from M.M.R.C 

Pty Ltd). These samples were initially cleaned with acetone, IPA or methanol and DI water. 

The details of sample preparation and the fabrication process are discussed in Section 3.5. The 

low process gas pressure was set to achieve maximum growth rate and very smooth thin film 

surface which indicated high density of BST thin films. Further, utilising low gas pressure 

could avoid the decrease in the A-to-B site ratio [5], which would consequently decrease the 

tunability of the BST varactors. 100% argon was used in the initial deposition of the samples 

and then post-annealed to improve the crystallinity of the films. 

 

 

 

Figure 3.2: Kurt J. Lesker RF magnetron sputterer. 
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Table 3.1: The deposition conditions of the sputtered BST thin films. 

 

 

 

 

 

 

 

 

 

 

3.3 Material Characterisation of BST Thin Films 

Several different analytical techniques were employed to determine the physical and chemical 

properties of the BST thin films. The sputtered BST thin films were annealed in a vacuum 

oven and air at different temperatures and duration in order to investigate the influence on the 

crystal structure of the thin films via XRD. XPS provided the chemical composition of the 

BST thin films and correlated with the XRD data for the unannealed and annealed samples. 

SEM was implemented to analyse the thickness and provided information about the BST 

surface morphology.   

 

3.3.1 X-Ray Diffraction (XRD)  

XRD is a well-known crystallographic technique for identifying and quantifying various 

crystalline phases present in solid materials and powders [143]. When a solid material with 

repeating atoms that form a series of parallel planes separated by a distance, d is illuminated 

by an x-ray beam, λ at an angle, θ, diffraction occurs. This diffraction pattern represents the 

Parameter Value 

RF power (W) 200 

Substrate temperature ( ºC) 700 

Substrate to target distance (mm) 150 

Process gas pressure (mTorr) 5 

Process gas mixture (%) 100 % Argon 

Deposition duration (hours) 8 
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crystal structure of the material and the crystal phases can be determined from internationally 

known databases. In Figure 3.3, constructive interference occurs only when the distance 

travelled by the reflected beams, 1
‟
 and 2‟ differs by an integer number, n of wavelengths. 

This condition, known as Braggs Law, is expressed as 

                        (3.1) 

The crystalline phases of the BST thin film samples were analysed using a Bruker AXS D8 

Discover powder diffractometer located at the RMIT Chemistry Department, School of 

Applied Sciences, and is shown in Figure 3.4. In the paths of the incident beam from the 

CuKα (λ = 0.15406 nm) source and reflected beam from the sample, Soller slits are fixed 

which collimate both beams in one dimension. A fixed 1 mm slit in the incident beam limits 

the divergence of x-rays normal to the plane of the Soller slits and a Ni filter is used to 

attenuate the CuKβ radiation, and the background continuum, from the x-ray source [142]. 

 

 

 

Figure 3.3: XRD from a solid material [142].  

 sin2dn 
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Figure 3.4: Bruker AXS D8 Discover powder diffractometer with GADDS (General Area 

Detector Diffraction System).  

 

The XRD results for the first batch of BST thin film samples are shown in Figure 3.5. The 

BST thin films were deposited on three 10 x 10 mm
2
 diced c-plane sapphire substrates (BST1, 

BST2 and BST3) with deposition temperature of 700 ºC at 5 mTorr for 8 hours. The major 

peaks were observed at (100), (110) and (111) in all films, corresponding to the cubic 

perovskite BST phase with no indication of secondary phase formation. An initial decision 

was made to post-anneal two samples, BST1 and BST3 in a vacuum oven at 700 ºC. It was 

observed that the BST1 peak intensities at (100) and (200) increased after post-annealing for 

10 minutes.  

However, the BST3 peak intensities at (110) and (111) decreased after post-annealing for 

an hour. This implied a loss of crystallinity had occurred on annealing, most probably due to 

the presence of oxygen vacancies in the film. This condition was also in agreement with the 

XPS results of the sample, which is discussed in the next subsection. It was also observed that 

the baseline/background in the annealed sample was reduced and the peaks were more 
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resolved, more symmetrical and also not as broad. This provided evidence of an overall 

decrease of amorphous content in the bulk sample, and therefore a general improvement in 

the degree of crystallinity over the bulk sample. The narrower peaks also implied that the 

grain size was slightly larger than prior to post-annealing. 

The second batch of BST thin film samples was deposited with the similar deposition 

conditions as before and one sample was post-annealed in air at 900 ºC for 2 hours in a 

ceramic tube furnace. The results are shown in Figure 3.6. A stronger (110) orientation was 

observed in the annealed sample, indicating an improved crystallinity and preferred 

orientation for this film.  

 

 

 

Figure 3.5: XRD patterns for the first batch of deposited BST thin film on c-plane sapphire 

substrates.  
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Figure 3.6: XRD patterns for the second batch of deposited BST thin film on c-plane sapphire 

substrates.  

 

3.3.2 X-Ray Photoelectron Spectroscopy (XPS) 

XPS is useful for identifying elements of a material, their chemical composition and empirical 

formulae within the first few atomic layers [143]. Based on the photoelectric effect in Figure 

3.7, the sample is bombarded with an X-ray beam which causes photoelectrons to be ejected 

from the surface. The x-rays interact with the atomic electrons of the sample, primarily 

through photon absorption. The ejected photoelectrons escape  (≤ 10 nm) from the very top of 

the surface and the kinetic energy is detected and analysed as a spectrum of their binding 

energies. This spectrum is compared with internationally known databases and the elements 

of the material exhibit their own unique characteristic peaks. The BST thin film samples were 

analysed using the Thermo K-Alpha spectrometer at the RMIT Microscopy and Microanalysis 

Facility (RMMF) (Figure 3.8).  
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Figure 3.7: Electron orbits showing the ejection of a photoelectron after absorption of a 

photon [143]. 

 

 

 

Figure 3.8: Thermo K-Alpha spectrometer.  
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The XPS results for the first batch of BST thin film samples are shown in Table 3.2. As 

highlighted in Chapter 2, BST has a chemical composition of BaxSr1-xTiO3. The ideal atomic 

concentration (at. %) of the BST thin film is 10 at. % Ba, 10 at. % Sr, 20 at. % Ti and 60 at. % 

O [142]. As observed in Table 3.2, the first batch of the unannealed BST1 and BST3 samples 

had a close characteristic to the ideal composition. However, when both samples were post-

annealed in vacuum oven, the at. % of O increased but at. % of Ba and Ti decreased. The 

significant reduction in at. % of Ba and Ti and the sudden increase in at. % of O suggested the 

presence of defects or deformations in the crystal structure of the films which implied the 

existence of oxygen vacancies in both annealed samples.  

As highlighted in Chapter 2, BST is naturally perovskite with the ABO3 structure and the 

A-to-B site ratio is an important predictor of the defect density and quality of the film 

structure [5]. From calculations based on Table 3.2, the A-to-B site ratio for BST1 had 

reduced from 1.1 to 1.07, before and after annealing it for 10 minutes in a vacuum oven 

respectively. However, with the BST3 sample this ratio had increased from 1.06 to 1.12, 

before and after annealing the sample for an hour in a vacuum oven. The slightly decreasing 

trend of the A-to-B site ratio in BST1 indicated that the annealed sample had lower dielectric 

constant and hence lower tunability along with lower loss and higher breakdown field 

strength [144] compared to its unannealed form. The slightly increasing trend of the ratio in 

BST3 suggested that the annealed sample had higher dielectric constant (higher tunability) but 

with higher loss and lower breakdown field strength compared to its unannealed form.            

Figure 3.9 shows the O1s core level spectra for both BST1 and BST3 samples before and 

after annealing them at 700 ºC for 10 minutes and an hour respectively in a vacuum oven. As 

observed, the OI peak in both annealed samples corresponded to the oxygen atom in the 

perovskite structure of BST [77]. The shoulder-like OII peak existed in both annealed samples 

and corresponded to the non-perovskite structure of BST, which implied the existence of 

oxygen vacancies in the films. Oxygen vacancies act as charged defects and contribute to 
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additional extrinsic microwave losses [145]. They also cause internal strains which are 

associated with the lattice mismatch and thermal expansion coefficient mismatch between the 

ferroelectric film and substrate [36, 37, 146]. In Section 3.6, it is shown that the strain-

induced BST films significantly influence the performance of the fabricated BST varactors.  

XPS analysis of the second batch of the BST thin film is tabulated in Table 3.3. The 

sample was post-annealed in air at 900 ºC for 2 hours. In this case, both the at. % of Ba and O 

increased but the at. % of Sr and Ti decreased. The increase in at. % of Ba and O suggested an 

improved crystallinity on annealing due to the incorporation of oxygen in the films. The A-to-

B site ratio increased significantly from 1.39 to 1.88 before and after annealing the sample. 

Apart from the increased ratio attribute, this condition also indicated that the stress was vastly 

relaxed in this film.  

 

 

 

Table 3.2: The elements of the first batch of BST thin film samples tabulated in atomic 

concentration (at. %). 
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Figure 3.9: The O1s core level XPS spectra of the BST1 and BST3 samples before and after 

annealing at 700 ºC for 10 minutes and an hour respectively. 

 

 

Table 3.3: The elements of the second batch of BST thin film samples tabulated in atomic 

concentration (at. %). 
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3.3.3 Scanning Electron Microscope (SEM) 

SEM is a common technique to characterise micro/nanomaterials by providing information 

about the material‟s surface morphology, topography and composition. The surface of the 

material is scanned with an electron beam that interacts with the atoms of the material and 

emits secondary electrons which are detected and monitored. A schematic diagram of a SEM 

is depicted in Figure 3.10. The electron beam is emitted from a heated filament by applying 

an electrical potential and the electrons are accelerated towards the sample. The condenser 

lens focuses the electron beam and projects an image of the source onto the condenser 

aperture. The image is then focused by an objective lens and the sample is raster scanned by 

scanning coils. The secondary electrons are emitted as soon as the electron beam hits the 

sample and collected by the detector, which then converts them into voltage, amplifies and 

constructs an image. In order to avoid electric charging, the sample must be either conductive 

or coated with a thin metal layer.  

The BST thin films were analysed using the FEI NovaNano SEM at the RMIT Microscopy 

& Microanalysis Facility (RMMF) (Figure 3.11). This equipment was utilised to determine 

the thickness of the BST thin films. A thickness of around ~400 nm was achieved in all 

samples as shown in the cross-section Figure 3.12. This thickness was expected for the 

sputtering conditions in Table 3.1. The surface of the BST thin film was very smooth, 

indicating high density of the film. Note that in the early work of producing the BST samples 

of ~200 nm thickness deposited for 4 hours with the other deposition conditions held constant 

as in Table 3.1, the film was measured using the Ambios Technology XP-2 Surface Profiler, 

confirming the thickness. 
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Figure 3.10: Schematic diagram of a SEM setup [143].  

