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Abstract

The usage of e-health applications is increasing in the modern era. Remote cardiac patients

monitoring application is an important example of these e-health applications. Diagnosing

cardiac disease in time is of crucial importance to save many patients lives. More than 3.5

million Australians suffer from long-term cardiac diseases. Therefore, in an ideal situation, a

continuous cardiac monitoring system should be provided for this large number of patients.

However, health-care providers lack the technology required to achieve this objective. Cloud

services can be utilized to fill the technology gap for health-care providers. However, three

main problems prevent health-care providers from using cloud services. Privacy, performance

and accuracy of diagnoses. In this thesis we are addressing these three problems. To pro-

vide strong privacy protection services, two steganography techniques are proposed. Both

techniques could achieve promising results in terms of security and distortion measurement.

The differences between original and resultant watermarked ECG signals were less then 1%.

Accordingly, the resultant ECG signal can be still used for diagnoses purposes, and only

authorized persons who have the required security information, can extract the hidden secret

data in the ECG signal. Consequently, to solve the performance problem of storing huge



amount of data concerning ECG into the cloud, two types of compression techniques are

introduced: Fractal based lossy compression technique and Gaussian based lossless compres-

sion technique. This thesis proves that, fractal models can be efficiently used in ECG lossy

compression. Moreover, the proposed fractal technique is a multi-processing ready technique

that is suitable to be implemented inside a cloud to make use of its multi processing capa-

bility. A high compression ratio could be achieved with low distortion effects. The Gaussian

lossless compression technique is proposed to provide a high compression ratio. Moreover,

because the compressed files are stored in the cloud, its services should be able to provide

automatic diagnosis capability. Therefore, cloud services should be able to diagnose com-

pressed ECG files without undergoing a decompression stage to reduce additional processing

overhead. Accordingly, the proposed Gaussian compression provides the ability to diagnose

the resultant compressed file. Subsequently, to make use of this homomorphic feature of the

proposed Gaussian compression algorithm, in this thesis we have introduced a new diagnoses

technique that can be used to detect life-threatening cardiac diseases such as Ventricular

Tachycardia and Ventricular Fibrillation. The proposed technique is applied directly to the

compressed ECG files without going through the decompression stage. The proposed tech-

nique could achieve high accuracy results near to 100% for detecting Ventricular Arrhythmia

and 96% for detecting Left Bundle Branch Block. Finally, we believe that in this thesis, the

first steps towards encouraging health-care providers to use cloud services have been taken.

However, this journey is still long.

2 (June 30, 2014)



Chapter 1

Introduction

Cardiovascular diseases (CVD) are the Number One killer of the modern era [66]. Wireless

cardiovascular monitoring facilities are widely used to provide continuous patient monitor-

ing and to send urgent alerts to the specialists in case of any emergency or abnormal life-

threatening cardiac behaviour. Accordingly, Electrocardiogram (ECG) signals are widely

used in these monitoring systems. ECGs are electrical signals that reflect the heart elec-

trical functionalities over time and they are collected using electrodes. Consequently, the

development of portable wireless monitoring facilities such as body sensors, has increased

significantly with the aim of utilizing ECG signals to diagnose most cardiac diseases.

The use of E-health applications is increasing to a great extent around the globe. Many

health-care organizations such as insurance companies, hospitals, and government health

sectors require access to patient information and records including their archived biomedical

signals. Therefore, patient records need to be stored in a centralized repository which will

allow other health-care organizations to access these records. Cloud can facilitate this service
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[53; 8; 24; 23; 70].

In typical wireless tele-monitoring systems with body sensor networks, patients wear one

or more body sensors to collect their ECG signals. Next, the collected biomedical signals

are transmitted to the patient’s smart-phone where any processing required is implemented.

Finally, the collected signals as well as other patient information are transmitted to the

medical cloud using the Internet [52]. Alternatively, patients at hospital can also send their

biomedical signals with their information to the centralized medical cloud. However, in this

scenario, many challenges arise.

1. Patient confidential information should be transmitted to the medical cloud along with

patient physiological signals. In this case, confidential information requires a special

mechanism for protection against intruders [66; 38; 67].

2. ECG signals are of enormous sizes. A typical electrocardiogram monitoring device

generates massive volumes of digital data. Depending on the application for the data,

the sampling rate varies from 125 to 1024 Hz. Each data sample may be represented

using 8 to 16 bit binary number. Up to 12 different streams of data may be obtained

from various sensors placed on the patient’s body. Even if we presume the application

will need the lower sampling rate and only one sensor will be needed that generates

8-bit data, we would accumulate ECG data at a rate of 7.5 KB per minute or 450 KB

per hour. At the other extreme, (12 sensors generating 16-bit values at 1024 Hz), data

is generated at the rate of 1500 KB per minute or more than 88 MB per hour [27]. If

this large amount of data is transmitted wirelessly to the medical cloud then it will

require a large bandwidth as well as very considerable power.
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3. The body sensors and smart devices generally have limited power as well as limited

processing capabilities. At the same time, they have few storage resources. As a

result, complicated algorithms for ECG diagnoses cannot be implemented within these

sensor nodes. Therefore, ECG diagnoses should be performed inside the medical cloud.

However, if the ECG signals stored in the cloud are in a compressed format, and most of

the proposed ECG diagnoses algorithms involve automatic diagnosis of cardiac diseases

from ECG signal using the raw ECG signal, then the cloud must decompress the ECG

signal, apply the diagnoses process and then compress the ECG again. In this case, a

huge processing overhead is created.

The aim of this research, is to addresses these three major problems of the current wireless

tele-monitoring systems that use a centralized medical cloud. New algorithms are introduced

as cloud-enabled algorithms which are suitable to be implemented in the cloud. On the other

hand, further algorithms are proposed to be implemented in the patient’s smart device or the

hospital server. Finally, the proposed algorithms are evaluated based on the improvements

they provide in the system performance. The effect of applying these algorithms on the

resultant ECG signal quality is also thoroughly investigated.

1.1 Scope and Goals

Improving the performance of wireless cardiovascular monitoring systems is of significant

importance. In this research, we investigated and proposed new techniques that will add

new knowledge to the theoretical and practical issues of wireless body sensor networks. The

aim of this research is to find fast and reliable techniques for cardiac abnormalities diagnoses,
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combined with providing a reliable and secure method to transfer the ECG signal, as well as

patient-sensitive medical information, to the responsible doctors in any emergency case. The

outcome of the research will improve the performance and security of health-care systems

and will save patients lives in many cases. Therefore, this research offers crucial benefits to

the community.

Most research that has been done on automated diagnoses of cardiac diseases were based

on raw ECG signal, where the original raw ECG signal is processed [37; 63; 91]. Part of

this thesis, introduces a new research topic to the current ECG analyses area, providing a

unique diagnosis for compressed-ECG signals using data mining approaches. This technique

has never been used for ECG diagnoses research as a technique to solve the major problems

in the Cardiovascular monitoring system. In fact, the success of this research will open

many research opportunities and studies in the fields of direct compression data analysis.

Accordingly, a new research area of analysing encrypted data without any decryption will

be opened. Based on this research, others are invited to develop this area to make the

whole communication faster. This research also investigates the topic of watermarking and

steganography and proposes a new steganography model to hide sensitive patient information

inside an ECG signal without increasing its size. Accordingly, this research will open another

new interesting subject for researchers to use ECG signal as host rather then images to host

secret data.

Finally, this research proposes a compression technique that utilizes fractal model which

is used mostly in image processing and compression, to be used for ECG compression. This

will lead and encourage other researchers to investigate more in this area as a new area in
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the ECG compression world.

The improvement in wireless cardiovascular monitoring systems will produce efficient

health-care systems which will have increased productivity and usage. As a result, indus-

tries, manufacturers and health-care systems companies will play a crucial role in the future

health-care revolution. In addition, since the ultimate aims of this work is saving patient

lives, the massive potential benefits in realizing this work could, perhaps, encourage gov-

ernment support and increased revenues in related commercial companies. The results of

this research will also motivate industrial companies to investigate new security techniques

of ECG steganography. Further, this work will encourage those industries to scrutinize the

new way of directly analysing the compressed data using the current available compression

techniques. This research will also boost motivation in communication industries to fur-

ther improve the proposed ECG signal compression technique to make it compatible with

analogue signals in the communication area.

1.2 Research Questions

After explaining possible problems in the current remote patient health-care applications, in

this research we seek to answer the following research questions.

• How patients’ confidential information can be protected and transmitted

securely in wireless tele-cardiovascular monitoring systems?

Sending sensitive patient information through the Internet is a challenging problem.

Researchers have proposed various techniques to protect patient health records while

it is being transmitted on the communication channel or while being stored in the
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remote cloud. However, most previously-proposed techniques rely on the theory of

cryptography and data ciphering. Therefore, they inherit the problems of the current

data cyphering techniques, such as large data overhead and high complexity, especially

with large key sizes. In this research, a new ECG-based steganography technique that

enables sending patient’s confidential information is proposed. This research will study

the ability of hiding patient’s sensitive information inside the sent/received ECG signal.

It will also study the effect of hiding these data on the resultant ECG signal and whether

the resultant ECG signal can be used for diagnostic purposes or not.

• How can ECG signal self-similarity characteristics be utilized to relize a

powerful lossy compression algorithm that can be implemented in either

the client side or the cloud side?

This question addresses lossy compression techniques which can provide high compres-

sion ratio with low information loss. What will be the impact of using the proposed

method on the resultant ECG signal? How can we design an algorithm which can be

implemented inside the cloud to use its parallel processing capabilities without adding

to the overhead. Moreover, can the same algorithm be modified and implemented inside

the client device rather than the cloud?

• How to utilize ECG morphological characteristics to implement a lossless

compression algorithm that can be used for compressing ECG signal while

keeping the resultant compressed file usable for diagnoses without decom-

pression?
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In this research question, a new lossless compression technique is proposed that can

provide a high compression ratio with zero data loss. Moreover, the characteristics of

the compressed file should allow the diagnoses process to be applied directly to the

compressed file without decompression. Therefore, the compressed file should preserve

the important features of the ECG signal as well as the sequence of the data.

• How can cardiac diseases be diagnosed directly from compressed ECG using

the proposed lossless compression algorithm?

In this research we will focus especially on tachyarrhythmia diseases such as ventricular

tachycardia and ventricular fibrillation. Another cardiac disease is also investigated;

Left Bundle Branch Block (LBBB). We intend to focus on ventricular diseases because

they are the most life-threatening [55]. Using the proposed compression technique, what

will be the accuracy of detecting ventricular abnormality? What will be the accuracy

of detecting LBBB? What will be the suitable data mining technique to achieve this

goal?

1.3 Contributions

In answering the research questions introduced in Section 1.2, this thesis provides several

contributions in the area of health-care and particularly remote cardiac monitoring systems.

The thesis contributes in three major areas: security, communication performance and car-

diovascular diagnoses.

• Proposing new ECG steganography techniques for protecting patient con-

fidential information
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In this research, two steganography techniques are introduced. Firstly, time domain

ECG steganography is implemented. It is based on special range transform which

provides a simple and secure method to hide information in different bit positions.

However, the amount of data that can be hidden is small. To hide larger amounts of

data, a frequency domain wavelet based steganography technique has been introduced.

This combines encryption and a scrambling technique to protect patient confidential

data. The proposed method allows the ECG signal to hide its corresponding patient

confidential data and other physiological information thus guaranteeing the integration

between ECG and the rest. To evaluate the effectiveness of the proposed techniques on

the ECG signal, two distortion measurement metrics have been used: the Percentage

Residual Difference (PRD) and the Wavelet Weighted PRD (WWPRD). Both the pro-

posed techniques provide high security protection for patients’ data with low distortion

and ECG data remains diagnosable after watermarking (i.e. hiding patient confidential

data) as well as when watermarks (i.e. hidden data) are removed from the watermarked

ECG. The proposed techniques will provide security without adding any overhead to

the transmitted ECG signal.

• Proposing a new cloud enabled fractal based ECG lossy compression

In this research, a new fractal-based ECG lossy compression technique is proposed. It

is found that the ECG signal self similarity characteristic can be used efficiently to

achieve high compression ratios. The proposed technique is based on modifying the

popular fractal model to be used in compression in conjunction with Iterated Function

System. An ECG signal is divided into equal blocks called range blocks. Subsequently,

10 (June 30, 2014)



CHAPTER 1. INTRODUCTION

another down-sampled copy of the ECG signal is created which is called domain. For

each range block the most similar block in the domain is found. As a result, fractal

coefficients (i.e. parameters defining the fractal compression model) are calculated and

stored in the compressed file for each ECG signal range block. In order to make our

technique cloud- friendly, the decompression operation is designed in such a way that

allows the user to retrieve part of the file (i.e ECG segment) without decompressing

the whole file. Therefore, clients do not need to download the full compressed file

before they can view the result. The proposed algorithm has been implemented and

compared with other existing lossy ECG compression techniques. It has been found that

the proposed technique can achieve a higher compression ratio and a lower Percentage

Residual Difference (PRD) Value. Furthermore, the proposed technique is designed

to allow it to be implemented within a parallel processing environment such as cloud

without adding more overheads in the communication between the processing units.

To use fractal compression inside the client device and not the cloud, we modified

the current fractal model to increase its performance and proposed another fast fractal

ECG lossy compression technique. The effect of using both methods on the ECG signal

is calculated using PRD measurement.

• Proposing new ECG lossless compression using Gaussian-based approxima-

tion and Burrow-Wheeler Transform

In this research, a new Gaussian-based ECG lossless compression technique is proposed.

It is found that the Gaussian function can be used to model and approximate ECG

signals. Therefore, optimization theory is used to determine the best Gaussian function
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parameters for ECG approximation. Next, residuals are calculated and differentiated.

Subsequently, the residuals are encoded using the Burrow-Wheeler Transform (BWT),

followed by move-to-front (MTF) and run-length encoding. Finally, the resultant en-

coded signal is further encoded using Huffman coding. BWT and MTF encoding are

modified to deal with numbers instead of dealing with strings. The proposed algorithm

has been implemented and compared with other existing lossless ECG compression

techniques. It has been found that the proposed technique can achieve a higher com-

pression ratio with a guaranteed exact reconstruction of the ECG signal. Processing

the signal in a time domain ensures that the features and sequence of the ECG signal

points will stay at the same sequence. As a result, the compressed file will be highly

correlated with the original ECG signal. This feature will be used later for diagnoses

purposes directly from the ECG compressed file.

• Proposing new cardiac diseases detection algorithms from the compressed

ECG signal using Principle Components Analyses and neural networks

In this research a new diagnoses technique is introduced to detect ventricular arrhyth-

mia and LBBB directly from compressed ECG signal without applying the decompres-

sion stage. The proposed algorithm uses PCA technique for feature extraction and

k-mean for clustering of normal and abnormal ECG signals. The k-mean algorithm is

replaced with a Perceptron-Neural Network to improve the accuracy of the system. The

diagnosis process is implemented in the cloud to enable it to diagnose the compressed

ECG files already stored in the cloud.
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1.4 Thesis Structure

In this introductory chapter we discussed the current problems in cardiac remote monitoring

systems. Moreover, we explained the research questions and the thesis contributions. The

rest of this thesis is organized as follows:

1. Chapter 2 introduces the concept of steganography and explains two new proposed

ECG steganography techniques. This chapter then evaluates and shows the effect of

using the proposed steganography techniques on the resultant ECG quality. Security

analysis is then introduced and discussed for the proposed techniques.

2. Chapter 3 proposes a new lossy compression technique using a fractal model. It also

explains how the proposed technique can be utilized within a parallel processing envi-

ronment such as cloud. Finally, a new mathematical model is explained to improve the

performance of the current fractal compression model.

3. Chapter 4 analyses the current available lossless compression techniques. It introduces a

new Gaussian-based lossless technique and compares it with the other lossless technique.

4. Chapter 5 introduces a new diagnostic technique directly from the compressed file in-

troduced in Chapter 4, Also in this chapter, ventricular abnormalities will be diagnosed

as well as the Left Bound Branch Block.

5. Chapter 6 summarizes the thesis contributions proposed in this research and discusses

future improvements and research areas that could benefit from this thesis.
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ECG Steganography to Protect

Patient Confidential Information

This chapter answers the first research question raised in Section 1.2. The security prob-

lem of transmitting patient confidential information is discussed with examples of current

available solutions and their limitations. This chapter also shows how the steganography

theory combined with encryption can be a feasible and reliable solution for this security

problem. Section 2.1 discusses the problem statement and its negative implication on the

current e-health system. Section 2.2 briefly discusses the related works and what other re-

searchers have done to solve this problem. Section 2.3 explains the first proposed time domain

steganography technique. In Section 2.4 the second wavelet based steganography technique

is introduced. In this section we discuss the basic system design, the embedding process (i.e

patient sensitive data into ECG signal), the extraction process and security analysis. Then

Section 2.5 explains diagnosability measurement. Section 2.6.2 shows the results of PRD

14 (June 30, 2014)



CHAPTER 2. ECG STEGANOGRAPHY TO PROTECT PATIENT CONFIDENTIAL

INFORMATION

calculated before and after secret data extraction for both the proposed algorithms. Finally,

Section 2.7 summarizes this chapter.

2.1 Introduction

The number of elderly patients is increasing dramatically due to recent medical advances.

Accordingly, to reduce medical labor costs, the use of remote healthcare monitoring systems

and Point-of-Care (PoC) technologies have become popular [51; 28]. Monitoring patients at

home can drastically reduce the increasing traffic at hospitals and medical centres. More-

over, Point-of-Care solutions can provide greater reliability in emergency services as patient

medical information (ex. for diagnosis) can be sent immediately to doctors and response or

appropriate action can be taken without delay. However, Remote health care systems are

used in large geographical areas essentially for monitoring purposes, and, the Internet rep-

resents the main communication channel used to exchange information. Typically, patient

biological signals and other physiological readings are collected using body sensors. Next,

the collected signals are sent to the patient PDA device for further processing or diagnosis.

Finally, the signals and patient confidential information as well as diagnosis report or any ur-

gent alerts are sent to the central hospital servers or medical cloud via the Internet. Doctors

can check those biomedical signals and possibly make a decision in the case of an emergency

from anywhere using any device[33].

Using Internet as a main communication channel introduces new security and privacy

threats as well as data integration issues. According to the Health Insurance Portability

and Accountability Act (HIPAA), information sent through the Internet should be protected
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and secured. HIPAA mandates that while transmitting information through the Internet a

patient’s privacy and confidentiality be protected as follows: [48]:

1. Patient privacy: It is of crucial importance that a patient can control who will use

his/her confidential health information, such as name, address, telephone number, and

Medicare number. As a result, the security protocol should provide further control on

who can access patient’s data and who cannot.

2. Security: The methods of computer software should guarantee the security of the in-

formation within the communication channels as well as the information stored on the

hospital server or on the cloud.

Accordingly, it is of crucial importance to implement a security protocol which will have

powerful communication and storage security [59].

Several researchers have proposed various security protocols to secure patient confidential

information. Techniques used can be categorized into two subcategories. Firstly, there are

techniques that are based on encryption and cryptographic algorithms. These techniques

are used to secure data during the communication and storage. As a result, the final data

will be stored in encrypted format [48; 57; 28; 82]. The disadvantage of using encryption

based techniques is its large computational overhead. Therefore, encryption based methods

are not suitable in resource-constrained mobile environment. Alternatively, many security

techniques are based on hiding its sensitive information inside another insensitive host data

without incurring any increase in the host data size and huge computational overhead. These

techniques are called steganography techniques. Steganography is the art of hiding secret
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information inside another type of data called host data [61]. However, steganography tech-

niques alone will not solve the authentication problem and cannot give the patients the

required ability to control who can access their personal information as stated by HIPAA.

Glucose 
Sensors

ECG
Sensor

Blood
Pressure

Temperature 
Sensor

Patient 
Position
Sensor

Signals collected
and steganography
process implemented 
in the mobile

Hospital Data
Management
Server
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Tablet

Only authorized doctors can access hidden information
inside the ECG signal using different workstations and mobiles

Sensors send reading to mobile device using Bluetooth. 
Steganography operation is applied inside the mobile device

The received watermarked signal
 is stored in Hospital Servers

File 
Server

File 
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Application 
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ECG with secured
 hidden data

Internet

Caregiver Doctors PDA

Figure 2.1: ECG steganography scenario in Point-of-Care (PoC) systems where body sensors
collect different readings as well as ECG signal and watermarking process implemented inside
the patient’s mobile device

To apply steganography technique using ECG signal as a host, there are two approaches

to achieve this goal. Firstly, perform all the steganography stages in time domain which will

result in better performance. However, the amount of information that can be hidden using

this approach will be small. Secondly, performing the steganography technique on frequency

domain which will result in lower performance but the amount of information that can be

hidden will be larger. Therefore, in this chapter, two new security techniques are proposed
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to guarantee secure transmission of patient confidential information combined with patient

physiological readings from body sensors. The first proposed technique is based on time do-

main to provide better performance. This technique is based on transforming the ECG signal

to a special time domain called (Shift special range transform) to increase the algorithm secu-

rity. Then it uses LSB embedding to hide the secret data in the transformed special domain

ECG. Finally, it returns the resultant ECG signal to its original range. The second proposed

technique is based on frequency domain and is a hybrid between cryptography technique

and steganography techniques. Firstly, it is based on using steganography techniques to hide

patient confidential information inside patient biomedical signal. Moreover, the proposed

technique uses encryption based model to allow only the authorized persons to extract the

hidden data. In our proposed technique, the patient ECG signal is used as the host signal

that will carry the patient secret information as well as other readings from other sensors

such as temperature, glucose, position, and blood pressure. The ECG signal is used here due

to the fact that most of the health-care systems will collect ECG information. Moreover,

the size of the ECG signal is large compared to the size of other information. Therefore,

it will be suitable to be a host for other small size secret information. As a result, both

the proposed techniques will follow HIPAA guidelines in providing open access for patients

biomedical signal but prevents unauthorized access to patient confidential information.

In this scenario body sensor nodes will be used to collect ECG signal, glucose reading, tem-

perature, position and blood pressure, the sensors will send their readings to patient’s PDA

device via Bluetooth. Then , inside the patient’s PDA device the steganography technique

will be applied and patient secret information and physiological readings will be embedded

18 (June 30, 2014)



CHAPTER 2. ECG STEGANOGRAPHY TO PROTECT PATIENT CONFIDENTIAL

INFORMATION

inside the ECG host signal. Finally, the watermarked ECG signal is sent to the hospital

server or cloud via the Internet. As a result, the real size of the transmitted data is the

size of the ECG signal only without adding any overhead, because the other information are

hidden inside the ECG signal without increasing its size. At hospital server or cloud, the

ECG signal and its hidden information will be stored. Any doctor can see the watermarked

ECG signal and only authorized doctors and certain administrative personnel can extract

the secret information and have access to the confidential patient information as well as other

readings stored in the host ECG signal. This system is shown in Fig. 2.1.

