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Abstract 

Chromism by definition is the process that induces coloration change in a material and is 

generally favourable for many applications when it is reversible. Many modern applications 

such as optical modulators, smart windows and optical displays are based on the chromic 

effect. This chromic effect is always aided with a compatible stimulus. In semiconductors, 

particularly those made of thin films, an induced coloration is often initiated by the 

intercalation of positive ions such as Li+ or H+ into the exposed active sites of the 

material’s structure. 

Nanostructure synthesis of semiconducting crystals continues to expand and evolve. Each 

synthesis method offers unique prospects that affect morphology, stoichiometry, 

crystallinity, dopant behaviour and eventually performance of the semiconducting crystals. 

Electric field driven methods such as anodization and electrodeposition are especially 

applicable since they are often carried out under ambient conditions with non-toxic 

electrolytes. In addition, manipulation of anodization and electrodeposition parameters is 

simple, depending upon facile changes of parameters such as voltage, current and 

electrolytes while delivering astounding results.  

In this PhD thesis, the author focuses on the electric field deposited and manipulated 

transition metal oxides (TMOs). The target TMOs are molybdenum trioxide (MoO3), 

titanium dioxide (TiO2) and niobium pentoxide (Nb2O5) which have suitable band energy 

diagrams and crystal structure for chromic devices. The author shows that these TMOs 

can be synthesised into high surface area, highly crystalline and homogenous 

nanostructures using the two aforementioned techniques. However, these potential 

candidates also experience inherent limitations that restrict their chromic performances. 

Therefore the author of this thesis intended to seek out solutions in overcoming these 

limitations.  
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In order to achieve the goals of this PhD research program, the author comprehensively 

investigated chromic properties of nanostructured MoO3, TiO2 and Nb2O5 and assessed 

their chromic performance and potential strategies to enhance them. Based on the 

strategies and investigations by the author, the PhD project was conducted in four distinct 

stages that each resulted in novel outcomes. 

In the first stage, the author demonstrated gasochromic devices based on MoO3. MoO3 

was implemented due to its well-known chromic capabilities. The author developed a novel 

method to fabricate chromic devices based on selective electrodeposition of α- and β-

MoO3. The α-MoO3 based devices exhibited significantly better optical modulation (20%) in 

comparison to β-MoO3 (5%) that was associated with the layered nature of α-MoO3. It was 

also revealed that porous α-MoO3 shown higher optical modulation than compact layered 

α-MoO3. However the deposited films exhibited poor adhesion to the substrates, rendering 

it unsuitable for electrochromic (EC) measurements. 

In the second stage, the author carried out a novel combination of anodised TiO2 ordered 

nanotubular template and electrodeposited α-MoO3 chromic interface as complimentary 

binary EC semiconducting materials in order to overcome the chromic limitations of each 

of these individual TMO. The binary EC devices performed significantly better than the 

bare TiO2 template in terms of change of optical modulation (∆OD of 0.08 and 0.02 

respectively). A comprehensive characterisation and theoretical analysis were carried out, 

and they revealed some of the benefits and merits of the developed binary EC system, 

including faster charge carrier transfer, better cyclic stability and high capacity of ion 

accommodation. As a result, the electric field driven methods together with the concept of 

binary chromic systems provide validation for the core concept of this thesis. 

In the third stage, the author investigated Nb2O5, which is a TMO known for exhibiting 

great potential for chromic applications but is limited due to its relatively large bandgap. 

The author demonstrated EC devices based on ordered anodized Nb2O5, where a 
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coloration efficiency (CE) value of 47.0 cm2 C−1 was calculated. The calculated CE value 

was the highest in comparison to all other Nb2O5 based EC devices at the time. The author 

provided theoretical and experimental insight into the enhanced EC performance in 

comparison to compact Nb2O5 and non-ordered nanostructures. It was shown that a 

combination of large surface to volume ratio, high order and low embedded impurities 

were the reason for the enhanced chromic performance. However due to the relatively 

large electronic bandgap, the performance of Nb2O5 was limited to high applied voltages 

and still relatively small CE in comparison to conventional EC materials. 

In the final stage, to overcome the limitations Nb2O5, the author applied the concept of 

binary complimentary TMO system incorporating MoO3 as the chromic layer while the 

ordered Nb2O5 nanostructure functions as the template. As a result, the EC performance 

of the binary device exceeded that of each individual incorporated TMO with a significantly 

high CE value of 149.0 cm2 C−1. In addition, the electronic bandgap of the binary device 

was reduced to closer to that of MoO3 electronic bandgap, which allowed for operation in 

low applied voltages. The author provided a comprehensive characterization of the 

fabrication procedures and EC measurements for this binary system to associate these 

enhancements to the properties that were offered by each TMO. 

In summary, the author believes that the outcomes of this PhD research provide an in-

depth analysis of chromic devices based on TMOs including MoO3, TiO2, Nb2O5 and their 

selected binary systems synthesised using electric field driven techniques. The author also 

believes that this study has contributed significantly towards improving TMO capabilities 

for chromic applications. 
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Chapter 1  

 

Introduction and Literature Review 

1.1 Motivation 

The constant pursuit for better methods and materials for creating chromic devices is one 

of the major fields of research of our time. Experiments carried out under investigation of 

materials for more efficient morphologies, crystalline phases and stoichiometries as well as 

optical and electronic properties are vital for future advancement in the development of 

higher quality chromic systems.  

Nowadays, chromic systems are the core of many systems and devices such as smart 

windows for architectural and automotive industries, optical modulators and solar cells as 

well as optical devices and displays. These chromic systems can be fabricated using thin 

films in the thicknesses of nanometer to micrometer range and coated on surfaces of flat 

or irregular dimensions. The focus is on thin films with high transparency, large optical 

modulation, while maintaining excellent coloration efficiency. In addition, the fabrication 

process should pose low harm to the environment, requiring low energies to produce and 

at the same time is easy to control.  

Many materials have shown excellent potential over the past years of intense research on 

chromic systems. Nanostructured transition metal oxides (TMOs) such as titanium dioxide 

(TiO2), tungsten trioxide (WO3), molybdenum trioxide (MoO3), zinc oxide (ZnO), vanadium 

pentoxide (V2O5) and niobium pentoxide (Nb2O5) have received significant attention in 

recent years for the application of chromic devices.1-7 Their unique features such as high 

optical transparency, large surface to volume ratio, large capacity for accommodating 

intercalating ions, and the possibility of uniform interaction across the whole volume are 
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largely attributed to the merits of ordered zero- one- and two-dimensional (0D, 1D and 2D) 

nanostructures.8-13 Additionally, combining TMOs with complementary features have been 

shown to promote enhanced charge separation, surface absorption and structure stability 

as well as bandgap engineering.8, 13-15 These features provide pivotal aspects chromic 

systems. 

In this PhD research, the author has made an informed decision to focus on MoO3 as core 

material of the investigation. MoO3 is very similar to WO3 in many semiconducting and 

chromic aspects. As a result, it has been shown to be widely investigated in chromic 

devices, electronic systems and batteries.16-20 Similar to WO3, MoO3 performs remarkably 

for ion and electron intercalation.4, 21-23 However, it is known that MoO3 is not stable for any 

long term chromic applications. The possibility of incorporating this material into 

frameworks that can enhance its longevity will greatly improve the performance and 

stability of MoO3 based chromic systems. An important aspect in developing chromic 

systems based on MoO3 is to choose fabrication methods that are easy to control and 

compatible with electronic and optical industrial standards. As such, an electric field driven 

technique, electrochemical deposition method, will be the primary focus for the deposition 

of MoO3 in this PhD research as it is one of the least energy hungry methods, which is 

compatible with many industrial processes and can be widely controlled. 

The investigation of compatible chromic frameworks for MoO3 is the other goal of this PhD 

research. The author of this thesis chose TiO2 and Nb2O5 as the possible frameworks as 

they are capable to be used in chromic devices themselves. They are in general more 

durable materials than MoO3, which also potentially increase the longevity of the 

developed chromic systems. As the focus of this PhD study is the implementation of 

electric field driven electrochemical methods, anodization is used as the primary technique 

for the development of highly porous and stable TiO2 and Nb2O5 templates. Anodization is 

chosen by the author of this thesis as it has shown to produce highly ordered 

nanostructured films of such TMOs that exhibit strong stability and large surface to volume 
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ratio.3, 24-28 The author of this thesis hypothesized that MoO3 can be potentially 

electrodeposited conformally into these template nanostructures to incorporate such 

advantages for possible enhanced charge carrier transfer, efficient ionic intercalation, high 

stability and, as such, better chromic performance. 

According to the aforementioned justifications and motivations, the objectives of this PhD 

work are planned which are presented in the following section. 

 

1.2 Objectives  

1.2.1 Investigation of Electrodeposited MoO3 for Gasochromic Systems 

Amongst TMOs, MoO3 in various nanostructure morphologies such as wires, rods, belts, 

particles, flowers and tubes29-38, has presented great potential in a wide range of 

applications, such as photochromic and electrochromic devices,39-41 catalysts,42 gas 

sensors,30, 43 photovoltaic cells40 and batteries.22 

The two most common crystal phases of MoO3 are the thermodynamically stable 

orthorhombic α-phase MoO3 and the metastable monoclinic β-phase MoO3.44-45 These two 

phases have very different crystal structures (Figure 1.1). Transition of β-MoO3 to α-MoO3 

has been reported as a result of thermal treatments at temperatures of 350°C and 

above.45 
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Figure 1.1 (a) Thermodynamically stable orthorhombic α-MoO3, which are structured in 

compact overlapping double layers of 0.7 nm thickness and (b) metastable monoclinic β-

MoO3, which is structured in zigzagging arrays. 

α-MoO3 is of particular interest for its unique layered structure. The layers are made of 

atomically thin layers that have a thickness of ~0.7 nm, and exist in double-planes of link 

distorted MoO6 octahedra, which then stack up to form secondary layers of several tens of 

nanometers.10 In each double-layer, MoO6 octahedra form corner sharing rows along the 

[100] plane and edge-sharing zigzag rows along the [001] plane (Figure 1 (a)). Lamellar 

formation is made by linking the adjacent layers along the [010] plane only through weak 

van der Waals forces46, while the internal interactions between atoms within the double-

layers are dominated by strong covalent and ionic bonding. Knowing that the lamellar 

formation of the secondary layers is bonded together by weak van der Waal’s forces, it is 

possible to reduce the thickness of the layered structure through techniques such as 

mechanical exfoliation.10  It has been shown that the reduction in the number of layers can 

increase the carrier mobility of the material, as also demonstrated for structurally similar 

materials such as MoS2,
47 so it is highly probable that a similar procedure can be adopted 

for obtaining thin layers of MoO3 with high carrier mobility. 

The MoO6 octahedra that form the β-MoO3 structure do not exist in zigzag rows along the 

[001] plane, and do not form double-layers like α-MoO3 (Figure 1 (b)). There are no van 

b 

a 
c 

(b) (a) 

~1.4nm 

[010] 
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der Waal forces, because adjacent MoO6 octahedra share corners in three dimensions to 

produce a monoclinic structure.44, 48 There are some suggestions that β-MoO3 has better 

catalytic properties than α-MoO3 for special applications.49-50 However, it is possible that 

such observations are due to the size of the grains rather than their crystal phase, as 

these reports have not compared films with α- and β- MoO3 phases of the same 

morphologies and grain dimensions.     

Numerous synthetic techniques have been reported for the formation of MoO3, including 

pulsed laser deposition51, sol-gel52, sputtering53, spray pyrolysis54, chemical vapor 

deposition20, thermal evaporation55-56, hydrothermal57, anodization58 and 

electrodeposition.45, 59-61 Amongst these techniques, electrochemical methods are 

advantageous, as they are generally easy to perform and can be readily used for 

engineering films’ physical and chemical properties.62 They offer facile control over 

thickness, morphology, extent of oxidation and doping, at room temperature under ambient 

conditions, which makes the process versatile and compatible with electronic device 

industry standards. 

The focus of this PhD research is only gasochromic MoO3 as for electrochromic systems 

based on MoO3, as the sole chromic component, have not shown to provide any great long 

term stability. MoO3 is a widely reported chromic material and hydrogen interaction has 

been widely studied with respect to chromic properties of MoO3. It has been reported that 

through electrochemical reactions, the injection of H+ ions causes a transformation of the 

original MoO3 crystal structure into hydrogen molybdenum bronze.21, 63 However for the 

gasochromic experiments, the hydrogen molybdenum bronze is not the sole product, as 

part of the material appears as MoO3-x, and this leads to the formation of water and 

oxygen vacancies. Additionally, the MoO3-x exposure to air does not allow the full 

transformation of the crystal structure back into MoO3.64 Such studies are more focused on 

the physical vapor deposited type MoO3 and the effect of different crystal phases in 

electrodeposited MoO3 on its gasochromic properties has yet to be explored.  
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In this thesis, the author attempts to electrodeposit MoO3 by carrying out potential cycling 

deposition. Through the tuned control of electrodeposition, the author demonstrates 

selective deposition of α and β phase MoO3 onto transparent fluorine-doped tin oxide 

(FTO) substrates. Comprehensive characterization will be carried out to assess the 

morphology and crystal structure of the electrodeposited films before and after annealing. 

Gasochromic devices based on α and β phase MoO3 will be fabricated to evaluate the 

influence that each crystalline structure will have on the gasochromic performance. 

 

1.2.2 Investigation of Anodized TiO2 with Electrodeposited MoO3 Coating for 

Electrochromic Applications 

As described in the previous sections, ordered 1D and 2D nanostructures of TMOs have 

received significant attention for chromic applications.15, 65 Adding thin coatings of another 

TMO onto such 1D and 2D nanostructures, can potentially promote enhanced charge 

separation, surface absorption and structural stability as well as the possibility of tuning 

electronic features such as their bandgap.12, 66 These distinctive characteristics provide 

opportunities in augmenting the properties of nanotechnology enabled systems 

incorporating binary TMOs.  

