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Abstract

Reputation-based trust models are widely used in e-commerce applications, and feedback

ratings are aggregated to compute sellers’ reputation trust scores. The “all good reputation”

problem however is prevalent in current reputation systems – reputation scores are universally

high for sellers and it is difficult for potential buyers to select trustworthy sellers.

In this thesis, based on the observation that buyers often express opinions openly in free

text feedback comments, we have proposed CommTrust, a multi-dimensional trust evaluation

model, for computing comprehensive trust profiles for sellers in e-commerce applications. Dif-

ferent from existing multi-dimensional trust models, we compute dimension trust scores and

dimension weights automatically via extracting dimension ratings from feedback comments.

Based on the dependency relation parsing technique, we have proposed Lexical-LDA

(Lexical Topic Modelling based approach) and DR-mining (Lexical Knowledge based app-

roach) approaches to mine feedback comments for dimension rating profiles. Both approaches

achieve significantly higher accuracy for extracting dimension ratings from feedback com-

ments than a commonly used opinion mining approach. Extensive experiments on eBay and

Amazon data demonstrate that CommTrust can effectively address the “all good reputation”

issue and rank sellers effectively. To the best of our knowledge, our research demonstrates

the novel application of combining natural language processing with opinion mining and

summarisation techniques in trust evaluation for e-commerce applications.



Chapter 1

Introduction

1.1 Background

There has been a tremendous growth in e-commerce applications, where buyers and sellers

conduct transactions on the web. Users are attracted to online-shopping not only due to the

convenience in accessing the information of items on-sold, but also because of the availability

of other buyers feedback on their purchasing experience, item-related and/or seller-related.

All major online-shopping websites encourage buyers to provide feedback, often in the form

of ratings along with some textual comments, to facilitate potential transactions.

Reputation reporting systems [Resnick et al., 2000; Xiong and Liu, 2004; Zacharia and

Maes, 2000] have been implemented in e-commerce systems such as eBay and Amazon (for

third-party sellers), where overall reputation trust scores for sellers are computed by aggre-

gating feedback ratings. In e-commerce environments, reputation mechanisms are related to

the ratings that a seller received from buyers. The ratings indicate the ability of the seller

to provide satisfactory transactions in the future, which is beneficial to new buyers. For ex-

ample on eBay, the reputation score for a seller is computed by aggregating buyer feedback

ratings in the past 12 months, such as either the total number of positive ratings minus the

total number of negative ratings or the percentage of positive ratings out of the total number

of positive ratings and negative ratings.1

A well-reported issue with the eBay reputation management system is the “all good

sellers” problem [Resnick et al., 2000; Resnick and Zeckhauser, 2002] where feedback ratings

are over 99% positive on average [Resnick et al., 2000]. Such strong positive bias can hardly

guide buyers to select sellers to transact with them. At eBay detailed seller ratings for

1http://pages.ebay.com/help/feedback/allaboutfeedback.html
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sellers (DSRs) on four aspects of transactions, namely item as described, communication,

postage time, and postage and handling charges are also reported. DSRs are aggregated

rating scores on a 1- to 5-star scale. Still the strong positive bias is present – our analysis

on sample eBay data shows that on average over 60% of aspect ratings are 4.9 stars. One

possible reason for the lack of negative ratings at e-commerce web sites is that users who leave

negative feedback ratings can attract retaliatory negative ratings and thus damage their own

reputation [Resnick et al., 2000]. Note also that DSRs are not used to compute the overall

trust scores for sellers.

The textual comments can provide detailed information that is not available in ratings.

Even though buyers leave positive feedback ratings, they still express some disappointment

and negativeness in free text feedback comments, often towards specific aspects, or dimen-

sions of transactions. For example, a comment like “The products were as I expected.”

expresses positive opinion towards the Product dimension, whereas the comment “Delivery

was a little slow but otherwise, great service. Recommend highly.” expresses negative opinion

towards the Delivery dimension but a positive rating to the transaction in general.

There are several reasons why comments provide more reliable information. First, ordinal

ratings are interpreted differently by different users. Some users tend to rate higher while

others tend to rate lower. Secondly, most online shopping websites also allow sellers to rate

the buyers to counter-balance the impact of malicious buyers. Since the average rating could

affect the sales greatly, sellers may use this mechanism as a weapon to defend their business,

rating down buyers who provide low ratings on their purchase. As such, the mechanism

effectively leads to pseudo high ratings than what comments are reflecting.

From the buyer’s perspective, while the average rating may not be a fully reliable measure,

it is the only easily accessible measure. Browsing through tens of pages of comments can

be time consuming, and to digest the information is a daunting task, as well. This calls

for a better measure to represent the reputation of seller accurately. Such reputation is

sometimes referred to as trust, which is defined by Wang and Lim [2008] as “the extent to

which one party measures the other party’s willingness and ability to act in the measuring

party’s interest”.

By analysing the wealth of information in feedback comments we can uncover buyers’

embedded opinions towards different aspects of transactions, and compute comprehensive

reputation profiles for sellers. Specifically using the positive and negative subjectivity of

opinions towards aspects of transactions as dimension ratings, we propose Comment-based

Multi-dimensional trust (CommTrust), a fine-grained multi-dimension trust evaluation model

3
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for e-commerce applications.

1.2 Research problems

Different from existing work of computing trust from user ratings, we propose a multi-

dimensional trust model based on feedback comments. The trust is decomposed into multi-

ple aspects to represent different dimensions of a transaction, including such as the quality

of products or the delivery status of orders. We derive trust dimensions from textual feed-

back comments and combine customer preferences on each dimension to highlight customer

concerns. There are four main research questions:

1. How can multi-dimensional trust from extracted dimensions and the associated opinion

polarity be computed?

In e-commerce environments different transactions may have different contexts. The

trustworthiness of a seller should be related to forthcoming transactions. How to ef-

ficiently compute the trust level for a seller from the sentiment expressed in buyer

feedback comments and represent it effectively is our first task.

2. How can dimensions from online feedback comments that customers have expressed

their opinions on be more accurately identified?

In e-commerce, sellers provide products and services, and buyers pay for them. During

the process of finishing these transactions, the quality of products, communication

of sellers (whether the seller has friendly communication with buyers), delivery time

(whether the seller delivers items on time) and shipping charges (whether the charges

are reasonable) might be some of the dimensions which buyers are interested in. In

online feedback comments, different customers describe different aspects of dimensions.

How to accurately identify these dimensions expressed in natural language textual

comments is our second task.

3. How can weights for each dimension that extracted from feedback comments be evalu-

ated?

In e-commerce, the feedback comments and ratings leaved by buyers are highly noisy.

There are many comments are writen from the same buyer and therefore are highly

correlated. Some buyers are lenient or harsh raters and therefore their ratings should

4
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be taken with a grain of salt. How to efficiently evaluate the weights of each dimension

is our third task.

4. How can sentiment from textual feedback for each dimension be more accurately classi-

fied?

Sentiment classification aims to identify view-point from information expressed in text.

Whether a piece of text is expressing positive or negative attitude towards associated

dimensions of comments need to be identified. How to accurately classify sentiment is

our fourth task.

1.3 Thesis objectives and scope

Our work aims to provide a comprehesive trust profiles for sellers that allows buyers to

conduct their online shopping based on past experience. Our focus is on extracting dimension

ratings from feedback comments and further aggregating these dimension ratings to compute

dimension trust scores. The motivation of our research is that online feedback comments

contain disdinct informatnion for users to rank sellers, therefore content of comments can be

used to reliably evaluate the trustworthiness of sellers.

The contribution of this thesis are:

• We propose to use Comment-based Multi-dimensional trust (CommTrust), a fine-

grained multi-dimension evaluation model, to calculate the trust for e-commerce appli-

cations. While the model is potentially extensible to target item-specific trust, in this

study we focus on computing comprehensive trust profile for sellers.

• We propose an algorithm to identify dimension rating expresses from feedback com-

ments by applying lexicon-based opinion mining techniques [Pang and Lee, 2008] in

combination with dependency relation analysis, a tool recently developed in natural

language processing (NLP) [De Marneffe et al., 2006; De Marneffe and Manning, 2008].

• We tackle the four research questions by two approaches:

1. The topic modelling approach is applied to develop the Lexical-LDA algorithm for

grouping dimension rating extraction and trust computation. Lexical LDA makes

use of two types of lexical knowledge based on dependency relations for clustering

dimension expressions into dimensions so as to produce meaningful cluster. The

5
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first lexical knowledge is that the co-occurrence of dimension expressions with

respect to a same modifier across comments can provide more meaningful contexts

for dimension expressions, compare to add on counts of dimension expressions by

comments. The second knowledge is that the dimension expressions extracted

from the same comment are very unlikely about the same topic. Based on these

two types of lexical knowledge, we revised Latent Dirichlet Allocation (LDA) [Blei

et al., 2003] to develop the Lexical-LDA algorithm.

2. With the seed dimension words we propose Dimension Rating mining (DR-mining),

a knowledge-based approach that incorporates domain knowledge, meta-data, and

general grammatical patterns to accurately identifying dimension rating expres-

sions from feedback comments. The matrix factorisation technique applied to

automatically compute trust weights.

To the best of our knowledge, CommTrust is the first piece of work that computes fine-

grained multidimensional trust profiles automatically by mining feedback comments.

The rest of this thesis is organized as follows.

In Chapter 2, the necessary background knowledge of the trust evaluation, sementic

analysis, and text comments mining related works is introduced.

In Chapter 3, we propose the comment-based multi-dimensional trust (CommTrust)

model to identify trustworthy and reliable sellers..

In Chapter 4, we present topic modelling approach to mining feedback comments for

dimension rating profiles. We propose the Lexical-LDA algorithm to conduct dimension

rating extraction and trust computation.

In Chapter 5, we propose a knowledge-based approach that incorporates domain knowl-

edge, meta-data, and general grammatical patterns to mining feedback comments for dimen-

sion rating profiles. We formulate the problem of computing dimension weights from ratings

as a factor analytic problem and propose a matrix factorisation technique to automatically

compute weights for dimensions from the sparse and noisy dimension rating matrix.

We conclude out study in Chapter 6, where the work of the thesis is summarised, par-

ticularly in relation to the research questions. Furth more the future research problems are

discussed.

6



Chapter 2

Literature Review

Related work for our research falls into four main areas: 1) computational approaches to

trust, especially reputation-based trust evaluation and recent developments in fine-grained

trust evaluation; 2) e-commerce feedback comments analysis and more generally mining

opinions on movie reviews, product reviews and other forms of free text documents; 3)

aspect opinion extraction and summarisation on movie reviews, product reviews and other

forms of free text; and 4) applications of the matrix factorisation technique for recommender

systems and other data mining tasks.

2.1 Computational trust evaluation

The strong positive rating bias in the eBay reputation system has been well documented

in literature [Resnick et al., 2000; Resnick and Zeckhauser, 2002; ODonovan et al., 2007],

although no effective solutions have been reported. Notably in [ODonovan et al., 2007] it

is proposed to examine feedback comments to bring seller reputation scores down to a rea-

sonable scale, where comments that do not demonstrate explicit positive ratings are deemed

negative ratings on transactions. Ratings on transactions are further aggregated as the overall

trust scores for sellers. In this study on the other hand, our focus is on extracting dimension

ratings from feedback comments and further aggregating these dimension ratings to compute

dimension trust scores.

The notion of computational trust is essential to ensure the operation of open systems.

Similar to that buyers and sellers are referred to as individuals in e-commerce applications,

terms like peers and agents are often used to refer to individuals in open systems in various

applications in the trust evaluation literature. Trust is the subjective probability with which

7
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an individual assesses that another individual performs a given action [Jøsang et al., 2007].

In [Ramchurn et al., 2004] a comprehensive overview of trust models is provided. Individual

level trust models are aimed to compute the reliability of peers and assist buyers in their

decision making [Yu and Singh, 2002; Schillo, 2000; Sabater and Sierra, 2001] whereas system

level models are aimed to regulate the behaviour of peers, prevent fraudsters and ensure

system security [Ramchurn et al., 2004]. Reputation is a collective measure of trustworthiness

computed from referrals or ratings from members in a community [Jøsang et al., 2007].

Reputation-based trust models are a class of trust models that aim to use public reputation

profiles of peers to promote good behaviours and ensure security and reliability of open

systems [Resnick et al., 2000; Ramchurn et al., 2004; Yu and Singh, 2002; Schillo, 2000;

Jøsang et al., 2007; Kamvar et al., 2003; Rettinger et al., 2011; Wang et al., 2012; Xiong and

Liu, 2003; 2004], and have been widely used in e-commerce systems [Resnick et al., 2006],

peer-to-peer networks [Xiong and Liu, 2004], and multi-agent systems [Ramchurn et al., 2004;

Wang and Singh, 2006].

Accurately computing individual reputation requires effective approaches to gathering

and aggregating ratings for individuals. Rating aggregation algorithms include simple pos-

itive feedback percentage or average of star ratings as in the eBay and Amazon reputation

systems [Resnick et al., 2006], the Beta reputation based on statistical distribution assump-

tion for ratings [Jøsang and Ismail, 2002], as well as more advanced models like Kalman

inference [Wang et al., 2012], which also computes trust score variance and confidence level.

