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Abstract 

Significant research effort has been carried out on the detection of chatter which is 

one of the main barriers preventing milling of metals. Chatter is the biggest factor 

affecting stability of the machining process. The phenomenon is characterized by 

low quality of cutting surface, cutting tool failure and noise. Chatter directly affects 

the productivity of the machining process. The current state of the art chatter 

detection techniques is unable to satisfy industry requirements in terms of in-

process chatter detection.  

This study reports on a new novel experimental method for the prediction of chatter 

based on the chaos theory. Sensor-signal driven reconstructed phase space attractor 

is used in the proposed method. The variation of Poincaré sections of the 

reconstructed phase space attractor is able to identify the transition of the machining 

system from a stable to an unstable condition, continuously during the milling 

process.  Two mathematical tools are used to measure the variation of Poincaré 

sections they being; image correlation and a designed regression model. Image 

correlation uses Poincaré sections as a pattern and the computation of Pearson’s 

coefficient assists to develop a chatter threshold boundary.  

Titanium is chosen as the main material in this research, as chatter is more 

applicable during cutting of titanium due to its specific mechanical properties. 

Moreover, the method is used in detection of chatter during milling of stainless steel 

and aluminum in order to demonstrate that the method can detect chatter not only 

during cutting of titanium, but also in milling of other metals. The new method can 

be used to detect chatter on-line, as it is independent of the cutting parameters and 

dynamics of the milling process, and can be integrated in the cutting machines. The 

method does not need expensive equipment and complex process, so it can be easily 

used in normal production workshop environment. 

While a regression model computes the trend of changes in the Poincaré sections 

and gives a numerical output value indicating the state of the system without the 

necessity to have an analytical relationship between the cutting parameters and the 
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milling dynamics. A threshold value of the trend value defines the boundary 

between the stable and unstable state of the milling process. These mathematical 

tools can be used in expert software to monitor the milling process on-line and 

detect the onset of chatter. The chatter detection method is validated for different 

materials, cutting tools, and cutting parameters. 
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Machining process is commonly used in production of metallic parts to produce 

complex shapes and geometries. The main challenge in the machining of metal 

products is achieving a high metal removal rate (MRR). Achieving to high values of 

MRR is now possible by applying advance technologies in the manufacturing of 

machine tool and cutting tools, and still have a reasonable tool life [1]. However, 

the dynamic interaction between machine tool and workpiece causes self-excited 

vibration, or chatter, which is the main barrier limiting the machining process.  

Chatter, or self-excited vibration, is the main reason for causing tool failure and 

poor quality cutting surfaces. The occurrence of chatter has to be detected during 

the cutting process in order to stop the process before chatter harms the workpiece. 

Early chatter detection will increase the efficiency of production, which is the aim 

of this study. Chatter can occur while machining any material. Titanium, due to its 

material properties, is the most difficult metal to machine in regards to the chatter 

phenomenon. Accordingly, this study focuses on titanium machining, but with 

extended work on other materials such as stainless steel and aluminium.  

Wide ranges of products can be manufactured by using milling and turning 

processes. Accordingly, a brief introduction about the dynamics of machining 

processes, particularly turning and milling, is outlined. The reason why chatter 

occurs during these machining processes is also discussed.  

1.1 Machining Process 

Machining is a kind of manufacturing process that produces a product from raw 

material by cutting it into the desired shape and size. The material removal is 

controlled during the machining process manually or numerically by computer 

(CNC- computer numerical control). Based on the characteristic of generating a 

certain geometry and surface the machining operation is usually classified as one of 

5 types, as shown below. 
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 Turning, 

 Milling, 

 Drilling, 

 Boring, and 

 Grinding. 

A machining process is described by a set of parameters known as the cutting 

parameters. Cutting speed is presented as the rate of passing raw material through 

the cutting tool, and is expressed in units of (m/min) or (ft/min). Spindle speed is 

described as the rotational movement of the spindle, which is expressed in 

(rev/min). In axial direction machining, the feed rate is the distance moved by the 

tool in an axial direction at each movement of the workpiece (e.g. rotation in 

turning and linear movement in milling). The thickness of material removed from 

the workpiece is defined by depth of cut. In turning processes, the depth of cut is 

only measured in radial direction, whereas in milling it is measured in both axial 

and radial directions in milling process. 

The dynamics of the cutting process is directly affected by the force generated in 

the cutting process. The generated force provides a dynamical interaction between 

the workpiece and machine tool and impacts the machining quality [2]. The 

dynamics of two cutting processes, milling and turning, and the origin of chatter 

occurrence in these processes are outlined, as chatter is more common in these two 

machining methods comparing to other machining processes. 

1.1.1 Turning  

In turning, the cutting tool moves along the longitudinal axis parallel to the axis 

of the workpiece while the workpiece rotates. Considering cutting tool and 

workpiece being rigid, the cutting force (F) is applied into the cutting edge, 

where it resolved into normal (Fn) and tangential (Ft) components, as shown in 

Figure 1.1. A third vector can also be considered for the cutting force along the 

workpiece axis; however, it is not necessary for describing or analysing the 
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dynamics of the process. In an ideal turning process, Chip thickness and chip 

width are constant during the process [3]. 

 

Figure 1.1: Cutting force applying from cutter during the turning process. 

 

On the other hand and in real turning, the cutting tool is affected by the 

interaction between large mechanical stresses and high temperatures. Thus, 

edges are gradually worn down, and in extreme cases, it leads to premature 

destructive failure [4]. Variation in chip thickness, is caused by cutting speed and 

vibration frequency and this affects the dynamics of the turning process [5]. Both 

chip thickness variation and chip breakage create some variation in cutting forces 

and disturb the steady cutting forces during the process. Due to the disturbance in 

cutting force the machine tool structure generates a displacement between 

workpiece and cutting tool, which leads to variations in the cutting parameters. 

The interaction between the workpiece and machine tool along with the 

dynamics of the cutting process represents a closed loop system. Any instability 

in this closed loop creates a self-excited vibration in the process, which is the 

major constraint preventing highly productive turning processes [6].  



Chapter 1 

7 | Page 
 

1.1.2 Milling 

The milling process is the most common form of the material removal process in 

order to produce goods with precision features like holes, slots, pockets, as well 

as 3-D surface contours. The milling process is able to provide high tolerance 

and excellent surface finish. The shape of the product can also be arbitrary [7]. 

For this purpose, a rotating cutting tool is use d to cut into a stationary workpiece 

by moving the workpiece linearly into the cutting tool.  

Chip thickness in a milling operation is also a function of the rotation angle, 

whereas it is constant during a stable turning operation [8]. Cutting force (F) 

(Figure 1.2) is also a function of the cutting angle in the milling process. Cutting 

force depends on the cutting parameters such as chip thickness, the area of cut 

(length and width), cutting tool angle, total specific cutting energy per unit 

volume, and the numbers of flutes that are instantly engaged in the cutting 

process [9]. Therefore, the expression of cutting force is complicated due to the 

numerous and involved parameters.  

 

Figure 1.2: Cutting force applying from cutter during the milling process. 
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The cutting tool produces crescent-shaped chips as the cutting tool loses contact 

with the workpiece in transition between each cutting flute. Accordingly and 

compared to the turning process, a combination of discontinuous cutting and the 

rotation of the cutting edge makes milling dynamics more convoluted [10]. 

Chatter in the milling process is a nonlinear phenomenon that is caused by the 

variation in cutting force due to intermittent contact between cutting tool and 

workpiece. 

1.1.3 High Speed Machining 

Machining is efficient when MRR is maximized, while achieving a high surface 

quality. The machining removal rate is dependent on spindle speed, axial and 

radial depth of cut, and also feed rate [11]. To achieve a high MRR, Salomon 

[12] proposed a new machining process called high-speed-machining. Based on 

this method, by increasing the speed of machining five to 10 times more, chip 

thickness and interface temperature decreases significantly, while using a smaller 

cutter. This technique reduces the process time, cost, mechanical stress, 

workpiece temperature, and improves surface finish, while using smaller cutting 

tools with better dynamical stability. Consequently, the cutting force will be 

decreased by using this technique [13]. 

The appropriate range of speed for having stable process during high speed 

machining of different materials varies and depends on the mechanical properties 

and machinability of the material. Considering titanium as main material in this 

research, the spindle speed starts from 4000 to 10,000 rpm for stable high speed 

milling [14]. Hence, the spindle speed for high speed machining of stainless steel 

can be started from 5000 to 10,000 rpm [15] and from 7000 to more than 10,000 

rpm for aluminium [16]. 

Despite the above advantages, some drawbacks limit the application of high-

speed machining. There is a vibration that may occur when the frequency of 

tooth passing causes of the entire system comprised of cutting tool, workpiece, 

and fixture to also vibrate as the same frequency [1]. This vibration mode is 
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called forced vibration. In this situation, cutting tool, guide ways, and spindle 

bearing wear quicker, which leads to higher cost [17].  

1.2 Chatter 

Based on the oscillating behaviour of dynamical systems such as machining, 

vibration is classified as one of three types, namely; free, forced, and self-excited 

vibration. During the machining process, self-excited vibration is the most harmful 

in cutting process in that it oscillates the system at its natural frequency [18]. It is 

characterized by creation of a mechanism in the dynamical system that guides 

system into vibrating at its own natural or critical frequency [19]. The vibration 

frequency found in forced vibration is equal to the excitation frequency, whereas it 

is equal to the system’s natural frequency in self-excited vibration. 

Self-excited vibration, which is known as chatter in machining operation, is the 

most important source of instability and is caused by a positive feedback 

mechanism leading to dynamic instability of the cutting process. Chatter affects 

productivity and quality of surface, and generates noise in the workplace. Chatter 

causes unusual tool wear, damage of tooling structure, wear of spindle bearings, and 

poor dimensional accuracy of the work piece [20]. Chatter can cause sudden 

breakage of the cutting tool during milling operations which causes workpiece 

surface damage. In fact, production output rate is highly affected by the extent of 

rejected or re-machined parts [21]. Accordingly, chatter is considered the most 

adverse type of vibration and is the main barrier against the effective milling of 

parts. It is more obvious in high speed machining. 

Chatter is characterized by chaotic motions between the cutting tool and the 

workpiece [22]. It occurs when chip width is larger relative to the dynamic stiffness 

of the system [23]. Stephenson and Agapiou [18] outlined that; cutting force, dry 

friction, built up edge on cutting tool, metallurgical variations in workpiece 

material, and regenerative effects as the factors that produce chatter during 

machining. Dynamics of chatter is strongly dependent on cutting conditions such as 

workpiece material, dynamics of the machine tool, and spindle tool [24]. During 
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certain cutting conditions, the interactions between cutting tool and workpiece are 

illustrated by large amplitude vibrations, which is a drawback to achieving a high 

quality surface finish. The undesirable motions result in wavy surfaces on the 

workpiece, inaccurate dimensions, and excessive tool wear [25]. 

Chatter is classified further as primary and secondary chatter [11]. Primary chatter 

is usually caused by the cutting process [26]. The frictional, mode coupling, and 

thermo-mechanical chatters are dependent on the cutting process, consequently they 

are considered as a kind of primary chatter [27]. Primary chatter is important 

especially in peripheral milling operations such as thin-wall milling processes 

where the radial immersion of the cutting process is a small percentage of the cutter 

radius. A small radial immersion rate may result in non-continuous contact between 

cutting tool and workpiece, and this cutting process is a nonlinear dynamic system 

[28]. Furthermore, self-excited vibration sometimes occurs due to the regeneration 

waviness of the workpiece surface, which is called secondary chatter [29]. 

Regenerative chatter occurs when the cutting tool passes through the waves 

remained on the surface of the workpiece from previous cutting run, and previous 

surface history is reintroduced to the cutting edge [30].  

1.2.1 Chatter in Machining of Titanium 

Industries always desire to use materials with the ability to produce cost effective 

and high performance products. Accordingly, titanium is increasingly in demand, 

particularly in the aerospace, automotive, sport, and biomedical industries.  

Titanium and its alloys are non-ferrous metals with excellent corrosion 

resistance, fatigue properties, high strength-to-weight ratios [31], and good 

ductility [13]. Moreover, titanium represents good durability in harsh 

environments [32]. The specific weight of titanium is approximately two thirds 

of steel and higher than aluminium with similar strength as steel [33]. This 

physical property assist manufacturers to reduce the weight of products without 

loss of strength [34]. Furthermore, less fuel consumption would be the result of 

reduction of weight in vehicles with titanium parts [35]. 
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On the other hand, the mechanical and physical characteristics of titanium such 

as low thermal conductivity, low young modulus, as well as high chemical 

dependency to the cutting tool material induce some difficulties in cutting of 

titanium [36]. During machining of titanium, the low Young’s modulus and high 

yield stress ratio of titanium cause small plastic deformations in the workpiece. 

The workpiece keeps springing back against the cutting force and causes rubbing 

between the cutting edges and enhances friction. Friction increases temperature 

at the cutting area and the segmented chips that occur further increases the 

fluctuation of cutting forces [33, 37]. As mentioned above, a high cutting force 

created between workpiece and cutting tool produces self-excited vibration or 

chatter [13]. The forces that are induced by chatter also cause tool failure [38].  

1.2.2 Chatter in Machining of Stainless Steel 

Stainless steel has a broad range of engineering applications due to its excellent 

properties of corrosion resistant, formability and strength. The high corrosion 

resistant allows stainless steel to be used in severe environments [39]. Its 

resistance to heat in demonstrated by low scaling and ability to retain strength at 

high temperatures [40]. It has a non-porous surface coupled with the easy 

cleaning ability making it the primary choice for applications which require strict 

hygiene control. Its strength to weight advantage that allows it to be used with a 

reduced material thickness compared to other materials, often generates cost 

savings [41]. The ease of  fabrication due to the use of modern steel 

manufacturing techniques allows stainless steel to be cut, machined, fabricated, 

welded, and formed as readily as traditional steels [42].  

However, stainless steels have common weakness of chatter occurrence during 

machining, similar to titanium [43]. Low quality surface finish and short cutting 

tool life are common issues encountered during machining of stainless steel [44]. 

So due to the wide usage of stainless steel in industry, especially in food and 

chemical industry, it is chosen as one of the materials for investigation of the 

applicability of the proposed method to predict the onset of chatter. 
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1.2.3 Chatter in Machining of Aluminium 

Today in industry, aluminium is the second most useable metal after steel. 

Comparing to other non-ferrous metals, aluminium is produced far more than all 

other metals. light weight, corrosion resistance, formability, appearance, and 

recyclability are properties that make aluminium and its alloys most economical 

and attractive for a wide range of applications [45]. Aluminium has a density of 

about one-third of steel [46], which it assists to reduce weight of product in 

applications need low to medium strength. 

Similar to titanium and stainless steel, chatter is the main barrier encountered 

during machining of aluminium parts, too [47]. Accordingly, it is useful to detect 

chatter during aluminium machining processes. Its detection assists in 

developing cost effective production processes. To determine the boundary of 

chatter onset, similar to titanium and stainless steel, a set of experiments have 

been undertaken on aluminium workpieces with different cutting tools and 

cutting parameters. 

1.3 Goals of the Thesis 

Chatter, especially during machining of titanium, is the main barrier encountered in 

developing effective machining processes, noting that it is important to detect 

chatter before it occurs. Accordingly, chatter detection is a much discussed topic in 

the manufacturing field. Despite extensive research, there is still not a reliable 

detection method for industrial applications. This research aims to develop a new 

method to detect chatter on-line during milling processes, especially for titanium. 

Therefore, the aim and main contribution of this study are: 

1. A critical literature review of current chatter detection methods 

demonstrates that they are usually analytical or experimental methods to 

determine a boundary for choosing cutting parameters. Still industry suffers 

from lack of on-line chatter detection methods. Accordingly in this thesis, it 
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is aimed to develop a novel technique to predict chatter rather than detecting 

after almost happening, which will be applicable to industry. 

2. Current methods can only detect chatter when it has significantly developed 

and damaged the part. Therefore, it is noted the actual computation time of 

the chatter detection process plays an important role in proposing effective 

method of chatter detection. It means that a complex method, with a long 

computation time, is not desirable for industrial applications. Accordingly, 

this study aims to develop a simple method with a reasonably short 

computation time, so that it can be used to detect chatter on-line. 

3. The method aims to experimentally determine a boundary between stable 

and unstable milling processes, Therefore, a set of experiments was carried 

out to explore the criteria for detecting chatter prior to its occurrence. 

4. Titanium was the main metal used to develop the detection method. This 

material was chosen as the occurrence of chatter is more prevalent during 

machining of titanium. However, other materials, particularly stainless steel 

and aluminium were used to verify the criteria for other materials.  

5. Some production workshops employ highly skilled professional operators in 

order to prevent chatter, but these operators are not always available. Hence 

the possibility of human error must be considered when using these 

operators. The detection method should work simply and with readily 

accessible non-expensive equipment.  

1.4 Outline 

In chapter two, a literature review is presented. In this chapter, chatter detection 

techniques are classified under 5 different categories and are introduced and 

discussed. Furthermore, since most chatter detection methods use stability lobe 

diagrams to present their results, this aspect is introduced and discussed separately 

in chapter two. 
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Chapter three represents the experimental setup that is required to acquire consistent 

data from milling processes. The main factor in the design of the experiment is to 

acquire the pure vibration that occurs between the workpiece and the cutting tool. 

Hence, the milling process must be designed in a way that it runs in stable condition 

and continuously moves into the unstable condition. 

In chapter four, the methodology is explained. Phase space attractor Poincaré 

sections of the milling process are illustrated in different time intervals during the 

processing time.  

In chapter five and six, image correlation and linear regression are used to create the 

required numeric indicator by measuring the variation between the Poincaré 

sections. 

Chapter seven demonstrates the data analysis and results for milling of titanium, 

aluminium, and stainless steel under various milling conditions.  

In chapter eight, the conclusion and recommendations for future research are 

presented.



 

 

 

 

 

 

 

 

Chapter 2   

Chatter Detection Methods - A Review 
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2.1 Introduction 

In the first chapter, chatter was introduced as a phenomenon that occurs during 

machining processes due to interactions between workpiece and cutting tool. It is 

also the main barrier preventing development of highly productive machining 

processes, especially for machining of titanium. Much research has been done to 

understand the scientific nature of chatter through mathematical modelling of the 

cutting dynamics. Despite these research efforts on the detection, prevention, 

reduction and suppression, chatter still occurs during many machining processes.  

This chapter reviews in chatter detection techniques and their drawbacks and 

limitations. The review focuses on the ability of these techniques when they are 

applied in practice in a production workshop environment. The literature review 

forms the basis of establishing a new theoretical framework and methodological 

focus of the research. 

2.2 Chatter Detection Techniques 

In 1907, Taylor [48] introduced the term “chatter” for the first time. He introduced 

it as a kind of machining vibration, which causes poor machining process 

productivity. However, no significant research was done until middle of 1940’s, 

when Arnold [49] theoretically explained chatter generation as being negative 

damping. Afterwards, more studies were done in order to explain chatter, as well as 

detect it. Tobias and Fishwick [50] created a theoretical stability chart based on the 

process dynamics and the machine tool structure. Tlusty and Polacek [51] observed 

that the varying chip thickness in a lathe turning processes can dynamically affect 

cutting force, which in return vibration amplitudes will be increased. Olgac and 

Hosek [52] modelled the machining process as a root locus plot analysis of time 

delayed systems and proposed an active vibration suppression method.  

Detection of chatter assists in improving production efficiency of machining 

processes. Usually in workshop environments, highly experienced machining 
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operators are able to detect chatter by listening to the generated noise. However, it 

does have high rate of human error. Accordingly, many methods including 

analytical, numerical, and experimental have been proposed in order to better detect 

chatter. The methods focus on providing more machining productivity, and 

reducing human error. They are classified under five main categories. 