TiO2 nanotubes (TNT) are one of the most extensively studied nanostructured TMOs.26, 67-

68 It has been shown that their highly ordered structure provides many opportunities for 

creating electronic, mechanical and optical devices and systems with remarkable 

properties. The ordered structure and highly tunable electronics of TNT can also be 

potentially used for facilitating electrochromic activities. However its weak ion 

accommodation ability,14 unfavorable band structures69 and the newly discovered issues 

with charge carrier mobility70 within the tubes lead to mediocre electrochromic 

responses.69 This has thus far excluded TNT as a prominent choice for electrochromic 

applications. It has been reported that coating or decorating TNT with complimentary 

electrochromic TMOs such as WO3 significantly improves its electrochromic properties.2, 71 
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However, comprehensive studies on MoO3 complimentary electrochromic TMOs are rarely 

available.72-74 

If α-MoO3 is used as a coating material, its peculiar properties such as the high capacity 

for accepting intercalating ions due to its stratified structure as well as many free charge 

carrier within these planes will potentially offer opportunities for adjusting the band 

structure of TNT thereby enhancing ion intercalation that can improve the electrochromic 

properties of TNT’s. Additionally, implementing electron scavenging materials with the 

proper electronic structures, with reference to the electronic structure of MoO3, can 

improve the charge transfer and subsequently augment the electrochromic performance. 

So far, previous research on decorating TiO2 with MoO3 and developing composites of 

MoO3 and TiO2 has resulted in limited success for practical applications. This is largely 

due to the fact that in those reports metal or alloy sheets were used as the substrates,73-74  

which are non-transparent. As a result, the outcomes are not feasible for the fabrication of 

many types of optical devices or displays. Furthermore, there is a lack of fine control over 

synthesis and insufficient analysis of the incorporated MoO3 that influences the system. 

Various liquid and vapor synthesis techniques have been used for synthesizing MoO3 in 

different morphologies.8, 75-76 However, there is rarely any report on methods that result in 

a uniform and conformal coating of MoO3 onto templating substrates. Access to such a 

method is critical for forming a homogenous coverage on a nanostructured substrate such 

as TNT. In this regard, electrochemical deposition is an attractive synthesis technique as it 

offers facile control over film growth, where the experimental parameters can in principle 

be tuned for depositing very thin layers of MoO3. The electrodeposition of MoO3 can be 

carried out under ambient conditions and relatively mild environments, making it a suitable 

approach to be implemented onto TNT platforms.77  

In this PhD research, the author attempts to electrodeposit MoO3 onto transparent 

conductive substrates to achieve a uniform coverage over a large area. The author 

hypothesises that adhesion of electrodeposited MoO3 to conductive substrates may not be 
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strong enough to withstand the conditions for electrochromic measurements, posing a 

stability issue for possible applications in electrochromic devices. In such devices a 

potential is applied against a reference electrode that could result in peeling the loosely 

adhered MoO3 layers, rendering it inefficient for industrial applications that require 

durability. Therefore the author theorize that by increasing the roughness of the substrate 

surface the adhesion of MoO3 can be substantially increased, which would enhance the 

stability and durability of an electrochromic device. In this case TNT, with its large surface 

to volume ratio is a promising template.  

In this thesis, the author will demonstrate the coating of TNT films with electrodeposited 

MoO3 and comprehensively investigates their composition and electrochromic properties. 

The EC performance of the MoO3 coated TiO2 devices will be assessed and compared 

with the bare TiO2 devices. Thorough characterization of each set of devices will be 

carried out to examine the TiO2 nanostructure template as well as the strucutural impact 

and EC performance the MoO3 augmentation will cause.  

 

1.2.3 Investigation of Chromic Anodized Nb2O5 

Within the TMO family, Nb2O5 is one of the emerging but less studied oxides. Nb2O5 has 

an excellent potential as an EC material. Its merits include multicolor capabilities78 and 

long term cyclic stability.79 Compact crystalline Nb2O5 has been reported to show a 

coloration efficiency (CE) of less than 10 cm2 C−1 and therefore many studies have been 

conducted to improve the EC performance by employing nanostructured Nb2O5.80 

Previously investigated morphologies of Nb2O5 such as nano-nuggets and nano-fibers 

have demonstrated increased active surface areas, which have improved CE efficiency to 

13 and 26 cm2 C−1, respectively.7, 81 However these nano-morphologies lack the necessary 

structural fundamentals such as optimum active sites and efficient electron transportation 

to utilize the potentials Nb2O5 have for the EC industry, as for practical applications higher 

CEs and better than reported long term stabilities are required. 
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Many Nb2O5 morphologies have been reported, which have been employed in applications 

including dye-sensitized solar cells (DSSC)24, 27, 82 and  vapor sensors.83 Amongst them, 

ordered nano morphologies such as nano-rods,83 nano-forest,27 nanotubes84 and ordered 

nanopores24 structures have the potential to provide adequate active sites, large surface 

area and structured electron transportation for enhanced EC applications. A variety of 

synthesis techniques such as anodization,24 spray pyrolysis,7 sputtering85 and pulse-laser 

deposition86 have been reported in recent years to facilitate ordered Nb2O5 deposition. 

However, it is preferable that the synthesis technique to be carried out in ambient 

conditions, low cost and with minimal use of harmful substances in order to accommodate 

electronic and manufacturing industries standards. 

To date, dense and well-ordered nanoporous Nb2O5 films, with a high degree of purity, 

which facilitate directional electron transfer, have been successfully synthesized using the 

anodization of niobium (Nb) thin films and foil.24 The application of such thin films for 

DSSC has been demonstrated, showing their improved efficiency as a result of directional 

and low scattering paths for free electrons as well as increased-active surface sites for 

substantial enhancement in electron scavenging. As such, the author hypothesizes that 

such nanostructured Nb2O5 thin films will also be of great value for EC applications.  

In this PhD research, the author will comprehensively study anodized nanoporous Nb2O5 

films which are formed on FTO substrates. The work is conducted with the aim to 

demonstrate that these films can potentially show impressive EC properties due to the 

abovementioned hypothesis.  

 

1.2.4 Investigation of Anodized Nb2O5 with Electrodeposited MoO3 coating for 

Chromic Applications 

Due to Nb2O5 innately possessing a relatively wide bandgap of ~3.8 eV,87 EC devices 

operated at low applied voltages cannot be realized using this TMO. This is in contrast 

with TMOs such as anodized WO3, which has been shown to have an impressive CE of 
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141.7 cm2 C−1 obtained at a low applied potential of −0.25 V.3 In order to lift the restrictions 

placed on wide bandgap TMOs as an EC material, binary devices made up of 

complimentary TMOs have been investigated. Methods such as coating and composites 

have shown great improvement upon existing mono-systems.88-89 

In this thesis, the author attempts to combine highly ordered nanochannelled anodized 

Nb2O5 with a stratified electrodeposited α-phase MoO3, using which the author theorizes 

will enhance the EC performance. Nanochanelled Nb2O5 will be used to provide low defect 

pathways for charge transfer28 while also increasing the surface to volume ratio. Stratified 

α-MoO3 will potentially enhance the intercalation capacity and help in reducing the 

operation voltage due to its relatively narrow bandgap. The morphology and crystalline 

structures of the developed materials and the EC performance of such films will be 

comprehensively investigated in this PhD research. 

 

1.3 Thesis Organisation 

This thesis is primarily dedicated to the investigation and development of thin film chromic 

devices based on TMOs using electric field driven methods using selected electrolytes. 

The aim is to achieve high transparency, optical modulation, coloration efficiency, device 

operational stability and physical stability using such electrochemically deposited or 

manipulated methods. The major sections of this thesis are as follows: In Chapter 2, the 

author will demonstrate his investigation of MoO3 based gasochromic devices. In this 

chapter the author will investigate the gasochromic performance of devices fabricated from 

electrodeposition of MoO3 onto FTO transparent substrates. The processes for the 

deposition of α and β-MoO3 are presented. The investigation on gasochromic devices due 

to different morphologies and crystalline structures will be demonstrated. In Chapter 3, the 

author will investigate the electrochromic performance of ordered anodized TiO2 nanotube 

arrays and the influence of electrodeposited MoO3 coating over the TiO2 template. The 
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characterizations and analysis of these combined systems will be shown and the EC 

performance of the MoO3 coated TiO2 devices will be presented. The author will also 

provide a theoretical analysis of the combined system. In Chapter 4, the author will present 

electrochromic devices based on ordered anodized Nb2O5. The investigation of these 

devices in terms of their transparency, optical modulation, CE and cyclic stability will be 

fully demonstrated. In Chapter 5, the author will demonstrate the electrochromic devices 

based on electrodeposited MoO3 coated ordered nanochannelled Nb2O5. The author will 

provide characterization of the MoO3 coated Nb2O5 devices and theoretical analysis of the 

performance augmentation of such systems. Finally, in Chapter 6, the author will present 

concluding remarks and suggest possible future works.  
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Chapter 2  

 

Electrodeposited α- and β-phase MoO3 Films and Investigation of Their 

Gasochromic Properties  

2.1 Introduction 

In chapter 1, it was emphasized that the author has chosen to focus on chromic materials 

that held potentials to exceed current performance limits. This was carried out by 

searching and analysing the state-of-the-art materials presented in literature on transition 

metal oxides (TMOs),48, 71, 90-91 which have excellent capacities for intercalation of ions and 

electrons for applications including chromic systems, catalysts,42 sensors43 and batteries.22 

In order to identify the capability of TMOs as chromic materials, the author reviewed the 

crystalline structures, morphologies and electronic properties of many TMOs.29-31, 33-36, 38, 92 

Base on the analysis carried out, the author of this thesis identified MoO3 as one of the 

candidates due to its suitable electronic structure for chromic applications, suitable band 

energy diagram, high capacity to accommodate intercalation ions and versatile synthesis 

methods.10, 21, 44-45, 49-59, 61-63, 93-94  

In this chapter, the author will present his work on the development of gasochromic 

devices based on electrochemical synthesis of α- and β-MoO3. As preferential synthesis of 

different phases of MoO3 is rarely reported, the author used this opportunity to investigate 

and demonstrate a facile electrodeposition method with the intent to selectively produce 

and tune different phases of MoO3 onto transparent fluorine-doped tin oxide (FTO) 

substrates. The electrodeposition technique was chosen in line with the core concept of 

this thesis that emphasizes on the electric field driven methods for the formation and 

engineering of the chromic thin films. 
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In this chapter, the author presents the outcomes of the study on electrodeposited α- and 

β-phase MoO3 films. A comprehensive characterization of the electrodeposited MoO3 will 

be presented. The influence of the electrodeposition parameters on the crystal phase of 

MoO3 films will be described. Eventually, the crystal phase and morphology of the 

synthesised MoO3 films will be compared and evaluated for gasochromic performances. 

The work in this chapter was published as a full article in the journal Crystal Growth and 

Design.77 

 

2.2 Experimental 

2.2.1 Solution Preparation 

Aqueous solutions of sodium molybdate (Thermo Fisher Scientific Australia) over a 

concentration range of 0.01 to 0.20 M were prepared with deionized water (resistivity of 

18.2 MΩ cm) purified by use of a Milli-Q filtering system (Millipore). H2SO4 (95 – 98% 

analytical grade, Ajax Finechem) was added to each solution to adjust the pH levels to 1, 

2, 4 and 6. The pH was measured using a pH meter from Hanna Instruments (pH211). 

 

2.2.2 Electrodeposition 

Electrodeposition experiments were carried out at room temperature (22 ± 2 °C) with a CH 

Instruments, Model CHI413A potentiostat using a 3 electrode configuration and employing 

a fluorine doped tin-oxide (FTO) glass substrate (0.2 cm2 exposed area) working 

electrode, a graphite rod (6 mm diameter, Johnson Matthey Ultra “F” purity grade) counter 

electrode and a Ag/AgCl (3 M KCl) reference electrode. The electrodeposition protocol 

involved cycling the potential from defined upper limits to a negative potential value of 

−1.2 V at different sweep rates ranging from 3 to 10 mV s−1 for 1 to 50 cycles. After 

electrodeposition the samples were washed with Milli-Q water and dried in a stream of 
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high purity N2 gas. Selected samples were further annealed in a standard horizontal 

furnace at a temperature of 300°C for 120 minutes in ambient air, with a heating and 

cooling ramp rate of 1 °C min−1.  

 

2.2.3 Characterization 

The crystal phases were compared and characterized using X-ray diffraction (XRD) 

obtained with a Bruker AX 8: Discover with General Area Detector Diffraction System 

(GADDS). Raman spectra were recorded with a system incorporating an Ocean Optics QE 

6500 spectrometer, and a 532 nm 40 mW laser as the excitation source. The surface 

morphologies were observed using scanning electron microscopy (SEM) and performed 

on a FEI Nova Nano instrument. 

 

2.2.4 Gasochromic Measurements 

Following characterization, selected annealed samples were covered with approximately 

25 Å of palladium using DC sputtering. The in-situ gasochromic measurements were 

performed with the system attached to a computer controlled mass flow controller 

regulating the flow rate at 200 sccm into a customized gas testing chamber. The samples 

were mounted inside the chamber and initially flushed with synthetic air for 30 min to 

remove excess moisture and contaminants. N2 diluted hydrogen gas (3% H2 + 97% N2) 

was introduced into the chamber for 5 mins to initiate the coloring process. 

The expressions: “Air_1” and “H2_1” in this chapter corresponds to the samples exposed 

to “first time zero air exposure for 30 min” and “first time H2 exposure for 5 min”. 

 

2.3 Results and Discussion 

In general, the pH of the electrolyte solution plays an important role in the 

electrodeposition of metal oxides.95-96 This is demonstrated in Figure 2.1 which shows the 
24 

 



cyclic voltammetric behavior of a FTO electrode in an aqueous 0.01 M solution of 

Na2MoO4 at pH values of 6, 4, 2 and 1, respectively. This was achieved by adding H2SO4 

to the unadjusted Na2MoO4 solution (pH = 6.9). It is clear from the CV data that very low 

currents are passed at pH 6, which increase in magnitude over the entire potential range 

as the pH is lowered to 1. Over a pH range of 2 to 6 a plateau region is observed from 0.0 

to −0.4 V in all cases, which is followed by a well defined cathodic peak that is shifted to 

more positive potentials at a pH value of 2. At pH = 1 a well defined peak is not observed 

on the negative sweep. This is consistent with previous observations reported by Gómez97 

who also suggested that the anodic peaks that are observed on the reverse sweep are 

due to the oxidation of hydrogen formed during the reduction process, which is facilitated 

at the lower pH values. A recent study has demonstrated that MoO3 is quite an active 

material for the hydrogen evolution reaction.98 

 

Figure 2.1 Cyclic voltammograms recorded at a FTO electrode in 0.01 M Na2MoO4 at a 

sweep rate of 0.2 V s−1 at a pH of (a) 6, (b) 4, (c) 2 and (d) 1. The inset figures represents 

a magnified view of the data at a pH of (e) 4 and (f) 6. 
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Under the above conditions no significant deposition of material was observed after one 

cycle. In order to obtain thicker films suitable for characterization, a repetitive potential 

cycling protocol over a potential range of 0.4 to -1.2 V at a sweep rate of 0.2 V s−1 was 

used. A blue film was formed on the FTO during the initial cycles (1 to 5) at all four pH 

levels; where a gradual increase in the color intensity of the film was observed when the 

pH was lowered from 6 to 1. With an increase in the number of cycles the films became 

thicker; however, dissolution occurred and the electrolyte solution gradually turned blue. 

