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Abstract

Physically based cloth simulation in computer graphics has come a long way since the 1980s.

Although extensive methods have been developed, physically based cloth animation remains

challenging in a number of aspects, including the efficient simulation of complex internal

dynamics, better performance and the generation of more effects of friction in collisions, to

name but a few. These opportunities motivate the work presented in this thesis to improve

on current state of the art in cloth simulation by proposing methods for cloth bending

deformation simulation, collision detection and friction in collision response.

The structure of the thesis is as follows.

A literature review of work related to physically based cloth simulation including aspects

of internal dynamics, collision handling and GPU computing for cloth simulation is given in

Chapter 2.

In order to provide a basis for understanding of the work of the subsequent chapters

of the thesis, Chapter 3 describes and discusses main components of our physically based

cloth simulation framework which can be seen as the basis of our developments, as methods

presented in the following chapters use this framework.

Chapter 4 presents an approach that effectively models cloth non-linear features in bend-

ing behaviour, such as energy dissipation, plasticity and fatigue weakening. This is achieved

by a simple mathematical approximation to an ideal hysteresis loop at a high level, while in

textile research bending non-linearity is computed using complex internal friction models at

the geometric structure level.

Due to cloth flexibility and the large quantity of triangles, in a robust cloth system

collision detection is the most time consuming task. The approach proposed in Chapter 5

improves performance of collision detection using a GPU-based approach employing spatial

subdivision. It addresses a common issue, uneven triangle sizes, which can easily impair the

spatial subdivision efficiency. To achieve this, a virtual subdivision scheme with a uniform
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grid is used to virtually subdivide large triangles, resulting in a more appropriate cell size

and thus a more efficient subdivision.

The other common issue that limits the subdivision efficiency is uneven triangle spatial

distributions, and is difficult to tackle via uniform grids because areas with different trian-

gle densities may require different cell sizes. In order to address this problem, Chapter 6

shows how to build an octree grid to adaptively partition space according to triangle spatial

distribution on a GPU, which delivers further improvements in the performance of collision

detection.

Friction is an important component in collision response. Frictional effects include phe-

nomena that are velocity dependent, such as stiction, Stribeck friction, viscous friction and

the stick-slip phenomenon, which are not modelled by the classic Coulomb friction model

adopted by existing cloth systems. Chapter 7 reports a more comprehensive friction model

to capture these additional effects.

Chapter 8 concludes this thesis and briefly discusses potential avenues for future work.



Chapter 1

Introduction

Reproducing realistic animation has been a major research goal in computer graphics from

the outset. For both off-line and real-time systems, physical accuracy is a vital criterion that

determines the quality of realism. Initially, simple physics laws, e.g. gravity, were applied

for very basic needs. For the motion of complex bodies, artists had to manually specify

objects’ behaviour frame by frame, giving limited results. However hardware capabilities

have improved at an exponential rate, which has dramatically enhanced the performance

of computers doing physics computation and has led to the development of more and more

complicated physical models. Thanks to this rapid growth of computational power, physi-

cally based simulation has become a standard approach to improve realism, and has been

gaining an increasing amount of attention from computer graphics researchers for aspects

including fluid dynamics, rigid, deformable and cloth objects simulation. Many techniques

have been developed to generate fascinating physical effects that significantly enhance the

visual quality and the richness of virtual scenarios. Unsurprisingly, the trend of development

in physically based animation will continue due to the increasing use of physics in a wide

range of applications, such as virtual training systems, video games as well as special effects

in movies, and so on.

Apart from computer graphics, physics simulation has expanded tremendously in fields

of computational sciences, including mechanical engineering, material engineering and math-

ematics, to name but a few. In fact, research on physics in these fields started much earlier,

and usually the techniques were then adopted by computer graphics. However their purposes

are quite different, so they each focus on different aspects. For example, construction sim-

ulation for parametric analysis of forces and stress, vehicle crash simulation for composite
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materials, or friction simulation for mechanical tribology, are concerned with the precision

and accuracy of physics simulation. Clearly, such fidelity comes at a high computational

cost. On the other hand, physically based simulation in computer graphics generally aims to

produce visually realistic or acceptable results. So, apart from visual realism, computational

efficiency, performance, stability and controllability are also important, especially for real-

time and interactive applications. In other words, it is crucial to strike a reasonable balance

between physical accuracy and computational efficiency.

One of the most important materials to model in a virtual scene is cloth. Cloth objects are

ubiquitous in our daily life, since we are constantly in contact with garments, bedclothes, ta-

ble sheets, towels, curtains and many other fabric products. The textile research community

was established in 1930s. Because their primary research purpose is to support manufac-

turing in the textile industry, the textile community has been particularly concerned with

the weave structure and the measurement of properties of fabric materials, which enables

the development of methods for modelling and predicting complex fabric behaviour. A half-

century later, physically based cloth simulation was first introduced into computer graphics

with the goal of producing images and animations that look as physically realistic as pos-

sible within the limits of computational efficiency. Since then cloth simulation has become

increasingly important for video games, movies and even virtual fashion applications. This

thesis focuses on cloth simulation including its internal dynamics and collision handling, and

reports improvements to both physical effects and performance aspects.

Recently, graphics processing units (GPUs) have become a powerful tool to accelerate

intensive computation for a wide range of applications, including physics simulation. Origi-

nally, GPUs were designed to compute graphics. Later, due to the highly parallelism, graph-

ics shading languages were used to handle general purpose computing. Recently, specialised

platforms and programming models are developed to more easily use GPUs as generalised

computing devices. A part of the work presented in this thesis is the use of GPU computing

to gain better performance.

1.1 Motivation

This thesis is motivated by several factors: effectively modelling non-linear bending behaviour

using hysteresis, improving performance of collision detection and the modelling of additional

effects of friction in collision response, which are discussed in the order in which they were

developed as components of the cloth simulation framework.
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• Modelling Non-linear Bending Behaviour: Due to its thin structure, cloth exhibits

a very low bending rigidity. Therefore, a compressive force applied at cloth easily leads to

out-of-plane movements forming dynamic, complex wrinkles and folds, which makes mod-

elling bending deformation a key aspect for realistic cloth simulation. However, efficient

modelling of realistic bending behaviour remains a challenge. Cloth bending behaviour

shows high non-linearity which in textile research is described by a rheological model that

contains a generalized bending rigidity and bending hysteresis [Chapman, 1975b; Bliman

and Sorine, 1995a]. The latter physically describes nonlinear deformation and effects. Al-

though many existing cloth modelling systems can generate good looking wrinkles and

folds, hysteresis has received relatively little attention in computer cloth simulation, and

we report the first use of hysteresis to physically capture non-linear bending effects that we

are aware of. From a practical point of view, fully accurate modelling these effects is com-

putationally expensive and unnecessary. Therefore an approximation method is needed.

We propose an efficient method to simulate such features with limited computational costs

using a simple mathematical approximation of hysteresis.

• Performance in Collision Detection: Collision detection is an intensive and challenging

task in physics simulation. It is also the main performance bottle-neck in most cloth

systems, due to cloth flexibility that gives rise to a huge number of self-intersections and

collisions between cloth and objects. Spatial subdivision is a common technique to address

this issue. Good subdivision reduces an O(n2) problem to an average complexity of O(n)

in a scene containing n triangles. However, duplicate tests are easily generated when

triangle pairs are assigned to multiple cells. Grand [Grand, 2007] addresses this problem

on a GPU using control bits. Unfortunately, this method requires a large cell size, which

severely limits subdivision efficiency, especially when triangle sizes are uneven. In fact,

it is unrealistic to expect a mesh with evenly sized triangles. To efficiently address this

problem and still use control bits to remove duplicate tests, we present a GPU-grid based

approach that virtually subdivides large triangles with a uniform grid to enable the use of

a smaller, better suited cell size.

Apart from the problem of uneven triangle sizes, spatial subdivision methods suffer from

another common issue: uneven triangle spatial distributions, which can also lead to an

inefficient subdivision. It is difficult for it to be solved by uniform grids, because a uniform

cell size can be too small for low density areas, and too big for high density areas. In

contrast, for these uneven cases, non-uniform subdivision works better. Techniques that
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non-uniformly partition space mainly include hierarchical grids and octrees. Hierarchical

grids have been adopted by previous GPU-based algorithms, due to their simplicity and

continuity in memory. However, octrees offer a better adaptation to spatial distributions.

We present a method using an octree grid that takes a middle path between these two

structures to accelerate collision detection.

• Modelling Additional Effects of Friction: Once collisions have been detected, they

have to be resolved to generate physically correct motion, which is referred to as colli-

sion response. Friction is an important component during this process. Such complex

phenomenon that resists tangential motion between two contacting objects can produce

stable folds, improving the visual richness. In computer graphics existing physics simula-

tions typically use a simple Coulomb model However it is limited since it intends to only

capture fundamental frictional phenomena. Many observed friction effects such as stiction,

Stribeck friction, viscous friction and the stick-slip phenomenon are not modelled by it.

These frictional phenomena are observed under both dry and wet conditions in fabrics

that deform viscoelastically. Therefore a more comprehensive friction model to consider

these additional effects is worth investigating. To achieve this, we describe an improved

physically based friction model that extends the Coulomb model.

1.2 Contributions and Overview

In this section, we provide an overview of this thesis and highlight its contributions.

• Related Work Previous work related to cloth internal dynamics, collision detection,

collision response and GPU computing for cloth simulation is discussed in Chapter 2.

• Cloth Simulation Framework: Before presenting the main contributions, the frame-

work which developments presented in this thesis use, is presented in Chapter 3 to provide

a basis for understanding of how cloth simulation works. Internal dynamics are described

first, including three mechanical properties: stretching, shearing, and bending. Although

there are a number of different approaches for modelling these deformations, they all re-

quire numerical integration of differential equations governing the dynamics. Therefore

several numerical integration methods solving the differential equations system are dis-

cussed. Finally techniques for collision detection and collision response are summarised.

• Modelling Bending Behaviour Using Hysteresis: In Chapter 4, a novel simple and

fast method is presented to simulate complex nonlinear bending behaviours of cloth objects,
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and bending effects including plasticity and energy dissipation [Wong et al., 2013b]. The

primary idea is to use a mathematical approximation to an ideal hysteresis loop at a high

level without complex internal friction models at the fabric geometric structure level. The

approximation describes two different curves governing the curvature moment relationship

for bending and recovery to look up bending and unbending forces, which include non-linear

bending stiffness. Previous methods to model plasticity typically use approaches where

bending is treated linearly and an elastic threshold is used to trigger plastic deformation,

hence non-linear bending behaviour and effects caused by energy dissipation cannot be fully

captured. In contrast, our method inherently captures such effects, because hysteresis

features are included in the approximation. Further, by extending this model, fatigue

weakening that turns increasingly residual wrinkles into permanent is easily simulated.

• Virtual Subdivision for GPU based Collision Detection Using a Uniform Grid:

In Chapter 5, we present a simple uniform grid based collision detection method on GPUs

that uses a better cell size by virtually subdividing large triangles into small child triangles

[Wong et al., 2012]. Not only does this address the issue of uneven triangle sizes to

dramatically reduce the number of tests, but it also takes advantage of control bits to

quickly remove duplicate tests. Child triangles are virtual because they are only used for

the purpose of broad phase collision detection tests, and the newly generated vertices and

edges are not used in cloth internal dynamics, narrow phase tests or collision response.

Most duplicate tests caused by the virtual subdivision scheme are avoided in the broad

phase stage by a lightweight removal scheme. Experiments comparing results with those

of prior methods show that performance improvements are achieved.

• An Adaptive Octree Grid for GPU based Collision Detection: Although uneven

triangle sizes can be addressed by a virtual subdivision scheme with a uniform grid, un-

even spatial distributions can also significantly impact the subdivision efficiency and this

problem is difficult for uniform grids. To tackle this problem, we explore a GPU-based

approach using an adaptive octree grid [Wong et al., 2014] in Chapter 6. The octree grid

combines advantages of hierarchical grids and octrees: the grid can be more efficiently pro-

cessed on GPUs, and the octree partitions space adapting better to uneven triangle spatial

distributions, obtaining a considerable reduction in the number of broad phase tests. Since

performing a large number of tests in the broad phase dominates the total running time, it

is worth further reducing calculations in this step. To achieve this, a two-stage scheme is

used to minimise the number of tests by optimising the octree subdivision. This method is
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also able to address the issue of uneven triangle sizes, as this can often be seen as uneven

spatial distributions.

• An Improved Friction Model: Chapter 7 describes an improved physically based fric-

tion model for collision response in cloth simulation [Wong et al., 2013a]. In order to

capture addition velocity-dependent effects that are not modelled by existing cloth sys-

tems, the model borrows theories from tribology research to extend the Coulomb model.

The integration of the extended friction model in two commonly adopted contact methods:

the constraint handling approach and the velocity filter framework, is discussed.

• Conclusion: Conclusion and potential future work follow in Chapter 8.



Chapter 2

Related Work

This chapter provides an overview of previous work related to cloth internal dynamics, col-

lision handling and GPU computing for cloth simulation.

2.1 Cloth Dynamics

Cloth simulation in computer graphics started in the 1980s. The earliest work is in [Weil,

1986] where folding effects of a free-hanging cloth supported by a number of constraint points

are approximated for static images, which is a geometric method. This kind of approaches

approximate cloth behaviour using computational geometry techniques without mechanical

information. However, in this thesis we will only focus on physically based approaches. Gen-

erally most of physical approaches to date treat cloth as a 2D continuum with no thickness.

Although some methods allow modeling of cloth thickness such as [Bridson et al., 2002;

Selle et al., 2009], it is not considered in the internal dynamics computation but just for

the treatment of collision response. An overview of cloth internal dynamics are given in this

section along with time integration work. It is broken down into in-plane and out-of-plane

deformation (Figure 2.1).

2.1.1 In-plane Deformation

We broadly follow [Volino et al., 2009] to categorize in-plane force approaches further into

particle systems and finite element methods.

9
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(a) (b)

Figure 2.1: (a) In-plane deformation (b) Out-of-plane deformation

Particle Systems

Breen et al. [1992] deal with cloth as interacting particles based on grid to model the me-

chanical constraints between the threads in a woven plain. In order to model specific kinds of

woven cloth, they extend the model to use empirical data measured by Kawabata system, and

thus be able to consider nonlinear behaviour including hysteresis effects [Breen et al., 1994].

These methods are only designed to compute static draping results. Later, by extending the

particle system, Eberhardt et al. [1996] introduce an approach to simulate dynamic behavior

over time. However these grid-based particle approaches are computationally expensive.

Probably the simplest way to physically simulate cloth objects is the spring-mass based

particle system introduced by Provot [1996] where simple linear springs are used in a regular

rectangular mesh to represent stretching, shearing and bending forces. A strain rate limiting

scheme is proposed to remove bad strain rates, resulting in better results in cloth behaviour

and explicit time integration performance. This strain limiting scheme is extended in a

velocity filter framework [Bridson et al., 2002]. Baraff and Witkin [1998] describe a method

working with arbitrary triangle meshes. In-plane force functions and derivatives are derived

from internal energy functions formed by two different continuum formulation for stretching

and shearing respectively. A big advance of their work is that an implicit integration method

is used to address numerical computation issues found in explicit integration methods, leading

to a stable simulation with large time steps. By following [Provot, 1996], Choi and Ko [2002]

treat in-plane deformation as simple linear spring model, while the force is derived from

an energy function. A second-order backward difference integrator is used for purposes

of accuracy and to reduce artificial damping. Other works exploiting advanced different

integration methods include [Bridson et al., 2003a; Volino and Magnenat-Thalmann, 2005a;
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Schroeder et al., 2011].

The main issue that particle approaches suffer is inaccuracy in in-plane elasticity, espe-

cially for large deformations. Although methods exist that carefully adjust values of spring

stiffness to address this problem to an extent [Van Gelder, 1998; Lloyd et al., 2007], the

high dependencies on mesh topology and modelling systems make them unwieldy to use.

Volino and Magnenat-Thalmann [2005b] describe a method that obtains relatively accurate

strain-stress relationship by polynomially approximating strain-stress curves, without losing

the simplicity of spring-mass systems. Later Volino et al. [2009] improve on this method to

model nonlinear in-plane deformations by using the nonlinear Green-Lagrange tensor which

makes the method equivalent to finite element methods, offering a highly accurate and easy-

to-implement cloth modelling system.

Finite Element Methods

An alternative way to accurately model cloth is finite element methods. In general, continuous

objects modelled by continuum mechanics are discretised into a finite set of elements to allow

solutions that can be solved analytically. These methods are very common and popular to

solid objects modelling in mechanical engineering. Compared to most particle approaches,

an important advantage is that the body volume (area for cloth) is considered in formula,

therefore behavior is independent of a specific mesh. Unsurprisingly finite element methods

require more computation time.

Terzopoulos et al. [1987] introduce this technique to computer graphics for the purpose

of modelling elastic deformable objects including cloth. Modelling of inelasticity is added

in their later work [Terzopoulos and Fleischer, 1988] where objects experience inelastic de-

formation when the applied force exceeds a limit. Although a number of works have been

proposed to reduce computation time required by Finite Element Methods [Debunne et al.,

2001; Wu et al., 2001], accurate real-time simulation has yet to be achieved, especially for

large rotational deformations, which require higher accuracy, due to their non-linear nature.

Müller et al. [2002]; Müller and Gross [2004] handle the rotational component separately by

warping the stiffness matrix based on a tensor field that describes local rotations using a

local coordinate frame. Etzmubeta et al. [2003] apply this technique to cloth simulation.
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Other Methods

There are a number of works that do not belong to the two categories discussed above. Müller

et al. [2007] propose a position based dynamic system that works directly on positions and

omits the velocity layer. This method is sped up in [Müller, 2008] where a multigrid scheme

is utilized. There are also few methods designed to model knitted fabric at the yarn level

[Kaldor et al., 2008; 2010; Yuksel et al., 2012].

2.1.2 Out-of-Plane Deformation

The bending force generated in bending deformation to resist flexion is usually treated as a

out-of-plane force.

In the simple linear spring-mass system [Provot, 1996], bending force is formed by a

spring connected to opposite corners of adjacent triangles. Its force computation is akin

to stretching and shearing springs. Choi and Ko [2002] extend this work to improve the

realism of wrinkles and overcome the so called post-buckling instability without introducing

damping forces. Since these techniques do not consider the angle of adjacent triangles,

accurate deformation sensitive to curvatures is hard to simulate.

Baraff and Witkin [1998] derives the bending force from an energy function that takes

account of the dihedral angle between two adjacent triangles. A simple and fast bending

model [Bridson et al., 2003a] also measures the dihedral angle. Grinspun et al. [2003] use

mean curvatures instead of Gaussian curvatures for membrane simulation. Since not only the

dihedral angle but also triangle heights and the length of the common edge of adjacent trian-

gles are considered into their formula, reasonably resolution-independent bending behaviours

are obtained.

In general, bending behaviour is highly nonlinear. By extending the work [Bergou et al.,

2006] where bending energy is quadratic in positions, Garg et al. [2007] expose the nonlinear

nature of bending energies by establishing a cubic hinge (a pair of edge-adjacent triangles).

Complex derivation caused by the nonlinearity is avoided via an approximate Newtons solver

with precomputation of Jacobian matrix. In order to capture effects of seams, Pabst et al.

[2008] use measured data describing the curvaturemoment relationship from textile research

to model nonlinear bending behaviour. The bending model described in Chapter 4 is an

improvement on their approach. Nonlinear bending forces have also been discussed in [Ter-

zopoulos et al., 1987; Simo and Fox, 1989; Grinspun et al., 2002]. Other approaches using

measured data to model nonlinear behaviours include [Breen et al., 1994; Eberhardt et al.,
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1996; Eischen and Bigliani, 2000].

Bending Hysteresis

Bending hysteresis physically describes the high bending non-linearity and bending energy

dissipation due to internal friction which also gives rise to plasticity. Terzopoulos and Fleis-

cher [1988] first introduced plasticity to the computer graphics community. The earliest work

to consider hysteresis is [Breen et al., 1994]. In a report by [Ngoc and Boivin, 2004], rela-

tively complex friction terms are used upon a spring-mass system with a regular rectangular

mesh to accurately capture non-linear traction, shearing and bending behaviours including

hysteresis for the purpose of parameters identification. Plasticity effects are suggested as a

future work in this report. Kim et al. [2011] take plastic effects as energy loss over time,

while firm physical foundation and explanation are missing.

2.2 Collision Handling

Generally, collision handling is the main bottle-neck in cloth simulation in terms of both

performance and robustness. It involves many research challenges, and has been studied in-

tensively for decades. This problem normally is broken down into two sub-problems, collision

detection and collision response.

2.2.1 Collision Detection

Collision detection in computer graphics has a rich history. Earlier research mainly focuses on

rigid objects, while the last two decades have seen increasing attention to deformable objects

including cloth. We can not possibly cover all previous work in this thesis. We refer interested

readers to [Teschner et al., 2004] for more detailed information. Most efficient algorithms

reduce the computation using a broad phase where primitive pairs that apparently do not

collide with each other are quickly eliminated. Once the broad phase is done, a narrow phase

is responsible for more expensive elementary tests computing exact intersection information

of vertex-triangle pairs and edge-edge pairs for collision response.

Bounding volume hierarchies (BVH) have long been used to accelerate collision detection,

and have proven to be a very efficient technique in the broad phase. Its key idea is to

recursively partition the mesh to construct a tree where each node contains a subset of

primitives enclosed by a bounding volume (BV). Usually the leaf node contains a single

primitive. By traversing the tree in a top-down order, pairs of leaf nodes with BVs overlapped
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are found and registered for further elementary tests and intersection tests if necessary.