2.2.1 Time Domain 

Time domain methods use time-domain simulation of the machining process in 

order to assess the stability of the system. In these techniques, time behaviour of 

the machining process is evaluated by analysing mathematical functions or 

physical signals with respect to time [20]. For this purpose, the combination of 

cutting parameters and milling process vibration is numerically simulated by 

discretising the delayed differential equation (DDE) [53]. Insperger and Stepan 

[54] analysed the stability of the machining process by using the semi-

discretization method (SDM). In this method, time is discretised into equal time 

intervals. 

In the last few decades several methods have been proposed based on analysing 

time-domain of the machining process. In 1960’s, Tlusty [55] and Tobias [56] 

began the study of chatter with respect to the time domain with establishment of 

the basis of the regenerative chatter theory. Sridhar et al. [57] firstly introduced 

the time-varying directional cutting force coefficients in modelling the stability 

of the milling process. Budah and Ozlu [58] used a multidimensional model with 

precise process geometry to predict chatter in turning and boring operations by 

simulation. Fu et al [59] used a cantilever tool with extended length to 

investigate the effect of tool vibration on chatter occurrence. They were 

successful in developing a chatter suppression method using an adaptive pressure 

clamping interface. 

In several studies, physical or mechanical properties of the machining process 

are recorded and used to analyse the stability of the dynamical system. The 

sampling is usually based on the sampling rate of once per tooth or once per 
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revolution [60]. Nair et al. [61] detected the onset of chatter from recorded sound 

signals from turning processes by using permutation entropy. Schmitz et al. [62] 

and Bayly et al. [63] tried to detect chatter during milling processes by using the 

statistical variance in the once-per-revolution sampled audio signal. Time 

domain simulation was done in order to determine the variance in the once-per-

cutting tool revolution sampling rate. However in order to have enough data 

points for variance calculations, larger numbers of simulated cutting tool 

revolutions are required. 

The influence of chip thickness variation has been considered in many time 

domain based studies. During machining process, chip thickness varies and this 

leads to variations in the cutting force. Accordingly, the cutting force variation 

causes vibration, which further leads to the occurrence of chatter, if the cutting 

parameter combination is unfavourable [64]. In these methods, the simulation of 

milling process is involved to detect chatter, rather than using sampling 

technique. Zhongqun and Qiang [65] modelled the instantaneous chip thickness 

caused by tool vibrations by using a set of force equations. They were able to 

deduce those cutting conditions which avoided chattering. Wan and Zhang [66] 

calculated instantaneous uncut chip thickness and cutting force by instantaneous 

incorporation of the cutting tool and workpiece deflections, as well as immersion 

angle variation. The cutting force model was used as the basis for chatter 

detection. 

Another time domain based method simulates machining process by simulating 

Peak-to peak force. The peak-to peak force value is used to identify the limits of 

the stability during milling [67, 68]. In these studies, peak-to-peak force 

amplitude values are provided over a range of cutting conditions.  

The self-excited damping ratio is also a numeric value that is considered in time 

domain simulating methods in order to determine the boundary of stability in 

milling [69, 70]. Machine tool structure is a continuous, time-variant, nonlinear 

elastic structure. By definition of the damping ratio at when self-excited 

vibration happens, the response of the machine tool structure can be determined 

[60]. 
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Time domain methods have some advantages but processing issues prevent them 

being used effectively in the workshop environment. Time domain techniques 

can model the kinematics of milling and nonlinear effects such as the loss of 

contact between cutting tooth and workpiece [71], which is unavailable in linear 

stability analyses [72]. This provides a realistic simulation of milling and its 

instability, reducing the need to make a large number of assumptions [73]. In 

summary, time domain simulation methods can model kinematic and nonlinear 

effects of the milling process. 

Unfortunately, time-domain numerical simulation methods and experimental 

approaches are computationally time intensive and cannot be widely used in 

industries [74]. It is more useful when the methods are used to predict the chatter 

threshold boundary, and to do this a large number of simulation runs are required 

under different milling conditions. Each simulation has to run in a reasonably 

short time in order to effectively detect chatter [69]. Because they are successful, 

time domain methods are often used as a reference for other methods.  

2.2.2 Frequency Domain  

Frequency domain chatter detection methods analyse signal or mathematical 

functions related to the cutting process with respect to frequency [75]. They are 

based on the fact that the frequency of the forced and self-excited vibrations are 

unequal during the cutting process [60]. Altintas and Budak [76] were the 

pioneer researchers who used frequency domain to effectively detect the 

occurrence of chatter. They used Fourier series expansions of the periodic 

matrices truncated at the zeroth-order constant terms. The method was efficient 

and fast, however it was not able to predict the existence of the additional 

stability regions in the case of low radial depth cut for milling operation. Merdol 

and Altinas [10] did overcome this limitation by adding higher harmonics to the 

former method. This method was named multi-frequency solution.  

Fast Fourier Transform (FFT) is the simplest method for frequency domain 

detection of chatter during milling. In this method, the energy of chatter vibration 
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is reflected in the power spectrum diagram. From the power spectrum, it is 

possible to extract the tool passing frequency and its harmonic frequencies in 

terms of signal power. Harmonic frequencies are identified as multiplies of the 

tooth passing frequency. When chatter occurs, a frequency which is not a 

multiple of the tooth passing frequency can be identified as the chatter frequency 

[77]. This technique has been used to detect chatter in several studies. Toh [78] 

used FFT to analyse vibration of the cutting path orientations during rough and 

finish milling processes. For this purpose, he used the cutting force acquired 

during the milling process with new and worn cutters. Independent of the cutting 

tool condition, FFT analysis demonstrated minimum vibrations in the vertical 

upward orientation. Ding et al. [79] managed to transform the cutting force into 

the frequency domain by applying FFT. They identified chatter frequency by 

comparing its power spectrum with a predefined threshold. Schmitz et al. [80] 

proposed that the statistical variance in the once-per-revolution sampled audio 

signal be used as a chatter indicator. They evaluated their method by using a FFT 

chatter detection method 

Some frequency domain methods use cross-coherence to examine the 

relationship between two signals or data sets, and thereby to detect the chatter 

vibration. Dong et al. [81] suggested a chatter prediction method independent of 

cutting conditions using coherence analysis in the frequency domain. Li et 

al. [82] proposed cross coherence of two perpendicular acceleration signals in 

order to detect wear and chatter. Zaghbani et al. [83] used cross coherence to 

analyse the stability in robotic high speed machining of aluminium alloys.  

Several studies proposed using the entropy of the system as a tool to demonstrate 

the change of cutting dynamics caused by the onset of chatter [84]. Nair et al. 

[61] analysed the variation of permutation entropy (PE) using sound signal 

recorded with a microphone to detect the onset of chatter. Pérez-Canales et al. 

[85] used approximate entropy (AE) to monitor chatter. This method works 

based on the fact that unstable vibration is related to the emergence of random 

dynamics; hence stable vibration is dominated by regular periodic dynamics. 

Gradišek et al. [86] proposed using two entropy and coarse-grained information 
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rate to detect chatter automatically during grinding process. They calculated 

entropy from the power spectrum; and thereafter the coarse-grained information 

rate was calculated from fluctuations of a recorded signal.  

The spectrogram is other tool used in the frequency domain method to assist 

detecting the onset of chatter. This tool is a visual demonstration of 

the spectrum of frequencies in sound or other signals that usually vary with time 

[87]. As an example, Messaoud et al. [88] used time series analysis and 

multivariate control charts in order to monitor drilling processes. They showed 

by using a spectrogram how a system moves from a stable to a chatter state. 

Frequency domain techniques have many advantages for detection of chatter. 

Compared to time domain methods, they are reasonably fast and accurate except 

at very low radial immersions [63]. Of the frequency domain techniques 

available, FFT is the most used by researchers. The method provides good 

information about frequency of machining processes and in particular chatter 

frequency. But, it cannot provide information about prediction of chatter 

occurrence [89]. The frequency domain techniques indicate the chatter frequency 

is usually smaller than the tooth passing and harmonic frequencies. Accordingly, 

the outline chatter frequency cannot be used as a numeric indicator to predict 

chatter. Normally in frequency domain techniques, a large range of sampling 

rates is necessary to define the occurrence of chatter, although time domain 

techniques need only one sample per spindle revolution to define chatter [62]. 

Moreover, for frequency domain techniques, some approximations are needed to 

formulate the system [73].  

2.2.3 Wavelet Transform 

As mentioned above, the main shortcoming of frequency domain chatter 

detection methods is that the lack of related time information. To overcome this, 

time-frequency domain or Wavelet-based methods were proposed [90], which 

are able to provide significant resolution in both time and frequency domains 

[91].  
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Wavelet transforms were first applied to signal processing by Mallart in the 

middle of the 1980’s [92]. The application of wavelet transform has since then 

been rapidly developed and used in much engineering research such as [93, 94], 

in the field of signal processing [95], image processing [96], computer science, 

and mathematics [97]. It was also used to detect chatter during machining 

processes in many studies [98, 99]. 

Wavelet transform uses wavelet basic functions to analyse signals. To analyse 

signals in both frequency and time domains, the original signal is separated into 

two signals, which are named as the “detail” and “approximation” signals, and 

this procedure is called “wavelet decomposition”. The procedure is repeated at 

different levels. The wavelet basic function is then applied to analyse the signals 

formed in the levels [89].  

From the literature, chatter research has been mostly analysed by using one of 

four methods; continuous wavelet transform (CWT), discrete wavelet transform 

(DWT), the maximum likelihood method and biorthogonal method. Khraisheh et 

al. [100] particularly used continuous wavelet transform to analyse chatter 

signals observed during CNC lathe processes. It was an experimental technique 

which used cutting force and vibration signals in order to detect chatter. Bickraj 

et al. [101] also used continuous wavelet transformation to develop chatter 

analysis during milling operation of a plate. Abu-Zhara and Lange [102] 

presented an application of CWT to monitor chatter by analysing the ultrasound 

waves observed in turning. Using ultrasound sensor helps to easily monitor 

parameters such as the first contact of the cutting tool, tool chipping and tool 

flank wear. However, the sources of noise in the workshop environment can 

affect the accuracy of the proposed technique. 

Wang et al. [103] proposed to detect chatter based on discrete wavelet transform 

(DWT). Their method was a statistical analysis of Wavelet Transform Modulus 

Maxima (WTMM). This method describes the points that the wavelet transform 

of the signal is locally maximal at a corresponding time location. In this 

technique, noise must be removed before signal transformation. Besides this 

study, Huang et al. [104] analysed cutting force signals that are observed during 
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milling of titanium by using time domain, frequency domain, and time–

frequency domain techniques. In the time-frequency domain analysis, they used 

DWT to determine the value of cutting speed at the onset of chatter. Ji et al. 

[105] proposed a combination of the discrete wavelet transform with statistical 

estimations of the signal energy distribution in order to monitor drill wear, which  

occurs due to chaotic and unsteady characteristics during drilling. Fang et al. 

[106] used DWT to process vibration signals and thereby measure cutting 

vibrations. They demonstrated the effect of tool edge wear on the cutting 

vibrations during high speed milling of titanium. 

Maximum likelihood estimation is a statistical method that combination of 

maximum likelihood and wavelet transform provides a parameter estimation 

algorithm. This algorithm is appropriate in prediction, control or diagnosis of the 

state of a dynamic system [107]. As an example, Choi and Shin [108] used 

wavelet transform and maximum likelihood in order to detect chatter during both 

turning and milling processes.  

If wavelet transform is invertible not orthogonal, then a biorthogonal wavelet is 

applied in order to provide more degrees of freedom [109]. Berger et al. [110] 

identified stable and chatter states during turning processes by analysing bi-

orthogonal wavelet decomposition of the cutting force measurement. Cao et al. 

[111] detected tool breakage in end milling process using acoustic emission 

signals. They proposed a method based on the lifting scheme and the 

mahalanobis for the sample point evaluation. In this technique, they constructed 

a biorthogonal wavelet with an impact property. 

From the literature review it appears that wavelet transform is an effective tool 

for detecting chatter. The method can assist operator in early detection of chatter 

during the process [89]. It also provides more significant time and frequency 

resolution from the machining process, specifically in the low frequency band. 

Unfortunately, it cannot provide appropriate resolution in the high frequency 

band.  
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Definition of the number of levels of decomposition and the specific level is 

always a challenge in wavelet based methods, particularly when the chatter 

frequency is unknown. Detection of chatter is sensitive to the number of levels, 

accordingly the proposed methods cannot effectively detect occurrence of chatter 

when cutting condition changes [90]. Apart from being computationally time 

consuming, wavelet-based methods are also sensitive to signal shift and have 

poor directionality [112]. 

2.2.4 Stability Lobe Diagrams 

Illustrating the stability lobe diagram (SLD) is an effective tool which 

demonstrates the relationship between spindle speed and axial depth of cut in 

machining processes. SLD assists an operator to select spindle speed and axial 

depth of cut in a way that the machining process remains stable (as shown in 

Figure 1.3) [113]. The boundary between stable and unstable cutting regions is 

demonstrated with a set of lobes in diagrams. 

 

Figure 2.1: A typical stability lobes diagram. 
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Illustration of stability lobe diagrams were first introduced in the 1950s by 

Tobias [114], and Tlusty and Polacek [51]. They introduced the factor of 

regenerative chatter in an orthogonal cutting process and developed a set of 

diagrams to determine the stability region of the process. To generate stability 

lobes diagrams, a set of various experimental and analytical techniques are used. 

These methods are numerous and include the use of time domain, frequency 

domain, and time-frequency domain [76, 115, 116]. Pal Pandian et al. [117] used 

an analytical method to develop stability lobe diagram for machining of thin ribs. 

In the method, the frequency response function of the process was predicted 

along with real and imaginary parts. Thevenot et al. [118] developed 3D stability 

lobe diagrams for thin-walled structure milling in order to determine the stability 

regions.  

Stability lobe diagrams assist operators in choosing the most appropriate cutting 

parameters before running the machining operation. Successful milling depends 

very much on the process parameters used and hence accurate prediction of 

chatter, such that use of incomplete or inaccurate parameters may run the milling 

process into undesired chatter condition. 

2.2.5 Soft Computing 

Simulation of decision making capabilities similar to the human mind is the 

concept of soft computing methods such as Fuzzy Logic (FL), Artificial Neural 

Networks (ANN), evolutionary computation, etc. [119]. Zadeh [120] introduced 

the concept of soft computing as the fusion of methodologies designed to 

demonstrate solutions for problems that are not normally modelled 

mathematically. It has then been applied in different areas of science, particularly 

in engineering applications, such as [121-124]. Soft computing techniques have 

also been applied to detecting the state of systems during machining processes. 

For this purpose, fuzzy logic and neural networks techniques are widely used.  

Using normal binary logic, propositions can have a value of true or false; 

however fuzzy logic works based on degrees of true and not exactly true or false. 
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In fuzzy logic, the propositions are presented as a variable that can have the 

answer of true or false. The propositional variables are related to each other by 

connectives, hence the combination of connectives are described by fuzzy 

function [125]. The concept of fuzzy logic has been used to detect the stability of 

machining processes. Xu [126] developed a fuzzy logic control approach to 

suppress the occurrence of chatter by using a coherence function value 

associated with the vibration energy level. Sims et al. [127] investigated the 

chatter stability of milling processes using a fuzzy logic algorithm. They showed 

their method is able to solve process design problems with robustness, even 

given the uncertainty of the parameters. Kim and Jeon [128] designed a fuzzy-

logic controller which could adjust feed rate automatically during milling. In this 

case, the cutting force would be regulated by adjusting the feed rate and therefore 

control chatter occurrence.  

Artificial neural networks are a kind of computational models that are worked in 

a similar way that a human’s brain would performs a particular function. They 

replicate a system of interconnected “neurons”, which are able to compute values 

from inputs by feeding information through the network [129]. Neural networks 

have been used to predict the state of dynamic systems. Tansel et al. [130] used 

two trained neural networks in order to identify the harmonic acceleration signals 

and their frequency during cylindrical turning of long slender bars. This method 

predicted the occurrence of chatter. Lamraoui et al. [131] developed a 

methodology using neural networks to detect chatter during CNC milling. Pontes 

et al. [132] applied a radial base function neural network to predict roughness 

average for turning processes, which is an important factor for chatter detection.  

In general, soft computing models are close to how the  human mind works, with 

the advantages of them being linguistic, reasonably simple, comprehensible, fast 

in computation, and effective in practice [133]. Soft computing models are 

characterized as being knowledge representational and data acquisitional. 

Comparing the two main techniques in soft computing, fuzzy logic and neural 

network, both are applicable for nonlinear representation between inputs and 

outputs. However, fuzzy logic designs a process in order to define the 
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parameters, whereas in neural networks the process is developed by learning. 

Consequently, an operator can operate fuzzy systems easily compared to neural 

network models. On the other hand, the nonlinear function developed by neural 

networks is smooth, while the obtained function from fuzzy logic is rough [134]. 

Neural networks and fuzzy logic differ in the number of inputs they can have. 

There is no limitation for the inputs in neural networks, while fuzzy logic 

systems are limited to two or three inputs. 

Neural network models sometimes fail to explain the cause and result logically in 

the excitation response relationships, which affects the accuracy of the model 

[135]. Fuzzy systems also may miss adaptation capabilities for a long time [136]. 

In addition to these drawbacks, a large number of chattering experiments is 

required to train neural networks and much fine tuning and simulation is required 

for fuzzy systems in order for them to detect chatter. This limits the application 

of soft computing techniques for detecting chatter. Both fuzzy logic and neural 

networks can provide a chatter control system for milling operations [137, 138], 

but these cannot respond quickly to control cutting forces [91]. 

2.2.6 Topography 

The topography is a method which focuses on the cutting surface in order to 

detect chatter marks. In this technique, a profilometer is usually used in order to 

investigate the cutting surface. Demonstrating the application of profilometer in 

definition of chatter, Seguy et al. [139] used this method along with spindle 

speed variation in high speed milling processes to detect chatter. A 3-D 

Profilometer was used by them to measure the surface roughness. Surface 

roughness can be considered a parameter that has a direct effect on chatter 

occurrence. Accordingly, Nurul Amin et al. [140] minimized surface roughness 

by using cutter with uncoated WC-Co (tungsten carbon-cobalt) inserts. In this 

case, end milling of mild-carbon steel was carried out in a magnetic field which 

was provided by permanent magnets. They used a Profilometer to measure 

surface roughness during experiments.  
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The literature review demonstrates that a profilometer is usually used to detect 

chatter marks at the end of cutting processes [141, 142]. The proposed methods 

cannot predict chatter online during the machining process. Profilometer are 

generally used for approving or validating other chatter detection methods. 

2.3 The Application of Poincaré section in Definition of Stability 

Phase space attractor Poincaré section is another technique which is precisely 

explained in chapter 4. Its application in defining the state of machining processes is 

reviewed in this section.  

Phase space attractor Poincaré section is a tool that is able to determine the 

transition of a dynamic system from a stable state to an unstable condition. It has 

been applied to different dynamic systems such as machining processes. One of the 

first pioneers in using phase space attractor Poincaré section were Nayfeh and 

Balachandran [143]. They proposed this technique to show the stability of a 

nonlinear dynamic system by the variations that occur between sections. 

Rusinek et al [144] analysed the effect of nonlinearity on the stability of the 

regenerative model of machining processes by using the time delay technique and 

plotting the Poincaré sections. They examined the effect of cubic nonlinearity on 

the stability of chatter. Wiercigroch and Krivtsov [145] examined frictional 

dynamic models of milling with chatter occurring and used phase space analysis 

techniques to analyse orthogonal machining. They observed some unusual chaotic 

behaviour, the study of which could be used to improve machine tool design. 