The thickest films were formed at a pH of 4, as expected from the larger currents passed 

during the deposition process as seen in Figure 2.1 and this pH was employed for the rest 

of the chapter. However, it was noted that films suitable for micro-characterization required 

increasing the concentration of Na2MoO4 to 0.2 M while limiting the deposition process to 

one cycle to minimize dissolution of the film into solution.  

The effect of sweep rate on the electrodeposition process was then investigated to study 

whether the rate of formation would significantly affect the film properties. Illustrated in 

Figure 2.2 shows CVs recorded at a FTO electrode in 0.2 M Na2MoO4 adjusted to a pH of 

4 at a sweep rate of 3 mV s−1 (curve (a)), 5 mV s−1 (curve (b)), and 10 mV s−1 (curve (c)).  

It can be seen that the magnitude of the current does not increase from 3 to 5 mV s-1, and 

that the increase observed at a sweep rate of 10 mV s-1, is not consistent with a diffusion 

limited process which should show an increase consistent with the square root of the 

sweep rate.  
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Figure 2.2 Cyclic voltammograms recorded at a FTO electrode in 0.2 M Na2MoO4, at a pH 

of 4, obtained at a sweep rate of (a) 3, (b) 5 and (c) 10 mV s−1. 

The author found that the sweep rate had a significant effect on the phase and crystallinity 

of the films, which was confirmed to be MoO3 by Raman spectroscopy. Figure 2.3 (a) 

shows Raman scattering spectra showing the transition between α-MoO3 and β-MoO3 of 

the as deposited samples after one potential cycle. At a sweep rate of 5 mV s−1 (plot (ii)) 

films were produced that exhibited the properties of the thermodynamically stable, 

orthorhombic α-MoO3 which is verified by observation of a peak at 821 cm−1 assigned to 

the double coordinated oxygen (Mo—O—Mo) stretching mode.99 This mode results from 

corner-sharing oxygen between two MoO6 octahedra. The peak at 666 cm−1 can be 

assigned to the edge sharing of triply coordinated oxygen (Mo—O(3)) stretching mode, 

which results from edge-shared oxygen between three octahedral. The peak at 991 cm−1 

is assigned to the terminal oxygen (Mo=O) stretching mode, which results from an 

unshared oxygen. When the sweep rate was decreased to 3 mV s−1 (plot (i)), additional 

peaks were observed in the Raman spectrum. The peaks at 894, 849, 774 and 343 cm−1 

are assigned to the metastable, monoclinic β-MoO3.100 The amount of β-MoO3 in the as 
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deposited film is significant, as the vibration intensity of the peaks dominate the peaks 

associated with α-MoO3. In contrast, when the sweep rate was increased to 10 mV s−1 

(plot (iii)), the vibration intensity of the peaks fell drastically and there was no longer any 

evidence of β-MoO3 formation from the Raman spectrum.  

 

 

Figure 2.3 Raman spectra of (a) electrodeposited and (b) annealed MoO3 films on FTO 

glass substrates obtained at a sweep rate of (i) 3 (ii) 5 and (iii) 10 mV s−1 in a 0.2 M 

Na2MoO4, at a pH of 4.  

Given that the as deposited films were quasi-amorphous in nature as evidenced by a lack 

of any peaks in their XRD patterns (will be presented later) the samples were annealed to 

generate crystalline materials. Lack of peaks in the MoO3 crystal XRD patterns of the as 

electrodeposited films, is generally assigned to the presence of the amorphous phase of 
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this metal oxide. However, Raman spectra of the electrodeposited films show the 

presence of β and α phases.40, 101 It is the author’s believe this is due to the existence of 

locally ordered crystal clusters.102 These locally ordered clusters can generate Raman 

signals as they efficiently interact with phonons but randomly scatter the XRD beams to 

avoid the formation of any patterns or peaks. 

The Raman spectra of the annealed samples are shown in Figure 2.3 (b). The existence of 

peaks at 894, 849, 774 and 343 cm−1, in Figure 2.3 (b) plot (i), in the spectra after the 

sample was annealed at 300 °C for 2 hours verified the presence of β-MoO3. In Figure 2.3 

(b) plot (ii), the vibration intensity of the observed peaks is significantly sharper than the as 

deposited counterpart, showing that the crystal formation was evident during the annealing 

process for the sample deposited at the 5 mV s−1 rate. Interestingly, the same 

enhancement in the crystallinity of the material was not observed for the sample deposited 

at 10 mV s−1. The dominance of the β-MoO3 even after annealing is remarkable. β-MoO3 is 

known to be metastable and a complete transition to α-MoO3 has been reported for 

annealing temperatures above 350°C.44, 103 However in this chapter, the author used an 

annealing temperature of 300°C, less than the reported optimum transition temperature of 

350°C, which possibly allows the co-existence of both β-MoO3 and α-MoO3. Due to the 

author’s observations, it seems that it is possible to obtain dominant ratios of β-MoO3 to α-

MoO3 by manipulating the CV parameters during the electrodeposition process and still 

maintain these ratios even after annealing at moderate temperatures. 

It has been shown previously in the case of gold nanocrystal electrodeposition under 

repetitive cycling conditions that the morphology of the deposit is affected by the choice of 

the upper and lower limits of the potential employed.104 Therefore the upper limit of the 

voltage range was varied to observe the effect on the properties of the electrodeposited 

film. The electrolyte solution was kept at 0.2 M Na2MoO4 adjusted to a pH of 4 and run at a 

sweep rate of 5 mV s−1 for 1 cycle. Illustrated in Figure 2.4 are CVs recorded using a 

series of upper potential limits of −0.4, −0.1, 0.1, 0.4 and 1.0 V.  It can be seen that the 
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CVs are essentially identical with no observation of additional processes at the more 

positive potential values which suggests that there are no lower oxidation state 

molybdenum oxide species generated during the electrosynthesis that can be detected in 

this potential range.  

 

Figure 2.4 Cyclic voltammograms recorded at a FTO electrode in 0.2 M Na2MoO4, pH of 4, 

at a sweep rate of 5 mV s−1, with varying upper potential limits.  

However, even though changes were not observed in the cyclic voltammetric behavior, the 

Raman spectra of the resultant films indicate preferential β-MoO3 growth as the upper limit 

is shifted towards more negative potentials (Figure 2.5). It can be seen from plots (iv) and 

(v), which correspond to an upper limit of +0.4 and +1 V, respectively, that the films were 

purely α-MoO3. However as the upper limit was shifted towards more negative potential 

values, the presence of β-MoO3 became more significant, in particular using an upper limit 

of -0.4 V (plot (i)) as can be seen via the emergence of strong β-MoO3 vibration peaks.  

As shown in Figure 2.5 (b), the Raman spectra of the annealed samples also verify the 

preferential growth of β-MoO3 as the upper potential limit is shifted to more negative 
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potentials. It can also be seen that the ratio of β-MoO3 to α-MoO3 increases after 

annealing. Indeed, it was observed that the presence of α-MoO3 almost completely 

disappeared (Figure 2.5 (b) plot (i)) when an upper limit of −0.4 V was used.  

The dependence of the phase of MoO3 on the upper potential limit is quite interesting. It 

seems that during the electrodeposition of MoO3 on the negative sweep the kinetically 

favored β-phase is formed. The preferential formation of this phase is continued upon 

reversing the sweep until an upper potential limit of −0.40 V is reached. This is consistent 

with electrocrystallization of other semiconducting materials such as CuTCNQ in organic 

solvent, as reported by Neufeld et. al.,105 who showed that the kinetically favored phase I 

is generated under electrodeposition conditions as opposed to the thermodynamically 

favored phase II.106 The electrochemical conversion of phase I CuTCNQ into phase II 

CuTCNQ; however was achieved under aqueous conditions by cycling the potential at an 

upper limit of sufficiently positive potential.105 It seems in the case of MoO3 only one sweep 

is required into a more positive potential region to achieve conversion from the kinetically 

stable phase into the thermodynamically stable phase.  
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Figure 2.5 Raman spectra of (a) electrodeposited and (b) annealed films of MoO3 

electrodeposited at a sweep rate of 5 mV s-1 for one cycle over a potential range of (i) −1.2 

to −0.4 V, (ii) −1.2 to −0.1 V, (iii) −1.2 to 0.1 V, (iv) −1.2 to 0.4 V and (v) −1.2 to 1.0 V.  

Illustrated in Figure 2.6 are XRD patterns showing the evolution from quasi-amorphous to 

crystalline MoO3 thin films. The as deposited films are quasi-amorphous and the sharp 

diffraction peaks seen in Figure 2.6 in plots (b) and (d) correspond to the reflections from 

the underlying FTO substrates. Upon annealing for 2 hours at 300 °C, many peaks emerge 

corresponding to the layered, orthorhombic α-MoO3
43. Only the peak at 23.7° can be 

assigned to reflections from either the (011) plane of the α-MoO3 or the (110) plane of the 

β-MoO3. It is observed that the annealed sample obtained at 5 mV s−1 (Figure 2.6 plot (a)) 

has preferential growth in the (111) plane, and the annealed sample prepared with a 

sweep rate of 3 mV s−1 (Figure 2.6 plot (c)) sample has preferential growth in the (021) 

plane. 
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Figure 2.6 XRD patterns of MoO3 electrodeposited on FTO at using a sweep rate of (a) 5 

mV s−1 annealed at 300 °C for 2 hours (b) 5 mV s−1 as deposited, (c) 3 mV s−1 annealed at 

300 °C for 2 hours and (d) 3 mV s−1 as deposited. Asterisk denotes FTO peaks.  

Optical gas sensing measurements were conducted to assess the gasochromic property of 

the deposited films in response to H2 and consequently H+ intercalation of the films. A thin 

catalytic layer of Pd, in the order of 25 Å, was deposited onto the films to allow the 

dissociation of the H2 gas on the samples. The films were exposed to synthetic air in 

between measurements for recovery and bleaching the samples. 

The samples used for gasochromic measurements were obtained using a lower 

concentration of Na2MoO4 at 0.02 M. This was to decrease the deposition rate and film 

thickness which resulted in films with minimum cracks and shorter response time upon the 

gas exposure. Illustrated in Table 2.1 are the electrodeposition conditions utilized for each 

sample. The crystal phases of the films were confirmed using Raman spectroscopy and 

correlated with the data shown for the electrodeposited samples form a 0.2 M Na2MoO4 

solution.  
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Table 2.1 Electrodeposition conditions used for synthesizing different phases and 

morphologies of MoO3 from a solution containing 0.02 M Na2MoO4 at a pH of 4. All 

samples were annealed at 300°C after the deposition. 

Sample no Type Electrodeposition conditions 

1 Smooth α-MoO3 −1.2 to 0.4 V at 10 mV s−1 for 1 cycle 

2 Porous α-MoO3 −1.2 to 0.4 V at 5 mV s−1 for 1 cycle 

3 β-MoO3 −1.2 to -0.4 V at 5 mV s−1 for 1 cycle 

 

The SEM images of the samples and each sample’s visible spectra, before and after 

exposure to H2 gas, are presented in Figure 2.7. For sample 1 (Figure 2.7 (a)), a surface 

consisting of layered α-MoO3 is observed. These layers are stacked on the top of one 

another, forming a continuous surface. Sample 2 (Figure 2.7 (b)) is mainly made of a 

transitioning porous surface with some visible remains of the layered α-MoO3. Sample 3 

(Figure 2.7 (c)) is the surface of the β type film. The film is made of corrugated grains of 

the order of 150 to 200 nm.  

In these experiments, Samples 1 and 3 were compared to reveal the differences of the 

gasochromic responses between the materials crystal phases. Samples 1 and 2 were 

compared to shed light on the difference between the surface porosities in response to H2 

gas. 
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Figure 2.7 (1) SEM images and (2) Visible transmittance spectra after exposure to “Air_1” 

and “H2_1”: (a) smooth α-MoO3, (b) porous α-MoO3 and (c) β-MoO3 films. 

In the H2 gasochromic measurements, the visible spectra of the samples in both air and 

after exposure to H2 are demonstrated. Figure 2.7 (1b) shows the spectra of the smooth α-

MoO3 after initial “Air_1” exposure and then consequently to “H2_1”. In the presence of H2, 

the film transmittance change was negligible at 400 nm. However, the difference increased 

with wavelength and reached a plateau after approximately 650 nm. In this range, the 

change was consistently above 20%. Figure 2.7 (3b) shows the spectra of the β-MoO3, 
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which indicates that in the presence of H2, the film transmittance changed consistently 

throughout the plotted spectrum. This change was only ~5% which was much smaller than 

the α-MoO3 sample in Figure 2.7 (1b). Illustrated in Figure 2.7 (2a) is the transmittance 

modulation for the porous α-MoO3 sample after exposure to H2. The change was 

approximately 7% at 400 nm and increased with wavelength, and this difference reached a 

plateau with a magnitude of over 40% after 900 nm. In contrast to the smooth α-MoO3 

sample, the response is significantly larger. This suggests that the samples with higher 

surface-to-volume ratios offer greater Pd catalytic surface sites for H2 interaction, hence 

dissociating more H+ ions to interact with MoO3.  

In previous work by Ou et al[2] on in situ Raman spectroscopy of H2 interactions with  α-

MoO3 shows that after dissociation of H2 into H+ ions, they mainly interact with lattice 

oxygen and cause the crystal transformation from the original α-MoO3 into the mixed 

structure of hydrogen molybdenum bronze and sub-stoichiometric MoO3, to induce color 

modulation 64. The measurement here showed that the β-MoO3 sample response was 

significantly lower than the α-MoO3 samples. This difference can be attributed to the 

intrinsic differences between the two phases. The most significant difference between 

these two phases is that α-MoO3 is formed from both edge-sharing and corner sharing 

octahedra, which results in a layered structured. β-MoO3, on the other hand, is only made 

from corner sharing octahedra and has a continuous crystal structure in three dimensions. 