 

 

Figure 3.11: FEI NovaNano SEM.  
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Figure 3.12: SEM image of the deposited BST layer on c-plane sapphire substrates. 

 

 

3.4 Design of BST Interdigital Capacitors (IDCs) 

One photomask plate, with several mask patterns, was used for the major parts of the IDCs 

fabrication process. It consisted of an array of IDCs pattern which were designed using 

Advanced Design System (ADS) 2009 software. An array of IDCs pattern with different sets 

of geometry in terms of the finger gap, finger length, finger width and numbers of fingers 

were designed as shown in Figure 3.13. The finger gap ranged from 2 to 8 µm and finger 

length from 90 to 130 µm. The finger width and number of fingers were fixed at 5 µm and 8 

respectively. Open and short-circuit calibration standards patterns adjacent to the IDCs were 

also included. These were designed to de-embed the parasitic elements associated with the 

IDCs from the measured data and accurately determine the final capacitance and Q-factor 

values of the varactors [120, 142]. The IDCs were designed with two sets of electrodes to 

enable ground-signal-ground (GSG) configuration. 

BST 

Sapphire 
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The “seed layer mask” in Figure 3.13 was initially designed by the author‟s collaborator, 

Dr. Ernest A. Fardin who was also a former RMIT student. For this research, the mask had to 

be refined by adding up the necessary markers which were crucial in the alignment process 

stage. In order to fabricate the IDCs, a total of four masks were used. Figure 3.14 shows the 

design for the other three masks, “edge bead removal”, “electroplating” and “seed layer 

removal”. Each of the four masks was actually made to fit the 10 x 10 mm
2
 diced sapphire 

substrate and designed on a single 4 x 4 in
2
 soda lime mask. Another soda lime mask with an 

array of IDCs with fine geometries was also designed by the author for the fabricated 

varactors in Chapter 5.   

 

 

 

Figure 3.13: Design of an array of IDCs for the seed layer mask with adjacent open and short-

calibration standards patterned on a 4 x 4 in
2
 chrome soda lime mask. The IDC 

patterns were distinguished by the finger gap of A: 2 µm, B: 4 µm, C:  6 µm, and 

D: 8 µm. All the IDCs have finger lengths from 90 µm, 110 µm and 130 µm 

consecutively. The IDCs are electrically connected to one another in each 

column (A, B, C, and D) for the preparation of the electroplating process. 
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Figure 3.14: (a) Electroplating, (b) Seed layer removal and (c) Edge bead removal masks. The 

electroplating mask was designed for electroplating process. The seed layer 

removal mask was designed to remove the interconnect lines during etching 

process. The edge bead removal mask was designed to remove the “hillock” 

formation around the edges of the sample. 

 

 

3.5 Fabrication of BST Interdigital Capacitors 

(IDCs) 

As discussed in Chapter 2, there are two methods used to fabricate IDCs: (1) Lift-off and (2) 

Wet/Dry etching. For this research, the former method was used as it lowered the risk of 

damaging the BST layer during the fabrication process. The IDCs were fabricated on BST 

thin films which were epitaxially grown on 10 x 10 mm
2
 c-plane sapphire substrates. The 

fabrication process was fully conducted in the class-100 clean room facility at the MMTC, 

RMIT University.  

(a) 

(b) (c) 
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3.5.1 Sample preparation 

A BST thin film grown on diced c-plane sapphire substrate was prepared by rinsing it 

thoroughly with acetone, IPA or methanol and DI water, and a nitrogen gun was used to 

blow-dry the sample. The sample was checked under a high magnification microscope to 

ensure all unwanted particles and residues were removed. Next, the sample was baked on a 

hotplate at 130 °C for 3 minutes to dehydrate it. The sample was then rested for 5 minutes to 

cool it to room temperature. 

 

3.5.2 Photolithography 

The photolithography or fabrication process of IDCs for this research was separated into three 

major stages. The first stage involved the electron-beam evaporation of the seed layer which 

consisted of composition metals of Ti/Ni/Au. The second stage involved electroplating 

defined region of the seed layer with Au. The final stage was to chemically wet etch the non-

plated region of the seed layer. 

 

3.5.2.1 First stage - Seed layer  

First, hexamethyldisilazane (HMDS) was spun-coated on the sample using a spinner machine 

(Karl Süss RC8) with a spin speed of 3000 rpm and an acceleration of 300 rpm/s for 30 

seconds. HMDS was used as an adhesion promoter between the photoresist and the substrate. 

Next, the photoresist AZ1512 was spun-coated on top of the thin HMDS layer at a similar 

spin speed. The sample was then baked at 95 °C for 2 minutes on a hotplate to allow the 

solvents to evaporate. Figure 3.15 (A) shows the cross-section of the profiled layer (utilising a 

profilometry) of ~1.5 µm thick AZ1512 on BST/sapphire.  

For patterning the seed layer, the sample was exposed under an ultraviolet (UV) light of 

the mask aligner for 4 seconds as shown in Figure 3.15 (B). The “seed layer mask” as 
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described in Section 3.4 was used in the mask aligner (Karl Süss MA6). The sample was then 

immersed in a chlorobenzene solution for 1 minute to create undercuts of the photoresist for 

assisting the lift-off process. The sample was thoroughly rinsed in DI water and blow-dried 

with N2. The sample was subsequently developed in an AZ400K 1:4 developer for 8 seconds 

(Figure 3.15 (C)) and the desired pattern was achieved as illustrated in Figure 3.15 (D) after 

the sample was being rinsed and blow-dried.  

Note that prior to patterning the seed layer, an edge bead removal exposure for 4 seconds 

using an “edge bead removal mask” was performed to remove the “hillocks” formation by 

developing the sample in AZ400K 1:4 for 10 seconds. This mask is depicted in Figure 3.14 

(c). The hillocks are part of the photoresist which tend to build up around the edges of the 

sample during spinning. Removing them ensures that there is a good contact between the 

mask and the photoresist during the pattern exposure. If the sample is the size of a standard 

wafer, the edge bead removal can be easily executed at the spinner machine immediately after 

spinning it with photoresist. 

The metal composition of 10 nm Ti / 10 nm Ni / 50 nm Au were deposited on the sample 

using Balzers e-beam evaporator as depicted in Figure 3.15 (E). The sample was then 

submerged in a small beaker filled with sufficient acetone which was placed in an ultrasonic 

bath. The lift-off process was effected using the ultrasonic agitation for at least 5 minutes, 

simultaneously washing away the unwanted photoresist along with the metal layers on top of 

it. Eventually, the Ti/Ni/Au seed layer was obtained, as shown in Figure 3.15 (F), after the 

sample was being rinsed and blow-dried.  
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Figure 3.15: The cross-sections of the multistep fabrication process of BST interdigital 

capacitors on c-plane sapphire substrate.  

 

3.5.2.2 Second stage - Electroplating 

The next step was to spin-coat the HMDS followed by AZ4562 thick photoresist on top of the 

seed layer as shown in Figure 3.15 (G). The HMDS spin conditions remained the same as in 

the first stage. The closed-lid spin speed for AZ4562 was 6000 rpm with 2000 rpm/s 

acceleration for 30 seconds. The profiled thickness of ~3 µm for this photoresist was 

important to protect the non-plated seed layer region during the electroplating process. The 

sample was then rested for 15 minutes to allow most of the solvent to evaporate prior to 

softbaking it on a hotplate at 100 °C for 50 seconds. This resting time is important because 
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otherwise the photoresist surface would dry quickly and the remaining trapped solvent may 

form bubbles, lifting the resist layer and eventually leading to adhesion failure. Edge bead 

removal exposure was then performed on the sample for 12 seconds and developed for 1 

minute. 

Next, the challenging part of this step was the alignment process. An “electroplating mask” 

was used with a similar pattern as the “seed layer mask” but without the interconnect lines 

connecting the IDCs pads as depicted in Figure 3.14 (a). This step was indeed crucial and 

careful alignment was needed. After properly aligning the mask pattern to the seed layer, the 

sample was exposed under UV light for 8 seconds and developed for 50 seconds as illustrated 

in Figure 3.15 (H) and (I) respectively. Eventually, the desired pattern was achieved in Figure 

3.15 (J).  

The electroplating process was conducted with the assistance of a licensed technical officer 

according to all cyanide handling procedures. Prior to this, the sample in Figure 3.15 (J) was 

post-baked at 115 °C for 50 seconds. Post-baking is recommended as this will ensure the 

hardening of the AZ4562 thick photoresist which could sustain the electroplating solution. 

The electroplating setup is shown in Figure 3.16. The top of the beaker with the plating 

solution was initially covered with plastic to avoid evaporation and the plating solution was 

heated to 40 °C. Electrical connections were then made and the diced sample was attached to 

the sample holder of the anode clamp assembly before submerging it in the solution. The 

current was set to the required value for electroplating the submerged seed layer pattern area, 

knowing the optimised current density of 3.4 mA/cm
2
. During this process, it is important to 

ensure that no bubbles form on the surface of the sample. A ~2.7 µm Au layer was finally 

achieved for the duration of 10 minutes of electroplating as depicted in Figure 3.15 (K) and 

(L) after the standard cleaning and blow-drying of the sample. 
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Figure 3.16: The electroplating process setup for electroplating the BST sample.  

 

3.5.2.3 Final stage - Wet etching 

The final stage of this photolithography process was to spin-coat the HMDS followed by 

AZ4562 on the electroplated Au layer. The HMDS spin conditions remained the same as in 

the first stage and, the closed-lid spin speed for AZ4562 was 6000 rpm with 1000 rpm/s 

acceleration for 5 seconds. The profiled thickness of ~4.5 µm for this photoresist was 

important to protect the plated Au region during wet etching as illustrated in Figure 3.17 (M). 

The sample was then rested for 15 minutes to allow most of the solvent to evaporate prior to 

softbaking it on a hotplate at 100 °C for 50 seconds. Edge bead pattern exposure was 

performed on the sample for 25 seconds and developed for 1 minute.  

The “seed layer removal mask” was used with square-shaped patterns that protected the 

plated Au region as depicted in Figure 3.14 (b). After carefully aligning the squares to the 
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plated region, the sample was exposed under UV light for 25 seconds and developed for 40 

seconds as illustrated in Figure 3.17 (N) and (O) respectively.  