During this process many unnecessary tests can be quickly pruned.

Large efforts have gone into exploiting different types of BV including spheres [Palmer and

Grimsdale, 1995], axis aligned bounding boxes (AABBs) [van den Bergen et al., 1998; Bridson

et al., 2002; Selle et al., 2009], oriented bounding boxs (OBBs) [Gottschalk et al., 1996], k-

discrete oriented polytopes (DOPs) [Klosowski et al., 1998; Fnfzig and Fellner, 2003] and

convex hulls [Ehmann and Lin, 2001]. In general each BV type has its own advantages and

disadvantages, and a trade-off exists between culling efficiency and BV test costs. The better

choice varies depending on specific environments and the purpose of any given application.

In some works, the construction of BVH is a preprocessing step before simulation starts.

The tree structure is constructed once for meshes under undeformed state, and conserved

during the whole simulation except for some special cases such as tearing, which changes mesh

topology. At a broad level there are two common ways to construct the BVH structure, top-

down schemes [Palmer and Grimsdale, 1995; Gottschalk et al., 1996] and bottom-top schemes

[Bridson et al., 2002; Selle et al., 2009], both of which are essentially recursive. Some other

works choose to build the hierarchy for the whole scene, so as to update it in every time

step. Instead of simply rebuilding hierarchies, many efficient updating techniques have been

proposed to accelerate this step [Thomas Larsson, 2001; Mezger et al., 2003; Larsson and

Akenine-Möller, 2006; Otaduy et al., 2007].

An alternative way of efficiently removing unnecessary tests in the broad phase is referred

to as a spatial subdivision scheme. Its main strategy is to partition space into many cells,

and then perform collision detection tests only for triangle pairs belonging to the same cell,

resulting in an average complexity of O(n) in a scene containing n triangles.

The most straight-forward way to partition space is a uniform grid [Zhang and Yuen,

2000; Teschner et al., 2003]. The performance strongly relies on the cell size, because a large

cell size may result in too many triangles belonging to the same cell, or triangles may overlap

too many cells if the cell size is small. Therefore, efforts have been directed at determining an

appropriate cell size. Teschner et al. [2003] choose a cell size 1.2 times the average primitive

radius. Unfortunately, an appropriate cell size is difficult to find or may even not exist if

triangle sizes are uneven. To address this problem, a hierarchical grid with multiple cell

levels is adopted [Schornbaum, 2009; Eitz and Lixu, 2007], where primitives are assigned to

different levels according to its size.

Another issue is that duplicate tests can be easily introduced due to triangle pairs assigned

to multiple cells. Grand [2007] effectively solves this problem using the control bits scheme for
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collision detection of spheres on GPUs. Pabst et al. [2010] extend this method for deformable

triangular meshes. However, the control bits scheme requires the cell size greater than the

bounding volume of the largest triangle, which severely limits the subdivision efficiency. In

order to address the uneven triangle size problem and still use control bits to remove duplicate

tests, a GPU-grid based approach that virtually subdivides large triangles with a uniform

grid is presented in Chapter 5 to enable the use of a better suited cell size.

Spatial subdivision also suffers from the issue of uneven triangle spatial distributions,

which is difficult for uniform girds, because a uniform cell size can be too small for low density

areas, and too large for high density areas, giving an inefficient subdivision. Alcantara et al.

[2009] and Fan et al. [2011] partially solve this issue by subdividing dense cells into eight child

cells using a two-level hierarchical grid. Methods adopting a hierarchical grid with multiple

cell levels [Schornbaum, 2009; Eitz and Lixu, 2007] can also alleviate this problem to an

extension, but lacks the adaptability to triangle spatial distributions to reduce the number of

tests as much as possible. A GPU-based method using an octree grid is presented in Chapter

6 to better address this problem.

Many techniques that are not limited to a specific framework (e.g. BVHs based or grid

based) are proposed to improve the performance. A large number of duplicated elementary

tests can be generated simply because a vertex and edge might belong to multiple triangles.

Curtis et al. [2008] address this issue by assigning each vertex and edge to only one triangle,

therefore tests of triangle pairs not possessing involved vertices or edges are ignored. Other

methods solving the same problem include a randomized marking scheme [Wong and Baciu,

2006] and orphan sets [Tang et al., 2008]. Tang et al. [2008] point out another issue: due

to the adjacency of triangles, a considerable number of self collision BV tests are processed

even if there is no collision at all. They avoid these unnecessary tests by introducing a step,

before the broad phase, that measures continuous normal cones to determine whether the

remaining steps can be skipped. To further increase efficiency, a filter is inserted between the

broad phase and narrow phase to remove false positives that cannot be culled by BV tests

[Tang et al., 2010a].

The task of elementary tests in the narrow phase is to output exact intersection infor-

mation such as contact time, points and normals. Moore and Wilhelms [1988] propose a

fifth-order polynomial to compute such information for vertex-triangle intersections. Provot

[1997] reduces the computation to a three order polynomial. Edge-edge intersections are

also computed, giving better results. The industry adopted framework [Bridson et al., 2002]

improves on this work to interpolate impulses using barycentric coordinates.
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2.2.2 Collision Response and Friction

Once collision detection is done physical collision responses have to be generated. Collision

response is of the utmost importance for robustness of physics simulation. It can be broadly

subdivided into constraint-based approaches, impulse-based methods [Mirtich and Canny,

1995; Mirtich, 1996] and penalty-based methods [Terzopoulos et al., 1987; Wriggers et al.,

1990; Tang et al., 2012]. In this thesis we focus on constraint-based approaches since which

offer better accuracy in terms of physics.

Provot [1997] first treats collision responses geometrically for cloth simulation. For con-

tacts between cloth and external objects, Baraff and Witkin [1998] enforce a complete con-

straint that eliminates relative motion and a partial constraint that only allows sliding on the

plane proportional to the contact normal force, to achieve stiction and kinetic friction effects,

respectively. For self collisions, the framework proposed by [Bridson et al., 2002] guarantees

a non-interfering state at the end of every time step. A cloth thickness is included to let

cloth feels repulsion forces in successive time steps in the case of self contacts, which allows

friction being modelled in subsequent time steps generating more stable and realistic folds.

Bridson et al. [2003a] implement a post-processing technique to preserve wrinkles.

Friction is paramount to realism, since it is a ubiquitous phenomenon which occurs when-

ever two objects are in contact in nature. Since Leonardo da Vinci discovered rules of dry

friction, such phenomenon has been studied in many research fields. Classic empirical laws

by Amonton and Coulomb are dubbed Coulomb friction. Even today this classic model has

been widely used to estimate friction behaviour in many areas including computer graphics.

Terzopoulos et al. [1987] is among the earliest works including friction for physics simulation

in computer graphcis. Baraff and Witkin [1998] treat cloth-object friction as constraints.

Bridson et al. [Bridson et al., 2002] computes friction as impulses. As an extension of this

work, Selle et al. [2009] propose a novel friction scheme to obtain more accurate collision

response. Pabst et al. [2009] introduce an anisotropic friction model from textile research

for contacts between deformable objects including cloth and materials with anisotropic sur-

face. Chen et al. [2013] improve cloth-body contact effects using aerodynamics and friction

data captured from real-world. However some important velocity-dependent effects such as

stiction, Stribeck friction, viscous friction and the stick-slip phenomenon are not considered

by these work. An elaborate friction model that extends the Coulomb model is presented in

Chapter 7.

The issue of multiple collisions that resolving collisions can generate new collisions must
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be addressed for any robust cloth system. Provot [1997] describe an efficient method called

”impact zones” to overcome this problem. After a fix number of iteration, if converge is not

guaranteed vertices involved in multiple collisions are extracted as ”impact zones” which are

simulated as rigid objects and grow until no more collisions are detected. Bridson et al. [2002]

adopt this strategy and correct the formula for angular velocity. However this technique is

just physics plausible. Harmon et al. [2008] present a projection method to resolve multiple

collisions while preserve physical accuracy as much as possible.

2.3 Parallel Computation for Cloth Simulation on GPU

As graphics processing units evolved, GPU computing has been showing its potential to

simulate physics over the last few years.

Early days shaders were utilised to do general purpose computing on GPUs, which is

referred to as GPGPU. Green [2004] presents the first GPU-based cloth simulation. Later,

Zeller [2005] improves on Greens work by taking advantage of geometry shaders. Rodr̈ıguez-

Navarro and Sus̈ın [2006] implement a finite element method algorithm evolved by an implicit

integrator on GPU. Other shader based cloth simulation methods include [Rodr̈ıguez-Navarro

et al., 2005; Tejada and Ertl, 2005; Vassilev and Spanlang, 2012]. Shaders have been also

used to accelerate matrix operations [Larsen and McAllister, 2001; Thompson et al., 2002],

resulting in better performance for numerical simulation [Rumpf and Strzodka, 2001a;b; Bolz

et al., 2003; Krüger and Westermann, 2003]. Shader based collision handling methods use

depth images to detect contacts therefore are not physically based, hence not relevant to this

thesis.

However, shaders are designed for graphics applications. In order to more easily take

advantages of GPUs’ parallelism, specialised GPU computing languages were designed, such

as CUDA [NVIDIA] and OpenCL [Khronos].Rasmusson et al. [2008] present a CUDA-based

implementation of spring-mass systems. Comas et al. [2008] develop a CUDA-based nonlin-

ear finite element model to model soft tissue for medical purposes. Li et al. [2011] intend

to achieve real-time cloth animation by implementing a CPU-GPU hybrid computing frame-

work. A GPU-based framework able to accurately simulate fabric behaviour including non-

linear strain-stress relationships is presented in [Kevelham and Magnenat-Thalmann, 2012].

Tang et al. [2013] simulate high-resolution cloth objects using a GPU-based streaming algor-

ithm. Methods taking advantages of the CUDA architecture to accelerate matrix operations

are discussed in [Bell and Garland, 2008; 2009; Wang et al., 2010; Feng et al., 2011].
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For collision handling, collision response has not yet been implemented on the GPU

completely due to its successiveness, while the focus on collision detection in recent years

has shifted to GPU computing algorithms using CUDA, and gained considerable increases

in performance. Similar to the traditional CPU-based counterparts, GPU-based collision

detection approaches are categorized into BVHs methods [Kim et al., 2009; Lauterbach et al.,

2009; 2010; Tang et al., 2011] and spatial subdivision methods [Grand, 2007; Pabst et al.,

2010; Fan et al., 2011].



Chapter 3

Cloth Simulation Framework

Components of our physically based cloth simulation framework are described in this chapter

to provide an overview and a basis for understanding of the remaining chapters of the thesis.

Developments presented in the following chapters are built on this framework.

Cloth behaviour and appearance are crucially determined by the modelling of internal

forces. In-plane forces resist stretch and shear deformation, while formation of folds and

wrinkles mainly depends on out-of-plane forces. As an indispensable part of physical simu-

lation, time integration not only governs how simulation evolve but also significantly affects

the whole dynamic behaviour.

Fabric is usually designed to cover human body or furniture such as tables and beds.

It is necessary to address collisions between cloth and external objects. Nevertheless, the

main challenge in collision handling for thin, flexible cloth objects is self collision. A robust

cloth system must detect and solve all collisions, otherwise missed collisions may give rise to

penetrations. This is a severe problem that can not be tolerated for cloth simulation, because

such penetrations are highly visible due to the thinness of cloth, and can lead to permanent

tangles giving physically incorrect results.

The remainder of this chapter is organised as follows. Two in-plane force models and

a bending force model with their computation are presented in Section 3.1. Section 3.2

describes time integration methods including explicit and implicit solvers along with force

computation. The framework of collision handling is given in Section 3.3.

3.1 Cloth Internal Force

In this section, computation of in-plane forces and out-of-plane forces is described.

19
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Figure 3.1: Compute internal forces using a linear spring

3.1.1 In-plane Force

The simplest way to compute internal forces is a spring-mass system using simple linear

springs [Provot, 1996]. Although this model is quite simple, it appears to satisfy visual

requirements for many applications.

The cloth mesh is composed of a set of discrete particles grouped into triangles. The

mass, position and velocity of the ith particle are mi, xi and vi, with i ∈ [1, N ] where N is

the number of particles. Particles are connected by a set of springs (triangle edges). Forces

along such springs describe stretch forces, while shear forces are ignored in this model. The

spring forces acting on particle i and j connected by a spring (Figure 3.1) are

fsi = ks
xj − xi
|xj − xi|

(|xj − xi| − l)

fsj = -fsi

, (3.1)

where ks is the spring stiffness, and l the rest length of the spring. The forces depend on

positions only. They are proportional to the difference between the current spring length and

its initial length in the undeformed state. The damping forces that depend on both position

and velocity acting on these two particles are

fdi = kd(vj − vi)
xj − xi
|xj − xi|

fdj = -fdi

(3.2)

where kd is the damping stiffness. The sum of the spring force and damping force

fi = fsi + fdi

fj = -fi

forms the in-plane forces. These forces are momentum conserving.

Instead of computing forces directly from the spring length, forces can be also derived
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Figure 3.2: A triangle is assigned fixed 2D plane coordinates, and is deformed from its initial
state in 3D space.

from a scalar energy function E(x) based on constraints C(x):

E(x) =
1

2
kC(x)2, (3.3)

f = -
∂E

∂x
= -kC

∂C

∂x
, (3.4)

where k is the stiffness. The energy is zero when the mesh is undeformed. In other words,

the energy is larger than zero if the mesh is deformed. The negative gradient of energy is the

direction of the force, which means that internal forces exerted on the mesh act to recover

the deformation. Now the problem is to define the constraint C(x).

To construct stretch energy, a simple constraint based on the spring length can be used.

However, we follow [Baraff and Witkin, 1998] where continuum mechanics and all three

particles of a triangle are considered to compute stretch and shear forces for better results.

At first, each particle is assigned a fixed 2D plane coordinate (ui, uj) (Figure 3.2), and

assuming a C1 continuous function w(ui, uj) maps plane coordinates to the current position

xi in world space, so that stretch or compression in the u and v directions can be measured by

the magnitude of derivatives wu = ∂w/∂u and wv = ∂w/∂v at any point of the mesh. Similar

to what happens in continuum mechanics, when the mesh is underfomed |wu| = |wv| = 1

and wT
uwv = wT

v wu = 0, indicating that axes u and v have unit length (no stretch or

compression) and are perpendicular to each other (no shear). This can be written as[
wT
u

wT
v

]
[wu wv] =

[
|wu|2 wT

uwv

wT
v wu |wv|2

]
. (3.5)

To address the question of how to apply this general continuous vector field to a discrete
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triangle mesh, the following scheme is used. For a given triangle with particles i, j and k, let

∆x1 = xj − xi, ∆x2 = xk − xi,

∆u1 = uj − ui, ∆u2 = uk − ui,
∆v1 = vj − vi, ∆v2 = vk − vi

and assume that w(ui, uj) is a linear function, thus derivatives wu and wv are constant.

Hence within a triangle

∆x1 = wu∆u1 + wv∆v1, ∆x2 = wu∆u2 + wv∆v2.

Solving this equation, we have:

[wu wv] = [∆x1 ∆x2]

[
∆u1 ∆u2

∆v1 ∆v2

]-1

.

Therefore the stretch constraint C is a vector and can be seen as a function of particle

positions of a triangle with an area a in the undeformed state:

C(x) = a

[
|wu| − 1

|wv| − 1

]
. (3.6)

Again, according to continuum mechanics, the shearing deformation can be measured by

off-diagonal entries in Equation 3.5, the inner products wT
uwv and wT

v wu, which must be

zero when the mesh is not sheared, because axes u and v are perpendicular to each other.

Therefore the constraint for shear forces is:

C(x) = awT
uwv. (3.7)

Angles between triangle edges are taken into account by the inner product. By plugging

constraints 3.6 and 3.7 into Equation 3.4, stretch and shear forces can be obtained.

Stretch and shear energy are functions of position only (as well as bending energy, pre-

sented in the next section), whereas the damping force is a function of both position and

velocity. The damping force is defined in terms of constraints described above, and should
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act on the opposite direction of ∂C(x)/∂x to damp the velocity. It can be defined as:

f = -
∂E

∂v
= -kd

∂C(x)

∂x

∂C(x)

∂x

T

ẋ. (3.8)

Similar to stretch and shear forces, the damping force arising from each type of energy is

derived by plugging each type of constraint into this equation.

3.1.2 Out-of-Plane Force

Both methods discussed above can be extended to model bending forces. In the first method,

the linear spring that connects two particles belonging to the same triangle is responsible

for the stretch force. Similarly, the bending force can be modelled by a spring that connects

unshared particles of adjacent triangles. Since there is no difference in computation between

the stretch spring and the bending spring, the computation defined by Equation 3.1 is ap-

plied. The second method computes the bending force based on the angle between adjacent

triangles. The constraint for bending is:

C(x) = θ. (3.9)

The angle θ is defined as

θ = sin-1((n1 × n2) · e) and θ = cos-1(n1 · n2),

where n1 and n2 are unit normals of two adjacent triangles, and e denotes the unit vector of

the common edge. By writing this constraint, the bending force and damping force arising

from the bending energy are easily derived using Equation 3.4 and 3.8, respectively.

In order to efficiently capture the nonlinearity exhibited by bending deformations, Chap-

ter 4 presents a method to model bending behaviour using hysteresis.

3.2 Time Integration

To dynamically evolve the system, time integration methods are needed to compute the

simulation state at the next time step. They have a significant impact on the accuracy and

stability of a simulation. Although large efforts have been made, currently there is no single

uniform solution, and this field still continues to attract attentions from researchers.

The notation ẋ and ẍ is used for the first and second derivatives of position with respect
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to time, that is, the velocity v and acceleration a. All position vectors xi, i ∈ (1, N), are

combined into a multidimensional position vector x. The same definition is applied to the

velocity, acceleration and force vectors. Additionally a diagonal mass matrix M ∈ R3N×3N

is constructed with diagonal entries m1,m1,m1,m2,m2,m2, ...,mN ,mN ,mN .

3.2.1 Explicit Methods

Explicit integration methods compute the state at the next time step using velocity and

acceleration at the current time step. According to Newtons second law of motion,

v(t) = v(t0) +

∫ t

t0

M−1f(t)dt, (3.10)

x(t) = x(t0) +

∫ t

t0

v(t)dt. (3.11)

To use numerical integration, these derivatives can be discretely approximated with dis-

crete time step ∆t as

vt+1 = vt + ∆tM−1f(xt,vt), (3.12)

xt+1 = xt + ∆tvt, (3.13)

where superscripts t and t+1 indicate the state of the current and next time step respectively,

and the force is a function of positions and velocities as described in Section 3.1.1. This simple

scheme is the explicit Euler integration method, one of the simplest integrators. However it

is not accurate, which can be examined by applying a Taylor series expansion to xt+1:

xt+1 = xt + ∆tẋt +
∆t2

2!
ẍt +

∆t3

3!

...
x t + . . .+

∆tn

n!

∂nx

∂tn
+ . . . . (3.14)

Equation 3.13 is in fact a truncation of the Taylor series, preserving the first two terms at

the right side of the expansion. This is to say that the explicit Euler integration achieves a

second order accuracy or that the total accumulated error is order O(∆t2), because ∆t2

2! ẍt

contributes the most to the error term:

xt+1 = xt + ∆tvt +O(∆t2). (3.15)

Such error can easily lead to the issue of instability when the time step size is not small

enough or the system is too stiff. Because the force and velocity at the current state are
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used to update the system during the entire time step, a large step size increases the error

resulting in divergence. For example, a spring defined by Equation 3.1 is stretched to have a

length l, the generated spring force intends to recover the deformation to its initial length.

If the step size is too large or the spring is too stiff, two particles connected by the spring

can cross each other and continue to move to have a new length greater than l, therefore the

spring diverges (accumulated errors increase and blows up eventually).

More accurate integration methods can alleviate this problem to a certain extent. The

second order Runge-Kutta method is one way to achieve this:

vt+
1
2 = vt +

∆t

2
M−1f(xt,vt), (3.16)

xt+
1
2 = xt +

∆t

2
vt, (3.17)

vt+1 = vt + ∆tM−1f(xt+
1
2 ,vt+

1
2 ), (3.18)

xt+1 = xt + ∆tvt+
1
2 . (3.19)

Substituting Equation 3.16 into Equation 3.19 gives the formula:

xt+1 = xt + ∆tẋt +
∆t2

2!
ẍt +O(∆t3) ,

which is the same as the truncated Taylor series up to the second order. In other words, the

second order Runge-Kutta integration achieves a third order accuracy. It requires twice the

computational time of the explicit Euler scheme, as the force is evaluated twice in Equations

3.16 and 3.18. However, it is worth adopting this technique for applications where accuracy

is needed, because doubling the costs gains four times the accuracy. Moreover, this improve-

ment in accuracy makes simulations more stable. The explicit Euler integration can be seen

as a first-order Runge-Kutta method. There are higher order Runge Kutta integration meth-

ods that provide yet higher accuracy and better stability. The fourth order Runge Kutta

integration scheme that achieves fifth order accuracy is one the most popular integrators

among explicit integration methods for physics simulation in computer graphics.