Having a layered structure of the spacing in the order of 0.7 nm, α-MoO3 can allow the 

penetration of the small H2 molecules within the bulk of the material, providing a large 

surface to volume ratio for the gas interaction. Another reason, can be due to the presence 

of doubly bonded oxygen atoms at the edges rather than in between octahedra for α-MoO3 

providing a more favored surface energy for gasochromic interactions. Additionally, a final 

possible difference between these two phases is that the metastable β-MoO3 being 

thermodynamically unstable, possesses more defects compared to α-MoO3 phase and 

there are more oxygen vacancies for β-MoO3, and therefore less H+ ions are able interact 
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and form H2O molecules. The author believes that a combination of the three 

abovementioned reasons reduces the sensitivity of β-MoO3 across the entire spectrum 

towards H2 exposure in comparison to α-MoO3. 

 

2.4 Summary 

In this chapter, the author demonstrated a facile and well controlled electrochemical 

synthesis process for the fabrication of both α- and β-MoO3 films. This cyclic voltametric 

electrodeposition process was carried out under ambient conditions which made this 

process versatile and compatible with electronic device industry standards. The 

experimental parameters offered fine control over both the phase of the material and its 

morphology. The author showed that preferential growth of both β-MoO3 and α-MoO3 

could be achieved by simply varying the potential limits and sweep rate under which the 

deposition is carried out. Additionally, this chapter showed that the α-MoO3 is substantially 

more active for H2 gas interaction than β-MoO3 that can be mainly ascribed to the layered 

nature of α-MoO3. 

In the next chapter, the author will present binary electrochromic EC devices based on 

anodized ordered TiO2 nanotubes coated with electrodeposited MoO3. The chapter will 

focus on the investigation of combining complimentary TMOs to overcome individual 

chromic performance limitations. 
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Chapter 3 

 

Electrochromic Properties of TiO2 Nanotubes Coated with 

Electrodeposited MoO3 

3.1 Introduction  

In the previous chapter, the author showed a facile and well controlled electrochemical 

synthesis process for selective fabrication of both α- and β-phase molybdenum trioxide 

(MoO3) films. Gasochromic devices based on α- and β-MoO3 films were demonstrated, 

and the results revealed that α-MoO3 displayed better optical modulation than β-MoO3 

while a porous structure performed better than stratified layered structure. However, the 

electrochromic (EC) performance of the developed devices could not be assessed due to 

the poor adhesion exhibited by the synthesized films. Overcoming this issue can be 

achieved by combining the α-MoO3, which is a chromic transition metal oxide (TMO) with a 

durable TMO template. Many issues should be considered. The binary chromic system 

should be made of compatible TMOs, which offer merits that compliment each other. 

Subsequently, based on the analysis presented in chapter 1, the author chose to develop 

EC devices based on a combination of anodized titanium dioxide (TiO2) and 

electrodeposited α-MoO3, which are both in line with the core concept of electric field 

driven techniques for this thesis. The ordered TiO2 nanotube (TNT) array was chosen for 

its well-known stability with a large surface area in addition to being a chromic material 

itself. The author planned to incorporate electrodeposited α-MoO3, which served as the 

chromic coating to enhance the overall EC efficiency. 
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In this chapter, the author will present his work on the developtment of binary EC devices 

based on anodized ordered TNT templates with electrodposited MoO3 coatings. A 

comprehensive characterization of the bare TNT films and MoO3 coated films will be 

presented. As the performance of the EC devices depend on the MoO3 coating, the author 

will investigate and provide theoretical and experimental correlation between the 

electrodeposited α-MoO3 thickness and its impact on the overall EC system. Eventually, 

the devices based on the bare TNT template and the MoO3 coated films will be evaluated 

for their EC performances. The work in this chapter was published as a full article in the 

jounral Nanoscale.107 

 

3.2 Experimental 

3.2.1 TNT formation 

TNT layers were grown by anodic oxidation following the method of Zheng et al.25 Ti films 

of ~0.3 μm were deposited by radio frequency (RF) sputtering system fitted with a Ti target 

(99.995% purity, Williams Advanced Materials). Ti was sputtered on fluorine-doped tin 

oxide (FTO, 15 Ω square−1, Dyesol) glass substrates at 20×10−3 Torr and 100 W applied 

RF power and the substrate temperature of 300 °C for 60 min. The samples were then 

placed in a two-electrode cell configuration using the sample (~ 0.7 cm−2) as an anode and 

a platinum (Pt) foil as the cathode. The anodization was carried out using a high-voltage 

potentiostat (CHI-413A electrochemical station) in an electrolyte mix of ethylene glycol 

(EG, 98% anhydrous, Sigma Aldrich), water (4 vol%) and ammonium fluoride (NH4F 5 

wt%) at 60 V for 270 s. This process formed nanotube layers with a tube length of ~ 1 μm. 

The samples were then annealed in a standard laboratory horizontal furnace at 450 °C for 

120 min in ambient air, with ramp up and ramp down rates of 2 °C min−1. 
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3.2.2 MoO3 coating on TiO2 nanotubular films 

For the molybdenum oxide deposition, a molybdate solution was prepared by adding 5 mM 

sodium molybdate (Na2MoO4, 99% purity, Sigma Aldrich) into distilled water. Sulphuric 

acid (H2SO4) was added to adjust the pH to 4. The electrodeposition of MoO3 was carried 

out at room temperature using a CHI-413A electrochemical station employing a standard 

three electrode cell configuration. The TNT samples with 0.7 cm2 exposed area were used 

as the working electrode, a Pt wire (0.5 mm diameter, BASi Platinum Wire ) as the counter 

electrode, together with an Ag/AgCl (3 M KCl) (BASi) reference electrode in a custom 

made electrochemical cell with rectangular sides. The chronoamperometry (CA) technique 

was utilized to manipulate and achieve the molybdenum oxide deposition onto the TNT 

samples. CA was carried out at an upper limit of 0 V and lower limit of −0.6 V for a duration 

of 60 s at initially −0.6 V and then at 0 V for 2, 4, 8 and 10 cycles. Upon the completion of 

the electrodeposition, samples were washed using Milli-Q water and dried in N2. The 

coated samples were further annealed to remove water from the electrodeposited films 

and obtain the desired crystal phase in a standard laboratory horizontal furnace at 350 °C 

for 120 min in ambient air, with ramp up and ramp down rates of 1 °C min−1. 
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3.2.3 Surface and crystal structure characterization 

The TNT and molybdenum oxide films were characterized using X-ray diffraction (XRD) 

patterns were obtained with a Bruker AX 8: discover with general area detector diffraction 

system (GADDS), X-ray photoelectron spectroscopy (XPS) was performed using a 

Thermo Scientific K-alpha instrument with an Al Kα source.  The High-Angle Annular Dark 

Field (HAADF) Scanning transmission electron microscopy (STEM) images were taken 

using JEOL2100F HRTEM operating at 200 kV and Raman measurements were 

performed using a 532 nm laser at 0.9 mW power with a Jobin Yvon Horiba TRIAX320 

spectrometer system incorporating an Olympus BX41 microscope with a 50X objective. 

The surface morphologies were observed using scanning electron microscopy (SEM) and 

performed on a FEI Nova Nano instrument.  

 

3.2.4 Electronic and optical characterization 

The bandgap energies of the films were obtained using their UV-Vis spectra. 

Transmittance measurements were carried out using a Fiber Ocean Optics Spectrometer 

using a UV-Vis-NIR light source (DH-2000, Mikropack, Ocean Optics). In situ 

transmittance characterizations were conducted at room temperature also using the CHI-

413A electrochemical station via a three electrode configuration, employing the coated 

samples as working electrode (exposed area of 0.5 cm2), and the counter and reference 

electrodes described in the previous chapter. The electrolyte used was 0.1 M LiClO4 in 

polypropylene carbonate (PC, 98% anhydrous, Sigma Aldrich). 
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3.3 Results and Discussions 

A pictorial representation of the TNT anodization and subsequent MoO3 coating are shown 

in Figure 3.1. In order to verify the presence of MoO3 on the coated TNT films, SEM 

images of TNT films with different thicknesses of MoO3 coating were obtained. The degree 

of MoO3 coating was controlled by changing the number of chronoamperometry cycles 

during the electrodeposition. Represented in Figure 3.2a is the surface morphology of the 

bare TNT film. It was observed that the TNT film comprised of compact vertically aligned 

nanotubes of ~ 1 μm length, with inner and outer diameters of approximately 70 and 95 

nm, respectively (Figure 3.2b). The coated TNT films  (Figure 3.2c – 2f) revealed MoO3 

layers encased the entirety of TNT surface, thereby reducing the interior diameter of the 

nanotubes. It was apparent, that the pore diameter of TNT changed with MoO3 growth. 

The inner diameters of the coated TNTs measured from the SEM images (Figure 3.3 and 

Table 3.1) showed a reduction to ~60, 50, 40 and 41 nm after 2, 4, 8 and 10 deposition 

cycles, respectively. Interestingly, visible perpendicular growth of MoO3 was evident on the 

surface of the tubes (Figure 3.4) which was in agreement with the XRD data discussed 

below that demonstrated the growth of MoO3 layers to be parallel to the surface of the 

tubes. 

 

48 
 



 

Figure 3.1 Pictorial representations of the TNT anodization and subsequent MoO3 coating 
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Figure 3.2 a) SEM images of bare TNT film with b) the TNT cross section, c - f) SEM 

images of 2, 4, 8 and 10 deposition cycles of MoO3 coated TNT films 

50 
 



 

Figure 3.3 The measured average pore diameter of the bare TNT and MoO3 coated 

samples from SEM 

Table 3.1 Measurements for pore diameters for the samples are carried out and an 

average for each sample was calculated 

 

TNT 2 cycles 

4 

cycles 8 cycles 10 cycles 

Average 70.18 59.69 49.84 40.08 40.93 

Minimum 56.71 52.71 39.47 29.81 27.53 

Maximum 79.14 70.98 59.81 52.2 49.93 
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Figure 3.4 High-angle annular dark field (HAADF) scanning transmission electron 

microscopy (STEM) image of the MoO3 coated TNT surface and (inset) zoomed in image 

Illustrated in Figure 3.5 are the XRD patterns of the MoO3 coated TNT, bare TNT and the 

FTO substrate. For brevity only the thickest MoO3 coating (10 cycles) is shown. The major 

sharp peaks observed (Figure 3.5a) in both TNT and coated sample matches the reported 

anatase TiO2 diffraction pattern.25, 108 Given that the thickness of coated MoO3 layer was 

approximately ~15 nm (for 10 cycles) as deduced from the SEM image (Figure 3.2); it was 

difficult to obtain high intensity peaks, with reference to the TNT peaks. However, as 

observed in Figure 3.5b, the enlarged section of the XRD pattern reveals a diffraction peak 

at 24.3° matching the (110) plane of the α-phase MoO3. This provides strong evidence that 

the MoO3 coating is made of layered planar crystals parallel to the surface of TNT. The 

number of double layers (1.4 nm for each double layer) of MoO3 is 10 according to 

Kalantar-zadeh et al..10, 109 
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Figure 3.5 a) XRD patterns of the MoO3 coated TNT film, bare TNT film and FTO 

substrate, b) zoomed in XRD patterns of a) 

In order to ascertain the presence, stoichiometry and crystal phase of the coated MoO3, 

XPS and Raman spectra measurements were also carried out. The resulted XPS spectra 

and data in Figure 3.6 and Table 3.2 illustrate the characteristic binding energies of the Mo 

3d photoelectron peaks. XPS spectra of the MoO3 coated TNT film surface (Figure 3.6) 

revealed two main peaks located at 235.4 and 232.6 eV, corresponding to Mo 3d3/2 and 

Mo 5d5/2 peaks for Mo6+. Incremental depth profiles were conducted to assess the 

coverage of the TNT with MoO3 coating (Table 3.3). The values for the coated sample 

using 2 cycles are presented in Table 3.2. The atomic content of MoO3 was higher at the 

surface, almost dropped to half just under the surface level (depth of 70 nm), and 

remained constant to a penetration depth of ~1 µm. This is a good indication that the 

coating was homogenously distributed on the walls of TNT. 

53 
 



 

Figure 3.6 XPS spectra of MoO3 coated TNT films 
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Table 3.2 XPS depth profile of MoO3 coated TNT films (for 2 cycles) 

Depth 

(nm) 

Atomic 

percentage (%) 

0 3.66 

70 1.91 

140 1.53 

210 1.55 

280 1.62 

350 1.72 

420 1.91 

490 1.80 

560 1.80 

630 1.79 

700 1.86 

770 1.78 

840 1.84 

910 1.90 

980 1.85 
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Table 3.3 XPS depth profile of MoO3 coated TNT films showing the atomic percentage of 

MoO3 at the surface and depth of 490 nm for samples formed using 2, 4, 8 and 10 cycles. 