Davies et al [146] measured tool deflections of high length-to-diameter ratio end 

mills and used Poincaré sectioning to identify chatter. In general, the method 

predicted the stability of high immersion cuts but was inconsistent in partial or low 

immersion cuts. Therefore, Schmitz et al [80] proposed using the audio signal 

variance as a chatter indicator. They extended the work of Davies et al [146] by 

including once-per-revolution sampling of the milling audio signal and statistical 

evaluation of the results. However, the results can be compromised if the 
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microphone used has limitations in bandwidth and if there is too much 

environmental noise. 

Zhao and Balachandran [147] studied the dynamics and stability of range of milling 

operations numerically and by experiment. They were able to identify chatter using 

Poincaré sections on the data stream. Liu et al [148] developed a simultaneous time-

frequency control theory to determine the various nonlinear dynamic instabilities 

including tool chatter and tool resonance which can be displayed by a multi-

dimensional, time-delayed micro-milling model. The unstable states were 

investigated using Poincaré section and instantaneous frequency. Under this time-

frequency control scheme, stable cutting was able to be achieved.  

Johnson and Moon [149] used the combination of Poincaré sections and false 

nearest neighbours to define the stability of the system during turning processes. 

The effect of loss of contact during milling has not been investigated because of the 

difference between the dynamics of milling and turning processes. The chip 

thickness is constant during turning process, while it is function of the rotation 

angle in milling processes [150]. Accordingly and as mentioned in the introduction, 

dynamic modelling in milling process is more complicated than turning, as the 

cutting forces change the direction of excitation and contact is lost continuously 

during the process [151].  

The above state of the art demonstrates that phase Poincaré section has been 

previously used in machining process in combining with other techniques to 

provide stability lobe diagrams, or to confirm the applicability of other chatter 

detection methods. It has not been used to directly define the occurrence of chatter 

on-line. 

2.4 Summary 

The state of the art review shows that numerous analytical and experimental studies 

have been done so far in order to provide an appropriate method for detection of 

chatter before it occurs. However, none of the methods researched so far can 
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effectively predict chatter occurring while the cutting process is progressing and 

cannot be used for online detection. The methods need expensive equipment or 

highly qualified professional employees. The methods are applicable in off-line or 

in laboratory conditions to provide stability lobes diagram. In the other hand, some 

methods are slow and time consuming. As a result, industry still suffers from the 

damages done by the chattering phenomenon. 

The Poincare section method seems to match what is required for predicting the 

behaviour of non-linear systems like the cutting process but there has been no 

record of exploiting this idea to chatter detection. Accordingly in order to overcome 

the limitations in the existing chatter detection methods, a novel method based on 

the analysis of non-linear systems and a more direct indicator for industry use is 

required. The method must be computationally fast and provide definite and clear 

criteria to detect the onset of chatter prior to its occurrence. 
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3.1 Introduction 

In this study, a new method for determining chatter threshold during milling 

processes is proposed. For this purpose, the vibration between the cutting tool and 

workpiece has to be acquired in the form of a signal. Accordingly, it is required to 

design a set of experiments in a way to ensure that the acquired signals are with the 

minimum amount of noise with no faults. 

This chapter discusses the most appropriate parameters and the sensors needed for 

acquiring the vibration between the cutting tool and workpiece during milling 

operation. The design of the experiment apparatus is also explained in detail. The 

signals will be analysed to determine the onset of chatter for different materials. The 

cutting processes are designed to run with normal speed as normal milling operation 

is general and run in most general production workshops. 

3.2 Research Methodology 

Before demonstration of experimental design, an overview of the research 

methodology is represented by a flow diagram to provide better understanding of 

the research aims. The flow diagram, which is shown in Figure 3.1, illustrates the 

overall organization of this research. It will improve the objective of the research 

and. also assist to understand research methodology clearly. 

3.3 Parameters Required  

For this study, two physical parameters must be acquired. In the early stage, the 

vibration between the cutting tool and workpiece has to be recorded, and this will 

be acquired by measuring acceleration. In addition the cutting force must be 

recorded in order to be used in the Fast Fourier Transform (FFT) method approving 

the proposed method of chatter detection. The methods of measuring these two 

parameters plus the required instruments are explained. 
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Figure 3.1: Overal research methodology flow-diagram 
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3.3.1 Acceleration 

To investigate chatter behaviour, displacement [152], velocity [153], sound, and 

acceleration [154] are usually acquired in order to measure the generated 

vibration between the cutting tool and workpiece. These parameters are recorded 

during the machining process, consequently they are analysed by different 

methods in order to detect chatter. Acceleration is the most useful one and from 

which can be determined both low and high frequencies during the process 

[155]. Comparing to other parameters such as displacement and velocity, the 

acceleration signal is not so easily affected by instrument noise at high 

frequencies, which makes acceleration one of the better vibration characteristics 

that can be measured.  

Accelerometer sensors are widely used to measure acceleration. They are tiny 

and provide a link between vibrating structures and electronic measurement 

equipment. They are installed on the surface or within the vibrating object. They 

contain a tiny mass that is suspended by flexible components that operate like 

springs. The movement of the accelerometer will cause the small mass to deflect 

proportionally to the rate of acceleration. Accelerometers can provide 

acceleration information in one or more axes.  

The accelerometer sensor (Figure 3.2) is chosen in this research to record 

vibration between the cutting tool and workpiece, due to: 

 they are robust, compact, and self-generating, 

 they have a large dynamic and wide frequency range, 

 they are relatively cheap, 

 they are easy to calibrate and use, hence they are relatively insensitive 

to environmental changes, 

 they are very reliable with long term stability, and 

 they can be used in any orientation to measure acceleration along the 

axes. 



Chapter 3 

35 | Page 
 

 

Acceleration Rate:              ±500g 
Sensitivity:             (±5%) 4 mV/g 
Freq. Response:        10-20000 Hz 
Connector:              4-pin neg. int. 
Mass:                                    2.5 gr 
Random Vibration, max:  
                                   ± 2000grms 

Figure 3.2: A tri-axial accelerometer Kistler 8694. 

Acceleration signal acquired by accelerometer is periodic during the milling 

process [156]. Hence, signal is time based and is able to indicate the vibration 

level in order to identify any problem during the milling process [157]. Signal 

can be illustrated in the form of time series x(t) as shown in Equation (3.1). x(t) is 

the output voltage of the accelerometer at time i with unit millivolts (mV).  

, , , … ,         (3.1) 

 

3.3.2 Cutting Force 

Before discussing the other equipment and devices required, the method of 

acquiring the cutting force will be outlined. In chapter 5, the Fast Fourier 

Transform method is applied to determine whether the proposed chatter 

threshold boundary is approved with Fast Fourier Transform. For this purpose, 

the FFT power spectrum of cutting force signal must be plotted to detect whether 

chatter occurs in the milling process, as well as establishing the definition of 

chatter frequency. Accordingly and in addition to the acceleration signal, the 

cutting force has to be acquired during the milling trial. The cutting forces along 

with the acceleration signal will assist in determining which direction is most 

appropriate for detection of chatter. 

Considering Figure 3.3, the force produced along cutting feed direction is named 

cutting feed force and is displayed by (Fx). Consequently, cutting force along 
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radial depth of cut is named radial cutting force (Fy) and cutting force along axial 

depth of cut is named axial cutting force (Fz). The literature review and 

observation from the acquired cutting force during the milling process indicate 

that the axial cutting force (Fz) is much smaller than other forces, cutting feed 

force and radial cutting force. Therefore, it cannot contribute to the chatter [158]. 

On the other hand, cutting feed force is larger than radial cutting force, when the 

chatter occurs [159].  

Similar observation has been gained from examining the acceleration signals in 

three cutting directions. Accordingly, chatter appears to be mainly affected by 

the acceleration signal along cutting feed. This signal is therefore considered in 

the analysing methodology. 

 

 

Figure 3.3: The schematic milling process demonstrating the cutting forces. 
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3.4 Experimental Hardware Arrangement 

Milling trials are performed using a HAAS 4-axis Milling Machine (Figure 3.4) in 

the advanced manufacturing laboratory located at Royal Melbourne Institute of 

Technology (RMIT), Melbourne, Australia. The machine is made in the USA. 

Besides the milling machine, a data acquisition card, amplifier, and software are 

required to successfully record high quality signals from the accelerometer. The 

schematic arrangement of experimental hardware is shown in Figure 3.5.  

 

Mach. Contl:  HAAS 32 Bit CNC 
Table Size:                    26" x 14" 
Mach. Travel: 

 (X/Y/Z): 20" x 16" x 20" 
Table Capacity:             3000 Lbs 
Spindle Speed:           0-9900 rpm 
Transmission:  

2-Speed Geared Head 
Drive System:  

Inline Direct-Drive 
Max. Cutting Feed Rate: 

500IPM 
Tool Changer:                Carousel 
Max Tool Diameter:          89 mm 

Figure 3.4: 4-axes milling machine used to perform the experiment. 

 

3.4.1 Equipment & Instrument Devices  

In this section, the equipment and devices that are used to acquire the signals are 

introduced. As shown in Figure 3.5, the dynamometer and accelerometer acquire 

the vibration and cutting force during the milling process. Consequently, the 

amplifiers excite sensors, condition the signal and display directly the measured 

values. Lab-View is the program developed by the National Instruments 

Company. This program is used for programming computer-controlled 

instruments, as well as measuring and recording sensor readings. 
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Figure 3.5: The experiment hardware arrangement. 

 

3.4.1.1 Accelerometer Sensor  

A tri-axial piezoelectric miniature accelerometer sensor, model 8694 M with 

±500 g of range manufactured by Kistler (Figure 3.2), with wide frequency 

response and voltage mode is used to record the amplitude of vibrations along 

milling process. 

The accelerometer includes three individual piezoelectric sensors which are 

mounted orthogonal to record signals in three directions X, Y, and Z. This 

model of sensor has a low impedance voltage mode, quartz sensing element, 

high resonant frequency, as well as it being small and light. Consequently, 

this model of accelerometer is suitable for very light test objects, modal 

testing, ability to record dynamic changes in mechanical variables, as well as 

it is able to measure vibrations on thin-walled structures1. 

                                                 

1 The technical information is presented from the manufacturer catalogue.  



Chapter 3 

39 | Page 
 

The signal acquired by the accelerometer is in the form of a voltage 

proportional to the actual acceleration. To convert voltage (V) to acceleration 

(m/s2), the sensitivity of the accelerometer is needed. Every accelerometer has 

its own sensitivity, which is determined by the manufacturer. The data sheet 

for this model states the sensitivity of the output 0.004 V/g. Accordingly, the 

Equation 3.2 can be used to convert the recorded voltage (V) from sensor to 

acceleration (m/s2).  

.
.

       (3.2) 

Where: 

Va(t) is the amplitude of acceleration recorded by sensor in the form of 

voltage and is function of process time.  

ab(t) is the converted acceleration. 

g is the acceleration due to the gravity and its value is equal to 9.81 m/s2. 

3.4.1.2 Dynamometer 

As mentioned earlier, cutting force along milling process is needed to be 

acquired. For this purpose, a dynamometer type 9257B manufactured by 

Kistler is used (Figure 3.6). This quartz three-component dynamometer can 

measure cutting forces in three orthogonal directions. The dynamometer has a 

great rigidity and consequently a high natural frequency. Its high resolution 

enables the smallest dynamic changes in large forces to be measured. 
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Number of Axes:                     3 
Measuring Mode:            Direct 
Measuring Range (Fx/Fy):  

-5.00 – 5.00 KN 
Measuring Range (Fz):  

-5.00 – 10.00 KN 
Sensitivity:     7.5 pC/N (Fx.Fy) 
                             3.7pC/N (Fz) 
Natural Freq.                3.5 KHz 
Capacitance:                   220 pF 
Size (L/W/H):  170/100/60 mm 
Degree of protection:        67 IP 

Figure 3.6: dynamometer Kistler type 9257B. 

 

3.4.1.3 Data Acquisition (DAQ) Card 

DAQ card-6036E (Figure 3.7) is used in order to acquire data from the sensor. 

It is recommended by accelerometer and dynamometer sensor suppliers. It has 

a 16-bit multifunction I/O card with 16 analogue inputs and two outputs. This 

card is able to do continuous data logging up to 200 kS/s, as well as being 

capable of triggered data acquisition. Hence, it uses dithering reduced 

quantization error method in order to improve resolution of data acquisition. 

The effective input resolution of the card is a minimum of 18 bits. 

 

Analog Input:          16 SE/B DI 
Input Resolution:            16 bits 
Max. Sampling Rate:   200 kS/s 
Input Range:             ±5 - ±10 V 
Analog Output:                        2 
Output Resolution:          16 bits 
Output Rate:                     1 kS/s 
Output Range:                 ± 10 V 
Digital I/O:                              8 
 

Figure 3.7: DAQ Card 6036E used in experimental setup. 
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3.4.1.4 Amplifiers: 

Two amplifiers, one Kistler type 5070A for dynamometer and one Kistler 

type 5134B for accelerometer, are used. The amplifiers are recommended by 

the dynamometer and accelerometer sensor suppliers. The dynamometer 

produces an electric charge which varies in direct proportion with the load 

acting on the sensor. The amplifier type 5070A (Figure 3.8(a)) converts the 

electric charge into a proportional voltage. 

Amplifier type 5134B (Figure 3.8(b)) is a flexible and simple to use signal 

conditioner that provides excitation power, signal processing and acts as an 

interface between the voltage mode piezoelectric accelerometer and the 

measuring instruments. 

 

 

No. of channel:                                     4 

Connector at Input end:          BNC neg. 

Measuring Range:      200 – 200000 pC 

Output Signal:                       -10 – 10 V 

Freq. Response:                    0 – 45 KHz 

Supply:                                    230/115 VAC 

No. of channel:                                            4 

Connector at Input end:                 BNC neg. 

No. of Signal Output:                                  4 

Figure 3.8: a) Multichannel Charge Amplifier 5070A. b). Piezotron coupler 5134B. 
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3.5 Experiment Design 

Having both stable and unstable states in the same milling process is the most 

desirable condition for investigation of chatter behaviour using concept of chaos 

theory. For the experiment it is important to minimize variation in the parameters 

like process hardware, laboratory environment, workpiece material, and cutting tool 

geometry as these will all affect the state to change from stable and an unstable 

state. This will then affect the chatter threshold boundary. Accordingly, cutting 

path, cutting parameters, hardware, and sensor location must be designed in a way 

to achieve the objective of capturing the change in state from stable to unstable.  

3.5.1 Cutting Path Design 

For the cutting path parameter, it is important the direction of cutting path does 

not change during the milling trials. Since the accelerometer can acquire signals 

along three axes X (cutting feed), Y (radial depth of cut), and Z (axial depth of 

cut), then any variation in direction of cutting path makes it necessary to switch 

between acceleration signals for the different cutting feed directions. The data 

processing then becomes complex. To avoid this issue, a straight type of cutting 

path is chosen and the workpiece is cut in the form of a slot.  

Stability lobe diagrams are usually plotted by axial depth of cut (ap) versus 

spindle speed (Vs). Accordingly to have a stable condition at the start of milling 

process and continuously transform the process into the chatter, the cutting path 

can be designed in a way that axial depth of cut or spindle speed changes can be 

made continuously during the process. For this purpose, two kinds of cutting 

path are designed, which are discussed in continue. 

3.5.1.1 End-mill Cutting Path 

The first solution to force a milling process from a stable condition to chatter 

is to increase cutting speed (Vc) continuously. In this model of cutting process, 

axial depth of cut (ap) does not change. Accordingly, cutting path will be in 

the form of normal cutting slot, as shown in Figure 3.9.  
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To cut workpiece in the slot form, CNC codes must be written in a way that 

spindle speed increases (Vs) continuously up to the desired value. To cut slot 

with constant axial depth of cut (ap), end-mill cutting tool is used. 

Accordingly, the designed milling process is named end-milling operation, 

and hence the cutting path is named end-mill cutting path. 

 

Figure 3.9: End-mill cutting path. 

3.5.1.2 Ball-nose Cutting Path 

The next solution to force a milling process from a stable condition to chatter 

is continuously increasing the axial depth of cut (ap). For this purpose, the 

workpiece should be cut at an angle as shown in Figure 3.10. Accordingly, 

CNC codes are written in a way to have axial depth of cut (ap) equal to zero at 

the beginning of the cutting process. It is continuously increased up to desired 

axial depth of cut at the end of the cutting process. 

Slot drill end mill cutting tools are generally used when rotate on axis vertical 

to the cutting path, and they are weak to cut a path with an angle. When 

cutting tool axis is not vertical to cutting path, cutting force is more critical in 

end-mill cutter and causes to cutter breaks easily. Slot drill ball-nose cutters 

overcome this problem. A ball nose cutter has a semi-sphere at the tool end 
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and is most suitable for cutting path with complex shape, and also in the form 

of slope. Therefore to cut this form of slot, a ball-nose type of cutting tool has 

to be used. The designed milling process is therefore named ball-nose milling 

operation, and hence the cutting path is named ball-nose cutting path. 

 

Figure 3.10: Ball-nose cutting path. 

 

3.5.2 Workpiece Material 

The objective of this research is to design a chatter threshold boundary mainly 

for titanium milling processes. However to verify the applicability of the method 

for other materials, two materials, namely an stainless steel and aluminium, are 

used and the proposed method is applied to the acquired signal during cutting of 

these materials. These materials are considered due to their demand for industrial 

purposes.  

Titanium alloy 6Al-4V is accessible alloy of titanium that is widely used by 

industry. Accordingly, a block of titanium with dimension 150×100×30 mm 

(L×W×H) is used as workpiece (Figure 3.11). The length of the workpiece is 

long enough to ensure the machining process reaches chatter. A similar geometry 

is used for the other two materials, aluminium alloy 6061, and stainless steel 

grade 316. 
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Figure 3.11: Workpiece material. 

 

3.5.3 Cutting Tool 

Based on the designed cutting path, two different kinds of cutting tools, end-mill 

and ball-nose cutter, are required in order to cut the material (Figure 3.12). The 

cutters also vary in diameter and the number of flutes. Based on their geometry, a 

series of experimental milling cuts are designed. In this study, milling trials are 

done using two different diameters, 4 mm and 6 mm. Hence, they have different 

numbers of flute, two and four, respectively. 

Besides geometry of the cutter, its material is important, too. Cutting tools with 

HSS (high speed steel) and carbide material are most usable in industry. HSS 

cutters have better strength to withstand cutting force, as well as being low cost. 

However, carbide cutting tools have many advantages such as:  

 Carbide tools are more efficient and more cost effective, 

 Carbide tools have a longer working life due to have higher resistance to 

wear, 
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Figure 3.12: a). End-mill cutter with 4 flutes. b). Ball-nose cutter with 2 flutes. 

 

 Carbide tools are more durable, and 

 Achieve to better surface finish quality. 

Accordingly and for this research, cutting tools manufactured by carbide are 

supplied and used during milling trials. 

3.5.4 Cutting Parameters 

Cutting parameters have to be chosen for each milling trial in a way that the 

process moves into chatter. Accordingly, it is required to determine the range of 

cutting parameters for each material, for which chatter is most possible to occur. 

For this purpose, the range is indicated by combination of using machining 

handbook [160], technical handbook of the cutting tool supplier2, and also with a 

number of preliminary cutting processes for each cutting material. The range of 

cutting parameters shown in Tables 3.1 is selected for milling trials using a 6-

mm cutting tool. For milling trials with a 4-mm cutter, the ranges of cutting 

parameters are indicated as shown in Table 3.2. 