The sample in Figure 3.17 (P) was immersed in proper etchant solutions to etch the non-

plated interconnect lines of metal layers, Ti/Ni/Au as shown in Figure 3.17 (Q). For etching 

the Au layer, a cyanide solution was used for 30 seconds. Ni-etchant and HF solutions were 

then used to etch Ni and Ti for 30 seconds and 15 seconds respectively. In this stage, it was 

crucial to etch the BST layer in the non-plated region entirely using HF solution to further 

reduce microwave losses [19]. Finally, the BST IDCs were produced as in Figure 3.17 (R). 

The top views of the before and after etching the interconnect lines are depicted in Figure 

3.18. An example of the fabricated array of BST IDCs with fine geometries for the 

microwave applications in Chapter 5 is shown in Figure 3.19.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: The continuation cross-sections of the multistep fabrication process of BST 

interdigital capacitors on c-plane sapphire substrate. 
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Figure 3.18: The top view of the BST interdigital capacitors on a c-plane sapphire substrate 

with a) non-plated interconnects and b) etched interconnects and BST layer in 

the non-plated region. 

 

 

 

 

Figure 3.19: An array of the fabricated BST interdigital capacitors with adjacent open and 

short-circuit calibration standards. The varactors with fine geometries of 1 µm 

gap are indicated at the far left column. 
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3.6 Microwave Characterisation of BST Varactors 

Microwave characterisations of the BST IDCs were performed on a probe station connected 

to the Vector Network Analyser (VNA) as shown in Figure 3.20. A video imaging system 

which consists of a camera (Panasonic), microscope, light source and a monitor is used to 

view the image of the sample for manual adjustments. The microwave probes (GGB 

Industries) were initially mounted on the micropositioners (Newport ULTRAlign) and 

tightened with screws. Before calibrating the VNA, an Au electroplated dummy sample was 

placed on the mounting stage and the three probe tips (GSG probe) were carefully levelled 

down to slowly touch the surface of the electroplated Au. The „roll‟ adjustment was utilised to 

achieve equal impression for all the three probe tips on the Au sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: The probe station for the microwave characterisation of BST varactors. 
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Once the probe tips were levelled, calibration of the VNA was performed using a CS-5 

calibration substrate (GGB Industries) for the 200 µm pitch probes. Open, short and 50 Ω 

matched calibration standards were used and a SOLT calibration technique was performed in 

the frequency range from 1 to 20 GHz. The S-parameter results were achieved as expected for 

this type of calibration technique. The BST IDCs were then measured and the S11 data were 

recorded and stored in data storage. The biasing was performed by connecting a power supply 

externally to the VNA, which is limited up to ±40 V.     

As described in Section 3.4, the purpose of the open and short-circuit calibration standards 

patterned adjacent to the IDCs was to de-embed the parasitic elements related to the 

interdigital electrodes from the measured data. The fabricated calibration standards can be 

observed in Figure 3.19. Microwave measurements of the BST IDCs can be performed more 

accurately by taking into account all these parasitic elements [120, 142, 147]. Further, a 

significant variation in the extracted capacitance from 1 to 20 GHz is produced if the parasitic 

elements were not modelled [142]. The equivalent circuit BST varactor model is depicted in 

Figure 3.21 including the parasitic elements (Cp , Lp and Rp) related to the contact pads. The 

first step was to measure the S11 parameter of the open-circuit calibration standard, which is a 

device structure that omits the device under test (DUT), leaving the pads open. The short-

circuit calibration standard is a device structure that omits the DUT and short-circuited the 

signal and ground planes and then S11 was measured. Finally, the measured S11 values for all 

elements in the model were substituted in a MATLAB algorithm (Appendix A) for computing 

the final capacitance and Q-factor values. 

The measured results of the thin film BST varactors are tabulated in Table 3.4. From the 

SEM analysis in Subsection 3.3.3, the thickness for all of the BST thin films was ~400 nm. 

The early batch indicates the very first attempt to fabricate varactors on such thickness. All of 

the measured BST varactors had a 2 µm finger gap except for the second batch which was 1 

µm finger gap varactors. The second batch varactors were produced using the new mask with 
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Figure 3.21: The equivalent BST thin film varactor circuit model including the parasitic 

elements. 

 

 

Table 3.4: The performance of BST thin film varactors between unannealed and annealed 

samples measured at 10 GHz.     

 

 

 

fine geometries.  As observed, the early batch varactors experienced large fluctuations in their 

Q-factor values which were caused by significant microwave losses. Consequently, the values 

were invalid. The non-etching of the remaining BST layer in the non-plated Au region was 

identified as the main cause as highlighted in Subsection 3.5.2.3.  
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No significant change was observed in the tunability of the early batch of varactors 

compared to the first batch of annealed varactors, indicating that annealing samples in a 

vacuum oven for this case did not improve the crystallinity of the BST films. This was well in 

agreement with the XRD and XPS data where the presence of oxygen vacancies as charge 

defects induced strain in the films, leading to the degradation or no improvement in the 

tunability of the BST varactors.  

However, when annealed in air, the tunability improved significantly although the gap was 

reduced to 1 µm for the microwave applications - presented in Chapter 5. This indicated an 

improved crystallinity due to the increased grain size and significantly reduced strain in the 

film, well in agreement with the XRD and XPS data. Based on Table 2.1 in Chapter 2, BST 

tunability of at least 50 % with Q-factor of minimum 20 can readily compete with the other 

established silicon and MEMS technologies, and this was achieved with the second batch 

BST varactors.  

Figure 3.22 shows the capacitance and Q-factor values for the second batch of BST 

varactors in the frequency range from 1 to 20 GHz. Fewer variations in the capacitance values 

were observed throughout the entire frequency range which was expected by taking into 

account all the parasitic elements. However, in the lower frequencies of less than 5 GHz, a 

large dispersion of the Q-factor values occurred due to the slightly reduced thickness of the 

electroplated electrodes, which contributed to conductor losses. At 10 GHz, the varactors 

achieved ~50 % tunability and Qmin of ~ 9 as plotted in Figure 3.23.      
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Figure 3.22: The extracted capacitance and Q-factor values of the second batch of BST thin 

film varactors for a broad frequency range from 1 to 20 GHz. 

 

 

 

Figure 3.23: The extracted capacitance and Q-factor values of the second batch of BST thin 

film varactors at 10 GHz. 
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3.7 Conclusions 

This chapter has presented the material deposition and characterisation of the sputtered BST 

thin films used in this research. A BST thickness of ~400 nm was consistently achieved with 

the sputtering conditions held constant for every deposition run. XRD analysis for all samples 

revealed peaks which corresponded to the cubic perovskite BST phase with no indication of 

secondary phase formation. Post-annealing in vacuum oven and air were employed and 

crystal phases and chemical compositions of the BST thin films were investigated. 

It was found that the BST samples annealed in the vacuum oven experienced a loss of 

crystallinity, which suggested the presence of oxygen vacancies in the films. XPS results were 

also in agreement with the XRD data that showed an increase of atomic concentration of the 

O elements and the loss of atomic concentration of the Ba and Ti elements in the chemical 

composition of BST. However, the BST sample annealed in air using a conventional tube 

furnace experienced an increase of atomic concentrations in both the O and the Ba elements. 

It was suggested that improved crystallinity in the film had occurred due to the incorporation 

of oxygen in the film. The A-to-B site ratio also suggested the poor film quality of the 

annealed samples in vacuum oven.      

BST interdigital capacitors were fabricated on both annealed and unannealed samples and 

microwave measurements were performed. The final capacitance and Q-factor values were 

extracted from a MATLAB algorithm by taking into account all the parasitic elements 

associated with the interdigital electrodes using the equivalent BST thin film varactor circuit 

model. The annealed samples in the vacuum oven revealed no significant change compared to 

the unannealed samples, with tunability of ~18 %. However, tunability of ~50 % was 

achieved in the sample annealed in air. This indicated that strain-induced films due to the 

presence of oxygen vacancies affected the performance of the BST thin film varactors.  
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In the next chapter, the third-order intermodulation distortion in BST thin film varactors is 

investigated. A novel theoretical method for this analysis was developed and two BST 

varactor circuit topologies were simulated and measured for validation. As mentioned earlier, 

the BST thin films used were deposited on r-plane sapphire substrates which would have the 

potential to be integrated with silicon technology.      
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Chapter 4   

Low Third-Order Intermodulation 

Distortion in Ba0.6Sr0.4TiO3 Thin Film 

Interdigital Capacitors 

 

 

4.1 Introduction 

As described in Chapter 2, barium strontium titanate (BST) thin film varactors have found 

many applications in frequency agile microwave devices mainly due to their performance in 

the frequency region above 10 GHz. In this frequency region, which is known as the “varactor 

gap” region, BST varactors have significantly higher tuning speed, Q-factor and power 

handling compared to well-established silicon varactor technology [2]. Also, the high 

dielectric permittivity contributes to the size reduction of the microwave components and 
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compact, small-scaled microwave devices can be realised. 

Integration of BST with the existing semiconductor technologies has long been of interest 

and silicon-on-sapphire (SoS) technology presents one of the possible solutions due to its 

many advantages. One of the main advantages over traditional bulk silicon integrated circuits 

is the high isolation between devices. This offers lower power dissipation, higher operating 

speed and minimum parasitic semiconductor junctions due to the highly effective insulating 

sapphire substrate. This technology uses a very thin layer of silicon deposited on an r-plane 

sapphire substrate, which provides a suitable orientation for the growth of silicon [148]. By 

depositing the BST film early in the SoS process, the high deposition temperature can be 

tolerated without affecting the silicon epilayer [9]. Some frequency agile microwave devices 

with the potential to be incorporated in this technology have been developed with epitaxial 

BST thin films on r-plane sapphire substrates at 10 GHz and above, such as interdigital 

capacitors (IDCs) [9], bandpass filters [66] and phase shifters [12].   

Intermodulation distortion in nonlinear semiconductor and BST varactors is another issue 

that has gained interest over the past few years. Meyer et al. had previously analysed the 

intermodulation distortion in varactor diodes using the Volterra series approach in which 

closed-form expressions for intermodulation distortion in parallel- and series-tuned circuits 

were successfully derived. Anti-parallel and back-to-back circuit topologies were introduced 

and experimentally verified for achieving minimum distortions [133]. Since then, several 

research groups have demonstrated the effectiveness of implementing this idea in BST, 

MEMS and varactor diode technologies to enhance linearity of the devices [19, 134, 149, 

150]. A linearity improvement technique based on BST-stacked parallel-plate capacitors has 

been analysed by connecting several capacitors in series, which reduced the RF swing across 

each capacitor [19, 151]. RF MEMS varactors in antibiased topology showed enhanced 

linearity and reduced bias noise [149]. Anti-series and anti-series/anti-parallel varactor diode 
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topologies were presented in [134], in which the doping profile and area ratio parameters 

influenced the design to achieve minimum distortion.  