Both the proposed steganography techniques have been designed in such a way that

guarantees minimum acceptable distortion in the ECG signal, Furthermore, it will provide

the highest security that can be achieved. The use of these techniques will slightly affect the

quality of ECG signal. However, watermarked ECG signal can still be used for diagnoses

purposes as it is proven in this chapter. In this work the following research questions are

answered:

• Can the proposed techniques protect patient confidential data as explained in the

HIPAA security and privacy guidelines?

• What will be the effect on the original ECG signal after applying the proposed steganog-

raphy techniques in terms of size and quality?

2.2 Related Work

There are many approaches to secure patient sensitive data [17; 82; 28; 49]. However, one

approach [40; 26; 92] proposed to secure data is based on using steganography techniques to
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hide secret information inside medical images. The challenging factors of these techniques

are how much information can be stored, and to what extent the method is secure. Finally,

what will be the resultant distortion on the original medical image or signal.

Kai-mei Zheng and Xu Qian [92] proposed a new reversible data hiding technique based

on wavelet transform. Their method is based on applying B-spline wavelet transform on the

original ECG signal to detect QRS complex. After detecting R waves, Haar lifting wavelet

transform is applied again on the original ECG signal. Next, the non QRS high frequency

wavelet coefficients are selected by comparing and applying index subscript mapping. Then,

the selected coefficients are shifted one bit to the left and the watermark is embedded. Finally,

the ECG signal is reconstructed by applying reverse haar lifting wavelet transform. Moreover,

before they embed the watermark, Arnold transform is applied for watermark scrambling.

This method has low capacity since it is shifting one bit. As a result only one bit can be

stored for each ECG sample value. Furthermore, the security in this algorithm relies on the

algorithm itself, it does not use a user defined key. Finally, this algorithm is based on normal

ECG signal in which QRS complex can be detected. However, for abnormal signal in which

QRS complex cannot be detected, the algorithm will not perform well.

H. Golpira and H. Danyali [26] proposed a reversible blind watermarking for medical

images based on wavelet histogram shifting. In this work medical images such as MRI is

used as host signal. A two dimensional wavelet transform is applied to the image. Then, the

histogram of the high frequency sub-bands is determined. Next, two thresholds are selected,

the first is in the beginning and the other is in the last portion of the histogram. For each

threshold a zero point is created by shifting the left histogram part of the first threshold
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to the left, and shifting the right histogram part of the second threshold to the right. The

locations of the thresholds and the zero points are used for inserting the binary watermark

data. This algorithm performs well for MRI images but not for ECG host signals. Moreover,

the capacity of this algorithms is low and no encryption key is involved in its watermarking

process.

Finally, S.Kauf and O.Farooq [40] proposed new digital watermarking of ECG data for

secure wireless communication. In their work, each ECG sample is quantized using 10 bits,

and is divided into segments. The segment size is equal to the chirp signal that they use.

Therefore, for each ECG segment a modulated chirp signal is added. Patient ID is used in

the modulation process of the chirp signal. Next, the modulated chirp signal is multiplied by

a window dependent factor, and then added to the ECG signal. The resulting watermarked

signal is 11 bits per sample. The final signal consists of 16 bits per sample, with 11 bits for

watermarked ECG and 5 bits for the factor and patient ID. However, in this algorithm the size

of ECG signal is increased from 12 bits/sample to 16 bits/sample. This behavior overrides

completely the concept of using steganography and the main purpose of steganography that

does not increase the original size of the host signal.

2.3 Time Domain Special Range ECG Steganography

As mentioned previously, in recent e-health systems the usage of ECG signal has increased

significantly to provide highly qualified remote medical services. In this section, a new

steganography technique is proposed that is able to hide the secret message in any position

in the host signal without distorting the original signal. This technique provides high security
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for the secret message by selecting more secured positions (such as MSB) in the host ECG

signal that are unexpected to the intruders. The proposed model consists of four sequential

steps as shown in Fig. 2.2.

 E C G  s i g n a l  
p r e p r o c e s s i n g

D a t a  h i d i n g  

 E C G  S i g n a l
E C G  S i g n a l  w i t h  
s e c r e t  b i t s

S e c r e t  B i t s

S h i f t  s p e c i a l  
r a n g e  T r a n s f o r m

s p e c i a l  r a n g e  
p a r a m e t e r s

 E C G  s i g n a l  
S c a l e  a n d  l e v e l
c o r r e c t i o n

Figure 2.2: Block Diagram for the Proposed ECG Steganography System

2.3.1 ECG Signal Preprocessing

The first step is responsible for shifting up and scaling the ECG signal to avoid the negative

values and converting the signal floating point numbers into integers. At the same time,

the function of this step represents the fist level of security of the steganography technique

by hiding the values of both shifting and scaling factors that are mandatory parameters for

extracting the secret information. Equation 2.1 is required for shifting up the ECG signal

samples.

X̄ = s+X (2.1)

Where X̄ is the shifted ECG signal, s is the shift value and X is the original ECG signal.

Then, the resultant shifted signal is scaled to compute the integer version of the ECG signal.

Equation 2.2 is required to perform the scaling function.
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X̂ = p ∗ X̄ (2.2)

Where X̂ is the scaled ECG vector, p is the scale factor and X̄ is the shifted ECG vector.

Technically , the value of p is based on the ECG sample precisions of the ECG acquisition

device and the ADC converter (analogue to digital).

2.3.2 Shift Special Range Transform

In our proposed system, a number of special values in the ECG signal samples are found

to be relevant hosts that can hide the secret bits in the most significant positions with the

condition of inverting the values of the right hand bits to the secret bit position. At the

same time, these special host values do not produce large errors as a result of the hiding

operation. Let M = 128 be a special value that allows us to hide the secret bit B in the

8th position of binary value of M . By computing the binary representation of M , we get

(10000000)2 . If B = 1, then the special value of M will not be changed as the 8th bit of

M is already equal to 1. On the other hand, if B = 0, conversion of the 8th bit of M to

zero will cause a dramatic change to the host value as the new value of M will be equal to 0

(00000000)2 . However, by applying the condition of inverting all the right hand side bits of

the secret position (in this case to the right of 8th bit), the new value of M will be 127 which

is equivalent to (01111111)2 . As a result, this process will reduce the resultant error to 1. For

our ECG host signal, we use 32 bits to form each ECG sample. In this binary format, there

are many special ranges that are relevant to hide the secret bits in all host sample positions.

Equation 2.3 calculates the total number of special ranges that can be used.
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Table 2.1: Special ranges for different positions

Rmin Rmax n Position

127 129 3 8

32767 32769 3 16

8388607 8388607 3 24

2147483647 2147483649 3 32

T =
i=r∑

i=2

2r−i (2.3)

Where T is the total number of special ranges, i is the position of the secret bit, and r is

the total number of bits per sample. By applying Eq. 2.3, and setting r = 32, the resultant

T is 2.1475 × 109.

With the aim of utilizing all the ECG signal samples as host for the secret bits, in

the second step of the proposed technique (Shift range transform) a new shifting transform

is proposed to shift any number in the host signal to any required special range number.

Equation 2.4 is required to perform the shifting operation to the host signal sample.

S = Rmin + (M mod n) (2.4)

Where S is the new shifted value, Rmin is the starting value of the target special range,

M is the value of the host signal sample and n is the length of the special range. Table 2.1

shows some examples of special ranges that we used to hide bits in positions 8,16,24 and 32.
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011001110110100111

101111101010000110

100011000111011000

101010111110001010

Figure 2.3: The Secret Binary Data

2.3.3 Data Hiding

The third step of the proposed technique is the actual data hiding process. The basic idea

of this process is to hide the secret bits using the shifted value as a host, then the resultant

value would be shifted back to its original level. Equation 2.5 is required to perform the

hiding processes.

Mn =





Mo + (Rmax − S) if B=1

Mo − (S −Rmin) if B=0

(2.5)

Where Mn is the new resultant value of the host data, Mo is the original host signal

sample, Rmin is the minimum value of the selected special range, Rmax is the maximum

value of the selected special range and B is the secret bit. Figure 2.3 shows a block of the

secret bits that were inserted into the host signal samples of ECGs.

2.3.4 ECG Signal Scaling and Level Correction

The final step of the proposed technique is to de-scale the signal and shift it back to its

original values. To extract the hidden data from the host signal the receiver needs to know

two parameters, the used range and signal pre-processing parameters. The receiver should

apply the same transformation using Eq. 2.1 in addition to performing bitwise operation to
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extract the secret bits located in special range values of ECG host samples. Consequently,

only authorized persons who know this information can extract the hidden data. The strength

of this approach is based on the very large possibilities of the available special ranges that

is up to 2.1475 × 109 and pre-processing parameters such as 232 possible shifting values and

few possibilities of scaling values 200 for MIT-BIH data. Therefore, even if we ignore scaling

factor, the intruder needs to try this very large number of possibilities (i.e. 2.1475×109×232)

to enable him to extract the secret message from host ECG samples.

2.4 Frequency Domain Wavelet based ECG Steganography

The sender side of the proposed steganography technique consists of four integrated stages

as shown in Fig. 2.6. The proposed technique is designed to ensure secure information

hiding with minimal distortion of the host signal. Moreover, this technique contains an

authentication stage to prevent unauthorized users from extracting the hidden information.

2.4.1 Stage 1: Encryption

The aim of this stage is to encrypt the patient confidential information in such a way that

prevents unauthorized persons - who do not have the shared key- from accessing patient

confidential data. In this stage XOR ciphering technique is used with an ASCII coded

shared key, which will play the role of the security key. XOR ciphering is selected because of

its simplicity. As a result, XOR ciphering can be easily implemented inside a mobile device.

Figure 2.4 shows an example of what information could be stored inside the ECG signal [75].
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Patient Confidential information

Name : Ayman Ibaida
Date of Birth : 1/1/1970
Adress : 
Medicare Number : 1234567890
Telephone Number : 1234567890

Patient Diagnoses information

blood Pressure
Glucose Level
Temperature
Patient location. 

Patient biometric information

Figure 2.4: Original data consisting of patient information and sensor readings as well as
patient biometric information.

2.4.2 Stage 2: Wavelet Decomposition

Wavelet transform is a process that can decompose the given signal into coefficients repre-

senting frequency components of the signal at a given time. Wavelet transform can be defined

as shown in Eq. 2.6.

C(S,P ) =

∫
∞

−∞

f(t)ψ(S,P ) dt (2.6)

where ψ represents wavelet function. S and P are positive integers representing transform

parameters. C represents the coefficients which is a function of scale and position parameters

[72]. Wavelet transform is a powerful tool to combine time domain with frequency domain in

one transform. In most applications discrete signals are used. Therefore, Discrete Wavelet

Transform (DWT) must be used instead of continuous wavelet transform. DWT decompo-

sition can be performed by applying wavelet transform to the signal using band filters. The
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result of the band filtering operation will be two different signals, one will be related to the

high frequency components and the other related to the low frequency components of the

original signal. If this process is repeated multiple times, then it is called multi-level packet

wavelet decomposition. Discrete Wavelet transform can be defined as in Eq. 2.7

W (i, j) =
∑

i

∑

j

X(i)Ψij(n) (2.7)

where W (i, j) represents the DWT coefficients. i and j are the scale and shift transform

parameters, and Ψij(n) is the wavelet basis time function with finite energy and fast decay.

The wavelet function can be defined as in Eq. 2.8

Ψij(n) = 2−i/2Ψ(2−in− j) (2.8)

In our proposed technique, a 5-level wavelet packet decomposition has been applied to the

host signal. Accordingly, 32 sub-bands resulted from this decomposition process as shown

in Fig. 2.9. In each decomposition iteration the original signal is divided into two signals.

Moreover, the frequency spectrum is distributed on these two signals. Therefore, one of the

resulting signals will represent the high frequency component and the other one represents

the low frequency component. Most of the important features of the ECG signal are related

to the low frequency signal. Therefore, this signal is called the approximation signal (A). On

the other hand, the high frequency signal represents mostly the noise part of the ECG signal

and is called detail signal (D). As a result, a small number of the 32 sub-bands will be highly

correlated with the important ECG features while the other sub bands will be correlated with
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Figure 2.5: Effect of applying steganography using different levels on the resulting PRD for
each of the 32 sub-bands.

the noise components in the original ECG signal [5]. Therefore, in our proposed technique

different number of bits will be changed in each wavelet coefficient (usually called steganogra-

phy level) based on its sub-band. As a result, a different steganography level will be selected

for each band in such a way that guarantees the minimal distortion of the important features

for the host ECG signal. The process of steganography levels selection was performed by

applying lot of experimentation as shown in Fig. 2.5. It is clear that, hiding data in some

sub-bands will highly affect the original signal, while hiding in other sub-bands would result

in small distortion effect. Accordingly, the selected steganography levels for bands from 1 to

17 is 5 bits and 6 bits for the other bands.

2.4.3 Stage 3: The embedding operation

At this stage the proposed technique will use a special security implementation to ensure

high data security. In this technique a scrambling operation is performed using two pa-

rameters. First is the shared key known to both the sender and the receiver. Second is
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Host ECG
Signal

Encryption

Shared 
Key

Secret Data

Apply wavelet
 packet

 decomposition

Encrypted
Secret bits

32 sub-bands
 wavelet coefficients

Embedding and scrambling data
Scrambling Matrix
Levels Vector

Watermarked wavelet
coefficients 32 
sub-bands

Inverse wavelet packet transform

Watermarked ECG signal

Figure 2.6: Block diagram of the sender steganography which includes encryption, wavelet
decomposition and secret data embedding.
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Key

Encrypted 
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wavelet packet 
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watermarked 
 ECG Signal

Extracted
Secret bits
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 wavelet 
coefficients

extracting and 
rearranging

Scrambling
 Matrix

Levels
 Vector

Figure 2.7: Block diagram of the receiver steganography which includes wavelet decomposition,
extraction and decryption
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the scrambling matrix, which is stored inside both the transmitter and the receiver. Each

transmitter/receiver pair has a unique scrambling matrix defined by Eq. 2.9

S =




s1,1 s1,2 · · · s1,32

s2,1 s2,2 · · · s2,32

...
...

. . .
...

s128,1 s128,2 · · · s128,32




(2.9)

where S is a 128 × 32 scrambling matrix. s is a number between 1 and 32. While building

the matrix we make sure that the following conditions are met:

• The same row must not contain duplicate elements

• Rows must not be duplicates.

The detailed block diagram for the data embedding process is shown in Fig. 2.8. The

embedding stage starts with converting the shared key into ASCII codes, therefore each

character is represented by a number from 1 to 128. For each character code the scrambling

sequence fetcher will read the corresponding row from the scrambling matrix. An example

of a fetched row can be shown in Eq. 2.10

Sr =

32 22 6 3 16 11 30 7

28 17 14 8 5 29 21 25

31 27 26 19 15 1 23 2

4 18 24 13 9 20 10 12

(2.10)
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The embedding operation performs the data hiding process in the wavelet coefficients

according to the sub-band sequence from the fetched row. For example, if the fetched row

is as in Eq. 2.10, the embedding process will start by reading the current wavelet coefficient

in sub-band 32 and changing its LSB bits. Then, it will read the current wavelet coefficient

in sub-band 22 and changing its LSB bits, and so on. On the other hand, the steganography

level is determined according to the level vector which contains the information about how

many LSB bits will be changed for each sub-band. For example if the data is embedded in

sub-band 32 then 6 bits will be changed per sample, while if it is embedded into wavelet

coefficient in sub-band 1 then 5 LSB bits will be changed.

Get ASCII
 Code

Shared Key
Embedding 

Sequence Fetcher

ASCII 
Codes

Embedding
 sequence

LSB 
Embedding

Secret 
encrypted
bits

Wavelet 
sub-bands
Coefficients

Levels 
Vector

Watermarked
Wavelet 
coefficients

Scrambling 
Matrix

Figure 2.8: Block diagram showing the detailed construction of the watermark embedding
operation

2.4.4 Stage 4: Inverse wavelet re-composition

In this final stage, the resultant watermarked 32 sub-bands are recomposed using inverse

wavelet packet re-composition. The result of this operation is the new watermarked ECG

signal. The inverse wavelet process will convert the signal to the time domain instead of

combined time and frequency domain. Therefore, the newly reconstructed watermarked
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Figure 2.9: 5-level wavelet decomposition tree showing 32 sub-bands of ECG host signal and
the secret data will be hidden inside the coefficients of the sub-bands

ECG signal will be very similar to the original unwatermarked ECG signal. The detailed

embedding algorithm is shown in Algorithm 1.

The algorithm starts by initializing the required variables. Next, the coefficient matrix

will be shifted and scaled to ensure that all coefficients values are integers. Then, the algor-

ithm will select a node out of 32 nodes in each row of the coefficient matrix. The selection

process is based on the value read from the scrambling matrix and the key. The algorithm

will be repeated until the end of the coefficient matrix is reached. Finally, the coefficient

matrix will be shifted again and re-scaled to return its original range and inverse wavelet

transform is applied to produce the watermarked ECG signal.

2.4.5 Watermark extraction process

To extract the secret bits from the watermarked ECG signal, the following information is

required at the receiver side.
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Algorithm 1 The embedding algorithm

1: bits: the secret bits array
2: bs: size of bits array
3: b: index of the current bit of the secret bits array
4: ecg : the host ECG signal
5: key: encryption key
6: kl: size of key
7: kc: index of the current character in the secret key
8: scra: The scrambling matrix 128× 32
9: sl: steganography embedding level

10: coef: wavelet packet coefficients at level 5 which has 32 columns
11: cs: number of rows of coef matrix
12: s: index of the current row of the coefficients matrix
13: coef ← coef + 20
14: coef ← coef × 10000
15: b← 1
16: kc← 1
17: s← 1
18: while s < cs do
19: for doi = 1 TO 32
20: node← scra(ascii(key(kc)), i)
21: bnode← sl(node)
22: for doj = 1 TO bnode
23: coef(s, node)← embed(bits(b), position(j))
24: b← b+ 1
25: if b > bs then
26: b← 1
27: end if
28: end for
29: end for
30: s← s+ 1
31: kc← kc+ 1
32: if kc > kl then
33: kc← 1
34: end if
35: end while
36: coef ← coef/10000
37: coef ← coef − 20
38: necg ← wavletpacketrecomposition(coef)
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1. The shared key value

2. Scrambling matrix

3. Steganography levels vector

The stages of the extraction process can be shown in Fig. 2.7. The first step is to apply

5-level wavelet packet decomposition to generate the 32 sub-bands signals. Next, using the

shared key and scrambling matrix the extraction operation starts extracting the secret bits in

the correct order according to the sequence rows fetched from the scrambling matrix. Finally,

the extracted secret bits are decrypted using the same shared key. The watermark extraction

process is almost similar to the watermarking embedding process shown in Algorithm 1 except

that instead of changing the bits of the selected node, it is required to read values of the bits

in the selected nodes, and then resetting them to zero.

2.4.6 Security Analysis

The security of the proposed algorithm is mainly based on the idea of having several param-

eters shared between the transmitter and the receiver entities. Any change in any parameter

will lead to extraction of wrong data. Accordingly, the receiver and transmitter should agree

on the following information:

1. The scrambling matrix

2. The encryption key (ASCII text string) i.e shared secret.

3. Steganography levels vector
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As a result, even if the key is stolen the attacker will require to know the scrambling

matrix as well as the steganography levels vector. The scrambling matrix is stored inside

the transmitter/receiver pair and it will not be transmitted under any circumstance. For

example, each patient could have his own device from his medical service provider and the

matrix is burnt on this device. Therefore, for each pair of transmitter and receiver, it must

be a unique scrambling matrix. As a result the total number of devices pairs ( that can be

supported) with a unique scrambling matrix can be calculated as in Eq. 2.11.

N = 32!× 128! ≈ 3.8562 × 10+215 (2.11)

As shown in Eq. 2.11 the total number of devices that we can support is larger than

the IPv6 protocol address space. On the other hand, the sequence of rows fetched from the

scrambling matrix is tied to the user defined key. As a result, the longer the key is, the

stronger the steganographic technique will be. To guarantee maximum security, the length

of the key used (Lkey) should satisfy the following condition stated in Eq. 2.12.

Lkey =Max(
B

180
,M) (2.12)

where B is the size of the embedded data in bits and M represents the minimum key size.

Accordingly, Table 2.2 shows the probabilities to break the proposed technique using different

key lengths and the minimum data size that can be hidden to achieve the maximum security

for each key length.
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Table 2.2: Security strength for different key lengths

key length minimum data size (bits) probabilities

4 720 1E+224

8 1440 2.7E+232

16 2880 2E+249

32 5760 1E+283

40 7200 7.4E+299

The amount of data that can be stored inside the ECG host signal using the proposed

model totally depends on the steganography levels vector. In our proposed model and for

ECG with 10 seconds length and sampling rate of 360, 2531 bytes (2.4KB) of data can be

embedded inside ECG host signal. The amount of data that can be stored is calculated using

Eq. 2.13.

b =
t× fs
32

× 180 (2.13)

where b is the total number of bits stored, t is the total signal time in seconds and fs is the

sampling frequency.

2.5 Diagnosability measurement of the watermarked ECG signal

To evaluate the diagnosability of the watermarked ECG signal, the work done by Amjed

S. Al-Fahoum [5] has been implemented and used as a diagnosability measure to determine

the effect of the watermarking process on the usability of the resultant ECG for diagnosis

purposes. In this model a 5-level wavelet decomposition is applied to the original and wa-

termarked ECG signal. As a result, the original signal will be divided into a number of
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sub-bands denoted by A5,D5,D4,D3,D2 and D1. It is found that band A5 includes most of

the T-wave contribution and some of the P-wave contribution. Therefore, its weight should

include the significance of P and T. Moreover, band D5 includes most of the P-wave contri-

bution, part of the T-wave contribution, and a relatively low percentage of the QRS-complex

contribution. The weight of D5 should maintain the highest weight contribution of P, T, and

QRS. Band D4 also contains most of the QRS-complex contribution, and a little portion of

P-wave. The weight of D4 is higher than A5 but lower than D5. D3 includes some portions of

the QRS-complex, and so its weight is lower than QRS weight itself. Bands D2, and D1 are

weighted less than any other band as they do not contribute to the spectrum of any of the

main features. However, they cannot be excluded where late potentials and delta waves may

exist. The researchers used a heuristics weights to mark the contribution of each sub-band.

The weights used are shown in Table 2.3.

After applying 5-level wavelet decomposition, Percentage Residual Difference (PRD) mea-

sure of each sub-band is calculated. as shown in Eq. 2.14

WPRDj =

√∑N
i=1 (ci − c̃i)2∑N

i=1 (c
2
i )

(2.14)

where ci is the original coefficient within sub-band j and c̃i is the coefficient of sub-band j

for the watermarked signal. Finally, to find the Weighted Wavelet PRD Eq. 2.15 is used

WWPRD =

NL∑

j=0

wjWPRDj (2.15)

where NL is the total number of sub-bands, wj denotes the weight value corresponding to
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sub-band j and WPRDj represents the calculated wavelet based PRD for sub-band j.