More sophisticated reputation models consider factors like time, where recent feedback rat-

ings carry more weights [Sabater and Sierra, 2001; Wang and Singh, 2006]. PeerTrust [Xiong

and Liu, 2003; 2004] is a framework for peer-to-peer systems where contextual factors are

considered for computing trust scores and weights for peers. The trust score for a peer is

computed by combining a weighted average satisfaction amount that the peer receives from

transactions and a weighted trust measure by community-based characteristics. Contex-

tual factors considered for computing trust scores and weights include the total number of

transactions a peer has completed and the credibility of feedback sources. The EigenTrust

algorithm [Kamvar et al., 2003] uses a rating matrix representation for local trust scores and

computes the global ratings for peers based on finding the principal eigenvector of the rating

matrix. All existing models previously discussed assume that feedback ratings are readily

available and focus on aggregation algorithms [Sabater and Sierra, 2001; Wang et al., 2012;

Xiong and Liu, 2003; 2004; Wang and Singh, 2006]. A couple of studies focus on gathering

ratings through social networks [Yu and Singh, 2002; Schillo, 2000]. Nevertherless ratings

8
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are assumed available rather than obtained via data mining.

The multi-dimensional approach to fine-grained trust computation has been studied in the

area of agent technologies [Sabater and Sierra, 2001; Griffiths, 2005; Reece et al., 2007], where

the overall reputation score for an agent is computed by aggregating dimension reputations.

In [Sabater and Sierra, 2001], individual, social and ontological reputations are computed

from factors such as delivery date and quality, and their ratings are then combined to form

an overall score. In [Griffiths, 2005] the dimension scores are computed from direct experience

of individual agents, and then aggregated by weighted summation. Reece et al. [Reece et al.,

2007] presented a probabilistic approach considering the correlation among dimension during

aggregation. In all these multi-dimensional trust models however, weightings for dimension

trust are either not considered or assumed given.

Other approaches to fine-grained trust computation have also been proposed in liter-

ature [Rettinger et al., 2011; Wang and Lim, 2008; Zhang and Fang, 2007; Zhang et al.,

2012a;b], where specific factors for individual and transaction contexts are considered. How-

ever, many factors considered in these models such as attributes associated with products and

attributes regarding the interactions between sellers and products, are not readily available

in e-commerce applications.

In CommTrust we focus on mining dimension ratings from free text comments, and

furthermore our trust evaluation model computes fine-grained dimension trust scores and

dimension weights, both from the dimension rating matrix obtained by mining feedback

comments.

2.2 Feedback comment analysis

The success of e-commerce applications, such as eBay and Amazon, depends highly on the

availability of user interaction. Usually, reputable sellers attract a large user population to

transact with them and leave comments afterwards. Intuitively, one can use a reputation

score to quantify how good a seller is at providing good services. However, the strong

positive rating bias in reputation system has been noted in literature [Resnick et al., 2000;

Resnick and Zeckhauser, 2002; ODonovan et al., 2007]. There have been studies on analysing

feedback comments in e-commerce applications to capture negativity information to provide

reasonable reputation range score for sellers [ODonovan et al., 2007; Gamon, 2004; Hijikata

et al., 2007; Lu et al., 2009].

9
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ODonovan et al. [2007] and Gamon [2004] focus on sentiment classification of feedback

comments. It is demonstrated that feedback comments are noisy and therefore analysing

them is a challenging problem. ODonovan et al. [2007] tackled the problem of excessive

positive bias of feedback ratings in eBay by extracting more negative feedback from free

text comments. Comments do not demonstrate explicit positive ratings or missing aspect

comments are deemed negative ratings on transactions. Ratings on transactions are further

aggregated as the overall trust scores for sellers. Gamon [2004] formulated sentiment classi-

fication of customer feedback comments as a special case of text categorisation. As a result,

more feedback ratings are classified to be negative and the feedback ratings on eBay are

brought to a more reasonable scale.

In [Hijikata et al., 2007], a technique for summarising feedback comments is presented,

aiming to filter out courteous comments that do not provide real feedback. They noticed,

feedback comments include not only comments presenting real opinions but also many stereo-

typed sentences, clauses or phrases such as expressions for thanks or expressions of courtesy,

hereinafter all of which are referred as “descriptions of courtesy”. They propose a social

summarization method (SS method) for summarizing feedback comments. This method uses

social relationships in an online auction for summarizing one sellers feedback comments. This

method does not focus on the seller but focuses on a buyer who bought an item from the

seller. This method compares the feedback comment on the target seller written by a cer-

tain buyer to the feedback comments on the sellers other than the target seller written by

the buyer. Then it produces a summary by extracting two types of descriptions. One is a

description that appears only in the feedback comment on the target seller and the other

is a description that appears in the feedback comments on the sellers other than the target

seller but does not appear in the feedback comment on the target seller. By this method, the

descriptions of courtesy can be eliminated without deleting descriptions which are seemed

that the buyers wrote from their real feelings.

Lu et al. [2009] focuses on generating “rated aspect summary” from eBay feedback com-

ments, aiming to discover different perspectives towards their aggregated ratings. This kind

of decomposition is quite useful because different users may have quite different needs and

the overall ratings are generally not informative enough. A statistical technique named struc-

tured Probabilistic Latent Semantic Analysis (PLSA) was proposed to discover aspects and

their ratings from user comments. However their statistical generative model is based regres-

sion on the overall transaction ratings and the resultant aspect ratings are likely biased due

to the positive bias in transaction ratings.
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With CommTrust rather than simply classifying comments into positive or negative as

in [ODonovan et al., 2007], we mine the text comments to extract dimensions and their

associated feedback orientations hidden in the free text, which is free from the positive bias

in the overall transaction ratings. Different from [Lu et al., 2009], which adopted a statistical

generative learning model, CommTrust adopts a more knowledge-based approach making use

of the deeper lexical knowledge of dependency relation from the Stanford natural language

parser [De Marneffe et al., 2006; Kubler et al., 2009] between candidate dimensional words

and opinion words. More importantly our work aims at inferring both the dimension ratings

and dimension weights rather than generating an aggregated summary inferred from overall

ratings. Our approach is complementary to the statistical approach and potentially can

greatly improve the computation efficiency and effectiveness of statistical models.

2.3 Aspect opinion extraction and summarisation

More generally our work is related to opinion mining and sentiment analysis on free text

documents, especially opinion mining in product reviews and movie reviews. In these studies,

product or movie features and the opinions towards them are extracted. Summaries are

produced by selecting and re-organising sentences according to the extracted features.

Review mining and summarization is the task of producing a sentiment summary, which

consists of sentences from reviews that capture the authors opinion. Review summarization

is interested in features or aspects on which customers have opinions. It also determines

whether the opinions are positive or negative. This makes it differ from traditional text

summarization. A comprehensive overview of the field is presented in [Pang and Lee, 2008;

Liu, 2012]. Most existing works on review mining and summarization mainly focus on product

reviews. For example, [Hu and Liu, 2004b; Popescu and Etzioni, 2005; Shi and Chang, 2006]

concentrated on mining and summarizing reviews by extracting opinion sentences regarding

product aspects.

Hu and Liu [2004a;b] aim to summarize all the customer reviews of a product to help

a potential customer make a decision on whether to buy the product. They proposed to

extract nouns and noun phrases as candidate aspects and then apply association rule mining

techniques to compute the aspects and their associated opinions. The NLProcessor linguistic

parser (NLProcessor 2000) is applied to parse each sentence and identify simple nouns/noun

phrases as product aspects by yielding the part-of-speech tag [Manning and Schütze, 1999]

of each word. Association rule mining [Agrawal and Srikant, 1994] is used to find all frequent

11
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itemsets (a set of words or a phrase that occurs together). They extract opinion words as

nearby adjective, which adjacent adjective that modifies the noun/noun phrases that is a

frequent feature. WordNet [Stark and Riesenfeld, 1998; Miller et al., 1990] is used to identify

opinion orientation for all the adjectives in the opinion word list. For those adjectives that

WordNet cannot recognize, they are discarded as they may not be valid words. For the case

that the synonyms or antonyms of an adjective have different known semantic orientations,

use the first found orientation as the orientation for the given adjective. They also checked

negation words, which appearing close around the opinion word, to opposite the opinion

orientation of the sentence. The close means that the word distance between a negation

word and the opinion word should not exceed a threshold(they set it to 5).

Carenini et al. [2005] proposed feature extraction for capturing knowledge from product

reviews. Their method is based on the results of Hu and Liu [2004b], then mapped to

the user-defined taxonomy features hierarchy thereby eliminating redundancy and providing

conceptual organization.

Popescu and Etzioni [2005] developed an unsupervised information extraction system

called OPINE, which extracted product aspects and opinions from reviews. Similar to pre-

vious works, OPINE extracts noun phrases from reviews and retains those with frequency

greater than an experimentally set threshold, and then OPINEs feature assessor assesses

those noun phrases for extracting explicit aspects. The assessor evaluates a noun phrase

by computing a Point-wise Mutual Information score between the phrase and meronymy

discriminators associated with the product class.

Somprasertsri and Lalitrojwong [2010] proposed an approach to extract product aspects

and to identify the opinions associated with these aspects from reviews through syntactic

information based on dependency analysis. Similar to Hu and Liu [2004a;b], they extract

noun or noun phrase as a potential product aspect, adjective as a potential opinion word.

The aspect-opinion pair candidates are identify by dependency path, not using the distance

between adjective and noun/noun phrase.

In another domain, Zhuang et al. [2006] proposed a multi-knowledge based approach,

which integrates WordNet, statistical analysis and movie knowledge, for movie review mining

and summarization. They used WordNet, movie casts and labeled training data to generate

a keyword list for finding aspects and opinions. The grammatical rules between aspect words

and opinion words were applied to identify the valid aspect-opinion pairs.

To identify the expressions of opinions associated with aspects, some researchers consid-

ered that a product aspect and its opinion words usually co-occur within a certain distance

12
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in the sentence. Hu and Liu [2004b] focused on adjacent adjectives that modify aspect nouns

or noun phrases. They use adjacent adjectives as opinion words that associated with as-

pects. Kim and Hovy [2004] explored the following four sizes of regions which may contain

both of product aspects and their opinions. The four regions are: (1) full sentences; (2) words

between the opinion holder and the topic; (3) region 2 +/- two words; and (4) from the first

word behind the holder to the end of sentences. In other research, Popescu and Etzioni

[2005] apply manual extraction rules in order to find the opinion words. This idea is similar

to that of [Hu and Liu, 2004b] and [Kim and Hovy, 2004], but instead of using a window

of size or adjacent adjectives they define extraction rules to find the expressions of opinions.

More recently, Zhuang et al. [2006], Qiu et al. [2009], Qiu et al. [2011] and Somprasertsri and

Lalitrojwong [2010] apply dependency relation analysis to extract aspect opinions. However

these work do not group aspect opinion expressions into clusters.

Some work groups aspects into clusters, assuming aspect opinion expressions are given [Zhai

et al., 2011]. Recently a semi-supervised algorithm [Mukherjee and Liu, 2012] was proposed

to extract aspects and group them into meaningful clusters as supervised by user input seed

words. Unsupervised topic modelling-based techniques have been developed to jointly model

opinions and aspects (or topics), based on either the probabilistic Latent Semantic Analysis

(pLSA) [Hofmann, 1999] or Latent Dirichlet Allocation (LDA) [Blei et al., 2003]. The models

differ in granularities [Mei et al., 2007; Titov and McDonald, 2008b; Lin and He, 2009; Titov

and McDonald, 2008a; Brody and Elhadad, 2010] and how aspects and opinions interact [Lin

and He, 2009; Brody and Elhadad, 2010; Mei et al., 2007; Zhao et al., 2010]. All these exist-

ing work however are based on the unigram representation of documents and none of them

make use of any lexical knowledge.

There has been some recent work on computing aspect ratings from overall ratings in

e-commerce feedback comments or reviews [Lu et al., 2009; Wang et al., 2010; 2011]. Their

aspect ratings and weights are computed based on regression from overall ratings and the

positive bias in overall ratings is not the focus.

For word sentiment classification, the basic approach is to assemble a small amount of

seed words by hand, sorted by polarity into two lists - positive and negative - and then to grow

this by adding words obtained from WordNet [Miller et al., 1990]. This approach assumes,

synonyms of positive words are mostly positive and antonyms mostly negative. Antonyms

of negative words are added to the positive list, and synonyms to the negative one. Opinion

lexicons like SentiWordNet have been developed in linguistic studies, and have been widely

used for various sentiment analysis tasks. SentiWordNet [Esuli and Sebastiani, 2006] is
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an opinion lexicon derived from the WordNet database where each term is associated with

numerical scores indicating positive and negative sentiment information. Ohana and Tierney

[2009] states the SentiWordNet lexical resource could be used as an important resource for

the problem of automatic sentiment classification tasks.

In CommTrust we develop Lexical-LDA and DR-mining approaches make use of the

lexical knowledge of dependency relation analysis to identify dimension ratings in feedback

comments. SentiWordNet is applied to determine sentiment orientation.