3.2.2 Implicit Methods

Although advanced explicit integration schemes improve the issue of stability, this problem

is not totally solved. Another type of approach is implicit integration methods. The simplest
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one is the implicit backward Euler method. Since instability results from the fact that explicit

integrators blindly evaluate future state, the main strategy of implicit methods is to evaluate

the force using the positions and velocities at the end of the time step, rather than using the

current state as for explicit methods

vt+1 = vt + ∆tM−1f(xt+1,vt+1), (3.20)

xt+1 = xt + ∆tvt+1. (3.21)

Compared to Equation 3.12 and 3.13, the position xt and velocity vt are replaced with xt+1

and vt+1. Clearly direct evaluating forces with unknown xt+1 and vt+1 is impossible. The

first step is to regroup these two equations

∆v = vt+1 − vt = ∆tM−1f(xt+1,vt+1), (3.22)

∆x = xt+1 − xt = ∆tvt+1 = ∆t(vt + ∆v). (3.23)

and then to linearise the nonlinear system by applying a Taylor series expansion again but

to force

f(xt+1,vt+1) = ft + Kx∆x + Kv∆v , (3.24)

where Kx = ∂f/∂x and Kv = ∂f/∂v are Jacobians of force. They are 3N × 3N matrices

containing the derivatives of force with respect to positions and velocities, which are N2

small 3 × 3 sub-matrices organised in a block fashion. For a given pair of particles i and j

belonging to a triangle, the small derivative sub-matrix of the force acting on particle i with

respect to the position of particle j is Kxij = ∂fi/∂xj ∈ R3×3, located in the ith row and jth

column of matrices Kx. Since Kxij = Kxji , Kx is symmetric. The definition is the same for

Kv. Additionally, each particle is associated with a few number of other particles in both

cases of in-plane and out-of-plane forces, hence Kx and Kv are sparse.

Substituting Equations 3.24 into 3.22 and regrouping Equation 3.22 and 3.23 gives

(M−∆tKv −∆t2Kx)∆v = ∆t(ft + Kxvt). (3.25)

Letting

A = (M−∆tKv −∆t2Kx) and b = ∆t(ft + Kxvt)
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gives

A∆v = b,

where matrix A ∈ R3N×3N is symmetric and v is a 3N dimensional vector. Then the problem

is to solve v which can be efficiently done by a conjugate gradient solver. By having v the

state at the end of the time step is trivially obtained.

Now how to compute matrices Kx and Kv is the remaining problem, which depends on

the internal force model. For the spring based force model, sub-matrices Kxij and Kvij are

a first derivative of force,

Kxij =
∂fi
∂xj

=
∂fsi
∂xj

+
∂fdi
∂xj

= ks

(
I− l

|xj − xi|

(
I− (xj − xi)(xj − xi)

T

(xj − xi)(xj − xi)

))
− kd

(vj − vi)
T

|xj − xi|

(
I− (xj − xi)(xj − xi)

T

(xj − xi)(xj − xi)

) (3.26)

and

Kvij =
∂fi
∂vj

= kd

(
I

xj − xi
|xj − xi|

)
, (3.27)

where I denotes the identity matrix. Entries of all pairs of particles that are not associated

with each other are zeros.

For the constraint based force model, Kxij and Kvij are a second derivative of energy

which depends on the constraint,

Kxij =
∂fi
∂xj

= -k

(
∂C(x)

∂xi

∂C(x)

∂xj

T

+
∂2C(x)

∂xi∂xj
C(x)

)
, and (3.28)

Kvij =
∂fi
∂vj

= -kd
∂C(x)

∂xi

∂

∂vj

(
∂C(x)

∂xj

T

ẋ

)
= -kd

∂C(x)

∂xi

∂C(x)

∂xj

T

. (3.29)

Derivatives of different types of internal forces and damping forces are obtained by plugging

constraints 3.6, 3.7 and 3.9 into these two equations. With this implicit integration method,

stability can be achieved even if the time step size is very large or the system is very stiff. The

implicit backward Euler method described in this section is first order. Higher order implicit

integrators can be used to obtain higher accuracy, but with complexity and cost increases.

It is noticeable that implicit integration can introduce artificial damping effects which is

known as numerical dissipation, and the phenomenon that the larger the step size the more
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Figure 3.3: Cell types in the control bits scheme [Grand, 2007]

damping is generated is observed. Hence, Equation 3.8 and Kv are dropped strategically in

some works using implicit integrators.

3.3 Collision Handling

Cloth objects in the real world interact with human bodies and other objects, and also

easily fold, therefore complex collisions and contacts between cloth and external bodies or

themselves are involved. This issue must be addressed physically and robustly for a realistic

virtual cloth scenario. Moreover an efficient framework is necessary as the number of collisions

and contacts involved can be huge.

Collision detection algorithms presented in Chapter 5 and 6 improve on the spatial sub-

division technique using the GPU, therefore this section describes the basic and primary idea

of a GPU-based spatial subdivision collision detection method. A robust treatment for col-

lision response proposed by [Bridson et al., 2002] is described, while the friction component

is replaced with an improved friction model discussed in Chapter 7.

3.3.1 Collision Detection

The spatial subdivision technique used in the broad phase is similar to [Grand, 2007]. The

narrow phase responsible for elementary tests combines a number of techniques.

All triangles in a given space can potentially collide with each other. Clearly, performing

collision tests for all triangle pairs, which is known as the brute-force method having a
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Figure 3.4: A 2D example of the control bits scheme to avoid duplicate tests due to triangle
pairs assigned to more than one cell.

complexity of O(n2), is impractical when the number of objects is large. To decrease the

complexity, space can be subdivided into a uniform grid, and each triangle assigned to cells

that intersect the triangle’s BV. Then a BV test is performed only for a pair of triangles that

belong to the same cell, therefore BV tests for triangle pairs that are far from each other are

avoided, giving an average complexity of O(n).

However spacial subdivision gives rise to an issue that the same collision test for a pair

of triangles may be performed multiple times if a triangle pair is assigned to more than one

cell. To efficiently avoid such duplicate tests on the GPU, a control-bits scheme is used. In

this scheme, a sphere is used as the BV. The first step is to set the cell size 1.5 times as

large as the BV of the largest triangle, hence a triangle can be assigned to up to eight cells.

Due to this feature, cells are classified into eight types in a fashion shown in Figure 3.3. For

each triangle, a set of eleven control bits is used to indicate the type of its home cell where

its centroid resides and types of cells intersected by the BV of the triangle: the first three

bits specify the type number of the home cell, and each of the following eight bits indicate

whether the BV intersects the corresponding cell. Then a filter test using control bits is

performed for every triangle pair that belongs to the same cell and at least one of them has

its centroid located in this cell. This test aims to find out whether one of the triangles’ home

cell type is both less than the type of the cell where this test occurs and among cell types

that are common to both triangles. If this condition does not hold, a BV test is performed

for this triangle pair.

For example, a 2D case is shown in Figure 3.4. For triangles T1 and T2 the BV test in

cell a will be processed and the test in cell e will be skipped, because T1’s home cell type
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is less than T2’s home cell type and they both intersect cell types 0 and 2. In another case,

the BV test for the pair of T3 and T4 occurring in cell c can be skipped because they are too

far apart to collide as the cell size is 1.5 times as large as the largest triangle’s BV, which

can also be examined by the filter test: T4’s home cell type is less than that of T3 and both

triangles share their home cell’s type. It is unnecessary to perform the BV test for triangles

T1 and T3 as well, because they are too far from each other as neither of their centroids are

located in the only common cell b.

In the BV test, the R-triangle scheme [Curtis et al., 2008] is first used to remove duplicate

vertex-triangle and edge-edge elementary tests due to the fact that a vertex and an edge can

belong to multiple triangles, then BV culling based on vertices and edges is carried out to

further reduce false positives.

The detection algorithm from here is referred to as the narrow phase. The output vertex-

triangle and edge-edge pairs undergo elementary tests. In the case of discrete collision de-

tection, a proximity test is performed to calculate intersection information at each discrete

time step, which starts by checking if four vertices are close to a plane. For a given vertex

l and a triangle with vertices i, j and k, the distance from the vertex to the triangle is first

computed

d = |(xl − xk) · n|,

where n is the normal of the triangle. If d is less than a user defined cloth thickness h, the

barycentric coordinates wi, wj and wk of the projection of vertex l onto the plane containing

the triangle is calculated by solving[
(xi − xk) · (xi − xk) (xi − xk) · (xj − xk)

(xi − xk) · (xj − xk) (xj − xk) · (xj − xk)

][
wi

wj

]
=

[
(xi − xk) · (xl − xk)

(xj − xk) · (xl − xk)

]
, (3.30)

1− wi − wj − wk = 0. (3.31)

Barycentric coordinates falling into the interval [-δ, 1 + δ], where δ is h divided by the trian-

gle’s characteristic length, indicates that the vertex is close to the triangle and barycentric

coordinates are output for repulsion force computation in the collision response stage.

Whether an edge with vertices i and j and another edge with vertices k and l are close

depends on the distance between two closest points, one on each edge. If two edges are nearly

parallel, the computation degrades to a one dimensional problem. Otherwise the following
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equation needs to be solved for weights a and b:[
(xj − xi) · (xj − xi) -(xj − xi) · (xl − xk)

-(xj − xi) · (xl − xk) (xl − xk) · (xl − xk)

][
a

b

]
=

[
(xj − xi) · (xk − xi)

-(xl − xk) · (xk − xi)

]
. (3.32)

If 0 ≤ a, b ≤ 1 the closest points are on edges. Otherwise the pair of points are clamped to

ends of edges. The distance between two points is used to determine if two edges are close,

if so operations similar to the vertex-triangle case are performed.

In the case of continuous collision detection, the path of four moving vertices during the

entire time step has to be considered to test coplanarity, which is achieved by solving a cubic

equation for t

((xj − xi) + t(vj − vi))× ((xk − xi) + t(vk − vi)) · ((xl − xi) + t(vl − vi)) = 0. (3.33)

Roots that do not fall into the interval [0,∆t] are discarded. The positions of four vertices

at each remaining time instant t are used to do proximity tests described above. If they are

closer than a thickness (e.g. h/1000), they are registered as a collision and related contact

information is sent to the collision response stage.

3.3.2 Collision Response

Once collision information is computed, the next step is to alter the velocity of vertices

involved and thus prevent penetration. To achieve this, an impulse is computed for solving

contacts or collisions found in both cases of discrete and continuous collision detection.

Impulses are computed for two colliding points which can be a vertex and an interior

point of a triangle or two points on two edges each. The velocities of these two points are

needed for calculating response. They are computed using barycentric coordinates using

linear interpolation. The velocity of a point having barycentric coordinates wi, wj and wk

interior to a triangle is wivi + wjvj + wkvk and the velocity of a point on an edge with the

weight a is (1− a)vi + avj .

For contacts detected in the discrete time step, an elastic impulse is applied to separate

the vertex and triangle or two edges that are close. This is explained as a compression of

cloth fibers when two pieces of cloth are in contact. Hence it is reasonable to form the elastic

impulse like a spring force that the more the overlap beyond the cloth thickness h the higher

impulse is generated. However if the stiffness of the elastic impulse is set too large, a bouncing
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effect will be introduced, which reduces the realism. Therefore the impulse is limited to a

maximum that two pieces of cloth will not be propelled outside the overlap region in one

time step, no matter what the stiffness is. This also helps pieces of cloth in contact to feel

friction in subsequent time steps, leading to more realistic folds. The elastic impulse is based

on the overlap depth which is computed as

d = h− (xl − wixi − wjxj − wkxk) · n (3.34)

for the vertex-triangle case, where n is the triangle normal. The overlap depth of two edges

is

d = h− (xk + b(xl − xk)− xi − a(xj − xi) · n, (3.35)

where n is the direction from one of the two closest points to the other. An impulse is a force

times a time interval, so the elastic impulse can be obtained:

Ir = - min

(
∆tkrd,m

(
0.1d

∆t
− vn

))
, (3.36)

where vn is the relative velocity between contacting points in the normal direction, and kr is

the elastic stiffness. As the equation shows, if vn times the time step size ∆t is greater than

or equal to a fraction of the overlap (0.1d), no repulsion will be applied. To avoid problems

with stiffness, the force is limited to reduce the overlap by a fraction of the cloth thickness

(0.1h in our work) at most during one time step.

Although applying a repulsion force at the discrete time step to separate pieces of cloth

in contact can dramatically decrease the number of collisions in the current and subsequent

time steps, it does not guarantee to remove all intersections. If a vertex and a triangle or

two edges are moving too quickly towards each other, the elastic impulse may be not high

enough to cancel out the relative velocity in the normal direction before they interpenetrate.

Therefore an inelastic impulse Ic = mvn/2 is used to stop the collision immediately. This

impulse is applied when collisions are found in continuous collision detection.

3.3.3 Friction

Friction is indispensable in physically based simulation. It is separated into static and ki-

netic friction for motionless and sliding contacts respectively. The classic Coulomb model is
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popular in computer graphics, which can be easily achieved by applying impulses as well:

If = |vnewt − vt|m (3.37)

vnewt = max

(
1− µ∆vn

|vt|
, 0

)
vt, (3.38)

where vt and vnewt are relative tangential velocities before and after friction respectively.

The second equation shows that if µ∆vn is larger than |vt|, the relative tangential velocity

is cancelled out, which is the static friction case, otherwise the relative tangential motion is

slowed down due to kinetic friction.

The overall impulse is computed for two colliding points so far. It has to be propagated

to the triangle corners or edge endpoints to update velocity. For the vertex-triangle case, the

new velocities of vertices are

Ī =
2I

1 + w2
i + w2

j + w2
k

, (3.39)

vnewx = vx + wi(Ī/m)n x = i, j, k,

vnewl = vl − (Ī/m)n.

For the edge-edge case the computation is

Ī =
2I

a2 + (1− a)2 + b2 + (1− b)2
, (3.40)

vnewi = vi + (1− a)(Ī/m)n,

vnewj = vj + a(Ī/m)n,

vnewk = vk − (1− b)(Ī/m)n,

vnewl = vl − b(Ī/m)n.

Velocities are updated together, which means that impulses acting on a vertex are summed

up and divided by the number of interactions that it is involved in. Then the velocity

is updated using equations described above with the average impulse. However, resolving

collisions may introduce new collisions because the case of vertex-triangle or edge-edge are

handled independently from each other, which is referred to as the problem of multiple

collisions. Hence the operations of collision detection and applying impulses have to be

performed iteratively until the cloth is collision free. Unfortunately [Provot, 1997] point out

that this iterative scheme is not guaranteed to converge. To address this issue, a scheme

called “rigid impact zones” is used. After a few iterations, vertices that are involved in new
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introduced collisions are grouped together to form an “impact zone” which is treated as a

rigid body. The impact zone grows until a collision free state is achieved, which is guaranteed

to converge when the impact zone includes all vertices in the worst case.

The first step is to compute the initial mass center and the average velocity of the impact

zone

xCM =

∑
imx∑
im

, vCM =

∑
imv∑
im

and its angular momentum with respect to the mass center

L =
∑
i

m(xi − xCM )× (vi − vCM ).

Its inertia tensor which is a 3× 3 matrix is computed as

I =
∑
i

m(|xi − xCM |2δ − (xi − xCM )⊗ (xi − xCM )).

To preserve angular momentum, the rigid body angular velocity is needed

vω = I−1L.

Since the impact zone is treated as a rigid body, lengths and angles should be unchanged

during the rotation. Therefore for a vertex i belonging to the impact zone the fixed and

rotating components of the position should be considered:

xF = (xi − xCM ) · vω
|vω|

vω
|vω|

,

xR = xi − xCM − xF .

The updated position is:

xCM + ∆tvCM + xF + cos(∆t|vω|)xR + sin(∆t|vω|)
vω
|vω|

× xR.

The new velocity can be obtained by subtracting the old position from the new position and

then divide it by the time step size.



Chapter 4

Modelling Bending Behaviour

Using Hysteresis

As discussed in Chapter 1, real cloth exhibits bending effects such as residual curvatures and

permanent wrinkles. These are typically explained by bending plastic deformation due to

internal friction in the fibre and yarn structure. Internal friction also gives rise to energy

dissipation which significantly affects cloth dynamic behaviour. In textile research hysteresis

is used to analyse these effects, and can be modelled using complex friction terms at the fabric

geometric structure level. The hysteresis loop is central to the modelling and understanding

of elastic and inelastic (plastic) behaviour, and is often measured as a physical characteristic

to analyse and predict fabric behaviour. However, in cloth simulation in computer graphics

the use of hysteresis to capture these effects to our knowledge had not been reported prior to

our work. Previous approaches have typically used plasticity models for simulating plastic

deformation. This chapter reports our investigation into the use of a simple mathematical

approximation to an ideal hysteresis loop at a high level to capture the previously mentioned

effects. Fatigue weakening effects during repeated flexural deformation are also considered

based on the hysteresis model. Comparisons with previous bending models and plasticity

methods are provided to point out differences and advantages. The method only requires

little additional computation time.

4.1 Introduction

Establishing a good bending model is a key aspect for realistic cloth simulation involving

wrinkling and folding. As an important textile property, bending behaviour shows high

35
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nonlinearity which in textile research is described by a rheological model that contains a

generalized bending rigidity and bending hysteresis [Owen, 1968; Chapman, 1975b; Bliman

and Sorine, 1995a]. The latter physically describes nonlinear deformation and energy loss

due to internal friction which also gives rise to plasticity. However, hysteresis has received

relatively little attention in computer cloth simulation. Although many existing cloth mod-

elling systems can generate good looking wrinkles and folds, physically based simulation of

the bending plasticity relating to hysteresis has not been developed. Materials such as cloth,

which exhibits energy loss and inelasticity during flexural deformation, may not return to the

original configuration once external forces are removed, with some residual curvatures and

permanent wrinkles. Such effects significantly influence realism and visual quality. Even in

textile research fully accurate modelling bending hysteresis and plasticity has still been an

open research topic. This chapter presents a model suited to computer graphics to simulate

such features (Figure 4.1) with limited computational costs by using a simple mathematical

approximation of bending hysteresis.

In bending few real materials are purely elastic. For most materials, small deformations

are elastic up to the elastic limit, and then when exceeded plastic deformation occurs. The

elastic limit is referred to as the transition point from the elastic to the plastic range. Once

the deformation enters the plastic range, the deformation increases more rapidly than in the

elastic range. For fabrics bending plasticity manifests as wrinkle and crease effects that may

not be completely removed, which frequently happens to cloth materials that do not have

good original appearance retention properties, such as cotton. This has been proven to be

a consequence of internal friction in fibre and yarn structure. High friction between fibres

may maintain their relative displacement if the elastic deformation limit is exceeded, and

thus fabrics may not recover to its initial shape Zhao et al. [2009]. Internal friction also

leads to nonlinearity and energy dissipation. The former occurs in the elastic range and is

caused by a pre-sliding effect (due to stiction). The latter is observed no matter whether the

elastic limit is exceeded or not, as bending requires more force and energy than unbending.

These phenomena can be described by a hysteresis loop (Figure 4.3). The area of the loop

is the dissipated energy. Quadratic curves are used to closely approximate the nonlinearity.

Following [Anandjiwala and Leaf, 1991a], we take the transition point from nonlinearity (the

quadratic region) to the rigidity slope (the linear region) as the elastic limit. For fabrics

part of the dissipated energy results in fatigue weakening due to changes or jamming in the

microstructure, leading to a decrease in internal friction and thus a decrease in hysteresis

[Chapman, 1975a; Anandjiwala and Leaf, 1991a]. Therefore as a fabric is bent repeatedly,
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(a) (b) (c) (d)

Figure 4.1: Permanent wrinkles after large deformations in (a) real fabrics and (b) our
simulation; Results from an (c) existing method (d) and our method

internal friction and hysteresis gradually decrease and finally disappear, leaving a saggy

cloth with some permanent wrinkles and folds. Such permanent plastic deformation is hard

to remove unless special conditions such as ironing or alkaline solutions are applied.

Previous methods to model plastic deformation typically use approaches where an elastic

threshold is used to trigger plastic deformation [O’Brien et al., 2002; Kim et al., 2011]. These

methods without considering hysteresis are able to simulate residual wrinkles, but the effect

of energy dissipation which significantly affects the whole dynamic behaviour can not be

fully captured, because there is no difference in force required to bend and unbend. In

these methods, energy loss is achieved by empirically adjusting the damping component,

while hysteresis is the way to describe and model energy dissipation in a physically accurate

fashion. Furthermore, nonlinear bending behaviour in the elastic range [Clapp et al., 1990]

is not simulated by the plasticity models as bending deformation is treated purely linearly.

These plasticity methods can be extended to model fatigue weakening, but are limited to

forming permanent wrinkles. The decrease in other aspects relating to hysteresis can not

be captured. Therefore, motivated by such limitations a hysteresis based model for cloth

bending behaviour is presented in this chapter.

Although our hysteresis approach is based on work from textile research, we do not di-

rectly adopt the methods into our cloth model for a few reasons. Firstly, the textile commu-

nity focuses on investigating fabric behaviour at the microscopic fibre level using a complex

fibre geometric model, which would drastically increase the computational complexity and

cost, and is unlikely to be necessary for computer graphics purposes. Secondly, many param-

eters for measurements of real cloth materials, such as the interfibre force, space size between

threads, change in yarn radius, etc., are required, but are unlikely to be important in graphics

applications. Last but not least, their work focuses on the complete bending cycle, whilst in
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computer graphics cloth usually only undergoes partial bending and recovery.

In this chapter, we present a physically based bending model suited to the widely used tri-

angle mesh representation to compute bending forces using hysteresis at a high level without

complex friction models. The primary idea is to use an ideal mathematical hysteresis loop

that consists of two different curvature-moment curves for bending and recovery to look up

bending and unbending forces, and which includes nonlinear bending stiffness. Furthermore,

computing forces based on these two curves inherently incorporates energy dissipation due

to internal friction, which alleviates high frequency oscillations, a common issue when small

time steps are used in most cloth simulation methods [Thomaszewski et al., 2008]. Since

plasticity arises from internal friction, residual curvatures are computed through hysteresis

where the impact of internal friction on behaviour is included. Another contribution is to

extend this model to consider fatigue weakening, turning residual wrinkles into permanent

sets. Our model is not much more complicated than existing models, and experiments show

that with a small extra computation time satisfactory bending hysteresis and plasticity can

be obtained. This model can be easily integrated into previous cloth models by modifying

the bending component. We show that this method can be implemented on GPUs to achieve

high performance. For this work, we used the CUDA toolkit 4.1 on an NVIDIA GeForce 470

GTX GPU to conduct experiments.