In this chapter, a novel method for the theoretical analysis of the IM3 in BST thin film 

IDCs on r-plane sapphire substrates is presented. Two circuit topologies - the “dual” and 

“series dual” BST varactor circuits - are proposed and their theoretical models along with 

simulated and measured results are presented. Low IM3 is demonstrated and experimentally 

verified. By proper selective biasing, very low nulls are observed in both dual and series dual 

BST varactor circuit topologies which indicate minimum distortion. The measured first nulls 

are achieved at ±13 V and ± 20 V for the dual and series dual topologies respectively. These 

results demonstrate the potential for incorporating these highly linear BST varactors in SoS 

applications.  

 

 

4.2 BST Interdigital Capacitor Fabrication 

In this work, IDCs were fabricated on 50 nm thick Ba0.6Sr0.4TiO3 thin films grown on 10 x 10 

mm
2
 diced r-plane sapphire substrates. The BST thin films were initially deposited on the 500 

µm thick sapphire substrates by pulsed laser deposition (PLD). The details of the BST thin 

film deposition and material characterisation can be found in [9, 142].  

The fabrication of IDCs was realised in a multistep process described in Chapter 3. First, a 

seed layer composition of Ti/Ni/Au was deposited using e-beam evaporation. Next, the IDCs 

with adjacent open and short-circuit calibration standard patterns were achieved by lift-off. A 

2.5 µm Au layer was then electroplated within a defined plated seed layer region. Finally, the 

non-plated seed layer region was removed by chemical wet etching. The purpose of the open 

and short-circuit calibration standards patterned adjacent to the IDCs was to de-embed the  
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Figure 4.1: An array of the fabricated BST interdigital capacitors with adjacent open and 

short-circuit calibration standards on a 10 x 10 mm
2
 diced r-plane sapphire 

substrate. 

 

parasitic elements related to the interdigital electrodes from the measured data to accurately 

determine the final capacitance and Q-factor values of the varactors [6, 120]. 

An array of IDCs with different sets of geometry in terms of the finger gap, finger length, 

fingerwidth and number of fingers was realised. The finger gap ranged from 2 to 8 µm and 

finger length from 90 to 130 µm. The finger width and number of fingers were fixed at 5 µm 

and 8 respectively. The IDCs were designed with two sets of electrodes to enable ground-

signal-ground (GSG) configuration. The IDCs are shown in Figure 4.1.  

The BST varactors were selected based on the measured performances in which they had 

reasonably good tunability of ~43 % and Q-factor values in the range of ~13.4 to 78.3 from 0 

to 40 V at 10 GHz. Note that the highest tunability of 64 % was recorded with the 200 nm 

BST films but compensated by the lowest Q-factor in the range of ~7.8 to 32.2 [9]. The 

reduction in the tunability of the measured 50 nm BST film was caused by the tensile strain. 

However, the permittivity remained quite high, ~800 at 0 V. The capacitance and Q-factor 

DUT 

OPEN 

SHORT 
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values were computed using an RC equivalent circuit model, taking into account all the 

parasitic elements associated with the pad metallization [120, 142].  

 

 

4.3 Theoretical Analyses and Simulations 

4.3.1 Theoretical Analysis of Dual BST Varactor Circuit Topology 

In order to analyse the nonlinear behaviour of the BST varactor, a curve fitting method is 

initially applied to the measured nonlinear capacitance-voltage (C-V) data of a BST thin film 

interdigital capacitor on r-plane sapphire substrate. Consequently, a 16
th

 degree polynomial 

equation which perfectly fit the measured data is given by  

              (1) 

where Ko, K2 … K16 are the coefficients of the polynomial and V is the sum of bias voltage, 

Vdc and RF voltage, v. Since a BST varactor has a symmetrical C-V curve [132], the odd-order 

terms (K1(Vdc + v), K3(Vdc + v)
3
, K5(Vdc + v)

5
, …..) in (1) are neglected. The expression in (1) 

is further verified by providing an excellent agreement to the nonlinear C-V BST varactor 

model proposed in [132], where the fringing capacitance, Cf is taken into account. The 

comparison between the polynomial equation in (1) and the measured data is shown in Figure 

4.2 and the polynomial coefficients in Table 4.1. 

Generally, the capacitance of a varactor is expanded by a power series as a function of the 

incremental voltage v and can be expressed as  

              (2) 

The polynomial expression in (1) is then converted into the form of (2) and the value of each 

coefficient (C0, C1 and C2) is extracted with respect to its incremental voltage, v. These 

coefficients are subsequently substituted into the well-established closed-form IM3 expression 
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of a varactor diode [133], where it is found that this expression is also ideal for the analysis of 

a BST varactor. 

 

 

 

Figure 4.2: Polynomial expression in comparison with the measured data of the interdigital 

BST capacitor. 

 

 

Table 4.1: Polynomial coefficients and their corresponding capacitance values. 

 

 

 

 

 

 

 

Coefficient Capacitance Value 

(pF) 

K0 0.2867 

K2 -4.59806x 10
-4

 

K4 1.56378x 10
-6

 

K6 -3.9907x 10
-9

 

K8 6.67387x 10
-12

 

K10 -6.98047x 10
-15

 

K12 4.37173x 10
-18

 

K14 -1.49413x 10
-21

 

K16 2.13837x 10
-25
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IM3 is defined as the ratio of the magnitude of the third-order distortion component to the 

fundamental signal. Recently, this IM3 expression has been slightly modified from [133] to 

perfectly fit the simulated data and is given by  

 

             (3) 

 

where Vo is the peak value of each fundamental output voltage and, A1(jω1) or A1(jω2) and 

A3(jω1, jω1, -jω2) are the first-order and third-order Volterra coefficients. These Volterra 

coefficients are derived as 

 

              (4) 

 

 

              (5) 

 

where  

              (6) 

 

and the second-order Volterra coefficient, A2(jω1, -jω2) or A2(jω1, jω1) is derived as 

 

              (7) 
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The simplifications in the above equations are a slight modification in (3) for redefining 

the IM3 in terms of the average output power, Pav to match the simulated data. Also, the 

exclusion of the inductance, L as observed in (4) to (7) from the original equations in [133] 

are needed to implement the two circuit topologies proposed: the “dual” and “series dual” 

BST varactor circuits. The ideal single BST varactor circuit topology is illustrated in Figure 

4.3 and its coefficients are tabulated in Table 4.2. 

 

 

 

 

 

 

 

Figure 4.3: Ideal schematic of the single BST varactor circuit topology. 

 

Table 4.2: Coefficients of ideal single BST varactor circuit topology. 

 

 

 

 

 

 

 

 

  

 

Coefficient Polynomial Expression 
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14

 + K16(Vdc)
16

 

 

C1 

 

2K2(Vdc) + 4K4(Vdc)
3
 + 6K6(Vdc)

5
 + 
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 + 
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K2 + 6K4(Vdc)
2
 + 15K6(Vdc)
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 + 

28K8(Vdc)
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 + 45K10(Vdc)
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 + 

66K12(Vdc)
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 + 91K14(Vdc)
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 + 

120K16(Vdc)
14
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In an ideal case, the values of the second- and third-order coefficients, C1 and C2 in (5) 

should be zero in order to eliminate the IM3 in (3). In reality, this is difficult to achieve 

especially when dealing with the nonlinear behaviour of BST and the fabrication tolerances 

must be considered. However, by implementing the dual and series dual BST varactor circuit 

topologies, the IM3 for each topology can be significantly reduced. 

In order to reduce the second-order coefficient, C1, the ideal dual BST varactor circuit 

topology is introduced as shown in Figure 4.4. The concept of this topology is to integrate two 

identical BST varactors in a parallel mode with opposite bias voltages applied (anti-parallel 

topology). Since the nonlinear C-V curve of the BST is symmetrical, either varactor can be 

forward or reverse biased, yielding the term “dual” topology. The DC blocking capacitor 

decoupled the varactors for individual biasing. Theoretically, by applying opposite bias 

voltages, the nonlinearity of one varactor will cancel the other and this will lead to the perfect 

cancellation of C1. 

The ideal dual BST varactor circuit topology coefficients in Table 4.3 have subscripts 

“left” and “right” indicating the position of the varactors in the topology and the capacitance 

of each is half of the single varactor for comparison. Also, the negative voltage, -Vdc is 

applied to the right varactor. Here, it can be observed that C1 is perfectly cancelled out due to 

the sum of C1left and C1right. The sums of “left” and “right” of similar coefficients are then 

substituted into (3) to (7) to compute the IM3. 

MAPLE and ADS software were utilised to compute the IM3 equations and simulate the 

dual topology respectively. The MAPLE code for this procedure can be found in Appendix B. 

Two – tone signals, 1.80 GHz and 1.81 GHz were used. Here, the measured BST varactors 

with capacitance values of ~0.3 pF at 0 V were defined and the varactors were swept from -40 

V to 40 V.  
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Figure 4.4: Ideal schematic of the dual BST varactor circuit topology. 

 

Table 4.3: Coefficients of ideal dual BST varactor circuit topology. 
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The IM3 theoretical model and simulated results show excellent agreement. For the dual 

topology in Figure 4.5, it can be observed that the nulls are lower compared to the single 

topology at specific bias voltages, indicating minimum C1. The first null can be achieved at 

±9 V with an average of 10 dB linearity improvement. The second null can be observed at 

±36 V with 13 dB linearity improvement. Hence, by proper tuning at a low voltage of ±9 V, a 

significantly low theoretical IM3 can be achieved.  

For further theoretical analysis, Figure 4.6 depicts an ideal case with matched varactors. As 

C1 of the single topology increases, the corresponding C1 of the dual topology maintains zero 

when biased from 0 to 10 V. This contribution of C1 clearly degrades the IM3 level of the 

single compared to the dual topology where the null occurs at 9 V. 

In the next section, with the introduction of a new topology, an improved IM3 is expected 

over all bias voltages.  

 

 
Figure 4.5: The third-order intermodulation distortion of model and simulated results for the 

dual BST varactor circuit topology. 
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Figure 4.6: (a) The numerical simulation of C1 and (b) closer view of the IM3 from 0 to 10 V 

for single and dual BST varactor circuit topologies. 