Table 2.3: Weights for each sub-band used in measuring Diagnosability

Wavelet Bands A5 D5 D4 D3 D2 D1

Bands weights 6/27 9/27 7/27 3/27 1/27 1/27

2.6 Experiments and results

2.6.1 Time domain steganography evaluation results

A testbed of 81 ECG segments has been set up by collecting ECGs from The Creighton

University Ventricular Tachyarrhythmia Database [71]. Each ECG segment has a length

of 10 seconds with 250Hz sampling frequency and consists of 2500 samples. Consequently,

secret bits have been hidden in different positions (8th,16th,24th, and 32nd bits) using four

special ranges. To evaluate the proposed steganography technique, the resultant ECG signals

are compared with their original signals. The percentage residual difference (PRD) is used

for this purpose.

Table 2.4: Different PRD values for Different range lengths

number of changed LSB Range Length PRD

0 2 0.02

1 4 0.0735

2 8 0.1946

3 16 0.4493

Figure 2.10 shows eight ECG segments divided into two groups, where the first group

contains the original normal ECG segment and three resultant host signals when we applied

different special ranges and had data hidden in secret bit positions(see Table 2.1). The
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Figure 2.10: Different Cases of Watermarked ECG Signals After Hiding Secret Information
in Bit 8,24 and 32 of Binary ECG Data

second group contains the original abnormal ECG segment in addition to three resultant host

signals using the same special ranges and secret bit positions that we used in the first group.

This figure shows that despite hiding in different secret positions, PRD error measurement

remains very low and is the same for all cases of the same ECG signal. However, PRD

error measurements vary slightly for normal and abnormal groups of host ECG signals.

This fact of being able to generate a constant PRD value using different bit positions is a

powerful characteristic of the proposed steganography technique that enables users to hide

their secret messages in highly secure positions without affecting the important features of

the ECG signal.

The evaluation of the proposed technique shows the strength of the hiding model by
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performing simulated attacks to prove the ability of extracting the embedded data completely

although the least significant bits of the host signal have been changed deliberately. Table

2.4 shows several cases of the simulated attacks on the host signal and the required range

lengths to protect the embedded data in addition to the resultant PRD of each case. For

example, if the first LSB is changed, then a range length of 4 is required to protect the secret

hidden bits. If the least two significant bits are changed, a range length of 8 is required to

achieve the secret bit’s protection. Finally, a range length of 16 is required to protect the

secret message from changing the first three LSBs. As shown in Table 2.4, the PRD values

increase when the number of the changed bits is increased. Consequently, the more the secret

data is protected, the more distorted will be the original signal.

In our experiments, each 10 sec ECG segment was 10,000 bytes (2500 samples x 4

bytes/sample= 10,000) and in each sample we modified 1 bit to host the secret bits. Overall,

we could host 2500 bits = 312.5 bytes. As an ECG host signal size increases we are able to

add more secret bits by replacing existing bits of host data appropriately. Finally, to gener-

alize our experiments WWPRD is used in addition to PRD measure. Different types of ECG

signal with different diseases such as Ventricular Tachycardia, Ventricular Fibrillation, and

Premature Ventricular Contraction, are used as well as normal samples in experimentation.

Table 2.5 clearly shows how the PRD values and WWPRD does not vary widely for different

types of ECG signals.
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Table 2.5: PRD results for different data type and different ECG signals

ECG Type PRD WWPRD

Normal 0.0103 0.01

VT 0.0047 0.0052

VF 0.0092 0.0109

PVC 0.012 0.0176

0 200 400 600 800
−1

0

1

2

3
Original Normal ECG signal

0 200 400 600 800
−1

0

1

2

3
Original Ventricular Tachycardia ECG signal

 

 

0 200 400 600 800
−2

−1

0

1

2
Original  Ventricular Fibrillation ECG signal

0 200 400 600 800
−1

0

1

2

3
Watermarked Normal ECG signal

0 200 400 600 800
−1

0

1

2

3
watermarked Ventricular Tachycardia ECG signal

0 200 400 600 800
−2

−1

0

1

2
Watermarked  Ventricular Fibrillation ECG signal

0 200 400 600 800
−1

0

1

2

3
 Normal ECG signal after watermark extraction

0 200 400 600 800
−1

0

1

2

3
Ventricular Tachycardia ECG signal after watermark extraction

0 200 400 600 800
−2

−1

0

1

2
 Ventricular Fibrillation ECG signal after watermark extraction

Figure 2.11: ECG signals for normal, VT and VF signal before applying the steganography
operation and after the steganography operation as well as after extracting the hidden data.

2.6.2 Frequency domain steganography evaluation results

In this section, three different types of ECG signals were used for experimentation. A testbed

of 59 ECG samples was used for experimentation. The set of samples consisted of 19 normal

(NSR) ECG samples, 27 Ventricular fibrillation ECG samples and 13 Ventricular Tachycardia

ECG samples. Each sample is 10 seconds long with 250 Hz sampling frequency.

To evaluate the proposed model, the PRD (percentage residual difference) is used to

measure the difference between the original ECG host signal and the resulting watermarked
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ECG signal as shown in Eq. 2.16.

PRD =

√√√√√√√√√√

N∑

i=1

(xi − yi)2

N∑

i=1

x2i

(2.16)

where x represents the original ECG signal, and y is the watermarked signal.

Alternatively, to evaluate the diagnostic distortion caused by the watermark, a wavelet

based PRD is used as detailed in the previous section. These measures have been calculated

for each sample. Accordingly, to measure distortion caused by the extraction process, PRD

and diagnosis PRD have been calculated. Finally to evaluate the reliability of the extracted

information, bit error rate has been used as shown in Eq. 2.17

BER =
Berr

Btotal
× 100% (2.17)

where BER represents the Bit Error Rate in percentage, Berr is the total number of erroneous

bits and Btotal is the total number of bits.

Table 2.6 shows the results obtained for 18 normal ECG samples. It can be seen that a

maximum PRD measured was 0.6%. Secondly, it can be noticed that the difference between

the normal PRD and the wavelet based PRD for diagnoses measurement is very small.

Accordingly, this proves that the watermarking process does not affect the diagnosability.

Finally, this table shows the PRD measured after extracting the watermark. It is obvious

from the table that removal of the watermark will have a small impact on the PRD value.

As a result, the ECG signal can still be used for diagnosis purposes after removing the
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watermark.

Table 2.6: PRD results for different normal ECG segments

Sample PRD % WWPRD % PRD % WWPRD %

No extracted extracted

1 0.43446 0.39338 0.57647 0.52692

2 0.56804 0.4371 0.79583 0.59282

3 0.59837 0.44557 0.80906 0.62531

4 0.51656 0.43133 0.72957 0.60578

5 0.53641 0.41908 0.72213 0.56855

6 0.58602 0.43386 0.80906 0.61782

7 0.5064 0.62222 0.70934 0.873

8 0.26013 0.59378 0.35179 0.81591

9 0.4634 0.6083 0.63565 0.82741

10 0.51913 0.63338 0.70037 0.85416

11 0.5055 0.61394 0.6874 0.84694

12 0.45053 0.595 0.60611 0.79233

13 0.45692 0.50512 0.61693 0.68123

14 0.41861 0.50547 0.56098 0.68459

15 0.36499 0.42618 0.50238 0.59443

16 0.42648 0.33541 0.57897 0.45032

17 0.44176 0.34352 0.59529 0.46326

18 0.42957 0.34337 0.59061 0.47203

To guarantee unbiased results, we also experimented with VT and VF samples and the

results are shown in Tables 2.8 and 2.7 respectively. It is obvious from these results that the

maximum PRDs for VT host signal is only 0.5% and 1% for VF. This encouraging result

clearly demonstrates that the watermarked ECG signals can be used for diagnoses. Figure

2.11 shows three ECG signal types, and the resultant watermarked signals before and after

watermark extraction process.
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Table 2.7: PRD results for Ventricular Tachycardia ECG samples

Sample PRD % WWPRD % PRD % WWPRD %

No extracted extracted

1 0.24973 0.25439 0.33705 0.34314

2 0.27853 0.30552 0.37474 0.41137

3 0.29892 0.29903 0.40912 0.41751

4 0.24248 0.2822 0.33029 0.38589

5 0.26566 0.26055 0.37705 0.36925

6 0.27017 0.25964 0.37263 0.36044

7 0.28042 0.27871 0.37983 0.38101

8 0.47009 0.5803 0.49603 0.65555

9 0.16381 0.28317 0.22884 0.4103

10 0.19697 0.30666 0.27143 0.41038

11 0.27231 0.26876 0.37796 0.38309

12 0.32276 0.32799 0.43247 0.44159

Previous results have been obtained by using the same scrambling matrix. To generalize

our results we performed the same experiments and calculated the average PRD values for

different cases of scrambling matrices. Table 2.9 shows 10 different cases taken and their

corresponding average PRD values. It can be clearly seen how the values are approximately

equal for different cases. The obtained results further prove that our proposed technique will

cause minimum distortion for different cases of the scrambling matrix. This is clearly shown

in Fig. 2.12.

To validate diagnosability of the digitally processed ECGs, two specialist doctors were

consulted. Sixty ECG Segments (each 10 seconds length) for both normal sinus rhythm

and abnormal (Ventricular Tachycardia, Ventricular Fibrillation) cases were shown to them

before and after watermarking, and also after removal of watermarks. They were asked the
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Table 2.8: PRD results for Ventricular Fibrillation

Sample PRD % WWPRD % PRD % WWPRD %

No extracted extracted

1 0.65061 0.84787 0.89994 1.1713

2 0.58442 0.78362 0.7944 1.0715

3 0.54158 0.78223 0.74391 1.0733

4 0.40013 0.41339 0.55157 0.56329

5 0.30265 0.38706 0.41009 0.53588

6 0.30569 0.4287 0.41517 0.58034

7 0.20551 0.43169 0.27795 0.5915

8 0.19213 0.31981 0.26104 0.43105

9 0.47881 0.50826 0.66257 0.71434

10 0.38448 0.3726 0.52747 0.51307

11 0.48817 0.4968 0.66364 0.677

12 0.48814 0.48671 0.66386 0.66023

13 0.41675 0.45275 0.57517 0.63255

14 0.45104 0.46792 0.60064 0.61633

15 0.38447 0.39853 0.5267 0.55549

16 0.32621 0.32604 0.4417 0.43772

17 0.66713 0.93723 0.91967 1.2995

18 0.79696 1.3659 1.0728 1.8144

19 1.0732 0.96977 1.454 1.2749

20 1.0514 0.99681 1.4297 1.3527

21 0.84326 0.99305 1.1607 1.3767

22 0.71059 0.97451 0.96605 1.3123

23 0.61859 1.066 0.8545 1.4892

24 0.66063 1.0684 0.91559 1.4727

25 0.79912 1.2993 1.1125 1.8225

26 0.92514 1.1759 1.2979 1.6486
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Figure 2.12: Average PRD results for different scrambling matrices

Table 2.9: Average PRD results for different scrambling matrices

Case PRD % WWPRD % PRD % WWPRD %

No extracted extracted

1 0.316605 0.340602 0.424484 0.454439

2 0.316308 0.338725 0.424643 0.455201

3 0.31775 0.333594 0.423802 0.455167

4 0.317904 0.338432 0.425399 0.456254

5 0.316824 0.337616 0.42462 0.455501

6 0.318639 0.341384 0.425632 0.457272

7 0.319365 0.338233 0.424424 0.455365

8 0.315372 0.337196 0.425761 0.45611

9 0.317598 0.34042 0.425144 0.455971

10 0.317847 0.343214 0.424329 0.456203
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following questions:

• How similar is the original and the watermarked ECG?

• Can the watermarked ECG be used for diagnoses?

Both the specialist doctors admitted that the similarity is so high that the difference is un-

detectable and both the watermarked and un-watermarked signals can be used for diagnoses.

The detailed results are shown in Table 2.10.

Table 2.10: Doctors’ diagnoses results

Doctor
Normal Normal Abnormal Abnormal

Similarity Diagnosability Similarity Diagnosability

1 99% Yes 99% Yes

2 100% Yes 100% Yes

2.7 Summary

In this chapter, two novel steganography algorithms were proposed to hide patient informa-

tion as well as diagnostics information inside an ECG signal. These techniques will provide

a secured communication and confidentiality in the current e-health system. A time domain

steganography technique is proposed which is based on applying special range transform to

provide the ability to hide the data in any bit position with minimum error. The second

method is a frequency domain technique. In this model, a 5-level wavelet decomposition is

applied. A scrambling matrix is used to find the correct embedding sequence based on the

user defined key. Steganography levels (i.e. number of bits to hide in the coefficients of each

sub-band) are determined for each sub-band by experimental methods. In this chapter, we
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tested the diagnoses quality distortion. It was found that the resultant watermarked ECG

can be used for diagnoses and the hidden data can be totally extracted.
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Chapter 3

ECG Lossy Compression

This Chapter answers the second research question discussed in Section 1.2. The size of the

ECG signal is huge especially in continuous remote monitoring systems. This chapter dis-

cusses the available lossy compression technique that are proposed to overcome this problem.

Moreover, this chapter will highlight the limitation of the available techniques. Furthermore,

we will discuss the fractal model and how it can be modified to be used in designing cloud en-

abled compression technique. Fractal model is also improved and the proposed cloud enabled

compression technique is improved to make it suitable for implementation inside the client

side rather than the cloud side. Section 3.1 explains the problem statement and discusses

the motivation behind this work. Moreover, Section 3.2 explains the current available lossy

compression techniques and highlights their limitations. Section 3.3 explains the theory of

fractals combined with the theory of Iterated Function System (IFS). Furthermore, the pro-

posed cloud enabled compression and decompression techniques are explained in more details

in Section 3.4. To implement fractal compression within the client side the proposed fractal
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model is modified and we call the new proposed technique as fast fractal model. Its concept

and equation derivation as well as compression and decompression algorithms are explained

in Section 3.5. Section 3.6 discusses the evaluation parameters used to evaluate the proposed

technique. And, Section 3.7 explains the results for the proposed cloud enabled compression

as well as the fast fractal compression technique. It shows how both algorithms can per-

form better compared with other compression techniques. Moreover, this section compares

the performance of the normal fractal and the fast fractal techniques. Finally, Section 3.8

summarizes this chapter.

3.1 Introduction

The use of E-health applications is increasing to a great extent around the globe. Many

health-care organizations such as insurance companies, hospitals and government health sec-

tors, require access to patient information and records including their archived biomedical

signals. Therefore, it is required to store patient records in a centralized repository which

will provide access services to other health-care organizations. Cloud services can be a solu-

tion to serve this purpose [53; 8; 24; 23]. As shown in Fig. 3.1, a cloud health-care system

consists of Body-Sensor-Nodes (BSN) collecting patient biological signals (e.g ElectroCar-

dioGram (ECG) and photoplethysmogram (PPG)) which are then sent to a hospital server.

ECG signals require a large amount of storage capability due to their large size. In order to

minimize storage requirements ECG compression is implemented in the cloud, to make use of

its powerful processing resources, as it is the central point to be accessed by different health

agencies. Moreover, in case of remote patient monitoring systems, body sensor nodes will
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send the collected ECG signals to the patient PDA device then to cloud and the compression

operation will be implemented within the cloud. On the other hand, clients trying to access

patient records will receive the compressed information and it will be decompressed inside

client devices. The proposed decompression algorithm is designed in such a way that allows

the user to retrieve part of the compressed file (i.e. ECG segment) without decompressing

the whole file. Moreover, the user (such as a doctor) can request to receive the compressed

ECG signal relevant to a specified period of time, for example, to check the effect of taking

medicine at a specific time on the patients ECG. The proposed technique can achieve this by

sending the required part of the ECG compressed file without adding any more headers or

overhead. Finally, a doctor’s device can decompress the part required without decompressing

the whole ECG compressed file. As a result, clients can see the ECG signal as soon as the

cloud starts to receive ECG from BSN and they do not need to wait for receiving the whole

file (which can last for more than 12 hours in ECG continuous holter monitoring scenario)

before seeing the resultant ECG signals. Therefore, the proposed fractal based compression

technique is suitable for hosting and retrieval of compressed ECG data on a cloud. The com-

pression operation is not a real-time operation and can therefore be performed offline using

the powerful cloud resources. Moreover, as in many cases, the doctors would like to check

the signal at specific time, the compression technique provides this feature to decompress the

file starting from any position but not in a real-time manner. Another aspect is taken into

consideration, the proposed method is modified to make it more reliable to be implemented

within the client devices rather than within the cloud.

Generally, compression techniques can be divided into two main categories: lossless and
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Figure 3.1: E-health Cloud consist of Cloud servers, BSN, hospital servers, and Remote
patient monitoring sensors. The signals will be transmitted to the cloud, the compression
technique is implemented inside the cloud to guarantee faster performance. Different health
agencies such as health insurance, doctors, nurses, researchers, and government health sec-
tors can access the cloud and retrieve the desired information in compressed format, and
decompress on their devices after retrieving the information.
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lossy compression. Lossless compression techniques guarantee full reconstruction of the origi-

nal signal without any information loss. On the other hand, lossy compression can reconstruct

an approximated version of the original signal. In lossy compression, it is possible to achieve

higher compression ratios with small differences between the original signal and the recon-

structed signal. Furthermore, ECG compression techniques can be classified into two major

types: time domain compression techniques [7; 22; 29] and transform domain compression

techniques [35; 45; 60].

Most of the proposed compression techniques are based on R peak detection or other

ECG parameters detection. Therefore, they do not provide high performance when applied

on abnormal ECG signals since it is extremely complicated to extract ECG signal parameters

[13]. The periodic characteristic of the ECG signal and the inter and beat correlation can

be powerful features to be used in ECG compression as shown in Fig. 3.2. Therefore, In

this chapter, fractal model is utilized to capture ECG self similarity characteristics. Fractal

technique have been developed to approximate the ECG signal. The proposed technique

does not require the use of QRS detection or any ECG parameters extraction. As a result,

this technique is capable of achieving high compression ratio with both normal and abnormal

ECG signals. Moreover, the decompression process can partially decompress the compressed

file starting from any point in the file and for any duration.

Compression techniques can be evaluated based on three important measures which are

compression ratio, signal reconstruction error and compression performance. Compression

ratio can be defined as the ratio between the original ECG signal file size and the compressed

file size. The compression technique with high compression ratio and low distortion effect
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Figure 3.2: ECG fractal self similarity compared with fractal object self similarity. The figure
on the left shows the ECG signal self similarity for different block sizes. The figure on the
right shows a fractal object and how it is self similar. Fractal self-similarity feature of ECG
signal is used in compression

provides high reliability. In lossy compression techniques, the signal reconstruction error has

a great impact on the usability of the compression technique. There are numerous methods

to measure this error such as Percentage Residual Difference, Wavelet Weighted PRD, Signal

to Noise Ratio and Root Mean Square Error. Experimental results have shown that the

proposed fractal technique outperformed other compression models in the chosen area.

3.2 Related Work

Many researchers have conducted investigation on lossy ECG compression. SangJoon Lee

[47] proposed a new real time ECG compression technique. Firstly, the researcher reduces
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the ECG signal to half of its original sampling rate. Secondly, they apply sample differencing

followed by R peak detection. Next, DCT transform is applied on two consecutive ECG peri-

ods , then, the floating point DCT coefficients will be converted to integers. and accumulated

error have been calculated. Finally, Huffman coding is used as an entropy coding.

Eddie B. [73] proposed a new lossy compression technique based on converting the 1D

ECG signal into 2D ECG image. The conversion process consist of QRS detector, period

length normalization , period preprocessing and image transform. Their work focused on the

preprocessing stage by clamping all the periods to the minimum DC level. In this way, the

image will be smoother. Furthermore, the authors rearranged the periods in such a way that

make the image smoother by putting the minimum variant period on the top of the image

then compare other periods with this selected period using mean squared error, and arrange

the most similar periods near to the top.

Hsiao-Hsuan Chou [15] proposed a new lossy compression algorithm for irregular ECG

signals by converting the ECG signal to a 2D image. The conversion process starts with

QRS detection stage and the period sorting technique is then applied. Lastly, period length

equalization using mean technique is applied and the resultant 2D image is compressed using

Jpeg2000 algorithm.

Finally, A.Khalaj and H. Miar Naimi [41] proposed a new ECG lossy compression tech-

nique based on fractal model and IFS. In their model the ECG signal is divided into non-

overlapping blocks called range blocks. Each block is transformed into its most similar domain

block using fractal transformation parameters. In their method they used one fractal trans-

form parameter and the index of the most similar domain block is stored with the fractal
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parameter. Moreover, the block is rotated and the range block mean value is stored as well.

This work is somewhat similar to our proposed model. However, in their work they used

only one fractal transform parameter while in our proposed method two fractal transform

parameters (scale and shift parameters) are used. Therefore, the results obtained are more

accurate with low distortion and higher compression ratio.

Most of the above mentioned techniques rely on detecting QRS complex which is by itself

a challenge in case of abnormal ECG signals. Therefore, those techniques will not perform

well in case of abnormal ECG signal.

3.3 Fractals and ECG signals

In this chapter, new fractal based lossy compression technique is proposed. Fractal can be

defined as an object which consists of smaller structures which are similar to the original

object. Generally, there are several definitions of fractal that reflect the following features

[6]:

1. Fractals are fine structured objects and details can be seen for any scales.

2. Fractal provides a geometrical descriptions for irregular objects that can not be de-

scribed by other mathematical formulas.

3. Fractal reflects some self similarity characteristics.

The self similarity property of fractal is utilized in the proposed ECG compression tech-

nique. Accordingly, the proposed technique uses fractal self similarity and iterated function

system together in order to capture accurate ECG features .
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3.3.1 Iterated Function System (IFS)

A fractal object can be generated from a recursive process of different transformations applied

on a part of the object. LetW1W2W3...WN be different transforms and N is the total number

of transforms. General fractal Iterated Function can be defined as in Eq. 3.1

A =W1(A) ∪W2(A) ∪W3(A) ∪ .... ∪WN (A) (3.1)

where A is the fractal object. Accordingly, the fractal object consists of smaller, similar

objects transformed and assembled to form the original object. However, it is not required

for the fractal object to be entirely similar to a smaller part of itself. A small part of the

fractal object(normally referred to as range) can be similar to another part (normally called

domain) after applying a specific transform.

The basic idea of fractal compression using IFS is to divide the original ECG signal into

non overlapping blocks called range blocks. Each range block is then compared with all

other overlapping blocks (called domain blocks) after applying a specific transform as shown

in Fig. 3.3. The transform parameters (normally called fractal coefficients) and the domain

block number are stored instead of the original ECG block in the output file. As a result,

the compressed version contains only the transform parameters and indexes. Technically, it

is required to use a distortion measurement metric to select the most similar domain block

to the current range block. Finally, fractal coefficients (shift and scale) and indexes(block

location) are stored to be quantized in the output file.
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Figure 3.3: Range and Domain blocks in the original and down sampled ECG signals. Rang
blocks are the non-overlapped blocks of the original ECG signal, the domain blocks are the
ones of the down-sampled search domain.