2.4 Matrix factorisation

Matrix factorisation is a general factor analytic technique, and has been widely applied in

various areas, especially in information retrieval [Deerwester et al., 1990] and recommender

systems [Hofmann, 2004; Koren et al., 2009; Koren, 2010]. In information retrieval, latent

Semantic Indexing (LSI)[Deerwester et al., 1990] is a method for automatic indexing and

retrieval, where singular value decomposition (SVD) is applied to decompose a term by

document matrix into a set of orthogonal factors from which the original matrix can be

approximated by linear combination. Similarity between documents, queries, and terms can

be easily represented as matrix algebra and used for information retrieval.

Collaborative filtering (CF) is a popular approach for recommender systems, and matrix

factorization is a well-recognized approach to CF [Koren et al., 2009; Koren, 2010; Paterek,

2007; Takàcs et al., 2007]. Given the ratings to items by users, latent factor models express

both items and users on factors inferred from the patterns of ratings. User-item interactions

are then represented as inner products of vectors in the new factor space. High corre-

spondence between item and user factors leads to recommendation of an item to a user.

Koren [Koren, 2010; 2008] proposes augmentation to standard SVD for effective prediction

of ratings in CF.

In CommTrust, our application of SVD is fundamentally different from existing applica-

tions. While existing applications of SVD use matrices in the reduced feature space after

decomposition to compute similarity among original data objects, CommTrust computes the

relative weights of original data objects in the reduced feature space. Noises are removed

and correlation of data objects is considered in SVD transformation, and as a result weights

computed in the new reduced feature space are more accurate description of weightings of

original data objects.
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Chapter 3

CommTrust: Comment-based

Multi-dimensional Trust Evaluation

We view feedback comments as a source where buyers express their opinions more honestly

and openly. Our analysis of feedback comments on eBay and Amazon reveals that even if a

buyer gives a positive rating for a transaction, s/he still leaves comments of mixed opinions

regarding different aspects of transactions in feedback comments. Table 3.1 lists some sample

comments, together with their rating from eBay. For example for comment c2, a buyer gave

a positive feedback rating for a transaction, but left the following comment: “bad communi-

cation, will not buy from again. super slow ship(ping). item as described.”. Obviously the

buyer has negative opinion towards the communication and delivery aspects of the trans-

action, despite an overall positive feedback rating towards the transaction. We call these

salient aspects dimensions of e-commerce transactions. Comment-based trust evaluation is

therefore multi-dimensional. Hereafter we will use the terms opinion and rating interchange-

ably to express the positive, negative and neutral polarities toward entities that expressed in

natural language text.

3.1 The CommTrust model

Figure 3.1 depicts the CommTrust framework. Unlike existing trust models (including the

one used on eBay) where explicit transaction feedback ratings (positive or negative) are used

to compute overall trust scores for sellers. Aspect opinion expressions, and their associated

ratings (positive or negative) are first extracted from feedback comments. Dimension trust

scores together with their weights are further computed by aggregating dimension ratings.
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Table 3.1: Sample comments on eBay

No Comment eBay rating

c1 beautiful item! highly recommend using this seller! 1
c2 bad communication, will not buy from again. super slow

ship(ping). item as described.
1

c3 quick response 1
c4 looks good, nice product, slow delivery though. 1
c5 top seller. many thanks. A+ 1
c6 great price and awesome service! thank you! 1
c7 product arrived swiftly! great seller. 1
c8 great item. best seller of ebay 1
c9 slow postage, didn’t have the product asked for, but seller was

friendly.
1

c10 wrong color was sent, item was damaged, did not even fit phone. 1

Note: 1 = Positive, 0 = Neutral, -1 = Negative

The algorithm for mining feedback comments for dimension ratings and the technique for

computing dimension weights will be described in Chapter 4 and Chapter 5.

Definition 3.1.1. The overall trust score T for a seller is the weighted aggregation of di-

mension trust scores for the seller,

T =

m∑
d=1

td ∗ wd, (3.1)

where td and wd represent respectively the trust score and weight for dimension d (d = 1..m).

The trust score for a dimension is the degree or probability that buyers express positive

opinion towards the dimension, and roughly is positively correlated with the proportion of

positive ratings towards the dimension. However, buyers only express limited positive or

negative opinions towards some dimensions in feedback comments. Computing the trust

score from a limited number of samples has a high chance of over estimate. For example, out

of 1,956 feedback comments for ten eBay sellers of the transactions from 31 January to 18

March 2012, only 73 comments contain ratings towards the communication dimension, where

72 are positive. The percentage of positive ratings is thus 98.6% (72 out of 73). However, this

estimation is made from a limited sample of only 73 ratings. We propose to apply Bayesian

adjustment to compute the trust scores for dimensions from a limited number of ratings.

Following the definition of trust by Jøsang et al. [2007], the trust score on a dimension

for a seller is the probability that buyers expect the seller to carry out transactions on this
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Figure 3.1: The CommTrust framework

dimension satisfactorily. The trust score for a dimension can be estimated from the number

of observed positive and negative ratings towards the dimension. Let S={X1, ..., Xn} be n

observations of binary positive and negative ratings, where y observations are positive ratings.

S follows binomial distribution B(n, p). Following the Bayes rule, p can be estimated from

observations and some prior probability assumption. Assuming the Beta distribution for the

prior,

Beta(p|α, β) ==
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

where α and β are hyper-parameters expressing prior beliefs, the Bayes estimate of p is

formed by linearly combining the mean α/(α+β) from prior distribution and the mean y/n,

as below [Casella and Berger, 1990; Heinrich, 2005]

p̂ =
y + α

n+ α+ β
. (3.2)

Note that the Beta distribution is a special case of the Dirichlet distribution for two dimen-

sions [Heinrich, 2005].

It has been shown in the Beta reputation system [Jøsang and Ismail, 2002] that the

assumption of Beta distribution for the prior belief leads to reasonable trust evaluation. The

Beta reputation system adopts constant settings of α = β = 1 for Equation 3.2. We develop

the approach further by introducing hyper-parameter settings for α and β to suit for a varying

number of observed positive and negative ratings. It is preferable to have only one parameter

for trust evaluation [Jøsang and Ismail, 2002]. With the prior belief of neutral tendency for

trust, it can be assumed that α = β. Let α+ β = m, then α = β = 1/2 ∗m. The trust score

for a dimension is thus defined as follows:

Definition 3.1.2. Given n positive (+1) and negative (-1) ratings towards dimension d,
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Figure 3.2: The dimension trust score model

n = |{vd|vd = +1 ∨ vd = −1}|, the trust score for d is:

td =
|{vd|vd = +1}|+ 1/2 ∗m

n+m
. (3.3)

Equation 3.3 is also called m-estimate [Karplus, 1995]. According to Definition 3.1.2, td

is in the range of [0..1], and 0.5 represents the neutral tendency for trust. In Equation 3.3, m

is a hyper-parameter and can be seen as pseudo counts – 1/2 ∗m counts for the positive and

negative classes respectively. The higher value of m, the more actual observations are needed

to revise the natural neutral trust score of 0.5. More importantly by introducing the prior

distribution using the super-parameter m, the adjustment can reduce the positive bias in

ratings, especially when there are a limited number of positive and negative ratings [Resnick

et al., 2000; Resnick and Zeckhauser, 2002].

Based on our experiment datasets (1,956 feedback comments for ten eBay sellers of the

transactions from 31 January to 18 March 2012) refer to Section 5.3, Figure 3.2 plots trust

score td by Equation 3.3 in relation to different settings of total number of ratings n and

pseudo counts m. The figure is plotted for y/n = 0.8, and similar trends are observed for
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Table 3.2: An example of dimension ratings for a seller on eBay

No Product Delivery Comm. Cost Tran. eBay Comment

c1 1 0 0 0 1 1 beautiful item! highly recom-
mend using this seller!

c2 0 0 0 0 1 1 great service
c3 0 0 1 0 0 1 quick response
c4 1 -1 0 0 0 1 looks good, nice product, slow

delivery though.
c5 0 0 0 0 1 1 top seller. many thanks. A+
c6 0 0 0 1 1 1 great price and awesome ser-

vice! thank you!
c7 0 1 0 0 1 1 product arrived swiftly! great

seller.
c8 1 0 0 0 1 1 great item. best seller of ebay
c9 -1 -1 0 0 1 0 slow postage, didn’t have the

product asked for, but seller
was friendly.

c10 -1 0 0 0 0 -1 wrong color was sent, item
was damaged, did not even fit
phone.

Comm.: Communication, Tran.: Transaction

other values of y/n. It shows that when the total number of observed ratings n is large

(n ≥ 300), td is not very sensitive to the settings of m and converges to the observed positive

rating frequency of 0.8. When there is a limited number of observed ratings, that is n < 300,

an observed high positive rating frequency y/n is very likely an overestimation, and so m

is set to regulate the estimated value for td. With m = 2, when n ≥ 50 td ≈ 0.8. On the

other hand, with m = 20, only when n ≈ 300 td ≈ 0.8. From our experiments, settings of

m = 6..20 typically give stable results. By default, we set m = 6.

Example 3.1.1. Table 3.2 shows dimension ratings from ten feedback comments for a seller

randomly selected from eBay. We annotated the commens as five dimensions correspond to

the aspects of Item as described, Shipping time, Communication and Postage and handling

charges of the Detailed Seller Ratings on eBay.1 In addition, users often express opinions

directly towards the overall experience with transactions in comments. For example, a com-

ment like “Great eBayer. A+++++” has not commented specific aspects of a transaction

but rather describes an overall experience towards the Transaction. The feedback ratings

1http://pages.ebay.com.au/help/feedback/detailed-seller-ratings.html.
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from eBay are listed in the colomn of “eBay”.

Note that out of ten comments, only comment c3 contains opinion for Communication

and only c6 contains opinion for Cost. This lack of ratings for the Communication and Cost

dimensions is indeed widespread on eBay and Amazon.

Following Equation 3.3, setting m = 6 for such a small sample, the results of dimension

trust scores for the dimensions Product, Delivery, Communication and Cost are 54.55%,

44.44%, 57.14% and 57.14% respectively. It is obvious that there is high variance in the

dimension trust scores for this seller, from 44.44% for Delivery to 57.14% for Communication

and Cost. The dimension trust scores give a comprehensive trust profile for the seller.

Assuming an equal weight of 0.25 for all dimensions in Equation 3.1, the average of

dimension trust scores is 53.3%. Given that the trust score for the Delivery dimension is as

low as only 44.44%, the overall trust score of 53.3% is reasonable estimate for the overall

trust level for this seller. In contrast, according to the feedback ratings on eBay, the positive

feedback percentage is 88.89% (eight positive ratings out of a total of nine non-zero ratings).

Obviously the eBay positive feedback percentage score is inflated due to the strong positive

bias in limited number of nonzero ratings. On the other hand, the overall trust score from

transaction ratings by Equation 3.3 is 76.92% (seven positive ratings out of a total of seven

non-zero ratings), which still can not bring down the overall trust score to a reasonable level.

CommTrust can significantly reduce the strong positive bias in eBay reputation systems,

and solve the “all good sellers” problem. With CommTrust, seller ratings are regulated to a

more reasonable level and truly reputable sellers are effectively differentiated from irreputable

sellers.

3.2 A user study

A user study was conducted to elicit users ranking of sellers from reading feedback comments,

which was also used as the ground truth for evaluating the CommTrust multi-dimensional

trust evaluation model. Inspired by evaluation techniques from the Information Retrieval

community [Thomas and Hawking, 2006], experiment participants are asked to judge differ-

ences rather than make absolute ratings. For ten sellers, each seller is paired with every other

seller and form 45 pairs. The orders for pairs and for sellers within pairs were randomised to

avoid any presentational bias. Each pair was judged by five users and a seller preferred by

at least three users was seen as a vote for the seller. The total number of preference votes

from 45 pairs for each seller were used as the preference score to rank sellers.
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Select the more trustworthy seller 
Seller A  
Negative 
poor item 12 
wrong size 10 
slow shipping 1 
…. 
Positive 
great item 762 
great seller 1309 
fast postage 1155 
… 
+ve percengage 
delivery      7325    99.88% 
item            3123    96.18% 
seller          11450  99.36% 
transction  1568    99.94% 

Seller B  
Negative 
inaccurate description 3 
wrong phone 17 
slow shipping 12 
… 
Positive 
great product 787 
described item 720 
great phone 684 
… 
+ve percengage 
shipping     8845    99.63% 
item            4051    93.88% 
seller          14683  99.46% 
condition    731      97.86% 

Figure 3.3: A sample of pairwise preference in user study

It is infeasible to ask participants to read all comments for two sellers and choose a

preferred seller. We therefore generated summaries of comments for sellers. The comment

summaries for each pair of users were presented side by side to elicit users preference judge-

ments. For a seller, we generated opinionated phrases for four dimensions, where positive

and negative phrases for each dimension are ordered by decreasing frequency. The three most

frequent positive and negative phrases for each dimension formed the summary for a seller.

An example page for the survey is shown in Figure 3.3.