The remainder of this chapter is organised as follows. We start by briefly reviewing

previous work directly related to the bending behaviour and bending hysteresis effect in

Section 4.2. The bending model is presented in Section 4.3, followed by the implementation

and results in Sections 4.4 and 4.5 respectively. Finally, the conclusion is given Section 4.6.

4.2 Related Work

As described in Chapter 3, the bending force is formed by a spring to resist flexion in the

mass-spring model. This kind of system is simple and fast, but unfortunately, it has the

issue of inaccuracy in bending stiffness for small curvatures where a nonlinear phenomenon

is exhibited. Baraff and Wiktin [Baraff and Witkin, 1998] present an elasticity-based model

that derives the bending force from a bending energy function that takes account of the

dihedral angle between two adjacent triangles. Bridson et al. [Bridson et al., 2003b] propose

a simple and fast bending model that also uses dihedral angles. Grinspun et al. [Grinspun

et al., 2003] present a flexural energy function that measures mean curvatures instead of

Gaussian curvatures for membrane simulation. In their work, a creased and curled sheet of
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paper is simulated by directly modifying the undeformed configuration, which can be seen

as static approximations of plasticity like effects. However nonlinear bending behaviours are

not mentioned in the approaches mentioned so far. Pabst et al. [Pabst et al., 2008] also use

mean curvatures to compute bending force. This approach is based on the use of measured

data describing the curvature-moment relationship presented by Clapp et al. [Clapp et al.,

1990] from the textile community. These measured data closely approximates the nonlinear

fabric bending stiffness during the bending process. Our bending model is an improvement

on their approach. The systems mentioned so far do not consider hysteresis and plasticity of

fibres.

The earliest plasticity model in graphics is in [Terzopoulos and Fleischer, 1988] where

objects experience plastic deformation when the applied force exceeds an elastic limit force.

Hysteresis for computer cloth simulation is first discussed by Breen et al. [Breen et al.,

1992]. In order to simulate realistic cloth draping, they use a system called Kawabata to

measure the hysteresis during a cycle of force loading and unloading on a piece of real cloth,

but this work is designed to compute the static draping shape and do not produce cloth

animation showing dynamic behaviour. Therefore, only the basis of fabric hysteresis has

been discussed. Ngoc and Boivin [Ngoc and Boivin, 2004] use relatively complex friction

terms for parameters identification and thus to be able to accurately reproduce nonlinear

behaviours including hysteresis in cloth modelling. However quite high computational costs

are required as a large number of iterations (up to hundreds) is required. Plasticity effects

are not modelled in their work. Volino et al. [Volino et al., 2009] simulate tensile behaviour

of cloth materials using nonlinear Green-Lagrange tensors. Their work discusses tensile

plasticity along with hysteresis, and can be extended to model plasticity through a proper

processing of the strain-stress behaviour. Kim et al. [Kim et al., 2011] generate residual

changes in curvature by simply treating this feature as energy loss over time without a firm

physical foundation and explanation to how and why the energy loss occurs. Hysteresis is not

used in the computation and ten empirical parameters are required. Outside cloth simulation,

O’Brien et al. [O’Brien et al., 2002] introduce tensile plasticity into solid simulation to model

ductile objects by using an elastic strain and a plastic strain, but hysteresis is not considered.

4.3 Bending Force Model

The bending force model described in this section is different from models presented in

Chapter 3.
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(a) A bending element (b) Curvature-moment curve

Figure 4.2: (a) A bending element formed by two adjacent triangles; (b) The curvature-
moment relationship. If the curvature K > 0, c1 is a negative value and M0, Ma and K0

(green) are positive. Otherwise, c1 is positive, and M0, Ma and K0 (red) are negative.

Since the nonlinearity of hysteresis can be expensive and impractical to handle implicitly,

we adopt a semi-implicit scheme [Schroeder et al., 2011]. We use explicit integration on

bending forces and implicit integration on tensile and damping forces. To ensure stability

and obtain efficiency, a small and a large time step, he and hi, are used for explicit and

implicit integration respectively. We use hi = αhe, where α is a positive integer. In fact,

treating bending forces explicitly is not a limiting factor for stability, as bending forces are

much weaker than tensile forces in cloth simulation [Thomaszewski et al., 2008].

4.3.1 Bending Force

We build the hysteresis bending model on the work presented by Pabst et al. [2008], by

using different forces for bending and unbending. Their work is briefly presented here for

readers’ convenience. The model relies on the angular expression. By having the angle

between two adjacent triangles (Figure 4.2(a)), it is able to use measured data of curvature-

moment relationship (Figure 4.2(b)) to compute the bending force. Such data is acquired

by Clapp et al. [1990] who present a method in textile research to indirectly measure the

curvature and moment during a cantilever beam bending test. One of the most important

advantages of their measurement is that both nonlinear and linear bending behaviours are

present. Therefore a good accuracy can be attained.

The mean curvature K is obtained by considering the current dihedral angle θ, the initial
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dihedral angle θ0 and the average height h̄ of two adjacent triangles in the undeformed state:

K =
θ − θ0

h̄
(4.1)

The relationship between curvature K and moment M is

M =

{
b1K + c1K

2 if |K| ≤ |K0|
M0 + b2K if |K| > |K0|

(4.2)

where K0 and M0 are the transition curvature and frictional moment respectively, and com-

puted as

K0 =
b2 − b1

2c1

M0 = (b1 − b2)K0 + c1K0
2

where b1, b2 (b1 ≤ b2) and c1 are constants for defining the bending stiffness. If K is negative

the value of c1 should change its sign. The bending stiffness B can be seen as a continuous

function of the gradient of Equation 4.2:

B(K) =
dM

dK
(4.3)

The curvature-moment relationship is illustrated in Figure 4.2(b). When the curvature is

small, cloth displays nonlinearity and bending stiffness decreases as the bending curvature

increases. The quadratic behaviour arises from the pre-sliding effect where friction takes a

small displacement to build from zero to the maximum stiction force [Altpeter, 1999]. In

cases of bending deformation, the displacement is replaced with a curvature (K0 in this

work). However the detailed study of how hysteresis is characterised by the pre-sliding effect

is beyond the scope of this work. If the curvature is beyond K0 (M > Ma), the frictional

moment M0 is overcome indicating that the frictional restraint is conquered (internal friction

reaches the maximum stiction force). Then bending behaviours are represented by the linear

part. The bending stiffness stops decreasing and has a constant value of b2.

Similar to [Pabst et al., 2008] but with some small corrections, having computed the

bending moment M using Equation 4.2, the bending force for two adjacent triangles, forming

a bending element as shown in Figure 4.2(a) can be now obtained. We start by calculating
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Figure 4.3: A typical bending hysteresis loop for woven fabrics.

barycentric coordinates t, t0 and t1 with respect to the common edge e = p3 − p2:

ti =
e · (pi − p2)

e · e
i ∈ {0, 1}

t = t0 + (t1 − t0)
h0

h0 + h1

where h0 and h1 are the height of two triangles in the current state. The barycentric coordi-

nates are used to distribute the bending force exerted on four vertices with the preservation

of translational and rotational momentum:

f0 =
1

2

M

|l0|
e× l0
|e× l0|

f1 =
1

2

M

|l1|
l1 × e

|e× l1|

f2 = −(f0t+ f1(1− t))

f3 = −(f0(1− t) + f1t)

li = pi − (p2 + tie) i ∈ {0, 1}
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4.3.2 Bending Hysteresis Loop

Internal friction plays a major role in hysteresis. Any slight movement in the fibre and yarn

structure can create interfiber friction, causing energy dissipation during the cycle of force

loading and unloading. The relationship between moment and curvature for such bending

deformation is depicted in Figure 4.3 as a typical hysteresis loop [Owen, 1968; Chapman,

1975b]. Our bending model is based on this loop.

The theoretical loop is used to describe the following bending behaviours in textile re-

search. At first, let the undeformed fabrics be bent to reach curvature Km by applying an

increasing external force. Next, the curvature change is reversed by gradually reducing the

external force to recover deformation, and continuously bend the fabrics to reach curvature

-Km by increasing the force in the opposite direction. Then, the behaviour is repeated by

reversing the direction again.

Compared to Figure 4.2(b), the most important difference is that the moment for bend-

ing and unbending are along different curves, implicitly introducing the energy dissipation

through the loop area, which gives rise to a dampening effect, one consequence of which is

to reduce fast oscillation behaviours. Similar to the curve oa, quadratic curves ca′ and db′

are formed to model nonlinear behaviour resulting from internal friction. These two curves

describe the process that when the curvature change is reversed stiction drops to zero and

then increases to maximum in the opposite direction. This is why the moment starts with a

quadratic curve. In our work the stiction maximum is independent of the bending direction,

which is true for most real cloth materials, so that the curvature required to complete the

friction change from o to a equals that from o to b, and that from c to a′ and from d to b′

are twice K0 (Km −K0
′ = 2K0). The same happens to the moment change. Note that the

curvature-moment relationship is C1 continuous at a, a′, b and b′.

The bending model presented in Section 4.3.1 is easily extended to model bending and

recovery differently like the hysteresis loop shown in Figure 4.3. According to features dis-

cussed in the previous paragraph, we are able to construct the equation to describe curves

ca′ and db′. By translating them to the origin, the curves can be written as:

M = β1K + γ1K
2 (4.4)

Since two ends of the quadratic curve are known, and curves are C1 continuous on where the
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(a) A bilinear model (b) |M | ≤ |Ma| (c) |Ma| < |M | ≤ 2|Ma| (d) |M | > 2|Ma|

Figure 4.4: (a) A bilinear bending hysteresis loop for woven fabrics. (b), (c), and (d) Three
different recovery cases.

quadratic and linear curves join, the coefficients can be easily computed:

β1 = b2 +
2M0

K0

γ1 =
σ1M0

2K2
0

(4.5)

where σ1 is set to -1 and 1 for db′ and ca′ respectively. However this loop represents the

moment change for deformations of cloth undergoing large bending and unbending, but in

simulation cloth may just undergo small flexural deformations, or get partially recovered

from bending and then be bent again, as reversed curvature change can occur at any time.

Hence quadratic curves can be different from ca′f and db′. Computation of coefficients for

these quadratic curves will be discussed later.

4.3.3 Residual Curvature

In order to generate plastic deformation, residual curvatures in large flexural deformation

have to be computed. It is necessary to understand how internal friction affects the moment

change in real woven fabrics, which has been studied in detail by Anandjiwala and Leaf

[Anandjiwala and Leaf, 1991a] using a bilinear model (Figure 4.4(a)). In their work, the

frictional restraint is approximately described by a line oa, and the line ac and a′f represent

the generalized linear bending stiffness b2 just like ours.

There are three different situations for recovery (Figure 4.4(a)), depending on the bending

moment M or the curvature K when recovery starts [Anandjiwala and Leaf, 1991a]. The

following analysis is based on a test that fabrics are undergoing a fully recovered flexural

deformation. In the first case of the curvature k being smaller than K0 (|M | ≤ |Ma|), the
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moment will decrease along the line oa in the recovery so that the bending deformation

will be completely reversible. If the frictional moment has been overcome and the bending

moment is less than 2|Ma| (|Ma| < |M | ≤ 2|Ma|), the recovery will be on the line gh having

the same gradient of oa. For the last situation (|M | > 2|Ma|), the bending moment reduces

along a line ca′ parallel to oa and another line a′f having the gradient b2 successively. In the

last two cases a residual curvature change will be introduced, because in fact when external

forces are totally removed, a small amount of interfibre forces are still left resulting from

internal dry frictions, leading to residual bending moment. It means that once the elastic

limit is overcome plastic behaviours occur. Point a is regarded as the elastic limit.

Instead of computing the residual bending moment at a low level, we obtain residual

curvature changes by the value of λKr, where Kr is the curvature value at the intercept

between the recovery curve and curvature axis, and λ ∈ [0, 1] a parameter controlling the

change rate. For example setting λ to 1 indicates that when the moment reaches zero the

relative displacement between fibres is fully held by stiction. If it is set to 0 no plasticity

occurs. This approximation works well at the simulation level and does not come at the

expense of visual fidelity.

Similar to [Anandjiwala and Leaf, 1991a], in our model recovery behaviour is subdivided

into three types. In the first one (Figure 4.4(b)), the moment decreases along a quadratic

curve ending at point b. Since the frictional moment has not been overcome, no residual

curvature change will be introduced. As discussed in the previous section, curvature reversal

can occur when cloth undergoes small flexural deformations before the elastic limit has been

reached, resulting in the recovery curve cb being different from ca′ (Figure 4.3). For the

second and third situations (Figure 4.4(c) and 4.4(d)), the recovery will be on curves ch and

ca′f respectively, and thus a residual curvature λKr will be created. In the second situation

the intercept h is on the quadratic curve, while the intercept f in the third case is on the

linear curve. Because of the residual curvature change, the initial angle θ0 in Equation 4.1

is replaced by the residual angle θr (the initial value of θr is equal to θ0). The cases we have

analysed so far are deformations with full recovery. However, it will be further complicated if

the deformation is not fully unloaded (the moment does not reach zero), which often happens

in real life cases. For example, a bending element is first bent to have a curvature Km and a

moment Mm, followed by just a small recovery reducing the curvature to K and the moment

to M then bent again. In such a case, the value of the introduced residual curvature also

relies on how complete the recovery was in the last loading-unloading cycle. Hence, how

much the frictional moment has been overcome during the last recovery process decides the
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(a) (b) (c)

Figure 4.5: The solid curve pd is used for increase and decreasing moment in (a) and
(b) respectively. Curve p′d′ is curve pd after a translation to the origin of the coordinate.
|Kd−Ks| = 2K0 and |Md−Ms| = 2Ma. (c) The moment change for the first four sequential
cycles is shown. op1p2, p2p3p4, p5p6p7 and p8p9 are curves for four cycles respectively.
Disconnections (red dotted lines) are caused by residual curvature changes.

value of θr (superscripts indicate the cycle number):

θr
n+1 = θr

n + ξλKrh̄ (4.6)

where ξ ∈ [0, 1] is the ratio of how much the frictional moment has overcome and computed

as

ξ = min
(

1,
Mm −M

2Ma

)
(4.7)

The residual angle is updated when each recovery ends if the frictional moment has been

overcome. For this chapter, a cycle is defined as bending followed by recovery (unbending),

even if only partial. The transition from recovery to bending or the bending element being

completely recovered to the zero moment state indicates the end of a cycle.

4.3.4 Moment Change in A Practical Simulation System

As mentioned earlier, the direction of the flexural deformation can be reversed at any time. If

it happens at points on a linear curve, the curve having the same shape with ca′ or db (shown

in Figure 4.3) is computed for the moment change. If the reversion point is on a quadratic

curve, maximum stiction has not been reached so that a curve shorter than ca′ or db will be

used for the moment change. These curves can be represented by the solid quadratic curve

pd in Figure 4.5. Point p can be anywhere on the dashed curve (if the endpoint p is on the
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point s, pd is the same as ca′ or db in Figure 4.3). Equation 4.5 is replaced by:

β1 = b2 +
2(2M0σ1 + b2Kp −Mp)

2K0σ1 −Kp

γ1 =
-2M0σ1 − b2Kp +Mp

(2K0σ1 −Kp)2

(4.8)

where Kp = K −Ks, Mp = M −Ms, σ1 = 1 when the quadratic curve is used for increasing

moment (Figure 4.5(a)), and σ1 = -1 when the quadratic curve is used for decreasing moment

(Figure 4.5(b)). The moment can now be obtained by plugging β1 and γ1 to Equation 4.4.

Therefore, the curvature-moment relationship for sequential cycles in a practical simu-

lation system could be like Figure 4.5(c). Note that disconnections p4p5, p7p8 (red dotted

line) result from a residual curvature change introduced by the previous cycle, and causes

a translation of the loop. The translation does not need to be computed explicitly as it is

reflected in the model once the rest curvature is updated.

4.3.5 Repeated Wrinkling and Folding

One phenomenon observed during plastic deformation is that part of dissipated energy is

consumed for fatigue weakening. In many situations some areas in cloth tend to exhibit

wrinkles and creases more than other areas. For example, areas behind knees and elbows

have more wrinkles and higher residual curvatures, as these parts are more likely to undergo

larger flexural deformations repeatedly. In fact, once these residual wrinkles are created,

during a repeated flexural deformation they will show a weaker bending rigidity than flat

areas and thus more likely to be bent. This is why high residual curvatures are easily

generated along existing crease lines.

This has been observed and discussed in [Chapman, 1975a; Anandjiwala and Leaf, 1991a]

by analysing behaviour of real fabrics on which a number of cycles of loading and unloading

are applied. Results show that at the end of each cycle, wrinkles along the same lines become

more pronounced because additional residual curvature is introduced. However, the size of

added residual curvature reduces gradually as the cycle number increases, and finally reaches

zero towards infinity. As a result, bending hysteresis disappears and a permanent plastic

deformation takes place in the fabric.

According to an analysis by Anandjiwala and Leaf [Anandjiwala and Leaf, 1991a], internal

friction is not only the reason why residual curvature changes are created, but it also is a

contributing factor to the decrease in bending hysteresis. As the cycle number increases,
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the residual bending moment increases and finally is larger than the transitional moment

Ma. During this process, at the beginning of bending in each cycle the bending stiffness is

smaller than the previous cycle. Subsequently, fibres do not experience internal friction and

loading (bending behaviour) does not need to conquer interfibre frictional moment any more,

as friction between fibres has vanished because of jamming. The hysteresis loop becomes a

straight line with a gradient of b2, describing the generalized bending stiffness only. Hence,

the bending rigidity in wrinkles is much weaker than that in flat areas. Without the presence

of internal friction, new bending deformation can be completely recovered to the permanent

plastic shape when external forces are released, because residual curvatures introduced before

hysteresis disappears become permanent.

We propose a simple scheme that reduces the frictional moment M0 at the end of each

cycle to simulate this feature (superscripts indicate the cycle number):

M0
n+1 = (1− µ)M0

n (4.9)

This is easy to achieve by adjusting b1 to be closer to b2, therefore we have

b1
n+1 = b2 −

√
1− µ(b2 − b1n) (4.10)

where µ is set between 0 and 1, and thought of as a parameter controlling the rate of

the decrease in hysteresis effect. For example when µ = 0 the hysteresis effect will never

decrease, while by choosing a value close to 1 we can model materials, such as paper, that

form permanent wrinkles quickly. According to the limit laws,

lim
n→∞

b1
n = b2

holds. This indicates that the loop degrades to a line and that hysteresis no longer exists

(M0 = 0,K0 = 0), becoming just like many existing methods where bending forces are linear.

The impact on the curvature-moment relationship is presented in Figure 4.6. As the area

of the loop decreases, the contribution of frictional restraint to bending stiffness reduces.

According to Equation 4.3, the initial flexural stiffness gradually decreases from b1 to b2.

However, as mentioned earlier the deformation is usually not completely recovered. How

much the frictional moment has overcome during the last recovery should be considered.
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(a) (b) (c) (d)

Figure 4.6: The change in bending hysteresis during multiple cycles: the hysteresis effect
decreases as the cycle number increases, and finally completely disappears.

Equation 4.9 and 4.10 become:

M0
n+1 = (1− µξ)M0

n (4.11)

b1
n+1 = b2 −

√
1− µξ(b2 − b1n) (4.12)

where ξ is computed using Equation 4.7. Therefore b1 is not constant any more. Equa-

tion 4.12 is used to update b1 when the recovery behaviour ends, if the frictional restraint is

overcome in bending.

4.4 Implementation

This method can be integrated with the majority of existing cloth (and membrane) models

that use triangle meshes, by modifying the bending model. The values of constants b1, b2 and

c1 determine the hysteresis effect and are chosen based on experimental bending properties

on several different types of real cloth materials [Owen, 1968; Anandjiwala and Leaf, 1991b].

A better parametrization of the hysteresis controls may be possible, which we suggest as

future work. The initial angle θ0 can be used to initialize the original neutral object shape

before simulation takes place. This is important for cloth simulation as real garments have

intrinsic curvatures in many areas, such as shirt collars and pleats on skirt.

The energy-based in-plane force model is used to simulate stretching and shearing be-

haviours (Equations 3.4, 3.6 and 3.7). We adopt the implicit backward Euler scheme as the

integrator to evolve tensile and damping forces (Equations 3.25, 3.28 and 3.29). The linear

system generated by the implicit integration method is solved by using a preconditioned con-

jugate gradient (PCG) solver [Shewchuk, 1994]. A GPU-based virtual triangle subdivision

scheme with a uniform grid is employed to handle collision detection, which will be presented

in Chapter 5. For collision response a robust treatment [Bridson et al., 2002] (described in
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Chapter 3) is used.

We use GPU computing to obtain higher performance by taking the advantage of the

parallel GPU architecture. The bending model exhibits very high data parallelism, as the

computation of bending forces for each bending element can be performed independently and

the number of bending elements can be large. Therefore, the bending force computation is

treated as a single kernel and each thread handles a bending element. The code is written

in C++ using CUDA 4.1 with performance tests run on a machine with a 3.0GHz dual-core

CPU and an NVIDIA GeForce 470 GTX GPU.