Depth 2c 4c 8c 10c 

Surface 3.66 4.00 3.74 3.74 

490nm 1.80 1.63 2.61 2.12 

 

 

The deposited MoO3 crystal phase was further investigated using Raman spectroscopy 

(Figure 3.7). Two low intensity broad peak regions centred at ca. ~800 and ~980 cm−1 are 

visible in each of the MoO3 coated samples, corresponding to α-MoO3. Additionally a peak 

at ~667 cm−1 should also be present for α-MoO3, however, this peak is overwhelmed by 

the stronger anatase TiO2 peak at 663 cm−1. Annealing at 350 °C transformed the as-

deposited hydrated MoO3 coating into crystalline layered α-MoO3. The presence of α 

phase MoO3 is beneficial as it has been reported that this phase (in comparison to the β 

phase which is obtained at lower annealing temperatures)77 exhibit more efficient positive 

ion accommodation and better charge transfer due to its layered nature, which 

consequently promotes electrochromic responses. 
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Figure 3.7 Raman shift of bare TNT and MoO3 coated TNT films 

In order to investigate the band-structure properties of the TNT and the coated TNT with 

MoO3 (the 10 cycle sample was chosen to obtain the maximum optical effect by MoO3), 

Tauc plots of both samples were obtained by extracting their UV-Vis absorbance spectra 

to estimate their bandgap energies. From Figure 3.8a, it is observed that the bare TNT film 

bandgap energy (Eg) was measured at 3.34 eV, which is shifted in comparison to bulk 

anatase TiO2. This shift in bandgap might be due to the quantization effect, where lattice 

distortion in nanotube-array films is likely higher, and potentially forcing vacancies along 

the nanotube walls to become trap states that lead to lower band-to-band transition 

energy.110 The coated film had a smaller Eg of 3.29 eV (Figure 3.8a). This alteration of the 

bandgap structure was induced by the inherently narrower bandgap of pure MoO3 

(~3 eV).111  

The modification of bandgap-structure between the bare TNT and MoO3 coated films was 

also evident from CV measurements (Figure 3.8b) which were carried out at a sweep rate 

of 0.1 Vs−1 between −1 and 1 V in 0.1 M LiClO4. During the negative potential cycle, it was 

revealed that the MoO3 coated sample showed the larger amount Li+ intercalation as 

presented by the larger cathodic current peak and area. Furthermore, the onset potential 
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of the cathodic current peak was observed to shift towards more positive potentials which 

indicate reduced interfacial charge transfer resistance and most likely an altered ionization 

affinity of the TNT platform underneath. A higher positive maxima (defined as the anodic 

peak) was seen for the MoO3 coated sample, which indicated higher electron de-

intercalation during the reverse potential sweep. The anodic peak for the coated sample 

also shifted towards more positive potential, which also indirectly reflected a change in the 

film’s band edge. This suggests that the MoO3 coating of the TNT film increases the film’s 

capability to accommodate more intercalated charges, and alters the band structure of the 

TiO2 platform. Additionally, it is expected that implementing electron scavenging materials 

with the proper electronic structures, with reference to the electronic structure of MoO3, 

can improve the charge transfer and subsequently augment the electrochromic 

performance. 
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Figure 3.8 a) Tauc plot illustrating the bandgap of the bare TNT and MoO3 coated film, b) 

Cyclic voltammogram of bare TiO2 and MoO3 coated films. 

In situ transmittance measurements were carried out in conjunction with CVs during the 

band structure investigation after an initial measurement of the transparency (Figure 3.9) 

for all samples.  
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Figure 3.9 The pre-coloration transmission of every sample is presented to compare the 

initial transparency. 

The resulting in situ transmittance responses at 550 nm were obtained for the bare TNT 

and MoO3 coated films (Figure 3.10a).  The optical modulation is presented by the optical 

density change (∆OD) of the electrochromic (EC) layer. The ∆OD is a crucial factor in 

determining the performance of EC materials and it can be calculated from the following 

equation:3 

 
(1) 

where Tb and Tc refer to the transmittance of the EC layer in its bleached and coloured 

states, respectively. The bare TNT film achieved ~ 0.02 ∆OD and all MoO3 coated films 

achieved higher ∆OD. These results indicated coated films exhibited superior electron 

injection efficiency between the MoO3 and TiO2 layers, which drastically increased the EC 

capabilities of the bare TNT films. Interestingly, the ∆OD values for the samples prepared 

with 8 and 10 deposition cycles decreased in comparison to the lower deposition cycles. 

)log(OD
c

b

T
T

=∆

60 
 



The MoO3 coating using 4 cycles is seen to achieve the optimal response having obtained 

the best ∆OD of 0.08, which is 4-fold higher than that of the bare TNT film (Figure 3.11). 

The repeatability of this sample was also investigated (Figure 3.10b and Figure 3.12). 

Significantly, no noticeable degradation in the optical modulation, response and recovery 

kinetics up to 1000 continuous coloration/bleaching cycles was observed. The discussion 

regarding the better performance of the coating obtained at 4 cycles is presented later in 

this section. 

 

 

Figure 3.10 a) In situ transmittance of bare TNT and coated samples and b) 

Electrochromic stability of the 4 cycled MoO3 coated TNT 
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Figure 3.11 In situ transmittance of bare TNT, 4 cycled MoO3 coated TNT 

 

Figure 3.12 Cyclic voltammograms of the stability test for the 4 cycled coated sample 

During the EC process, equal quantities of positive ions (i.e. Li+ in this work) and electrons 

are injected upon the application of a sufficiently negative potential. A transition in the 

valence states of the metal ions in the EC material induces the coloration phenomenon.6 
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Such an electro-optical process can be further divided into two states. The ‘shallow’ state 

refers to the initial ions and electron intercalation state in an EC material, where Li+ ions 

are free to diffuse throughout the host structure of the metal oxides.6 The local polarisation 

induces a transition from the ‘shallow’ state to a ‘trapped’ state, in which a polarisation of 

the intercalated Li+ ions to nearby electrons alters the valence state of the adjacent metal 

atoms. This changes the bandgap of TMOs and results in coloration. The reverse occurs 

during the bleaching process. We therefore ascribe the superior EC performance of MoO3 

coated TNT in comparison to bare TNT to the following reasons: 

MoO3 coating of the TNT platform forcibly alters the conduction bands towards more 

negative values (Figure 3.8 and Figure 3.13). Therefore the coated material more readily 

accommodates Li+ ions and electrons at relatively lower applied potentials.  

 

Figure 3.13 Band structure coupling of TNT and coated MoO3 

The deposited MoO3 has been annealed at 350 °C to produce α-MoO3. This coated α-
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MoO3 offers excellent intercalation sites due to its intrinsically layered structure and 

exhibits better charge carrier transportation and provides low scattering conduction paths 

in comparison to TNT (Figure 3.14).109  

With the coatings achieved using 2 and 4 deposition cycles, the deposited MoO3 layers 

are quite thin (less than 5 nm) and in the few nanometre range (schematically shown in 

Figure 3.14b), intercalated Li+ ions and electrons experience only the ‘shallow’ states, and 

therefore can efficiently diffuse into the underlying TNT platform.6 However using 8 and 10 

deposition cycles, the deposited MoO3 layer is much thicker (~10 nm), and therefore some 

of the intercalated Li+ ions and electrons are trapped in the MoO3 layers (Figure 3.14c), 

which are unable to diffuse as effectively into the TNT as seen for the thinner samples.  

Another possibility in the reduction of the EC effect for the 8 and 10 cycle samples is the 

small size of the pores. Smaller pores hinder the effective diffusion of the electrolyte into 

the pores and therefore reduce the chance of Li+ interaction with the surface of MoO3 

(Figure 3.14c) 
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Figure 3.14 Schematic of Li+ intercalation in bare TNT and MoO3 coated TNT obtained at 

different cycles 

3.4 Summary 

In this chapter, the author demonstrated the synthesis of highly ordered TiO2 nanotube 

arrays of 1 µm thickness with 70 and 95 nm inner and outer diameters, respectively, on 

FTO substrates using an anodization method. He achieved uniform MoO3 coatings from 5 

to 15 nm on the TNT platform by employing a facile electrodeposition technique. The 

results here revealed that the coating was the α-phase of MoO3 which deposited parallel to 

the surface of the TNT platform in a highly homogenous manner. UV-Vis and EC 
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measurements of these coated films demonstrated a reduction in the bandgap and shifting 

of the band edges of the overall system which resulted in superior charge transfer 

performance. These augmentations gave rise to significant improvements in the 

electrochromic properties of the MoO3 coated TNT in comparison to bare TNT in terms of 

both optical density and repeatability. These results indicate that coating TNT with thin 

layers of MoO3 offers a viable method for the fabrication of efficient electrochromic 

devices. For future investigations, the author believes other molybdenum oxide 

compounds such as MoO2 also exhibit potential as complimentary material for nanoscale 

coatings and should be investigated.13, 112 

In the next chapter, the author will present EC devices based on well ordered anodized 

Nb2O5 as an additional TMO candidate for chromic systems.  
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Chapter 4 

 

High Performance Electrochromic Devices based on Anodized 

Nanoporous Nb2O5 

4.1 Introduction 

In the previous chapter, the author showed binary electrochromic (EC) devices based on 

anodized ordered titanium dioxide (TiO2) nanotube templates and coated them with 

electrodeposited α-MoO3. He demonstrated uniform MoO3 coatings from 5 to 15 nm on the 

TiO2 nanotubular templates by employing a facile electrodeposition technique. The results 

revealed that the stratified α-MoO3 coating was made of layers parallel to the template 

surface in a highly homogenous manner. Comprehensive characterization revealed these 

coated films demonstrated a reduction in the bandgap and shifting of the band edges over 

the overall system which resulted in a superior charge transfer performance. These 

augmentations gave rise to significant improvements in the electrochromic (EC) properties 

of the binary system in comparison to the bare TiO2 platform in terms of both optical 

density and repeatability, thus overcoming the performance limitations of each individual 

transition metal oxides (TMOs) used.  

Having demonstrated valid experimental results for overcoming performance limitations of 

binary TMOs based on anodized TiO2 template, the author chose to investigate anodized 

niobium oxide (Nb2O5). Based on analysis presented in chapter 1, Nb2O5 is potentially a 

great candidate for chromic systems. Nb2O5 is a TMO with excellent durability and specific 

chromic performance. However, due to its relatively high bandgap, it has been frequently 

discredited as a viable EC material. In this PhD research, the author developed EC 

devices based on anodized ordered nanoporous Nb2O5, which is in line with the core focus 
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of the electric field driven techniques for this thesis. The author will show some specific 

advantages in using anodized Nb2O5 for EC systems for the first time. 

In this chapter, the author will present the outcomes of the study on the development of 

EC devices based on anodized ordered nanoporous Nb2O5. A comprehensive 

characterization of the anodized Nb2O5 will be presented. The influence of the anodized 

ordered nanostructure on the performance of the EC devices will be described. Eventually, 

the fabricated EC devices performance will be compared with devices based on different 

Nb2O5 nanostructures and synthesis methods reported by other groups. The work in this 

chapter was published as a full article in the Journal of Physical Chemistry C.113 

 

4.2 Experimental 

4.2.1 Fabrication of nanoporous Nb2O5 

Nb films of 0.25, 0.37 and 0.5 μm were deposited using a radio frequency (RF) sputtering 

system fitted with a Nb target (99.95% purity). These Nb films were sputtered onto 

fluorine-doped tin oxide (FTO, 15 Ω square−1, Dyesol) glass substrates after 15, 22.5 and 

30 min at 20×10−3 Torr vacuum, 100 W applied RF power and an elevated substrate 

temperature of 300 °C to enhance film adhesion during anodization. The samples were 

then placed in a two-electrode cell configuration using the sample (0.8 cm2) as an anode 

and a platinum (Pt) foil as the cathode. The anodization was carried out using a 

potentiostat (CHI-413A electrochemical station) in an electrolyte mix of 50 mL of ethylene 

glycol (98% anhydrous, Sigma Aldrich) with 0.15 g of NH4F (98% purity, Sigma Aldrich) 

and 4% deionized (DI) water. An optimized potential of 10 V was applied between the 

anode and cathode during anodization. These values for the electrolyte and optimized 

applied potential were investigated and obtained by Ou et al.24  

The electrolyte was kept at a constant temperature of 50 °C during the anodization 

process. The anodization duration of 8, 20 and 30 minh for Nb films of 0.25, 0.37 and 0.5 
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μm thicknesses resulted in obtaining Nb2O5 films of 500 nm, 750 nm and 1 µm 

thicknesses. Similar to the anodization of Ti films, the anodization of Nb layers produced 

Nb2O5 films of almost double the initial metal layer thickness.25 After the anodization, the 

samples were carefully washed with DI water and dried in a nitrogen stream. Post 

anodization annealing was carried out in ambient air at a temperature of 450 °C for 60 min 

with a slow ramp up and down rate of 2 °C min−1. The thicknesses of the Nb2O5 films did 

not change after the annealing process. 

 

4.2.2 Structural characterization 

The Nb2O5 films were characterized to assess their structural and morphological 

properties. X-ray photoelectron spectroscopy (XPS) was conducted using a Thermo 

Scientific K-alpha instrument with Al Kα source (1486.7 eV). A flood gun was employed 

during the XPS analysis in order to remove sample charging. X-ray diffraction (XRD) 

patterns were obtained with a Bruker AX 8: Discover using general area detector 

diffraction system (GADDS). The Raman spectroscopies were performed using a 532 nm 

laser at 0.9 mW power with a Jobin Yvon Horiba TRIAX320 spectrometer system 

incorporating an Olympus BX41 microscope with a 50× objective with ±2 cm−1 error 

margin. Surface morphologies were observed using scanning electron microscopy (SEM) 

and performed on a FEI Nova Nano instrument. 

 

4.2.3 Electrochromic characterization 

Transmittance measurements were carried out using a Fiber Ocean Optics Spectrometer 

using a UV-Vis-NIR light source (DH-2000, Mikropack, Ocean Optics). In situ 

transmittance characterization was conducted at room temperature also using the CHI-

413A electrochemical station via a three electrode configuration, employing the coated 

samples as working electrode (exposed area of 0.8 cm2), and a Pt wire (0.5 mm diameter, 
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BASi Platinum Wire) as the counter electrode, together with an Ag/AgCl (3 M KCl) (BASi) 

reference electrode. The electrolyte used was 0.1 M LiClO4 in propylene carbonate (98% 

anhydrous, Sigma Aldrich). 

 

4.3 Results and discussions 

The Nb anodization process, which is used in this work, has been previously developed 

and investigated by Ou et al and Rani et al to fabricate Nb2O5 nanoporous films for DSSC 

applications.24, 28 They demonstrated that the anodized Nb2O5 exhibit low embedded 

impurities via carefully chosen parameters that are also used in work by Ou et al (as 

described in the Experimental section).24 Their films were stable and rigid up to the 

thickness of 5 µm. Additionally, the surface area has been impressively large: effectively 

double that of the area of the anodized TiO2 counterpart with the same thickness. In this 

paper, the same method has been adopted to produce films with thicknesses of less than 

1 µm that are appropriate for electrochromic applications.  

The XPS spectra of the annealed Nb2O5 samples were taken in order to investigate the 

binding energy of the anodized Nb species and verify their stoichiometry after annealing. 