In this user study, the degree of agreement among five users annotation is evaluated by

the Kappa statistics [Fleiss, 1971]. The following equation shows how the overall value of

kappa is calculated:

k =
Po − Pe
1− Pe

where Po denotes the observed agreement, and Pe denotes the expected agreement. The kappa

values range from -1 to +1. Landis and Koch [1977] interpreted kappa statistics as shown in

Table 3.3. On the eBay data dataset, k = 0.58, and on the Amazon dataset, k = 0.63. The

user annotation in our experiments falls in moderate to substantial agreement.

The ultimate goal of trust evaluation for e-commerce applications is to rank sellers and

help users select trustworthy sellers to transact with. In this respect, in addition to absolute

trust scores, relative rankings are more important for evaluating the performance of different
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Table 3.3: Meanings of the Kappa statistics

Kappa value Agreement level

< 0 poor agreement
[0, 0.2) slight agreement
[0.2, 0.4) fair agreement
[0.4, 0.6) moderate agreement
[0.0, 0.8) substantial agreement
[0.8, 1) almost perfect agreement

trust models. To this end, we employ Kendall’s τ [Sheskin, 2004] to measure the correlation

between two rankings based on the number of pairwise swaps that is needed to transform

one ranking into another. Kendall’s τ measures the degree of two sets of ranks with respect

to the relative ordering of all possible pairs. In other words it is the difference between the

probability that the observed data are in the same order versus the probability that the

ovserved data are not in the same order. The following equation shows how Kendall’s τ is

the probability of the difference of the concordant pairs and the discordant pairs.

τ =
nC − nD
n(n− 1)/2

where:
nC is the number of concordant pairs of ranks

nD is the number of discordant pairs of rands

[n(n− 1)]/2 is the total number of possible pairs of ranks

A concordant pair is when the rank of the second variable is greater than the rank of the

former variable. A discordant pair is when the rank is equal to or less than the rank of the

first variable.

The value of τ falls in [−1, 1], a positive value indicates positive correlation, zero represents

independence and a negative value indicates negative correlation. When τ = 1, indicates the

complete agreement among the rankings (i.e., all of the pairs of ranks are concordant), and

when τ = −1, indicates the complete disagreement among the rankings (i.e., all of the pairs

of ranks are discordant).

τ is the standard metric for comparing information retrieval systems, and it is generally

considered that τ ≥ 0.9 for a correlation test suggests two system rankings are equivalent. A

large value for |τ | with p ≤ 0.05 suggests that two rankings are correlated, and a small value

for |τ | with p > 0.05 suggests that two rankings are generally independent.
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Table 3.4: Seller rankings by reading comments in user studies

eBay seller eBay rank Comment
rank

Amazon seller Amazon rank Comment
rank

Seller 1 6 6 Seller 1 5 5
Seller 2 8 5 Seller 2 4 6
Seller 3 10 10 Seller 3 7 2
Seller 4 4 2 Seller 4 1 1
Seller 5 7 3 Seller 5 3 8
Seller 6 5 1 Seller 6 8 7
Seller 7 9 7 Seller 7 2 4
Seller 8 1 9 Seller 8 9 9
Seller 9 2 4 Seller 9 6 3
Seller 10 3 8 Seller 10 10 10

Kendall’s τ=0.1111, p-value=0.7275 Kendall’s τ=0.4222, p-value= 0.1083

rank-diff=3 rank-diff=1.8

Results from the experiment for eBay and Amazon sellers are summarised in Table 3.4.

Under the column heading of Comment rank is the ranking of sellers by user preferences after

participants read the comment summaries for sellers. The eBay rank and the Amazon rank

are based on our experiment data, refer to Section 4.4.1. The eBay rank is calculated based

on the total number of positive and negative feedback ratings for transactions in the last 12

months, that is the percentage of positive ratings out of the total number of positive ratings

and negative ratings. Note that this score is very close to that computed by Equation 3.3,

especially when the sample size is large. The Amazon rank is the ranking of sellers by the

average rating in the past 12 months. The correlation between rankings are measured by

Kendall’s τ . The rank difference between two ranking vectors is defined as:

rank-diff =

∑
i rank(i)− rank′(i)

N

where rank(i) and rank’(i) are respectively the rank for seller i by two ranking methods,

and N=10. The low Kendall’s τ value (0.1111 and 0.4222) and high p-value (0.7275 and

0.1083) suggest that on eBay and Amazon, user preference rankings after reading comment

summaries are not strongly correlated with the rankings by the respective eBay and Amazon

reputation systems. This suggests that the comments contain distinct information for users

to rank sellers. The ranking difference of 3 for ten eBay users between rankings by reading

comments and by eBay reputation system suggests that on average there is a difference of

3 ranks for sellers by the two approaches. Similarly for Amazon sellers there is difference of
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1.8 ranks on average. Our user study demonstrates that it can be speculated that content

of comments can be used to reliably evaluate the trustworthiness of sellers, which is the

objective of CommTrust.

3.3 Summary

In this chapter we have proposed comment-based multi-dimensional trust model, computing

overall and dimensional turst scores from feedback comments. Based on an example of

dimension ratings for an eBay seller, the CommTrust can significantly reduce the strong

positive bias in eBay reputation systems and solve the “all good sellers” problem.

We have performed a user study. In this user study, the users are given the summary of

comments from 45 pairs of ten different sellers, and they had to choose which seller is more

trustworthy. The findings showed that the ranking from the user study is different from the

ranking from eBay and Amazon for the same seller.

Given that the user comments are very rich and diverse, we have proposed CommTrust

to identify trustworthy and reliable sellers. In the next chapter, more detailed discussion will

be presented on how to mine the comments to extract the dimension and dimension ratings

from the comments, and the finds of CommTrust Lexical-LDA.
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Chapter 4

Lexical-LDA: Mining Feedback

Comments for Dimension Rating

Profile by Lexical Topic Modelling

Our research questions are focused on how to extract dimension ratings from feedback com-

ments and further aggregating these dimension ratings to compute dimension trust scores.

Therefore we proposed CommTrust Lexical-LDA to solve our research questions.

We will first describe our approach based on the typed dependency analysis to extracting

dimension expressions and identifying their associated ratings. Topic modelling is a principled

approach to group terms of the same topic into one group [Zhai et al., 2011]. We then propose

an algorithm based on popular topic modelling method that Latent Dirichlet Allocation

(LDA) [Blei et al., 2003] for grouping dimension expressions into dimensions and computing

dimension weights. This approach can achieve stable performance across domains, and the

features used are more transparent to a human user.

4.1 Extracting aspect expressions and ratings by typed dependency analysis

On e-commerce sites like eBay and Amazon, user feedback comments are generally short, and

very often are phrases or short sentences. Our analysis reveal that these short sentences and

phrases can be accurately described using dependency relations [De Marneffe and Manning,

2008] in natural language parsing. Based on the parsing results of dependency relations, we

can identify dimension-rating patterns that describe dimensions and associated ratings.
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Dependency 

Relations

amod(NN, JJ)

nsubj(JJ, NN)

amod(NN, JJ)

root(ROOT-0, shipping-3) 

amod(shipping-3, super-1) 

amod(shipping-3, quick-2)  

root(ROOT-0, excellent-3) 

nsubj(excellent-3, product-1) 

cop(excellent-3, was-2)  

root(ROOT-0, deal-3)    

det(deal-3, a-1)              

amod(deal-3, great-2)  

root(ROOT-0, all-1)   

num(star-3, 5-2)            

dep(all-1, star-3)

1. super/JJ

2. quick/JJ 

3. shipping/NN 

1. product/NN

2. was/VBD

3. excellent/JJ

1. a/DT

2. great/JJ

3. deal/NN

1. all/DT

2. 5/CD

3. star/NN

NN: noun; JJ: adjective; VBD: verb past; DT: determiner; CD: cardinal number.

Comment: “Super quick shipping. Product was excellent. A great deal. ALL 5 STAR.”

Figure 4.1: Typed dependency relation analysis example

The typed dependency relation representation [De Marneffe and Manning, 2008] is a

recent Natural Language Processing ( NLP ) tool to help understand the grammatical re-

lationships in sentences. All information in a sentence is represented as binary relations

between pairs of words while ignoring linguistic details that are not relevant to users. With

typed dependency relation parsing, a sentence is represented as a set of dependency relations

between pairs of words in the form of (head, dependent), where content words are chosen

as heads, and other related words depend on the heads. Figure 4.1 shows an example of

analysing the comment “Super quick shipping. Product was excellent. A great deal. ALL

5 STAR.” using the Stanford typed dependency relation parser. The comment comprises

four sentences, and the sentence “Super quick shipping.” is represented as three dependency

relations. shipping does not depend on any other words and is at the root level. The adjective

modifier relations amod (shipping-3, super-1) and amod (shipping-3, quick-2) indicate that

super modifies shipping and quick modifies shipping. The number following each word (e.g.,

shipping-3) indicates the position of this word in a sentence. Words are also annotated with

their Part of Speech (POS) tags such as noun(NN), verb (VB), adjective (JJ) and adverb

(RB).

If a comment expresses opinion towards dimensions then the dimension words and the

opinion words should form some grammatical dependency relations expressing the modifying

relationship. It has been reported that phrases formed by adjectives and nouns, and verbs

and adverbs express subjectivity [Turney, 2002]. Among the dependency relations expressing

grammatical relationships, we select the relations that express the modifying relation between

adjectives and nouns, and adverbs and verbs, as determined by the dependency relation
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Table 4.1: Dimension rating patterns

Dependency Relation Patterns Example

amod(NN, JJ) amod(price/NN, great/JJ) Great price and quick

adjective modifier amod(postage/NN, quick/JJ) postage, just gorgeous.

advmod(VB, RB) advmod(shipping/VB, fast/RB) very pretty, fast shipping.

adverbial modifier

nsubj(JJ, NN) nsubj(prompt/JJ, seller/NN) this seller was very prompt.

nominal subject

acomp(VB, JJ) acomp(arrived/VB, quick/JJ) Great CD, arrived quick.

adjectival complement

dep(NN, RB) dep(shipping/NN, fast/RB) very fast shipping.

dependent

Note: NN = noun, VB = verb, JJ = adjective, and RB = adverb

parser. Based on our analysis of a sample dataset of 1956 eBay feedback comments for 10

eBay sellers, five types of dependency relations are found to frequently express dimension

rating patterns (DR-patterns), as listed in Table 4.1. It can be seen that with the modifying

relations generally the noun or verb expresses the target concept under consideration whereas

the adjective or adverb expresses opinion towards the target concept. With the example

comment in Figure 4.1, the dependency relations adjective modifier amod (NN, JJ) and

normal subject nsubj (JJ, NN) suggest DR-patterns (shipping, super), (shipping, quick),

(excellent, product) and (deal, great). DR-patterns comprise a dimension word and an opinion

word. We also call dimension word as head term, opinion word as modifier term, and the pair

of (head term, modifier term) as dimension expression or aspect expression. For example,

with the DR-pattern amod (price/NN, great/JJ), “price” is the head dimension word while

“great” is the dependent opinion word.

Ratings from DR-patterns towards the head terms are identified by identifying the prior

polarity of the modifier terms by SentiWordNet [Baccianella et al., 2010], a public opinion

lexicon. The prior polarities of terms in SentiWordNet include positive, negative or neutral,

which corresponds to the ratings of +1, -1 and 0. More detailed information will be descussed

in Section 4.3.

The negation relation (neg()) from the Stanford parser is used to detect any negation of

ratings in DR-patterns. We go through the dependency relations for DR-patterns for the

negation modifier neg() of the head or dependent. If either the head or dependent word of a

DR-pattern involves the neg() relation, the relevant rating is inverted. For example, a buyer

of eBay wrote the comment “after five days waiting, the item is not available.”. Applying the
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(fast, shipping)
(not-good, seller)
(great, price)
(poor, item)

Dimension expressions:

LDA
Clusters for 
dimensions 

Weight factor

Figure 4.2: The Lexical-LDA framework

typed dependency relation parser, we can get “num(days-3, five-2), prep after(available-10,

days-3), partmod(days-3, waiting-4), det(item-7, the-6), nsubj(available-10, item-7), cop(available-

10, is-8), neg(available-10, not-9), root(ROOT-0, available-10) ”. The POS tags of this

comment are “ after/IN, five/CD, days/NNS, waiting/VBG, the/DT, item/NN, is/VBZ,

not/RB, available/JJ ”. The suggested pair from DR-patterns is nsubj(available, item). The

negation relation neg(available, not) modifies the word available from suggented pair. The

extracted expression is (item, available, neg).

Ratings from dimension expressions towards the head terms are identified by identifying

the prior polarity of the modifier terms by SentiWordNet, a public opinion lexicon. The prior

polarities of terms in SentiWordNet include positive, negative or neutral, which corresponds

to the ratings of +1, -1 and 0. Negations of dimension expressions are identified by the Neg()

relation of the dependency relation parser. When a negation relation is detected the prior

polarity of the modifier term is inverted.

4.2 Grouping dimension expressions into dimensions

For obvious topic modelling is a model for automatic discovering granularity “topics”. We

propose the Lexical-LDA algorithm to group aspect expressions into semantically coherent

categories, which we call dimensions. Different from the conventional topic modelling app-

roach, which takes the document by term matrix as input, Lexical-LDA makes use of shallow

lexical knowledge of dependency relations for topic modelling to achieve more effective clus-

tering. Figure. 4.2 depicts the Lexical-LDA framework.