3.3.2 Fractal Coefficients

Shift and Scale are the basic fractal coefficients used to generate the geometrical description

of objects. The Scale (S) fractal coefficient should be found to make the difference among

ECG instances in the range block matches the difference among ECG instances in the domain

block. Scale coefficient can be defined as the greatest difference among ECG instances in the

range block divided by the greatest difference among the ECG instances in the domain block.

On the other hand, Shift fractal coefficient (O) should be found to make the ECG instances

in the range block similar to the ECG instances of the domain block. Moreover, shift fractal

coefficient can be defined as the difference between the average ECG instance value in the

range block and the average ECG instance value in the domain block. Equation 3.2 shows

how the scale and shift fractal coefficients are used to generate range block(R) from domain
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block (D) [6].

R ≈ S ×D +O (3.2)

where R represents the range block, D represents the Domain block , S and O are the Scale

and shift fractal coefficients respectively. Fractal coefficients [6] can be calculated as shown

in Eq. 3.3 and Eq. 3.4

S =

n

n∑

i=1

D(i)R(i)−
n∑

i=1

D(i)

n∑

i=1

R(i)

n∑

i=1

D(i)2 −
(

n∑

i=1

D(i)

)2 (3.3)

and

O =
1

n

(
n∑

i=1

R(i)− S
n∑

i=1

D(i)

)
(3.4)

where n is the number of ECG points in one block, R(i) is the ith ECG point in the range

ECG block. D(i) is the ith ECG point in the domain ECG block, S is the scale fractal

coefficient and O is the shift (offset) fractal coefficient.

Generally these parameters are calculated for all domain blocks for each range block in

one iteration. Finally, it is required to compare all the resultant transformed domain blocks

with a range block in each iteration to select the most similar domain block.

To increase the performance of the proposed algorithm, some parts of the fractal equation

do not need to be computed for different domain blocks. However, it should be computed

only once per range block. These parts are summarized as follows:
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1.

n∑

i=1

R(i) the total summation of all the ECG points inside the range block is calculated

once for each range.

2.
n∑

i=1

R(i)2 the total summation of the squares of the ECG points in the specified range

block.

3.3.3 Affine Transform

In addition to the scale and shift fractal coefficients, affine transforms [87] are applied to

guarantee that maximum similarity can be achieved between the range and domain blocks.

Affine transforms are geometric transforms such as mirror, reflection and rotation that can

be mathematically represented in Eq. 3.5

D = T ×D (3.5)

where D is the affine transformed domain block, D is the original domain block and T is

the affine transform matrix. As the ECG is a one dimensional signal, the number of affine

transforms that can be used is limited. Four Affine transforms are used in the proposed

method (see Table 3.1

Table 3.1: Affine transforms used in the proposed ECG fractal compression technique

encoding no transform

0 No Change

1 Reflection

2 replacing fist half with second half

3 replacing each adjacent pair together
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3.3.4 Comparison of range and domain blocks using fractal RMS

Fractal Root Mean Square (RMS) measurement is the basic metric of fractal matching process

to find the similar domain block. Equation 3.6 is required to compute RMS for range (R)

and domain (D) blocks.

RMS =

√

√

√

√

1

n

[

n
∑

i=1

R(i)2 + S

(

S

n
∑

i=1

D(i)2 − S

n
∑

i=1

D(i)R(i) + 2O

n
∑

i=1

D(i)

)

+ O

(

nO − 2

n
∑

i=1

R(i)

)]

(3.6)

It is called fractal RMS because as shown from the equation it is different than the normal

RMS. The original RMS equation has been modified to reflect the fractal transforms applied

on the original domain block (the scale and shift transforms).

3.4 Cloud-enabled fractal compression technique

3.4.1 Compression Algorithm

The proposed compression technique can be divided into three parts as shown in the block

diagram in Fig. 3.4. Firstly, the ECG signal is divided into equal sized non overlapping

blocks called Range Blocks. Then, another copy of the ECG signal is created to be the

search domain. The search domain is initially down sampled as shown in Eq. 3.7

Di =
P2i + P2i+1

2
i = 0, 1, 2...n (3.7)

where Di is the i-th down sampled domain instance, P2i and P2i+1 two consecutive points.

The domain search is divided into overlapping blocks called domain blocks. The distance

between two consecutive domain blocks can be determined using the jump step parameter.

Then, for each range block, fractal RMS is used to determine the most similar domain block.
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Algorithm 2 is required to perform the fractal ECG compression process. The algorithm

starts by initializing the ECG signal and the ECG domain down sampled version. Then, the

algorithm iterates for each range block and finds the most similar domain block. Finally, it

stores the corresponding shift, scale, affine and domain block index in the compressed file.

Algorithm 3 is used to find the similar domain block based on the fractal RMS measure-

ments. The algorithm inputs are the range block and the down sampled ECG signal(search

domain). For the given range block the algorithm iterates through the whole search domain

and calculates the fractal coefficients as well as fractal RMS between the range block and

the current domain block. Next, if the calculated RMS value is less than the previous stored

value, the algorithm will store the calculated fractal coefficients as well as the current domain

block index in the output parameters and it will update the stored RMS value. At the end of

the loop, the fractal coefficients that belong to the domain block which had minimum RMS

value are returned. Affine transforms are implemented in the fractalrms algorithm in order

to increase the possibility of having better similarity with domain blocks.

The final compressed file consists of several rows, one row for each range block, each row

contains the following information:

1. The scale value

2. The Offset Value

3. The domain block index

4. Affine transform code as shown in Table 3.1
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Algorithm 2 ECG fractal Compression algorithm

1: INPUTS:
2: R is the original ECG signal
3: BS represents block size
4: OUTPUTS: o,s,i,a
5: o← 0 Array to store offset coefficients for all the range blocks
6: s← 0 Array to store the scale coefficients for all the range blocks
7: i← 0 Array to store the indexes for the selected domain blocks
8: a← 0 Array to store the encoding of the affine transform applied for each range block
9: rm← 0 Will store the RMS values

10: D is the down sampled domain created from R as shown in Eq. 3.7
11: z ← 0
12: Js represnts the jump step of the search loop in the domain
13: Ri Represents the Range block with size of BS
14: for each range block Ri in R do
15: [sc, of, in, aff ] = fractalrms(Ri,D, js)
16: s(z)← sc
17: o(z)← of
18: i(z)← in
19: a(z)← aff
20: z ← z + 1
21: end for
22: RETURN o,s,i,a
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Algorithm 3 fractalrms function algorithm

1: INPUTS:
2: r=the range ECG block
3: d=the down sampled domain
4: Js represents the jump step
5: OUTPUTS: so,oo,io,aff0
6: so = 0; {The determined scale value for the selected domain block}
7: oo = 0; {The determined shift value for the selected domain block}
8: io = 0; {The determined location for the most similar domain block to the specified range

block}
9: aff0 = 0; {The determined affine transform encoding value for the selected domain

block}
10: rms0 = 0;
11: blocksize=size(r,1); {stores the block size}
12: sumr=sum(r); {sumr =∑R(i) the total sum of the range block}
13: sumr2=0;
14: for j=1 to blocksize do {{∑blocksize

j=1 R(j)2}}
15: sumr2 = sumr2 + (r(j)2);]
16: end for
17: rms0=10000; {initialize rms0 with large value}
18: sd=size(d,1); {Size of the down sampled ECG domain}
19: for i=1 to sd-blocksize step js do {{iterate through the whole search domain and cut

domain blocks with size of sd}}
20: t1=d(i:i+blocksize-1);
21: for a=0 to 3 do
22: t=affine(t1,a); {calculate the affine transform and return the transformed domain

block in t}
23: sumrt=0; {calculate ∑blocksize

j=1 R(j)t(j)}
24: sumr2 = sumr2 + (r(j)2);
25: for j=1 TO blocksize do
26: sumrt=sumrt+(r(j)*t(j));
27: end for
28: sumt=sum(t); {calculate domain block coefficnats such as

∑
t and

∑
t2}

29: sumt2=0;
30: for j=1 to blocksize do
31: sumt2 = sumt2 + (t(j)2);
32: end for
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Figure 3.4: Fractal Compression Block Diagram

33: s = ((size(r, 1) ∗ sumrt)− (sumr ∗ sumt))/(size(r, 1) ∗ sumt2− sumt2); {calculate
the scale fractal coefficient as shown in Eq. 3.3. Where size(r,1) get the number of rows
in r}

34: o = (1/size(r, 1))∗(sumr−s∗sumt); {calculate the shift fractal coefficient as shown
in Eq. 3.4}

35: rmsn = sqrt((1/size(r, 1)) ∗ (sumr2 + s ∗ (s ∗ sumt2− 2 ∗ sumrt+ 2 ∗ o ∗ sumt) +
o ∗ (size(r, 1) ∗ o− 2 ∗ sumr))); {calculate the fractal rms as shown in Eq. 3.6}

36: if (rmsn ≤ rms0) then
37: so=s;
38: oo=o;
39: io=i;
40: aff0=a;
41: end if
42: end for
43: end for
44: RETURN so,oo,io,aff0
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The proposed fractal compression algorithm can be used in the cloud and make use of

its multiprocessing capabilities as shown in Fig. 3.5. Firstly, the down-sampled domain is

created from the original ECG segments and copied onto each processing unit to be used as

the search domain. Then the ECG segment is divided into sub-segments and copied to each

processing unit, one sub-segment per unit. Each unit will process its sub-segment and do

the fractal compression by calculating the fractal coefficients. Finally, all fractal coefficients

from all processing units are reassembled into one final compressed file. In this scenario the

fractal compression algorithm is running in all the processing unit in parallel. Therefore,

the proposed fractal compression algorithm is a cloud efficient algorithm capable of taking

advantages of the vast computing resources available on cloud.

The block size parameter is stored inside the compressed file in the header part. It is

linearly related to the compression ratio. Therefore, the compression ratio can be predeter-

mined by selecting the appropriate block size as shown in Fig. 3.11. Moreover, the distortion

effect cannot be predetermined by selecting the block size parameter. However, whenever

the block size is increased the distortion effect will be increased as well.

3.4.2 Decompression algorithm

The decompression process starts by generating a random signal having the same length as

the original ECG. The original ECG is approximated from the random signal after apply-

ing the buffered fractal coefficients. Domain blocks are required to approximate the ECG.

Therefore, the random signal is used as range blocks down sampled to create the domain

blocks. Technically, each block in the approximated ECG is calculated by re-transforming
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Figure 3.5: Cloud implementation of the proposed fractal compression algorithm

the selected domain block using the buffered fractal coefficients and affine transform code.

Equation 3.8 is required to approximate a single block in the generated ECG.

R̂i = Si ∗Dindex(i) +Oi (3.8)

where R̂ represents the ith approximated block in the generated ECG. S and O are the

scale and shift fractal coefficients respectively. Index(i) represents the index of the domain

block. Finally, all the constructed range blocks are assembled together to approximate the
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decompressed ECG signal. The decompression process is repeated using the new generated

ECG (as input) four times in order to produce an accurate approximated ECG signal (see

Algorithm 4).

Algorithm 4 ECG fractal DeCompression algorithm

1: INPUTS:
2: BS represents the block size
3: O Array of stored offset coefficients for all the range blocks
4: S Array of stored scale coefficients for all the range blocks
5: I Array of stored indexes for the selected domain blocks
6: A Array of stored encoding of the affine transform applied for each range block
7: OUTPUTS: ECG
8: ECG is the constructed ECG signal
9: for iter=1 TO 4 do {{repeat 4 iterations}}

10: D is the down sampled domain created from ECG as shown in Eq. 3.7
11: for each element o in O, s in S, a in A, i in I do
12: d1← (ith Domain block with size of BS)
13: d2← affine(d1, a)
14: R← s× d2 + o
15: ECG = ECG

⋃
R

16: end for
17: end for
18: RETURN ECG

As shown it will be possible to generate the ECG signal starting from any point in the

compressed file as long as the required fractal coefficients are available as shown in Fig.

3.6. Therefore, this is a significant feature of the proposed fractal compression technique.

However, currently available ECG compression techniques can achieve this by dividing an

ECG signal into smaller segments, compressing each segment separately then storing it in a

separate file. In this case, headers will be added to each compressed file which will create

more overhead. On the other hand, the proposed fractal technique does not suffer from this

limitation because there are no headers to be added and the compressed file is just a stream

of rows that contains fractal coefficients and indexes. Moreover, the user (such as doctor) can
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specify which part he/she want to decompress (for example at specified time period), and,

cloud service will send the required part only in its compressed format. Finally, the receiver

can decompress it without having the full ECG compressed file. This is a significant feature

as the user can retrieve part of the ECG signal without waiting for the full compressed ECG

data to be downloaded.

10 13 2 5 
5   12 1 20
7   5   2  3
6   7   1 10
22 15  1  3
7   20 1 10
15  7  2   3
14  8  2  20

Compressed File

Figure 3.6: Partial decompression operation. The decompression operation is capable of
processing the compressed file starting from any position in the file and not just from the
beginning of the file.

3.5 Fast Fractal Model

After introducing the normal fractal compression technique proposed in previous sections, it

is found that its performance is poor because, for each range block, the entire search domain

should be examined to find the most similar domain block. Furthermore, this operation is

repeated for each range block. To increase the compression speed it is required to limit the

search domain to a small number of domain blocks rather than searching all domain blocks.

To achieve this objective, a new fractal model derivation is proposed.
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Let R be the range block then Ri is the i
th instance inside the range block. Similarly D

is the domain block and Di is the ith instance inside the domain block. Moreover, let R,D

be the average value of the range block and domain block respectively. The relation between

these values can be shown in Eq. 3.9, Eq. 3.10 and Eq. 3.11

R = S ×D +O (3.9)

Ri = S ×Di +O (3.10)

R = S ×D +O (3.11)

Next, two new factors will be introduced α and δ as shown in Eq. 3.12 and Eq. 3.13.

α =
∑∣∣Ri −R

∣∣ (3.12)

δ =
∑∣∣Ri −R

∣∣3 (3.13)

Now if Eq. 3.10 and Eq. 3.11 are substituted in Eq. 3.12 then

α =
∑∣∣S ×Di +O − S ×D −O

∣∣ (3.14)

Next Eq. 3.14 will be simplified as shown in Eq. 3.15
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α = |S| ×
∑∣∣Di −D

∣∣ (3.15)

Substitute Eq. 3.10 and Eq. 3.11 in Eq. 3.13 we get

δ =
∑∣∣S ×Di +O − S ×D −O

∣∣3 (3.16)

After simplifying Eq. 3.16 we will get.

δ = |S|3 ×
∑∣∣Di −D

∣∣3 (3.17)

Now let us set the fast fractal factor as shown in Eq. 3.18

F1 =
α3

δ
(3.18)

To write the fast fractal factor F1 in terms of range blocks. Equation 3.12 and Eq. 3.13

are substituted in Eq. 3.18 to get

F1 =

(∑ ∣∣Ri −R
∣∣)3

∑∣∣Ri −R
∣∣3 (3.19)

Similarly, the fast fractal factor F1 can be written in terms of domain blocks by substi-

tuting Eq. 3.15 and Eq. 3.17 in Eq. 3.18 as shown in Eq. 3.20

F1 =
S3 ×

(∑ ∣∣Di −D
∣∣)3

S3 ×∑
∣∣Di −D

∣∣3 (3.20)
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Finally, Eq. 3.20 can be simplified as shown in Eq. 3.21

F1 =

(∑ ∣∣Di −D
∣∣)3

∑∣∣Di −D
∣∣3 (3.21)

It is proven that the calculated fast fractal factor should be equal if it is calculated based

on the range block or from its transformed domain block. Therefore, the new modified fast

fractal model is based on calculating these fast fractal factors in advance for all range blocks

as well as all domain blocks. Then, for each range block instead of searching the whole

domain blocks, it is only required to search in the domain blocks with similar fast fractal

factor to the specified range block. As a result, the RMS fractal and the fractal coefficients

will be calculated only for these selected domain blocks. Finally, the most similar domain

block to the range block will be selected from this subset of domain blocks.

3.5.1 Fast fractal compression algorithm

The fast fractal compression technique consists of several stages as shown in Fig. 3.7. The

proposed technique starts by creating another copy of the original ECG signal called domain

search signal. Domain search signal is down sampled as shown in Eq. 3.22.

Di =
D2i +D2i+1

2
i = 0, 1, 2...n/2 (3.22)

where Di is the i-th down sampled domain instance, D2i and D2i+1 two consecutive points.

The down sampled domain search signal is divided into overlapping blocks separated by

distance called jump step. On the other hand, the original ECG signal is divided into non
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overlapping blocks called range blocks. Both range and domain blocks have the same size.

The next step in the compression algorithm is to calculate the fast fractal factor F1 for

all range blocks (F1r) as well as all domain blocks (F1d). Next, a mapping process is applied

to map range blocks with the domain blocks that have similar fast fractal factors and store

their indexes.

ECG Signal Initialize Range Block and 
Domain downsampled blocks

Evaluate Fractal Coefficients
S, O and Affine

Find RMS between the Range block 
and domain blocks and select the 

blocks

Compressed file

Store the selected Fractal
Coefficients in the Compressed
File

fractal factor calculation for all
range and domain blocks

construct mapping matrix

Select relevent domain
blocks

Figure 3.7: Fractal Compression Block Diagram

The mapping process begins with rescaling the fractal factor values to convert its values

with in the range from 1 to 100. Then, the fractal factor array F1d is sorted in ascending

order as shown in Fig. 3.8. Next, mapping matrix is constructed based on the sorted fractal

factor array. For example if the range block fractal factor is 5, then, according to Fig. 3.8 the

search operation will occur on the domain blocks number 2 and 4. Therefore, the most similar

domain block from these two blocks to the specified range block will be selected. Finally, the

fractal coefficients of the selected domain block will be stored inside the compressed file as

well as the domain block index.

The proposed fast fractal compression algorithm steps can be summarized as shown in

Algorithm 5. The algorithm starts by initializing some variables such as ECG signal range
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Figure 3.8: Mapping Process

blocks, ECG down sampled domain and fractal coefficients arrays. Next, it calculates the

fractal factors for all range blocks and constructs the FR array. Similarly, the algorithms

calculates the fractal factors for all domain blocks and stores them inside FD array. Next,

the fractal factors are rescaled to fail within the range from 1 to 100. Then, mapping

processes starts by sorting FD array and then constructing the mapping matrix which is a

100 × 2 matrix. Then, the algorithm iterates for each range block and find the starting and

ending domain search limits. Consequently, it will find the most similar domain block in this

specified search domain blocks. Finally, it will store the corresponding shift , scale, affine

and domain block index inside the compressed file.

Fractal coefficients and similarity measurement between range block and domain blocks

is performed using Algorithm 6. Its inputs are the range block and the down sampled ECG
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Algorithm 5 ECG fractal Compression algorithm

1: o← 0 Array to store offset coefficients for all the range blocks
2: s← 0 Array to store the scale coefficients for all the range blocks
3: i← 0 Array to store the indexes for the selected domain blocks
4: rm← 0 Will store the RMS values
5: a← 0 Array to store the encoding of the affine transform applied for each range block
6: R is the original ECG signal
7: D is the down sampled domain created from R as shown in Eq. 3.22
8: z ← 0
9: Js represnts the jump step of the search loop in the domain

10: {Calculate fast fractal factor for all range blocks}
11: for each range block Rx in R do
12: calculate α as in Eq. 3.12
13: calculate δ as in Eq. 3.13
14: FRx ← α3/δ
15: end for
16: {Calculate fast fractal factor for all domain blocks}
17: for each domain block Dx in D do
18: Calculate FDx as shown in Eq. 3.21
19: end for
20: {The following steps are for rescaling the fractal factor arrays with in the range from 1

to 100}
21: Frd ← arrayconcat(FR,FD) {frd is a matrix that its columns are the fractal factors

arrays}
22: maxf ← max(Frd) {find the maximum value in the fractal factor arrays}
23: minf ← min(Frd) {find the minimum value in the fractal factor arrays}
24: FR← int(((FR −minf)/(maxf −minf)) ∗ 100)
25: FD ← int(((FD −minf)/(maxf −minf)) ∗ 100)
26: {mapping process example shown in Fig. 3.8}
27: FDI ← FD
28: FDI(:, 2) ← [1, 2, , n] {add second column to FDI to store domain block indexes initial-

ized from 1 to n, where n is number of domain blocks}
29: FDI ← sortrow(FDI) {sort FDI matrix based on the fast fractal factor i.e column 1}
30: mp ← createmapping(FDI, n) {create the mapping matrix m(100,2) as illustrated in

Fig. 3.8}
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31: for each range block Ri in R do {i represents current range block number ff and fl
represent pointers to the first and last domain blocks that will be used in the search
process}

32: ff = mp(FR(i) + 1, 1)
33: fl = mp(FR(i) + 1, 2)
34: [sc, of, in, rms, aff ] = rmsfract(Ri,D, js, FDI, ff, f l)
35: s(z)← sc
36: o(z)← of
37: i(z)← in
38: a(z)← aff
39: z ← z + 1
40: end for

signal (search domain) as well as the first and last pointers to the domain search limits. The

algorithm will compare the specified range block with the domain blocks in the specified

search domain. Accordingly, fractal coefficients and fractal RMS will be calculated. As a

result, the most similar domain block will be determined and its fractal coefficients as well

as its index and affine transform code will be stored in the compressed file.

The main difference between the normal fractal compression and fast fractal compression

is the number of comparative operations and fractal coefficients calculations. In normal

fractal and for one range block these operations are repeated for all domain blocks, while in

fast fractal, small number of domain blocks will be searched. Therefore, these operations are

repeated for small number of domain blocks.

The resultant file should contain the following information about the most similar domain

block for each range block.