As shown in Figure 4.1 only two peaks were observed at 207.5 and 210.3 eV, which 

corresponds to the 3d5/2 and 3d3/2 peaks of the Nb5+ species, respectively.114-115 The 

measured peaks were identical for the 500 nm, 750 nm and 1 µm thick samples, signifying 

the synthesis technique produces Nb2O5 films with consistent stoichiometry over a wide 

range of thicknesses at the given fabrication parameters. 
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Figure 4.1 XPS spectra of Nb2O5 films with 500 nm, 750 nm and 1 µm thicknesses. 

XRD measurements were carried out to examine the crystalline structures, and the 

resulting XRD patterns are shown in Figure 4.2. As can be observed, the as-anodized film 

revealed some Nb diffraction peaks in addition to the obvious FTO peaks. However a lack 

of Nb2O5 diffraction peaks indicates the film was amorphous. The as-anodized films 

underwent a significant crystallization as a result of annealing. The annealing temperature 

of 450 °C transformed the as-anodized amorphous Nb2O5 to orthorhombic phase of 

Nb2O5. The 60 min annealing duration caused a complete phase transition with minimal 

morphology structure breakdown. As a result, visible sharp peaks at 22.6°, 28.4°, 36.6°, 

46.2° and 55.1° corresponding to orthorhombic structure Nb2O5 (a = 6.175 Å, b = 29.175 

Å, and c = 3.93 Å) are seen.24, 82, 116 There are noticeably more FTO peaks post-annealing, 

however these are merely the byproducts of different diffraction angle during XRD 

analysis, and it does not affect the Nb2O5 film characteristics in any way. 
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Figure 4.2 XRD diffraction patterns of the FTO substrate, as-anodized and annealed 

samples. * denotes FTO peaks. 

This result was further verified by the Raman spectra presented in Figure 4.3. The broad 

peaks centered over 250 cm−1 (stretching mode v O−Nb−O) and 650 cm−1 (bending mode 

Nb−O−Nb) are indicative of the amorphous niobium oxide. After annealing, sharp peaks at 

248, 305 and 694 cm−1 rose dominantly over the rest of the spectra which correspond to 

the orthorhombic phase of crystalline Nb2O5.  
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Figure 4.3 Raman spectra of the as-anodized and annealed Nb2O5 films. 

The surface and cross sectional SEM images of the as-anodized and annealed Nb2O5 

films are presented in Figure 4.4. The anodized films appeared indistinguishable before 

and after annealing (Figure 4.5), suggesting the as-anodized films are thermally stable up 

to 450 °C. Nanoporous morphologies are visible on the surface of Nb2O5 films in 

agreement with previous report.24 Upon closer examination from the cross-sectional SEM 

images (Figure 4.4 c and d), it is revealed that the morphology resembles that of a three 

dimensional (3D) nanoporous network with a good vertical order. This nanoporous network 

holds great prospect for Li+ intercalation, as the significantly increased surface area allows 

substantial amount of Nb2O5 exposure to Li+ ions in the electrolyte. 

The initial optical properties of the Nb2O5 films are investigated by comparing visible 

transmittance spectra in bleached and colored states. It is observed (Figure 4.6) that for all 

samples the bleached state has an exceptionally high transparency with the thickest 

sample of 1 µm being over 80% transparency, while both the 750 and 500 nm thick 

samples are over 90% transparency. Higher transparency during the bleached state 

enables larger optical modulation, which provides an excellent basis for high performance 
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EC devices. In order to assess the optical modulation of the Nb2O5 films, 

chronoamperometric (CA) measurements were performed by applying alternating 

potentials at ± 1, ±1.5 and ±2 V (vs. Ag/AgCl in 3M KCl) in 60 s steps. Each negative 

potential step (−1, −1.5 and −2 V) induces a coloration state (intercalation of Li+ ions) and 

the respective positive potential steps induce the corresponding bleached states 

(deintercalation). 

Nb2O5 + 𝑥Li+ + 𝑥𝑒− ⇔ Li𝑥Nb2O5 (1) 
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Figure 4.4 SEM images of the (a) and (b) as-sputtered Nb films and (c) and (d) as-

anodized Nb2O5 films (i) surface and (ii) cross-section views. 
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Figure 4.5 Scanning electron microscopy (SEM) images of the (a) and (b) annealed Nb2O5 

films (i) surface and (ii) cross-section views. 

It is observed that while the initial transparencies of the films are quite high, a low potential 

of −1 V can only achieve optical modulations in the range of 10% to 20% for the 1 µm to 

500 nm thick samples. Over 50% optical modulations was achieved from −1.5 V potential 

across all samples and over 70% optical modulations for −2 V applied potential. 

 

 

 

500 nm 200 nm

500 nm 200 nm

(a-i)

(a-ii)

(b-i)

(b-ii)
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Figure 4.6 The visible transmittance spectra of the Nb2O5 films with thicknesses (a) 500 

nm, (b) 750 nm and (c) 1 µm at different applied potentials. 

The assessment of the coloration-bleaching kinetics and optical modulation are vital for the 

evaluation of optical and electronic properties of the films. Therefore, in situ transmittance 

changes measured at 550, 650 and 750 nm were carried out in during the CA 

measurements (Figure 4.7). It is observed that the 500 nm thick sample performed better 
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in terms of optical modulation and coloration/bleaching time (time estimate for 80% change 

in full transmittance modulation), also the reversibility appeared to be noticeably superior 

to the 750 nm and 1 µm thick samples. From Table 4.1, it is evident that the 500 nm thick 

sample has the overall fastest coloration and bleaching responses. A noticeable feature is 

that the thicker the samples became, the slower the coloration and bleaching responses 

became at reaching the corresponding optical modulations. The corresponding 

chronoamperograms of the in situ electrochromic measurements are illustrated in Figure 

4.8.  

 

Table 4.1 Coloration and bleaching time for Nb2O5 films of different thicknesses. 

 
±1v ±1.5v ±2v 

Thickness Color (s) Bleach 
(s) Color (s) Bleach 

(s) Color (s) Bleach 
(s) 

500 nm 27.4 2.2 17.6 5.1 13.3 7.5 

750 nm 30.9 1.9 27.8 6.4 22.6 12.9 

1 µm 31.5 2.8 30.7 8.6 24.8 13.1 
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Figure 4.7 In situ normalized transmittance for Nb2O5 films with thicknesses of 500 nm, 

750 nm and 1 µm at ±1, ±1.5 and ±2 V applied potentials for the optical wavelength of 550 

nm. 

 

The CE of the Nb2O5 films, which is defined as the change in optical density (∆OD) per unit 

of charge (∆Q) intercalated into the EC layers, is a crucial characteristic parameter for 

comparing the EC performance of the materials. CE and ∆OD can be obtained from the 

following equations:  

CE =   ∆𝑂𝐷
∆𝑄

      (2) 

∆𝑂𝐷 = log(𝑇𝑏
𝑇𝑐 

)    (3) 
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Figure 4.8 Chronoamperometric measurements in correspondence to the in situ 

electrochromic measurements.  

where Tb and Tc refer to the transmittance of the layer in its bleached and colored states, 

respectively. The CE values for each of the three samples (with the thicknesses of 500 

nm, 750 nm and 1 µm) at the three different applied potentials (−1, −1.5 and −2 V) are 

illustrated in Figure 4.9. For the 500 nm thick sample, the calculated CEs are 37.9, 47.0 

and 40.3 cm2 C−1 at −1, −1.5 and −2 V, respectively. As the sample thickness increased to 

750 nm, the calculated CEs became 25.7, 27.1 and 25.5 cm2 C−1 and then 24.2, 25.5 and 

22.0 cm2 C−1 for the thickest sample (1 µm), respectively. 

It was evident the Nb2O5 films exhibited higher coloration efficiency at an applied potential 

of −1.5 V even though the optical modulation approached saturation. This is due to the fact 

that nanostructured Nb2O5 innately possess a wider bandgap (~3.8 eV)87 with respect to 

other known EC materials such as MoO3 (~3.1 eV)111, 117 and WO3 (~2.8 eV).118 Therefore, 

additional energy is required to initiate the intercalation phenomenon for inducing the EC 

effect. This impedes the efficiency at which Nb2O5 may respond to very low potential EC 

applications.  
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The stability of the films was assessed by carrying out repeated CVs (Figure 4.10) to 

investigate the EC performance over 500 continuous coloration-bleaching cycles. It is 

noted that no major degradation was visible up to 100 cycles, with minor degradation as 

the continuous CVs approached 500 cycles (Figure 4.11). 

In this work, the best CE of 47.0 cm2 C−1 was calculated at an applied potential of −1.5 V 

for the 500 nm thick sample. To the authors’ knowledge, this CE value, for this set of 

anodized Nb2O5 films, is higher than any previously reported Nb2O5 films of other 

synthesis techniques including sol-gel (42.4 cm2 C−1 at 633 nm),119 pulse-laser deposition 

(40.0 cm2 C−1 at 550 nm),86 spray pyrolysis (25.5 cm2 C−1 at 660 nm)7 and RF sputtering 

(16.68 cm2 C−1 at 550 nm).85 In comparison to other EC materials fabricated using 

anodization methods (25 cm2 C−1 at 550 nm for TiO2
120 and 141.5 cm2 C−1 at 750 nm for 

WO3
3), Nb2O5 places itself as a competitive EC material with merits such as high bleached 

state transparencies, multi-color EC performance78 and versatile options in fabrication.7, 85-

86, 119   
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Figure 4.9 Coloration efficiency of the 500 nm, 750 nm and 1 μm thick Nb2O5 films under 

CA at (a) ±1, (b) ±1.5 and (c) ±2 V applied potential for the optical wavelength of 550 nm. 
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Figure 4.10 Cyclic voltammograms for investigating the stability measurements of the 500 

nm thick Nb2O5 electrochromic device - up to 500 continuous cycles. 

 

 

Figure 4.11 In situ transmittance of the 500 nm thick Nb2O5 sample over 500 continuous 

cycles for the optical wavelength of 550 nm. 
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4.4 Summary 

In this chapter, the author synthesized compact 3D Nb2O5 nanoporous networks with 

thicknesses of 500 nm, 750 nm and 1 µm by employing a combination of RF sputtering 

and electrochemical anodization methods. The results here were revealed that the as-

synthesized Nb2O5 films exhibited extraordinary EC performances in 0.1 M LiClO4 

electrolyte at low applied potentials. The compact 3D nanoporous networks with high 

active surface areas demonstrated excellent coloration efficiency (500 nm thick sample 

achieved 47.0 cm2 C−1 at 550 nm) that exceeded any previously reported Nb2O5 EC 

system. Coupling these merits with high bleached state transparency, large optical 

modulation, and consistent cyclic stability make Nb2O5 a suitable choice for EC devices. 

The author believes for future outlook, combining Nb2O5 with low bandgap EC materials 

such as MoO3 or WO3 will potentially improve its EC performance and efficiency.92, 107, 121 

Additionally, multi-color EC performance of the 3D Nb2O5 should be explored. 

In the next chapter, the author will present binary electrochromic EC devices based on the 

anodized ordered Nb2O5 nanochannelled templates coated with electrodeposited MoO3. 

The chapter will focus on the investigation of combining these complimentary TMOs in 

order to overcome their individual chromic performance limitations. 
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Chapter 5 

 

Enhanced Coloration Efficiency for Electrochromic Devices based on 

Anodized Nb2O5 / Electrodeposited MoO3 Binary Systems 

5.1 Introduction 

In the previous chapter, the author demonstrated electrochromic (EC) devices based on 

anodized ordered niobium pentoxide (Nb2O5) nanoporous films. He demonstrated 

synthesis of compact three dimensional (3D) Nb2O5 nanoporous networks with varied 

thicknesses by employing a combination of RF sputtering and electrochemical anodization 

methods. The results revealed the as-synthesised films exhibited extraordinary EC 

performance. As a transition metal oxide (TMO), Nb2O5 possesses a relatively large 

bandgap, which causes difficulty for the EC devices base on Nb2O5 to perform at low 

operating voltages. Additionally, the coloration efficiency (CE) was also limited. However 

having shown the extraordinary results from TMO binary EC systems in chapter 3, the 

author chose to investigate a similar path for anodized Nb2O5. He developed binary EC 

devices based on a combination of anodized Nb2O5 and electrodeposited α-MoO3, which 

the synthesis methods for both are in line with the core concept of the electric field driven 

techniques for this thesis. The ordered Nb2O5 nanostructure was chosen to be the device 

template with stratified α-MoO3 as the chromic coating. A discussion regarding the 

advantages of creating such a binary EC device has been presented in Chapter 1. 

In this chapter, the author will present his work on the development of binary EC devices 

based on anodised ordered Nb2O5 nanochanneled templates with MoO3 coatings. A 

comprehensive characterization of the bare Nb2O5 films and MoO3 coated films will be 

presented. As the performance of the EC devices vary with the thickness of the MoO3 
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coating, the author will investigate and provide experimental correlation between the 

deposited MoO3 and the impact on the overall EC system. Eventually, the performance of 

the bare Nb2O5 template and the binary system will be evaluated for EC performance 

against other known EC TMOs. The work in this chapter has been submitted for 

publication. 

 

5.2 Experimental 

5.2.1 Fabrication of nanochanneled Nb2O5 

Nb films of 0.25, 0.37 and 0.5 μm were deposited using a radio frequency (RF) sputtering 

system fitted with a Nb target (99.95% purity). These Nb films were sputtered onto 

fluorine-doped tin oxide (FTO, 15 Ω square−1, Dyesol) glass substrates after 30 min at 

20×10−3 Torr vacuum, 100 W applied RF power with a substrate temperature of 300 °C. 

These conditions were used for promoting the strongest adhesion of the films onto the 

substrates,24 and they resulted in Nb films of 0.25 μm thicknesses. The samples were then 

placed in a two-electrode cell configuration using the sample (of 0.8 cm2 surface area) as 

an anode and a platinum (Pt) foil as the cathode. The anodization was carried out using a 

potentiostat (CHI-413A electrochemical station) in an electrolyte mix of 50 mL of ethylene 

glycol (98% anhydrous, Sigma Aldrich) with 0.15 g of NH4F (98% purity, Sigma Aldrich) 

and 4% deionized (DI) water. An optimized potential of 10 V was applied between the 

anode and cathode during the anodization process. These values for the electrolyte 

composition and optimized applied potential were previously investigated and obtained by 

Ou et al.24 The films contain very low amounts of impurities, as it has been previously 

demonstrated,28 that provide defect free pathways for enhanced charge transfer.    