We make use of two types of lexical knowledge to “supervise” grouping dimension ex-

pressions into dimensions so as to produce meaningful clusters.

• Comments are short and therefore co-occurrence of head terms in comments is not very
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informative. We instead use the co-occurrence of dimension expressions with respect

to a same modifier across comments, which potentially can provide more meaningful

contexts for dimension expressions.

• We observe that it is very rare that the same aspect of e-commerce transactions is

commented more than once in the same feedback comment. In other words, it is very

unlikely that the dimensions expressions extracted from the same comment are about

the same topic.

With the shallow lexical knowledge of dependency relation representation for dimension

expressions, the clustering problem is formulated under topic modelling as follows: the di-

mension expressions for a same modifier term or negation of a modifier term are generated

by a distribution of topics, and each topic is generated in turn by a distribution of head

terms. This formulation allows us to make use of the structured dependency relation rep-

resentations from the dependency relation parser for grouping. Input to Lexical-LDA are

dependency relations for dimension expressions in the form of (modifier, head) pairs or their

negations, like (fast, shipping) or (not-good, seller).

Gibbs sampling has been proposed as approximate inference for LDA [Griffiths and

Steyvers, 2004]. A detailed description of the derivation process for a Gibbs sampler for

LDA is given in [Heinrich, 2005], while we only present the results below. Let M , K and V

denote respectively the number of documents, the number of topics and the number of word

tokens in the vocabulary. Let also that ~α and ~β respectively be the hyper-parameters on the

mixing proportions for topics and on the mixture components of topics. Equation 4.1 below

is the update equation for computing the full conditional distribution of a word token wi for

a topic k, where i = (m,n) denote the nth word in the mth document, ~w = {wi = t, ~w¬i},
~z = {zi = k, ~z¬i} and n

(.)
.,¬i denote counts, token i is excluded from the corresponding docu-

ment or topic, and the hyper-parameters are omitted.

p(zi = k|~z¬i, ~w) ∝
n
(t)
k,¬i + βt∑V

t=1(n
(t)
k,¬i + βt)

.
n
(k)
m,¬i + αk∑K

k=1(n
(k)
m,¬i + αk)

(4.1)

The second type of lexical knowledge that generally two head terms from the same com-

ment are for different dimensions is applied in LDA as a weight factor for adjusting the

conditional probability for assigning head terms for a modifier term to dimensions. Specifi-

cally, for a head term wi with index i = (m,n), in computing the conditional probability for

assigning wi to topic k, we consider the evidence as presented by the head terms appearing
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in a same comment as wi: when computing the conditional probability of p(zi = k|~z¬i, ~w),

head terms in a same document with wi and is associated with a topic other than k casts

a positive vote for the conditional probability as expressed in Equation 4.1 and otherwise a

negative vote. The weight factor is thus defined as:

f(zi = k) =
n
(c,¬k)
m,¬i − n

(c,k)
m,¬i

n
(c)
m,¬i

where c denotes the set of comments that wi appears, n
(c,¬k)
m,¬i denotes the count of head terms

of m other than wi that appear in any comment of c and is assigned to a topic other than k,

n
(c,k)
m,¬i denotes the count of head terms for m other than wi that appears in any one comment

of c and is assigned to topic k, and n
(c)
m,¬i denotes the count of head terms for m other than

wi that appear in any comment of c. As a result f(zi = k) ∈ [−1, 1], and


> 0 more positives votes,

= 0 same number of positive and negative votes,

< 0 more negative votes.

We apply the weight factor to adjust the computation of conditional probability in Equa-

tion 4.1. Given head term wi with index i = (m,n) – the nth head term for a modifier term

m, if there are head terms that appear in the same comment as wi, Equation 4.1 is adjusted

as follows:

p(zi = k|~z¬i, ~w) ∝ (1 + α ∗ f(zi = k)).
n
(t)
k,¬i + βt∑V

t=1(n
(t)
k,¬i + βt)

.
n
(k)
m,¬i + αk∑K

k=1(n
(k)
m,¬i + αk)

(4.2)

Three cases need to be distinguished when applying Equation 4.2.

• If f(zi = k) > 0, that is there are more head terms in the same comments that support

assigning wi to topic k, the conditional probability estimate by the original Gibbs

sampler is increased.

• If f(zi = k) < 0, that is there are more head terms in the same comments that are

against the assignment of wi to topic k, the conditional probability estimate by the

original Gibbs sampler is decreased.

• Otherwise f(zi = k) = 0, the original Gibbs sampler estimate is kept.

30



CHAPTER 4. LEXICAL-LDA: MINING FEEDBACK COMMENTS FOR DIMENSION RATING

PROFILE BY LEXICAL TOPIC MODELLING

In Equation 4.2, α ∈ [0, 1] is a parameter indicating the level of strength of the knowledge

encoded in f(zi = k). The reason is that such knowledge is probabilistic in nature. The

adjustment component (1 + α ∗ f(zi = k)) is in the range [1 − α, 1 + α]. Note that the

adjusted probability computed by Equation 4.2 shall be normalised for all topics afterwards.

The (modifier, head) structures are first used for topic discovery in [Lu et al., 2009].

In [Lu et al., 2009] Probabilistic Latent Semantic Analysis (PLSA) is applied where mixing

weight for themes (dimensions) are assumed and optimised using the EM procedure. In our

formulation the LDA model is used. More importantly we apply further lexical knowledge

to constrain the process of clustering head terms to produce more meaningful clusters.

Our application of the second type of lexical knowledge to “supervise” the topic mod-

elling process is motivated by the notion of “cannot links” in [Zhai et al., 2011], although

conventional LDA on documents of word tokens is applied there. Their application of con-

straints at the sentence level potentially can result in a large number of such constraints.

In addition to the “cannot-link” constraints, “must-link” constraints are used to state that

some phrases with common words likely belong to the same topic. For example “battery

power” and “battery life” likely belong to the same topic. Although such phrases may be

widespread in product reviews, they are rare in e-commerce feedback comments. It is wroth

noting that it is shown in [Zhai et al., 2011] that the cannot-link constraints produce more

effectiveness on the clustering results than the must-link constraints.

When (modifier, head) pairs and their negations are grouped into dimensions, we compute

weights for dimensions. Intuitively the weight for a dimension is proportional to the total

number of positive and negative ratings on the dimension. Specifically we compute the total

number of (modifier, head) dimension expressions for the dimension. Indeed only frequent

dimension expressions with head terms appearing in at least 0.1% of comments are included.

The total number of dimension expressions for dimensions are normalised to produce the

dimension weights.

4.3 Rating evaluation

We apply a general opinion word lexicon SentiWordNet [Baccianella et al., 2010], which is

a widely used public domain NLP resource to identify opinion polarities. When (modifier,

head) pairs are grouped into dimensions, the associated modifier terms express the opinion

priority of dimensions.

SentiWordNet has a total of 155,181 words and each word (together with a POS tag) is
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annotated with positive, negative and objective scores that are summed to one. The sum

of positive and negative scores for a word indicates its level of subjectivity. We apply a

threshold of 0.5 for subjectivity – words with a sum of positive and negative scores of at

least 0.5 are subjectivity words. Moreover, an opinion word takes on the positive polarity

if its positive score is higher, or negative polarity otherwise. In applying SentiWordNet,

words with a sum of positive and negative scores greater than or equal to 0.5 is considered

as express subjectivity, and if the positive score equals negative score for a subjective word,

the word carries prior positive polarity.

It is well known that whether a word expresses opinion and the polarity associated with

a word depend on context and vary for domains. SentiWordNet is a general opinion lexicon

compiled from several application domains and their word annotations need to be reviewed

to be applied to the e-commerce domain. For example, top and prompt are both labelled as

objective and not having any polarities in SentiWordNet, but they indeed express positive

opinions in the e-commerce domain, as in expressions like “top teller” and “prompt service”.

Based on our analysis of a sample of 1,956 comments for ten eBay sellers, some word polarity

labels in SentiWordNet are reviewed as follows:

• Ten objective words are changed to opinion words and annotated with prior polar-

ity, including lightning (+ve), fast (+ve), prompt(+ve), saftely (+ve), pretty (+ve),

satisfied (+ve), scratch (-ve), squashed (-ve), late (-ve), and waste (-ve).

• cheap (-ve) is re-annotated as cheap (+ve).

• weak (+ve) is re-annotated as weak (-ve).

4.4 Experiments

Extensive experiments on two e-commerce datasets and one hotel review datasets were con-

ducted to evaluate various aspects of CommTrust Lexical-LDA, including the dimension

grouping algorithm and the turst model. The hotel review dataset is specifically used to

demonstrate the generality of Lexical-LDA in domains other than e-commerce.

4.4.1 Datasets

180,788 feedback comments were crawled for ten eBay sellers on ebay.com, where two sell-

ers were randomly selected for each of five categories on the “Shop by category” list on
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Table 4.2: The eBay dataset

Seller Category #comments Feedback score Pos feedback (%)

Seller 1 baby 5876 5481 99.6%
Seller 2 baby 4542 3618 100%
Seller 3 camera 2717 2609 99.4%
Seller 4 camera 27887 26487 99.4%
Seller 5 computer 5596 5457 99.9%
Seller 6 computer 27969 24199 99.9%
Seller 7 jewelry 3628 3194 100%
Seller 8 jewelry 60000 53624 99.7%
Seller 9 phone 34582 33237 99.4%
Seller 10 phone 29082 27392 99.5%

Table 4.3: The eBay dataset of Detailed Seller Ratings

Seller Pos feedback (%) Detailed Seller Ratings (#ratings)
Item Comm Shipping Cost

Seller 1 99.6% 4.8 (2691) 4.9 (2679) 4.9 (2687) 4.8 (2660)
Seller 2 100% 5 (221) 4.9 (223) 4.8 (223) 4.9 (229)
Seller 3 99.4% 4.9 (832) 4.9 (829) 4.9 (837) 5 (919)
Seller 4 99.4% 4.9 (12034) 4.9 (13046) 4.9 (12653) 5 (14019)
Seller 5 99.9% 5 (4803) 4.9 (4998) 4.9 (4795) 5 (5299)
Seller 6 99.9% 4.9 (15505) 4.9 (15934) 4.9 (15438) 5 (17679)
Seller 7 100% 4.9 (925) 5 (986) 5 (961) 4.9 (920)
Seller 8 99.7% 4.9 (44095) 5 (47734) 4.9 (45622) 5 (48088)
Seller 9 99.4% 4.9 (3983) 5 (4375) 4.9 (4402) 5 (4717)
Seller 10 99.5% 4.9 (5940) 5 (6507) 4.9 (6453) 5 (6929)

eBay.com, including Cameras & Photography, Computers & Tablets, Mobile Phones & Ac-

cessories, Baby, and Jewellery & Watches. Note that the sellers also sell products in other

categories in addition to the listed categories. For evaluation of our trust model, the feedback

profile for each seller were also extracted 1:

• The feedback score is the total number of positive ratings for a seller from past trans-

actions.

• The positive feedback percentage is calculated based on the total number of posi-

tive and negative feedback ratings for transactions in the last 12 months, that is
#positive-ratings

#positive-ratings+#negative-ratings .

1pages.ebay.com/services/forum/feedback.html.
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Table 4.4: The Amazon dataset

Seller Category #comments Avg. rating

Seller 1 Electronics-Computer 4365 4.8
Seller 2 Electronics-Computer 4786 4.8
Seller 3 Electronics-Camera 3202 4.9
Seller 4 Electronics-Camera 8000 4.8
Seller 5 Electronics-Phone 5097 4.7
Seller 6 Electronics-Phone 2631 4.8
Seller 7 Jewelry-Ring 6281 4.6
Seller 8 Jewelry-Ring 1295 4.5
Seller 9 Baby-Tub 3860 4.8
Seller 10 Baby-Diaper 927 4.7

• The Detailed seller ratings of a seller are five-star ratings on the following four aspects:

Item as described (Item), Communication (Comm), Shipping time (Shipping) and Ship-

ping and handling charges (Cost). The DSR profile shows a sellers average rating and

the number of ratingss. Average ratings are computed on a rolling 12-month basis, and

will only appear when at least ten ratings have been received.

Details of the dataset are as shown in Table 4.2, the detailed seller ratings of eBay sellers are

shown in Table 4.3.

On Amazon, for a third-party seller, an average rating in the past 12 months is displayed,

together with the total number of ratings. Each rating is associated with a short comment.

40,444 comments for ten third-party sellers with a large number of ratings were crawled

from five categories, including Electronics-Computer, Electronics-Camera, Electronics-Phone

Jewelry-Ring, and Baby-Tub and Baby-Diaper. Note that these sellers also sell products in

other categories. A summary of the Amazon dataset is as shown in Table 4.4.

As shown in Tables 4.3 and 4.4, the strong positive bias is clearly demonstrated on the

eBay and Amazon datasets. On the eBay dataset, the positive feedback percentage as well

as DSR five-star rating scores have little dispersion and can hardly be used by itself to rank

sellers. Similarly on the Amazon dataset, the average ratings for six sellers are 4.8 or 4.9.