1. The fractal coefficients for the selected domain block (scale and shift)

2. The domain block index
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Algorithm 6 fractalrms function algorithm

1: so = 0; {The determined scale value for the selected domain block}
2: oo = 0; {The determined shift value for the selected domain block}
3: io = 0; {The determined location for the most similar domain block to the specified range

block}
4: rms0 = 0;
5: aff0 = 0; {The determined affine transform encoding value for the selected domain

block}
6: r=the range ECG block
7: d=the down sampled domain
8: blocksize=size(r,1); {stores the block size}
9: ff represents a pointer to a position in the FDI array which represents the starting search

domain block
10: fl represents a pointer to a position in the FDI array which represents the last search

domain block
11: sumr=sum(r); {sumr =

∑
R(i) the total sum of the range block}

12: sumr2=0;
13: Js represents the jump step
14: for j=1 to blocksize do {{∑blocksize

j=1 R(j)2}}
15: sumr2 = sumr2 + (r(j)2);]
16: end for
17: rms0=10000; {initialize rms0 with large value}
18: sd=size(d,1); {Size of the down sampled ECG domain}
19: for i=ff to fl do {{iterate through the specified search domain and cut domain blocks

with size of sd}}
20: ix1 = FDI(i, 2) ∗ js
21: ix2 = ix1 + blocksize− 1
22: t1 = d(ix1 : ix2)
23: for a=0 to 3 do
24: t=affine(t1,a); {calculate the affine transform and return the transformed domain

block in t}
25: sumrt=0; {calculate ∑blocksize

j=1 R(j)t(j)}
26: sumr2 = sumr2 + (r(j)2);
27: for j=1 TO blocksize do
28: sumrt=sumrt+(r(j)*t(j));
29: end for
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30: sumt=sum(t); {calculate domain block coefficnats such as
∑
t and

∑
t2}

31: sumt2=0;
32: for j=1 to blocksize do
33: sumt2 = sumt2 + (t(j)2);
34: end for
35: s = ((size(r, 1) ∗ sumrt)− (sumr ∗ sumt))/(size(r, 1) ∗ sumt2− sumt2); {calculate

the scale fractal coefficient as shown in Eq. 3.3}
36: o = (1/size(r, 1))∗(sumr−s∗sumt); {calculate the shift fractal coefficient as shown

in Eq. 3.4}
37: rmsn = sqrt((1/size(r, 1)) ∗ (sumr2 + s ∗ (s ∗ sumt2− 2 ∗ sumrt+ 2 ∗ o ∗ sumt) +

o ∗ (size(r, 1) ∗ o− 2 ∗ sumr))); {calculate the fractal rms as shown in Eq. 3.6}
38: if (rmsn ≤ rms0) then
39: so=s;
40: oo=o;
41: io=i;
42: aff0=a;
43: end if
44: end for
45: end for

3. Affine transform code as shown in Table 3.1

3.5.2 Decompression algorithm

The decompression operation of the fast fractal compression is exactly identical to the decom-

pression operation of the normal fractal discussed in Section 3.4.2. The decompression opera-

tion does not require to use the fractal factors calculated in the compression phase, therefore,

all fractal factors can be safely deleted after the compression operation is completed. To de-

compress the resultant compressed file, several operations are performed. Firstly, a random

ECG signal is generated which is similar to the original ECG signal in length. Next, this ran-

dom ECG signal will be down sampled and used as the search domain. Using the information

stored in the compressed file and Eq. 3.23 range blocks are reconstructed.
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R̂i = Si ∗Dindex(i) +Oi (3.23)

where R̂ is the ith approximated range block, S and O are the fractal coefficients and Index(i)

is the index of the domain block. The reconstructed range blocks can be assembled to

represent the resultant approximated ECG signal, Finally, the resultant signal will be again

used as an input instead of the random signal generated at the start. This process can be

repeated several times to guarantee maximum accuracy for the decompressed ECG signal

(see Algorithm 4).

3.6 Evaluation strategy

The efficiency of the proposed lossy fractal compression technique can be measured based

on two measurements. Compression ratio is the first measurement that reflects the ratio

between the original to the compressed ECG size. Compression ratio can be calculated as

shown in Eq. 3.24

CompressionRatio =
Original ECG file size

Compressed ECG file size
(3.24)

The second measurement used to calculate the efficiency of the lossy compression tech-

nique is the distortion measurement between the original ECG signal and the reconstructed

ECG signal. In this chapter, Percentage Residual Difference (PRD) error measurement is

applied. To calculate the PRD between the original ECG signal and the reconstructed ECG

signal, Eq. 3.25 can be used.
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PRD =

√√√√√√√√√√

(

N∑

i=1

(Xi − X̃i)
2)

N∑

i=1

(X2
i )

(3.25)

where Xi represents the original ECG signal and X̃i represents the decompressed ECG signal.

High efficiency can be obtained by producing high compression ratio with low PRD value.

3.7 Experimental Results

3.7.1 Cloud-enabled fractal compression experiments and results

The proposed lossy algorithm is tested using MIT-BIH Arrhythmia Database [1]. This data-

base contains 47 ECG record from different patients. Each ECG record is 30 minutes length.

The proposed model performance can be affected in several parameters. Therefore, the ex-

periments are designed to show the effect of changing each parameter on the compression

ratio and the PRD. The variable parameters can be summarized as follows:

1. Range block size. This parameter has a direct effect on the compression ratio as well

as the accuracy of the decompressed ECG signal.

2. Jump step. It represents the distance between consecutive domain blocks. Incrementing

the jump step causes a decrease in the accuracy and execution time.

Several block sizes are applied. Compression ratios and PRD values are investigated. Ten

jump steps (1-10) are applied for all experiments (see Table 3.2). It is clear that increasing

the block size produces a higher compression ratio. However, it leads to higher PRD values.
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At the same time, PRD value is affected by the jump step as bigger jump steps would result in

higher PRD. Figure 3.9 shows the relation among the compression ratio, PRD, and the jump

steps. Moreover, Fig. 3.11 shows the linear relationship between the block size parameter

and the compression ratio. The decompressed ECG files can be shown in Fig. 3.10 for

different block sizes. The large similarity between the original signal and the decompressed

ECG signal is clear even with large block sizes.
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Figure 3.9: Relation between Compression ratio and PRD for different Jump Steps

To show the performance of the proposed algorithm ECG signals of 60 second length

have been tested and compression time is measured for different block sizes and jump steps

as shown in Table 3.4 using parallel processing mode and 8 cores processor. The proposed

algorithm can achieve highest compression ratio of 42 with PRD value less then 1% and

compression time of 3.2 seconds for 60 seconds ECG segment if the block size used is 35

and jump step is 10. However, the experiments are executed using MATLAB and Windows

platform running on desktop computer. Moreover, additional experiments are performed
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Table 3.2: PRD and compression ratio relation for different jump steps. The CR obtained is
40 with PRD of 1%

Bs Cr

PRD
Jump step

1 2 3 4 5 6 7 8 9 10

10 12 0.279 0.286 0.303 0.297 0.310 0.329 0.319 0.357 0.327 0.307

15 18 0.314 0.379 0.415 0.471 0.388 0.407 0.673 0.449 0.373 0.429

20 24 0.593 0.619 0.619 0.619 0.619 0.632 0.668 0.699 0.650 0.636

25 30 0.652 0.707 0.714 0.693 0.749 0.713 0.866 0.781 0.740 0.791

30 36 0.817 0.839 0.830 0.857 0.813 0.907 0.675 0.852 0.794 0.808

35 42 0.846 0.852 0.945 0.945 0.950 0.912 0.995 1.043 0.851 0.845

40 48 0.863 0.809 0.984 1.07 0.922 0.834 0.906 1.084 1.119 0.9948
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Figure 3.10: Decompressed ECG signals from different patients with different physiological
conditions as well as with different block size

to compare the compression time of the proposed technique using single core( i.e serial

processing) and 2,4 or 8 cores parallel processing approach to simulate cloud scenario as

shown in Table 3.3. It is clear from this table how the compression time is decreased if the

number of processing units is increased. As a result, in cloud environment the execution time

can be 20 times faster [18; 69; 34; 36] using a cloud service of 128 processors. Accordingly,
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Figure 3.11: Block size and Compression ratio

the cloud execution time for the worst case of Block Size=10 and Jump step=1 will be 33

seconds, while, the cloud execution time for the case of Block size=40 and Jump step=10 is

1.1 seconds. Finally, Table 3.5 shows the decompression time for different block sizes.

Table 3.3: Comparison of the proposed algorithm compression time using single core and
multi-core processing on a single machine

block size
Jump Step = 10 Jump step = 1

1 core 2 cores 4 cores 8 cores 1 core 2 cores 4 cores 8 cores

10 65.77 27.01 17.33 13.83 676.66 224.64 142.28 108.89

15 64.06 24.56 12.48 8.48 448.24 148.37 92.44 67.93

20 30.43 21.53 7.68 5.49 360.84 116.23 78.59 52.80

25 31.14 20.75 6.21 4.26 279.71 90.83 62.60 44.73

30 24.09 12.80 5.25 6.53 258.46 81.06 55.08 39.53

35 17.55 10.26 4.40 3.27 209.25 67.00 43.27 30.64

40 16.25 9.03 4.02 3.03 206.14 63.19 41.63 29.33

Finally, the proposed technique is compared with other existing techniques and it is clear

that the proposed compression technique outperformed other methods by producing the

highest compression ratio and lowest PRD as shown in Table 3.6. In this table some values

are blank because other researchers did not provide results for those patient records.
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Table 3.4: Average compression time in seconds for 60 second length ECG signals using
parallel processing mode with 8 cores processor

Bs Cr
Jump Step

1 2 3 4 5 6 7 8 9 10

10 12 108.89 59.76 37.63 29.39 20.89 21.07 19.35 16.15 15.22 13.83

15 18 67.93 33.73 21.85 16.89 14.25 11.94 12.04 9.08 8.37 8.48

20 24 52.80 26.09 17.25 14.40 11.13 9.18 8.12 7.06 9.25 5.49

25 30 44.73 21.00 14.01 10.35 8.31 7.15 6.47 5.20 4.89 4.26

30 36 39.53 18.55 15.89 10.61 7.46 6.73 5.75 8.20 4.60 6.53

35 42 30.64 15.25 10.53 8.49 6.54 5.25 4.40 4.76 3.76 3.27

40 48 29.33 14.75 13.06 7.59 6.99 4.95 4.60 4.03 3.38 3.03

Table 3.5: Decompression Time for different block sizes.

Bs Cr Decompression Time

10 12 2.75

15 18 1.74

20 24 1.19

25 30 1.18

30 36 0.91

35 42 0.99

40 48 0.90
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Table 3.6: Compression ratio and PRD for different compression techniques compared with
our proposed technique

Data
[47] [73] [15] [41] proposed method Bs=35 Js=10

CR PRD CR PRD CR PRD CR PRD CR PRD

100 22.94 1.95 24 3.95 24 4.06 11.06 13.79 42 0.79

102 25.9 1.39 10.17 14.2 42 1

103 20.33 2.5 11 13.78 42 2.29

104 22.94 1.67 11.2 13 42 0.96

105 20.96 1.17 12 15.13 42 1.24

106 19.55 1.77 42 1.65

107 18.55 3.93 42 2.66

108 23.11 0.77 8.22 15.42 42 0.53

109 19.89 0.76 11 17.39 42 0.87

111 22.99 1.03 42 0.92

112 23.82 1 42 1.18

113 19.96 2.89 42 2.4

114 25.58 1.08 42 0.87

117 24 1.17 24 1.72 13 1.18 4.5 14.64 42 1.45

119 19 2.05 20 1.92 21 2.81 42 1.5
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3.7.2 Fast fractal compression Experiments and Results

A test bed of 47 ECG signals collected from MIT-BIH Arrhythmia Database [1; 64] is used

to test the proposed algorithm. Each ECG segment is of 60 seconds length. The efficiency

of the proposed algorithm depends on changing two parameters which are:

1. Jump step. It can be defined as the number of ECG points that separate two consecutive

overlapping domain blocks. Increasing this parameter causes an increase in PRD value

with a shorter processing time.

2. Range block size. It represents the number of ECG points in one block. It will affect

the compression ratio, the PRD value and the compression time.

Experiments are performed on all ECG signals. The same experiments are repeated for

different block sizes. In each case average PRD, average Compression ratio and average

compression and decompression times are calculated. Next, the second parameter (jump

step) is changed and the same set of experiments are repeated for the new value of jump

step. Table 3.7 shows the PRD values and compression ratio for different cases of block

sizes and jump steps. It is clear from this table how the proposed technique could achieve a

compression ratio of 48 with maximum PRD of 2.5 %. Generally, the PRD value increases

when we increase the block size. Moreover, increasing block size will increase the compression

ratio. Figure 3.12 illustrates the relationship between the PRD and compression ratio for

different cases of jump steps.

The relation between the selected block size and the resultant compression ratio is linear

and can be clearly shown in Fig. 3.14. Moreover, the proposed fast fractal compression
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Table 3.7: Compression ratio veses PRD for different block sizes and jump steps

Bs Cr

PRD
Jump step

1 2 3 4 5 6 7 8 9 10

10 12 0.497 0.642 0.800 0.751 0.804 0.706 0.819 0.787 0.912 0.719

15 18 0.654 0.811 0.800 1.002 0.954 0.862 1.016 0.925 1.034 0.945

20 24 0.677 0.761 0.900 1.016 1.034 1.023 1.065 1.092 1.15 1.239

25 30 0.861 0.990 1.062 1.187 1.146 1.088 1.131 1.237 1.245 1.401

30 36 1.153 1.151 1.7 1.374 1.694 1.669 1.499 2.66 1.457 1.620

35 42 1.815 1.199 1.956 1.933 1.471 1.487 1.565 2.03 1.689 2.020

40 48 1.557 1.684 2.122 1.524 1.730 1.787 1.619 2.432 1.85 1.82

technique performance is examined by recording the compression time. To compare between

fast fractal compression and the normal fractal compression technique performance, average

compression time is calculated for both techniques and for the same data sets using single

processing model. Table 3.8 clearly shows how the proposed fast fractal technique performs

well compared to the normal fractal compression technique. In this table, compression time

is calculated for different cases of jump steps using a 60 second length ECG signal. However,

the accuracy of decompressed signal is less than the normal fractal compression technique as

shown in Table 3.9

The proposed fast fractal compression is applied to different ECG signals with different

types of diseases, Moreover, the same experiments are repeated with different block sizes, the

decompressed ECGs can be shown in Fig. 3.13. The large similarity between original ECG

and the decompressed ECG is clearly shown in this figure.

To further prove the reliability of the proposed technique, it is compared with other lossy

compression techniques as shown in Table 3.10. It is clear that the proposed algorithm will
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Table 3.8: Average compression time for both normal and fast fractal compression for differ-
ent jump steps of 60 seconds ECG signal

jump step Normal fractal fast fractal

1 348.4712258 6.128656172

2 178.0142764 3.173848511

3 117.9738631 2.104716943

4 88.24959419 1.681290864

5 70.95361335 1.428648108

6 59.20645766 1.253933547

7 51.83929228 1.065914267

8 45.70668542 1.205495831

9 40.05596818 0.942461358

10 36.0513147 1.097966095

Table 3.9: Average PRD value for both normal and fast fractal with respect to different jump
steps

jump step Normal fractal Fast fractal

1 0.623819781 1.031128998

2 0.642192507 1.034331828

3 0.687568786 1.334678738

4 0.708100499 1.255598594

5 0.679156509 1.262343616

6 0.676764759 1.232162049

7 0.729272129 1.24524157

8 0.752507842 1.596466452

9 0.693918281 1.334330344

10 0.687600491 1.396449332
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Figure 3.12: Relation between Compression ratio and PRD for different Jump Steps
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Figure 3.13: Decompressed ECG signals from different patients with different physiological
conditions as well as different block size

compete with other techniques in terms of both compression ratio and PRD. Moreover, it is

found that other researchers did not estimate their techniques compression time.
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Table 3.10: Compression ratio and PRD for different compression techniques compared with
our proposed technique

Algorithm Record CR Prd

Lee et all [46] 100 24 8.1

Chou et al app [15] 100 24 4.06

Eddie B.L et al app [73] 100 24 3.95

SangJoon Lee [47] 100 23 1.94

Proposed 100 24 0.900

Eddie B.L et al app [73] 117 24 1.72

SangJoon Lee [47] 117 24 1.17

Proposed 117 24 0.856

Chou et al app [15] 117 13 1.18

Eddie B.L et al app [73] 117 13 1.07

SangJoon Lee [47] 117 12.6 0.43

Proposed 117 13.2 0.85

Lu et al [54] 117 10 2.96

Proposed 117 12 0.95

M,Wei et al [84] 117 10 1.18

Beligin et al [9] 117 10 1.03

SangJoon Lee [47] 117 10.4 0.43

Beligin et al [9] 119 21.6 3.76

Tai et al [80] 119 20 2.17

Chou et al app [15] 119 20.9 1.81

Eddie B.L et al app [73] 119 20 1.92

SangJoon Lee [47] 119 19.3 2.05

Proposed 119 20.4 1.01

Hyejung Kim; [43] 119 16.9 0.64

Proposed 119 16.8 0.79
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Figure 3.14: Block size and Compression ratio

3.8 Summary

Continuous cardiac monitoring systems produce huge ECG signal size. Therefore, a new fast

fractal lossy compression technique is introduced in this chapter to reduce ECG signal size in

an efficient way in terms of compression ratio, information loss and compression time. In this

chapter, two cases were taken into consideration. Firstly, a cloud enabled ECG compression

technique that can make use of the parallel processing capability of the cloud without adding

a large overhead is proposed. A fractal model is used and modified to be suitable for the

proposed ECG compression technique. ECG self similarity can be effectively utilized in

ECG compression techniques. Finally, the proposed technique outperformed other ECG

compression techniques with compression ratio of 40 and PRD value less than 1%. Secondly,

a modified version of the normal fractal ECG compression is proposed that can be applied

inside a client device instead of within the cloud. The proposed method is based on modifying

the normal fractal compression technique to increase its performance by limiting the search

domain. Further, the proposed technique out performed other ECG compression techniques

with compression ratio of 30 and PRD value less than 1%. Moreover, compression time is
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very small (less than 6 seconds to compress 60 seconds ECGS signal).
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ECG Lossless Compression

In this chapter, we are addressing the third research question discussed in Section 1.2. A

new lossless ECG compression technique is proposed to guarantee zero loss of information

after compression. Moreover, the proposed technique guarantees that ECG features are still

detectable. Accordingly, diagnoses process can be performed directly from the compressed file

without decompression operation. This feature (i.e. diagnoses from compressed ECG) will

be discussed in more details in the next chapter. This chapter is organized as follows: Section

4.1 discusses the problem statement and the chapter contributions. Section 4.2 investigates

other available lossless compression techniques in the literature. Section 4.3 explains the

proposed technique in more details. Results and experiments are explained in Section 4.4.

Finally, Section 4.5 summarises this chapter.
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4.1 Introduction

Electrocardiogram(ECG) signals, which represent the electrical activities of heart are widely

used in cardiac disease detection. ECG signals can be collected for many hours or days

to continuously monitor the heart activities of subjects being monitored in hospitals or at

homes. Moreover, ECG signals are digitally converted into digital data using Analogue to

Digital Converters (ADC) [56].

In currently used conventional cardiac monitoring e-health systems [32], body sensors

are responsible for collecting patient ECG signals. Subsequently, huge amount of ECG

signals are processed and transmitted to the hospital server or e-health cloud over a limited-

bandwidth mobile network. Moreover, this enormous amount of data needs to be stored;

thereby necessitating huge storage capability. Generally, sampling rate used to generate ECG

signals ranges from 125 to 500 samples per second, but can be as high as 1024 samples/sec.

Each sample is represented in binary using 8 to 16 bits. Therefore, for a 12-lead ECG

signal, the resulting digital data size can be from 1 GB to several gigabytes for 24 hours of

continuous monitoring. The increasing use of ECG signals in several e-health applications

and the growing acceptance of such applications by elderly as well as healthy individuals are

making ECG compression necessary and extremely important [89; 44].

In a typical remote cardiac monitoring health-care system supporting compression, pa-

tients wear body sensors to collect their ECG signal. Then, the ECG signal is sent to the

patient’s PDA device via Bluetooth or ZigBee. Subsequently, the compression and processing

of the ECG signal is completed on the patient’s PDA device. Finally, the compressed signal

is transmitted to the hospital server or e-health cloud. Doctors can access patients ECG by
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downloading the required compressed ECG signal and decompress it on their PDAs, tablet

or laptop. They can then diagnose and interpret the decompressed signal, which is the same

as the original ECG signal. This scenario is shown in Fig. 4.1.

Bluetooth
   Link

Doctors Diagnosing 
the Decompressed
ECG signal on 
 Mobile Devices

Roaming Patients Roaming Doctors

 Compressed ECGs

 ECG 
Sensor

Compressed ECG transmitted
 from the hospital to 
the Medical Cloude

Application 
server

Control
server

Storage
server

Storage
server

Medical Central Cloude
Stores Compressed ECG Signals

Patients at
hospital

Figure 4.1: Remote cardiac monitoring system showing application scenarios of ECG com-
pression

There are two general types of compression: lossy and lossless compression. In lossy

compression, a small portion of the information is lost. Therefore, the decompressed signal

is slightly different from the original ECG signal. On the other hand, lossless compression

technique guarantees exact reconstruction of the ECG signal after the decompression oper-

ation [30]. Lossy compression can achieve higher compression ratio compared with lossless

compression techniques. However, in some cases, the use of lossy compressed ECG signal

is discouraged for diagnoses purposes because of the loss of certain information. Therefore,

lossless compression has become important to guarantee exact reconstruction for ECG sig-

nals. Accordingly, decompressed signals using lossless compression can be used for diagnoses
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purposes.

Compression techniques can be divided into three main categories: direct techniques,

transformation techniques and parameters extraction techniques. In direct techniques, ECG

signals are processed directly in the time domain without applying any transformation

[89; 93]. On the other hand, transformation techniques are based on applying a special

transformation, such as FFT, DWT and DCT [62; 20]. Finally, in parameter extraction

techniques, models are applied to extract some parameters that can be used to regenerate

an approximation of the ECG signal [30].

In this chapter, a new lossless ECG compression technique is introduced. The basic idea

of the proposed technique is to approximate the ECG signal using the Gaussian functions

model. Next, the encoding process is applied on the differences between the approximated

and the original signals. The encoding process includes the block-sorting technique, followed

by the move-to-front (MTF) and run-length encoding. Finally, the resultant data will be

entropy coded using Huffman coding.

4.2 Related Work

In the past, many studies have been conducted on ECG compression. Although most of the

previous work focuses on lossy compression, some work, including that of Krzysztof Duda and

Pawel Turcza [20], has considered lossless compression. They proposed a lifting wavelet-based

ECG signal compression. The researchers used the integer-to-integer lifting wavelet transform

to prevent any information loss. Moreover, the resultant integer wavelet coefficients are

represented using Magnitude-Set Variable-Length Integer (MS-VLI) integer representation.
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Finally, the resultant coefficients are entropy coded. The maximum compression ratio they

could achieve is 3.7. Moreover, the researchers used dynamic lifting filters and calculated the

system parameters based on the dataset under test. Therefore, the proposed values in their

work cannot be generalized and used for any ECG signal.

Shaou-Gang Miaou and Shu-Nien Chao [62] proposed a new wavelet-based lossy to loss-

less ECG compression. They used dynamic vector quantization algorithm in conjunction

with a distortion-constrained codebook replenishment (DCCR) mechanism, where new re-

plenishment code vectors are SPIHT (Set Partitioning In Hierarchical Trees) encoded. The

maximum compression ratio they could achieve is 3.5. In their work, the researchers se-

lected the value of a specific parameter dCB experimentally according to the dataset used.