The electrolyte was kept at a constant temperature of 50 °C during the anodization 

process. The anodization duration of 8, 20 and 30 min for Nb films of 0.25 μm thicknesses 

resulted in Nb2O5 films of 500 nm thicknesses. A thickness of 500 nm was chosen as it 
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provides the best EC performance for bare Nb2O5 according to our previous report.113 

Similar to the anodization of Ti films, the anodization of Nb layers produced Nb2O5 films of 

almost double the initial metal layer thickness.25 After the anodization, the samples were 

carefully washed with DI water and dried in a nitrogen stream. Post anodization annealing 

was carried out in ambient air at a temperature of 450 °C for 60 min with a slow ramp up 

and down rate of 2 °C min−1. The thicknesses of the Nb2O5 films did not change after 

annealing. 

 

5.2.2 MoO3 coating on Nb2O5 nanochanneled films 

For the MoO3 deposition, the procedure that has been previously adopted by the authors 

was used.77 A molybdate solution was prepared by adding 5 mM sodium molybdate 

(Na2MoO4, 99% purity, Sigma Aldrich) into distilled water. Sulphuric acid (H2SO4) was 

added to adjust the pH to 4. The electrodeposition of MoO3 was carried out at room 

temperature using a CHI-413A electrochemical station employing a standard three 

electrode cell configuration. The Nb2O5 samples of 0.7 cm2 exposed area were used as 

the working electrode, a Pt wire (0.5 mm diameter, BASi) as the counter electrode, 

together with an Ag/AgCl (3 M KCl) (BASi) reference electrode in a custom made 

electrochemical cell with rectangular sides. The chronoamperometry (CA) technique was 

utilized in order to control the deposition of MoO3 onto the Nb2O5 samples. CA was carried 

out at an upper limit of 0 V and lower limit of −0.7 V for a duration of 60 s at initially −0.7 V 

and then at 0 V for 20, 40, 80 and 120 cycles. Upon the completion of the 

electrodeposition, samples were washed using Milli-Q water and dried in N2. The coated 

samples were further annealed to dehydrate the films and obtain the desired crystal phase 

in a standard laboratory horizontal furnace at 350 °C for 120 min in ambient air, with ramp 

up and ramp down rates of 1 °C min−1. 
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5.2.3 Structural characterization 

The bare Nb2O5 and MoO3 coated Nb2O5 films were characterized to assess their 

structural and morphological properties. X-ray photoelectron spectroscopy (XPS) was 

conducted using a Thermo Scientific K-alpha instrument with Al Kα source. X-ray 

diffraction (XRD) was obtained with a Bruker AX 8: Discover using general area detector 

diffraction system (GADDS). Raman spectroscopy was performed using a 532 nm laser at 

0.9 mW power with a Jobin Yvon Horiba TRIAX320 spectrometer system incorporating an 

Olympus BX41 microscope with a 50× objective. Surface morphologies were observed 

using scanning electron microscopy (SEM) and performed on a FEI Nova Nano 

instrument. 

 

5.2.4 EC characterization 

Transmittance measurements were carried out using a Fiber Ocean Optics Spectrometer 

using a UV-Vis-NIR light source (DH-2000, Mikropack, Ocean Optics). In situ 

transmittance characterizations were conducted at room temperature also using the CHI-

413A electrochemical station via a three-electrode configuration, employing the coated 

samples as the working electrode (exposed area of 0.7 cm2), and a Pt wire (0.5 mm 

diameter, BASi) as the counter electrode, together with an Ag/AgCl (3 M KCl) (BASi) 

reference electrode. The electrolyte used was 0.1 M LiClO4 in propylene carbonate (98% 

anhydrous, Sigma Aldrich). 

 

5.3 Results and discussions 

5.3.1 Characterizations of the samples 

In order to assess the conditions of the samples with and without the MoO3 coatings, XPS 

spectra of the bare Nb2O5 and MoO3 coated Nb2O5 films were acquired (Figure 5.1). XPS 

spectra of the annealed Nb2O5 templates demonstrate the binding energy of the anodized 
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Nb species and verify their stoichiometry after annealing. As shown in Figure 5.1(a) only 

two peaks were observed at 207.5 and 210.3 eV, which corresponds to the Nb 3d5/2 and 

3d3/2 of the Nb5+ species, respectively.115 Figure 5.1(b) illustrates the binding energies of 

the Mo 3d photoelectron peaks. XPS spectra of the MoO3 coated Nb2O5 film surfaces 

revealed two main peaks located at 235.4 and 232.6 eV, corresponding to Mo 3d3/2 and 

Mo 5d5/2 peaks for Mo6+.107 XPS depth profiling was carried out at incremental steps with a 

combination of ion etching and film characterization from the surface of the MoO3 coating, 

through the Nb2O5 template until the underlying FTO substrate was reached. The resulting 

XPS spectra illustrate the coverage of MoO3 coating on the Nb2O5 nanochannel as shown 

in Figure 5.1(c). It is obvious that additional MoO3 deposition cycles increases the MoO3 

atomic percentage. The atomic percentage of MoO3 within the analysis area is relatively 

constant between a depth of 100 and 400 nm, indicating that the coverage of MoO3 was 

uniform. The discrepancy in the first 100 nm is due to the morphology of the sample 

surface, where different areas of analysis contained different MoO3 growth morphologies. 

A diminishing MoO3 content approaching a depth of 500 nm is visible due to the etching 

procedure of the XPS depth profiling,  
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Figure 5.1 XPS spectra of (a) annealed Nb2O5, (b) annealed MoO3 coating (normalized 

values) and (c) the depth profile of the MoO3 coating (non-normalized values) 

XRD measurements were carried out to examine the crystallinity and structure of the 

samples, and the resulting XRD patterns are shown in Figure 5.2. As can be observed, the 

as-anodized film revealed some Nb diffraction peaks in addition to the obvious FTO peaks. 

The as-anodized films underwent a significant crystallization as a result of the annealing 
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process, and visible sharp peaks at 22.6°, 28.4° and 36.6° corresponding to the 

orthorhombic structure of Nb2O5 (a = 6.175 Å, b = 29.175 Å, and c = 3.93 Å) are seen.82, 

114 As observed in Figure 2, the XRD pattern reveals diffraction peaks at 13.0° and 24.3°, 

matching the (020) and (110) planes of α-phase MoO3, respectively, for the thickest MoO3 

coated film.77, 107 These peaks were less visible for films that were formed using a lower 

number of cycles and as such only the sample formed after 120 cycles is shown.  

 

Figure 5.2. XRD diffraction patterns of the FTO substrate, bare Nb2O5 film and MoO3 

coated Nb2O5, * denotes FTO diffraction peaks. 

The XPS and XRD data interpretation was further verified by the Raman spectra 

presented in Figure 5.3. The broad peaks at 248, 305 and 694 cm−1 represent the 

orthorhombic phase of crystalline Nb2O5.24 The deposited MoO3 crystal phase was also 

investigated using Raman spectroscopy (Figure 3). Sharp peaks at 667 cm−1 (stretching 

mode Mo—O(3)), 821 (stretching mode Mo—O—Mo) and 998 cm−1 (stretching mode 

Mo=O) with additional peaks at 157 and 283 cm−1 are visible in each of the MoO3 coated 

samples, which confirms that the deposited MoO3 is crystalline α-MoO3.77  
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Figure 5.3 Raman spectra of the bare Nb2O5 film and MoO3 coated Nb2O5. 

The surface and cross sectional SEM images of bare and MoO3 coated Nb2O5 films are 

presented in Figure 5.4. The bare Nb2O5 film (Figure 5.4(a)) appeared nanoporous on the 

surface with nanochannels running through the thickness of the film. Both the porosity of 

the surface and width of the nanochannel visibly diminish when a MoO3 coating is 

deposited on to the Nb2O5 film as shown by the MoO3 coating achieved after 40 cycles 

(Figure 5.4(b)). As the number of coating cycles reached 120 (Figure 5.4(c)), the SEM 

image reveals a complete blockage of the surface pores and the underlying nanochannel 

structures. 
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Figure 5.4 SEM images of (a) bare Nb2O5, MoO3 coatings of (b) 40 cycles, (c) 120 cycles, 

with surface morphology (i) and cross sectional images (II) 

 

5.3.2 EC investigations 

The assessment of the coloration-bleaching kinetics and optical modulations are vital for 

the evaluation of the optical and electronic properties of the films. Therefore, in situ 

transmittance changes measured at an optical wavelength of 550 nm were carried out 

during the CA measurements (Figure 5.5). It is observed that the initial transmittance of all 
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coated samples, except the thickest MoO3 coating exceeded 90%, which is comparable to 

the bare Nb2O5 sample or previously reported Nb2O5 samples fabricated for EC devices.113  

As can be seen for coloration, potentials of −0.25, −0.5, −0.75 and −1 V were applied 

against the reference electrode for 60 s and for bleaching, 0.25, 0.5, 0.75 and 1 V were 

applied.  

Throughout the in situ measurements the samples (excluding 120 cycle coating) 

maintained its cyclic stability. Transmission in the bleached state for the 120 cycle MoO3 

coated sample continuously dropped upon repeated measurements. This is due to the 

thicker MoO3 coating that covered the entire Nb2O5 film surface, which blocked all the 

pores and filled the nanochannels, as evidenced in the SEM images, which increases the 

chance of trapping of the intercalating ions.   

 

 

Figure 5.5 In situ transmittance of the bare and coated samples 

The CE of an EC material is a critical factor for demonstrating its performance. The CE is 

defined as the change in optical density (∆OD) per unit of the intercalated ionic charge 

(∆Q) into an EC layer. CE and ∆OD can be obtained from the following equations:3  
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CE =   ∆𝑂𝐷
∆𝑄

    (1) 

∆𝑂𝐷 = log(𝑇𝑏
𝑇𝑐 

)  (2) 

where Tb and Tc refer to the transmittance of the layer in its bleached and colored states, 

respectively. The CE values for the four coatings of increasing thicknesses (20, 40, 80 and 

120 cycles) at low applied potentials (−0.25, −0.5, −0.75 and −1 V) are presented in Figure 

5.6. The calculated CE values for 20 cycles are 14.75, 27.35, 36.45 and 17.95 cm2 C−1 at 

−0.25, −0.5, −0.75 and −1 V respectively. As the MoO3 coating increased in thickness after 

40 cycles, the calculated CEs were 11.7, 30.32, 24.03 and 20.49 cm2 C−1, and then 35.41, 

46.15, 46.73 and 39.33 cm2 C−1 for 80 cycles coating and lastly 91.85, 149.64, 129.42 and 

69.28 cm2 C−1 for 120 cycles coating at −0.25, −0.5, −0.75 and −1 V, respectively. 

 

 

Figure 5.6. CEs of the Nb2O5 samples with MoO3 coating of (a) 20 cycle, (b) 40 cycle, (c) 

80 cycle and (d) 120 cycle. The values for bare Nb2O5 can be found in work by Yao et 

al.113 
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It is evident that the existence of the MoO3 coating on the Nb2O5 nanochanneled structure 

considerably increased the device’s EC performance. Additionally, the MoO3 coated films 

demonstrate significantly stronger chromic responses at low potentials compared to the 

bare Nb2O5 sample, and as the number of deposition cycles increased the resultant optical 

modulation also increases. As we demonstrated using XRD and Raman spectroscopy 

analysis the coated MoO3 is in the α-phase. It is known that this crystal phase of MoO3 can 

accommodate a large number of ions into its stratified structure and as such it is regularly 

used for EC and battery storage applications.13, 16 As a result, the MoO3 coating on the 

Nb2O5 film increases the film’s capability to accommodate more intercalated charges in 

comparison to the bare Nb2O5 sample. Additionally, it is also important to remember that 

both Nb2O5 nanochaneled structures and the α-MoO3 lamellar coating provide directional 

and low impurity pathways for charge transfer.28, 107 

As presented in Figure 5.7, cyclic voltammetric measurements were carried out at a sweep 

rate of 0.1 Vs−1 between −1 and 1 V in 0.1 M LiClO4 to demonstrate the increased capacity 

of the MoO3 coated samples for intercalating Li+ ions. It is seen that the MoO3 coating 

induced larger amount of Li+ intercalation during the negative potential cycle as shown by 

the larger cathodic current peak and area. Moreover, the onset potential of the cathodic 

current peak was observed to shift towards more positive potentials as additional MoO3 

coatings (up to 80 cycles) are deposited. This indicates reduced interfacial charge transfer 

resistance, a larger volume for accommodating the ions and potentially altered ionization 

affinity energy of the bare Nb2O5 platform. The positive maxima (defined as the anodic 

peak) of each coated sample are also larger than the bare Nb2O5 sample, which indicates 

higher electron and Li+ de-intercalation during the reverse potential sweep. Finally, it is 

observed that the anodic peaks for the coated samples are shifted to more positive 

potentials as more MoO3 coatings are deposited, which indirectly reflects a change in each 

of the coated films’ band edges. To confirm this observation, a UV-Vis analysis was 

conducted. 
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Figure 5.7. Cyclic voltammetric measurements recorded at 0.1 V s-1of bare Nb2O5 and 

MoO3 coated Nb2O5 samples in 0.1 M LiClO4. 

In order to investigate the band-structure properties of the bare Nb2O5 and MoO3 coated 

Nb2O5 samples, Tauc plots of the samples were obtained by extracting their UV-Vis 

absorbance spectra and their bandgap energies were estimated (Figure 5.8). From the 

Tauc plots, it is observed that the bare Nb2O5 film bandgap was measured at 3.8 eV as 

previously reported.87 The MoO3 coating induced a drastic alteration on the original band 

gap. As MoO3 coatings are deposited the band gap was reduced which was closer to that 

of pure MoO3. With 20 cycles of MoO3 deposited, the band gap reduced to 3.59 eV and 

then further to 3.57, 3.43 and finally 3.27 eV for 40, 80 and 120 cycles, respectively. The 

relatively large bandgap of the Nb2O5 sample is probably the main reason that it failed to 

demonstrate any electrochromism at low applied potentials (−0.25 and −0.5 V) and 

exhibited poor optical modulation at even higher voltages (−0.75 and −1 V) during the EC 

measurements, whereas the MoO3 coated samples performed significantly better in both 

aspects.  
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Figure 5.8. Tauc plots and calculated bandgap for bare and MoO3 coated Nb2O5 samples 

The 120 cycle MoO3 coated sample demonstrated an extraordinarily high calculated CE of 

149.64 cm2 C−1, which far exceeded any previously reported values for either Nb2O5 or 

MoO3 (47.0 and 54.0 cm2 C−1 respectively). In addition, it is not a purely additive effect and 

a significant synergism is observed. Furthermore, the anodized Nb2O5 with MoO3 coating 

demonstrates stronger CE performance in comparison to other EC TMO compounds 

fabricated using anodization methods (25 cm2 C−1 at 550 nm for TiO2
120 and 141.5 cm2 C−1 

at 750 nm for WO3
3). 