4.5 Results

We have built a range of scenarios to evaluate our method. We first provide and analyse

curvature-moment plots of real data and data from our model. Then we compare outputs

of our simulation to results generated by a previous bending model [Pabst et al., 2008] with

respect to plastic deformation, by using three different scenarios: a twisted cloth sheet,

a squished cloth bunny and a character animation. A similar effect for plasticity can be

generated by previous plasticity models. Therefore, two more experiments are designed to

demonstrate differences between our hysteresis model and existing plasticity models, includ-

ing a test of hitting a cloth and an animation of a walking woman. Next, we perform a

fatigue weakening experiment where a piece of cloth is repeatedly clamped by two parallel

planes. For a single bending element, the data including residual curvatures, initial bending

stiffness and changes in hysteresis is presented and analysed. Finally, a performance analysis

is given. In order to exhibit plasticity effects within a short animation, values of λ and µ

are relatively large in our experiments. In a longer simulation much smaller values would be

used.

4.5.1 Curvature-moment Plots

Figure 4.7(a) shows the experimentally measured curvature-moment data for a fully loaded-

unloaded bending test on a real acrylic twill weave fabric [Ngoc and Boivin, 2004]. The data

was measured using the Kawabata Evaluation System (KES). Data obtained by performing

the same test on a bending element using our method is given in Figure 4.7(b) (with the

plasticity effect turned off), which shows that the hysteresis model reproduces the nonlinear-

ity presented in real fabrics. It is noticeable that curvature-moment curves in our model are

smoother than curves in real fabrics. This is not only because our method uses simple ideal
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(a) (b)

(c) (d)

Figure 4.7: (a) Experimental data of a fully loaded-unloaded bending test on a real acrylic
twill weave fabric from KES. (b) Data of the same test in (a) using our method. (c) Data
of several sequential cycles of partial loaded-unloaded bending deformation using our method
with plasticity effect turned off. The bending order is 0,Ka,Kb,Kc,Kd,Ke,Kf and Kg. (d)
Data of the same test in (c) but with plasticity effect turned on. (b1 = 0.76, b2 = 0.26,
c1 = -0.38 and λ = 0.1)

quadratic and linear curves for moment changes, but also due to the fact that real fabrics

exhibit a nonhomogeneous nature.

To further verify the method, a test, similar to the case discussed in Section 4.3.4, of

several sequential cycles of partial loaded-unloaded bending deformation is performed. The

curvature-moment data of this experiment with the plasticity effect turned off and on are

shown in Figures 4.7(c) and 4.7(d) respectively. For applications that only require the ability

of modelling nonlinearity, Figures 4.7(b) and 4.7(c) demonstrate that the method works well

in practice. As expected, Figure 4.7(d) shows similar behaviour to that described in Section

4.3.4. Disconnections of curves between the transition from recovery to bending result from

residual curvature changes.
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(a) (b) (c) (d)

Figure 4.8: (a) A cloth is twisted by a rotating rod, then allowed to recover. The difference
in results between (b) an existing method and our bending hysteresis model with (c) low and
(d) high plasticity are shown by spreading out the cloth.

(a) (b) (c) (d)

Figure 4.9: (a) A cloth bunny is squished by a shrinking box, then allowed to recover. The
difference in results between (b) an existing method and our bending hysteresis model with (c)
low and (d) high plasticity are shown. Crumpling and dimples in (b) are formed by gravity.

4.5.2 Plasticity

We evaluate the plasticity effect in three scenarios. In the first case, a piece of cloth having

four fixed corners is twisted by rotating a rod and then allowed to recover by rotating the rod

in the opposite direction. In another case, a cloth bunny is first squished by a shrinking box,

followed by retraction of the box to let the bunny recover. The differences in behaviour which

result from our bending model and an approach without plasticity for these two scenarios

are shown in Figures 4.8 and 4.9. After the steady state is reached, without plasticity the

cloth, as expected, returns to its original bending configuration, with remaining bending

deformation formed by external forces (i.e. gravity), while some residual wrinkles and folds

are generated in our simulation. For experiments of low and high plasticity, λ are set to 0.08

and 0.25 respectively. Values of b1 = 4.64, b2 = 1.40, c1 = -2.15 and µ = 0.02 are used for

both.

The character scene in which a dressed human model sits down and then stands up demon-

strates that the bending model can be used to generate residual and permanent wrinkles for

garments undergoing movement. This is shown in Figure 4.10, where our method yields

different results especially in the groin region and in areas behind elbows and knees where

large repeated flexural deformations occur, while the existing method without plasticity ends

up with much smoother and simpler wrinkle shapes.
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Figure 4.10: A dressed human character sitting down and then standing up, simulated by an
existing method (left) and our method (right). In this test, coefficients are set to easily form
plasticity effects (b1 = 3.4, b2 = 2.85, c1 = -3.65, λ = 0.3 and µ = 0.05).

(a) (b) (c) (d)

Figure 4.11: (a) A fast sphere hits a piece of cloth. Results of (b) a method without plasticity
and hysteresis, (c) plasticity method and (d) our hysteresis model on frame 230. (b1 =
3.4, b2 = 2.0, c1 = -2.23, λ = 0.2 and µ = 0.02)

4.5.3 Comparison with Previous Plasticity Models

Purely elastic deformation stores energy and releases it in recovery. In contrast plastic

deformation absorbs energy. However, previous plasticity methods which do not account for

hysteresis only dissipate energy when the elastic limit is exceeded. In our hysteresis based

model energy loss is naturally formed by the loop area implying that any bending deformation

can dissipate energy, which matches observation of real fabrics where energy is dissipated due

to internal friction. In order to show the energy dissipation effect of different methods, two

experiments are performed: a piece of hanging cloth is hit by a fast moving sphere (Figure

4.11), and a female character wearing a skirt walks (Figure 4.12). We choose an elastic

limit at a low and high curvature, K0 = 0.1π and K0 = 0.5π, for the first and second test

respectively. Therefore plastic deformation is more easily generated in the test of hitting a

cloth. For all simulations, the bending damping is turned off and the air damping coefficient
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(a) (b) (c)

Figure 4.12: A human character wearing a skirt is walking. Results of (a) a method without
plasticity and hysteresis, (b) plasticity method and (c) our hysteresis model on frame 900.
(b1 = 3.4, b2 = 2.0, c1 = -0.45, λ = 0.15 and µ = 0.02)

is very small. The first test shows that the normal method has the strongest oscillations,

the plasticity method (similar to [O’Brien et al., 2002]) alleviates this effect, and our model

further reduces such behaviour. However, in the second test the plasticity method generates

similar results with the normal method in terms of oscillation, because the elastic limit is

relatively high so that few bending elements experience plastic deformation. However our

method dissipates energy no matter whether plastic deformation occurs or not, leading to a

more stable waving behaviour for the skirt. Another difference is that less folds are formed

in our method. This is because of not only energy dissipation but also the higher bending

stiffness represented by quadratic curves in elastic range. This feature arises intrinsically from

the hysteresis model and makes the bending damping component unnecessary. In simulations

using explicit integrators, this helps stabilization and thus gives rise to a relative large step

size. Static images have difficulty showing these features and thus we refer readers to the

accompanying animation.

4.5.4 Fatigue Weakening

In order to show fatigue weakening during plastic deformation, a cyclic test of bending and

unbending is designed as follows: after a piece of cloth is first gently folded, then clamped

by two parallel planes for a short while, and then the top plane is gradually lifted, followed
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Figure 4.13: A number of pieces of cloth are clamped by two parallel planes n times, and
then are hung vertically to show the remained wrinkles, using a plasticity method (top) and
our hysteresis model (bottom, b1 = 5.20, b2 = 2.51, c1 = -4.45, λ = 0.15 and µ = 0.1)

by another cycle of lowering and lifting the top plane again. The process is repeated for

a large number of cycles. A plasticity method without fatigue weakening is also used for

comparison. As Figure 4.13 shows, the residual wrinkle increases with cycle number. In our

method the first cycle introduces the most residual curvature, and the increase in residual

curvature smoothly reduces. Finally, some permanent amount of residual curvature occurs.

This observation matches the behaviour discussed in Section 4.3.5. The plasticity method

presents a different result since the increase in residual curvatures in each cycle only depends

on how much the bending element is bent.

For a single bending element belonging to the wrinkle line, data of the initial bending

stiffness, the coercive couple and the residual angle are given in Figure 4.14. The coercive

couple is a measure of frictional resistance in textile research. In our system the same amount

of interfibre friction occurs no matter the bending direction, thus the coercive couple equals

2|M0|. From these curves we can see that the initial bending stiffness starts from the value of

b1 and decreases to b2, accompanied by the drop in the coercive couple from 0.41 dyn cm/cm

to zero. In this experiment, the residual angle increases and finally becomes permanent at

around 1.22π. Our hysteresis model includes a natural way of performing fatigue weakening,

based on a decreasing difference between the bending and unbending forces, i.e. energy

dissipation. Whilst fatigue weakening may be possible with non-hysteresis plasticity models,

we are not aware of any work of this kind.
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(a) (b) (c)

Figure 4.14: (a) The initial bending stiffness decreases during the cyclic test, asymptoting
to b2; (b) The coercive couple reduces steeply at first, then the rate slowly reaches zero; (c)
The increasing residual angle finally remains stable at 1.22π.

α = 1 α = 2 α = 3
without 1.35ms, 11.4% 2.70ms, 20.5% 4.04ms, 27.9%

with 2.04ms, 16.3% 4.07ms, 28.0% 6.10ms, 36.9%

Table 4.1: Running time and the proportion of the bending component with and without
hysteresis, with collision handling turned off, for a piece of cloth consisting of 18,000 triangles.
α is the ratio between time steps hi and he.

4.5.5 Performance

In general, collision handling dominates the computation time in cloth simulation, and the

bending computation takes a very small amount of total time. When the collision handling

is turned off, the simulator spends most of the time executing the PCG solver. The running

time and the ratio of the bending component with and without hysteresis for a piece of cloth

consisting of 18,000 triangles are shown in Table 4.1. When α = 1, our bending model takes

16.3% of the running time. If hysteresis is not considered (hence no plasticity), this number

reduces to 11.4%, which means that introducing hysteresis into the system only requires a

small increase in the overall computation time. This is important for real time simulation.

For example, in our bunny and twist tests (with collision handling turned on) where real

time frame rates are achieved, the extra computation time is negligible.

4.6 Conclusion

This chapter describes an efficient physically based bending model using hysteresis in cloth

simulation. The bending forces for loading and unloading are treated differently to cap-

ture effects of bending plasticity and energy loss due to internal friction, without using any

complex friction model at the micro fibre level. Alleviation of oscillations is an intrinsic
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feature. Fatigue weakening is investigated based on hysteresis enabling the system to turn

increasingly residual wrinkles into permanent ones. Results of various experiments designed

to demonstrate the effectiveness of the bending model are presented. Comparisons with pre-

vious bending methods and plasticity models are also provided. As cloth simulation lends

itself well to parallel architecture, a GPU-based version is implemented to obtain high per-

formance. Performance tests show that only slightly higher computational costs are required

for the improved bending model.



Chapter 5

Virtual Subdivision for GPU-based

Collision Detection

The main challenge that arises for collision detection of highly deformable objects, such as

cloth, is the large number of primitives that may collide with each other in any given time

step. Although a number of approaches have been investigated, performance is still a ma-

jor bottleneck. GPU computing has demonstrated its potential benefit to perform physics

calculations, including collision detection. Recent work has been focusing on designing fast

algorithms based on bounding volume hierarchies (BVHs) and spatial subdivision schemes.

BVHs have long been used to accelerate collision detection in simulation of deformable ob-

jects. However, their tree-based hierarchical data structure is a challenge to efficient par-

allelism. In contrast, spatial subdivision methods exhibit very high data parallelism, well

suited to the GPU’s parallel architecture. Generally spatial subdivision methods suffer from

two main difficulties: uneven triangle sizes and uneven triangle distributions, both of which

can easily impair subdivision efficiency, leading to a large number of broad phase tests. This

chapter addresses the first problem using a virtual subdivision scheme to present an improved

uniform grid. The second issue is discussed in the next chapter.

5.1 Introduction

Spatial subdivision has been widely used to accelerate collision detection (CD) by significantly

reducing the number of collision tests. The main strategy is to partition the space into many

cubic cells, and then perform collision tests only for primitive pairs belonging to the same

cell, resulting in an average complexity of O(n) in a scene containing n features such as

58
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Figure 5.1: Snapshots from the reef knot benchmark: Two pieces of ribbon are tied into a
reef knot.

triangles and their bounding volumes (BVs). Early spatial subdivision based CD approaches

focus on simulation of rigid objects, such as [Zhang and Yuen, 2000], [Mirtich, 1997] and

[Bandi et al., 1995]. Later, a number of methods employing spatial subdivision for CD of

deformable objects including cloth have been proposed. In general, these approaches use

a uniform grid whose cell size is object-independent [Teschner et al., 2003], a uniform grid

with an object-dependent cell size [Pabst et al., 2010], a two-level hierarchical grid [Fan et al.,

2011] or a general multi-level hierarchical grid [Eitz and Lixu, 2007]. Recently, several papers

have focused on utilizing the GPU’s parallelism to achieve high performance for CD by taking

advantage of the features of spatial subdivision [Pabst et al., 2010], [Liu et al., 2010] and

[Fan et al., 2011].

The main drawback of methods employing a traditional uniform grid is that an inap-

propriate cell size can lead to a very high number of false positive CD tests. Triangles may

overlap too many cells if the cell size is small, or too many triangles can belong to the same

cell when the cell size is large. Moreover, an appropriate cell size may not exist when tri-

angle sizes are uneven. Unfortunately, it is unrealistic to expect a mesh with evenly sized

triangles in many scenarios. One way to alleviate this limitation is the hierarchical grid of

multiple cell levels where each primitive is assigned to a level whose cell size fits well [Eitz

and Lixu, 2007; Kroiss, 2013], but this technique does not adjust the hierarchy according

triangle sizes and has to perform additional computation for CD across different levels. In

addition, the simplicity and scalability of the uniform grid are more suited to the nature of
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the GPU architecture.

As discussed in Chapter 2, another issue is the removal of duplicate CD tests due to object

pairs assigned to multiple cells. There are a number of existing methods to address this issue,

such as running iteration steps, checking objects against others appearing in adjacent cells,

and utilising the location of the minimal vertex of the overlapped axis-aligned bounding box

(AABB). Without relatively expensive operations, Grand [2007] cheaply handles this problem

in parallel on GPUs using control bits (CBs). In this method, a strategy that sets the cell

size greater than the largest feature ensures that a feature can be assigned to up to eight cells

in 3D space, so one integer per object is enough to specify the cells overlapped by this object

(one bit for one cell). In the subsequent broad phase CD, all that is needed is to perform

cheap bit operations. However, because it only works for grids with an object-dependent cell

size adapted to the largest object, the problem that cells can contain too many triangles still

exists if the size of largest feature is much greater than the average feature size.

In order to avoid the relative large cell size and still take the advantage of CBs, this

chapter presents a virtual subdivision scheme (VSS) for uniform grid based CD algorithm

to use a more optimal cell size by subdividing large triangles into small child triangles every

frame. The subdivision is virtual because virtual child triangles are only used for the purpose

of CD in the broad phase, and the newly generated vertices and edges are not used in the

simulation. Therefore, reconstruction of the triangle mesh and the linear system for the

simulation is not required. We do not retain the refined triangle mesh so that the input

mesh is virtually subdivided on the fly each frame. In our GPU-based implementation, the

virtual subdivision can be quickly completed. Most duplicate collision tests in the broad

phase caused by triangle subdivision are efficiently avoided. Although some child triangles

are generated in the VSS approach, we demonstrate that this method dramatically reduces

the number of broad phase collision tests and the GPU memory requirement due to the

smaller cell size, and thus increases the overall performance. This method can work with

both discrete and continuous collision detection (DCD and CCD). Results show that the

method provides speedups by comparing performance with existing methods.

The remainder of the chapter is organised as follows. We start by briefly reviewing

previous work directly related to spatial subdivision based CD methods in Section 5.2. The

virtual subdivision approach is presented in Section 5.3, followed by discussion of results and

performance in Sections 5.4. Finally, the conclusion and future work are given in Section 5.5.
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5.2 Related Work

In this section, previous work directly related to spatial subdivision based CD methods are

briefly introduced. For more detail information about CD, please refer to Chapter 2 and 3.

Teschner et al. [2003] present a technique using a uniform grid with spatial hashing for

CD of deformable objects consisting of tetrahedral meshes. In this method, the cell size

is object independently chosen. They discussed how a set of parameters and properties

affect the performance, and their results suggest that the best performance is achieved when

the cell size is set to about the same as the average size of the AABBs. Eitz and Lixu

[2007] extend it to a method with a hierarchical grid. Grand [2007] employs a uniform grid

with an object dependent cell size to perform CD on GPUs, in where the CBs scheme is

introduced. Recently, based on the above technique, Pabst et al. [2010] present a hybrid

CPU/GPU approach focused on deformable triangle meshes. This chapter addresses the

primary shortcoming identified in their work. Kroiss [2013] partially solves this issue using a

hierarchical grid with multiple cell levels on GPUs. Other spatial subdivision techniques for

CD are discussed in [Alcantara et al., 2009] and [Fan et al., 2011].

5.3 Approach

In this section a virtual subdivision based CD approach is presented. In the broad phase

of our CD pipeline, BV tests are performed to cheaply select triangle pairs that need to

undergo further intersection tests in the narrow phase. In the narrow phase, proximity

tests used in [Bridson et al., 2002] are performed to compute the collision and intersection

information of vertex-triangle (VT) and edge-edge (EE) pairs. For DCD, tests are carried out

to calculate intersections at each discrete time step. In the case of CCD, the path of moving

primitives between two time steps is considered to find out the first contact instant by testing

coplanarity, which reduces to solving a cubic equation [Provot, 1997], with proximity tests.

Therefore, the BV for CCD has to bound the trajectory of the moving primitive during the

time interval. We use two types of BV. Spheres are used to determine triangle assignment

and also to identify triangles which need to be subdivided. K discrete oriented polytopes

(K-DOPs [Klosowski et al., 1998], specifically 18-DOPs) are used for BV tests in the broad

phase. Algorithm 1 shows the overview of the VSS method. Italic lines relate to the core

contribution of this chapter.
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Algorithm 1 Collision Detection

update BVs of triangles, edges and vertices
update cell size of the adaptive uniform grid
while triangle list is not empty do

for all triangles do
determine if subdivision is required
subdivide it if necessary and put child triangles into the list
remove it from the list

end for
end while
for all triangles that are not subdivided do

assign to cells overlapped by it
end for
sort cell-triangle pairs
remove redundant cell-triangle pairs
for all triangle pairs in cells do

CBs test to remove duplicate collision tests
triangle-based BV culling
R-triangles culling
feature-based BV culling
output candidate feature pairs (VT/EE)

end for
for all output candidate VT and EE pairs do

proximity test
end for

5.3.1 Cell Size

Instead of using a cell size adapted to the largest triangle, we define the cell size according

to the average triangle bounding sphere size:

size = 3× λra (5.1)

where ra is the average radius of triangles’ bounding spheres in the current frame. λ is a

coefficient which must be greater than one in order to avoid subdividing too many triangles.

We empirically set it to a value between 1.1 and 1.3. Following [Grand, 2007], we scale λra

by 3 to enable the use of CBs. Now, with the AABB of the entire model, three dimensions

along the X, Y and Z axes can be easily computed.

If λ is set too large or small, the improvement of the VSS method in the performance can
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(a) Loop scheme (b) Tri-quad (c)
√

3-subdivision (d)
√

3-refinement

Figure 5.2: Some well known triangle subdivision rules

Figure 5.3: In this case (left), the large time step needs to be halved to shorten the trajectory
of the triangle (right). Otherwise, the BV is always too big.

degrade. However, we found this simple scheme works well in our benchmarks, as it is not

very performance sensitive if λ is in the range from 1.1 to 1.3, and we use 1.2.

5.3.2 Triangle Subdivision

Since this method is designed to allow the BV of each triangle to overlap no more than eight

cells, more refined triangles are needed for large triangles in every time step. Some well known

subdivision rules have been proposed in level-of-detail and multi-resolution areas, including

the Loop scheme [Loop, 1987], tri-quad subdivision [Velho and Zorin, 2001],
√

3 subdivision

[Kobbelt, 2000] and
√

3-refinement [Alliez et al., 2003] (Figure 5.2). Since we are interested

in evenly refining triangles, the Loop scheme is the best choice, as it subdivides a triangle

into four equal child triangles by taking midpoints of the original edges (Figure 5.2(a)).

In each frame, once the grid cell size and BVs are updated, we first decide if each triangle

has to be subdivided by checking whether the radius of its BV is greater than one third of

the cell size, calculated as discussed above, and then split those marked as needed. For newly

created child triangles, their BVs are computed, and their original root triangles are stored

as well. This subdivision operation is repeated until there are no triangles needing to be

subdivided. In our benchmarks, the number of subdivision levels needed is up to four.
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Figure 5.4: After the virtual subdivision is done, a new triangle ID list is created. In each
subdivision level, child triangles from the same input triangle are coherent. Triangles marked
as red cross are assigned to cells.

However, when it comes to CCD, the time step needs to be taken into account. Because

collisions are checked for moving objects between two time steps in CCD, the BV covers

the triangle’s trajectory from the beginning to the end of the current time step. Hence, the

condition to quit the subdivision step will never be satisfied, if the time step is not small

enough (see Figure 5.3). We solve this problem by repeatedly halving the time step to shorten

the trajectory of movement and thus decreasing the swept volume of BVs.