 

(a) 

(b) 
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4.3.2 Theoretical Analysis of Series Dual BST Varactor Circuit 

Topology 

In order to reduce both the second- and third-order coefficients, C1 and C2, the ideal series 

dual BST varactor circuit topology is implemented as shown in Figure 4.7. This topology is 

proposed to further reduce the nonlinearity in the dual topology. It has two identical BST 

varactors in series with opposite bias voltages applied (anti-series topology) and, in parallel 

with another identical set, yielding the term “series dual” topology.  

In Table 4.4, the coefficients are summed up for the anti-series connections. Here, it can be 

observed that C1 is perfectly cancelled out and C2 is reduced significantly. For matched BST 

varactors in anti-series connections, the total capacitance equation is derived as [133] 

 

              (8) 

 

where the anti-series connections coefficients are:              ,           and         . 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Ideal schematic of the series dual BST varactor circuit topology. 
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Table 4.4: Coefficients of ideal series dual BST varactor circuit topology. 

Coefficient Polynomial Expression 

C0left_sum [K0 + K2(Vdc)
2
 + K4(Vdc)

4
 + K6(Vdc)

6
 + K8(Vdc)

8
 + 

K10(Vdc)
10

 + K12(Vdc)
12

 + K14(Vdc)
14

 + K16(Vdc)
16

] / 2 

C0right_sum [K0 + K2(Vdc)
2
 + K4(Vdc)

4
 + K6(Vdc)

6
 + K8(Vdc)

8
 + 

K10(Vdc)
10

 + K12(Vdc)
12

 + K14(Vdc)
14

 + K16(Vdc)
16

] / 2 

C1left_sum 0 

C1right_sum 0 

C2left_sum 1/8[K2 + 6K4(Vdc)
2
 + 15K6(Vdc)

4
 + 28K8(Vdc)

6
 + 

45K10(Vdc)
8
 + 66K12(Vdc)

10
 + 91K14(Vdc)

12
 + 

120K16(Vdc)
14

][1 – [1.5[2K2Vdc + 4K4(Vdc)
3
 + 6K6(Vdc)

5
 + 

8K8(Vdc)
7
 + 10K10(Vdc)

9
 + 12K12(Vdc)

11
 + 14K14(Vdc)

13
 + 

16K16(Vdc)
15

]
2
 / [K0 + K2(Vdc)

2
 + K4(Vdc)

4
 + K6(Vdc)

6
 + 

K8(Vdc)
8
 + K10(Vdc)

10
 + K12(Vdc)

12
 + K14(Vdc)

14
 + 

K16(Vdc)
16

][ K2 + 6K4(Vdc)
2
 + 15K6(Vdc)

4
 + 28K8(Vdc)

6
 + 

45K10(Vdc)
8
 + 66K12(Vdc)

10
 + 91K14(Vdc)

12
 + 

120K16(Vdc)
14

]]] 

C2right_sum 1/8[K2 + 6K4(Vdc)
2
 + 15K6(Vdc)

4
 + 28K8(Vdc)

6
 + 

45K10(Vdc)
8
 + 66K12(Vdc)

10
 + 91K14(Vdc)

12
 + 

120K16(Vdc)
14

][1 – [1.5[2K2Vdc + 4K4(Vdc)
3
 + 6K6(Vdc)

5
 + 

8K8(Vdc)
7
 + 10K10(Vdc)

9
 + 12K12(Vdc)

11
 + 14K14(Vdc)

13
 + 

16K16(Vdc)
15

]
2
 / [K0 + K2(Vdc)

2
 + K4(Vdc)

4
 + K6(Vdc)

6
 + 

K8(Vdc)
8
 + K10(Vdc)

10
 + K12(Vdc)

12
 + K14(Vdc)

14
 + 

K16(Vdc)
16

][ K2 + 6K4(Vdc)
2
 + 15K6(Vdc)

4
 + 28K8(Vdc)

6
 + 

45K10(Vdc)
8
 + 66K12(Vdc)

10
 + 91K14(Vdc)

12
 + 

120K16(Vdc)
14

]]] 

 

 

Figure 4.8 depicts the numerical simulation of C2 which clearly indicates a significant 

reduction for the series dual compared to the single topology when biased from -40 to 40 V. 

For the series dual topology in Figure 4.9, it can be observed that the entire IM3 level has 

dropped significantly compared to the single topology. A 13 dB improvement can be achieved 

at 0 V and at higher bias voltages, an average of more than 40 dB improvement, starting from 

the first null at 20 V. The lower IM3 achieved in this topology is due to C1 and C2 being 

minimized. 

Since measured BST capacitance values with slight tolerances between them were 

implemented in both dual and series dual topologies, the perfect cancellation of the second-
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order term or much lower third-order term could not be achieved. However, linearity 

improvements can still be realised.  

 

Figure 4.8: The numerical simulation of C2 from -40 to 40 V for single and series dual BST 

varactor circuit topologies.  

 

 

Figure 4.9: The third-order intermodulation distortion of model and simulated results for the 

series dual BST varactor circuit topology. 
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4.4 Measurements and Analyses 

The selected IDCs discussed in Section 4.2 were mounted on a 20 x 32 mm
2
 Rogers 

RO4003C board with a dielectric constant, εr of 3.38. Two diced chip varactors were 

positioned between the 50 Ω microstrip signal lines and ground planes, and integrated in a 

dual BST varactor circuit topology. On another board, four diced chip varactors were 

integrated in a series dual BST varactor circuit topology. Each diced chip had three varactors 

in array (two varactors as spares) with a footprint of 1.5 x 2 mm
2
. On both boards, a 22 pF 

surface-mount technology (SMT) capacitor decoupled the left-hand and right-hand sides of 

the chip varactors for biasing purposes. These varactors were wirebonded to the external 50 Ω 

signal and ground Au-plated Cu microstrip lines. The circuit board was mounted on an 

aluminium block for mechanical stability. The Device Under Tests (DUTs) for both 

topologies are shown in Figure 4.10.  

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Device under tests of the (a) dual and (b) series dual BST varactor circuit 

topologies.  

 

The DUTs for both topologies were initially designed in ADS software, including the 

microstrip lines, bondwires and SMT capacitors and simulations were performed. Figure 4.11 

shows the board design of the dual BST varactor circuit topology. The IM3 was then 

measured by applying two-tone input signals at 1.80 GHz and 1.81 GHz and input power of 

(a) (b) 
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16 dBm. The frequencies were chosen to accommodate the measurement setup which 

operated within the frequency range of interest. The schematic of the measurement setup is 

illustrated in Figure 4.12: it consisted of signal generators, amplifiers, bandpass filters, 

isolators, a power combiner, bias tees, power supplies, an attenuator and a spectrum analyser. 

Power amplifiers were used to generate sufficiently high input power levels to enable the BST 

varactors to produce IM3 peaks above the noise floor. Each power amplifier had a built-in 

isolator to prevent the signals from reflecting back to it and the signal generators. Also, the 

isolator helped to avoid possible leak-through from one signal generator to another [151]. 

Insertion losses between 0.5 dB to 1 dB were achieved when the DUTs were connected 

between the bias tees. The whole measurement setup is shown in Figure 4.13. The setup 

parameters for the Agilent E4405B spectrum analyser are shown in Table 4.5. 

 

 

 

Figure 4.11: The board design of the dual BST varactor circuit topology. 
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Figure 4.12: The schematic of the third-order intermodulation distortion measurement setup. 

 

 

 

Figure 4.13: The measurement setup. 
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Table 4.5 : The setup parameters for the Agilent E4405B spectrum analyser. 

 

Parameter Value 

Resolution Bandwidth (RBW) 1 kHz 

Video Bandwidth (VBW) 300 Hz 

Frequency span 10 MHz 

Noise floor 110 dBm 

 

For the dual topology, the IM3 simulated and measured results are shown in Figure 4.14 

with the BST varactors biased up to ±25 V. The measured first null is achieved at ±13 V, a ±4 

V shift from the ideal value. However, good agreement is observed where the general trend of 

reduced distortion is realised. A 5 dB deviation at higher voltages starting from 20 V between 

the simulated and measured data is also observed.  

In Figure 4.15, the entire IM3 level has dropped about 5 dB for the series dual topology 

compared to the dual topology at 0 V. The measured first null was achieved at ±20 V with a 

±8 V shift from the ideal value, although good agreement is observed. The general trend of 

much-reduced distortion compared to the dual topology is realised. In comparison with Figure 

4.9, the first null of this simulated result becomes significant at ±13 V due to the extra 

“islands” introduced in the circuit. These islands are small area of microstrip lines which 

serve as negative nodes for opposite biasing of the varactors. 

The voltage shifts in both topologies were caused by the degradation in the tunability of 

the BST varactors due to the compression of the C-V curves resulting from the high input 

power levels [22]. As shown in Figure 4.16, the compression of the C-V curves for the single 

BST varactor due to a continuous increase in input power levels, results in the degradation of 

its tunability. It can be observed that as the input power increases from 0 to 30 dBm, the peak 

capacitance (Cmax) at 0 V starts to compress. In Figure 4.17, the nulls shift to higher voltages 

as the input power increases. As observed, the first nulls are shifted to 9, 11 and 15 V for 20, 
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25 and 30 dBm respectively.  An alternative to reduce this degradation is to increase the 

stacking of the BST varactors, similar to [19]. 

 

 

Figure 4.14: The third-order intermodulation distortion of simulated and measured results for 

the device under test of dual BST varactor circuit topology. 

 

 

Figure 4.15: The third-order intermodulation distortion of simulated and measured results for 

the device under test of series dual BST varactor circuit topology. 
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Figure 4.16: Compression of the C-V curves for the single BST varactor due to increasing 

input power. 

 

 

 

Figure 4.17: Shifting of the nulls in the dual BST varactor circuit topology due to increasing 

input power. 
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The dual topology C-V curve is compressed further, compared to the series dual topology 

due to the larger RF swing across the varactors, resulting in a broader C-V curve. A broader 

C-V curve tends to have better IM3 which contributes to a higher third-order intercept point 

(IP3). This justified the slight deviation between the simulated and measured data at higher 

voltages in Figure 4.14.  

Several single bondwires were also used on the DUTs, mainly in the series dual topology, 

which contributed to the parasitic inductances and degraded the IM3 level. Figure 4.18 shows 

the simulation which confirmed the effects of these inductances that degraded the IM3 level 

by 6 dB at 0 V. 

Further, the simulation results are often affected by finite convergence limits especially at 

high input power and may limit their accuracy. 

 

 

 

Figure 4.18: Bondwire effects which degraded the linearity. 
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4.5 Conclusions 

This chapter has presented a novel method for the theoretical analysis of the IM3 in BST thin 

film IDCs on r-plane sapphire substrates. A polynomial equation was initially derived from 

the measured BST varactor C-V curve data and all the relevant coefficients (C0, C1 and C2) 

were extracted and substituted in a slightly modified IM3 equation, which is ideal for the 

analysis of a BST varactor. 