The TripAdvisor dataset is taken from http://sifaka.cs.uiuc.edu/∼wang296/Data/
index.html, which was originally used in [Wang et al., 2011] and [Wang et al., 2010]. The

dataset contains hotel reviews, as well as overall ratings and ratings on seven pre-defined

aspects in each review. This dataset was mainly used to evaluate the applicability of Lexical-

LDA for dimension grouping in domains other than e-commerce. 246,399 reviews were in
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the original dataset and the following preprocessing was applied: reviews with any missing

aspect rating or with less than 50 words were removed so that all reviews have coverage of all

aspects. Reviews that Stanford parser can not parse were also removed. After pre-processing

we have a total of 52,805 reviews.

4.4.2 Evaluation metrics

We employ metrics Rand index (RI) [Rand, 1971; Zhai et al., 2011] and Clustering Accuracy

(Acc)[Lu et al., 2009] to evaluate the performance of dimension grouping algorithms.

Rand Index [Rand, 1971] is the evaluation measure for clusterings comparison, which is to

calculate the fraction of correctly classified pairs to all possible pairs. Rand Index measures

both within-cluster and between-cluster agreement of two clustering algorithms. Given an

n elements set V = {e1, e2, . . . , en}, suppose H = {h1, h2, . . . , hr} and L = {l1, l2, . . . , ls}
represent two partitions generated by different clustering algorithm. Each partition is a

subset of V .

Given a pair of elements x ∈ V and y ∈ V , let h(x, y) and l(x, y) denote respectively the

decision by H and L on whether x and y should be grouped into the same cluster.

There are four types of clusterings for the pair (x, y):

• T1: (x, y) are grouped into the same cluster in H and into the same cluster in L;

• T2: (x, y) are grouped into the different cluster in H and into the different cluster in L;

• T3: (x, y) are grouped into the same cluster in H and into the different cluster in L;

• T4: (x, y) are grouped into the different cluster in H and into the same cluster in L.

T1 and T2 are typically interpreted as agreements in the classification of the elements

from a pair, T3 and T4 represent disagreements. Let θ(h(x, y), l(x, y)) represents the agree-

ment of classification, for any pair of elements from V , the total number of agreements is∑
x∈V

∑
y∈V θ(h(x, y), l(x, y)) among the

(
n
2

)
distinct pairs. We can show that

RI(H,L) =

∑
x∈V

∑
y∈V θ(h(x, y), l(x, y))(

n
2

)
=

∑
x∈V

∑
y∈V θ(h(x, y), l(x, y))

|V | × (|V | − 1)/2
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Figure 4.3: The RI of Lexical-LDA dimension grouping

The value of RI falls in [0, 1]. When RI = 0, it indicates the complete disagreement

between the clustering algorithms on any pair of elements, and when RI = 1 indicates the

complete agreement between the clustering methods.

Acc measures the level of consistency between clusters produced by a clustering algorithm

and the clusters by human annotation. Given a set of head terms V , consider a clustering

by algorithm H and clustering by human annotation L. Each cluster Ci(i = 1..k) of H is

mapped to the cluster of L with the largest number of matching head terms. Let Ni denote

the number of head terms in Ci with a matching head term in its corresponding cluster in

L. The Acc of H is defined as

Acc(H) =

∑k
i Ni

|V |

We employ Kendall’s τ [Sheskin, 2004] to evaluate the correlation between the CommTrust

rankings and the previous user study rankings that we conducted in Chapter 3.

4.4.3 Evaluation of Lexical-LDA

Informal language expressions are widely used in feedback comments. Some pre-processing

was first performed. Spelling correction was applied. Commonly used informal expressions

including A+++ and thankx were replaced with AAA and thanks. The Stanford depen-
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Figure 4.4: The accuracy of Lexical-LDA dimension grouping

dency relation parser was then applied to produce the dependency relation representation of

comments and dimension expressions were extracted. The dimension expressions were then

grouped to dimensions by the Lexical-LDA algorithm.

To evaluate Lexical-LDA, the ground truth for clustering was first established. Dimension

expressions are (modifier, head) pairs, and to remove noise only those pairs with support for

head terms of at least 0.1% or three comments (whichever is larger) were considered for

manual grouping. Some head terms resulted from parsing errors that do not appear to be an

aspect were discarded. Examples of such terms include thanks, ok and A+++, In the end a

total of maximum 100 head terms were manually grouped based on the inductive approach

to analysing qualitative data [Thomas, 2006]. We first grouped head terms into categories

according to their conceptual meaning – some head terms may belong to more than one

category, and some orphan words were discarded. We then combined some categories with

overlapping head terms into a broader category, until some level of agreement was reached

between annotators. 2 As a result of this manual labelling process for the eBay and Amazon

dataset, the feedback comments for each seller finally seven clusters are obtained.

Lexical-LDA was implemented based on the Mallet topic modelling toolkit [McCallum,

2002]. With dimension expressions in the form of (modifier, head) pairs, the modifier term

2Manual grouping was performed by two persons. Inconsistency was resolved by discussion.
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Table 4.5: The head term clusters for dimensions

Dim Manual grouping Lexical-LDA (α=0.5) Standard LDA

1 item, bag, product,
dress, earrings, outfit,
top, ring, shoes, coat,
necklace, jacket, stuff,
one, curtains, handbag,
boots, zip, toy, back-
pack, suit, material,
goods, piece, scarf,
leggings

item: 532, bag: 146, dress:
70, earrings: 49, outfit:45,
coat: 16, top: 16, ring:14,
one:11, shoes: 11, jacket:11,
necklace: 11, tfit: 8, handbag:
7, look: 7, received: 7, goods:
6, scarf: 3, product: 3

item: 341, bag: 199, dress:
74, earrings: 61, outfit: 50,
shoes: 17, coat: 16, ring: 15,
necklace: 13, jacket: 11, one:
10, look: 10, curtains: 8, fit:
7, handbag: 6, suit: 6, re-
ceived: 6, track: 5, toy: 3,
piece: 3, leggings: 3, scarf: 3

2 quality, condition, look,
size, color, description,
fit, described, design

look: 16, size: 10, material:
10, curtains: 8, color: 8, zip:
6, design: 4

size: 11, refund: 8, material:
8, zip: 5, color: 5, design: 5,
order: 4, business: 4, post: 3

3 delivery, shipping,
postage, dispatch, time,
arrived, received, post,
shipment, arrival, came

delivery: 1139, payment: 179,
shipping: 69, response: 59,
postage: 50, dispatch: 25,
despatch: 18, deal: 10, came:
10, arrival: 7, arrived: 6, ship-
ment: 5, post: 5

delivery: 1096, shipping: 60,
response: 58, postage: 45, dis-
patch: 22, despatch: 18, deal:
10, came: 10, arrival: 7, ar-
rived: 6, shipment: 5

4 seller, ebayer seller: 286, ebayer: 286,
bayer: 5, described: 4, leg-
gings: 3, track: 3

seller: 519, ebayer: 409, ser-
vice: 249, communication:
149, product: 138, price: 44,
quality: 39, value: 39, buy:
29, condition: 19, looks: 16,
top: 15, items: 13, purchase:
13, ebay: 12, time: 11, bayer:
8, stuff: 7, described: 5,
boots: 4, description: 4, back-
pack: 4

5 service, response, track,
communication

communication: 142, service:
133, product: 106, quality:
55, price: 46, value: 40, buy:
29, condition: 28, ebay: 11,
time: 10, stuff: 8, purchase:
6, boots: 5, description: 5,
backpack: 5

goods: 5

6 transaction, buy, deal,
purchase, order, busi-
ness

transaction: 165 transaction: 160

7 payment, price, value,
refund

refund: 12, order: 6, business:
5, suit: 4, toy: 4, piece: 1

payment: 147
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by head term matrix formed the input for Lexical-LDA. In constructing the cannot-link head

term list for a head term (c.f. Section 4.2), only head terms appearing together with the

head term in at least 0.1% of or three (whichever is larger) comments were considered. The

purpose was to remove the otherwise many spurious cannot-link head terms. The Lexical-

LDA parameter settings were: prior pseudo counts for topics and terms were set as αk = 0.1

and βt = 0.01 (See Equation (4.2)), the number of topics K = 4, 7, 10 for evaluating the

trust model and number of iterations was set to 1000.

We evaluate Lexical-LDA against standard LDA for grouping and against the human

grouping result. As there are seven categories by human grouping, K = 7 for Lexical-

LDA. Figure 4.3 plots the RI of Lexical-LDA at different settings of α. Note that the data

point for α = 0 corresponds to the standard LDA. In addition to the eBay and Amazon

datasets, to demonstrate the generality of our approach, the performance of Lexial-LDA on

the TripAdvisor dataset is also plotted. For eBay and Amazon data, each plotted data point

is the average for ten sellers. On eBay data, RI of Lexical-LDA hovers over 0.78 ∼ 0.83,

and Lexical-LDA significantly outperforms standard LDA for α > 0 except α = 0.3 (p-value

< 0.05, paired two-tail t-test). Comparable RI is observed on TripAdvisor and Amazon

datasets. Our experiment results indicate that Lexical-LDA has steady performance across

different domains.

Figure 4.4 plots the accuracy of Lexical-LDA with different settings of α. As can be seen

in the graph, accuracies hover over 0.70 ∼ 0.74 on eBay data and 0.61 ∼ 0.63 on Amazon

data. There are not statistically significant differences in accuracies between Lexical-LDA

with α > 0 and standard LDA, on either Amazon or eBay datasets. However clustering

accuracy only measures how automatic grouping matches the human grouping, rather than

the coherence within clusters by grouping algorithms. Table 4.5 shows the clusters of head

terms for seven dimensions for eBay Seller 1 from manual clustering, Lexical-LDA (α = 0.5)

and standard LDA respectively. Each head term is grouped to the dimension with the highest

frequency. We can see that Lexical-LDA has significantly higher within-cluster coherence

than standard LDA. For example Dimension 2 is about the details of items, including for

example quality, condition, look, size and colour. All head terms from Lexical-LDA in this

dimension (arguably excluding curtains) are indeed about items sold by the seller, although

some details are missing. In comparison, the head terms in this dimension from standard

LDA are very dispersed and some are not related to items at all, including refund, order,

business, and post. We believe that the supervision from non-link constraints for head terms

helps to produce the meaningful clusters for head terms.

39



CHAPTER 4. LEXICAL-LDA: MINING FEEDBACK COMMENTS FOR DIMENSION RATING

PROFILE BY LEXICAL TOPIC MODELLING

Table 4.6: The precision of identifying different ratings

Positive Negative Neutral Average

eBay 0.86±0.03 0.60±0.03 0.94±0.02 0.80±0.18

Amazon 0.94±0.03 0.68±0.11 0.93±0.02 0.85±0.15

Table 4.7: Overall trust scores by CommTrust Lexical-LDA for ten eBay sellers

eBay seller Comment rank 4 dims 7 dims 10 dims
trust rank trust rank trust rank

Seller 1 6 0.9798 7 0.9777 8 0.9766 7
Seller 2 5 0.9865 1 0.9848 2 0.9828 2
Seller 3 10 0.9771 9 0.9741 9 0.9700 10
Seller 4 2 0.9837 4 0.9836 3 0.9824 3
Seller 5 3 0.9852 2 0.9824 4 0.9824 4
Seller 6 1 0.9850 3 0.9855 1 0.9851 1
Seller 7 7 0.9798 8 0.9783 7 0.9743 8
Seller 8 9 0.9717 10 0.9732 10 0.9725 9
Seller 9 4 0.9823 5 0.9818 5 0.9805 6
Seller 10 8 0.9807 6 0.9814 6 0.9819 5

Kendall’s τ 0.6000 0.6889 0.7333
p-value 0.0167 0.0047 0.0022

SentiWordNet is used to decide the prior orientation of modifier terms. Table 4.6 lists

the precision of our approach for idenfying positive, negative and neutral ratings on the eBay

and Amazon datasets respectively. Precision is calculated as the proportion of correctly

identified from all (modifier, head) pairs computed for each polarity of positive, negative

and neutral. It can be seen that generally our approach achieves reasonably good average

precision for all types of ratings — 0.80 ± 0.18 on eBay data and 0.85 ± 0.15 on Amazon

data respectively. However the precision for the negative ratings is low, which is mainly due

to that SentiWordNet is a general lexicon and as a result some word polarity annotation

does not suit the e-commerce application. For example short is annotated as neutral and

negative in SentiWordNet, and using the latter annotation leads to wrong decision for our

application. The problem of adapting general opinion lexicons to different domains is an

interesting problem outside the scope of this paper, and readers are referred to the relevant

literature (e.g., [Fahrni and Klenner, 2008; Blitzer et al., 2007]).
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Table 4.8: Overall trust scores by CommTrust Lexical-LDA for ten Amazon sellers

Amazon seller Comment rank 4 dims 7 dims 10 dims
trust rank trust rank trust rank

Seller 1 5 0.8876 6 0.8887 4 0.8861 4
Seller 2 6 0.8924 3 0.8957 3 0.8945 3
Seller 3 2 0.9259 2 0.9223 2 0.9201 2
Seller 4 1 0.8896 5 0.8875 5 0.8837 5
Seller 5 8 0.8750 8 0.8718 8 0.8597 8
Seller 6 7 0.8899 4 0.8857 6 0.8834 6
Seller 7 4 0.8787 7 0.8832 7 0.8791 7
Seller 8 9 0.8643 9 0.8573 9 0.8516 9
Seller 9 3 0.9360 1 0.9317 1 0.9302 1
Seller 10 10 0.7855 10 0.7871 10 0.7961 10

Kendall’s τ 0.5556 0.6000 0.6000
p-value 0.0286 0.0167 0.0167

4.4.4 Evaluation of the trust model

Table 4.7 and Table 4.8 list the CommTrust overall trust scores for ten eBay sellers and ten

Amazon sellers for 4,7 and 10 dimensions respectively. As the ground truth, the rankings by

reading comment summaries for sellers are also listed (under the heading Comment rank). For

both eBay and Amazon sellers, on all 4, 7 and 10 dimensions, the rankings by CommTrust are

strongly correlated with the ground truth rankings, as demonstrated by the high Kendall’s

τ and low p-values (less than 0.05). This is suggesting that CommTrust has computed

the dimension ratings from comments and they match users’ preferences after reading the

comments. The number of dimensions does not affect how well the trust scores are correlated

with the user rankings.