                                                 

2 Sutton Tools, Technical Information Guide. p.p. 352-368. www.sutton.com.au 
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Table 3.1: Cutting parameters that chatter occurs for a 6-mm cutter. 

Cutting Parameters Range of cutting parameters per materials 

 Titanium Stainless Steel Aluminium 

Spindle Speed (Vs) (rpm) 4500 - 5000 5000 - 5500 8500 - 9000 

Cutting Speed (Vc) (mm/min) 225-250 500-550 1000-1125 

Axial Depth of Cut (ap)(mm) 1 1 1 

Radial Depth of Cut (ae)(mm) 0.25D - 0.75D 0.25 D - 0.75 D 0.25 D - 0.75 D 

 

Table 3.2: Cutting parameters that chatter occurs for a 4-mm cutter. 

Cutting Parameters Range of cutting parameters per materials 

 Titanium Stainless Steel Aluminium 

Spindle Speed (Vs) (rpm) 3500-4000 5000 - 5500 8500 - 9000 

Cutting Speed (Vc) (mm/min) 175-200 500-550 850-900 

Axial Depth of Cut (ap)(mm) 0.5 1 1.5 

Radial Depth of Cut (ae)(mm) 0.25D - 0.75D 0.25 D - 0.75 D  - 0.75 D 

 

3.5.4.1 Ball-nose Milling Process 

The experiments are designed based on the indicated cutting parameters by 

using the Taguchi method. The Taguchi method employs specific partial 

factorial arrangements to optimize the number of physical experiments 

required to detect process change [161]. The Taguchi approach is a form of 

experiment design with special application principles, which makes uniform 

the experiment design technique. It has a number of advantages. It employs 

specific partial factorial arrangements, orthogonal arrays and balanced 

factorial combinations, in order to determine the optimum design. The 

product development cycle time can therefore be significantly reduced 

because a lower number of experimental runs is needed.  
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To apply the Taguchi method, three main cutting parameters are considered in 

three levels, as shown in Table 3.3. The axial depth of cut is changed in this 

cutting model. Accordingly, its value is constant in each set of milling 

processes designed by the Taguchi method. Using Taguchi, the cutting trials 

are designed in a way that is shown in Table 3.4. This set of experiments can 

be similarly designed for each cutting tool.  

Table 3.3: Cutting parameters and levels for ball-nose milling process. 

Cutting Parameters Level 1 Level 2 Level 3 

Spindle Speed (Vs) 1 2 3 

Cutting Speed (Vc)  1 2 3 

Radial depth of cut (ae) 1 2 3 

 

Table 3.4: Experimental design of ball-nose milling process based on the Taguchi 

method. 

Test No. Vs Vc  ae  

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 3 

5 2 2 1 

6 2 3 2 

7 3 1 2 

8 3 2 3 

9 3 3 1 
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3.5.4.2 End-milling Process 

In the end-milling process design, spindle speed changes continuously. 

Accordingly, feed rate changes are based on the spindle speed. Using the 

Taguchi model, cutting parameters are designed as shown in Table 3.5. 

Table 3.5: Experimental design of end-milling process. 

Cutting Parameters Trial 1 Trial 2 Trial 3 

Spindle Speed (Vs) Vs1 to Vs2 Vs1 to Vs2 Vs1 to Vs2 

Cutting Speed (Vc)  Vc1 to Vc2 Vc1 to Vc2 Vc1 to Vc2 

Axial depth of cut (ap) Constant Constant Constant 

Radial depth of cut (ae) 0.25D 0.5D 0.75D 

 

3.5.5 Accelerometer Sensor Location 

The literature review demonstrates that acquired signals from different locations 

of milling machine have been analysed in order to investigate the occurrence of 

chatter. Chen J and Chen WL [162] located accelerometer on the milling table. 

Sekiya et al. [163] mounted an accelerometer below the spindle head.  Matuszak 

et al. [164] fixed accelerometer on the machine body close to the spindle. 

However, none of these places can acquire the pure vibration between the cutting 

tool and workpiece.  

Therefore to acquire the vibration between the cutting tool and workpiece, only 

two locations can be considered suitable for mounting the accelerometer sensor, 

the spindle and the workpiece. However, the workpiece is mounted on the 

machine table which can transfer vibrations to the sensor. There is a high level of 

risk at this location, because the sensor may break down during the milling 

process. Thus, the spindle is the most interesting place for sensor to be placed in 

order to achieve high quality vibration signal from the milling operation (Figure 

3.13). 
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Figure 3.13: The mounted accelerometer on the spindle. 

As spindle rotates during the milling process, the sensor cannot be directly 

mounted on the spindle. To solve this issue, the cutting tool can be located on an 

adaptor, which is installed on the spindle (Figure 3.14). The body of adaptor is 

the closest place to the cutting tool.  

For this purpose during the milling process, a BT45 rotary coolant adaptor tool 

holder manufactured by Kennametal Co. is used (Figure 3.14). The 

accelerometer is mounted on its body to acquire vibrations directly from the 

milling process. 
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Figure 3.14: A Kennametal rotary coolant adaptor installed on the spindle. 

3.6 Conclusion 

Three parameters are used to measure the vibration between the cutting tool and 

workpiece. In this chapter, the advantages of acceleration in compared with the 

other measurable parameters, velocity and distance, is discussed.  

Two cutting path models, ball-nose and end-mill cutting paths, are designed in order 

to have stable condition at the beginning of the milling process, and then to 

continuously moves into the chatter condition. Furthermore, cutting parameters are 

designed by using the Taguchi method. The most appropriate devices are chosen in 

order to record high quality signals during the milling trials. The devices are 

introduced, as well.  

To acquire high quality vibration between cutting tool and workpiece, the place of 

accelerometer is important. Spindle was determined as the most suitable location for 

placing sensor. For this purpose, an adaptor is supplied to mount sensor on its body, 

as sensor cannot be placed directly on the rotating spindle.   
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In the next chapter, the methodology of the proposed chatter detection method will 

be discussed in details. The method can then be verified by analysing the acquired 

acceleration signals from the milling trials. 

 



 

 

 

 

 

 

 

 

Chapter 4   

The Application of Phase Space 

Attractor in Determining Chatter 

Occurrence
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4.1 Introduction 

The state of the art cited in the chapter 2 referenced the limitation of existing chatter 

detection methods in detection of chatter during cutting of metals, particularly on-

line and in the production workshop. The early detection of chatter during cutting 

process is still an important research topic of industrial and academic interests in the 

manufacturing sector.  

The milling process is a nonlinear and quasi-periodic motion. The state of the art 

research on the stability of such dynamic systems shows the chaos theory can 

predict the state of the system. As a part of this concept, phase space attractor 

demonstrates the state of system and is able to determine whether the dynamic 

system is in a stable state or it has moved into instability. Phase space has an 

incomparable attractor that represents each state of the system, which is normal 

cutting and chatter. Reconstruction of the phase space attractor and its cross 

sections in different moments of the milling process can then be shown as regular 

patterns which alter depending on the state of system. 

In this chapter, the method of the signal-data-driven reconstruction of phase space 

will be discussed and illustrated. The phase space of milling processes is 

investigated by illustration of the cross sections of the phase space attractor as they 

change during time. The outline patterns are able to indicate the state of the milling 

process and hence be able to predict the stability of the process on-line and in the 

work shop environment.  

4.2 Chaos Theory  

In milling processes, chatter is a complex dynamic phenomenon of nonlinearity 

which involves different types of bifurcations. Hence, chatter is quasi-periodic and 

has chaotic behavior [85]. Initial models of chatter occurrence were previously 

described by use of a linear model. However, the stability analysis based on linear 

dynamics is not able to predict some phenomena in the milling process [165]. Thus 
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recently stability analysis and determination of chatter has been considered as a 

system with non-linear dynamic behaviour. Consequently, chatter occurrence can 

be considered as a nonlinear, quasi-periodic dynamic system with chaotic behavior.  

Chaos theory works from the principle that small causes in a system might produce 

large effects in dynamic systems. The first scientist who established this principle 

was J.C. Maxwell [166]. He demonstrated that the collision between molecules of 

gas provides progressive amplification of small changes and yielded microscopic 

randomness. After Maxwell, several scientists such as H. Poincaré, B. Van der Pol, 

and etc. discovered similar phenomenon in different dynamic systems. However in 

1962, E. Lorenz experimented with very small undesirable changes in the initial 

inputs of dynamic systems and modelled the system with two different initial 

conditions from one similar pattern [167]. He discovered that the end result of his 

model differed significantly from the original. Later on, others studying iterated 

maps with sensitive dependency on initial condition became popular, particularly by 

R. May’s discussion in 1970’s [166]. This phenomenon is known today as chaos 

theory [168]. Based on this theory, a small change in the initial conditions can 

drastically change the long-term behavior of a system.  

Sensitivity to initial conditions is not the only pre-condition of a dynamic system to 

be chaotic. A chaotic dynamic system must also have two more conditions to be 

classified as a chaotic system. Chaotic dynamic systems usually evolve over time, 

thus any given region of their phase space will overlap with another region. This 

specification is known as topologically mixing [169]. In these systems an infinite 

number of unstable periodic orbits are embedded in the underlying chaotic set 

[170]. Dynamic systems that are topologically mixing with a high density of 

unstable periodic orbits are not necessarily sensitive to initial conditions [171]. So, 

they might not be a chaotic system. 

Chaos is translated as the science of finding underlying order in apparently random 

data, which helps to predict the state of dynamic systems. Even though, complexity 

and irregularity are always identical with unpredictability [172]. Consequently, 

chaotic behavior has been detected in several natural systems or in the laboratory, 

such systems as electrical circuits, lasers, oscillating chemical reactions, fluid 
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dynamics, mechanical and magneto-mechanical devices, and also computer models 

of chaotic processes. Chaotic behavior can be explained through analyzing chaotic 

mathematical models or through analytical techniques such as recurrence plots, 

phase space plots, and Poincaré maps [173]. 

Three specifications of a chaotic dynamic system was introduced above. However, 

it is necessary to determine a method to define whether these conditions occur in the 

dynamic system and if it is chaotic. Several mathematical solutions have been 

proposed in order to define chaos, however the most common ones are computation 

of fractal dimensions and Lyapunov Exponents [174]. 

In a dynamic system with chaotic behaviour, the trajectories are exhibited in the 

phase space of the system. These trajectories converge to strange attractors. The 

fractal dimension of these strange attractors gives the effective number of degrees 

of freedom in the system, and also quantifies the complexity of the system that 

explains the chaotic behaviour of dynamic system [175]. For a chaotic dynamic 

system, the fractal dimension is a non-integer [176]. 

The computation of the Lyapunov Exponent is also a reliable solution to determine 

whether a dynamic system is chaotic. In a chaotic dynamic system, sample points in 

the neighbourhood of a trajectory converge toward the same orbit, which causes the 

attractor to change to a fixed point or a limit cycle. Hence in a chaotic system with 

strange attractors, every pairs of trajectories that are close to each other will move 

far away and exponentially from each other during time [177]. Lyapunov’s 

Exponent explains the sensitivity to initial condition of the chaotic dynamic system. 

This phenomenon is described by the Equation 4.1. 

. ‖ . ‖        (4.1) 

In the above equation λ is Lyapunov’s exponent, the mean rate of separation of 

trajectories of the chaotic system. A positive value of λ indicates the sensitivity to 

initial condition in the system, or if the dynamic system is chaotic. For practical 

applications, it is most important to know the largest Lyapunov exponent. If the 
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largest value in the spectrum of Lyapunov exponents is positive, it means that the 

system is chaotic [178]. 

4.3 Phase Space 

Phase space, also known as state space, is categorized as partly physics and 

mathematical. Phase space was introduced first by French mathematician Joseph 

Liouville in 1838 [179]. However, the first explicit use of the term “phase-space” 

were initiated by Arthur Rosenthal and Michel Plancheral in two separate papers 

[180]. Phase space was introduced as a tool to investigate the state of deterministic 

dynamic systems and detect whether  a system is chaotic [181]. Besides the simple 

nature of phase space, it can provide an overview of all possible trajectories of a 

dynamic system. Hence by using phase space, time can be eliminated from the 

dynamics of a system, which has the benefit of reducing the number of trajectories 

to static curves [167].  

Based on classical mechanics, phase space is an n-dimensional space, which can be 

demonstrated in the form of Equation (4.2), which all states of a system exhibit. In 

this space, each axis represents one parameter of the dynamic system. Axes can also 

belong to the degrees of freedom [182].  

, , … ,        (4.2) 

Where: 

t is the index for time series and R(t) is the state function of n-dimensional phase 

space. As an example, one single particle moving in only one direction has a two-

dimensional Phase space, which is called a phase plane. Phase plane displays a 

relationship between variables; position (r1(t)) and momentum (r2(t)), during 

movement of the particle. Both variables have a role in determining the future 

behaviour of the system [182]. 
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Considering a dynamic system with n degrees of freedom (or n parameters), each 

instantaneous dynamic state of a system with respect to the time is exhibited by a 

point in its corresponding n-dimensional phase space. The result of linking these 

points up to each other is a geometric shape, which is recognized as a phase space 

attractor of the dynamic system. A phase space attractor does not change while the 

state of the system does not change. Any change in the state of system leads to a 

change in the geometric shape of the attractor. The attractor acts as an abstract 

representation of the underlying dynamic system [183-185].  

4.3.1 Application of Phase Space Attractor in Dynamic Systems 

Based on the above rule, researchers have used phase space attractors to 

determine the transition of dynamic systems from a stable state. In engineering 

systems, the complexity and influence have been increased, which create 

potential counterintuitive and catastrophic accidents. Owens [186] illustrated the 

number of phase space attractors required in order to evaluate these dynamic 

systems. Besides this research, phase space has been used in different 

applications such as medicine, mathematics, computer science, and etc. Ayala et 

al. [181] analysed the mechanical vibrations through speckle interferometry by 

using phase space. Accurate classification of arrhythmias is a crucial task for 

cardiologists. Therefore, Roopaei et al. [187] suggested chaotic based 

reconstructed phase space features for detecting Ventricular Fibrillation (a kind 

of arrhythmias). Xia et al. [188] determined the corrosion types from 

electrochemical noise. They used phase space reconstruction theory. Sethi and 

Roy-Chowdhury [182] built a Multi-resolution phase space descriptor, to 

represent complex activities in multiple domains directly from tracks without 

having different heuristics.  

4.4 Phase Space Reconstruction 

In a dynamic system, a phase space attractor illustrates the variation of the system. 

If a time series describes a  dynamic system, then a phase space attractor can be 



Chapter 4 

59 | Page 
 

used to predict the state of time series by having defined a segment of phase space 

[179]. However, part of the dynamic system information is sometimes lost while a 

phase space attractor is being illustrated. To retrieve the information, the phase 

space has to be reconstructed.  

The basic concept of phase space reconstruction results from the fact that any 

observed data from a dynamic system contains all the information of unobserved 

state variables of data which can be recovered from time delayed copies and used to 

predict the present state [189]. In the other word, the state of a system is specified at 

time t by embedded dimension and time delay data [190].  

The phase space can be reconstructed by re-writing the equation of the dynamic 

system as a system of differential equations that are first-order in time and by 

introducing new variables at embedded times. Considering phase space R(t) 

(Equation (4.2)), a nonlinear function F(R(t)) , can be used to explain the transition 

of R(t) in time, as well as determining the value of system at t-τ (where τ is time 

delay), as shown in Equation (4.3). 

	→ 	        (4.3) 

The original variables at time t and new variables at time t-τ form a vector in the 

phase space. The solution becomes a curve in the phase space which is 

parameterized by time [167]. This method is known as the time delay embedding 

theory that is introduced by Takens [191]. This theory is commonly practiced in 

various studies to reconstruct phase space attractors in a multi-dimensional phase 

space [149, 191, 192].  

Time delay embedding theory is also applicable in time series. By applying time 

delay embedding theory, then time series are converted to state vectors. To convert 

time series into the state vector, an attractor related to the logged time series x(t) 

(Equation (4.4)) must be reconstructed by plotting delayed coordinate vectors [190]. 

P(t) (Equation (4.5)) demonstrates the delayed coordinate vectors that can be 

plotted in a multi-dimensional orthogonal coordinate.  
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x x , x , x , … , x        (4.4) 

, , , ⋯ ,     (4.5) 

Where: 

m is embedding dimension, and τ is the length of the delay. 

4.4.1 Embedding Dimension 

In Taken’s theorem, the embedding dimension is sufficient to recover the object 

without distorting any of its topological properties. Based on the theorem, if m is 

large enough, the reconstructed attractors have similar mathematical properties 

as the original system and provides an image similar to the original system [191]. 

Many methods are proposed to determine the embedding dimension. Based on 

Shang et. al, [193] the optimal embedding dimension of m can be estimated by 

the nearest false neighbours in the phase space. Based on this method, by moving 

from embedding dimension m0 to m0+1, the number of false neighbours is equal 

to zero for the point in the phase space of dimension m0+1. Hence for the same 

point in the phase space with embedding dimension m0, the number of false 

neighbours is not equal to zero.  

4.4.2 Time Delay 

Many methods such as mutual information, autocorrelation, approximate period, 

and etc. are used to define time delay [194, 195]. However, the autocorrelation 

function is used by many researchers such as [28] and [196] to determine time 

delay in reconstruction of phase space attractors, as well as state vectors. The 

first zero-crossing of the autocorrelation function (Equation (4.6)) is normally 

considered as the time delay. It is the most appropriate time delay because x(t-τ) is 

completely de-correlated from x(t) at this time [197]. Autocorrelation function is 

computationally efficient and works well with noisy data in determination of the 

time delay.  



Chapter 4 

61 | Page 
 

∑ ∑

∑
      (4.6) 

Where: q is the delay in the number of samples for time series x(t). 

4.5 Poincaré Section 

In nonlinear dynamic systems with many parameters, the illustration of phase space 

attractors is usually complex and difficult. So instead of plotting the phase space 

attractor, a similar image can be generated by using each pair of vectors of the 

reconstructed state vector P(t) (Equation (4.5)). It provides one cross section of the 

phase space attractor, which is also known as the Poincaré section. To plot phase 

space attractor Poincaré section, the vector x(t-(m-1)τ) must be plotted versus vector x(t) 

in an orthogonal coordinate [183]. This concept has been used in many studies 

which apply to different dynamic systems and help define the stability of the 

system.  

4.5.1 The Poincaré Section Deviation during Milling  

Considering the use of time series x(t), the acquired vibration between the cutting 

tool and workpiece, can be obtained by dividing phase space into equal intervals,  

from which phase-space attractor Poincaré sections are extracted from the 

attractor. These Poincaré sections demonstrate the shape of phase space attractor 

at each time interval. The variation between Poincaré sections expresses the 

variation in the shape of phase-space attractor in a series of 2D representations. 

The variation can be used to trace the transition of system from a stable state to 

an unstable state.  

A typical signal acquired during the cutting process is demonstrated in Figure 4.1 

(a). This signal is divided into equal time intervals with overlapping sections. 

The overlapping section maintains consistency and continuity. To describe the 

attractor variation during the milling process, the corresponding Poincaré section 

for each time segment is plotted. For this purpose and from Equation (4.5), the 
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Poincaré section at time segment i can be illustrated by plotting vector xi(t-(m-1)τ) 

versus vector xi(t) in an orthogonal coordinate, as shown in Figure 4.1 (b) to (d).  

In dynamic systems such as milling processes, the embedding dimension m is 

always more than 2, so it is not necessary to estimate the value of m at this stage. 

The cross section of the phase space attractor, which is plotted by xi(t-τ) and xi(t), 

can be used to investigate the behaviour of the phase space attractor in time 

segment i. Similarly, the Poincaré section can be plotted for all time segments. 