The comparison between the IM3 theoretical model and simulated results showed excellent 

agreement for both dual and series dual BST varactor circuit topologies. Significantly low 

nulls were achieved in both topologies compared to the single BST topology as the varactors 

were carefully biased up to ±40 V. A significant improvement of IM3 at all bias voltages was 

also achieved in the series dual topology compared to the single and dual topologies, with a 

13 dB improvement at 0 V.  

Low IM3 was experimentally demonstrated in both dual and series dual BST varactor 

circuit topologies. The measured first nulls were achieved at ±13 V and ± 20 V for the dual 

and series dual topologies respectively with ±4 V and ±8 V shift from their ideal values. The 

voltage shifts were caused by the degradation in the tunability of the BST varactors, due to 

the compression of the C-V curves as confirmed through simulation. The C-V curve of the 

dual topology, however, was compressed further due to larger RF swing across the varactors. 

The performance degradation due to several bondwires especially in the series dual topology 

was also confirmed through simulation, which explained the reason for only a 5 dB 

improvement compared to the dual topology at 0 V. 

However, the high linearity achieved in these BST circuit topologies has the potential to be 

implemented into SoS technology. The r-plane sapphire is found to be a suitable orientation 

for the growth of a very thin silicon layer. The integration of BST and silicon technologies 
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can be realised by depositing the BST early in the process before any metallization is done; 

hence it is unlikely to affect the SoS process. 

In the next chapter, the 1 dB compression point of BST varactors is investigated. 

Parametric analysis of the BST varactor geometry in terms of its finger gap, width, length and 

number of fingers was performed. The relationships between the optimised C-V curves and 

their 1 dB compression points were then analysed via circuit simulations and measurements. 
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Chapter 5 

Barium Strontium Titanate Thin Film 

Varactors with High 1 dB Compression 

Points 

 

 

5.1 Introduction 

As highlighted in Chapter 2, the body of literature relating to the investigation of power 

handling capability (PHC) of BST varactors is currently limited [22-25]. These studies, 

however, did not emphasize the importance of the 1 dB compression point of BST varactors. 

More importantly, the relationship between the tunability and the 1 dB compression point of 

BST thin film varactor has not been studied in detail. The 1 dB compression point is defined 

as the power level at which the output power of a nonlinear device reduces by 1 dB from its 
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ideal linear response. At this point, the gain response of the device is reduced by a specific 

amount. 

This chapter aims to develop BST thin film varactors with high 1 dB compression points 

fabricated on c-plane sapphire substrates. The research objective is to analyse the effect of 

varying the geometry of the BST interdigital capacitor (IDC) in terms of its finger gap, finger 

width, finger length and also the number of fingers on the shape of the nonlinear C-V curves. 

The shape of the C-V curves will certainly become narrower or broader, depending on the 

geometry selections. The relationships between the optimised C-V curves and their 1 dB 

compression points are subsequently shown by simulations and measurements. 

 

 

5.2 The 3D Modelling of BST Interdigital Capacitor  

The BST IDC was initially modelled in Computer Simulation Technology (CST) software 

with the parameter specifications given in Table 5.1. The IDC with the same specifications for 

700 nm BST layer was previously fabricated on c-plane sapphire substrates, achieving ~56 % 

tunability [6]. The measured capacitance values were then used to accurately determine the 

corresponding dielectric constants from 0 to 40 V for the simulation setup which will be 

discussed in the next subsection. 

In this research, for the first time the BST thin films were deposited on c-plane sapphire 

substrates using the Kurt J. Lesker RF magnetron sputterer at RMIT University. As reported 

in Chapter 3, a thickness of ~400 nm was consistently achieved in all samples. Note that this 

is the maximum BST thickness that the sputterer could deposit. The samples were then post-

annealed in vacuum oven and air and IDCs were fabricated on the samples using the mask 

with fine geometries as mentioned in Chapter 3.  
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Table 5.1: The parameter values of the modelled BST interdigital capacitor. 

Parameter Value 

Finger gap: fG (µm) 2 

Finger width: fW (µm) 5 

Finger length: fL (µm) 130 

Number of fingers: fN 8 

BST film thickness: hbst (µm) 0.7 

Sapphire thickness: hsub (µm) 1.4 

Electrode thickness: helec (µm) 2.5 

Sapphire dielectric constant: εr 10.2 

 

5.2.1 Modelled Structure of 700 nm BST Layer Varactor 

The initial model of the BST varactor on sapphire substrate is shown in Figure 5.1. The BST 

interdigital capacitor geometry which consisted of finger gap (fG), finger width (fW), finger 

length (fL) and number of fingers (fN) was designed on top of a BST layer on sapphire 

substrate. The values of these parameters are tabulated in Table 5.1. In the CST Microwave 

Studio, the IDC was designed with perfect electric conductor (PEC) electrodes and pads in an 

enclosed shielded structure. Two full plane ports were defined and boundary conditions of 

perfectly electric conducting walls were assigned at each side of the structure as depicted in 

Figure 5.2. The size of the waveguide port should be reasonably large enough to incorporate a 

significant part of the varactor fields. A port size that is too large may cause higher order 

waveguide modes to propagate in the port which results in very slow energy decays in the 

transient and sharp spikes in the frequency domain simulations respectively. However, a port 

size which is too small may cause degradation of the S-parameter‟s accuracy or even 

   



103 
 

 

 

Figure 5.1: (a) Side view and (b) cross section of the modelled BST interdigital capacitor 

geometry.  

 

 

 

Figure 5.2: The boundary conditions with perfect electric conducting walls at each side of the 

modelled device structure. 
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instabilities of the transient solver [152]. Therefore, the easiest method of defining the ports 

which covers the entire boundary face of the device structure is to use the Full Plane option.  

Depending on the type of structure to be simulated, the transient (time domain) solver and 

frequency domain solver are typically chosen to calculate the S-parameters. A transient solver 

is more suitable to simulate any kind of S-parameter or antenna problem and with the 

broadband simulation, the S-parameters for the entire desired frequency range could be 

achieved. The frequency domain solver is the fastest tool when it comes to calculating a small 

number of frequency samples and, to reduce simulation time, a broadband S-parameter 

simulation with adaptively chosen frequency samples is performed [152]. Since the device 

structure is a nonlinear frequency dependent BST varactor, the frequency domain solver was 

chosen for this type of simulation. 

Before simulating the structure, the type of mesh must be considered due to its strong 

influence on the accuracy and speed of the simulation. The types of meshes which are 

typically selected are hexahedral mesh and tetrahedral mesh. In this case, tetrahedral mesh 

was implemented across the structure with local mesh refinements around the area of the 

electrodes as depicted in Figure 5.3. If hexahedral mesh is implemented, it may produce a 

large overhead in the number of elements for that part of the computational domain that does 

not require a fine mesh. For a small-scaled geometry such as the interdigital capacitor, 

tetrahedral mesh is more suitable as it does not include many mesh cells and can resolve the 

thin structure locally [152]. A total of ~27000 mesh elements were applied across the entire 

structure. The simulation was subsequently performed by sweeping the dielectric constant of 

the defined BST thin film from 560 to 115 which correlated to the bias voltage from 0 to 40 V 

of the measured BST varactor. The simulated and measured C-V curves at 10 GHz are shown 

in Figure 5.4 where excellent agreement is achieved.  
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Figure 5.3: Tetrahedral meshing with mesh refinements across the area of the modelled 

interdigital electrodes (a) Side view and (b) enlarge view of the tetrahedral 

meshing across the electrodes. 

 

 

Figure 5.4: Simulated and measured C-V curves of the BST varactor at 10 GHz.  
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5.2.2 Parametric Analysis of the Modelled Structure 

In this subsection, parametric analysis was performed by varying the IDC geometry and the 

changes in the shape of the nonlinear C-V curves were analysed. The aim of this analysis was 

to optimise the IDC parameter values for defining three distinct C-V curves: narrow, broad 

and intermediate curves.  

In Figure 5.5, the finger gap (fG) is varied from 1 to 10 µm while the other parameters are 

held constant at fW = 5 µm, fL = 130 µm and fN = 8. As observed, fG becomes insignificant 

above 8 µm and the smallest value of 1 µm is considered due to the fabrication limitation of 

the lithography equipment in RMIT University. It is observed that as fG increases, the C-V 

curve becomes broader and the capacitance value drops over the entire tuning voltage range. 

This indicates a significant reduction in the tunability when fG increases with the peak 

capacitance (Cmax) drops from 2.77 to 1.3 pF.  Also as observed, there is a significant drop in 

Cmax when fG increases from 1 to 2 µm with a 0.8 pF difference. The significant difference 

could be attributed to the higher confinement of DC and microwave fields [2] in the BST film 

of the 1 µm which resulted in a much higher tunability than the 2 µm.  

Figure 5.6 shows that as the finger width (fW) varies from 1 to 10 µm while the other 

parameters are held constant at fG = 2 µm, fL = 130 µm and fN = 8, the C-V curve becomes 

broader. However, the capacitance value increases uniformly over the entire tuning voltage 

range with Cmax increases from 1.63 to 2.3 pF. This also indicates that by increasing fW, it 

causes a much lower tunability.  
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Figure 5.5: The nonlinear C-V curves by varying the finger gap from 1 to 10 µm. 

 

 

 

Figure 5.6: The nonlinear C-V curves by varying the finger width from 1 to 10 µm. 
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In Figure 5.7, a similar increasing capacitance value trend is shown. When finger length 

(fL) varies from 90 to 150 µm with constant parameters at fG = 2 µm, fW = 5 µm and fN = 8, 

Cmax increases from 1.45 to 2.2 pF. In contrast to Figure 5.6, the C-V curve becomes narrower 

although this behaviour has a slight impact on the tunability, which is about 4 % rise from 90 

to 150 µm.  

Figure 5.8 also indicates that by varying fN from 4 to 12 with constant parameters at fG = 2 

µm, fW = 5 µm and fL = 130 µm, Cmax increases from 0.95 to 2.97 pF and the C-V curve 

becomes narrower. However, this trend has a slight impact on the tunability, which is about 

2% rise from 4 to 12.  

 

 

 

Figure 5.7: The nonlinear C-V curves by varying the finger length from 90 to 150 µm. 

 

 

 

 



109 
 

 

Figure 5.8: The nonlinear C-V curves by varying the number of fingers from 4 to 12. 