Therefore, their results cannot be generalized for all ECG signals.

Qunyi Zhou [93] proposed a new ECG lossless compression technique based on k-means

clustering model. The proposed technique begins with the extraction of all the QRS com-

plexes using the QRS detection technique. Next, the ECG signal is divided into 16 segments

and each segment represents a cluster. The K-means algorithm is used to classify the ex-

tracted QRS complexes into 16 clusters. Next, differences are calculated between each QRS

complex and its average cluster signal. Finally, all the differences is entropy coded using

Huffman code. The maximum compression ratio achieved is 3.8. This method relies on ac-

curate QRS detection, however, in some abnormal ECG signals, it is difficult to detect QRS

complex. Therefore, this method is ineffective in such circumstances.

On the other hand, there are many researches about lossy compression techniques. Hsiao-

Hsuan Chou [14] proposed a new lossy technique suitable for irregular ECG signals. Their
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technique starts by converting the ECG signal to a 2D image by applying QRS detection

stage. Then, period-sorting technique is applied. Next, period-length equalization using

mean technique is used. Finally, the researchers used Jpeg2000 encoding algorithm to com-

press the resultant 2D image. The Jpeg2000 compression is used in its lossless and lossy

modes. They achieved a lossless compression ratio of 3.08. Because this technique is based

on the accuracy of the QRS detection algorithm, it is difficult to apply it for different abnor-

mal ECG signals.

SangJoon Lee [47] proposed a new lossy real time ECG compression technique. Firstly,

the researcher down samples the ECG signal to half of its original sampling rate. Secondly,

sample differencing, followed by R-peak detection is applied. Next, DCT transform is applied

on two consecutive ECG periods, and subsequently, the floating-point DCT coefficients are

converted to integers and accumulated error is calculated. Finally, Huffman coding is used

as an entropy coding.

Generally, most lossless compression technique comprise three main stages: prediction

stage, transform stage and encoding stage as shown in Table 4.1

4.3 Methodology

In this chapter, the proposed technique involves initially approximating the ECG signal and

subsequently representing it with a few parameters. Next, the errors are calculated and

encoded using Burrow-Wheeler transform followed by MTF encoding and Run-Length En-

coding (RLE), Finally, entropy coding is applied as shown in Fig. 4.2. The main challenge

in the proposed algorithm is the accuracy of the Gaussian model and evaluating the suit-
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Table 4.1: Summary of the available lossless compression techniques

Reference Prediction Transform Coding CR

[20] - Lifting Wavelet Huffman 3.7
MS-VLI coding

[62] - 5/3 lifting Wavelet SPIHT 3.5
DCCR

[93] k-means and differencing - Huffman coding 3.5

[14] - ECG to 2d image Jpeg2000 3.08

[47] Differencing DCT Huffman coding 16
R-peak detection PRD = 0.6%

[65] Differencing Scaling and grouping ASCII 7
sign generation PRD = 0.02%

[12] Delta - Huffman coding 3

able model parameters that will produce a good approximated ECG signal. Accordingly,

optimization theory is used to determine the correct parameters values.

Gaussian model
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approximated 

ECG 

- first derivative

BWTMTF encoding
Run Length
Encoding

Huffman
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ECG signal
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Errors
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Figure 4.2: Lossless Compression Block Diagram

4.3.1 Gaussian Approximation

Typical ECG signal consists of several waves such as P and T wave as well as QRS complex

as shown in Fig. 4.3. Each wave is similar to the Gaussian signal with a different amplitude

or width. Therefore, Gaussian functions are utilized in the proposed compression technique

to approximate the ECG signal. Gaussian function is plotted in Fig. 4.4. Moreover, it can
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Figure 4.3: ECG signal one beat consists of P,QRS and T wave.

be represented as expressed in Eq. 4.1

f(x) = ae
−

(

(x−b)
c

)2

(4.1)

where x is an independent variable and a, b and c represent the Gaussian function parameters

as follows:

• a is the amplitude of the maximum peak value.

• b is the centroid of the function.

• c is the width of the peak.

To represent more than one peak, the same Gaussian equation can be rewritten as shown

in Eq. 4.2:
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Figure 4.4: Gaussian function

f(x) =

n∑

i=1

aie
−

(

(x−bi)

ci

)2

(4.2)

where n represents the number of Gaussian functions (number of peaks required to be fitted).

The ECG data represent the values of f(x). Then, the values of the parameters should be

calculated using the suitable optimization theory (in the proposed compression technique,

trust region algorithm is used) in such a way that minimizes the difference between the fitted

values and the actual values of the ECG signal. The difference between the original ECG (y)

and the Gaussian approximated ECG signal (ŷ) is calculated using a non-linear least square

equation as shown in Eq. 4.3

f =

n∑

i=1

(yi − ŷi)2 (4.3)
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where f represents the sum squares of the residuals that should be minimized. Therefore, f

in Eq. 4.3 represents the objective function that must be minimized by finding the optimum

Gaussian model parameters stored in vector x. Trust region algorithm [10] is used for this

purpose. It is based on approximating the original function f using a quadratic equation

mk(p) to determine the optimum step size p by which the parameter values x should be

increased or decreased. Moreover, the step value at iteration k can be determined by solving

this quadratic equation [86] as presented in Eq. 4.4

mk(p) = fk + pT gk +
1

2
pTBkp (4.4)

where fk = f(xk) is the value of the objective function at iteration k using the current

parameters values xk, and gk is the gradient of both f and parameter values of xk at iteration

k. Moreover, Bk is the Hessian of f . The solution of this equation (the step size value p) is

limited to a specified region ∆k called trust region as shown in Eq. 4.5

‖p‖ ≤ ∆k (4.5)

Finally, the trust region is either increased or decreased based on whether the approxi-

mated quadratic function represents good approximation to the original objective function

or not. For this purpose, a reduction factor rk is introduced to test the performance of the

quadratic approximation as shown in Eq. 4.6

rk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(4.6)
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Finally, according to the value of rk, the trust region ∆k is changed as follows:

• if the value of rk >
3
4 , then increase ∆k

• if the value of rk <
1
4 , then decrease ∆k

• otherwise, do not change ∆k

Next the parameter values are updated using the calculated step pk and the operation is

repeated until the stop condition is reached. Gaussian model parameters can be calculated

using the steps shown in Algorithm 7.

Algorithm 7 Nonlinear fitting algorithm

1: Initialize the initial Gaussian parameters values x0, maximum step length ∆̂, initial trust
region size ∆0 ∈ [0, 14)

2: f :the objective function to be minimized which is the least square error in Eq. 4.3
3: k=1
4: while xk is not optimum do
5: solve Eq. 4.4 and 4.5 to get the step value pk
6: Calculate the reduction factor rk as in Eq. 4.6.
7: if rk >

3
4 then

8: xk+1 = xk + pk
9: else

10: xk+1 = xk
11: end if
12: if rk <

1
4 then

13: ∆k+1 =
1
4∆k

14: else if rk >
3
4 and ‖p‖ = ∆k then

15: ∆k+1 = min(2∆k, ∆̂k)
16: else
17: ∆k+1 = ∆k

18: end if
19: k = k + 1
20: end while
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4.3.2 Barrow-Wheeler Transform (BWT)

Before this stage, the differences between the real ECG signal and the Gaussian-approximated

ECG signal is calculated. The first derivative is applied on these differences to eliminate

any deviation in the errors calculated (i.e ensure there is no large difference between any

consecutive error values). In this stage, a block sorting transform is used to transform the

data into another format that increases its compressibility by rearranging the data to generate

long sequences of consecutive similar symbols. The original BWT was first introduced to be

used for text compression [11]. The general idea of this transform is that it deals with the data

as one block. Alternatively, data can be divided into several blocks and the same transform

can be applied on each block separately. Let S represent the required block of symbols (text

or numbers) to be compressed as shown in Eq. 4.7,

S = {s1s2 . . . sn} (4.7)

where n is the length of the block to be compressed, and s represents either a character

or a number. For ECG compression, s will represent a number. Next, the BWT starts by

rotating the S vector to the left in circular fashion for each step to generate a new n × n

matrix called B, as shown in Eq. 4.8
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B =




s1s2s3s4 . . . sn

s2s3s4 . . . sns1

s3s4 . . . sns1s2

...

sns1s2s3 . . . sn−1




(4.8)

It is obvious from Eq. 4.8 that each row in matrix B represents a different permutation of

S. After generating B, the rows in B are sorted in ascending order. Therefore a new sorted

matrix will be generated from B, which is called Bs. The final output of BWT is to take the

last column of Bs (L) and the index (I) of the row that is similar to the original block S.

An example of an ECG signal block is shown in Eq. 4.9.

S =




0.025

0.050

0.025

0.050

0.1

0.5

0.025




(4.9)

To explain the concept of the proposed compression technique and for illustration pur-

poses, the values in Eq. 4.9 are replaced by characters, as shown in Table 4.2. Accordingly,

S =ababcda. To apply BWT, S will be shifted left to generate B as in Eq. 4.10
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Table 4.2: Conversion from Numerical values to Character values

Character Number

a 0.025

b 0.050

c 0.1

d 0.5

B =




a b a b c d a

b a b c d a a

a b c d a a b

b c d a a b a

c d a a b a b

d a a b a b c

a a b a b c d




(4.10)

The next step is to sort matrix B to generate the sorted matrix Bs as in Eq. 4.11

Bs =




a a b a b c d

a b a b c d a

a b c d a a b

b a b c d a a

b c d a a b a

c d a a b a b

d a a b a b c




(4.11)

Finally, the output will be the last column, which is L = dabaabc and the index of the
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row that contains the original block. In this example, it is row number 2, that is I = 2.

The decoder will start from the received output (L, I) and repeat the following steps n

number of times (n = 7 in our example)

1. insert L as the first column of a temporary matrix Temp

2. sort the matrix Temp using rows as sorting keys.

At the end of this loop, the resultant matrix Temp will be exactly similar to the matrix

BS in Eq. 4.11. Therefore, the data in row position I (I = 2 in this example ) will be the

original data.

4.3.3 Move to Front Encoder

The next stage of the proposed compression algorithm is to use MTF encoder for its ability

to increase the probability of small numbers and decrease the probability of large numbers.

Accordingly, the data average is minimized. Therefore, the data will be more compressible

using statistical compression techniques such as Huffman coding. The output of BWT con-

sists of a row of symbols where long runs of similar symbols are clustered together. However,

in the case of ECG signal, the symbols are different numbers such as, 10, 9, 120, etc. The

MTF encoder will increase the number of the symbols near zero, such as 1,2,5,10,etc. On

the other hand, the number of symbols that represent large numbers will be decreased, such

as 200,500,1000,etc. The MTF algorithm works as follows:

1. Initialize a list containing all the distinct symbols used in compression (in our example

P = (a, b, c, d).
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2. Each item Li in data L will be encoded as the number of symbols preceding it in P .

Next, symbol Li is moved to the front of P .

3. Combine the codes of step 2 in a list C, which represents the final output of the MTF

encoder, as shown in Table 4.3.

The decoding process is the inverse, assuming that both the encoder and the decoder

know the initial value of P , which in our example is (a,b,c,d). The encoding process can

be explained in details, for example, if L=(d,a,b,a,a,b,c ) and P=(a,b,c,d), the first

element in L is d, and the number of symbols preceding d in P is 3; therefore, the encoder

will output the number 3. Moreover, the encoder will move d to the front of the list in P . As

a result, P=(d,a,b,c). The next symbol in L is a, which has one element preceding it in P .

Therefore, the encoder will output 1 and put a to the front in P . The new list P=(a,d,b,c)

is updated. Then, b is the next symbol in L, and the encoder will output 2 and the updated

list will be P=(b,a,d,c). The fourth element in L is a, so the output will be 1 and the

updated list will be P=(a,b,d,c). The fifth element in L is also an a. Therefore, there are

no preceding symbols of a in the list P . Accordingly, the output will be 0 and the list P will

remain unchanged. Then, b is the next element in L , and the output will be 1 and updated

list is P=(b,a,d,c). Since the last element in L is c, the output of the encoder will be 3 and

the final list will be P=(c,b,a,d). As a result, the encoded message M = (3, 1, 2, 1, 0, 1, 3).

4.3.4 Run-Length Encoding

In this stage, the output of the MTF encoder contains long runs of small numbers, especially

zeros. Therefore, long runs will be replaced by the symbol itself and a special code combined

109 (June 30, 2014)



CHAPTER 4. ECG LOSSLESS COMPRESSION

Table 4.3: MTF encoding for L = (d, a, b, a, a, b, c) and P = (a, b, c, d)

Li P C

d a,b,c,d 3

a d,a,b,c 1

b a,d,b,c 2

a b,a,d,c 1

a a,b,d,c 0

b a,b,d,c 1

c b,a,d,c 3

with the run length [74]. For example, the data (aaaaaaaab) will be (a#8b) .

4.3.5 Huffman Coding

Huffman coding [31] is the last step in the proposed lossless compression technique. It is

a variable length coding technique by which symbols with a large number of occurrences

will be assigned a short code length, whereas symbols with small number of occurrences will

be assigned a long code length. Therefore, this method of coding is called variable length

coding. To code the symbols, first, their occurrence frequencies should be calculated. Next,

Huffman tree is constructed according to the following steps [74].

1. Create a leaf node for each symbol, containing the symbol itself and its frequency.

Then, add all the nodes to a priority queue.

2. Repeat the following steps until only one node is left in the queue:

(a) Remove the two nodes with the lowest frequencies from the queue

(b) Make a new internal node in the Huffman tree with the two removed nodes as its
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Table 4.4: Symbol frequency distribution in message M

Symbol Frequency

a 2

b 3

c 4

d 6

children. Moreover, the frequency of the new internal node will be the sum of its

children frequencies.

(c) Add the internal node to the queue.

3. The last node will be the root of the Huffman tree

To illustrate the Huffman code construction, let us consider the message M=(a,b,c,d,a,b

,b,c,c,c,d,d,d,d,d). The frequency distribution for the symbols can be shown in Table

4.4. Initially, the Huffman tree will comprise the leaves of all the four symbols. Then, the

symbols a and b will be the lowest frequency symbols that will be removed from the queue

and a new internal node of the tree will be created with a frequency of 5 (summation of

frequencies of a and b). The new internal node is also added to the queue. Now, the queue

contents are (ab/5,c/4,d/6). Next, a new internal node is created abc/9 with children of

ab and c. The new queue will be (abc/9,d/6). Finally, a new internal node is created,

which will be the root of the tree (abcd/15). The resultant Huffman tree for this example

is shown in Fig. 4.5.

Finally, to construct the Huffman code for each symbol, the tree needs to be trajected

from the root to the required leaf. The resultant Huffman code for the given example is

shown in Table 4.5
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a/2 b/3 c/4 d/6

ab/5

abc/9

root

1

0

1
0

1 0

Figure 4.5: Huffman tree for the message abcdabbcccddddd

For decompression, either Table 4.4 or Table 4.5 should be known to the decompresser.

These tables will be stored in the header of the compressed file. For ECG signal the size of

this table normally varies between 60 and 150 rows. Therefore, its size is several hundred

bytes.

Table 4.5: Huffman code for the symbols given in message M

Symbol Huffman Code

a 111

b 110

c 10

d 0
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4.3.6 Decompression Algorithm

The decompression phase is the inverse of the compression phase. Therefore, the decom-

pression operation starts with Huffman decompression. Then, MTF decoding followed by

Burrow Wheeler inverse transform are applied, which generate the errors values. Next, inte-

gration is applied to the resultant errors. Finally, the Gaussian function parameters stored

in the compressed file header is used to generate the approximated ECG signal. Then, the

approximated ECG will be added to the errors to construct the exact ECG signal as shown

in Fig. 4.6

Finally, Fig. 4.7 shows the original ECG signal before the compression operation and the

decompressed ECG signal. It is clear how the decompressed signal is exactly similar to the

original one.

Evaluate 
approximated 

ECG 
+ Integration

BWTMTF coding
Run Length
Encoding

Huffman
Coding

ECG signal

Approximated 
ECG signal

Errors

Model
Parameters

Compressed
File

Figure 4.6: Decompression operation block diagram

4.4 Experiments and Results

In this section, a testbed of 47 ECG records are taken from 47 different patients in the

MIT-BIH Arrhythmia database to evaluate the proposed algorithm. Each ECG signal is
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of 30 minutes length. Sampling frequency is 360 sample/s with a sample bit resolution of

12. Moreover, to further test the proposed algorithm, several combinations of compression

techniques with several prediction stage algorithms such as, linear, second-degree linear and

data mining clustering, is implemented and compared with the proposed technique using

the same dataset. It is found that the average compression ratio achieved by the proposed

algorithm is 4.09, which is more than the other techniques, as shown in Table 4.6

Table 4.6: Compression Ratio for the proposed technique compared with other techniques

Patient record
Lp 2nd

order+AC

LP+BWT+

MTF+AC+

Bs= 1000

LP+HC

Diff+Kmeans

+HC

bs=100

C=100

Diff+Kmeans

+AC

bs=100

C=100

LP 2nd +

encodig

AC

LP 2nd +

BWT

MTF

RLE HC

quasian

+

BWT

MTF

RLE HC

’100m’ 4.24 3.95 4.23 4.02 4.10 4.06 4.42 4.47

’102m’ 4.12 3.85 4.08 3.93 3.99 3.98 4.26 4.31

’103m’ 3.95 3.67 3.88 3.84 3.91 3.82 4.18 4.26

’104m’ 3.79 3.57 3.74 3.47 3.54 3.70 3.97 4.03

’105m’ 3.59 3.54 3.50 3.44 3.50 3.53 3.91 3.92

’106m’ 3.63 3.41 3.52 3.35 3.42 3.55 3.74 3.77

’107m’ 3.02 3.34 2.94 3.24 3.30 3.04 3.70 3.72

’108m’ 3.78 3.55 3.70 3.42 3.49 3.66 3.89 3.90

’109m’ 3.61 3.65 3.53 3.71 3.76 3.56 4.06 4.11

’111m’ 3.79 3.67 3.69 3.77 3.85 3.70 4.00 4.05

’112m’ 4.13 3.96 4.05 3.97 4.04 3.97 4.41 4.44

’113m’ 3.72 3.56 3.62 3.66 3.73 3.62 4.02 4.09

’114m’ 3.72 3.53 3.63 3.54 3.61 3.62 3.97 4.00

’115m’ 4.15 3.88 4.11 3.94 4.00 3.99 4.45 4.51
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’116m’ 3.55 3.43 3.45 3.41 3.48 3.47 3.91 3.92

’117m’ 3.95 3.66 3.92 3.75 3.83 3.82 4.04 4.09

’118m’ 3.36 3.26 3.26 3.20 3.26 3.28 3.63 3.63

’119m’ 3.61 3.44 3.54 3.48 3.54 3.53 3.90 3.95

’121m’ 4.38 4.23 4.33 4.20 4.27 4.23 4.53 4.57

’122m’ 3.60 3.48 3.54 3.57 3.63 3.52 3.86 3.89

’123m’ 4.01 3.71 3.95 3.78 3.85 3.87 4.12 4.16

’124m’ 4.03 3.85 3.97 3.89 3.94 3.91 4.40 4.43

’200m’ 3.50 3.40 3.41 3.19 3.25 3.42 3.80 3.81

’201m’ 4.42 4.16 4.37 4.19 4.28 4.23 4.65 4.73

’202m’ 3.86 3.67 3.79 3.80 3.86 3.76 4.09 4.12

’203m’ 3.24 3.15 3.17 3.01 3.05 3.19 3.47 3.48

’205m’ 4.35 4.09 4.29 4.10 4.21 4.15 4.71 4.78

’207m’ 3.85 3.70 3.76 3.66 3.72 3.74 3.99 4.01

’208m’ 3.45 3.36 3.34 3.29 3.35 3.39 3.74 3.77

’209m’ 3.53 3.35 3.44 3.34 3.41 3.43 3.76 3.78

’210m’ 3.90 3.74 3.87 3.73 3.79 3.80 4.15 4.19

’212m’ 3.35 3.20 3.25 3.18 3.23 3.26 3.57 3.58

’213m’ 3.14 3.31 3.03 3.27 3.34 3.14 3.90 3.94

’214m’ 3.52 3.44 3.43 3.42 3.48 3.46 3.82 3.86

’215m’ 3.36 3.29 3.26 3.26 3.32 3.28 3.69 3.70

’217m’ 3.29 3.42 3.19 3.39 3.48 3.27 3.76 3.80

’219m’ 3.95 3.74 3.84 3.79 3.86 3.82 4.34 4.39

’220m’ 4.16 3.89 4.08 3.91 3.99 4.00 4.39 4.43
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’221m’ 3.76 3.58 3.68 3.62 3.69 3.66 4.02 4.06

’222m’ 3.96 3.66 3.89 3.64 3.71 3.83 4.02 4.04

’223m’ 3.90 3.80 3.82 3.78 3.85 3.78 4.31 4.36

’228m’ 3.69 3.51 3.59 3.36 3.43 3.61 3.81 3.81

’230m’ 3.86 3.69 3.75 3.69 3.75 3.73 4.27 4.31

’231m’ 4.15 3.86 4.06 3.96 4.05 4.00 4.40 4.46

’232m’ 4.33 4.01 4.22 3.99 4.05 4.14 4.39 4.42

’233m’ 3.42 3.52 3.30 3.38 3.44 3.39 4.02 4.04

’234m’ 3.99 3.77 3.91 3.83 3.90 3.87 4.30 4.34

Average 3.78 3.63 3.70 3.62 3.69 3.68 4.06 4.09

In this chapter, several experiments are performed using different methods as follows:

• Case1: The second column in Table 4.6 shows the compression ratios if Gaussian

stage is removed and only linear prediction is used in conjunction with arithmetic

coding instead of Huffman coding. Moreover, neither BWT nor MTF have been used

in this method. The average compression ratio in this case is 3.7, which is lower than

that achieved by using the proposed technique.

• Case 2: In column three of Table 4.6, the same method used in case 1 is modified by

adding BWT and MTF coding, while retaining linear prediction and Huffman coding.

The average compression ratio in this case is lower than that achieved by using our

proposed technique.

• Case 3: Column four shows the results of using the linear prediction directly com-

bined with Huffman coding instead of arithmetic coding. No BWT or MTF coding is
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used. The resultant compression ratio is 3.7, which is lower than the compression ratio

achieved by using our proposed technique.

• Case 4: The fifth column in this table describe the results of using the technique in

[93], which is based on dividing the signal into blocks and then classifying those blocks

into clusters, and finding the differences between each pair of blocks in the clusters and

the cluster average. Finally, Huffman coding is applied on these differences. In our

experiments, the best result that this technique yielded was an average compression

ratio of 3.62, which was achieved when a block size of 100 was used and the number of

clusters were 100.

• Case 5: The next column repeats the same technique as the one used in case 4, but

replaces Huffman coding with arithmetic coding. The compression ratio achieved in

this case is 3.69.