A strength of CommTrust is that the relative weights that users have placed on different

dimensions in their feedback comments can be inferred. However, it is hard to elicit the

weights from users when they write the feedback comments. We therefore evaluate our

dimension weight prediction indirectly. To verify the effectiveness of the dimension weights

in the overall trust score, we compute the unweighted overall trust scores for sellers, and

compare the ranking of sellers by unweighted overall trust scores with the ground truth

ranking by users. The results of unweighted overall trust scores for eBay and Amazon sellers,

on all 4, 7 and 10 dimensions, are shown in Table 4.9 and Table 4.10. It can be seen that

without weightings for dimensions, the trust scores for sellers are not correlated with the

ground truth ranking of sellers, as demonstrated by low Kendall’s τ with all p-value greater
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than 0.05.

Table 4.9: Unweighted overall trust scores for ten eBay sellers

eBay seller Comm rank 4 dims 7 dims 10 dims
trust rank trust rank trust rank

Seller 1 6 0.9785 5 0.9433 6 0.8712 10
Seller 2 5 0.9811 3 0.9039 9 0.9280 6
Seller 3 10 0.9224 10 0.9563 3 0.8880 9
Seller 4 2 0.9794 4 0.9728 1 0.9655 2
Seller 5 3 0.9243 9 0.9253 7 0.9178 8
Seller 6 1 0.9820 1 0.9042 8 0.9521 3
Seller 7 7 0.9819 2 0.9492 5 0.9296 5
Seller 8 9 0.9690 7 0.9535 4 0.9416 4
Seller 9 4 0.9571 8 0.9618 2 0.9204 7
Seller 10 8 0.9691 6 0.8976 10 0.9689 1

Kendall’s τ 0.3333 -0.0667 0.0667
p-value 0.2164 0.8618 0.8618

Table 4.10: Unweighted overall trust scores for ten Amazon sellers

Amazon seller Comm rank 4 dims 7 dims 10 dims
trust rank trust rank trust rank

Seller 1 5 0.8543 8 0.8488 2 0.8194 4
Seller 2 6 0.8959 2 0.8673 1 0.8557 1
Seller 3 2 0.8883 3 0.8252 5 0.8021 8
Seller 4 1 0.8563 7 0.8229 7 0.8228 3
Seller 5 8 0.8410 9 0.8283 4 0.7665 9
Seller 6 7 0.8691 5 0.7866 9 0.8063 7
Seller 7 4 0.8971 1 0.8233 6 0.8233 2
Seller 8 9 0.8579 6 0.8168 8 0.8125 6
Seller 9 3 0.8865 4 0.8361 3 0.8153 5
Seller 10 10 0.7387 10 0.6949 10 0.6456 10

Kendall’s τ 0.3778 0.2000 0.3333
p-value 0.1557 0.4843 0.2164

The dimension trust scores and weights together form the dimensional trust profiles for

sellers. The dimensional trust profiles for ten eBay sellers for four dimensions are shown

in Table 4.11. Note that the four dimensions discovered by CommTrust for a seller are

the statistically important dimensions that users expressed opinions on in their feedback

comments and may not necessarily correspond to the four aspects as specified by eBay DSR

ratings. Nevertheless item and shipping indeed are the dimensions where users comment the
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Table 4.11: The dimensional trust profiles for ten eBay sellers

Seller Dim 1 Weight Dim 2 Weight Dim 3 Weight Dim 4 Weight Overall

seller 1 0.995 0.306 0.959 0.036 0.961 0.282 0.984 0.377 0.980
seller 2 0.983 0.235 0.976 0.245 0.969 0.015 0.994 0.505 0.987
seller 3 0.986 0.347 0.907 0.023 0.951 0.129 0.981 0.502 0.977
seller 4 0.948 0.113 0.991 0.054 0.985 0.488 0.992 0.345 0.984
seller 5 0.989 0.549 0.935 0.073 0.986 0.036 0.990 0.342 0.985
seller 6 0.947 0.148 0.988 0.483 0.997 0.326 0.996 0.043 0.985
seller 7 0.980 0.183 0.971 0.401 0.988 0.141 0.988 0.275 0.980
seller 8 0.994 0.208 0.978 0.441 0.958 0.325 0.863 0.027 0.972
seller 9 0.994 0.347 0.956 0.006 0.989 0.509 0.927 0.139 0.982
seller 10 0.973 0.018 0.928 0.159 0.989 0.505 0.995 0.319 0.981
Note: The dimensional trust scores and weights for the item dimension are underlined.

Table 4.12: The dimensional trust profiles for ten Amazon sellers

Seller Dim 1 Weight Dim 2 Weight Dim 3 Weight Dim 4 Weight Overall

seller 1 0.6898 0.1556 0.9462 0.4754 0.9704 0.1955 0.8109 0.1736 0.8876
seller 2 0.9624 0.1884 0.9427 0.3540 0.9249 0.1897 0.7535 0.2678 0.8924
seller 3 0.8571 0.1560 0.9663 0.2008 0.9702 0.5202 0.7597 0.1230 0.9259
seller 4 0.7981 0.1388 0.7241 0.1645 0.9405 0.4960 0.9627 0.2007 0.8896
seller 5 0.9377 0.5294 0.8208 0.1509 0.9288 0.1524 0.6766 0.1674 0.8750
seller 6 0.8286 0.1299 0.9662 0.1675 0.9571 0.4789 0.7243 0.2237 0.8899
seller 7 0.9738 0.1307 0.8744 0.1030 0.9415 0.3450 0.7987 0.4213 0.8787
seller 8 0.9222 0.3535 0.9167 0.1086 0.7573 0.1371 0.8355 0.4007 0.8643
seller 9 0.9841 0.2231 0.8473 0.1555 0.7500 0.0688 0.9646 0.5526 0.9360
seller 10 0.6545 0.1439 0.9136 0.2336 0.9268 0.4103 0.4600 0.2123 0.7855
Note: The dimensional trust scores and weights for the item dimension are underlined.

most on. In Table 4.11 the dimensional trust score and weight for the item dimension has

been underlined. It can be seen that users have substantially different ratings on the item

dimension for different sellers and put on different weights.

Table 4.12 lists the dimensional trust profiles for ten Amazon sellers. The dimensions

item, shipping and seller (service) are the three “hot” dimensions for feedback comments

across ten sellers. The fourth dimension includes topics like condition, price or packaging.

Generally compared with the eBay dataset, dimensional trust scores are more dispersely

distributed among the ten Amazon sellers. The first two columns of Table 4.12 list the

dimensional trust scores and weights for the item dimension. Obviously the ten sellers are

significantly different – trust scores vary from 0.6545 for Seller 10 to 0.9738 for Seller 7,

whereas weights vary from 0.1299 for Seller 6 to 0.5294 for Seller 5.
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Figure 4.5: The dimension trust profiles by CommTrust Lexical-LDA for sellers

Figure 4.5 depicts the dimensional trust profiles for three eBay sellers Sellers 1, Seller 2

and Seller 3, where they have the same four dimensions, including shipping, cost/response,

item and seller. For each seller, the upward bars represent trust scores for dimensions while

the downward bars represent their weights. For example while having a high overall trust

score of 0.9771, Seller 3 has a low dimension trust score of 0.9067 for the response dimension

(Dimension 2). The figure clearly illustrates the variation of dimension trust for each seller

horizontally and those across different sellers vertically. Such comprehensive trust profiles

certainly can cater to users preferences for different dimensions and guide users in making

informed decisions when choosing sellers.

4.5 Summary

In this chapter, we have answered research questions on how to identify dimension from

feedback comments and how to evaluate the weights of each dimension by topic modelling

approach.

We have proposed the Lexical-LDA approach for mining feedback comments and trust

computation. Lexical-LDA makes use of two types of lexical knowledge based on dependency

relations for grouping dimension expressions into dimensions so as to produce meaningful

cluster. The weight for a dimension is computed as the total number of dimension expressions
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for each dimension.

The findings from the experiments on evaluating the overall trust score similar to the

results from the previous user study that we conducted, as explained in Chapter 3. This

shows that our proposed trust model is efficient to rank sellers and identify a trustworthy

seller. Based on the experiments, the more dimensions used in Lexical-LDA, the better results

become. Moreover, the accuracy and Rand Index are conducted to evaluate the grouping in

Lexical-LDA on three datasets, eBay, Amazon and TripAdvisor. This shows our algorithm

can achieve reasonable results on other than e-Commenton domain.

We performed another experiment without dimensional weighting and the findings are

not as good as the CommTrust model. This shows that the dimensional weight is efficient in

computing the trust model.
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Chapter 5

DR-mining: Lexical

Knowledge-based Dimension

Rating Profile Analysis

Give dimensions defined by the seed dimension words, we develop a Dimension Rating mining

algorithm that incorporates domain knowledge, meta-data, and general grammatical patterns

to accurately identifying dimension rating expressions from feedback comments.

We will first describe our approach based on the typed dependency anlaysis to extracting

dimension opinion expressions and identifying their associated ratings. We then propose a

matrix factorisation technique to automatically compute weights for dimensions from the

sparse and noisy dimension rating matrix.

5.1 Knowledge based dimension opinion exraction

We describe our approach of combining meta-data and knowledge base formed by NLP

[De Marneffe et al., 2006; De Marneffe and Manning, 2008] techniques to mining textual

comments for identifying dimensions and ratings towards dimensions. To more accurately

identify dimensions, we further extract meta-data on the product hierarchy from eBay to

identify ratings on the product dimension.

Based on eBay Detailed Seller Ratings on four aspects, we define five dimensions:

• Product: the quality or condition (new or used) of the product bought.

• Delivery: delivery is on time or not.
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• Communication: how the seller communicates with buyers.

• Cost: item price, handling charges, and other associated cost.

• Transaction: the overall satisfaction of the transaction.

We need to infer dimension words from their associated prior dimensions. We observe

that in eBay and Amazon feedback comments and generally for e-commerce systems salient

words and phrases are used to express dimensions and opinions on dimensions. On our

sample dataset, out of 751 comments on the Product dimension, 189 comments (25.17%)

use the word product(s) and 163 comments (21.70%) use the word item(s). We therefore

compile the dimension word lists by analysing 1,956 feedback comments from 31 January

to 18 March 2012 on ten sellers randomly selected from eBay. Each comment is annotated

with the dimensions and their associated opinion as positive (+1), negative (-1) or nil (0). 1

In example of one eBay comment “bad communication, will not buy from again. super slow

ship(ing). item as described.”, positive rating is expressed towards the product dimension,

negative rating is expressed towards the communication and delivery dimenions, and no

rating is expressed towards any other dimensions.

Table 5.1: Dimension words

Dimension Words (Confidence)

Product product (0.99), condition (0.98), item (0.79), work(verb, 0.78),
quality(0.66)

Delivery delivery (1.0), postage (1.0), ship (0.98), arrive (0.75), receive (0.46)
Communication communication (1.0), response (1.0), email (1.0), reply (1.0)
Cost cost (1.0), value (1.0), price (0.97), refund (0.71)
Transaction ebayer (1.0), transaction (1.0), service (0.98), business (0.97),

seller (0.96), deal (0.94), ebay (0.89), work (noun, 0.75), buy (0.74)

We apply the Stanford typed dependency relation parser to annotate words with Part

of Speech (POS) tags and select nouns and verbs as candidates for dimension words. We

further apply the association rule [Agrawal and Srikant, 1994] mining technique to determine

dimension words – words that express a dimension with sufficient support (≥ 1%) and confi-

dence (≥ 40%) are dimension words. Table 5.1 lists the dimension words together with their

confidence – the conditional probability of a word being associated with a dimension [Agrawal

and Srikant, 1994]. Note that words in the table are root words that represent various forms

1Annotation was done by two persons. Agreement is reached by discussions.