Figure 4.1: (a) Acceleration signal acquired along milling process. (b). Poincaré 

sections in time interval t1. (c) Poincaré sections in time interval t3. (d) Poincaré 

sections in time interval tn. 

 

The experimental evidence is demonstrated to exhibit the above theory, and 

hence display the difference in the phase space attractor Poincaré section in 

stable milling process and unstable or the chatter condition. For this purpose, two 

sets of data are acquired during the milling process, one stable process and one 

unstable process, have been chosen in order to plot the corresponding phase 
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space attractor Poincaré sections during the entire process. The variation in the 

shape of attractors has been applied for both stable and unstable milling process. 

4.5.1.1 Chatter Condition 

A milling trial was run at cutting speed of 4000 rpm to cut a slot with 25% 

immersion rate. The axial depth of cut changed continuously from 0 to 2 mm; 

hence, the radial depth of cut is 1.5 mm. A tri-axial accelerometer was located 

on spindle speed to acquire vibration between workpiece and cutting tool. The 

signal along cutting feed (X axis) is demonstrated in Figure 4.2. Chatter was 

detected at 9 s after running the process. Therefore, the onset of chatter is 

observed in the 4th time interval. The unstable condition is continuously 

extended until the end of process. The acquired signal is divided into the 

equal time segments, with overlap.  

 

Figure 4.2: Acceleration acquired during cutting of titanium. Spindle speed: 4000 

rpm, Cutting speed: 320mm/min, ap: 0-2 mm, ae: 1.5 mm. 

 

To plot the Poincaré section, xi(t) and xi(t-τ) are the  considered vectors in the 

form of time series at time segment i, as shown in Equations (4.7) and (4.8).  
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	 , , , … ,       (4.7) 

, , , … ,                       n ≥ τ  (4.8) 

The Poincaré section of phase space attractor is formed by n-τ ordered pairs 

(xl, xl-τ) (where l is an integer and 1≤ l-n≤ n), as shown in Figure 4.3.  

 

Figure 4.3: A typical Poincaré section at time segment i. 

 

Corresponding Poincaré sections for every time interval are shown in Figure 

4.4 for the milling trial. The illuminated phase space attractors obtained 

during the milling process has a circular shape. It does not have noticeable 

fluctuation while the system is stable (first three Poincaré sections). As soon 

as cutting process transfers to unstable state (from the 4th section), the phase 

space attractor does change size significantly. The attractor grows up to nine 

times larger than the attractor at stable state during the cutting trial. 
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Figure 4.4: Phase space attractor variation during unstable cutting process. 

 

4.5.1.2 Stable Condition 

A stable milling process was tried and vibration between workpiece and 

cutting tool was acquired in the form of a time series. The milling trial was 

run with a cutting speed of 3500 rpm to cut a slot with 50% immersion rate. 

Similar to the previous trial, axial depth of cut changed continuously from 0 

to 2 mm; hence, radial depth of cut is 3 mm. The acquired signal is 

demonstrated in Figure 4.5. This cutting process was run reasonably stable 

and chatter was not occurred during the process. 
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Figure 4.5: Acquired signal during milling trial; Spindle speed: 3500 rpm, Cutting 

speed: 280 mm/min, ap: 0-2 mm, ae: 3 mm. 

 

Similar to the previous section, acquired signal was divided into the equal 

time intervals with overlap; hence it was reconstructed in the form of a state 

vector. The corresponding Poincaré sections are plotted for every time 

segment, as it was done for unstable milling trial in the previous section.  

Corresponding Poincaré sections for each time interval are shown in Figure 

4.6. As shown, phase space attractor is still a circular shape, similar to the 

attractor in the previous unstable trial. However, the shape does not change 

size significantly along the milling process. Hence, the size of attractor is 

almost constant and it has not grown up during the process.  
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Figure 4.6: Phase space attractor variation during stable cutting process. 

4.6 Discussion 

When the cutting system chatters, it becomes nonlinear and should be analyzed as a 

quasi-periodic dynamical system that potentially has chaotic behavior. 

Consequently, chaos theory is introduced in this chapter to understand the changes 

in the cutting process and to form the basic theory for designing a method to detect 

chatter, both online and during the milling process.  

This chapter illustrates with some preliminary laboratory investigations that phase 

space attractors demonstrate the state of dynamical system in time. Variations in the 

shape and size of attractor (which has been created from time signals captured in 
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experiments) represent a variation in the state of the system. The preliminary 

investigation on two stable and unstable signals indicates the variation that can 

occur in phase space attractor Poincaré sections along the milling process can also 

indicate the transition of milling process from stable state to the chatter condition.  

To visualize the implications of the signals on the recognition of chatter and trying 

to look for clues that indicate chatter threshold, the time domain signals should be 

divided into the equal intervals with overlap and reconstructed in the form of state 

vectors. The outline phase space attractor Poincaré sections corresponding to the 

intervals are developed as shown in this chapter and provide some visual hints of 

the onset of chatter in the cutting process. Accordingly, the measurement of 

deviation in the phase space attractor along the process should be able to provide an 

indication of the boundary for chatter threshold. To use the deviation of phase space 

attractor during the milling process, a computational technique is required to 

parameterize the deviation of attractor so that the method can be executed 

automatically online. 
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5.1 Introduction 

It has been established that chatter is considered to be a type of chaotic behaviour. 

Understanding chaotic behavior can be done through analysis of a mathematical 

model, or through analytical techniques such as recurrence plots and phase space 

plots. The evolution of a dynamic system is often described in its phase space 

attractor, which coordinates all the variables that enter the mathematical 

formulation of the system. The variation in the shape of the phase space attractor 

can demonstrate variation in the state of the dynamic system. Consequently, the 

transition of milling process from stable cutting to chatter condition can be 

indicated by investigation of the deviation in the shape of the phase space attractor. 

In this chapter, the possibility of using image correlation to indicate the variation of 

the phase space attractor is investigated. In chapter 4, a scientific study on the 

application of phase space attractor as representing the state of dynamical systems 

was introduced. The milling process is regarded as one such non-linear dynamic 

system. The phase space attractor for the system of the milling process was 

reconstructed using acquired vibration signals between the cutting tool and 

workpiece. The reconstructed phase space attractor is in the form of a state vector 

with an embedded time delay dimension. Poincaré section of the reconstructed state 

vector corresponds to a cross section of phase space attractor at a point in time. The 

variation in Poincaré sections during milling processes indicates the state and 

transition from one state to another of the system. 

2D images are difficult to interpret by the production workshop floor. It is better to 

have a representative linear numerical indicator to show the variation of the 2D 

images over time. Furthermore, it is also desirable that the numerical indicator can 

be defined within the boundary between stable and unstable states. Image 

correlation is a powerful technique to interpret the variation of 2D images. This 

technique represents the variation between two or more 2D images by Pearson’s 

coefficient. 
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5.2 Image Correlation 

Image correlation is a form of image processing to compare photographs, contours, 

figures, etc. so that a set of parameters describing the image transformation can be 

evaluated.  

A correlation coefficient is used in statistics to measure the degree of relationship 

between two variables [198]. A number is formed as the ratio between the products 

of the deviation of each of the two variables from their respective means, to the 

product of their variances. The similarity between the two sets of variables is 

presented by Pearson’s coefficient, which was first developed by Pearson in 1895. 

Due to its simplicity, it is widely used in statistical analysis, pattern recognition, and 

relationship assessment. The Pearson's coefficient is also known as correlation 

coefficient.  When this technique is applied to analyse an image, where the pixels of 

the image constitute the population of a variable, it is commonly known as image 

correlation. 

5.2.1 Applications of Correlation Coefficients to Images 

Image correlation refers to a class of non-contact methods that acquire images of 

an object and perform image analysis to extract full-field shapes, deformation 

and/or motion measurements. Image processing has been performed with many 

types of object-based patterns, including lines, grids, dots and random arrays. 

One of the most commonly used approaches employs random patterns and 

compares sub-regions throughout the image to obtain a full-field of 

measurements. Image correlation is recognised as a superior method for 

measuring motion, deformation, and any variation in the image [199].  It has 

become popular and powerful during the last few decades as it is fast and it is 

easy to access the required hardware [200].  

Image processing is combined with the correlation coefficient technique to 

provide general parameters which indicate the similarity of the patterns. 

Greenhalgh et al [201] presented an improved pixel by pixel analysis based on 
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Pearson’s coefficient over the entire area of two images. The result revealed both 

nonlinear signals as well as highlighting the structures that are generated by only 

one of the nonlinear signals. In an application used by autonomous robots, 

Pearson’s correlation coefficient was used to select regions of interest in 

consecutive frames [21]. The autonomous system demonstrated the ability of 

obstacle avoidance by vehicles in an experimental environment. 

An image is characterised by numerical values in each pixel of the image. The 

pixels are represented as a sequence of numbers {Xi}. When two images are 

available (second image is represented by {Yi}), the Pearson’s coefficient can be 

computed by Equation (5.1): 

∑ .

∑ . ∑
          (5.1) 

Where: 

Xi is the intensity of the ith pixel in the reference image, 

Yi is the intensity of the ith pixel in the second image, and 

Xm and Ym are the mean intensity of the images. 

Pearson’s Coefficient measures the linear dependency between two patterns or 

variables [202]. It condenses the comparison of two 2D images to a single scalar 

quantity. Hence, the Pearson coefficient is invariant to linear transformations of 

{X} or {Y} [203].  

The value of Pearson’s coefficient varies between ±1. If the similarity between 

patterns is high, the value of r is close to +1. At the extreme, if the images are 

identical, {Xi} = {Yi}, the Pearson’s coefficient is: 

∑ .

∑ . ∑
1        (5.2) 
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On the other hand, negative correlation indicates opposite behaviour among the 

variables [204]. At the extreme, if the images are directly opposite (inverse), 

{Xi} = {–Yi}, the Pearson’s coefficient is: 

∑ .

∑ . ∑
	 1        (5.3) 

 

5.2.2 Image Correlation Applied to Phase Space Recognition 

The basic principle of applying the image correlation technique to phase space 

attractors is tracking the corresponding pixels in two images (patterns). Figure 

5.1 shows two images that have some minor complimentary differences. The 

first image, which is the reference image, is the image of a system in a 

recognized condition. The next image can be any image that is required to 

compare with the reference image to define variation over time in the system. 

The patterns might be acquired during a mechanical test to define the variation in 

the mechanical and physical properties of the part, or from a medical test, or a 

security camera, and etc. The patterns can also be drawn from acquired time 

series via a sensor system. The similarity of two images in different time periods 

can be compared to define the amount of variation in the system. As shown 

schematically in Figure 5.1, the patterns are segmented and the corresponding 

pixels are compared with each other [205] on the basis that if one variable 

changes, the other correlated variable changes in a predictable way [206].  
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Figure 5.1: The relationship between two Poincaré sections of the phase space 

attractor 

When a phase space attractor is cut to sections to be revealed as Poincaré sections, a 

series of images is formed. Obviously these images change over time because the 

sections are cut at different times of the phase space attractor. An image correlation 

method is required to detect sequential changes over the sampling time. 

5.3 Methodology 

The vibration between a cutting tool and a workpiece is acquired in the form of time 

series data. The acquired time series data can be reconstructed into state vectors by 

using a time delay embedding theorem. The Poincaré sections of reconstructed state 

vectors can then be plotted for every time segment by x(t-jτ) versus x(t). Every value 

of j demonstrates one cross section of the phase space attractor in its jth space 

dimension.  
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The image in Figure 5.2 (a) is the Poincaré section at time segment ti, which is 

during the stable period of milling. Figure 5.2 (b) is Poincaré section at time 

segment ti+n (n is an integer), which is an unknown state of milling process. The 

correlation (Pearson’s) coefficient compares two patterns and represents the 

variation of phase space attractor from ti to ti+n. Extending this concept, during any 

milling period, when the state is unknown, can be correlated with the reference 

pattern. The change of Pearson’s coefficient over time will indicate the state of the 

milling process, including the trend of the process moving into chatter. Pearson’s 

coefficient then parameterizes the variation of the phase space attractor during the 

milling process. 

Poincaré sections must be converted into an appropriate form in order to be used for 

image correlation analysis. Accordingly, Poincaré sections are plotted in the form of 

contours. 

 

Figure 5.2: a) Poincaré section (Reference) at time ti. b) Poincaré section at time 

ti+n. 

 

Effectively, Pearson’s coefficient will change over time due to the sliding 

computation of Poincaré sections if the state of the system changes. At the early 

stage of the milling process, the system is in a stable condition. Hence, consecutive 

images, while the system is stable, will have very good correlation. The Pearson’s 
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coefficient at the start of the image will be close to one, by reasoning of Equation 

(5.2). When chatter occurs, consecutive images will differ greatly. The Pearson’s 

coefficient value will move away from one, i.e. the Pearson’s coefficient will 

decrease from the initial value close to one as the system becomes unstable. 

In each milling job, the operator will start the cutting process in a stable condition. 

Continuously the cutting parameters are changed in order to move to the chatter 

condition. Consequently, the first Poincaré section can play the role of reference 

pattern. The future Poincaré sections are compared with the reference pattern. The 

similarity between phase space attractor Poincaré sections can be parameterized by 

computation of Pearson’s coefficient.  

Let us represent the images at period j by {Xij} where i is the indexing within the 

variable Xj at image segment j. To determine if there are changes of the phase space 

attractor over time, the Poincaré sections are compared to the reference Poincaré 

section {Xi1} by computing their Pearson’s coefficient: 

∑

∑ . ∑
     (5.4) 

Where: 

{Xi1} is the image at time t1. 

From the nature of the milling process, the Pearson’s coefficient will be reducing 

while the new Poincaré sections matching the reference section {Xi1} deteriorate. 

The question remains: what Pearson’s coefficient value should be taken as the 

threshold value for stopping the process before chatter. An independent assessment 

of the onset of chatter in the signal structure is required. 
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5.4 Experimental Test 

In order to test the idea of using Pearson’s coefficient to detect changes, and to 

determine the value of Pearson’s coefficient that indicates start of a chatter 

condition, an experiment has been set up and the data obtained will be analysed 

using Equation (5.4). This section describes how the acquired data is analysed to 

verify whether the theory is representative to detect the onset of chatter.  

5.4.1 Cutting Parameters 

For this purpose, a set of cutting trials have been run and vibration between the 

cutting tool and workpiece was acquired by an accelerometer. The experimental 

setup was explained in Chapter 3. Titanium has been cut with a 6 mm ball-nose 

carbide cutter having four flutes. The cutting parameters are also expressed in 

Table 5.1. The radial depth of cut is various between 0.25D to 0.75D, which 

allows investigating the effect of loss of contact between cutting tool and 

workpiece in the result. The axial depth of cut is continuously changed from 0 to 

2 mm along the milled section.  

Table 5.1: Cutting parameters. 

Test  

No. 

VR  

(rpm) 

Fm  

(mm/min) 

fz  

(mm/tooth) 

ap  

(mm) 

ae 

(mm) 

1 3000 240 0.08 0-2 0.25 D 

2 3000 240 0.08 0-2 0.50 D 

3 3000 240 0.08 0-2 0.75 D 

4 3500 280 0.08 0-2 0.25 D 

5 3500 280 0.08 0-2 0.50 D 

6 3500 280 0.08 0-2 0.75 D 

7 4000 320 0.08 0-2 0.25 D 

8 4000 320 0.08 0-2 0.50 D 

9 4000 320 0.08 0-2 0.75 D 
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5.4.2 Observation of Chatter Condition 

Chatter was detected during trial no. 7 (Table 5.1), so the acquired vibration 

between workpiece and cutting tool is chosen to analyse this trial. Firstly, the 

acquired vibration in the form of time series is divided into equal time segments, 

each 6 s (11 time segments in total) with 4.5 s overlap, as shown in Figure 5.3. 

The optimum length of time interval is determined based on total length of 

milled section and sample rate. Continuously and to reconstruct the time series 

state vector, the time delay is computed by calculating the first zero cross value 

of autocorrelation of the x(t). The value of time delay is then equal to 10.  

As is obvious from acquired signal (Figure 5.3), a severe vibration signal occurs 

9s after starting milling. Inspection of the cutting surface after the process shows 

that this point is the onset of chatter during the operation. Therefore, the onset of 

chatter can be seen in the 4th time segment. The unstable condition continues 

until the end of milling. 

 

Figure 5.3: Acceleration acquired during cutting of titanium. Spindle speed: 4000 

rpm, Cutting speed: 320 mm/min, ap: 0-2 mm, ae: 1.5 mm (0.25D). 
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5.4.3 Formation of Poincaré Sections 

The Poincaré sections of Figure 5.3 data are plotted in Figure 5.4. As shown in 

Figure 5.4, the phase space attractor has a circular shape. It does not have any 

noticeable fluctuation while the system is stable. As soon as milling enters the 

unstable state, the attractor changes significantly.  

 

Figure 5.4: Poincaré sections along milling process. Spindle speed: 4000 rpm, 

Cutting Speed: 320 mm/min, ap: 0-2 mm, ae: 1.5 mm (0.25D).  
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5.4.4 Computation of Pearson’s Coefficient 

The Pearson’s coefficient is computed. The correlation between the 1st Poincaré 

section and itself provides Pearson’s coefficient equal to 1 (100% similarity). 

The Pearson’s coefficient value between the phase space attractor pattern at time 

segment 2 and reference pattern is 0.999 (99%), when system runs stable to 0.52 

(52%), chattering is happening. The result is demonstrated in Figure 5.5. 

 

Figure 5.5: Pearson’s coefficient deviation along trial no. 7. The deviation is 

suddenly indreased after time segment (3-9 s) due to the chatter occurrence. Chatter 

onsets at time segment (4.5-10.5 s). 

 

5.4.5 Phase Space Attractor Variation during Stable Milling  

Similar to trial no. 7, the vibration between workpiece and cutting tool was 

acquired during trial no. 5 in the form of a time series. Milling was reasonably 

stable and chatter was not occurring (Figure 5.6). It is obvious the system is 

stable from the acquired signal, as well as there are no chatter marks observed in 

the cutting surface.  
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Figure 5.7: Poincaré sections along milling process. Spindle speed: 3500 rpm, 

Cutting Speed: 280 mm/min, ap: 0-2 mm, ae: 3 mm.  

 

The Pearson’s coefficient is computed between corresponding Poincaré sections 

representing each time segment and the reference Poincaré section (Time = 0 – 

10 seconds). The Pearson’s coefficient value between phase space attractor at 

time segment 2 and the reference pattern is 0.999 (99%). The coefficient only 

changes slightly over the test run, with the final value being 0.956 (95.6%) for 

the last Poincaré section. The results are plotted in Figure 5.8. The evaluation of 

the minimal change in Pearson’s coefficient demonstrates that the milling run is 

stable.  



Chapter 5 

83 | Page 
 

Figure 5.8: Pearson’s coefficient deviation along trial no. 5. No sudden changes can 

be seen in the coefficient deviation. The trial has run stable. 

5.5 Phase Space Attractor Evaluation in other Embedding 

Dimensions 

In the last section, it was shown how the phase space attractor varies in its Poincaré 

section corresponding to j=1. However, it is required to determine whether the 

phase space attractor has similar variation in other cross sections during milling, 

specifically when the process moves to an unstable state. In other words, the 

dependency of the Pearson’s coefficient to the space dimension (j) must be 

investigated. For this purpose, Poincaré sections of the phase space attractor is 

plotted at each time segment for j= 2 and 3.  

To verify the effect of embedding dimensions, the signal from Test no. 7 (cutting 

parameters are demonstrated in Table 5.1) is used. For j=2, the phase space attractor 

Poincaré sections are plotted by x(t-2τ) against x(t), while they are plotted by x(t-3τ) 

against x(t) for the value of j=3.  
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The Pearson’s coefficient of each Poincaré section is computed against the 

reference section. The values are tabulated in Table 5.2 and plotted in Figure 5.9.  