 

 

5.3 The 1 dB Compression Point of BST Varactor 

From the parametric analysis shown in the previous section, the narrow, broad and 

intermediate C-V curves were considered and the 1 dB compression point for each curve was 

determined. The IDC geometry for each case was optimised with Cmax value preserved at     

~2 pF as depicted in Figure 5.4.  

Table 5.2 shows the optimised parameter values for each case. For the narrow curve, the 

IDC geometry was chosen to achieve the highest tunability of 73 %. This was well in 

agreement with [2] where the highest degree of confinement of DC and microwave fields in 

the BST film can be realised due to fg ≈ fw with the smallest values. The IDC geometry for the 

broad curve was chosen to achieve the lowest tunability at 28 %. In this case, the lowest 

confinement of DC and microwave fields in the BST film was realised due to the largest 

values of fg and fw. Figure 5.9 shows the electric field distributions between the gaps of the 

electrodes for the narrow and broad varactors. As observed, high intensity of E-fields   



110 
 

Table 5.2: Parameter values for the narrow, broad and intermediate C-V curves. 

Parameter Narrow Broad Intermediate 

Finger gap: fG (µm) 1 8 3 

Finger width: fW (µm) 1 10 5 

Finger length: fL (µm) 110 150 160 

Number of fingers: fN 8 8 8 

Simulated 

capacitance 

(pF) 

0 V 1.96 1.95 1.99 

40 V 0.534 1.4 0.9146 

Simulated tunability 

(%) 

72.76 28.2 54 

 

 

 

 

Figure 5.9: Electric field distributions between the 1 µm and 8 µm gap varactors. 
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Figure 5.10: Narrow, broad and intermediate nonlinear C-V curves. 

 

(indicated with dark orange colour) occurs between the 1 µm gaps while considerably less E-

fields intensity is expected between the 8 µm gaps. The IDC geometry for the intermediate 

curve achieved a tunability of 54 %. All the curves are depicted in Figure 5.10. 

The data in Figure 5.10 was subsequently compared to the established nonlinear C-V BST 

varactor model [132] via a curve-fitting function in MATLAB. A very good fit was achieved 

and important parameter values of the fringing capacitance (Cf) and the “2:1” voltage (V2) 

were extracted. Using Agilent Advanced Design System (ADS) software, this nonlinear 

model along with the extracted parameter values were substituted into a nonlinear equation-

based capacitor of a simple two-port series network as designed in Figure 5.11. The 

simulation was then performed by varying the input power from -10 to 50 dBm and the 1 dB 

compression point for each C-V curve was determined. 

Figure 5.12 shows the 1 dB compression points for the narrow, broad and intermediate C-V 

curves. As observed, the broad curve achieves the highest 1 dB compression point at 41 dBm 

compared to the narrow and intermediate curves at 29 and 32 dBm respectively. Even though   
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Figure 5.11: The nonlinear equation-based capacitor in a two-port series network for 

determining the 1 dB compression point. 

 

 

 

Figure 5.12: The 1 dB compression point of the narrow, broad and intermediate C-V curves. 
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the broad curve could withstand higher input power levels, it is compensated by having the 

lowest tunability. In contrast, the narrow curve compresses at lower input power levels but 

achieves the highest tunability. However, a BST varactor with reasonably high tunability and 

1 dB compression point could be realised with the intermediate curve. 

 

 

5.4 Measurements of 400 nm BST Layer Varactors  

All the optimised C-V curves were realised in the physical form of varactors. The narrow, 

broad and intermediate varactors were fabricated on the deposited 400 nm BST layer grown 

on c-plane sapphire substrate. The details of the material deposition and fabrication process 

were comprehensively discussed in Chapter 3. Figure 5.13 shows the fabricated BST thin film 

varactors. Microwave measurements were performed and the results for all three varactors are 

tabulated in Table 5.3. As mentioned in Section 5.2, there was a limitation with depositing the 

BST thickness using the sputterer machine; hence, all the varactors were fabricated on the 

deposited 400 nm BST layer.  

Figure 5.14 shows the measured and simulated C-V curves for all three varactors. As 

observed, the measured Cmax (0 V) for all varactors were lower than ~2 pF of the equivalent 

simulated results and the tunabilities were also degraded due to the broader shape of the 

curves. The major constraints identified were the constraint of the deposited BST thickness 

and, strain-induced film due to the existence of oxygen vacancies which contributed to the 

lower tunability of the varactors. The deposition of different BST thickness would definitely 

change the varactors‟ performances. In this case, thinner film usually has a higher tensile 

strain and reduced grain size, which contributes to the lower dielectric constant. However, it 

was reported that the BST thickness could be optimised to achieve strain-relieved film with 

the highest tunability [9]. Post-annealing the film in air as conducted in Chapter 3 assisted in 
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improving the quality of the film, making it more crystalline and significantly reducing strain 

in the film.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: (a) The whole fabricated BST thin film varactors with different geometries on c-

plane substrate, (b) the narrow varactor and (c) the intermediate and broad 

varactors. 

 

Table 5.3: The performance of the measured narrow, broad and intermediate varactors at 10 

GHz. 

Type of varactor Narrow Broad Intermediate 

Bias Voltage (V) 0  40  0 40 0 40 

Capacitance (pF) 1.4805 0.7365 0.4927 0.463 1.0876 0.8219 

Q-factor 8.74 20.76 16.3 24.6 12.6 22.23 

Tunability (%) 50.25 6.04 24.4 

(a) 

(b) (c) 
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Figure 5.14: The comparison between the nonlinear C-V curves of the measured (M) and 

simulated (S) narrow, broad and intermediate varactors. 

 

The measured data for all varactors from Figure 5.14 were compared to the established 

nonlinear BST model and substituted in the network similar to Figure 5.11. Simulation was 

performed and the 1 dB compression point for each varactor was extracted as depicted in 

Figure 5.15.  

Table 5.4 shows the relationships between tunabilities and 1 dB compression points for all 

measured and simulated varactors. As observed, the tunabilites of the measured varactors had 

dropped by 20 to 30 % compared to their respective simulated varactors. It is evident that 

Cmax along with the tunability for each varactor had changed due to the 400 nm BST layer. 

However, the extracted 1 dB compression points for the measured varactor results were 

comparable to the simulated results. These results revealed that the slight thickness difference 

did not have a significant impact on the 1 dB compression points. Although the intermediate 

varactors had a 4.6 dB difference between them, this could be attributed to the much broader 

curve of the measured intermediate varactor and a slight fabrication issue. The relationship 
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between the tunability and the 1 dB compression point is still valid; the varactor with the 

highest tunability produces the lowest 1 dB compression point while varactor with the lowest 

tunability produces the highest 1 dB compression point. 

 

 

Figure 5.15: The 1 dB compression point of the measured narrow, broad and intermediate 

varactors. 

 

 

Table 5.4: The relationships between tunabilities and 1 dB compression points of the 

varactors. 

Type of 

varactor 

Narrow Broad Intermediate  

Comparison Simulated Measured Simulated Measured Simulated Measured 

Tunability (%) 72.76 50.25 28.2 6.04 54 24.4 

1 dB 

compression 

point (dBm) 

29 30.4 41 41.3 32 36.6 
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5.5 Conclusions 

This chapter has presented the relationship between the tunability and the 1 dB compression 

point of a BST varactor. The interdigital capacitor was modelled using CST software and a 

parametric analysis was made of its geometry by varying the finger gap, finger width, finger 

length and number of fingers in the specified design range. The effects on the shape of the 

nonlinear C-V curves were analysed for each parameter variation and three distinct C-V 

curves of narrow, broad and intermediate curves were subsequently produced. The 1 dB 

compression points for the optimised C-V curves were finally extracted from simulation.  

For the equivalent varactors fabricated on the 400 nm BST layer, the measured tunability 

for each varactor was much lower than the simulated results due to deposition limitation and 

strain-induced film. However, the 1 dB compression points extracted for all three measured 

varactors were still comparable with the simulated results. These BST varactors have the 

potential to be implemented in high power microwave systems, possibly by integrating them 

with standard semiconductor chips and form hybrid modules such as system-on-chip (SoC). 
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Chapter 6 

Conclusions and Future Work 

 

 

During the course of this research, the author has investigated the large signal performance of 

nonlinear BST thin film varactors for agile microwave device applications. The focus was 

primarily on two important device parameters for large signal microwave applications: 

linearity and power handling capability. Most existing research work has concentrated on 

enhancing the tunability and lowering the microwave loss of BST thin film varactors to be 

implemented in many microwave devices, but only a few reports have discussed the large 

signal performance of these varactors.  

In this research, the BST thin film varactors were fabricated on both r-plane and c-plane 

sapphire substrates since these materials exhibit very low loss at microwave frequencies, 

present close lattice match to BST thin film which enables epitaxial growth and have a 

relatively low cost. The r-plane orientation is also being implemented in silicon-on-sapphire 

(SoS) technology and this opens up the possibility of integrating BST thin film with the 

existing semiconductor technologies.  
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In this final chapter, summaries of the results established throughout this thesis are 

presented and the major findings of this research are highlighted. Also, potential future works 

are discussed.   

 

 

6.1 BST thin films on c-plane sapphire substrates 

A few deposition runs of BST thin films on c-plane sapphire substrates were established for 

the first time using the Kurt J. Lesker RF magnetron sputterer at RMIT University. The 

deposited BST thin films were from a stoichiometric Ba0.6Sr0.4TiO3 target and through SEM 

analysis, BST thickness of ~400 nm was consistently achieved in all samples with the 

sputtering conditions held constant for every deposition run.  

X-ray diffraction (XRD) analysis revealed peaks which corresponded to the cubic 

perovskite BST phase with no indication of secondary phase formation. The BST samples 

experienced a loss of crystallinity when post-annealed in vacuum oven for 10 minutes and an 

hour due to the existence of oxygen vacancies in the films. X-ray photoelectron spectroscopy 

(XPS) analysis confirmed the presence of defects or deformations in the crystal structure of 

the BST thin films with decreased at. % of Ba and Ti and increased at. % of O in both 

annealed samples. However, the BST sample post-annealed in air for 2 hours resulted in an 

improved crystallinity of the film with preferred (110) orientation and increased at. % of Ba 

and O due to the incorporation of oxygen in the film.   

Interdigital capacitors were fabricated on both unannealed and annealed samples and 

microwave measurements of S11 were performed. For the annealed samples in a vacuum 

oven, their tunabilities were achieved at ~18 % which was similar to the unannealed samples, 

indicating no improvement in the crystallinity of the films. These results revealed that strain-

induced films due to the presence of oxygen vacancies affected the performance of the BST 
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varactors. However, tunability of ~50 % was obtained in the sample annealed in air. For 

practicality, tunability of  at least 50 % and Q-factor of minimum 20 can readily compete with 

other established silicon and MEMS technologies and this was achieved with the BST 

varactor of strain-relaxed films.  