• Case 6: Column 7 uses linear prediction combined with the ASCII encoding technique

used in [77], followed by arithmetic coding. The resultant compression ratio is 3.68.

• Case 7: The last two columns represent the difference of using steps comprising BWT,

MTF, RLF, and Huffman coding. However, the first stage is either linear prediction

or Gaussian prediction, as in our proposed method. This case shows how Gaussian

prediction improved the compression ratio to 4.09 on an average.

The experiments clearly show how Gaussian-based lossless technique achieved better re-

sults. Moreover, Table 4.7 shows a comparison with other available compression techniques
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Figure 4.7: Original ECG compared with decompressed ECG signal

based on their published results. Table 4.7 clearly shows that our proposed compression

technique performs better than other techniques, with an average compression ratio of 4.09.

Table 4.7: Comparison with other available techniques

Compression Method CR PRD(%)

Lifting wavelet [20](Lossless) 3.7 0

wavelet lossy to lossless [62] (Lossless) 3.5 0

kmeans [93] (Lossless) 3.8 0

ASCII characters [65] (Lossy) 7 0.02

wavelet filters [4] (Lossy) 22 2

Delta coding [12] (Lossless) 3 0

Proposed technique (Lossless) 4.09 0

4.5 Summary

In this chapter, we have introduced a new Gaussian-based ECG lossless compression algor-

ithm. The proposed algorithm was based on utilizing the Gaussian function modeling to

approximate the ECG signal. Gaussian functions parameters were calculated using nonlin-

ear least square error technique. Moreover, the residuals of this approximation process were
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encoded using steps comprising BWT, MTF, RLF, and Huffman coding. The proposed tech-

nique was tested and compared with other existing lossless compression techniques, and it

was found that the proposed technique performs better than others and provides compression

ratio of 4.09. Moreover, the proposed compression technique is dynamic because no static

parameters are calculated by experimentation and QRS detection is not required. Therefore,

our proposed technique can work for any type of ECG signal and any database.
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Chapter 5

ECG Diagnoses from Compressed

ECG

In this chapter we address the fourth research question posed in Section 1.2. Diagnosing

Cardiovascular diseases from Compressed ECG signal without performing any decompression

stage is implemented in this chapter. Two life threatening diseases are diagnosed in this

chapter: Ventricular Arrhythmia and Left Bundle Branch Block. This chapter is organized

as follows: Section 5.1 describes the problem statement and chapter contributions. Section

5.2 investigates other techniques available for ECG diagnoses. Section 5.3 explains briefly

the compression technique that will be utilized to diagnose ECG from compressed file. This

compression technique is the same as proposed in Chapter 4. Section 5.4 discusses the

proposed technique in more details starting from analyzing the compressed ECG, attribute

selection processes using Principle Component Analyses and the clustering stage. Section

5.5 explains the experiments performed and discusses the results obtained for diagnoses of
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Ventricular Arrhythmia as well as Left Bundle Branch Block disease. Finally, Section 5.6

summarizes this chapter.

5.1 Introduction

With the current development in information technology and communication systems, nu-

merous types of data are collected and processed in continuous manner by networked applica-

tions [85]. As an example of data generated we are focusing on Cardiovascular patients’ data.

Cardiac diseases are the number one killer in the modern era. According to the Australian

Bureau of statistics, 3.5 millions Australians suffer from long term cardiovascular diseases

[2]. Accordingly, it is recommended that those people should be continuously monitored

[50]. To diagnose cardiovascular disease an ECG signal is used [55]. For 12 lead ECG signal

with 1024 sampling frequency digitized using 16 bits resolution to guarantee good quality,

the amount of ECG data generated by 24 hours continuous monitoring will be 2.1 GB for

one patient. Accordingly, to monitor 3.5 million patients, a huge amount of data about 6

PetaBytes daily will be generated and this data has to be stored and processed. This huge

amount of data is a valid example of a big data problem in health-care applications[19].

According to IBM, big data is defined as any situation or event that includes any or all

of the three V words:Volume, Variety and Velocity [68]. In our case, with remote cardiac

monitoring systems, different types of data are stored such as ECG signals, diagnosis report

and patient information. Accordingly, the Variety condition is satisfied. Secondly, the Ve-

locity condition is also satisfied because the ECG signal is generated continuously during the

monitoring period. Finally, Volume condition is satisfied as well, because in Australia alone
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the ECG data size can reach 6 PetaBytes daily. Current health-care organizations lack the

required technology to handle this big data. Therefore, cloud computing capability should be

used. Moreover, storing patient information and biomedical signals in the cloud will provide

freedom of access to this information [19].

To decrease the size of the transmitted ECG signal, it should be compressed before

it is transmitted to the cloud. Several health service providers require access to patient

information and patient diagnostics reports, such as hospitals, ambulance services, clinics,

health insurance, researchers and government health sectors. Therefore, cloud services should

be used as a central secured storage repository that is capable of storing and processing this

big data [83].

The proposed large scale e-health cloud receives chunks of compressed ECG from different

sources. In remote patient monitoring, the patient wears a body sensor that reads the

ECG signal and sends it to the patient’s PDA device. The ECG signal is compressed then

transmitted to the e-health cloud. This signal can also be collected from patients in hospitals,

compressed and transmitted to the e-health cloud. Doctors can access the stored information

from anywhere. Alternatively, the cloud itself can be configured to diagnose the compressed

ECG and send alerts in case of any emergency. Therefore, the diagnosis process implemented

inside the cloud is capable of analysing the compressed ECG signal without decompressing it

as shown in Fig. 5.1. As a result, the diagnosis process is faster and more reliable. Processing

the big data in its compressed format will dramatically increase the performance of the whole

big data processing operation.

There are many types of cardiac diseases. In this chapter, two cardiac diseases are
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addressed. Firstly, a new technique for detecting Ventricular Arrhythmia directly from com-

pressed ECG signal is proposed to enable faster diagnoses. Ventricular Arrhythmia is a fast

heart rhythms generated from the ventricles. There are two types of ventricular arrhythmia:

Ventricular tachycardia and Ventricular fibrillation. Both diseases are life-threatening dis-

eases, so detecting them early increases the chance of survival [16]. Secondly, Left Bundle

Branch Block (LBBB) is addressed to prove that the proposed technique can work for more

than one disease. LBBB is a cardiac disease where the left ventricle contracts after the right

ventricle. The ECG signal is the main tool used to diagnose cardiac disease. There are other

applications for ECG signal such as biometric authentication techniques [42; 76; 78].

An ECG signal consists of P and T waves as well as QRS complex. Generally, diagnosis

process is based on analysing these waves as well as other features extracted such as RR

interval, PR interval, PR segment , ST interval and ST segments [79]. Extracting these

features accurately is a complex process, signal processing techniques are used to achieve

this goal [58; 63]. Other researchers have proposed wavelet based QRS detection technique

where redundant R waves or noise peaks are removed [25]. Another techniques used template

matching and neural networks to classify ECG signals. All these techniques are based on

analysing the original large ECG signal. Therefore, they are not suitable in cloud scenario

where compressed ECG signal is to be diagnosed.

In the proposed e-health cloud scenario the Internet represents the main communication

channel. However, ECG data should be transmitted using smart devices such as mobile

phones. Furthermore, current mobile communication technologies such as MMS, GPRS,

HSDPA or LTE provide a bandwidth-limited channel that is not suitable for transferring

123 (June 30, 2014)



CHAPTER 5. ECG DIAGNOSES FROM COMPRESSED ECG

Hospital 1

ECG compression 
process runs in 
handheld device

Distributed clients accessing patients record using cloud application

Diagnosis using compressed 
ECG inside cloud severs

Body worn
ECG sensor
peridically
collectes
ECG signals

Patient 1

Patient 2

Patient n

Bluetooth

UnCompress
ECG Signal

Many roaming 
patients

Patient 1 Patient 2 Patient m

Hospital k

Patient 1 Patient 2

ECG compression 
process runs in 
hospital server

Control Node

Big Data
Repository

Application
Servers

ECG signals from ECG sensors of admitted patients in different hospitals

Cloud Servers

Compressed 
ECG
chunks

Compressed 
ECG chunks

Doctor

NurseHealthcare
Professional

Mobile
Tablet

Figure 5.1: A typical wireless tele-monitoring scenario. Compression would save energy on
power hungry Bluetooth device, resource constrained wireless sensor nodes and smartphone.
Compression also helps transmit faster over bandwidth constrained wireless links. Diagnosis
of diseases is implemented on the cloud side and applied directly to the Compressed data.

large amounts of ECG data [77]. Therefore, compression is applied to guarantee fast and

energy-efficient transmission. On the cloud side, the compressed data is analysed and Cardiac

Arrhythmia are detected directly from compressed ECG signals. In this chapter the lossless

technique proposed in the previous chapter is used, compressed data is analysed and im-

portant features are extracted using the Principle Component Analysis technique. Finally,
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extracted features are classified into normal and abnormal using k-means clustering tech-

nique. Neural Network classifier is used and replaced k-means technique to further improve

the results [39; 21]. The same model is tested to detect ventricular arrhythmia as well as

LBBB.

In this chapter three questions are answered:

• Can normal and abnormal ECG data be directly classified from a compressed ECG

signal without performing the decompression operation?

• How it is possible to utilize Principal Components Analyses (PCA) to perform attribute

selection from compressed ECG signal?

• Can the same technique be used to diagnose more than one cardiac disease (Ventricular

Arrhythmia as well as LBBB)?

5.2 Related works

There are many techniques proposed to detect ventricular arrhythmia such as Ventricular

Tachycardia and Ventricular Fibrillation. Rahat Abbas [3] proposed new technique to detect

ventricular arrhythmia. The authors used a two layers Generalized Neural Network. The first

layer consists of radial bases function nodes, and the second layer represents linear function.

Secondly, the authors modified the normal K Nearest Neighbour classifier and replaced the

Euclidean distance used to find the similarity between two vectors with cross-correlation.

Zhen-Xing [90] proposed a wavelet based Neural Network Weighted fuzzy Membership

function to detect ventricular arrhythmia. The researchers applied three levels wavelet trans-
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form. Next, they applied phase space reconstruction algorithm on D3 wavelet coefficients

to extract six input features. They then used Neural Network with Weighted Fuzzy mem-

bership functions combined with non-overlap area distribution measurement method for the

classification stage.

A non neural network approach was developed by Nitish and Yi-Sheng [81] using sequen-

tial hypotheses testing technique. The researchers started by filtering the ECG signal to

remove noise. Next, a sequence of binary numbers is generated based on comparing the in-

stant value of the ECG signal with an experimentally determined threshold. The probability

distribution of the binary sequence is then calculated. Finally, sequential hypotheses testing

algorithm is applied to classify the ECG signal.

All these diagnosis techniques are based on processing the raw ECG signal and can

not diagnose the compressed ECG without performing decompression stage. Therefore, our

proposed technique is capable of diagnosing the compressed ECG signal without performing

the decompression stage.

5.3 Background: The Compression Algorithm

In this chapter, the ECG lossless compression technique proposed in Chapter 4 is used because

of its ability to preserve ECG features after compression. The final compressed file is a text

file that uses the ASCII character set shown in Fig. 5.2.

In this section, we summarize the steps used in our lossless compression in the following

stages:

• Find the suitable Gaussian parameters and generate approximated ECG signal
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Figure 5.2: Character Set for the compressed ECG signal

• Find the residuals between the original ECG signal and the Gaussian approximated

ECG signal

• Differentiate the residuals to lower their respective amplitudes.

• Apply modified Burrow-Wheeler technique that can deal with numbers instead of text.

• Apply Move to Front encoding technique to decrease the mean of the data

• The number of similar consecutive values is decreased using Run-Length Encoding

• The resulted values are finally encoded using variable length coding called Huffman

Coding.

5.4 The Methodology

The proposed diagnosis algorithm can analyse a compressed ECG signal without performing

the decompression process. The compression technique used in this chapter is that proposed

in Chapter 4 because it is a lossless algorithm. The resulting compressed ECG is analysed and
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Figure 5.3: (a) Normal ECG sample for Patient CU01 (b) Abnormal ECG sample for Patient
CU01

data mining tools are used to classify the compressed ECG signal into normal and abnormal

classes for both Ventricular Arrhythmia and LBBB disease.

In Fig. 5.3(a) and (b) normal and abnormal ECG samples for Patient CU01 from the CU

Ventricular Tachyarrhythmia Database are presented respectively. The classification process

is applied directly to the compressed ECG as shown in Fig. 5.4.
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(a)

(b)

Figure 5.4: Compressed ECG samples for patient CU01 (a) Abnormal ECG of 5.3(b) in
Compressed Format (b) Normal ECG of 5.3(a) in Compressed Format

5.4.1 Analysis of Compressed ECG signal

The compression algorithm utilises the ASCII characters set shown in Fig. 5.2 to construct the

compressed file. The compression operation is performed within the patient’s PDA smart

device. Alternatively, it can be performed within the hospital server. Inside the e-health

cloud servers, a data mining module is trained with the normal and abnormal samples of
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compressed ECG signals. Accordingly, e-health cloud can classify compressed ECG samples

into normal and abnormal classes and for different diseases.

To analyse the compressed ECG, character frequency calculation is applied as shown in

Fig. 5.6. Accordingly, the number of occurrences for each character is determined. The

number of distinct characters used is 127 characters. For the purpose of analysis, each

character is treated as an attribute. Therefore, the total number of attributes in the resultant

dataset is 127. However, datasets with large number of attributes (such as 127 attributes)

cannot be classified accurately for normal and abnormal. Therefore, in this chapter, attribute

selection technique called Principal Component Analysis (PCA) is applied to reduce the

number of attributes.
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Figure 5.5: data set for patient CU01 the first six plots for abnormal samples and the second
six plots for normal samples
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Figure 5.6: Block Diagram for the Proposed ECG detection system

5.4.2 Attribute Subset Selection

Minimising the number of attributes is a crucial process in data mining. The training process

will be complex and inaccurate if large number of attributes is used. Moreover, the speed

of the classifier will be very slow especially in big data scenario. Therefore, an attribute

selection technique is used. This chapter uses PCA technique. Generally, PCA is used for

dimensionality reduction, and is suitable to minimise datasets of a large number of attributes

by reducing the number of attributes. The output of PCA algorithm is a set of artificial

variables called Principal Components. Accordingly, these components are used as inputs to

the neural network or k-means clustering technique for classification stage.

A dataset for Patient Cu01 is prepared as an example. 12 samples are taken. 6 of them

are normal and the rest are abnormal (Ventricular Arrhythmia). Each sample is compressed

and character frequency is calculated to produce the final dataset shown in Fig. 5.5 and

Table 5.1.

The mathematical steps for the PCA technique can be summarised as follows
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Table 5.1: Data set for CU01

Character Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample
1 2 3 4 5 6 7 8 9 10 11 12
a1 a2 a3 a4 a5 a6 n1 n2 n3 n4 n5 n6

@ 72 56 64 63 111 113 16 19 19 24 19 15
8 6 7 9 3 5 23 21 17 11 25 14

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
a 13 12 13 11 3 11 8 2 4 5 3 5
b 3 2 9 10 8 8 13 6 8 2 3 8
c 5 2 5 2 2 3 2 5 4 5 2 5
d 7 5 1 4 5 3 8 3 5 5 4 6
e 3 5 3 0 1 4 2 3 4 0 2 4
f 29 23 32 21 8 12 13 13 15 16 15 17
g 47 36 41 48 24 20 23 28 18 23 23 27
h 43 53 43 37 21 22 23 22 22 25 29 21
i 35 60 41 33 27 26 18 18 19 26 16 15
j 41 41 44 42 14 19 14 22 19 21 13 17
k 42 57 59 46 38 35 20 23 27 18 22 30
l 49 33 34 42 25 26 10 15 14 14 22 15
m 56 46 49 45 37 32 13 16 15 15 12 15
n 55 39 49 46 44 53 7 10 15 18 8 11
o 40 29 43 43 40 47 9 10 7 6 13 8
p 131 136 159 121 90 89 66 57 59 72 51 67
q 91 89 118 93 76 73 31 36 46 36 49 37
r 120 103 96 103 91 101 26 34 25 37 32 22
s 86 90 95 92 95 85 20 21 16 21 21 20
t 73 82 73 73 60 83 11 9 16 15 6 18
u 80 75 69 79 98 80 7 12 9 11 12 7
v 53 46 55 72 69 80 9 9 6 9 4 6
w 52 54 58 59 79 70 6 4 4 4 2 5
x 43 41 40 56 66 75 2 7 5 3 3 3
y 27 33 34 34 88 59 2 1 0 1 1 4
z 32 33 40 51 89 83 3 3 8 5 4 6
A 27 17 30 25 52 53 1 1 3 1 1 3
B 19 21 31 35 68 58 6 3 5 3 1 3
C 19 17 18 33 62 52 3 0 1 1 4 3
D 15 14 15 39 51 51 0 5 3 2 5 3
E 16 19 18 29 63 47 2 2 1 2 5 4
F 14 15 17 37 51 54 1 1 5 2 1 1
G 58 47 46 64 136 88 4 4 6 6 6 6
H 3 8 2 8 43 38 2 2 1 1 0 1
I 2 5 2 13 37 30 1 0 1 0 1 0
J 1 7 3 9 37 30 1 0 1 0 1 0
K 3 1 2 14 29 30 1 1 1 2 1 1
L 2 4 1 7 39 24 2 0 0 0 0 0
M 0 0 2 3 26 22 1 0 0 1 1 2
N 1 0 3 5 26 11 1 1 0 2 1 1
O 0 2 0 4 25 21 0 0 0 3 1 1
P 0 1 0 5 34 12 0 0 0 1 1 0
Q 0 0 1 3 14 15 1 0 0 1 1 2
R 0 0 0 4 12 7 0 1 1 0 1 0
S 0 0 0 1 15 15 1 0 0 0 0 0
T 0 0 0 1 10 13 0 2 3 1 1 3
U 0 0 1 1 15 5 0 0 1 0 0 0
V 0 0 0 1 12 7 1 0 2 1 1 0
W 0 0 0 2 15 9 0 0 0 1 1 2
X 0 0 0 1 9 5 0 0 2 0 1 0
Y 0 0 0 2 7 7 1 2 1 1 1 3
Z 0 0 0 1 7 8 1 0 0 3 0 0
\ 0 0 0 0 0 0 0 0 0 0 0 0

Step 1: Prepare the dataset X

X =




x11 x12 · · · x1p;

x21 x22 · · · x2p;

x31 x32 · · · x3p;

...
...

. . .
...

xn1 xn2 · · · xnp



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where n represents the number of samples (6-12) for each patient, p is the number of variables

i.e 127 (number of characters in the frequency count) and Xij the character frequency count

(i=1,2,... n and j=1,2,... p)

Step 2: We calculate the mean of each column of X and get the row vector

M =

[
m1 m2 · · · mp

]

where mi i=1,2,...p is the mean of column i of matrix X and calculated as follows

mi =

n∑

k=1

Xki

n

Step 3: We construct the mean matrix as follows

Mnp =




m1 m2 · · · mp

m1 m2 · · · mp

m1 m2 · · · mp

...
...

...
...




Step 4: Subtract the mean matrix from the original data

X0 = X −M
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Step 5: Apply singular value decomposition (SVD) to get

SV D(x0) = [U,E, coff ]

and

X0 = U ∗E ∗ coff

where coff is p× p matrix and it is the Principal components matrix. U is n×n matrix, and

E is n× p matrix

Step 6: We calculate Eigen values from E as in the following equations

E = diag(E)

E =
E√
n− 1

eigenvalues = E2

where Eigenvalues is the Eigen value vector and it is n× 1

Step 7: We calculate the scores matrix which is n× p matrix

Scores = X0 ∗ coff

For our experiments we selected the first three components
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Scoresn×3 =




s11 s12 S13

s21 s22 S23

...
...

...

sn1 sn2 Sn3




By applying PCA on this dataset we first generate the centred input around its column

mean. Next, we applied Singular Value decomposition to derive eigenvectors and eigenvalues

for the centred matrix, which is then rearranged as a new matrix starting with the eigenvector

that corresponds to the highest eigenvalue, and so on. Accordingly, eigenvector matrix is p×p

matrix, where p denotes the number of attributes (i.e number of characters 127). Finally, a

scores matrix is calculated to produce a new dataset of n× p matrix.

The ultimate goal of applying PCA is to reduce the number of attributes (number of

columns in the score matrix). The way the scores matrix is generated guarantees that around

95% of the data is represented by the first few columns. This is shown by Table 5.2 which

demonstrates proportion of each eigenvalue of the total data.

Table 5.2: Eigenvalues for various principal components of Patient CU01

Principal Eigenvalue Proportion Accumulated proportion

PC1 19030.24 79.90% 79.90%

PC2 3198.109 13.43% 93.33%

PC3 296.5323 1.25% 94.58%

PC4 257.7454 1.08% 95.66%

PC5 220.8355 0.93% 96.59%

PC6 184.5031 0.77% 97.36%

PC7 154.7827 0.65% 98.01%

PC8 143.3947 0.60% 98.61%

PC9 127.9148 0.54% 99.15%

PC10 107.755 0.45% 99.60%

PC11 94.87425 0.40% 100.00%
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Figure 5.7: Class distribution for Principal Component 1 & 2 for patients
cu01,cu02,cu03,cu07,cu09,cu10,cu1 and cu13 respectively

It is obvious from Table 5.2 how the first three eigenvalues contain approximately 94%

of the total data. The calculation of eigenvalue proportion of the total data is performed by

dividing the eigenvalue of the total summation of eigenvalues as shown in Eq. 5.1.
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Figure 5.8: Class distribution for Principal Component 1 & 2 for patients
cu15,cu16,cu17,cu18,cu19 and cu20 respectively
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Pi =
ei

k=m∑

k=1

ek

(5.1)

where Pi is proportion of the ith eigenvalue, ei is the ith eigenvalue and m number of eigen-

values which is the same number of variables.

In this proposed technique, the first three principal components and their corresponding

scores are used to feed the neural network inputs in the classification stage. Therefore, the

design of the neural network will be simpler. The same steps are repeated for the different

patients and the first three components are taken.