 

Table 5.2: Pearson’s coefficient for different space dimension values. 

Time Segment 

(s) 

Pearson’s Coefficient in different space dimension 

j = 1  j = 2 j = 3 

0 - 6 1 1 1 

1.5 - 7.5 0.9998 0.9996 0.9996 

3 - 9 0.995 0.996 0.995 

(4.5 - 10.5)3 0.9 0.91 0.91 

6 - 12 0.81 0.82 0.81 

7.5 - 13.5 0.64 0.64 0.63 

9 - 15 0.57 0.58 0.57 

10.5 - 16.5 0.56 0.58 0.57 

12 - 18 0.54 0.55 0.53 

13.5 - 19.5 0.53 0.53 0.52 

15 - 21 0.52 0.52 0.51 

 

The onset of chatter has been identified as occurring at the 4th time segment (4.5 – 

10.5s). The correlation between the phase space attractor cross section at this time 

segment and reference pattern is high-lighted in the Table 5.2. As shown, the 

tolerance of Pearson’s coefficient for space dimensions 1, 2, and 3 is only ±0.01, or 

±%1, which is very small and well within experimental error and can be ignored. 

Therefore, it is concluded that the proposed chatter threshold indicator is insensitive 

to the space dimension value. 

                                                 

3 Time interval that chatter begins. 
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Figure 5.9: Corresponding variation of Pearson’s coefficient to different space 

dimensions along trial no. 7. 

5.6 The Evaluation of Chatter Occurrence 

To evaluate whether the combination of phase space attractor Poincaré sections and 

image correlation could successfully detect the onset of chatter, it is required to 

validate the proposed method with another accepted method. For this purpose, two 

methods, visual inspection and Fast Fourier Transform (FFT), are used to detect the 

occurrence of chatter and the time of onset.  

5.6.1 Visual Inspection 

The simplest method for detection of chatter is inspection of the milled surface. 

In the laboratory environment, the surface can be inspected with digital 

microscopes. The method is not a prediction technique but only provides 

confirmation that chatter has occurred after finishing milling.  
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Previously, this was used to determine the occurrence of chatter. The surface is 

inspected by imaging different parts of the milled path. Chatter marks and their 

location on the surface indicate whether chatter occurred during the process and 

the position of chatter onset.  

 

Figure 5.10: a). Acquired acceleration signal along milling trial no. 7. b) Cutting 

surface at stable condition. c). Chatter marks on the cutting surface. 

 

Figure 5.10 shows the acceleration signal during milling trial no. 7 (Table 5.1) 

and the captured image of the surface at the stable and chatter conditions. This 

method cannot be considered a consistent technique, thus the Fast Fourier 

Transform method is used to determine the onset or boundary of chatter. 
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5.6.2 Fast Fourier Transform (FFT) Method 

To determine the occurrence of chatter by FFT method, the acquired cutting 

force signal during the test run is transformed into the power spectrum by Fast 

Fourier Transform (FFT). The chatter energy is reflected in the FFT power 

spectrum diagram. Harmonic frequencies are identified as multiples of the tooth 

passing frequency. When chatter occurs, a frequency which is a harmonic of the 

tooth passing frequency but with significantly higher power can be identified as 

being chatter frequency [207]. 

Milling trial no. 7 was evaluated to determine the outline chatter threshold from 

the regression analysis with FFT method. The power spectrum diagram is 

illustrated for the acquired signal, as shown in Figure 5.11. The FFT Power 

spectrum diagram indicates the chatter frequency after the third harmonic 

frequency of tooth passing frequency.  

 

Figure 5.11 FFT power spectrum of cutting force acquired during milling trial no.7: 

Spindle speed 4000 rpm, ap: 0-2 mm and ae: 1.5 mm (0.25D). 
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To determine the moment of chatter onset, the cutting force signal is divided into 

the time intervals similar to what was done for evaluation of the phase space 

attractor Poincaré sections. The FFT power spectrum is then plotted for each time 

interval.  

As shown in Figure 5.12, the range of harmonic frequencies is generated with some 

regularity in time segments (0-6 s), (1.5-7.5 s), and (3-9 s). Then an irregular jump in 

power levels occurred in the harmonic frequencies at time segment (4.5-10.5 s). 

Accordingly, the onset of chatter occurred in time interval (4.5-10.5 s). This is the 

same time segment where the value of the Pearson’s coefficient was considered for 

the chatter threshold boundary. Similarly, the procedure is repeated for other 

experiments. The outcome of the experiments represents that the value of the 

regression coefficient can be considered as the boundary for onset of chatter. 

 

Figure 5.12 FFT power spectrums for each time interval during milling trial no. 7.
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5.7 Evaluation of the Image Correlation for Other Trials 

Related time series for the trials no. 1, 2, 4, and 8 are reconstructed in the form of 

state vectors. As per trial no. 7, every time series is divided into time segments with 

overlap. Hence, the corresponding cross section of phase space attractor to each 

time segment is plotted by considering an embedding dimension equal to 2 (or j=1). 

The deviation of the phase space attractor during each trial is indicated by 

computing Pearson’s coefficient between the attractors at the time segments and the 

relevant reference pattern. The result is demonstrated in Figure 5.13 (a) to (d). 

 

a). Trial no. 1, Onset of chatter at r=0.86 

 

b). Trial no. 2, Onset of chatter at r= 0.88 

 

c). Trial no. 4, Onset of chatter at r=0.91 

 

d). Trial no. 8, Onset of chatter at r=0.89 

Figure 5.13: Corresponding Pearson’s coefficient to phase space attractor Poincaré 

sections along 4 milling operations. 
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The Poincaré sections patterns obtained during the trials are similar to the patterns 

attained from experimental trial no. 7. When milling moves from a stable condition 

to chatter, the patterns from main experiments present a similar variation to the 

primary experiment. During the stable phase of milling, the attractor is dense and 

circular while it expands during state transformation to chatter. 

5.8 DISCUSSION 

A trend analysis algorithm has been developed to indicate when to stop milling 

before it enters the chatter state.  It is expected that the method works well in 

modelling and prediction. It should use data while the cutting process is occurring 

to predict new values for an outcome given measured values for an explanatory 

variable. The prediction must be consistent. Furthermore, it is required to test a 

hypothesized mechanistic model of a system against data, or we wish to use a 

mechanistic model we believe in to predict new data. 

This chapter describes the analysis algorithm based on image correlation principle.  

Starting with a reasonable stable cut, the analysis algorithm, if it is implemented in 

a computer, can continue its operation to analyse the cutting process while cutting 

continues.  The algorithm will distinguish the transition of process from stable to 

unstable. In this algorithm, the milling processes are divided into equal time 

segments with an overlap. Phase space attractor is then demonstrated along 

milling trials by plotting the cross section of attractor at each time segment. The 

outcome shows that shape and size of the attractor is continuously changed during 

the milling operation. The attractor has significant variation by transferring to the 

unstable condition or chatter. 

By transforming the phase space attractor into two dimensional Poincaré sections, 

the reference section is identified. Pearson’s coefficient is then computed 

according to the reference section. As milling continues, the Pearson’s coefficient 

will decrease and will reach a threshold value indicating chatter, at which the point 

milling should stop damaging to the workpiece. 
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Besides the technical advantages of using the correlation coefficient application in 

definition of chatter threshold, it further provides a simple method with minimal or 

acceptable processing time. The correlation coefficient is invariant to linear 

transformation of two variables [203]. It is also unit-less, which allows calculating 

the correlation coefficient on different data sets with different units. Furthermore, 

the coefficient condenses the comparison of two images down to a single scalar 

value, r.  

The image correlation method has some limitations in detecting the chatter, which 

can effect on the resulted chatter onset boundary. Firstly it cannot measure 

correlation accuracy where there is a poor signal-to-noise ratio and negative 

spikes. Hence, it only measures the observed correlation without been able to 

consider any confounding or spurious effects. Secondly, the biggest disadvantage 

of it as an indicator for the onset of chatter is the coefficient only demonstrates the 

existing relationship between two Poincaré sections that have already been 

observed. It cannot provide any prediction or extra information about the second 

Poincaré section or dependent variable. 

To overcome these key disadvantages of the Pearson’s coefficient, linear 

regression is proposed in the following chapter 6. Similarly to image correlation, 

linear regression will be applied to the reconstructed phase space attractor to 

indicate the variation of the attractor when milling moves to the unstable state or 

chatter. 

 



 

 

 

 

 

 

 

 

Chapter 6   

Modeling of the Phase Space Attractor 

Deviation by Linear Regression 
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6.1 Introduction 

Pearson’s correlation coefficient has some mathematical limitations determining the 

precise relationship between different Poincaré sections during milling. These 

limitations have been discussed in the last chapter. It is necessary to search for 

another mathematical tool that can cover these limitations. A literature review 

shows that linear regression can be used to approach the same problem [208]. 

Therefore, both linear regression and image correlation can be used to measure or 

determine the relationship between two or more variables.  

In this chapter, a model is developed based on the linear regression technique to 

parameterize the deviation of Poincaré sections. It is developed to give a consistent 

numerical indicator for the variation between Poincaré sections of phase space 

attractor in the same way as image correlation can be done. Linear regression, 

multiple regression and simple regression, are investigated to see if they can 

parameterize the variation of the Poincaré sections such that regression coefficients 

are considered as the numerical indicator to represent the boundary between a stable 

state and chatter. The Poincaré sections are interpreted in the form of a matrix and 

are regressed with the reference Poincaré section. 

In this chapter, we investigate whether the method can resolve the disadvantages 

over image correlation. Hence, the method has to be able to provide a timely 

forecast of chatter occurrence, as well as being insensitive to the dynamics of 

milling and cutting parameters. 

6.2 Linear Regression 

Several mathematical techniques are used to present the relationships between sets 

of variables. The most common techniques are; Moving Average (MA), 

Exponential Smoothing, Auto Regressive Integrated Moving Average (ARIMA), 

and Linear Regression. Linear regression is a powerful technique that explores the 

linearity between two or more variables. By this method, mean of variable U is 
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defined as a straight line function of V plus an error term or residual. Usually the 

undetermined variable, which is also known as dependent or criterion variable, is 

regressed with one or more independent (predictor) variables [209].  

Linear regression is predominantly used for the purpose of indicating phase space 

attractor deviation, in the same way as image correlation. MA is a statistical tool to 

analyse time series by creating a series of averages of different subsets of the full 

data set [210]. MA plots an interval of the averages but it does not produce a 

specific number as is required for determining the chatter onset boundary. In MA, 

equal weight must be given to every time period that makes the forecasts lag behind 

the underlying trend, or the actual data values have to be multiplied by some 

weightings, which makes calculation difficult. Therefore the inherent nature of MA, 

means the outcomes always lag behind and making it insensitive for prediction 

purposes. 

ARIMA is used to fit data to a time series. The choice of the model structure 

demands great experience from the developer. The complexity increases the 

computation time, which is not desirable with on-line chatter detection methods 

[211]. The ARIMA method firmly models the variable with information about the 

past values of the same variable, and has difficulty handling multiple variables. 

Hence, the model is complicated to use and is not flexible as the parameters are 

fixed over time [212].  

The exponential smoothing method produces smoothed data as the recent 

observations are given relatively more weight in forecasting than the older 

observations. Compared with MA, exponential smoothing is faster, more accurate, 

and has less complexity. However, it cannot provide a model and interval for 

prediction [213]. 

6.2.1 Linear Regression Application on Modelling Dynamic Systems  

Linear regression has been used to analyse trends in wide range of dynamic 

systems. It characterizes the relationship between independent variables and 
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dependent variables, which is useful for forecasting the future values of the 

dependent variable [214].  

The linear regression method has been applied to many engineering processes. 

Bukkapatnam et al. [215] used linear regression to characterize the material 

removal rate in the chemical-mechanical planarization of SiO2 film. To improve 

the predictability (more than 40%), they applied statistical features along with 

the process parameters and polishing time. Ic [216] advanced TOPSIS to define 

critical selection attributes and their interactions by fitting a polynomial to the 

experimental data in a multiple linear regression analysis. On the subject of 

TOPSIS, the regression model reduced the process cost, time and the computing 

complexity. Xue et al. [217] modelled the robotic arc-welding process by using 

fuzzy linear regression to promote the automated welding system. Su and 

Dingwell [218] employed linear regression to demonstrate scaling coefficient 

effects on stability of walking model on an irregular surface. Kaunda [219] 

combined linear regression with numerical integration to analyse deep-seated 

landslides, at slow to extremely slow episodic displacement rates. The technique 

predicted volumetric rates of mass flow in a specific direction, based on 

measured surface velocities. Foucart [220] evaluated the inverse of a correlation 

matrix stability by looking at the squared length of the regression vector’s 

derivatives. 

Linear regression is used in models that are linearly dependent on their 

independent parameters. It has also been applied to machining processes for 

various purposes. Huang et al. [221] tried to provide a multiple linear regression 

model to detect the tool breakage on-line during machining. Chen et al. [222] 

provided a model with multiple regression to monitor the wearing of cutting 

tools during milling. Korkut et al. [223] compared the regression and artificial 

neural network (ANN) in order to predict tool–chip interface temperatures during 

machining, which is dependent on cutting parameters. The result demonstrates 

that in comparing with ANN model, regression provides stronger predicted 

values in performance. Regression analysis is used even to estimate the cost of 

machining processes [224]. 
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The summary of literature search above indicates that linear regression analysis 

is well fitted to appoint independent variables to changing dependent variables.  

Therefore, linear regression was chosen and applied on reconstructed phase 

space attractor Poincaré sections in this study to predict the state of milling 

processes.  

The literature review demonstrates that linear regression is consistent and 

precise, such that the slope (trend) is able to provide useful and accurate 

information [214]. This aspect makes the linear regression method most suitable 

and reliable on forecasting data in regards to chatter. 

6.3 The Mathematical Format of Poincaré Section 

A Poincaré section based on section 4.5, is considered at this point to design a 

certain mathematical format. The mathematical design must be applicable for linear 

regression modelling. It can then be applied for all phase space attractor Poincaré 

sections. The Poincaré sections of relevance are those resulting from analysing 

acceleration signals acquired during the milling trials.  

To interpret a Poincaré section, it is divided into k equal segments in each direction 

of X and Y, as shown in Figure 6.1. A number of ordered pairs (xl, xl-τ) are perched 

inside of each pixel. k is the optimum value that is determined by minimum and 

maximum values of ordered pairs (xl, xl-τ), as well as the total number of ordered 

pairs in the Poincaré section. Therefore, the Poincaré section at time interval i is 

divided into the number of k×k pixels, each pixel including a number of ordered 

pairs. Accordingly, the Poincaré section is shown in the form of a k×k matrix, 

named Si. In matrix Si that is sown by Equation (6.1), the total quantity of the 

ordered pairs in each pixel can be the value of the array corresponding to the pixel.  

⋯
⋮ ⋱ ⋮

⋯
       (6.1) 
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By accomplishing the above procedure for each Poincaré section at each time 

segment, a set of matrices are resulted. The matrices are the desired mathematical 

format of the phase space attractor Poincaré section, as two or more matrices can be 

easily subjected to linear regression. 

 

 

 

 

 

 

 

 

 

Figure 6.1: phase space attractor cross section divided into k×k pixels. 

6.4 Poincaré Section Deviation Modelling 

Having reviewed the linear regression method, this section describes how it can be 

used to analyse the Poincaré sections generated from phase space attractor during 

milling, as explained in chapter 4.  

In modelling with linear regression a minimum of two variables are required, one 

independent variable and one dependent. The independent variable is the reference 

variable which has been controlled in the milling process.  

Linear regression models the relationship for two variables with a line equation as 

shown in Equation (6.2).  

.         (6.2) 
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Where: 

U is dependent and V independent variable. Hence, α is the regression coefficient 

that represents the variation of dependent variable when the independent variable 

varies by one unit. Consequently, β is the intercept.  

Similarly, multiple variable linear regression models can be formatted. Equation 

(6.2) is expanded to a new form of the Equation (6.3), which incorporates multiple 

variables. Using this model, a dependent variable can be modelled by considering 

all distinguishable independent variables. 

⋯      (6.3) 

where: 

V1 to Vn are independent variables that dependent variable U is modelled based on 

its relationship with them. Hence, α1 to αn are regression coefficients.  

In the regression model, the regression coefficient is the slope of the line that 

explains the linear association between U and Vi. In the other word, it represents the 

rate of change of one variable (U) as a function of changes in the other variables Vi. 

Accordingly in order to indicate whether the milling process is going to chatter, the 

regression coefficient is the consistent indicator that reflects the variations between 

Poincaré sections.  

6.4.1 Multiple Variables Linear Regression Model 

Linear regression modelling of the Poincaré sections deviation requires an initial 

state reference. A milling process starts at a stable condition, then according to 

the dynamics self-excited vibration occurs. So in the linear regression model, the 

corresponding matrix of the Poincaré section at the first time interval (beginning 

of the process) is considered as the reference variable. The relationship between 

the corresponding matrix of Poincaré section at the second time interval and 
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reference Poincaré section is evaluated by Equation (6.4), where S1 and S2 are 

the corresponding matrices to the Poincaré sections at time segment one and two.  

.         (6.4) 

Similarly, the multiple variables regression model of third time segment can be 

calculated by using Poincaré sections prior to the time segment 3, as shown in 

Equation (6.5). 

. .       (6.5) 

The regression coefficients 2 represents the rate of change of the Poincaré 

sections with respect to the closest section S2. It is noted that the regression 

coefficient 1 for S1 is different and is labelled as 1(3). 

Correspondingly, Equation (6.6) is the expanded form of Equation (6.5), where 

the dependent variable Si is modelled by using distinguishable variables S1 to Si-

1. In this model, all matrices prior to the Si have been considered as independent 

variables. Si is the corresponding matrix of Poincaré section at time segment i, 

while S1 to Si-1 are corresponding matrices of Poincaré sections at time segments 

1 to i-1.The association of each Poincaré section with prior Poincaré sections is 

then expanded in the Equation (6.6).  

. . ⋯ .    (6.6) 

The regression coefficients α(i) are the potential indicators that define the 

boundary between the stable and unstable states of milling. However, the 

question is:  

What is the value of the regression coefficient that indicates the boundary of 

chatter onset?  

To answer this question, a set of real data that is acquired during milling should 

be used, and the proposed multiple variables regression model has to be applied 
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to it. For this purpose, the same set of acquired data that was previously used in 

section 5.4, chapter 5 is analysed (Milling trial no. 7, Table 5.1). 

Milling trial no. 7 is divided into the 10 time intervals. Poincaré sections of 

related phase space attractor to the milling process are illustrated by plotting       

x(t-10) versus x(t). To apply linear regression, every Poincaré section is considered 

dependent to the prior Poincaré sections. Consequently by considering a 

Poincaré section at time segment i as the dependent variable, prior Poincaré 

sections are considered independent variables. Accordingly, the outlined matrix 

corresponding to each Poincaré section is placed in the Equation (6.6). 

Regression Coefficients α1 to α10 are then calculated and tabulated in Table 6.1.  

To answer the above question, the variation of regression coefficient must be 

investigated during the milling trial. Based on the tabulated information in Table 

6.1, the investigation can be done in two ways: 

 Deviation of each coefficient (α1 to α10) during different time intervals, or 

 Deviation of all regression coefficients at each time segment.  