Since the cell size is updated at the beginning of every frame and triangles undergo

deformation during the simulation, we dynamically perform the virtual subdivision every

frame and do not keep the refined virtual mesh after CD is done. Due to the independency

of the Loop scheme, a CUDA kernel is invoked to simultaneously perform the subdivision

with each thread handling exactly one triangle. Once this step is done, a new triangle ID

list is generated (see Figure 5.4). Then, triangles (including input and newly created child

triangles) that do not need to be further subdivided are assigned to cells (a cell-triangle

array is built), and their CBs are computed. Note that, child triangles are used to represent

their root triangles in the broad phase only, and in the narrow phase we still check proximity

for VT and EE pairs using original input triangles. Therefore, the physics simulation and

collision response are still computed using the original mesh to avoid expensive computations



Approach 65

Figure 5.5: First issue: In cell0, collision test between T0 and T1 will be performed four
times if all child triangles of T1 are assigned to cell0. Second issue: Since the centroid of
T13 is in cell1, it has to be the representative of T1 to the cell, so all triangles overlapped
by cell1 will test against T1 in the broad phase. Otherwise, the test between T1 and T2 is
ignored.

due to the refined mesh.

5.3.3 Remove Redundant Cell-triangle Registration

Duplicate collision tests might be introduced, when child triangles belonging to a root triangle

are assigned to the same cell. For example (see Figure 5.5), four tests referring to the same

root triangle pair (T0, T1) are produced in cell0 because the four child triangles of T1 are

assigned to this cell. Clearly, a collision test for the triangle pair (T0, T1) needs to be

executed only once, which can be achieved by registering only one child triangle to a cell

for each root triangle. However, there is one thing to be noticed: the child triangle with

its centroid located in a cell should be the one given priority, otherwise collisions might be

missed because, according to the approach in [Grand, 2007], triangles assigned to the same

cell but having their centroids located in surrounding cells are not tested against each other

in that cell. For example, in Figure 5.5, if T10 is assigned to cell1, the collision between T1

and T2 will be missed due to the fact that neither of them (T10, T2) have their centroids

belonging to this cell. Therefore, T13 must be assigned to cell1 to represent its root triangle

T1.

To eliminate these duplicate tests caused by triangle subdivision, several parallel radix

sort [Harris, 2007] runs are performed on the cell-triangle array. Then a kernel is invoked
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Figure 5.6: This figure shows the cell-triangle array for Figure 5.5, where Home indicates
that the centroid of the triangle locates inside the associated cell, and Phantom indicates that
the centroid of the triangle does not locate inside the associated cell. Parallel radix sorts are
performed to find out items that have the same cell ID and refer to the same root triangle.
The duplicate registrations (marked as the red cross) are removed.

Figure 5.7: This figure shows the cell-triangle array after one parallel radix sort is performed
for Figure 5.4. Most duplicate, redundant cell-triangle registrations that have the same cell
ID and root triangle are marked as red cross to remove. Among remains, only registrations
of T00 and T02 0 are duplicated.

to quickly scan the sorted array and remove duplicate items having identical cell ID and

root triangle ID (see Figure 5.6). This parallel radix sort dependent scheme can remove

all redundant cell-triangle pairs, but is a little expensive due to the multiple sort runs.

Alternatively, we can take advantage of the fact that in each subdivision level child triangles

belonging to the same root triangle are coherent in the triangle list (see Figure 5.4). Hence,

after only one radix sort operation by the cell ID, most duplicate cell-triangle pairs can be

found and removed (see Figure 5.7). In fact, this sort operation is originally needed for

a traditional uniform grid based method even without the virtual subdivision scheme to

put items with the same cell ID together [Grand, 2007], which means our removal step only

requires launching a kernel to scan the sorted array to find and delete duplicate registrations.

In practice, this scheme is simpler and faster but also can avoid most of the redundant collision

tests caused by duplicate cell-triangle pairs.



Approach 67

Figure 5.8: In cell1, cell2 and cell3, T10, T12 and T13 are chosen to be assigned to represent
the root triangle T1 respectively, and we assume that their centroids are in cell0, cell2 and
cell3 respectively.

However, another mechanism is needed to remove duplicate tests introduced by the situ-

ation illustrated in Figure 5.8. In this example, because triangle T12 and T13 are assigned to

cell2 and cell3 respectively, the test referring to T0 and T1 is redundantly performed twice

in two cells. The same problem happens to triangle T1 and T2. To solve this problem, we

expand the CBs of child triangles to contain the cell type (different from cell ID, refer to

Chapter 3 for the definition) of the centroid of sibling triangles. Then, by checking CBs of

the two involved triangles we keep the test associated with the child triangle both having its

centroid located in the collision cell and the smallest child ID, and remove others. Therefore,

in the case of the triangle pair (T0, T1), the test that occurs in cell2 is executed and the test

in cell3 is abandoned. For the triangle pair (T1, T2), the test belonging to cell3 is retained

and the test in cell1 is removed because T13 is the only child triangle with its centroid lo-

cated in the collision cell (cell0 contains T10’s centroid). Notice that similar duplicate tests

might be introduced by large triangles subdivided more than once (three or more subdivision

levels), and can not be handled by the proposed method. However, these duplicate tests

rarely occur in practice, and in our benchmarks the number of such tests is less then 0.4%

of the total broad phase collision tests.
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Figure 5.9: The diagram of the workload distribution scheme.

5.3.4 Workload Distribution

The number of collision tests for each cell is determined according to the assigned trian-

gles [Pabst et al., 2010]. In practice, cells are very unlikely to have a similar number of

collisions. Therefore a GPU implementation will give poor performance if a single thread

is launched to handle all collisions occurring in a cell, as threads with less work wait for

threads having more work. In order to obtain the best performance in a parallel system,

it is necessary to balance computation load among concurrent threads. We achieve this by

assigning one unique collision test to a thread. However, a mechanism is needed to determine

which cell the collision test handled by each thread belongs to. Pabst et al. [2010] proposed a

scheme based on constructing and traversing a tree of degree 16 which contains the number

of collision tests per cell. Fan et al. [2011] addressed this issue without maintaining such

a complex data structure by applying a parallel scan [Sengupta et al., 2007] on the array

of the number of tests per cell and another segmented parallel scan on the workload array.

However, the length of the workload array can be up to several tens of millions in a simula-

tion consisting of large models, and thus a large amount of GPU memory is needed for the

parallel scan. Input, output and flag arrays of length ten million require 114MB memory

on the GPU. In experiments with complex objects, this scheme could easily make current

graphics cards hit the physical memory limit.

We present a new scheme to evenly distribute workload (see Figure 5.9)), which does not

need any additional memory. Although this workload distribution method is approximately
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40% slower than the scheme in [Fan et al., 2011], the impact of this difference on the overall

performance is trivial as long as each thread is allocated to a single test, because the balancing

process itself takes a very small part of the total running time. This can be an important

trade-off for systems with a huge amount of data.

The first step is to perform a parallel scan on the array that contains the number of

collision tests of each populated cell to generate a prefix sum array just as in [Fan et al.,

2011]. Now for each populated cell, the total number of tests occurring in all previous cells

is known. We then invoke as many threads as the total number of collision tests, each thread

having an unique ID corresponding to a unique test. For the first and last thread of each

thread block, a binary search is used with its thread ID to find the position/cell ID (where the

collision test occurs) in the prefix sum array in global memory. Because of the continuity, cell

IDs corresponding to remaining threads in each block are between cells of the first and last

thread, which means values of this sub prefix sum array can be copied into shared memory,

and all remaining threads use binary search to quickly find which cell their tests belong to.

5.3.5 Collision Test

After the cell index is determined, the triangle pair involved in the collision test can be easily

found. Before performing the broad phase CD, cell data needed for the test is loaded into

shared memory for fast access. In the broad phase test, for a triangle pair we first use their

CBs to check if this test is redundant, so the CD for triangle pairs appearing in multiple

cells is guaranteed to be processed only once. The next step is the BV test, for which BVs

of original triangles are used, because not all child triangles are assigned to cells. Otherwise

collisions would be missed if the BV of child triangles are used. Once this step is completed

use of virtual subdivision is finished.

In the subsequent steps, R-triangle tests proposed in [Curtis et al., 2008] are first per-

formed to remove duplicate VT and EE elementary tests introduced by the fact that a vertex

or an edge can be shared by more than one triangle in a mesh. Before outputting VT and

EE pairs for more expensive elementary tests in the narrow phase, the vertex and edge based

BV culling is carried out to further eliminate false positives. In the narrow phase, for both

DCD and CCD, proximity tests [Bridson et al., 2002] to compute exact intersection between

VT and EE pairs are carried separately by invoking two different kernels to avoid branching

and divergence. For CCD, coplanarity is checked by solving a cubic equation before the

proximity test.
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(a) Funnel (b) Cloth on ball

(c) N-body (d) Bowline knot

Figure 5.10: This figure shows the snapshots from benchmarks used for performance mea-
suring. All benchmarks are tested on a computer with an NVIDIA GTX 470 GPU.

5.4 Results and Performance

We implemented the method using the CUDA toolkit 4.1 and conducted experiments on a

computer with an NVIDIA GTX 470 card. All CD steps are performed on the GPU without

data transfer between CPU and GPU during the simulation, and so the CPU and main

memory do not affect performance.

5.4.1 Benchmarks

In order to investigate the performance of the VSS method, we used a set of benchmarks

with different scenarios. These benchmarks consist of triangles whose sizes vary considerably.

Refer to Online Resource 1 for the animation.

1. Funnel (18K triangles): A piece of cloth falls into a narrow funnel and goes through it,

causing many self collisions. (Figure 5.10(a))

2. Cloth on ball (92K triangles): A cloth with a large number of triangles drapes on a

rotating ball. (Figure 5.10(b))

3. Flamenco (49K triangles): A dancing model wearing a multi-layer skirt. (Figure 5.11)

4. N-body (146K triangles): Hundreds of balls are colliding with each other and cones.

(Figure 5.10(c))
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Figure 5.11: Snapshots from the flamenco benchmark.

0

1

2

3

4

5

6

7

8

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

N
u

m
b

e
r 

o
f 

C
o

ll
is

io
n

 T
e

st
s

(m
il

li
o

n
)

Value of λ

Figure 5.12: The number of tests performed in the broad phase for the cloth on ball benchmark
with varying λ.

5. Reef knot (20K triangles): Two pieces of ribbon are tied into a reef knot. (Figure 5.1)

6. Bowline knot (11K triangles): One piece of ribbon is tied into a bowline knot. (Fig-

ure 5.10(d))

Motion data of the cloth on ball, flamenco and N-body tests were provided by the UNC

Dynamic Scene Benchmarks collection. For other tests, the spring-mass method is used to

compute cloth internal dynamics with the implicit backward Euler scheme (Equations 3.25,

3.26 and 3.27) for simplicity. Since the work does not focus on the modelling of cloth internal

forces, the mass-spring method satisfies the needs of our work.

5.4.2 Choice of λ

The VSS method avoids using a cell size adapted to the largest object, but as mentioned

in Section 5.3.1, the value of λ influences the number of subdivided triangles and triangles
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Funnel Cloth ball Flamenco N-body Reef knot Bowline

Child triangles 1716 16816 21431 33256 7289 6578

Input triangles 18432 92230 49218 146480 19968 12136
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Figure 5.13: The figure shows the number of newly created child triangles and the ratio
between the number of child triangles and total triangles for CCD.

assigned to each cell, which determine how many collision tests are processed in the broad

phase, and thus the overall performance. The number of collision tests performed in the

broad phase for the cloth on ball benchmark with varying λ is given in the Figure 5.12. The

measurement indicates that the number of tests increases if λ is too small or too large, and

the minimum number of tests is obtained when λ is set to near 1.2. A similar situation is

observed for other benchmarks. Therefore, for the following results a value of 1.2 is used.

5.4.3 Performance and Analysis

The primary goal of the VSS method is to efficiently reduce the false positives resulting from

a large cell size to improve overall performance. The average number of child triangles created

per frame is given in Figure 5.13, and Figure 5.14 compares the average number of invoked

broad phase collision tests per frame between the VSS method and a traditional uniform

grid method without the virtual subdivision scheme. For all benchmarks the ratio between

the number of newly generated child triangles and total triangles is fairly small, from 9% to

35%, but yields approximately an order of magnitude reduction of broad phase collision tests

for several of our test cases. In the N-body benchmark, for example, the traditional method

produces around 12 times as many broad phase tests as the VSS method. This is because

cones consist of triangles which are significantly larger than the triangles in spheres, so that

a large cell size is used in the traditional method and a high number of collision tests have

to be processed, while the VSS method is intended to avoid this issue. A similar situation

arises with other benchmark models.
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Figure 5.14: Comparison of the average number of broad phase tests between the VSS method
and a traditional uniform grid method for CCD. A significant reduction is observed, and thus
less memory is required.

Another aspect of reducing the number of collision tests in the broad phase is the ability

to run larger scenes. In a scenario that contains complex models undergoing large scale

deformation, memory usage becomes one of main issues on GPUs. For instance, if the

virtual subdivision is taken out from the VSS method, the N-body experiment will run out

of GPU memory on our machine as an array of length over one hundred million is needed to

store triangle pairs in some frames. In the VSS method with virtual subdivision, an array

size less than ten million is adequate.

Running times of each step for the N-body benchmark are presented in Figure 5.15. The

virtual subdivision step takes just 8% of the total running time, and the method spends

most of the time executing broad phase tests (48%). The performance of the VSS approach

(including all CD operations) for DCD and CCD on benchmarks is given in Table 5.1.

5.4.4 Comparison

We first compare the performance of the VSS approach against two recent grid based CD

algorithms, followed by a comparison with previous bounding volume hierarchy (BVH) based

methods. A complication arises from different hardware. The specifications of graphics cards

and GPUs discussed are given in Table 5.2.

Pabst et al. presented a CPU/GPU hybrid method extended in [Grand, 2007] to perform
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Figure 5.15: Time ratio of steps for N-body benchmark.

No. of Triangles DCD CCD
(×1000) (ms) (ms)

Funnel 18 5.1 5.6
Cloth on ball 92 12.0 14.8
Flamenco 49 14.2 16.1
N-body 146 26.7 31.2
Reef knot 20 5.5 6.0
Bowline knot 12 4.3 4.0

Table 5.1: The average timings of the VSS method for both DCD and CCD.

CD on deformable objects consisting of triangle mesh. As discussed by Pabst et al., the cell

size issue is one of the main limitations of their method. Since the VSS method is designed to

address this primary shortcoming, a comparison is quite straightforward, except for hardware

differences, and given in Figure 5.16. They measured the performance using 1, 2 and 4 GPUs

on two GTX 295 cards, each of which has two GPUs. The performance of the VSS method

for both DCD and CCD on all benchmarks better than their results using 1 and 2 GPUs

(speedups of 5.9X and 3.1X are yielded for the N-body and cloth on ball test). Compared to

their best performance measured on four GPUs, the VSS method using one GPU is faster

in all except for the funnel benchmark, because we used a higher resolution mesh containing

more triangles (18K vs. 7.6K). An improvement of a factor of 2.5X is achieved for CCD of

N-body test.

Fan et al. [Fan et al., 2011] presented a two level hierarchical grid based method to
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Figure 5.16: The performance comparison between the VSS approach using a GTX 470 GPU
and the method proposed by Pabst et al. [Pabst et al., 2010] using 1, 2 and 4 GTX 295 GPUs.

GTX295 GTX470 GTX480

CUDA Cores 2*240=480 448 480
Graphics Clock(MHz) 576 607 700
Processor Clock(MHz) 1242 1215 1401
Memory Clock(MHz) 999 1674 1848

Table 5.2: Specifications of three different graphics cards.

subdivide the space. This method reduces the false positives by performing a second spatial

subdivision operation on dense cells, to split them into eight sub-cells. However, the step to

build the hierarchy is quite expensive as it takes around 20% running time. Although they

run experiments on a faster GPU (GTX 480), the VSS method is faster for CCD on funnel,

cloth on ball and N-body tests (the improvement is up to a factor of 1.5X). Since proximity

tests in the narrow phase of DCD are performed to check collisions between VT and EE pairs

in the VSS method and they do collision tests only on triangle pairs for DCD, a comparison

of DCD timings is not provided.

Among algorithms using BVHs to accelerate CD we are aware of, the fastest multi-core

CPU-based and GPU-based methods are presented in [Tang et al., 2009] and [Tang et al.,

2011] respectively. Only CCD timings are provided for these two methods. The fastest CPU-

based method [Tang et al., 2009] reports timings for flamenco and cloth on ball benchmarks

on a Intel Xeon PC with four quad-core CPUs (so 16 cores) at 2.93 GHz of 27ms and 32.5ms,

which are significantly slower than ours at 16.1ms and 14.8ms. Compared to the performance
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of the fastest GPU-based approach [Tang et al., 2011] where benchmarks were run on a GTX

480 GPU, with a slower GPU the VSS method works around 2.0X and 2.5X times faster on

flamenco and N-body respectively (16.1s vs. 32.7ms, and 31.2ms vs. 79ms).

5.5 Conclusion

We presented an extended uniform grid based approach on GPU for DCD and CCD of

deformable object simulation, which uses a virtual subdivision of the triangle mesh. This

method efficiently alleviates the issue of uneven triangle sizes, one of the common limitations

of spatial subdivision techniques, by virtually subdividing large triangles to generate a mesh

with relatively even triangle sizes, enabling the use of a smaller, better suited cell size. In the

most expensive stage, expanded CBs and a transition scan are used to quickly eliminate most

duplicate collision tests in the broad phase. In terms of the nature of GPU features, the VSS

method provides improvements in the programmability and extensibility, and also reduces

the memory usage. In addition, the core idea in this chapter can be combined with other

spatial subdivision methods with an object-dependent cell size. Performance improvements

are observed by comparing results with those of prior methods.



Chapter 6

An Adaptive Octree Grid for

GPU-based Collision Detection

The previous chapter describes a GPU-based collision detection method that uses a virtual

subdivision scheme with a uniform grid to address the issue of uneven triangle sizes, which is

one of common difficulties in spatial subdivision based collision detection methods. However

the other issue, uneven triangle distributions, still presents difficulties for methods using uni-

form grids. This chapter presents a GPU-based approach to efficiently address this problem

by adaptively partitioning space according to triangle distribution using an octree grid.

6.1 Introduction

As discussed in the previous chapter, spatial subdivision based collision detection (CD) meth-

ods usually suffer from two main difficulties: uneven triangle sizes and uneven triangle spatial

distributions, both of which can easily impair the subdivision efficiency, leading to a large

number of broad phase tests. This chapter focuses on the latter one. Generally, uniform

subdivision works well for even triangle distributions, but it can hardly partition space with

an appropriate cell size when spatial distributions are uneven, because a uniform cell size

can be too small for low density areas, and too large for high density areas, resulting in an

inefficient subdivision (Figure 6.1). In contrast, non-uniform subdivision techniques can al-

leviate limitations resulting from uneven spatial distributions. These subdivision techniques

mainly include hierarchical grids and octrees.

Hierarchical grids have been adopted for previous GPU-based approaches, due to the

suitability for GPUs. Some authors have presented approaches using this technique to address

77
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(a) (b)

Figure 6.1: A scene with uneven triangle spatial distribution is partitioned by (a) a uniform
subdivision technique and (b) a non-uniform subdivision technique

the issue of uneven spatial distributions. Fan et al. [2011] partition dense cells, but their

hierarchical grid only has two levels, so that the problem is just partially solved. Kroiss

[2013] subdivides space into a hierarchy of multiple cell levels, then each primitive is assigned

to a level whose cell size fits well. The hierarchical grid adopted by these methods can be

seen as a full octree, which lacks the adaptability to reduce the number of tests as much as

possible.

Octrees are a more beneficial approach to this problem, because the tree offers a better

adaptation to distributions. In fact octrees are commonly used in CPU-based algorithms.

Unfortunately, parallel construction, update and traversal of traditional trees on GPUs re-

quire complicated operations [Lauterbach et al., 2009; 2010], giving relatively low occupancy.

Therefore it is worth investigating a GPU-based algorithm that adaptively partitions space,

if the cost to achieve it is low.

Motivated by these limitations, we investigate an adaptive octree grid (OTG) to acceler-

ate CD for deformable objects on a GPU. The OTG takes advantages of both octrees and

hierarchical grids. The octree that adaptively subdivides space based on triangle distribution

is efficiently represented on a GPU by a grid which is actually an array of a length equal to

the number of cells of the hierarchical grid (full octree). Using the OTG yields a consider-

able decrease in the number of broad phase tests. Thus a two-stage scheme consisting of a

bottom-up stage and a top-down stage is used to cheaply improve octree subdivision, min-

imising the number of tests. Additionally, the number of levels in the OTG is dynamically

adjusted according to triangle spatial distribution instead of being fixed. Another benefit
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arising intrinsically from this method is that uneven triangle sizes are also handled well,

because uneven triangle sizes can be seen as uneven spatial distributions most of time. For

example, in a given scene the triangle density of areas having refined meshes is very likely

higher than that of areas having coarse meshes.

We use the CUDA toolkit 5.5 and have conducted experiments with a set of scenes

using an NVIDIA GTX 780 GPU to investigate and analyse performance. The method can

perform discrete (DCD) and continuous collision detection (CCD) of objects consisting of

tens of thousands arbitrarily distributed triangles in a few milliseconds. Results show that

the approach efficiently addresses issues of uneven triangle sizes and uneven triangle spatial

distributions.

6.2 Related Work

For literature review of CD we refer the reader to Chapter 2. This section briefly reviews

previous work most directly related to the work of this chapter.