 

 

6.2 Low Third-Order Intermodulation Distortion in 

BST Thin Film Varactors 

The author has investigated the first important device parameter which was linearity of the 

BST thin film varactors. A novel method for the theoretical analysis of the IM3 in BST thin 

film IDCs fabricated on an r-plane sapphire substrate was established. The BST thin films on 

r-plane sapphire substrates were initially deposited using pulse laser deposition (PLD) 

technique and tunability of ~43 % and Qmin of 13.4 were achieved.  

A polynomial equation was derived from this measured C-V curve and converted into the 

general nonlinear capacitor equation. The important coefficient values obtained were then 

substituted into the well-known IM3 theoretical model for varactor diodes, which was found 

to be ideal for the BST varactor analysis. The IM3 equation, however, was slightly modified 

by redefining it in terms of the average power, Pav to perfectly match the simulated data. The 

exclusion of the inductance values from the mathematical expansions of this equation were 

also necessary to implement the two circuit topologies proposed, the “dual” and “series dual” 

BST varactor circuits for linearity improvement. 

For both circuit topologies, the IM3 theoretical model and simulated results showed 

excellent agreement. Significant low nulls were achieved compared to the single BST 

varactor circuit topology when biased up to ±40 V. In the series dual topology, the entire IM3 
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level dropped significantly with 13 dB linearity improvements at 0 V compared to the single 

and dual topologies. Low IM3 were also experimentally demonstrated where the measured 

first nulls were achieved at ±13 V and ±20 V for the dual and series dual topologies 

respectively. The voltage shifts were caused by the degradation of their tunabilities due to the 

compression of their C-V curves. The IM3 levels in both topologies were also degraded due to 

the parasitic inductances caused by the bondwires. However, these results demonstrated the 

potential for incorporating these highly linear BST varactors in SoS technology. 

 

 

6.3 BST Thin Film Varactors with High 1 dB 

compression points 

The author has investigated the second important device parameter which was power handling 

capability of the BST thin film varactors. The relationship between the tunability and the 1 dB 

compression point of the BST varactor was established. The BST IDC was initially modelled 

using CST software with specified parameter values based on the measured devices fabricated 

on a c-plane sapphire substrate. Parametric analysis was demonstrated by analysing the 

effects of varying the IDC geometry (which includes finger gap, finger width, finger length 

and number of fingers) on the shape of the C-V curves.  

The optimised C-V curves were determined with the narrow, broad and intermediate curves 

producing tunabilities of 73 %, 28 % and 54 % respectively. All the C-V curves data were 

compared to the established nonlinear BST model using the curve-fitting function in 

MATLAB and important parameter values were extracted. The model along with the 

parameter values were subsequently implemented in a nonlinear equation-based capacitor of a 

two-port series network designed in ADS software. Simulations were performed and the 1 dB 
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compression points at input power for the narrow, broad and intermediate were determined at 

29 dBm, 32 dBm and 41 dBm respectively.  The relationship was established: the varactor 

with the highest tunability was compensated by having the lowest 1 dB compression point and 

varactor with the lowest tunability produced the highest 1 dB compression point.  

The optimised C-V curves were realised in the physical form of varactors. The narrow, 

broad and intermediate varactors were fabricated on BST grown on c-plane sapphire 

substrate. The 1 dB compression points achieved were comparable to the simulated results 

even though a slight reduced thickness was identified as one of the major constraints.    

 

 

6.4 Future work 

There are several opportunities for potential future work identified by the author as 

summarised below. 

 It is possible to reduce the effect of parasitic inductances resulting from the multiple 

bondwires used in the dual and series dual BST varactor circuit topologies through a 

microfabrication process. The whole device structure of both topologies could be 

fabricated and integrated on a single chip. This would not only downscale the size of 

the device but also save space and cost.      

 The highly linear BST thin film varactors achieved could be integrated with tunable 

microwave devices such as a bandpass filter. The linearity performance of the filter 

could be improved at the desired frequency range by properly tuning the biasing 

voltages of the varactors. This filter could potentially replace several fixed microwave 

devices in the RF front-end where highly linear reconfigurable circuits are crucial in 

both transmit and receive applications.  
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 The uniformity of the BST thin film plays a significant role in the performance of 

varactors. Non-uniform thin film would result in different tunability and Q-factor for 

varactors fabricated on the same wafer. Some confidence can be achieved from the 

sputtered BST layer on c-plane sapphire substrates as demonstrated by the author, 

which consistently produced ~400 nm thickness in all samples for several deposition 

runs. A feasible deposition process that could reproduce high quality BST thin films, 

i.e. smooth and dense with minimal defects, is needed to obtain enhanced dielectric 

properties that are consistent across a single wafer and between wafer lots [1].  

 The integration of BST thin films with semiconductor technologies via the SoS 

process is an interesting topic which requires extensive investigation. The successful 

deposition of BST thin films on a very thin layer of Si (~100 nm) grown on r-plane 

sapphire substrate [153] could pave the way for the integration of reconfigurable BST 

microwave devices with SoS technology in the near future. 
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Appendix A 

MATLAB Code for Capacitance and Q-

factor Extraction from Measured S-

parameter Data 

 

% Extract frequency dependent R,C from S-parameter data 

 C_i = 0.1; % capacitance guesstimate in pF 

L_i = 0.1; % inductance guesstimate in nH 

R_i = 0.1; % 1 Ohm guesstimate 

Z_o = 50; 

  

% Parasitic values 

C_p = 0.0022; % pad parasitic capacitance in pF 

L_p = 0.0317; % pad parasitic inductance in nH 

R_p = 0.1650; % pad equivalent resistance in Ohms 
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 NumPoints = 1601; % number of points in s2p file 

  

%Read input file 

fid=fopen('A1UM140V.txt','r'); 

[freq,s11_m,s11_a,s12_m,s12_a,s21_m,s21_a,s22_m,s22_a]=textread('A1UM140V.txt','%f%

f%f%f%f%f%f%f%f',-1); 

fclose(fid); 

  

%s11_dB=10*log10(1./((s11_m).^2)); 

%s11_cplx=s11_m.*exp(j.*(pi/180)*s11_a); %port 1 

s11_dB=10*log10(1./((s22_m).^2)); 

s11_cplx=s22_m.*exp(j.*(pi/180)*s22_a); %port 2 

  

R_vec=zeros(1,1601); 

C_vec=zeros(1,1601); 

Q_vec=zeros(1,1601); 

  

for(index=1:NumPoints) 

r=real(s11_cplx(index,1)); 

i=imag(s11_cplx(index,1)); 

z_r=real( Z_o*(1+s11_cplx(index,1))/(1-s11_cplx(index,1)) ); 

z_i=imag( Z_o*(1+s11_cplx(index,1))/(1-s11_cplx(index,1)) ); 

y_r=real( (1/Z_o)*(1-s11_cplx(index,1))/(1+s11_cplx(index,1)) ); 

y_i=imag( (1/Z_o)*(1-s11_cplx(index,1))/(1+s11_cplx(index,1)) ); 

omega=2*pi*freq(index,1)*1E+9; 

'V=[R;C]'; % Open, DUT 
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%'V=[R;L]'; % Short 

  

% Open Standard 

%F=inline('[((1+(((V(2)/1E+12).^2)*(omega.^2)*((V(1).^2)-

(Z_o.^2))))/(1+(omega.*(V(2)/1E+12)*(V(1)+Z_o)).^2))-r;(((-

2*omega.*(V(2)/1E+12).*Z_o)./(1+(omega.*(V(2)/1E+12).*(V(1)+Z_o)).^2)))-

i]','V','omega','Z_o','r','i'); 

%InitialGuess=[R_i;C_i]; 

%Options = optimset('TolX',1E-10,'TolFun',1E-8); 

%XY=fsolve(F, InitialGuess, Options, omega,Z_o,r,i); 

  

%Short Standard 

%F=inline('[((V(1))/( (1-

(omega.^2)*(V(2)/1E+9)*C_p/1E+12).^2+(omega*V(1)*C_p/1E+12).^2 ))-z_r;(( 

omega*(V(2)/1E+9) - omega*(V(1).^2)*(C_p/1E+12)-

(omega.^3)*((V(2)/1E+9).^2)*C_p/1E+12 )./( (1-(omega.^2)*(V(2)/1E+9)*C_p/1E+12).^2 + 

(omega*V(1)*C_p/1E+12).^2 ) )-z_i]','V','omega','C_p','z_r','z_i'); 

%F=inline('[((V(1))/( (V(1)).^2 +(omega*V(2)/1E+9).^2 ))-y_r;((omega*C_p/1E+12)+(( -

omega*(V(2)/1E+9) )./( (V(1)).^2 + (omega*V(2)/1E+9).^2 )) )-

y_i]','V','omega','C_p','y_r','y_i'); 

%InitialGuess=[R_i;L_i]; 

%Options = optimset('TolX',1E-10,'TolFun',1E-8); 

%XY=fsolve(F, InitialGuess, Options, omega,C_p,y_r,y_i); 

 % DUT 

F=inline('[(((omega.^2)*(R_p+V(1))*((V(2)/1E+12).^2))/((1-

(omega.^2)*(L_p/1E+9)*(V(2)/1E+12)).^2+(omega*(R_p+V(1))*(V(2)/1E+12)).^2))-
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y_r;((omega*(C_p/1E+12))+((omega*(V(2)/1E+12)-

(omega.^3)*(L_p/1E+9)*(V(2)/1E+12).^2 )/((1-

(omega.^2)*(L_p/1E+9)*(V(2)/1E+12)).^2+(omega*(R_p+V(1))*(V(2)/1E+12)).^2)))-

y_i]','V','omega','R_p','L_p','C_p','y_r','y_i'); 

InitialGuess=[R_i;L_i]; 

Options=optimset('TolX',1E-10,'TolFun',1E-12); 

XY=fsolve(F,InitialGuess,Options,omega,R_p,L_p,C_p,y_r,y_i); 

  

R_vec(1,index)=XY(1,1); 

C_vec(1,index)=XY(2,1); 

Q_vec(1,index)=1/(omega*XY(1,1)*(XY(2,1)/1E12)); 

Z_vec(index,1)=(1/Z_o)*((XY(1,1)+1/(j*omega*(XY(2,1)/1E12)))); 

end 
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Appendix B 

MAPLE code   

 

B.1 Single and Dual BST Varactor Circuit 

Topologies 
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B.2 Series Dual BST Varactor Circuit Topology 
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