Considering the value of α1 during milling, there does not appear to be a  

consistent and predictable trend for its variation as shown in Figure 6.2, 

especially when the milling trial enters into the chatter at time interval (4.5 – 

10.5 s). Similarly, the investigation of other regression coefficients provides a 

similar result. For better visualization of the regression coefficient deviation 

during milling, the deviation of every regression coefficient along milling 

process is plotted in Figure 6.3. 
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Figure 6.3 (a) – (h): deviation of α2 to α9 during milling trial. 

 

The variation of regression coefficients (α1 to α10) is also investigated at each 

time segment. The variation of resulted regression coefficients from modelling of 

corresponding Poincaré section to time interval (15-21 s) are shown in Figure 

6.4. The observation from the figure shows that the variation of regression 

coefficients belonging to each time interval (15-21 s) does not show any 

consistency or rule. Similarly, the variation of α1 to α10 during other time 

intervals is not consistent and predictable, as shown in Figure 6.5 (a) to (h). 
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By investigation of the regression coefficient deviation in the proposed multiple 

variable regression model, it is impossible to find a consistent relationship 

between regression coefficient deviation and Poincaré sections deviation. 

Therefore, the multiple linear regression model cannot provide the desired 

indicator for detection of chatter threshold. Therefore, it is necessary to 

investigate further and choose another linear regression modelling technique. 

6.4.2 Fixed Reference Linear Regression Model 

The investigation of using the multiple variable regression model shows that it is 

not successful in determining the chatter onset boundary. An alternative 

regression model is proposed in this section based on the simple linear regression 

model. In this model, every Poincaré section of reconstructed phase space 

attractor is compared with one fixed reference variable.  

Normally, milling starts within a stable state. Gradually due to incomplete 

process parameters and interaction between cutting tool and workpiece, the 

milling process degenerates into chatter. Consequently to measure the deviation 

of Poincaré sections, the most suitable reference variable could be a 

corresponding matrix of a Poincaré section at the beginning of the cutting 

process, or in the first time segment. Accordingly, this matrix is considered as an 

independent variable and all other matrices are regressed with regard to that. Due 

to using a constant reference, the proposed model is titled, fixed reference linear 

regression. The model is represented by the simple linear regression Equation 

(6.9), and correlates each Poincaré section with the initial Poincaré section.  

.                           i = 2, 3,…, n    (6.9) 

Having values of matrix S1 to Si, regression coefficient (αi) is then calculated. 

The variation of phase space attractor along the milling process can now be 

measured by a regression coefficient (αi) and the state of milling would be 

appointed during the milling time.  
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The fixed reference model is applied again on data acquired during trial no. 7 

(Table 5.1) in order to determine whether the proposed model can indicate the 

onset of chatter. Corresponding matrix of Poincaré section at time segment (0 - 6 

s) is considered as the fixed reference variable. The other ten corresponding 

matrices of phase space attractor Poincaré sections are correlated with the 

reference one. The regression coefficient must demonstrate the relationship 

between each Poincaré section and the initial Poincaré section. The variation of 

the regression coefficient can then be used to evaluate the deviation of Poincaré 

sections. For this purpose, the regression coefficient variation is demonstrated in 

Table 6.2, as well as Figure 6.6.  

 

Table 6.2: Regression coefficient deviation during milling trial no. 7 analysed based 

on fixed reference regression model.  

Time Intervals (s) 
Regression 

Coefficient (α1) 

0-6 Reference 

1.5-7.5 0.987 

3-9 0.891 

(4.5-10.5)5 0.718 

6-12 0.514 

7.5-13.5 0.332 

9-15 0.210 

10.5-16.5 0.177 

12-18 0.178 

13.5-19.5 0.160 

15-21 0.143 

 

                                                 

5 Time interval that chatter begins. 
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Similar to experiment no. 7, the acquired time series was reconstructed and 

Poincaré sections were plotted for each time segment. The fixed reference 

linear regression was applied to measure the attractor variation during milling, 

and hence the regression coefficients were computed. The variation of 

regression coefficient is demonstrated in Table 6.3, as well as Figure 6.7.  

The regression coefficient starts with the value of 0.997 for regression 

between Poincaré section at time interval (3-13 s) and the reference. The 

value of coefficient drops until the final value of 0.912 for regression between 

Poincaré section of time interval (21-31 s) and the reference. As shown in 

Figure 6.7, the regression coefficient does not have excessive variation during 

the stable milling operation and its value varies descending and smoothly 

from 1 to 0.9. 

 

Table 6.3:  Regression coefficient deviation during milling trial no. 5 analysed 

based on fixed reference regression model.  

Time Intervals (s) 
Regression 

Coefficient (α1) 

0-10 Reference 

3-13 0.997 

6-16 0.982 

9-19 0.975 

12-22 0.945 

15-25 0.931 

18-28 0.905 

21-31 0.912 
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6.6 Discussion 

In chapter 5, the correlation coefficient was applied to determine the relationship 

between Poincaré sections. The chatter onset boundary was determined by using the 

correlation coefficient variation during milling, even though; the method is not 

consistent and has some limitations. In the other hand and from this study, linear 

regression overcomes those limitations and could successfully provide a consistent 

indicator for chatter onset. 

The use of the correlation coefficient is fast, easy, and straightforward, although it 

measures the closeness of the relationship between two or more variables without 

any information about their functional relationships. Hence, a high value of the 

correlation coefficient (more than 0.8) explains about 50% of the variability. Image 

correlation can establish the relationship between only two variables, and obviously 

only makes sense if both variables are observed.  

Unlike image correlation, linear regression, which is also known as a statistical 

technique, demonstrates the form of the relationship between independent and 

dependent variables. The basic linear relationship forms such as polynomial, 

exponential and logarithmic regression have low correlation coefficients but are 

high on the regression function. Regression analysis can also explain one variable 

with more than one independent variable simultaneously. 

As mentioned in chapter 5, image correlation cannot prove dependency between 

two variables. It only gives an estimation of the degree of the relationship between 

two variables. On the other hand, the regression analysis is used if a fixed, or 

dependent variable is available, and if the aim is to use the measurement of the 

relationship to predict values of the random variable based on values of the fixed 

variable. Regression analysis attempts to describe the dependence of a variable on 

one (or more) explanatory variables; it implicitly assumes that there is a one-way 

causal effect from the explanatory variable(s) to the response variable, regardless of 

whether the path of effect is direct or indirect. There are advanced regression 

methods that allow a non-dependence based relationship to be described. 
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6.7 Conclusion 

In this chapter, a new model based on the principle of linear regression is proposed 

to determine the deviation of phase space attractor towards chattering state during 

milling. As opposed to traditional use of linear regression analysis with multiple 

variables, the innovation in this new model is to use fixed reference linear 

regression that provides a consistent trend indicator.  Furthermore, the indicator has 

been proved to be a reliable indicator for chatter threshold, based on predicting the 

relationship between Poincaré sections during milling. The fixed reference linear 

regression method overcomes the limitations of the image correlation. 

Based on the results from linear regression modelling for sets of data acquired 

during trial 7 for milling titanium, the fixed reference model could successfully 

provide a trend to demonstrate the variation of the phase space attractor Poincaré 

sections during milling. The regression coefficient is the indicator that measures the 

variation of Poincaré section.  

The method described must be further validated by more titanium milling 

experiments. The outlined threshold regression coefficients are therefore applicable 

to for machining activities. For validation purposes more milling trials including 

other materials, cutting tools, and cutting parameters have been run. The proposed 

linear regression method has been applied on the acquired data in order to further 

validate the proposed model. The results are discussed in the next chapter. 
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7.1 Introduction 

The variation of phase space attractor Poincaré sections was demonstrated as a tool 

to visualize the state of milling process in time. The variation was successfully 

parameterized by the fixed reference linear regression model. This model supplied a 

regression coefficient as a numeric indicator, which can be used in the online 

monitoring process to predict chatter onset. The method described has been 

validated by a series of experiments milling titanium.  

To further validate the proposed regression model, it is applied to numerous milling 

processes based on workpiece material and cutting tool size. The milling trials are 

also run with different cutting parameters. The study objective is to determine 

whether the variation regression coefficient is similar for different milling 

processes. The aim is also to determine whether the proposed chatter threshold 

boundary in the initial study results is applicable for new cutting runs, or it is 

required to determine specific boundaries based on each new milling condition. 

In this chapter, the milling operations are classified based on the workpiece material 

and the cutting tool size. In the first studies the regression model is applied to trials 

cutting titanium, stainless steel, and aluminium with a 6-mm cutter. These 

engineering materials are the most common materials used for milled products. The 

studies carried out in this section use the same materials but with a 4 mm cutting 

tool. The results are a database of regression coefficient values based on the cutting 

conditions. This database can then be used in industry and in the format of software 

that the operator can use to determine whether the milling process is going to enter 

into chatter, thereby the prevention of this will be beneficial. 

7.2 Analysing Milling Trials Cut with a 6-mm Cutter 

A set of milling cuts is done with a 6-mm long cutter. The cutter is made of 

tungsten carbide material which is suitable to cut titanium and stainless steel. 
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Moreover, the cutting tool varies in the number of flutes. Workpieces are cut by 

cutters with two different numbers of flutes, two and four. 

7.2.1 Titanium  

The advantages of titanium are given in chapter 1. Comparing with other 

engineering materials such as steel, aluminium and composites, titanium is more 

susceptible to chatter. Consequently, it is classified as a hard-to-cut material. 

Consequently the, detection of chatter during milling of titanium is the main 

objective of this study. 

One set of experiments including nine titanium milling trials was completed by 

using a ball-nose cutter, and the proposed methods of chatter detection, image 

correlation and regression model, were applied to determine the chatter threshold 

boundary. However, more investigation is required to verify the application of 

chatter detection methods for different milling conditions. This was done with 

different cutting tools and cutting parameters.  

For titanium, chatter occurrence is more likely when the cutting parameters are 

in the range is shown in Table 7.1. Accordingly, the trials had cutting parameters 

within the ranges shown in the table and also with the condition that milling 

begins with a stable state and continuously moves to an unstable condition or 

chatter.  

Table 7.1 The range of cutting parameters for occurrence of chatter. 

Cutting Parameters Range 

Spindle speed (Vs) 4500-5000 (rpm) 

Cutting Speed (Vc) 225-250 (mm/min) 

Axial Depth of Cut (ap) 1-2 (mm) 

Radial Depth of Cut (ae) 0.25 D - 0.75 D (mm) 
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Stability lobes diagrams are usually plotted by Axial Depth of Cut (ap) versus 

spindle speed. Accordingly to have stable condition at the start of milling process 

and continuously move to chatter, the trial can be designed in a way that axial 

depth of cut or cutting speed changes continuously during milling. To 

continuously increase axial depth of cut during a trial means a ball-nose cutting 

tool is required, but for end-milling this cannot be done so axial depth of cut in 

this case is invariable. Therefore, two distinctly different forms of milling; ball-

nose and end mill are investigated. 

7.2.1.1 Ball-Nose Milling 

To increase DA continuously during the milling trial, the cutting path must be 

considered as a form of inclined slot. Two kinds of a 6-mm ball-nose cutting 

tool with 2 and 4 flutes are used to cut titanium. 

Considering the numbers of flutes, two sets of milling process are performed 

with each set including nine milling trials. The cutting process starts with zero 

axial depth of cut, and then it is continuously increased to the final value of 2 

mm. The immersion rate varies between 25% and 75% during the trials. The 

cutting parameters are shown in Tables 5.1 for a 4-flute cutter, and in Table 

7.2 for a 2-flute cutter.  

Table 7.2 Cutting parameters for a ball-nose, 2 flutes, and 6 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 4500 225 0-2 0.25D 

2 4500 225 0-2 0.50D 

3 4500 225 0-2 0.75D 

4 5000 250 0-2 0.25D 

5 5000 250 0-2 0.50D 

6 5000 250 0-2 0.75D 

7 5500 275 0-2 0.25D 

8 5500 275 0-2 0.50D 
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9 5500 275 0-2 0.75D 

 

The observations from the experiments shows that milling trials no. 2, 5, and 

6 ran in a stable condition. The acceleration signal is recorded in the form of a 

time series. The corresponding time series is shown for each trial in Figure 

7.2. The time series is reconstructed to state vectors and phase space attractor 

Poincaré sections related to each milling trial and are plotted (the procedure 

has been explained particularly in chapter 4). Thereafter the fixed reference 

linear regression method models the variation of Poincaré sections along each 

of the milling trials, as discussed previously.  

Earlier in chapter 6, the chatter threshold boundary was established for the set 

of milling trials that cut the titanium workpiece with a 6 mm ball-nose cutter 

with 4 flutes. In this case the same process is done for another set of milling 

trials that cut titanium workpieces with a 6 mm ball-nose cutter but with only 

two flutes. The regression coefficient is calculated and its variation is 

established for each milling trial, as shown in Figure 7.1.  

Determining the Poincaré section variation between time intervals that chatter 

onsets and the reference one by using the fixed reference linear regression 

method, the regression coefficient values have been established at the chatter 

threshold. The value of regression coefficient at the onset of chatter varies 

between 0.69 and 0.83. 
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7.2.1.2 End Milling 

Changing the spindle speed can also affect the state of milling and change it from 

stable to chatter condition. An end mill must run at a constant axial depth of cut 

therefore, for the trials the cutting speed was varied by increasing it during the 

run. The cutting path is a straight slot, which is cut by different cutters with 2 and 

4 flutes. 

For each milling trial, the CNC code is written in a way that cutting speed 

continuously increases in three steps. Axial depth of cut is constant during the 

milling trials; and the immersion rate varies between 25% and 75% during the 

trials. The cutting parameters are shown in Tables 7.3 for a 4-flute cutter and in 

Table 7.4 for a 2-flute cutter.  

Table 7.3: Cutting parameters for end-mill, 4 flutes, and 6 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 3500-4500 240-360 1.0 0.25 D 

2 3500-4500 240-360 1.0 0.5 D 

3 3500-4500 240-360 1.0 0.75 D 

 

Table 7.4: Cutting parameters for end-mill, 2 flutes, and 6 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 3500-4500 140-180 1 0.25D 

2 3500-4500 140-180 1 0.5D 

3 3500-4500 140-180 1 0.75D 
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The observations from the experiments show that milling trials no. 1 ran in a 

stable condition. Time series are reconstructed in the form of a state vector 

and phase space attractor Poincaré sections related to each milling trial are 

plotted. Consequently, the regression coefficient is calculated and its variation 

is demonstrated during each milling trial, as shown in Figure 7.2. The value of 

the regression coefficient at the onset of chatter varies between 0.89 and 0.8. 

The acquired signals during the trials are displayed in figure 7.2. 

Similarly, three end-milling trials were implemented by using a 6 mm end 

mill cutter with 2 flutes. The acquired accelerations during the cutting trials 

were reconstructed and the variations of Poincaré sections are modelled by 

regression coefficient, which is shown in Figure 7.3. The value of regression 

coefficient at the onset of chatter varies between 0.58 and 0.8. The acquired 

signals during trials are displayed in figure 7.3. 

7.2.2 Stainless Steel  

The grade of stainless steel chosen for this milling trials was Grade 316, a 

common and widely used grade in industry. The broad number of preliminary 

cutting trials determines that the occurrence of chatter during milling of stainless 

steel is most likely when the cutting parameters are in the range shown in Table 

7.5. Similar to titanium, the milling trials are designed to have a stable process at 

the beginning and then move into chatter. Two milling processes were used, 

which were exactly the same as for titanium. 

Table 7.5 Cutting parameters for chatter occurrence during milling stainless steel. 

Cutting Parameters Range 

Spindle speed (Vs) 5000 rpm 

Cutting Speed (Vc) 500 mm/min 

Axial Depth of Cut (ap) 0 – 2 mm 

Radial Depth of Cut (ae) 0.25 D - 0.75 D mm 
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7.2.2.1 Ball-Nose Milling 

Two ball-nose cutting tools are used to mill stainless steel. Two sets of 

milling process, each set including nine milling trials, are performed to cut a 

stainless steel block in the form of steep slots. The cutting process starts with 

zero axial depth of cut, and then it is continuously increased to the final value. 

The immersion rate varies between 25% and 75% during the trials. The 

cutting parameters are shown in Tables 7.6 for a 4-flute cutter, and in Table 

7.7 for a 2-flute cutter. 

Table 7.6 Cutting parameters for a ball-nose, 4 flutes, and 6 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 4500 450 0-2 0.25D 

2 4500 450 0-2 0.50D 

3 4500 450 0-2 0.75D 

4 5000 500 0-2 0.25D 

5 5000 500 0-2 0.50D 

6 5000 500 0-2 0.75D 

7 5500 550 0-2 0.25D 

8 5500 550 0-2 0.50D 

9 5500 550 0-2 0.75D 

 

The acceleration signal in the form of time series is reconstructed to a state 

vector and the related phase space attractor Poincaré sections are plotted for 

each trial. Fixed reference linear regression models the variation of Poincaré 

sections during each milling trial, as discussed previously.   
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Table 7.7 Cutting parameters for a ball-nose, 2 flutes, and 6 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 4500 400 0-1.5 0.25D 

2 4500 400 0-1.5 0.5D 

3 4500 400 0-1.5 0.75D 

4 5000 450 0-1.5 0.25D 

5 5000 450 0-1.5 0.5D 

6 5000 450 0-1.5 0.75D 

7 5500 495 0-1.5 0.25D 

8 5500 495 0-1.5 0.5D 

9 5500 495 0-1.5 0.75D 

 

Considering milling trials with 6mm ball-nose cutter with 4 flutes, milling 

trials no. 3, 5, also 6 and 9 ran stable. While for trials 1, 2, 4, 7, and 8 chatter 

did occur and for these trials, the value of the regression coefficient at the 

onset of chatter varies between 0.64 and 0.8, while its variation is 

demonstrated for different cutting trials in Figure 7.4. Consequently, the 

variation of regression coefficient is demonstrated in Figure 7.5 for cutting of 

stainless steel with 2 flutes cutter shows chatter did occur for trials 1, 3, 6, 7, 

and 9 and its variation is between 0.6 and 0.82; hence milling trials no. 2, 4, 5, 

and 8 are stable. 
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7.2.2.2 End-Milling 

Changing the spindle speed can also affect the state of milling and change it 

from stable to chatter condition. An end mill must run at a constant depth 

therefore, for the trials the cutting speed was varied by increasing it during the 

run. The cutting path is a straight slot, which is cut by different cutters with 

two and four flutes. 

 For each milling trial, the CNC code is written in a way that cutting speed 

continuously increases in 3 steps. Axial depth of cut is constant during the 

milling trials; and the immersion rate varies between 25% and 75% during the 

trials. The cutting parameters are similar for both two and four flutes cutters. 

So, one Table 7.8 demonstrates the cutting parameters for both sets of milling 

trials.  

Table 7.8: Cutting parameters for 6 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 5000-6000 500-600 1.5 0.25D 

2 5000-6000 500-600 1.5 0.5D 

3 5000-6000 500-600 1.5 0.75D 

 

Similarly, the regression coefficient is calculated and its variation is 

determined during each milling trial, as shown in Figure 7.6 (a) to (c). The 

value of regression coefficient at the onset of chatter varies between 0.89 and 

0.86. A 6-mm end-mill cutter with two flutes is also used. The variation of 

regression coefficient is shown in Figure 7.6 (d) to (f), which varies between 

0.85 and 0.82. 
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7.2.3 Aluminium  

 The preliminary milling trials of aluminium material determined that the 

occurrence of chatter is most likely when the milling parameters are in the range 

shown in Table 7.9. 

 

Table 7.9 the milling parameters for chatter occurrence during milling aluminium. 