Zhang and Yuen [2000] and Teschner et al. [2003] introduce a technique employing spatial

hashing with a uniform grid for CD in simulation of deformable objects. Eitz and Lixu [Eitz

and Lixu, 2007] extend it to a method with a hierarchical grid. The focus in recent years

has shifted to GPU computing for CD. Grand [2007] describes how to use a uniform grid to

perform broad phase CD on GPU with CUDA for particle systems. Later, [Pabst et al., 2010]

extend this method to handle CD for deformable triangular meshes. To improve performance,

Kroiss [2013] partially addresses the problem of uneven triangle sizes by a hierarchical grid.

The previous chapter better handles this issue using a virtual subdivision scheme (VSS) with

a uniform grid [Wong et al., 2012]. As mentioned above, the issue of uneven triangle spatial

distributions is solved by [Fan et al., 2011; Kroiss, 2013] in part.

6.3 Approach

Like many existing efficient CD algorithms, our CD pipeline consists of a broad phase and a

narrow phase. The task of the former is to cheaply prune unnecessary tests for triangle and

other elementary pairs, such as vertex-triangle (VT) and edge-edge (EE) pairs, that are far

away from each other. In the narrow phase, proximity tests are performed to compute exact

intersection information of elementary pairs, which are also referred to as elementary tests.

AABBs and K-DOPs (specifically 18-DOPs) are used as the BV for the broad phase and
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Figure 6.2: The subdivision reduces the number of tests.

narrow phase respectively in our work. Contributions of the OTG method relate primarily

to the broad phase.

6.3.1 Adaptive Space Partition

As mentioned earlier, uneven triangle distributions can make spatial subdivision very inef-

ficient. Therefore adaptively partitioning space according to distribution densities can offer

advantages. We use an OTG to represent the adaptive subdivision, with triangles ultimately

assigned to the leaf cells determined not to be subdivided. The top (coarsest) level is just a

single cell which is defined as the AABB of the scene at the current time step. Cell sizes of

lower levels are computed by halving the cell size of the parent level in x, y and z directions.

Now a criteria to determine whether a cell should be subdivided is needed.

Since CD tests are performed only for triangle pairs in the same cell, the number of tests

of a cell containing n triangles is n(n− 1)/2. It is reasonable to define a simple criteria that

a cell needs to be subdivided if the number of tests decreases after subdivision. For example,

for the 2D case shown in Figure 6.2, subdivision reduces the number of tests from 36 to

8. In other words, a cell should not be subdivided if subdivision increases the number of

tests (Figure 6.3). With this criteria, the OTG can be built using a single-stage scheme. For

example, it can be constructed top-down from the root to leaves to subdivide cells recursively

until the criteria of reducing the number of tests fails. Alternatively, a bottom-up scheme can

be used to construct the OTG. The OTG constructed by a single-stage scheme is referred to

as OTGs.

Although an OTGs offers a much better adaptation to spatial distributions compared to
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Figure 6.3: The subdivision increases the number of tests.

previous CD methods on GPUs, the efficiency of octree subdivision can be further improved.

In the example shown in Figure 6.4, the first subdivision increases the number of tests, so

subdivision would stop with the simple criteria, although further subdividing three of the cells

significantly reduces the number of tests. Hence deciding when to stop requires recording and

comparing to other alternative subdivisions. This can dramatically increase the complexity

since the number of subdivision combinations grows exponentially as the number of levels

increases. A bottom-up scheme that determines if sub-cells need to be merged suffers the same

limitations (Figure 6.5). Hence a scheme that cheaply generates more efficient partitioning

is required. We achieve this by using a two-stage scheme to construct the OTG, which is

referred to as OTGt.

The OTGt is built as follows. At first a counter octree and a type octree are built to

record the triangle distribution information and cell types (internal, leaf or inactive). The

counter tree is actually a hierarchy table stored as an array of a length equal to the number

of the hierarchical grid (full octree) cells, in which each element corresponds to a cell in the

hierarchy and records the number of triangles overlapped by this cell. Grid cells are marked

as internal, leaf or inactive cells to represent the octree, therefore traditional operations on

tress such as adding, deleting and pruning are not needed, and thus the array length does

not change during simulation. The type tree is treated as the same to store cell types. In

fact on GPUs, maintaining and managing trees in this way is significantly more efficient in

time than the traditional way of operating a tree, albeit at the cost of memory, which we

found not to be a constraint in this work.

Next, all triangles are temporarily assigned to the base (finest) subdivision level cells only.
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Figure 6.4: The limitation of a simple top-down scheme.

Figure 6.5: A simple bottom-up scheme suffers a similar limitation.

Since triangles are very unlikely to overlap similar number of cells, this assignment step is

performed using the workload distribution scheme proposed by [Fan et al., 2011]. During

this process the number of triangles assigned to each base level cell is obtained using atomic

operations. For the number of triangles overlapped by higher subdivision level cells, we only

cheaply record the number in the counter tree by mapping triangles to higher cells instead

of expensively assigning them to higher cells. This is done by employing a token position

technique [Fan et al., 2011] which efficiently removes the redundancy caused by the fact that

a triangle assigned to multiple base cells can map to the same higher cell. Once the counter

tree has distribution information, empty cells are marked as inactive cells, and the number

of triangles overlapping each cell is converted to the number of tests.

Then, a two-stage scheme is used to obtain an improved octree subdivision. At first a

bottom-up stage, level by level, checks if all eight child cells of each parent cell should be

merged or not using the simple criteria, starting from the base level. If they should the only

thing required to do is to mark the parent cell as a leaf cell. Otherwise, the eight child cells

are marked as leaf cells and the parent cell marked as an internal cell. Unlike the simple single
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stage scheme, the bottom-up stage does not stop until the top level is reached. Therefore, in

the counter tree, the number of tests of the internal parent cell should be replaced with the

sum of numbers of tests of its eight child cells. After this stage is done, the highest level leaf

cell in a branch is taken as the real leaf cell.

In the top-down stage, the first step is for all leaf cells to replace the number of tests

stored in the counter tree with the cell identifier (ID). Then IDs of the highest leaf cells are

propagated down to elements corresponding to base level cells (excluding inactive cells), so

the cells that triangles should be finally assigned to can be easily obtained by accessing base

level elements of the counter tree. Now the OTGt that better subdivides space is built.

These two stages are implemented in two separate CUDA kernels that traverse the hier-

archy level by level. The number of invoked threads in each iteration equals the number of

cells in the corresponding level.

A 1D example is given in Figure 6.6. The two-stage scheme easily removes the limitation

of single stage schemes. Although cells 19, 20 and 10 are marked as leaf cells in pass 1,

the bottom-up stage does not stop and cell 4 is marked as a leaf in pass 2 as well. The

top-down stage brings down IDs of the highest leaf cells to their child cells, which corrects

the determination made in pass 1. An optimised subdivision that reduces the number of

tests from 120 to 41 is obtained.

6.3.2 The Number of Cell Levels

Since building the OTG starts with a bottom-up stage, the number of levels needs to be

determined. Instead of using a hierarchy with a fixed number of levels, we dynamically

adjust it during the simulation after the first time step. We start with a grid of nine levels in

the first time step. After the two-stage scheme is done, how many triangles are assigned to

each level is known. In terms of efficiency, it would be better to avoid calculations for inactive

levels which are levels without any triangle assigned. Therefore the base and top level in

the next time step can be determined from the levels in the current time step. Assuming

that the highest and lowest active levels in the current step are the ith and jth level (i < j)

respectively, the top level in the next step is set as the (i−1)th level if triangles assigned to the

highest active level in the current step are more than a customised threshold ε- (empirically

set to 0.1%), or it is set as the (i+1)th level if triangles are less than a threshold ε+ (0.001%),

otherwise it remains as the ith level. Similarly, the base level in the next step is set as the

(j+1)th level if triangles assigned to the lowest active level in the current step are more than
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(a) a counter octree (b) bottom-up phase: pass 1

(c) bottom-up phase: pass 2 (d) bottom-up phase: pass 3

(e) bottom-up phase: pass 4 (f) top-down phase

Figure 6.6: A 1D example that each cell can be subdivided into two child cells is shown. In this
counter octree, the number in a box represents a cell ID, and the number in a circle indicates
the number of tests in that cell. (a) After the counter octree which records the distribution
information is built. The bottom-up stage is performed starting from the base level to check
if all child cells (two cells in the 1D case) of every parent cell should be merged or not,
according to the simple criteria. (b) During pass 1: cell 8, 10, 15, 16, 19, 20, 23, 24, 25, 26, 29
and 30 marked as leaf (green) cells, cell 7, 9, 11, 12 and 14 are marked as normal cells. For
those parent cells that are normal, the number of tests is replaced with the sum of numbers
of tests of its child cells. (c, d, and e) This step is performed iteratively on upper levels until
the top level is processed. Note that the first iteration processes two levels. (f) Finally, an
top-down stage brings IDs highest leaf cells to their child cells level by level until the base
level is reached, which corrects determinations made in previous passes.
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Figure 6.7: The pipeline of the CD algorithm.

a threshold λ+ (97%), or it is set as the (j − 1)th level if triangles are less than a threshold

λ- (3%), otherwise it remains as the jth level. The two-stage scheme is only performed for

levels between the top and base levels.

Intuitively, it seems that incrementally changing the octree by directly assigning triangles

to leaf cells of previous step rather than rebuilding the tree from the hierarchical grid by

assigning them to the base level of previous step might be more efficient. Unfortunately

a triangle can belong to multiple levels, so levels to which each triangle belongs have to

be recorded for the next step, and for each triangle the assignment step may need to be

performed multiple times depending on how many levels the triangle belong to, leading to an

increase in costs for incremental update. Moreover since one thread handles the assignment

of one triangle, uneven workloads can further harm the performance because how many times

the assignment step is performed in every thread can be different. Therefore we do not assign

triangles to leaf cells directly.

This dynamic adjustment mechanism works well in our benchmarks. Active levels are

between the fourth and seventh levels for most of the benchmarks. In fact, levels higher than

the third level and levels lower than the eighth level are inactive for all benchmarks.

6.3.3 Remainder of The CD Pipeline

Once the space subdivision step is completed, a cell-triangle pair array is easily built, and

then sorted by cell ID using the parallel radix sort algorithm [Harris, 2007].

In the broad phase, a workload distribution scheme presented in the previous chapter

that assigns one broad phase test to a thread is adopted to balance computation load among
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(a) Funnel (b) Cloth on ball (c) Flamenco (d) N-body

Figure 6.8: Benchmarks used for performance measuring.

concurrent threads. Then, in each thread the token position technique is employed to de-

termine if the test of this thread is redundant, since a triangle pair can overlap multiple

cells. Although the more efficient control bits scheme is not used for this step because more

than eight cells can be overlapped by a triangle (refer to Chapter 3 for detail), the reduction

in the number of broad phase tests yielded by the OTG is remarkable enough to improve

overall performance. Next, a BV test for the triangle pair is performed. If the BVs intersect,

R-triangle tests that remove redundant elementary tests are carried out. The last step of the

broad phase is to perform a BV test for each elementary pair to further improve the culling

efficiency. The collision pipeline up to here yields a considerable reduction in the number of

elementary tests.

In the narrow phase which is the same to the VSS method, proximity is checked for

VT and EE pairs output by the broad phase to compute exact intersection separately by

launching two different kernels to avoid low occupancy. Before the proximity test, a cubic

equation needs to be solved to compute the first contact time in the case of CCD [Provot,

1997]. Figure 6.7 shows the overview of the collision pipeline.

6.4 Implementation and Results

The method is implemented using the CUDA toolkit 5.5 on a computer with an NVIDIA

GTX 780 GPU. The method is purely GPU-based, and data transfer between CPU and GPU
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Figure 6.9: Two pieces of ribbon are tied into a reef knot.

is performed only once at the simulation beginning, so that performance completely depends

on the GPU. We also run the method on a GTX 470 GPU for comparison with previously

reported methods.

6.4.1 Benchmarks

Same experiments with the previous chapter are used for measurement for this work. Motion

data of the cloth on ball, flamenco and N-body tests were provided by the UNC Dynamic

Scene Benchmarks collection. The spring-mass method is used to compute cloth internal

forces with an implicit integrator (Equations 3.25, 3.26 and 3.27) for other benchmarks.

1. Funnel (20K triangles): A piece of cloth falls into a narrow funnel and goes through it.

(Figure 6.8(a))

2. Cloth on ball (92K triangles): A cloth with a large number of triangles drapes on a

sphere, which starts rotating. (Figure 6.8(b))

3. Flamenco (49K triangles): A dancing character wearing a skirt with multiple layers of

cloth. (Figure 6.8(c))

4. N-body (146K triangles): Hundreds of spheres and five cones are colliding with each

other. (Figure 6.8(d))
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Level
3 4 5 6 7 8

Funnel A. - 100 100 100 23.6 -
R. - 4.7e-3 2.1e-1 70.8 29.1 -

Cloth ball A. 1.6 100 100 100 87.5 3.4
R. 1.6e-3 5.4e-2 3.5e-1 2.2 92.7 4.9

Flamenco A. 4.9 100 100 100 87.2 -
R. 1.5e-3 6.1e-2 5.4e-1 43.6 56.3 -

N-body A. 12.5 100 100 100 96.0 10.1
R. 2.9e-3 8.3e-2 4.7e-1 6.5 80.2 13.3

Reef knot A. - 100 100 100 75.3 -
R. - 4.5e-2 2.0e-1 10.7 88.3 -

Table 6.1: The ratio (in percentage) between the number of time steps in which each level
is active (A) and the number of total time steps, and the ratio (in percentage) between the
number of triangle-cell registrations (R) in each level and the number of the total registrations
are given.

5. Reef knot (20K triangles): Two pieces of ribbon are tied into a reef knot, resulting in

a very uneven triangle distribution. (Figure 6.9)

The triangle spatial distribution density in these benchmarks is uneven in most time steps.

For example, in the cloth on ball and reef knot benchmarks, triangle distributions of areas

under the sphere and near the knot are very dense, while triangle distributions of other

areas are relatively sparse. Similarly in the flamenco test, the triangle density of the skirt of

multiple layers of cloth is higher than that of the shirt, because the skirt consists of multiple

layers of cloth. In addition, some benchmarks consist of meshes whose triangle sizes vary

considerably.

6.4.2 Results and Analysis

Active levels of the OTG are adjusted depending on the distribution of triangles in the

hierarchy. In all benchmarks, the ratio between the number of frames in which each level

is active and the number of total frames, and the ratio between the number of triangle-cell

registrations in each level and the number of the total triangle-cell registrations, are given in

Table 6.1. Levels 1, 2 and 9 are inactive during the whole simulation for all benchmarks. In

contrast levels 4, 5, 6 and 7 are always active. Most triangle-cell pairs are registered in levels

6 and 7.

The key idea of the OTG method is to reduce the number of unnecessary broad phase tests

resulting from an uneven triangle spatial distribution. We compare the average number of
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Figure 6.10: Comparison of the average number of broad phase tests in CCD among the
VSS method, the OTGs method and the OTGt method.

broad phase tests per frame between the OTGt method and the VSS method which drastically

reduces the broad phase tests for a uniform subdivision. As Figure 6.10 shows, the OTGt

method yields a significant reduction in tests, by at least 39%, across all benchmarks. The

largest reduction, of 64%, is observed in the reef knot test. This is because the density of the

knot area is very high and the density of remaining areas is low, resulting in an inefficient

subdivision for a uniform grid as expected. In contrast the OTGt adaptively partitions the

space according to the distribution density.

In order to demonstrate the further improvement of OTGt, the number of broad phase

tests produced by the OTGs method is also given in this figure. In all benchmarks, the OTGt

method partitions space for a better adaptation to triangle distribution, yielding less tests

compared to OTGs by up to 36%, and an average of 20%.

A common feature of CD methods employing space subdivision techniques is the large

memory requirement, because of the large number of broad phase tests. This feature becomes

a major limitation for GPU-based methods. However, memory usage for tests is not our main

concern, because the two-stage scheme is designed to generate as few as possible broad phase

tests. However, memory is required for two octrees. Maintaining a tree grid as a table

requires a relatively large amount of memory. The memory size of the counter octree of nine

levels is 512MB, and the size of the type octree of nine levels is 64MB because the base level is

unnecessary (the type of base level cells can be obtained from their parent cells). Fortunately,

for the test scenes this is not a limitation in an environment with a GTX 780 GPU whose

memory is 3GB. The number of OTG levels for all these standard benchmarks never reaches
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Figure 6.11: Time proportions of each step for cloth on ball benchmark

nine, which means a memory of 72MB satisfies two octrees. For extreme situations, spatial

hashing can be adopted to easily avoid using more than nine levels.

6.4.3 Performance

The performance of the OTGt method for DCD and CCD on benchmarks is given in Table

6.2. The results demonstrate that this method works well with scenes with uneven triangle

spatial distributions. Execution times of CCD on steps for cloth on ball are presented in

Figure 6.11. The most expensive part is the broad phase which takes 40%, while computation

time of building the OTG takes 19% of the total running time.

6.4.4 Comparison

We first compare the OTGt method against the VSS method, not only because the VSS

method provides the fastest results for most benchmarks among previous methods we are

aware of, but also the OTGt method is designed to address the uneven triangle spatial

distribution issue, the main limitation of the VSS method. In order to remove uncertain

factors arising from different hardware, the VSS method is run on the experiment environment

used in this chapter. Performance of the VSS method measured on a GTX 780 GPU is given

in Table 6.3 to provide a straightforward comparison.

Performance of the OTGt method for CCD on all benchmarks is faster with speedups

of 1.5X and 1.3X for the reef knot and N-body benchmarks. For DCD, the VSS method

gives slightly better performance for the flamenco and n-body benchmarks, while the OTGt

method is around 1.3X, 1.2X and 1.2X faster for the reef knot, cloth on ball and funnel
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GTX 470 GTX 780
Triangles DCD CCD DCD CCD
× 1000 (ms) (ms) (ms) (ms)

Funnel 18 4.7 5.1 3.7 3.4
Cloth ball 92 10.5 13.3 8.3 9.2
Flamenco 49 16.1 17.4 11.7 10.8
N-body 146 30.2 24.8 20.8 19.1
Reef knot 20 4.7 4.9 3.2 3.0

Table 6.2: Timings of the OTGt method for DCD and CCD, measured on a GTX 470 GPU
and a GTX 780 GPU.

DCD Speedup CCD Speedup
(ms) (times) (ms) (times)

Funnel 4.4 1.2 4.0 1.2
Cloth ball 10.2 1.2 11.1 1.2
Flamenco 11.2 0.9 11.0 1.0
N-body 18.7 0.9 24.5 1.3
Reef knot 4.3 1.3 4.4 1.5

Table 6.3: The DCD and CCD timings of the VSS method run on the experimental envi-
ronment with a GTX 780 GPU, and speedups of the OTGt method.

tests respectively. Although these benchmarks consist of triangles whose size also varies

significantly and the VSS method is designed to handle this problem, the OTGt method is

superior for the VSS method for most tests, which demonstrates that the OTG is able to

address the uneven triangle size issue as well. However the improvement in performance

is not as remarkable as the significant reduction in the number of broad phase tests, and

even not observed for two of the DCD tests. This is mainly because the control bits scheme

employed by the VSS method to remove the redundancy arising from the fact that a triangle

pair can overlap multiple cells is more efficient than the token position technique used in

the OTG approach, which cancels out part of the performance gain. It is also noticeable

that the increase in CCD performance is greater than that in DCD. The reason is that in

our cloth simulation framework, by following [Bridson et al., 2002], the BV is enlarged by

a cloth thickness in the DCD case, while in the CCD case the BV is enlarged by a error

tolerance which is much smaller than the cloth thickness. Therefore BVs of triangle pairs

are more likely to overlap in the case of DCD, thus there is less potential for the OTG to

reduce the number of tests. This is also why the OTGt method is faster for CCD of the

n-body benchmark, but slower for DCD.
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Fan et al. [2011] address the issue of uneven spatial distribution in part by presenting

a two level hierarchical grid. Their reported performance results are measured on a GTX

480 GPU, whilst we compare with results measured on a slightly slower GTX 470 GPU. The

OTGt method is faster for CCD in all except for the flamenco benchmark. For the cloth

on ball, funnel and n-body tests, speedups of from 1.3X to 1.9X are observed. We do not

provide a comparison of DCD performance, because for DCD in the narrow phase they only

check collisions between triangle pairs, while we perform collision tests on VT and EE pairs

to compute exact collision and contact information.

To the best of our knowledge, Tang et al. [2011] report the fastest results among GPU-

based methods employing BVHs. They also run experiments on a GTX 480 GPU. CCD

performance of the OTGt method measured on a GTX 470 GPU is better in cloth on ball,

flamenco and n-body benchmarks: 13.3ms vs. 18.6ms, 17.4ms vs. 32.7ms and 24.8ms vs.

79.0ms, respectively, although is slightly slower for the funnel test.

Finally, by comparing our CCD timings on a GTX 470 GPU to the fastest multicore

CPU-based method [Tang et al., 2010b] where experiments are run on a PC with four quad-

core CPUs (16 cores) at 2.93 GHz, speedups of 1.6X and 1.3X are observed for the flamenco

and cloth on ball tests, on which the multicore CPU-based method method takes 27ms and

32.5ms. Performance of the OTGt method on a GTX 780 GPU for these two tests are 2.5X

and 1.7X faster. DCD timings of these methods are not provided.

6.5 Conclusion

This chapter presents a GPU-based method using an OTG to accelerate CD of deformable

objects by adaptively subdividing space according to triangle distribution. The OTG is

dynamically built and adjusted. A two-stage scheme is introduced to optimise octree spatial

subdivision and reduce the number of broad phase tests. The method addresses the issue

of uneven triangle spatial distributions, a common limitation not addressed well in previous

spatial subdivision based CD approaches on GPUs. Further, the uneven triangle size problem

can be addressed by this method as well, since it can be viewed as a subcase of uneven spatial

distributions. We investigated the method by conducting a set of standard benchmarks,

and observed increases in performance compared to previous CPU-based and GPU-based

approaches.