Table 5.3: Scores for PC1, PC2 and PC3(Components 1 ,2 &3) of CU01

Sample Scores for Scores for Scores for Class
No PC1 PC2 PC3

1 80.7423 -15.4819 25.7261 Abnormal

2 88.4103 -4.8090 -11.5453 Abnormal

3 60.1690 -9.2898 -1.8145 Abnormal

4 66.2988 -44.5062 10.92105 Abnormal

5 214.9726 -24.8546 -2.5129 Abnormal

6 152.2820 -6.9818 16.1482 Abnormal

7 -74.5081 14.3374 -14.1729 Normal

8 -97.7008 23.3456 5.14573 Normal

9 -68.1064 16.6038 -230418 Normal

10 -67.2722 10.8988 14.44182 Normal

11 -50.3783 13.4868 2.9953 Normal

12 -15.7506 4.1737 -11.3359 Normal
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Table 5.4: K-mean results for CU01

Distance Distance
no from Class 1 from class 2 Class

1 21315.02 888.9972 Abnormal

2 23056 652.0261 Abnormal

3 15528.75 2601.073 Abnormal

4 19934.61 2672.954 Abnormal

5 46471.68 1861.369 Abnormal

6 78367.19 10970.73 Abnormal

7 149.6592 35243.77 Normal

8 1345.174 45019.88 Normal

9 41.69464 33066.42 Normal

10 33.32313 32410.83 Normal

11 141.8982 26844.89 Normal

12 2258.362 16410.42 Normal

5.5 Results

5.5.1 Ventricular Arrhythmia detection results

By applying the steps explained earlier Table 5.3 can be derived. It shows the first three PC

scores of 12 ECG samples for patient CU01 of CU Ventricular Tacharrhythemia Database.

The scores for other patients can be derived in the same manner. To demonstrate the results

for different patients, Principal Component 1 verses Principle Component 2 is plotted for

each of 14 patient testing bed as shown in Fig. 5.7 and Fig. 5.8. It is clear how the normal

and abnormal ECGs can be distinguished and separated. This confirms that normal and

abnormal ECG signal can be detected using PCA applied to compressed ECG signals.

In the clustering stage, two techniques are used and results are obtained for each. The

first clustering technique used is k-means cluster. The number of inputs for the clustering

k-means stage is three (i.e PC1,PC2,PC3). Table 5.4 demonstrates the classification results

of k-means clustering for Patient CU01 using data shown in Table 5.3. In this table, samples

139 (June 30, 2014)



CHAPTER 5. ECG DIAGNOSES FROM COMPRESSED ECG

1-6 are classified as class 2(abnormal) because the distance to class 2 is less than the distance

to class 1. On the other hand, samples 7-12 are classified as class 1(normal) because the

distance to class 1 is less than the distance to class 2. K-means results for all patients are

shown in Fig. 5.7, Fig. 5.8 and Table 5.10.

We applied neural networks instead of k-mean for data classification, to compare between

both methods. The neural network is trained using 12 compressed ECG segments from CU01

(6 normal and 6 abnormal). The neural network architecture is shown in Fig. 5.9. The

neural network consists of 3 inputs corresponding to the scores of PC1, PC2 and PC3. There

are two outputs, their values and corresponding encodings are shown in Table 5.5.

PCA
Score 1

PCA
Score 2

PCA 
Score 3

O1 O2

W11
W21 W31W12

W22 W32

b2b1

Sigmoid
Function

PCA Attribute Selection

NN Input
 Layer

.....................................

148 Attributes extracted from the
Compressed ECG file

Figure 5.9: Neural Network Architecture

The developed Neural Network architecture is proposed to be simple to guarantee fast

classification performance when applied in Big data. Therefore, the selected neural network
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Table 5.5: Output values and their corresponding meanings

Output 1 Output 2 Class

1 1 Abnormal
0 0 Normal
1 0 Unknown
0 1 Unknown

uses Perceptron linear neural network with Sigmoid transfer function. The outputs equations

of the proposed neural network are shown in Eq. 5.2 and Eq. 5.3.

O1 = LogSig(I1 ×W11 + I2×W21 + I3×W31 + b1) (5.2)

O2 = LogSig(I1 ×W12 + I2×W22 + I3×W32 + b2) (5.3)

where LogSig(X) is the sigmoid activation function, Wjk is the weight value connecting

input j with output k and b represents the bias values. The values of weights and biases are

determined in the training phase.

The trained neural network could correctly detect all samples from 14 patients, thus 100%

accuracy is achieved. On the other hand, the k-mean algorithm was capable of detecting

samples correctly for all patients except for Patient CU20. This wrongly classified sample is

notated by the circle in Fig. 5.8. The results for Neural Network Classification are shown

in Fig. 5.10 which contains the classification line that resulted from the training phase of the

neural network.

The training set and testing set details are shown in Table 5.6, in which the training set

consists of 12% of the total dataset.
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Table 5.6: Neural network Testing and training set distribution

Data set Total Normal Abnormal portion

Training 12 6 6 13%

Testing 83 42 41 87%
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Figure 5.10: Neural Network classification
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5.5.2 Detection of Left Bundle Branch Block

In order to prove the concept of detecting cardiac diseases from the compressed ECG signal,

another disease (LBBB) is taken into consideration. However, this is not a life-threatening

cardiac disease. From Test-bed of 27 samples collected from 5 different patients, 15 samples

are LBBB and 12 samples are normal. The collected samples are downloaded from MIT-BIH

Arrhythmia database. The same steps mentioned in Section 5.4 are repeated to differen-

tiate between Normal and LBBB samples. The summarized k-means clustering results are

illustrated in Table 5.7. The accuracy achieved for detecting LBBB is 96%. The k-means

clustering is replaced by Neural Network with a training set and testing set specifications

given in Table 5.8. In the case of LBBB the accuracy after using Neural Network did not im-

prove and the Neural Network Classification results are shown in Fig. 5.11, the misclassified

sample is surrounded by a circle in this figure.

Table 5.7: Clustering results for detecting LBBB

Aatient Number Number of Samples Samples Class Correctly Classified Incorrectly Classified

100 9 Normal 9 0

101 3 Normal 2 1

109 6 LBBB 6 0

111 6 LBBB 6 0

207 3 LBBB 3 0

total 27 26 1

Total Accuracy 96%
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Table 5.8: Training Set and Testing Set Details of the Neural Network

Data Set number of samples Normal LBBB percentage

Training 9 3 6 33.33%

Testing 18 9 9 66.67%
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Figure 5.11: Neural Network classification for LBBB
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5.5.3 Comparison with other Ventricular Arrhythmia diagnoses algorithms

The proposed algorithm is compared with other algorithms for classifying Tachyarrhythmia

abnormalities(which was applied on the decompressed ECGs) such as, Neural Network with

Weighted Fuzzy Membership function (NEWFM) algorithm, Generalized Regression Neural

Network(GRNN) and Nearest Neighbour Method [3; 90]. Table 5.9 shows the results of

sensitivity, specificity and efficiency for each algorithm. It clearly shows that our proposed

method has the best efficiency although it is applied on the compressed ECG segments.

Moreover, the GRNN Network will be complex since no feature selection algorithm is ap-

plied so, the number of neurons on the radial basis function layer of the GRNN will be large.

The NEWFM algorithm uses wavelet transform, as well as, complex mathematical models

to extract features used for learning the fuzzy neural network and is not performing well.

Table 5.9 shows the achieved results of the above algorithms are not acceptable and need to

be improved. There are other non-neural network approaches for detecting Ventricular Tach-

yarrhythmias such as, the work done by Nithish V Thakor [81]. They tested the algorithm

on the same dataset used to generate the probability distribution. Xu-Sheng [88] adopted

the complexity measure scheme. In this method the algorithm will produce poor results

for small time window, therefore, it needs at least 7 seconds window to produce acceptable

accuracy, moreover, the accuracy of their technique is based on the threshold technique that

is inaccurate for different patients.
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Table 5.9: Results Comparison between different algorithms for detecting Ventricular Tach-
yarrhythmia

Algorithm Sensitivity Specificity Efficiency

NEWFM 81.2% 92.2% 90.1%

GRNN 79% 100% 87%

KNN 100% 76% 84%

PCA-kmean 100% 97.87% 98.9%

PCA-FNN 100% 100% 100%

5.6 Summary

Because ECG signal is enormous in size, compression algorithms must be used to make the

whole tele-cardiology process faster and efficient to handle this big ECG data stored in the

cloud. A faster solution is of crucial importance for diagnoses and treatment of cardiovascular

diseases. Although ECG compression enables faster transmission, it also introduces a delay

in the processing phase because of the decompression stage which makes it complex for the

diagnosis process to be implemented in the cloud. Since existing methods process the original

ECG signal and not the compressed one, this decompression time can be enough to threaten

patient life and create additional processing overhead in the cloud. Moreover, cloud services

should be able to detect ECG abnormality directly from the compressed ECG signals. To

overcome the decompression delay and make body sensor network energy efficient, in this

chapter we implemented the ECG analysis and data mining solution on the compressed ECG

signal using PCA for feature extraction and k-mean as a clustering technique. Compressed

ECG signal can be fast in transmission, and we have clearly shown we can classify and

analyse the compressed ECG signal to detect cardiac Ventricular abnormalities as well as

LBBB. Moreover, we developed a neural network model which was capable of detecting 100
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% of the testing dataset for Ventricular Arrhythmia and 96 % for LBBB.
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Table 5.10: K-Mean results for all patients

CU01
Sample distance from distance from Class

cluster 1 cluster 2
1 21315.02395 888.9972483 2
2 23055.99826 652.0260886 2
3 15528.75236 2601.072951 2
4 19934.6088 2672.954065 2
5 46471.68447 1861.369031 2
6 78367.19259 10970.7306 2
7 149.6591772 35243.76721 1
8 1345.174028 45019.88482 1
9 41.69463718 33066.42378 1

10 33.32313293 32410.83125 1
11 141.8982094 26844.8924 1
12 2258.362005 16410.42219 1

CU02
Sample Distance distance class

Class 1 class 2
1 17165.96 2656.824 2
2 10995.33 5041.396 2
3 14853.93 2331.761 2
4 287.1184 9101.931 1
5 177.8923 12989.94 1
6 256.3437 11614.72 1

cu03
Sample Distance Distance class

Class 1 class 2
1 679.6876299 8994.58139 1
2 1524.875217 6522.88547 1
3 4196.894779 33865.06271 1
4 14950.62389 224.6601263 2
5 24714.31148 1413.187568 2
6 11622.1543 271.6338424 2
7 11827.16756 147.4594099 2
8 13928.38301 24.03194365 2
9 11194.24977 193.7732326 2

CU07
Sample Distance Distance class

Class 1 class 2
1 47953.16245 1339.916885 2
2 40070.51666 1316.500561 2
3 34732.76505 1654.778195 2
4 175.9633572 39828.47468 1
5 86.19783535 38319.46551 1
6 46.60480176 40606.07433 1

cu09
Sample Distance Distance class

Class 1 class 2
1 4661.008 79822.77 1
2 4622.597 80883.33 1
3 5433.782 20694.87 1
4 3334.032 25889.14 1
5 42.3954 45579.49 1
6 87404.41 6271.713 2
7 20163.22 5582.137 2
8 45243.43 91.74639 2

cu10
Sample Distance Distance class

Class 1 class 2
1 80226.66 11925.82 2
2 139704.3 643.8511 2
3 247867.1 13129.55 2
4 352.7296 136169.5 1
5 79.48856 143426.5 1
6 427.4234 163362.6 1

cu11
Sample Distance Distance class

Class 1 class 2
1 70.20876938 17038.52367 1
2 2368.273125 6076.25839 1
3 1977.463725 29127.92022 1
4 19168.57572 153.1096829 2
5 6779.808085 2328.0955 2
6 25661.46022 1301.882189 2

cu13
Sample Distance Distance class

Class 1 class 2
1 97829.88 3593.096 2
2 169258 1684.347 2
3 150857.6 382.4457 2
4 1268.677 157070.9 1
5 3506.079 105187.4 1
6 626.3195 155428.3 1

cu15
Sample Distance Distance class

Class 1 class 2
1 33782.25 11380.15 2
2 122283.7 5746.04 2
3 89336.55 1425.905 2
4 243.7278 67308.1 1
5 1819.489 100575 1
6 774.0833 61804.59 1

cu16
Sample Distance Distance class

Class 1 class 2
1 83514.93936 22.88432729 2
2 73473.92797 811.3460046 2
3 91158.61776 947.7034203 2
4 1474.028801 68263.4493 1
5 343.6322637 87066.30807 1
6 467.8779127 93321.33294 1

cu17
Sample Distance Distance class

Class 1 class 2
1 14803.24 163.8341 2
2 20575.7 1841.06 2
3 13015.89 159.6142 2
4 4212.101 2308.955 2
5 863.2899 15428.44 1
6 1447.313 8150.374 1
7 167.7911 14999.68 1

cu18
Sample Distance Distance class

Class 1 class 2
1 47358.1 6261.362 2
2 79234.48 1109.328 2
3 146253.4 8085.473 2
4 287.7555 89032.51 1
5 182.2532 93886.83 1
6 600.0694 75540.59 1

cu19
Sample Distance Distance class

Class 1 class 2
1 1889.705866 41399.69573 1
2 980.8189747 31453.171 1
3 24311.59262 263.1239886 2
4 31729.55609 263.1239886 2
5 1908.461084 15198.47031 1

cu20
Sample Distance Distance class

Class 1 class 2
1 1261.657 44274.11 1
2 50706.92 4815.929 2
3 1261.657 78373.91 1
4 61788.17 755.3707 2
5 95489.13 4288.047 2
6 43855.68 1731.154 2
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Conclusion

In this chapter, a full summary of the thesis will be explained, focusing on the thesis’ aims and

research questions. Contributions regarding these research questions will be summarized with

key findings of this thesis. Section 6.1 explains the research aims and restates the research

question we answer in this thesis. Section 6.2 illustrates the contributions and explains

how the research questions are answered. Section 6.3 lists some key facts discovered in this

research. Finally, Section 6.4 discusses how the current work could be further developed.

6.1 Research Aims

This thesis proposes an efficient cardiac monitoring system that can securely transmit and

store patient information and ECG signals in Cloud. Moreover, the proposed cardiac mon-

itoring system should be able to provide fast and accurate diagnosis reports, especially for

life-threatening cardiac diseases such as ventricular diseases. According to the Australian

Bureau of Statistics, 3.5 million Australians suffer from long term cardiac diseases. There-
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fore, such sufferers should be continuously monitored. However, dealing with a continuous

stream of ECG signals for 3.5 million patients is beyond the capability of current health care

providers. Cloud services provide a solution to this problem. Furthermore, health-care ex-

perts have several concerns preventing them from using cloud services, most of which relate

to patient privacy and HIPAA policies. Therefore, in this thesis, our proposed monitoring

system will take into consideration these concerns. This thesis answers the following research

questions.

1. How patients’ confidential information can be protected and transmitted

securely in wireless tele-cardiovascular monitoring systems?

2. How can ECG signal self similarity characteristics be utilized to produce

a powerful lossy compression algorithm that can be imblemented either in

the client side or the cloud side?

3. How to utilize ECG morphological characteristics to implement a lossless

compression algorithm that can be used for compressing ECG signal and

keeping the resultant compressed file usable for diagnoses without decom-

pression?

4. How can cardiac diseases be diagnosed directly from compressed ECG using

the proposed lossless compression algorithms?
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6.2 Research Contributions

To answer the research questions originally posed in Section 1.2, the following contributions

are introduced in this thesis:

1. Proposing two new ECG steganography techniques for protecting patient

confidential information

To protect patient confidential information, steganography technique is utilized. Two

steganography techniques have been proposed. Time domain steganography is based

on special range transform. In this technique the distortion is low but the amount of

information that can be hidden is also low. The second technique is a frequency domain

wavelet based steganography, which combines encryption and scrambling technique

to protect patient confidential data. The proposed method allows ECG signal to be

a carrier for the patient confidential data and other physiological information such

as Blood pressure, Glucose level, temperature,etc. Mathematical analysis proved the

technique to be highly secure. The distortion and diagnosability of the watermarked

ECG were also found to be minimal using Percentage Residual Difference (PRD) and

Weighted Wavelet PRD (WWPRD). Finally, we found that using our proposed wavelet

based steganography technique, it is possible to store about 2.4KB data inside ECG

signal of 10 seconds length and 360 samples/s sampling rate, with PRD of less than

1%.

2. Proposing a new cloud enabled fractal based ECG lossy compression

In this thesis, a fractal model is utilized to make use of the ECG signal self similarity
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characteristics to develop a lossy compressed technique with high compression ratios

and low information loss. The proposed technique is based on modifying the popular

fractal model to be used in compression using the concept of Iterated Function System.

The basic idea of this technique is to divide the ECG signal into equal blocks called

range blocks. Subsequently, another down-sampled copy of the ECG signal is created

which is called domain. For each range block, the most similar block in the domain is

found by calculating fractal RMS and fractal coefficients. Accordingly, for each range

block, the previously determined fractal coefficients (Scale, Offset, Affine code) as well

as domain block index are stored within the compressed file. In order to make our tech-

nique cloud enabled, the decompression operation is designed in such a way that allows

the user to retrieve part of the file(i.e ECG segment) without decompressing the whole

file. Therefore, it is not necessary to download the full compressed file before the user

can view the resultant ECG signal. Furthermore, the proposed technique is designed

to guarantee that, it is suitable to be implemented inside a parallel processing envi-

ronment such as cloud, without adding more overheads in the communication between

the processing units. The proposed algorithm has been implemented and compared

with other existing lossy ECG compression techniques. It is found that the proposed

technique can achieve higher compression ratio of 40 and lower Percentage Residual

Difference (PRD) Value of less than 1 %.

The proposed fractal compression technique performs poorly if it is implemented in

a single processing mode. Therefore, to improve its performance and guarantee it is

implementable inside a client device (which may have limited processing resources) we

152 (June 30, 2014)



CHAPTER 6. CONCLUSION

modified the current fractal model and proposed a new mathematical derivation to

propose a new, fast fractal ECG lossy compression technique. The effect of using both

methods on the ECG signal is calculated using a PRD measurement. The performance

of both methods in terms of processing time is shown. It is found that using the same

data set and the same processing power fast fractal is 35 times faster than normal

fractal compression. However, using fast fractal doubles the distortion of the resultant

ECG signal of the normal fractal.

3. Proposing new ECG lossless compression using Gaussian-based approxima-

tion and Burrow-Wheeler Transform

The shape of the ECG signal consists from many Gaussian functions with different

parameters. Therefore, this thesis proposes a new Gaussian-based ECG lossless com-

pression technique. A Gaussian function can be used to model and approximate an ECG

signal. Therefore, optimization theory is used to determine the best Gaussian function

parameters for ECG approximation. Residuals are then calculated and differentiated.

Subsequently, the residuals are encoded using the Burrow-Wheeler transform (BWT),

followed by Move-to-Front (MTF) and run-length encoding. Finally, the resultant en-

coded signal is further encoded using Huffman coding. BWT and MTF encoding are

modified to deal with numbers instead of dealing with strings. The proposed algorithm

has been implemented and compared with other lossless ECG compression techniques.

The proposed technique is found to achieve an average higher compression ratio of 4.09

with guaranteed exact reconstruction of the ECG signal. The processing of the signal

in time domain ensures that the features and sequence of the ECG signal points will
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stay in the same sequence. As a result, the compressed file will be highly correlated

with the original ECG signal. Accordingly, the proposed compression technique is not

only a normal compression technique, but it also provides the capability for diagnosing

the compressed ECG file directly without performing the decompression stage.

4. Proposing new cardiac diseases detection algorithms from the compressed

ECG signal using Principale Components Analyses and neural networks

Using our proposed Gaussian-based lossless compression technique, this thesis intro-

duces a new diagnoses technique to detect ventricular arrhythmia as well as LBBB

directly from a compressed ECG signal. The proposed algorithm uses a PCA tech-

nique for feature extraction and k-mean for clustering normal and abnormal ECG

signals. Further, the k-mean algorithm is replaced with a Perceptron-Neural Network

to improve the accuracy of the system. The diagnosis process is implemented in the

cloud to enable diagnoses of the compressed ECG files which are already stored in the

cloud. The achieved diagnosis accuracy is 100% for ventricular arrhythmia using neural

network and about 96% for detecting LBBB.

6.3 Key Facts

This thesis provides a number of new key facts that can be concluded and summarized as

follows:

1. The continuity of the ECG signal provides a key feature that makes it suitable to

be a reliable carrier for other information. Therefore, an ECG signal is used as a host

signal for our proposed steganography model. Moreover, the resultant ECG can still be
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used for diagnostic purposes according to our findings, using mathematical distortion

measurement as well as experts’ opinions.

2. The ECG signal self-similarity is a feasible feature that can be utilized for compres-

sion. Fractal provides the mathematical model to represent these self-similar objects.

However, fractals are proposed to represent self-similar images. Accordingly, the frac-

tal model can be modified to be used for modeling an ECG signal. Therefore, fractal

compression proposed in this thesis could achieve a higher compression ratio.

3. The fractal model is a very flexible mathematical model which can be modified for

performance improvements as shown in this thesis.

4. Homomorphic encryption is a tool that provides the capability to perform mathematical

operations on the encrypted data. This thesis proves that homomorphic lossless ECG

compression is achievable to provide not only size reduction but also compressed data

which can be analysed and diagnosed. This is because the Gaussian function model

provides reliable modeling for the ECG signal.

5. Normal diagnostics techniques are based on diagnosing the raw ECG signal. However,

this thesis has shown that diagnosing compressed ECG directly without decompression

is achievable with very encouraging results.

6. PCA dimensionality reduction is a powerful technique that will eliminate redundant

data and keep the useful features.
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6.4 Work limitations and Future Work

In this thesis we have tried to solve some problems that prevent health-care providers from

utilizing the powerful cloud services in their systems and especially for remote cardiac moni-

toring systems. However, the proposed solutions provide small steps toward the final solution.

In this section we summarise some limitations of the proposed techniques and provide some

suggestions to overcome these limitations through future research.

• In Chapter 2, the steganography technique is used to protect patient confidential data

during transmission to and storage in cloud. The proposed technique provided an

authentication feature to prevent unauthorized persons from extracting or accessing

patient confidential information. The technique is based on a shared key security which

will provide access to those who have the key and the scrambling matrix. However,

this approach is weak if more than one person requires access to the same patient

information. In some circumstances, one doctor may need to extract one part of a

patient’s health record and another doctor extracts different parts of the same record.

Therefore, the use of the steganography technique is required as the lower layer of a

complex access control framework that can provide role based access control and other

security features to protect confidential data.

• In Chapter 3, a fractal model showed very encouraging results in terms of compression

ratio. However, the proposed fractal compression is lossy compression. It is possible to

improve the fractal model to convert it from lossy compression to a lossless compression

technique.
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• Chapter 4 proposed the use of Gaussian-based lossless compression, in which different

encoding algorithms are used. However, the limitation of our proposed technique is that

Gaussian parameters evaluation using a Trust region optimization technique should be

performed for each ECG signal. This creates a processing overhead, so a predetermined

Gaussian parameter is required that can be unified for all ECG signals - or at least to

be used as an initial value for the optimization technique to improve the compression

performance.

• In Chapter 5, diagnoses from the compressed ECG signal is implemented. However, the

proposed model deals with different diseases separately. Therefore, the training and

testing for the neural network for detecting Ventricular Arrhythmia is done separately

from the training and testing of the neural network for detecting LBBB. Accordingly,

our model should be developed to enable differentiation between different arrhythmia.

Moreover, other diseases such as PVC, ST segment Elevation and RBBB should be

added to our datasets to guarantee that our model can diagnose and distinguish between

them.
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