Cutting Parameters Range 

Spindle speed (Vs) 8500 rpm 

Cutting Speed (Vc) 150 mm/min 

Axial Depth of Cut (ap) 0 – 2 mm 

Radial Depth of Cut (ae) 0.25 D - 0.75 D mm 

 

Similar to experiment design developed for other two materials, two milling 

processes are also designed to cut the aluminium. Axial depth of cut varies 

during the ball-nose process, and cutting speed changes during end-mill process. 

Furthermore, cutting tools with 4 mm and 6 mm diameter are used for each 

milling process. They have a different numbers of flutes, two and four flutes.  

 

7.2.3.1 Ball-Nose Milling Process 

To cut an inclined slot, two ball-nose cutting tools are used to cut aluminium. 

The cutters are both 6 mm in diameter and with two and four flutes.  

Two sets of milling process, each set including nine milling trials, are 

performed. The immersion rate varies between 25% and 75% during the trials. 

The cutting parameters are shown in Tables 7.10 for a 4-flute cutter, also in 

Table 7.11 for a 2-flute cutter. Furthermore, the value of regression 
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coefficient at the onset of chatter is displayed in the tables for each milling 

process.  

 

Table 7.10: Cutting parameters for a ball-nose, 4 flutes, and 6 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 
α 

1 8000 1000 0-3 0.25D 0.81 

2 8000 1000 0-3 0.5D 0.78 

3 8000 1000 0-3 0.75D Stable 

4 9000 1125 0-3 0.25D 0.63 

5 9000 1125 0-3 0.5D 0.57 

6 9000 1125 0-3 0.75D 0.79 

7 9800 1225 0-3 0.25D 0.77 

8 9800 1225 0-3 0.5D 0.76 

9 9800 1225 0-3 0.75D 0.79 

 

Considering the regression model between time intervals that chatter onsets 

and the reference one, the value of regression coefficient indicates chatter 

threshold. The value of regression coefficient at the onset of chatter varies 

between 0.57 and 0.81 when aluminium cuts with four flutes cutter; and it is 

between 0.54 and 0.77 for a 2-flute cutter.  
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Table 7.11: Cutting parameters for a ball-nose, 2 flutes, and 6 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 
α 

1 8000 1000 0-3 0.25D Stable 

2 8000 1000 0-3 0.5D “ 

3 8000 1000 0-3 0.75D “ 

4 9000 1125 0-3 0.25D 0.54 

5 9000 1125 0-3 0.5D 0.68 

6 9000 1125 0-3 0.75D 0.75 

7 9500 1187 0-3 0.25D 0.77 

8 9500 1187 0-3 0.5D 0.63 

9 9500 1187 0-3 0.75D 0.72 

 

7.2.3.2 End-Millings 

Similar to other two materials, an end-mill milling process was designed to 

cut aluminium. In the milling trials, axial depth of cut is constant and cutting 

speed varies along the cutting trial. The cutting path is a straight slot, which is 

cut with two different cutting tools, with two and four flutes.  

Two sets of milling process, each set including three milling trials, were 

performed to cut slots in aluminium blocks. Axial depth of cut is constant 

during the milling trials; hence the immersion rate varies between 25% and 

75% during the trials. The milling parameters are shown in Tables 7.12 for a 

4-flute cutter, and in Table 7.13 for a 2-flute cutter. Furthermore, the value of 

regression coefficient at the onset of chatter is displayed in the tables for each 

milling process. 
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Table 7.12: Cutting parameters for end-mill, 4 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 
α 

1 8000-9800 800-980 3 mm 0.25D 0.89 

2 8000-9800 800-980 3 mm 0.5D 0.59 

3 8000-9800 800-980 3 mm 0.75D 0.84 

 

Table 7.13: Cutting parameters for end-mill, 2 flutes, and 6 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 
α 

1 8000-9500 800 2 0.25D 0.52 

2 “ “ “ 0.5D 0.84 

3 “ “ “ 0.75D 0.86 

 

The regression coefficient variation is demonstrated during each milling trial, 

as shown in Figure 7.18 (a) to (c). The value of the regression coefficient at 

the onset of chatter varies between 0.59 and 0.89. Similarly, three end-milling 

trials were completed using a 6-mm end mill cutter with two flutes. The value 

of regression coefficient at the onset of chatter varied between 0.52 and 0.86. 

7.3 Analysing milling trials cut with a 4-mm cutter 

At this stage, all procedures were repeated for the three materials with a 4-mm 

cutting tool. The aim was to determine the effect of milling tool diameter on the 

chatter threshold boundary. Additionally two and four flutes cutting tools were 

used. 
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7.3.1 Titanium 

7.3.1.1 Ball-nose Milling Process 

Similar to the previous section, two sets of milling processes each set 

including nine milling trials were performed. A cutting tool with 4 mm 

diameter is used to cut steep slots in the block of titanium. The axial depth of 

cut varied between 0 and 1 mm; hence the immersion rate varies between 25% 

and 75% during the trials. The milling parameters are shown in Tables 7.14 

for a 4-flute cutter and in Table 7.15 for a 2-flute cutter. 

 

Table 7.14: Cutting parameters for a ball-nose, 4 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 3500 175 0-1 0.25D 

2 3500 175 0-1 0.5D 

3 3500 175 0-1 0.75D 

4 4000 200 0-1 0.25D 

5 4000 200 0-1 0.5D 

6 4000 200 0-1 0.75D 

7 4500 225 0-1 0.25D 

8 4500 225 0-1 0.5D 

9 4500 225 0-1 0.75D 
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Table 7.15: Cutting parameters for a ball-nose, 2 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 3000 180 0-1 0.25D 

2 3000 180 0-1 0.5D 

3 3000 180 0-1 0.75D 

4 4000 240 0-1 0.25D 

5 4000 240 0-1 0.5D 

6 4000 240 0-1 0.75D 

7 4500 315 0-1.5 0.25D 

8 4500 315 0-1.5 0.5D 

9 4500 315 0-1.5 0.75D 

 

Similarly, the acquired time series are reconstructed and the related phase 

space attractor Poincaré sections are plotted. Consequently, the fixed 

reference linear regression models the variation of Poincaré sections during 

each milling trial. The milling trials with a 4-flute cutter, trials no. 1, 2, 5, and 

7 ran in stable condition. The regression coefficient is calculated and its 

variation is demonstrated during each milling trial, as shown in Figure 7.7 for 

cuts are implemented by four flutes cutting tool. The value of the regression 

coefficient at the onset of chatter varies between 0.75 and 0.87 for milling 

trials carried out by a 4-flute cutting tool. 

Figure 7.8 demonstrates the variation of regression coefficients for cutting 

trials with a 2-flute cutter. The regression coefficient for chatter onset varied 

between 0.71 and 0.87. While, milling trials no. 2, 3, 8 and 9 ran in stable 

state. 
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7.3.1.2 End Milling 

Two sets of milling processes, each set including three milling trials, were 

performed on a titanium block with a 4-mm cutting tool. Similar to the 6 mm 

end-mill cutter, axial depth of cut is constant during the milling trials. The 

cutting parameters are shown in Tables 7.16 for a 4-flute cutter, also in Table 

7.17 for a 2-flute cutter.  

Table 7.16: Cutting parameters for end-mill, 4 flutes, and 4 mm milling tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 3500-4500 175 0-1 0.25D 

2 3500-4500 175 0-1 0.5D 

3 3500-4500 175 0-1 0.75D 

 

 

 

Table 7.17: Cutting parameters for end-mill, 2 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 4000-4800 160 1 0.25 

2 4000-4800 160 1 0.5D 

3 4000-4800 160 1 0.75D 

 

For each milling trial, the CNC code is written in a way that milling speed 

continuously increases in 3 steps. Time series are reconstructed in the form of 

a state vector and phase space attractor Poincaré sections related to each 

cutting process being plotted. Consequently, the regression coefficient is 

calculated and its variation is demonstrated during each milling trial, as 

shown in Figure 7.9 (a) to (c). The value of regression coefficient at the onset 

of chatter varies between 0.63 and 0.83. 
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Similarly, three end-milling trials were carried out by using a 4 mm end mill 

cutter with 2 flutes. The acquired accelerations during the cutting trials were 

reconstructed and the variations of Poincaré sections are modelled by 

regression coefficient, which are shown in Figure 7.9 (d) to (f).The value of 

regression coefficient at the onset of chatter varies between 0.74 and 0.89. 

7.3.2 Stainless Steel  

7.3.2.1 Ball-nose Milling 

A cutting tool with 4mm diameter is used to cut inclined slots in the block of 

stainless steel. The axial depth of cut varies between 0 and 1.5 mm; hence the 

immersion rate varies between 25% and 75% during the trials. The cutting 

parameters are shown in Tables 7.18 for a 4-flute cutter, also in Table 7.19 for 

a 2-flute cutter. 

Table 7.18 Cutting parameters for a ball-nose, 4 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 4500 450 0-1.5 0.25D 

2 4500 450 0-1.5 0.5D 

3 4500 450 0-1.5 0.75D 

4 5000 500 0-1.5 0.25D 

5 5000 500 0-1.5 0.5D 

6 5000 500 0-1.5 0.75D 

7 5500 550 0-1.5 0.25D 

8 5500 550 0-1.5 0.5D 

9 5500 550 0-1.5 0.75D 
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Table 7.19 Cutting parameters for a ball-nose, 2 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 3000 180 0-1 0.25D 

2 3000 180 0-1 0.5D 

3 3000 180 0-1 0.75D 

4 4000 240 0-1 0.25D 

5 4000 240 0-1 0.5D 

6 4000 240 0-1 0.75D 

7 4500 315 0-1.5 0.25D 

8 4500 315 0-1.5 0.5D 

9 4500 315 0-1.5 0.75D 

 

Similarly, the acquired time series are reconstructed and the phase space 

attractor Poincaré sections related to each milling process are plotted. 

Consequently, the fixed reference linear regression models the variation of 

Poincaré sections during each milling trial. The regression coefficient is 

calculated and its variation is demonstrated during each milling trial, as 

shown in Figure 7.10 for cuts carried out by a 4-flute cutting tool, and Figure 

7.11 for a 2-flute cutter. The value of regression coefficient at the onset of 

chatter varies between 0.57 and 0.79 for cutting trials implemented by a 4-

flute cutting tool; and it varies between 0.75 and 0.82 for cutting trials 

implemented by a 2-flute cutting tool.  
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Table 7.20: Cutting parameters for end-mill, 4 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 4500-5500 360-435 1 0.25D 

2 4500-5500 360-435 1 0.5D 

3 4500-5500 360-435 1 0.75D 

 

Table 7.21: Cutting parameters for end-mill, 2 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 

1 4500-5400 315-380 0.7 0.25D 

2 4500-5400 315-380 0.7 0.5D 

3 4500-5400 315-380 0.7 0.75D 

 

The regression coefficient is calculated and its variation is determined during 

each milling trial, as shown in Figure 7.12 (a) to (c). The value of regression 

coefficient at the onset of chatter varies between 0.64 and 0.81. 

Similarly, three end-milling trials were carried out by using a 4 mm end mill 

cutter with two flutes. The variations of Poincaré sections are modelled by 

regression coefficient, which is shown in Figure 7.12 (d) to (f).The value of 

the regression coefficient at the onset of chatter varies between 0.56 and 0.84. 
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7.3.3 Aluminium  

7.3.3.1 Ball-nose Milling 

Two sets of milling process were also performed with a 4-mm cutter. The 

immersion rate also varies between 25% and 75% during the trials. The 

cutting parameters are shown in Tables 7.22 for a 4-flute cutter, also in Table 

7.23 for a 2-flute cutter. Furthermore, the value of regression coefficient at the 

onset of chatter is displayed in the tables for each milling process. 

 

Table 7.22: Cutting parameters for a ball-nose, 4 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 
α 

1 7500 750 0-2 0.25D Stable 

2 “ “ “ 0.5D “ 

3 “ “ “ 0.75D “ 

4 8500 1275 0-2 0.25D 0.84 

5 “ “ “ 0.5D 0.8 

6 “ “ “ 0.75D 0.82 

7 9000 1350 0-2 0.25D 0.86 

8 “ “ “ 0.5D Stable 

9 “ “ “ 0.75D 0.63 

 

The value of the regression coefficient at the onset of chatter varies between 

0.63 and 0.86 when aluminium cuts with four flutes cutter; and it is between 

0.61 and 0.8 for a 2-flute cutter. 
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Table 7.23: Cutting parameters for a ball-nose, 2 flutes, and 4 mm cutting tool. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 
α 

1 8000 1200 0-2 0.25D Stable 

2 “ “ “ 0.5D 0.61 

3 “ “ “ 0.75D Stable 

4 8500 1275 0-2 0.25D 0.8 

5 “ “ “ 0.5D Stable 

6 “ “ “ 0.75D Stable 

7 9000 1350 0-2 0.25D 0.72 

8 “ “ “ 0.5D 0.79 

9 “ “ “ 0.75D 0.64 

 

7.3.3.2 End-Milling 

Two sets of milling process, each set including three milling trials, are carried 

out in aluminium blocks. Similar cutting parameters are used during cutting 

aluminium with cutters with different flutes, which is shown in Tables 7.24 

and 7.25. Furthermore, the value of regression coefficient at the onset of 

chatter is displayed in the tables for each milling process. 

 

Table 7.24: Cutting parameters for 4 mm end-mill cutters with 4 flutes. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 
α 

1 7000-8500 700-850 0-1 0.25D 0.83 

2 “ “ “ 0.5D 0.89 

3 “ “ “ 0.75D 0.52 

  



Chapter 7 

147 | P a g e  
 

Table 7.25: Cutting parameters for 4 mm end-mill cutters with 2 flutes. 

Test  

No. 

Vs  

(rpm) 

Vc  

(mm/min) 

ap 

 (mm) 

ae 

 (mm) 
α 

1 7000-8500 700-850 0-1 0.25D 0.85 

2 “ “ “ 0.5D 0.66 

3 “ “ “ 0.75D 0.86 

 

The value of regression coefficient at the onset of chatter varies between 0.52 

and 0.89. Similarly, three end-milling trials were implemented by using a 6-

mm end mill cutter with two flutes. The value of regression coefficient at the 

onset of chatter varies between 0.66 and 0.86. 

7.4 Conclusion 

In this chapter, a broad range of different milling trials were run with different 

cutting tools, workpiece materials, and cutting parameters. The value of the 

regression coefficient between the Poincaré section at the onset of chatter and 

reference Poincaré sections was calculated. The outline variation of the regression 

coefficient during milling operations verifies that the fixed reference linear 

regression method can model the transition of milling processes from a stable 

condition to the chatter condition. Based on the computed value for each set of 

experiments, an onset chatter boundary is proposed. 
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8.1 Research Contribution 

In chapter 2, the state of the art indicated that recent chatter detection methods 

consider dynamics of cutting process as well as cutting parameters in order to 

determine the occurrence of chatter. Experimentally or analytically, they determine 

a boundary for choosing cutting parameters in a way that a milling process runs in a 

stable condition. However as milling is a nonlinear dynamic system, the methods 

cannot precisely detect chatter in a timely manner due to incomplete process 

parameters and any sudden changes in the dynamics of milling. 

This thesis focuses on the prediction of chatter during milling while being 

insensitive to the cutting parameters and cutting dynamics. A set of five goals were 

previously determined in chapter 1. By completion of the research, the following 

conclusions are drawn from the results obtained and the analysis performed 

afterwards. They can correctly address the designed goals in section 1.3. 

8.1.1 A novel method which is able to detect chatter on-line, and is applicable 

in industry 

A new novel experimental method for the prediction of chatter during milling 

process of metals has been developed. The new method is based on the chaos 

theory and in particular, the transformation of time domain signals during cutting 

to Poincare sections from which a new process analysis algorithm has been 

developed. The new method is independent of the cutting parameters and 

dynamics of the milling process, and can be integrated in the cutting machines to 

detect chatter on-line during the cutting process, as aimed in section 1.3, number 

one. 

8.1.2 A novel method that is not time consuming 

The new method is simple in transformation from time domain signals to 

Poincare section format. Phase space attractor Poincaré sections have been 
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plotted for each time interval. The variation in outlined Poincaré sections has 

been indicated by image correlation. The variation has been demonstrated by 

Pearson coefficient. The coefficient shows transition of milling process from 

stable condition into the chatter; hence it determines the onset of chatter during 

cutting of titanium.  

Recognition of the onset of chatter can be done either by simple image correlation 

computation or by linear regression coefficient analysis. The computational time on 

the experimental computers are in fractions of a second, as aimed in section 1.3, 

number two. 

8.1.3 A clear set of criteria for demarcation of stable and unstable conditions 

is developed 

A complete experimental setup has been designed for material removal, chatter 

creation, acquiring vibration between cutting tool and workpiece, and recording 

the cutting force during milling. Two kinds of milling paths have been designed 

based on the end-mill and ball nose cutting tools. Accessible and reasonably 

priced equipment that can be used easily by industries and in the workshop are 

used during the trials. 

The acceleration signal has been analysed. A mathematical model based on the 

chaos theory and by reconstruction of phase space attractor has been developed 

to determine the state of milling continuously during the milling process. For this 

purpose, the milling process is divided into time intervals with overlap. Time 

delay is calculated based on the first cross zero value of autocorrelation factor of 

the recorded acceleration signal. The existence of noise can be ignored or easily 

removed in this model. The FFT power spectrum diagram verified detection of 

chatter has been developed by the proposed method. 

The variation of the phase space attractor is evaluated for embedding dimensions 

equal to 1, 2, and 3. The designed boundary for the onset of chatter is applicable 

for different embedding dimensions.  



Chapter 8 

151 | P a g e  
 

A fixed reference regression method has also been modelled to measure the 

variation of the Poincaré sections. The regression coefficient was calculated 

between every Poincaré section and the reference Poincaré section. The obtained 

regression coefficient is a numerical indicator that is able to determine the 

boundary of chatter onset during milling of titanium, as aimed in section 1.3, 

number 3.  

8.1.4 The new chatter prediction method can be used for monitoring cutting 

process of all metallic materials 

Chatter threshold has been successfully derived for three engineering materials; 

titanium, aluminium, and stainless steel. The result demonstrates that the method 

can be applied to any material to determine the chatter threshold, as aimed in 

section 1.3, number four. It is also verified that the result can be applicable for 

different cutting tool and cutting path.  

The outlined chatter threshold is applicable for milling processes with various 

immersion rates, as well as various cutting parameters. Accordingly, the 

designed method can be considered insensitive to the cutting parameters and 

dynamics of cutting process. Detection of chatter can be easily predicted in less 

than a minute.  

8.1.5 The new method does not require expensive signal analysis equipment 

Development of a chatter detection method insensitive to the cutting parameter 

and dynamics of milling process in a reasonable time provides ability to detect 

chatter on-line. The mathematical model allows the detection of chatter for a 

wide class of problems from the use of a very simple equation. The method can 

be used in the workshop environment with a set of low cost accelerometer and 

force sensors mounting on an adaptor on the spindle, as aimed in section 1.3, 

number five. 
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8.2 Recommendations for Future Work  

The variation of phase space attractor Poincaré sections is measured directly for the 

first time to determine the chatter threshold boundary. It is a starting point for 

detection of chatter while taking into account the continuous change in the state of 

milling processes. The following topics could be pursued for future research work:  

 Develop expert software that can automatically detect the occurrence of chatter 

by using the proposed numeric indicators.  

 Running more machining trials with different cutting tools, cutting 

parameters, and workpiece materials in order to acquire large enough data 

for establishing a database. It is required to extend the method to deal with 

more complex and arbitrary component shapes of cutting paths. 

 Using the fixed reference regression method, a database of chatter threshold for 

various cutting trials can be generated.  

 Extending the chatter threshold boundary to deal with other materials and 

cutting parameters.  

 Extending the chatter threshold boundary to deal with other machining 

processes such as turning, grinding, drilling, etc. 
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