Chapter 7

An Improved Friction Model

Once all collisions are detected, they have to be dealt with. Friction is an important aspect

of this process. It is a complex phenomenon that resists tangential motion between two con-

tacting objects. In computer graphics, existing cloth simulation methods have typically used

a Coulomb model for friction, both static and kinetic, as discussed in Chapter 3. However,

the Coulomb model is limited since it intends to capture fundamental frictional phenomena.

Many advanced friction effects such as stiction, Stribeck friction, viscous friction and the

stick-slip phenomenon are not modelled by it. This chapter describes an improved physically

based friction model for simulating such effects, extending the Coulomb model. We show

that including these additional effects is relatively straightforward. Results and comparisons

with a pure Coulomb model are provided to demonstrate the capabilities and features of the

improved model.

7.1 Introduction

Friction is an important and complex phenomenon which occurs whenever two objects are

in contact in nature. Its development is essential in tribology. Since Leonardo da Vinci

and Amonton discovered rules of dry friction, it has been studied in many research fields

such as mechanical engineering, material science, fluid and solid object dynamics, and so

on. It also plays a significant role in fabric performance, from textile processing to user’s

tactile comfort. Over time a number of friction models have been developed to capture more

observed features. In computer graphics, as an indispensable component of collision handling

in physics simulation, friction greatly affects both static and dynamical behaviour. Existing

cloth, hair and solid object simulations in graphics typically use a Coulomb model. A more

93
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comprehensive friction model is worth investigating.

When two bodies are in contact, dry friction occurs at the contact area as a force resisting

the relative tangential motion between the contacting surfaces. Dry friction is separated into

static (stiction) and kinetic friction for motionless and sliding contacts respectively, and can

be described by three classic empirical laws:

• Amontons’ 1st Law: friction is directly proportional to the applied normal direction.

• Amontons’ 2nd Law: friction is independent of obvious contact area.

• Coulomb’s Law: kinetic friction is independent of the sliding velocity.

Friction described by these laws is termed Coulomb friction. Because of its simplicity it has

been widely used to model friction behaviour. As investigation into friction continued, many

phenomena that could not be fully modelled by classic laws were observed, leading to more

elaborate models extending the Coulomb model.

One of the most important phenomena not captured by the Coulomb model is that the

break-away force (stiction) required to initiate sliding motion from rest is usually larger than

kinetic friction [Morin, 1833]. This is observed for almost all contact surfaces. The differ-

ence between stitction and kinetic friction causes intermittent motion rather than smooth

movement between two objects in contact at low relative speeds. Typically, two contacting

objects will not start sliding until the applied force is larger than stiction. Then objects

suddenly slide across each other under smaller kinetic friction for a short while until they

stick again. This frequent phenomenon is referred to as the stick-slip phenomenon (simply

stick-slip) [Taylor and Pollet, 2000].

Once the tangential force exceeds the stiction, friction transits from static to kinetic form

where another two important phenomena occur, the Stribeck effect and viscosity resulting

from the dependency of friction on the relative tangential velocity. The Stribeck effect is

the decrease in friction from the stiction peak to lower Coulomb friction when the sliding

velocity is small [Stribeck, 1902]. Viscosity indicates that friction increases as the sliding

velocity increases [Reynolds, 1886]. In physics and mechanical engineering, models which

are able to capture these phenomena have been developed and successfully used to model

friction for years.

These phenomena have been mentioned in discussion of friction of fabrics and fibres [Das

et al., 2005; Ajayi, 1992; Fetfatsidis et al., 2009]. Fabrics exhibit the feature of stiction larger

than the kinetic friction resulting from its structural unflattening. According to analysis by
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Taylor and Pollet [Taylor and Pollet, 2000], if the fabric has a certain degree of elasticity,

stick-slip occurs at low relative speeds due to the difference between higher stiction and lower

kinetic friction. Solid objects such as metals show the Stribeck and viscous friction only under

moist or wet conditions, while such velocity-dependent frictional effects are observed under

both dry and moist conditions for textile materials, i.e. fibre, yarns and fabrics that deform

viscoelastically [Kalyanaraman, 1988; Ajayi, 1992; Fetfatsidis et al., 2009]. These effects have

been thoroughly investigated for dry and lubricated textile materials.

In this chapter we describe an improved physically based friction model in cloth simu-

lation that extends the Coulomb model to consider these friction phenomena, and report

differences in overall cloth behaviour. The model can be easily integrated into most exist-

ing cloth systems as a replacement for Coulomb friction, increasing the physical plausibility

by accounting for more friction effects. The model is not much more complicated than

the Coulomb model and adds little extra computational cost overall. Several experiments

and comparisons with cloth simulation using Coulomb friction and the extended models are

provided.

The remainder of the chapter is organised as follows. We start by briefly reviewing

previous work directly related to dry friction from engineering research and computer graphics

in Section 7.2. The extended friction model is presented in Section 7.3, followed by discussion

of implementation, results and performance in Section 7.4, 7.6 and 7.5 respectively. Finally,

the conclusion and future work are given in Section 7.7.

7.2 Related Work

Friction is computed in collision response, for which we refer reader to Chapter 3. We provide

a brief introduction to friction in engineering research, then previous work directly related

to friction in computer graphics is reviewed.

Early friction models were based on classic laws which only summarise basic aspects of

friction. Lately, requirements on more precise estimates of friction behaviour have become

the main interest. A number of works [Stribeck, 1902; Karnopp, 1985; Armstrong-Hélouvry

et al., 1994] improve on the Coulomb model to take into account effects discussed above for a

wide range of applications. Their focus is on static models, on which our method is based. For

purposes in the microscopic level in mechanical engineering, dynamic models such as Dahl,

Bliman-sorine and LuGre models factor in evolution of friction through time or displacement

derivatives, which however is beyond the scope of this work. We refer interested readers
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to [Altpeter, 1999; Olsson et al., 1998]. In textile research, investigation of both static and

dynamic friction models for fabrics and fibres have been reported in [Das et al., 2005; Lahey,

2002]. Experimental data by Taylor and Pollet [2000] show that fabric materials clearly

exhibit the stick-slip behaviour.

In computer graphics, the earliest work including friction for cloth is [Terzopoulos et al.,

1987]. Baraff and Witkin [1998] treat cloth-object friction as constraints. Bridson et al. [2002]

propose a robust framework that computes friction as impulses for cloth simulation. Based on

this framework, Selle et al. [2009] propose a novel cloth-object contact and friction scheme

to achieve more accurate collision response. Pabst et al. [2009] introduce an anisotropic

friction model for contacts between deformable objects (including cloth) and materials with

anisotropic surface and inhomogeneous roughness. Chen et al. [2013] develop an algorithm

to improve cloth-body interactions using friction data captured from real-world. However,

to the best of our knowledge, no attempt to model effects of stiction, Stribeck and viscous

friction has yet been made for cloth simulation in computer graphics.

7.3 Friction Model

We assume that at the contact point (Figure 7.1) the infinitesimal surfaces of two bodies A

and B are smooth, so that the relative velocity v can be decomposed into a component vn

along the normal direction and a tangential component vt opposed to the sliding direction.

In the vertex-triangle type of contact, the normal of the triangle face is the contact normal,

while in the edge-edge type of contact, the vector connecting the pair of closest points on two

edges is treated as the contact normal. In this chapter we use the notations as abbreviation

for different friction models for convenience:

• C: Coulomb

Figure 7.1: A contact between two bodies. The normal and tangential vectors are defined.
The relative velocity is decomposed into the normal and tangential velocity.
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(a) C (b) CS (c) CSS (d) CSSV

Figure 7.2: Friction models

• CS: Coulomb and sticition

• CSS: Coulomb, stiction and Stribeck friction

• CSSV: Coulomb, stiction, Stribeck and viscous friction

7.3.1 Friction Terms

This section describes each friction effect shown in Figure 7.2 in detail. The simplest model

as well as the most common one in graphics is Coulomb friction (Figure 7.2(a)) as mentioned

earlier. As described by three classic laws, the friction force F opposes the relative motion

and is independent of the relative tangential velocity vt:

F = FC(-v̂t)

FC = µc|Fn|
(7.1)

where FC is Coulomb friction, µc the Coulomb coefficient, Fn the force in the normal direction

of the contact plane and v̂t the unit vector of the relative tangential velocity.

Stiction describes the friction force at zero relative velocity, and as mentioned earlier

stiction is usually higher than Coulomb friction (Figure 7.2(b)). Hence it is expressed as:

F =

{
-Fe if vt = 0 and |Fe| < |FS |
FS(-F̂e) if vt = 0 and |Fe| ≥ |FS |

(7.2)

where Fe is the external tangential force, F̂e the unit vector of Fe, and FS the stiction

threshold whose value is greater than or equal to Coulomb friction:

FS = µs|Fn| µs ≥ µc (7.3)
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where µs is the coefficient of stiction. For fabrics µs is always larger than µc. The closer

µs and µc are, the smoother the material is. For example, compared to silk, the stiction

effect is more detectable in jeans. On the contrary the futher µs and µc are, the rougher the

contacting surfaces are, more easily leading to stick-slip.

In order to model the Stribeck effect (Figure 7.2(c)) where friction decreases continuously

from the stiction threshold to Coulomb friction as the velocity increases:

Fstr(vt) = (FC + (FS − FC)e-(|vt|/vS)δS )(-v̂t) (7.4)

where vS is a positive value standing for the Stribeck velocity, and δS ∈ [0, 1] a curve shape

factor describing the nonlinear decrease. Under dry conditions friction decreases faster than

it does under moist conditions, but we only consider dry cases in this chapter. We set δS

to 0.2 (the smaller the value, the more quickly friction decreases). In the Bliman-Sorine

friction model [Bliman and Sorine, 1995b] Stribeck friction is degraded to be the velocity-

independent transition from the stiction peak to Coulomb friction. This model has been

adopted to compute internal friction in bending behaviour of fabrics [Lahey, 2002]. However

either way removes the discontinuous decrease.

Under dry conditions, viscous friction in textile materials results from increasing frictional

heating. For moist fabrics and lubricated fibre and yarns, viscous friction is characterized

by the fact that a lubricant film exists between contact surfaces and friction is governed by

the viscosity of the liquid. For either cases, viscous friction can be obtained by extending

Coulomb model to consider the velocity as follows:

F = Fv|vt|δv(-v̂t) (7.5)

where Fv is the viscous coefficient, and δv enables the nonlinearity of the dependency when

its value is not 1. These two parameters vary a lot depending on types of textile materials in

dry conditions, or types of fluid and how moist the condition is, i.e., moist to wet, in moist

conditions. According to this equation, the higher the relative tangential velocity the larger

friction is yielded (Figure 7.2(d)).

Therefore a general description of all effects is:

F(vt) =


Fk(vt) if vt 6= 0

-Fe if vt = 0 and |Fe| < |FS |
FS(-F̂e) if vt = 0 and |Fe| ≥ |FS |

(7.6)
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where, Fk(vt) is the overall kinetic friction force as the sum of Coulomb, Stribeck and viscous

friction:

Fk(vt) = (FC + (FS − FC)e-(|vt|/vS)δS + Fv|vt|δv)(-v̂t) (7.7)

There are several contact methods for cloth simulation. The equations described above

can be integrated into those systems to model different friction effects. In our work we

discuss the use of the extended friction model in two commonly adopted contact methods:

the constraint handling approach [Baraff and Witkin, 1998] and the velocity filter framework

[Bridson et al., 2002]. The latter is described in Chapter 3. We use it for experiments in this

chapter.

For constraint based models like [Baraff and Witkin, 1998], sticition and kinetic friction

effects can be obtained by enforcing a complete constraint that eliminates relative motion

and a partial constraint that only allows sliding on the plane proportional to the contact

normal force, respectively. In the sticking case, the number of degrees of freedom for relative

acceleration is set to 0, while in the sliding case the contact normal indicates the prohibited

direction. The change in relative velocity caused by contact is included in the linear system

for explicit control. The change in relative velocity is computed as -vn + F(vt)dt/m, where

m is the mass of the colliding primitive pair.

In order to replace the friction component in [Bridson et al., 2002] where friction effects are

achieved by using impulses (Equation 3.37), friction needs to be converted into the impulse

I, which can be simply computed as

I =
1

2
|F(vt)∆t| . (7.8)

However in Equation 3.37 the impulse is directly obtained from the change in relative velocity

in the normal direction ∆vn avoiding manipulating forces. Hence Equation 7.6 and 7.8 are

replaced with:

ξ = |∆vn|(µc + (µs − µc)e-(|vt|/vS)δS )/|vt|
+(Fv|vt|(δv-1))dt/m

I =


1

2
|vt| µ|∆vn|/|vt| ≥ 1

1

2
|ξvt| µ|∆vn|/|vt| < 1

(7.9)

By applying the impulse I into impulse weighting equations 3.39 and 3.40, the relative

tangential velocity will be cancelled out due to stiction or slowed down due to kinetic friction.
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incline plane skirt stick-slip card sphere
µobj
c .2 .2 .1 .1 .2

µself
c .1 .1 .1 .1 .1
µobj
s .3 .4 .4 .2 .35

µself
s .15 .2 .1 .2 .15
VS .4 .4 .4 .4 .4
δS .2 .2 .2 .2 .2
Fv N/A N/A N/A .00006 .00006
δv N/A N/A N/A 1 1

Table 7.1: Values of parameters used in each experiment. Superscripts obj and self indicate
cloth-object and cloth self contacts respectively.

These two contact mechanisms discussed above are explicit, assuming the normal force

and relative velocity are known. It is worth considering the extended friction model as part

of implicit solvers (Equation 3.25), which we suggest as future work.

7.4 Implementation

We investigate this friction model by integrating which into a cloth framework presented

in previous chapters. A model similar to [Baraff and Witkin, 1998] is used to model tensile

forces with an implicit integrator (Equations 3.25, 3.28 and 3.29). Bending forces is computed

using the model presented in Chapter 4, and integrated by an explicit integrator. Collision

detection is handled in the way described in Chapter 6. For collision response the widely

adopted framework of [Bridson et al., 2002] is used, but the friction model is replaced by the

extended model discussed in this chapter. A strain rate limiting procedure similar to the

scheme in [Bridson et al., 2002] is used to remove bad strain rates.

7.5 Results

We investigate friction models using several scenarios, and point out differences and advan-

tages by comparing with the C model. Friction is applied for both cloth-object contacts and

self contacts. Since we are interested in differences in behaviour between different models,

our aim is not to investigate and evaluate deeply how parameters of the extended model

influence the output. Values of parameters used in each experiment are given in table 7.1.

For overall dynamic behaviour we refer readers to accompanying animations.

We first test the CSS model. Figure 7.3 shows frames of a piece of cloth falling on an

inclined plane. Figure 7.3(a) displays results of simulation using the C model, while Figure
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(a) (b)

Figure 7.3: A piece of cloth falls on an incline plane. Results of (a) the C model and (b)
the CSS model at several frames.

(a) (b) (c)

Figure 7.4: A walking character wearing a skirt. Results of the C (left) and CSS model
(right) at several frames.

7.3(b) shows friction effects generated by the CSS model. Because of the higher stiction and

the Stribeck effect, the cloth in simulation with the CSS model is more likely to experience

static friction, and higher kinetic friction when the tangential velocity is small, and thus

tends to fold more and slides slower than the cloth in the simulation using the C model. We

have also applied these two friction models to a scene where a female wearing a skirt walks

(Figure 7.4). In the CSS case, more and finer wrinkles are formed and hold longer, especially

in the skirt as highlighted in the figure.

Since stiction larger than kinetic friction is the main cause of stick-slip, we built a scenario

to test this mechanism (Figure 7.5(a)). A hang cloth has an edge attached. The lower part of

the cloth touches the ground with friction. The attached edge moves at a constant velocity so

that the cloth is pulled by the internal force. In the CSS model case where the kinetic friction
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(a) (b)

Figure 7.5: (a) A scene to test stick-slip: results of the C (top) and CSS model (bottom).
(b) Average displacements of the lower part cloth in simulations using the C and CSS model.

Figure 7.6: A card slides on an inclined plane. From left to right results of C model (green),
CS model (red), CSS model (blue) and CSSV model (yellow) at several frames.

coefficient is much less than the stiction coefficient, the cloth moves intermittently. The cloth

stays stuck before the tangential force reaches stiction, then it suddenly starts sliding with

a large velocity due to the much smaller kinetic friction. In the slip-phase, the internal force

decreases as the stretched cloth tends to recover to its unstretched state, leading to the cloth

stuck again. As expected the entire process is repeated periodically. This stick-slip behaviour

is depicted by the red solid curve in Figure 7.5(b), where average velocity of the lower part

cloth are shown. On the contrary, the cloth in the C model case moves much smoother (the

blue dashed curve) since there is no difference between stiction and kinetic friction.

Now we test all friction models. We build a test of four cards sliding on an inclined plane

(Figure 7.6). Cards start from rest and accelerate. During the whole process, cards stay in
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(a) Displacement (b) Velocity (c) Friction

Figure 7.7: The displacement, velocity and friction over time for a card sliding down on an
incline plane using four different friction models are shown. Configurations of this test are
identical to the cylinder experiment.

contact with the plane. All four friction models are used for four cards respectively. In all

four cases, µs is set to 2µc. When the value of µc is above .3 no cards slide. If µc is set

to between .15 and .3 only the card in simulation using the C model slides. By setting µc

below .15, cards in all simulations move as the force towards the sliding direction is greater

than the stiction, providing an initial sliding velocity. The value of µc in the experiment

shown in Figure 7.6 is .1. Observed results match the expectation. Since the stiction cannot

keep the card stuck, unsurprisingly the cloth in simulation using the C model has the same

velocity with the one in the CS model simulation, as they undergo the same kinetic friction

and therefore accelerate at an identical rate. However, the CSS and CSSV models yield

higher kinetic friction at the beginning when the velocity is small, hence cards using these

two models move slower. As their velocities increase, friction in the CSS model simulation

gradually decreases to the Coulomb level, while friction by the CSSV model rises due to

viscosity. Hence, the card using the CSSV model slides slowest. plots of friction, velocity

and displacement over time for this experiment are shown in Figure 7.7.

Another scenario (Figure 7.8) in which a piece of cloth drapes over an accelerating rotating

sphere is designed to show the effect of viscous friction in a more complicated case. As the

angular speed of the sphere increases from zero, the cloth in the CSSV model case (bottom)

spins faster and faster at an increasing acceleration due to increasing friction, while the cloth

in simulation using the C model (top) spins at a constant acceleration caused by a constant

friction force, as the friction is independent of velocity. Therefore, the cloth undergoing

viscous friction is cast off earlier.
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(a) (b) (c)

Figure 7.8: A cloth drapes over an accelerating rotating sphere. Results of the C model (top)
and the CSSV model (bottom) at frame (a) 400, (b) 2400 and (c) 2980.

no friction C CS CSS CSSV
time (s) 0.71 0.86 0.90 1.16 1.19

frition ratio N/A 17% 21% 39% 40%

Table 7.2: For a simulation of 5 seconds (4t = 1ms), running time of collision response
using different models.

7.6 Performance

In our system computation time is dominated by collision detection, even though which is

computed on a GPU. Collision response takes a small amount of total time. Hence the time

for the friction part is even smaller. We use the scene (8.1K triangles) shown in Figure 7.3

to examine the performance. The time for collision response using different friction models

are given in Table 7.2. The CSSV model introduces a 40% increase in collision response

computation time which takes less than 8% of total time.

7.7 Conclusion

The extended friction model allows additional friction effects of stiction, including Stick-slip,

Stribeck and viscosity easily incorporated into commonly adopted systems to replace the

Coulomb model. Results of several experiments and comparisons are presented to demon-

strate the capability of modelling friction effects and the resulting differences in cloth be-

haviour.



Chapter 8

Conclusion

In this thesis, four contributions to improve physically based cloth simulation have been con-

sidered. Chapter 4 reports our investigation into the use of a mathematical approximation

to a hysteresis loop to effectively model non-linear effects in bending behaviour. Chapter

5 presents a GPU-based approach to improve performance of collision detection with a vir-

tual subdivision scheme that better addresses the issue of uneven triangle sizes. Chapter

6 discusses a method that further improves collision detection performance by addressing

both uneven triangle size and uneven spatial distribution issues using a GPU. Chapter 7 de-

scribes an extension to the Coulomb friction model to capture additional velocity-dependent

frictional effects.

There are a variety of future directions for physically based cloth simulation. We mention

some related to this thesis.

• Further Aspects of Modelling Cloth Using Hysteresis: The effects of hysteresis can

be related to ageing and wearing, hence we would like to consider time as one factor influ-

encing hysteresis in future work. In addition, a friendlier parametrization of the hysteresis

controls can likely be developed. Hysteresis exhibited in cloth in-plane deformation is also

worth investigating.

• Further Improvements to Performance of GPU-based Collision Detection: Ex-

tending these two collision detection methods for a system with multiple GPUs would be

interesting. We would also like to integrate them to perform collision detection for tech-

niques that adapt the mesh during simulation, such as level-of-detail and multiresolution.

Additionally, new GPU features, such as dynamic parallelism, hyper Q and grid manage-

ment unit, may unlock potential to better parallelise collision detection computation.
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• Further Investigation of Additional Effects of Friction: In addition to cloth, ani-

mating rigid and deformable objects with the addition of velocity-dependent effects would

be beneficial. Considering the improved friction model as part of the implicit solver remains

an area for future work as well.
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