 

 

 

5.4 Summary 

In this chapter, the author fabricated highly ordered, low impurity Nb2O5 nanochanneled 

films of 500 nm thickness on FTO substrates by using a combination of RF sputtering and 

electrochemical anodization methods. Subsequently, he demonstrated α-phase MoO3 
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coatings onto the Nb2O5 platform using a facile electrodeposition technique. The MoO3 

coated Nb2O5 binary films showed superior EC that was attributed to a reduced bandgap, 

enhanced charge transfer, enhanced ion capacity and large surface to volume ratio of the 

binary structure. The systems operated at low voltages as small as −0.25 V and showed 

remarkable optical modulations. The CE of 149.0 cm2 C−1 was achieved for the sample 

made with a MoO3 coating using 120 cycles, which is higher than any other EC Nb2O5 and 

MoO3 based devices previously reported. The proposed method offers a viable process for 

developing future EC TMO devices. 

In the next chapter the author will present a summary of his PhD thesis and discusses 

future works related to his PhD research project. 
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Chapter 6 

 

Conclusions and future works 

The author’s vision for this PhD research involved electric field driven syntheses and 

investigating the characteristics of selected chromic materials to improve the operation 

efficiency by overcoming the materials’ inherited limitations. The author’s vision was 

realised by developing anodized and electrodeposited nanostructured transition metal 

oxides (TMOs) and their binary chromic systems in highly ordered thin film geometries. 

Specially, the combination of complimentary TMOs turned out to elevate the merits of both 

incorporated TMOs in the binary system, resulting in relatively high transparency, large 

optical modulation and strong coloration efficiency (CE). 

In the course of carrying out this research, the author investigated numerous reports on 

existing chromic TMOs such as TiO2, MoO3, WO3, Nb2O5 and V2O5. However, upon a 

thorough review and analysis of the past data, it was found that other than WO3, the 

remaining TMOs did not perform nearly as satisfactory for practical chromic applications. 

Therefore, the author launched a comprehensive investigation into fully understanding the 

qualities and limitations experienced by other chromic TMOs. Various TMOs’ optical and 

electronic properties, morphologies, stoichiometry, doping effect, obtainable 

nanostructures and fabrication methods were examined to assess and formulate a 

practical and effective method in synthesising chromic devices with desirable performance.  

The investigations conducted by the author identified several existing chromic TMOs 

including MoO3, TiO2 and Nb2O5 with known limitations even though with great potentials 

to stretch their performance to exceed the current values reported. As such, the author’s 

research was organised and carried out so as to overcome the identified the research 

gaps and key parameters that affect and augment their performance. 
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In the first stage of this PhD project, the author demonstrated chromic devices based on 

electrodeposited α- and β-MoO3. α-MoO3 was specially targeted for its intrinsically 

stratified structure to accommodate a large number of intercalated ion. However, the 

adhesion to the substrate was insufficient to test them for electrochromic (EC) 

performance, so the focused remain on gasochromic measurements. These 

measurements revealed the α-MoO3’s high accommodation of H+ ions together with the 

directional paths for injected electrons are the main reasons for its excellent gasochromic 

properties. Subsequently, in the second stage, the author developed a binary EC devices 

based on anodized ordered TiO2 nanotube templates with electrodeposited α-MoO3. The 

template gave the system required durability for EC and α-MoO the enhanced chromic 

performance. The research demonstrated the MoO3 coated TiO2 EC device performance 

can exceed that of the bare TiO2 EC device. The MoO3 coating existed as an effective EC 

interface with enhanced charge carrier transfer to the ordered TiO2 nanotube template and 

also increased the capacity of the ionic intercalation. In the third stage, the author 

synthesised EC devices based on anodized ordered nanoporous Nb2O5 with the highest 

obtained CE value for Nb2O5 at the time. However the relatively large bandgap inherited by 

Nb2O5 thwarted higher EC performance by limiting the operation to high applied voltages. 

Finally, in the fourth stage, prompted by the enhanced augmentation of the MoO3 coating 

on TiO2 template, the author applied a similar MoO3 coating to the Nb2O5 template to 

obtain CE values comparative to the best chromic TMOs based on WO3. 

The major finding of each stage of this PhD research project are summarised as follows: 

Stage 1 

• In the first stage, the author demonstrated a facile and well controlled 

electrochemical synthesis process for the fabrication of both α and β-MoO3. The 

cyclic voltametric electrodeposition process was shown to be carried out under 
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ambient conditions which made this process versatile and compatible with 

electronic device industry standards. 

• In addition to the fine control of the experimental parameters, preferential growth of 

both α and β-MoO3 crystal phases could be achieved by manipulating the applied 

potential limits and sweep rates under which the depositions were carried out. 

• The author investigated the EC performance of both phases of MoO3 and found that 

the films’ adhesion to the substrate were poor so that the films did not remain intact 

during the EC measurements. 

• The author further assessed the gasochromic performance of both phases of MoO3 

and found that the intrinsically stratified α-MoO3 performed better than the β-MoO3 

due to the stratified structure and the possibility of direction passage of the free 

charges in α-MoO3.  

Stage 2 

• In this stage, the author developed EC devices with a binary system of TMOs with 

complimentary properties. The author electrodeposited α-MoO3 coating over 

anodized ordered TiO2 nanotube arrays. This binary system of MoO3 interface with 

TiO2 template overcame the adhesion issue experienced by bare electrodeposited 

MoO3 in stage 1 and the performance of bare TiO2 devices. 

• Highly ordered TiO2 nanotube arrays of 1 µm thickness with 70 and 95 nm inner 

and outer diameters, respectively, were synthesised on FTO substrates employing 

the anodization method. The author demonstrated uniform α-MoO3 coatings from 5 

to 15 nm on the TNT platform by employing a facile electrodeposition technique. It 

was found that the coating was the α-phase of MoO3 which deposited parallel to the 

surface of the highly ordered TiO2 nanotubular platform in a highly homogenous 

manner. 

• UV-Vis and EC measurements of these coated films demonstrated a reduction in 

the bandgap and shifting of the band edges of the overall system which resulted in 
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superior charge transfer performance. The author found that these alterations gave 

rise to significant improvements in the electrochromic properties of the MoO3 coated 

TiO2 nanotubular platform in comparison to bare TiO2 platform in terms of both 

optical density and repeatability. 

Stage 3 

• In this stage, the author developed EC devices using anodized ordered nanoporuos 

Nb2O5 and demonstrated the highest obtained CE value at the time. The author 

showed that the ordered nanostructure greatly enhanced the EC performance by 

the devices in comparison to random aligned nanostructures or bulk material. 

However the relatively large bandgap inherited by Nb2O5 existed as a hurdle to 

higher performance EC devices by not allowing operation at relatively low applied 

voltages. 

• The author synthesized compact three dimensional (3D) Nb2O5 nanoporous 

networks with thicknesses of 500 nm, 750 nm and 1 µm by employing a 

combination of RF sputtering and electrochemical anodization methods. It was 

revealed that the as-synthesized Nb2O5 films, obtained in 0.1 M LiClO4 electrolyte at 

low applied potentials, exhibited extraordinary EC performances. 

• The author found that the compact 3D nanoporous networks with high active 

surface areas demonstrated an excellent coloration efficiency (500 nm thick sample 

achieved 47.0 cm2 C−1 at 550 nm) that exceeded any previously reported Nb2O5 EC 

system. The author demonstrated that coupling these merits with high bleached 

state transparency, large optical modulation, and consistent cyclic stability make 

Nb2O5 a suitable choice for EC devices.  

• The author hypothesis a combination of Nb2O5 with low bandgap EC materials such 

as MoO3 or WO3 would potentially improve its EC performance and efficiency, 

which were presented in stage 4.  
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Stage 4 

• In this final stage, the author continued fabrication of binary TMO EC devices based 

on α-MoO3 and Nb2O5. It was observed that the coating of the relatively low 

bandgap MoO3 brought the overall system’s bandgap to values closer to that of 

MoO3, which overcame the bandgap limitations experienced by the bare Nb2O5 

template in stage 3. As a result, the binary device with complimentary TMOs 

incorporating Nb2O5 demonstrated comparative EC performance to the best WO3 

based EC devices. 

• The author synthesized highly ordered Nb2O5 nano-channelled films of 500 nm 

thickness on FTO substrates by using a combination of RF sputtering and 

electrochemical anodization methods. He demonstrated the formation of 

homogeneous α-MoO3 coatings on the Nb2O5 platform using a facile 

electrodeposition technique. 

• It was found that the α-MoO3 coating augmented Nb2O5 film demonstrated 

significant improvements in EC performance in comparison to both MoO3 or Nb2O5 

in terms of low voltage applications and coloration efficiency (20 cycle coating at 

550 nm optical wavelength achieved 149.0 cm2 C−1, which is higher than any MoO3 

or Nb2O5 device previously reported) These results indicate that coating of Nb2O5 

nano-channels with MoO3 offers a viable method for the fabrication of efficient EC 

devices. 

In conclusion, this PhD research project has successfully improved and overcame 

the performance limitations of the some of the known nanostructured chromic 

materials that were formed using electronic driven methods. By using the binary 

systems he created EC devices with performance comparative with the best EC 

material. As such the outcomes of this PhD research added significant values to the 

body of knowledge of the field of EC materials and as a result published in 
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prestigious peer reviewed scientific journals. A complete list of publications by the 

author since the beginning of this PhD research project, is as follows: 

Journal publications: 

• Yao, D. D.; Ou, J. Z.; Latham, K.; Zhuiykov, S.; O’Mullane, A. P.; Kalantar-zadeh, 

K., “Electrodeposited α- and β-Phase MoO3 Films and Investigation of Their 

Gasochromic Properties.” Crystal Growth & Design 4, 1865 (2012).  

• Yao, D. D.; Field, M. R.; O’Mullane, A.P.; Kalantar-zadeh, K.; Ou, J.Z., 

“Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3.” 

Nanoscale (2013).  

• Yao, D. D.; Rani, R. A.; O’Mullane, A. P.; Kalantar-zadeh, K.; Ou, J. Z., “High 

Performance Electrochromic Devices Based on Anodized Nanoporous Nb2o5.” The 

Journal of Physical Chemistry C  118, 476 (2013). 

• Yao, D. D.; Rani, R. A.; O’Mullane, A. P.; Kalantar-zadeh, K.; Ou, J. Z., “Enhanced 

Coloration Efficiency for Electrochromic Devices based on Anodized 

Nb2O5 / Electrodeposited MoO3 Binary Systems,” The Journal of Physical 

Chemistry C  (under review). 

• Zheng, H. D.; Sadek, A. Z.; Breedon, M.; Yao, D. D.; Latham, K.; du Plessis, J.; 

Kalantar-zadeh, K., “Fast formation of thick and transparent titania nanotubular films 

from sputtered Ti.” Electrochemistry Communications 12, 1308 (2009).  

• Ou, J. Z.; Campbell, J. L.; Yao, D. D.; Wlodarski, W.; Kalantar-zadeh, K., “In Situ 

Raman spectroscopy of H2 gas interaction with layered MoO3.’ American Chemical 

Society 115, 10757 (2011)  

• Walia, S.; Weber, R.; Balendhran, S.; Yao, D. D.; Abrahamson, J.T.; Zhuiykov, S.; 

Bhaskaran, M.; Sriram, S.; Strano, M.S. and Kalantar-zadeh, K.; “ZnO based 

thermopower wave sources,” Chemical Communications 48, 7462 (2012). 
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• Walia, S.; Balendhran, S.; Yi, P.; Yao, D. D.; Zhuiykov, S.; Pannirselvam, M.; 

Weber, R.; Strano, M. S.; Bhaskaran, M.; Sriram S.; and Kalantar-zadeh, K.; “MnO2 
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Physical Chemistry C 117, 9137 (2013). 
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MS.; and Kalantar-zadeh, K.; “Electrochemical Control of Photoluminescence in 

Two-Dimensional MoS2 Nanoflakes,” ACS Nano 7, 10083-10092 (2013). 

• Zhang, W.; Ou, JZ.; Tang, SY.; Sivan, V. Yao, DD.; Latham, K.; Khoshmanesh, K.; 

Mitchell, A.; O’Mullane, AP and Kalantar-zadeh K.; “Liquid Metal/Metal Oxide 

Frameworks,” Advanced Function Materials, DOI. 

 

Recommendations for future works 

Significant advancement in the field of EC materials have been achieved during the course 

of this PhD project, however the author feels that there still exists many opportunities for 

continuing research in alignment with those presented in this thesis, and recommends the 

following as future works: 

• The binary systems of complimentary TMOs require further investigation into the 

theory and practice of chromic materials, their selection and fabrication. This 

includes optimised TMO thicknesses and their morphologies as well as their 

crystalline structures. Improving charge carrier transfer between different TMO 

within the system and interconnecting structures are other issues that should be 

addressed. 

• The author showed that the coating of anodized TiO2 and Nb2O5 templates with  

thin layers of α-MoO3 offered a viable method for the fabrication of efficient EC 

devices. Other molybdenum oxide compounds such as MoO2 can also exhibit 
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potentials as complimentary material for nanoscale coatings and should be 

investigated. 

• It is possible to expand the binary system to other TMOs as well as systems with 

more than two TMOs. Such binary and multiple TMO systems can be employed to 

combine the merits and potentially enhance the EC performance even further. 

• Existing chromic devices are restricted by their colour schemes, and although 

Nb2O5 have shown to exist in multiple colours, however the majority of the chromic 

devices are only able to exist in a bleach and coloured state transition. Such multi 

coloured systems should be investigated. 

• Investigations into the intercalation of ions and charge carrier transfer stimulus in 

layered TMOs should be extended to understand and exploit their numerous 

possibilities. 
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