47



CHAPTER 5. DR-MINING: LEXICAL KNOWLEDGE-BASED DIMENSION RATING

PROFILE ANALYSIS

used in free text comments. For instance, ship also stands for shipping and shipment. Note

also that when the word work is used as a verb, it refers to the Product dimension, as in the

comment “Works great and arrived before shipping estimated date”; when work is used as

a noun however, it refers to the overall transaction, as in the comment “Good ebayer, great

work”.

We automatically extract product information to augment identification of the Product

dimension. In addition to general terms like product and item, specific product names are

also frequently (approximately 15% of comments on the Product dimension) used in feedback

comments. Fortunately most e-commerce systems keep meta-data on products that can

be used to augment identification of the Product dimension. Each transaction on eBay is

associated with a pre-defined hierarchy of product categories that can be obtained using

the eBay API. We therefore identify the product dimension from feedbacks comments by

including names at various levels of the corresponding product hierarchy. For example, in

the comment “My favourite lens. My favourite ebayer. These people are awesome.”, the

lens is a camera part and at a layer in the product hierarchy for cameras on eBay. After

extracting (lens, favourite) as a dependency relation pattern, we take lens to match names

of the camera product hierarchy and as a result can identify that this comment expresses

opinion on the product dimension. For Amazon feedback comments, as comments are not

associated with product hierarchies for transactions, we extract keywords from the Amazon

full store directory page and associate them with the Product dimension.

Table 5.2: Dimension-associated opinion expressions

Dimension Eexpressions

Product as described, beautiful, lovely
Delivery on time, fast, lightning
Transaction A+, 5 star, five star

Some opinion words are strongly associated with dimensions. For example, the word

beautiful is strongly associated with the prodcut dimension whetheras words like fast and

lightning are strongly associated with the delivery dimension. These dimension-associated

opinion words are annotated in Table 5.2, and they are used to infer dimenions when the free

text comments do not follow grammatical rules.

User feedback comments use informal language and often do not conform to any gram-

matical rules. Not surprisingly dimension ratings may not always be expressed as dimension-

rating patterns that can be captured by the dependency relation parser. For example, the

48



CHAPTER 5. DR-MINING: LEXICAL KNOWLEDGE-BASED DIMENSION RATING

PROFILE ANALYSIS

Negation?

 

Product 
meta-data

 

Dependency relation 
parsing

Invert rating
polarity

Feedback comment

N

Y

Is DR-pattern?

Multi-Dimensional Trust Evaluation 
(Equations 1,2,3)

Stemmed and match 
any dimension?

Y

N

Y

N

Y

Stemmed and match 
any dimension?

Stemmed and match 
polarity?

Match product
dimension?

Y

N

Word/phrase Dimension 

as described Product 

5 star Transaction 

A+ Transaction 

beautiful Product 

... … 

 

Dimension words (Table 2):

Refined SentiWordNet:

Dimension-associated 
opinion expressions:

Y

Word Polarity 

amazing positive 

excellent positive 

good positive 

slow negative 

… … 

 

Word Dimension 

product Product 

delivery Delivery 

price Cost 

service Transaction 

… … 

 

 
amod(NN, JJ)
advmod(VB, RB)
nsubj(JJ, NN)
acomp(VB, JJ)
dep(NN, RB)

DR-patterns (Table 3)

Figure 5.1: The CommTrust DR-mining algorithm

phrase “All 5 star” from the example comment in Figure 4.1 can not be identified as a

dimension-rating pattern by the dependency relation parser. However the phrase indeed

expressed opinion towards the Transaction dimension. In fact the phrase “All 5 star” is

commonly used in feedback comments. A list of dimension-associated opinion phrases are

compiled to help identify dimensions and associated ratings not expressed as dimension-rating

patterns.

In addition to words, adjectival phrases are also used to express opinions. Similar to

dimension-associated opinion words, they are dimension-associated phrases. A+ is parsed

as a phrase by the Stanford parser and is a typical example. Although not containing

any dimension word explicitly, A+ clearly expresses positive opinion towards buyers’ overall

experience – the transaction dimension. We include three commonly used opinion phrases

with high conficence in our knowledge base – as described (97% confidence) expresses positive

rating for the product dimension, and 5 star (100 % confidence) and A+ (97% confidence)

express positive rating for the transaction dimension. These dimension-associated opinion

phrases are shown in Table 5.2.

The complete dimension-rating mining (DR-mining) algorithm for identifying dimensions

and associated ratings from free text comments is shown in Figure 5.1. Each comment is first
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analysed using the Stanford dependency relation parser. To identify dimensions in sentences,

the dependency relations resulted from parsing are first matched against the DR-patterns

shown in Table 4.1. If a DR-pattern is found, first the dimension is identified using the

dimension word list in Table 5.1 as well as the associated product meta-data, and then the

dimension rating is identified using the SentiWordNet opinion lexicon with refinement as

described in Section 4.3.

When the dependency relation parsing result of a comment does not contain a DR-

pattern, we try to discern if dimension ratings can be computed using dimension-associated

opinion expressions, or if the comment contains at most three words, we try to identify if the

comment expresses dimensional feedback by extracting the adjective and match it against

dimension-associated opinion words (annotated words in Table 5.2).

The negation relation (neg()) from the Stanford parser is used to detect any negation of

ratings in DR-patterns. We go through the dependency relations for DR-patterns for the

negation modifier neg() of the head or dependent. If either the head or dependent word of

a DR-pattern involves the neg() relation, the relevant rating is inverted. The negation of

feedback polarities expressed in dimension-associated words and phrases are identifyed using

a negation word list [Goryachev et al., 2006].

In the process of matching dimension and opinion words, the Porter stemming algor-

ithm [Porter, 1980] is used to achieve effective matching, considering the various formats for

words.

Note that although the Transaction dimension is not considered in the trust model of

CommTrust (refer to Equation 3.1), identifying ratings on the Transaction dimension is

important for analysing feedback comments.

5.2 Computing dimension weights by matrix factorisation

Dimension trust scores need to be aggregated to compute the overall trust score for a seller.

A simple approach is to average the dimension trust scores [Griffiths, 2005]. But the dimen-

sion ratings derived from feedback comments are highly noisy in two ways: many comments

are from the same buyer and therefore are highly correlated; some buyers are lenient (or

harsh) raters and therefore their ratings should be taken with a grain of salt. The problem

we are facing is to compute dimension weights from noisy ratings. We propose to overcome

the problem by assuming that there is some latent structure underlying the noisy ratings.

Specifically we represent dimension ratings as a rating matrix and then compute the under-
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Figure 5.2: Latent component representations under SVD for the rating matrix in Table 3.2.
Comment vectors and dimension vectors are represented as squares and triangles respectively.

lying structure for the ratings using singular value decomposition (SVD) [Deerwester et al.,

1990]. Under SVD, comment vectors and dimension vectors are projected onto vectors in the

same reduced space of latent independent components, where we can compute the weights

for dimensions.

5.2.1 Singular value decomposition

With SVD, latent components in the new space are ordered so as to reflect major associative

patterns in the original data, and ignore the smaller and less important influences. The

full SVD of a matrix is defined as follows: Let Am×n denote an m × n matrix, A can be

decomposed into the product of three matrices:

Am×n = Um×mDm×nV
T
n×n

where U contains the orthonormal eigen vectors for AAT , V contains the orthonormal eigen

vectors for ATA, and D is a diagonal matrix containing the square roots of eigen values

from U (V has the same eigen value as U). Especially D contains values indicating the

variance of the original data points along each latent component, ordered in decreasing level

of variance. The first component represents the largest variance of the original data points. In

many applications (e.g. [Deerwester et al., 1990]), only the first several components of SVD

(typically two or three) are considered to form a reduced representation as shown below,
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where k < m and k < n:

Am×n ≈ Um×kDk×kV
T
k×n

We take an example rating matrix from Table 3.2 in Chapter 3. The detailed results of

the SVD for this example are shown in Appendix A and be ploted in Figure 5.2. With k = 2,

the comment vectors and the dimension vectors are mapped to the same latent component

space of two components. As shown in Figure 5.2(a), the first component is where original

data points show most variance. In the latent component space, the row vectors of U are

the five trust dimension vectors and the row vectors of V T are the ten comment vectors. In

Figure 5.2(a), squares represent comment vectors, and triangles denote dimension vectors.

Note that in Figure 5.2(a) only three points are denoted for dimension vectors – the vectors

for the Communication and Cost dimensions fall on the same position (0.00, 0.00), which

indicates that Communication and Cost dimensions are highly correlated in the original

rating matrix. Similarly only six points for comment rating vectors are denoted due to that

four comment vectors fall on the same position, indicating that these comment ratings are

highly correlated and possibly by the same seller.

As demonstrated in the example, representing dimensions in the latent component space

has revealed the associative patterns in the original input data. More importantly such

representation allows us to accurately compute the weights for trust dimensions, as discussed

in the next section.

5.2.2 Computing dimension weights in the latent component space

With the ratings of {-1, 0, +1} for a rating matrix, the zeros are deemed missing values and

the input matrix becomes very sparse. As a result, in addition to the high computation cost,

SVD often results in latent vectors that are sparse and overlap in the latent space [Chan-

drasekaran et al., 2011]. Indeed in Figure 5.2(a) several points are at or close to the line with

x = 0. Two comment rating vectors and two dimension rating vectors fall onto the point

(0,0). To overcome this problem, and to accurately represent user ratings, we convert the

user ratings of {-1, 0, +1} to a rating matrix of {1, 3, 5} and then SVD is applied. The

detailed results see in Appendix A.

In Figure 5.2(b), we can see that points are further away from the line where x = 0.

There are still some vectors fall onto the same point. For example, two dimension vectors

fall onto the point (0.51, 0.24). With the reduced SVD B4×10 ≈ U4×2D2×2V
T
2×10 (shown

in Appendix A), the column vectors of U4×2 are the two components in the latent space
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where ratings in B4×10 exhibit the largest variance and are ordered decreasingly by the level

of variance. Specifically coefficients for the Product, Delivery, Communication and Cost

dimensions for the first latent component are {0.53, 0.45, 0.51, 0.51}.
Note that column vectors in U are unit vectors. Specifically, for a column vector ~uj of U

(j = 1..k), the coefficients of ~uj have the following property,

m∑
d=1

~uj [d]2 = 1.

In our application, d = 1..m (m = 4) indeed corresponds to the four dimensions Product,

Delivery, Communication and Cost. The first column vector ~u1 represents the latent compo-

nent where the original rating matrix demonstrates the highest variance and so potentially

its coefficients can indicate weights for dimensions. However ~u1 itself may be unreliable as

the weight for dimensions, while all k column vectors of U combined can provide a reliable

estimation for dimension weights. Specifically the weight for a given dimension d is computed

from k column vectors of U as follows:

wd =

∑k
j=1 ~uj [d]2

k
(5.1)

Typically we set k = 2 and our experiments confirm that this setting gives us reliable es-

timation of dimension weights while removing noises in the rating matrix. The dimension-

weighted overall trust score for the original rating matrix can be computed by aggregating

the dimension trust scores computed from Equation 3.3 with the weights computed from

Equation 5.1.

With the above SVD of rating matrix B with k = 2, the weights for dimensions Product,

Delivery, Communication and Cost are computed from the two column vectors of U , as shown

below:

~wT = [0.48 0.20 0.16 0.16]

It can be seen that Communication and Cost have the lowest weights, and Product

has the highest weight, which intuitively corresponds to the total number of positive and

negative ratings and their level of consistency in ratings along these dimensions. As shown

in the rating matrix A, the Product dimension has a small number of positive and negative

ratings, and the highest variation – three positive, two negative and five neutral ratings. The

Communication and Cost dimensions are dominated by neutral ratings and have the highest
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Figure 5.3: Dimension accuracy of the CommTrust DR-mining algorithm on eBay and Ama-
zon data

consistence in ratings – one positive and nine neutral ratings.

Given the weights as computed above in ~wT , and the dimension trust scores in Exam-

ple 3.1.1, according to Equation 3.1 the overall trust score for the seller in Table 3.2 is 53.4%.

On the other hand, based on direct ratings on transactions (the “Tran.” column of Table 3.2),

the transaction trust score for the seller computed from Equation 3.3 is 76.92%. In contrast,

based on the overall ratings recorded on eBay (the “eBay” column of Table 3.2), the positive

rating percentage score is 8/9 or 88.9%. It can be seen that the eBay reputation system, not

considering dimension trusts and not considering the neutral ratings, the high overall trust

score is very likely inflated – given that ratings for Communication and Cost dimensions are

as low as only one positive rating out of ten comments.

5.3 Experiments

5.3.1 Accuracy of the CommTrust DR-mining algorithm

The most prominent retrieval measures are precision and recall [Baeza-Yates et al., 1999].

Recall is defined as the ratio between the number of retrieved relevant items to the total

number of existing relevant items. Precision is defined as the ratio between the number of
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Figure 5.4: Dimension rating accuracy of the CommTrust DR-mining algorithm on eBay
and Amazon data

relevant items and the total of trtrieved items. The goal is to maximise both, but commonly

they have antogonisitc behaviour, i.e., trying to increase recall will likely reduce precision.

To compare different systems, combinations of precision P and recall R metrics have been

developed, such as the F1 measure, F1 = 2PR/(P + R), which can also be generalised to a

weighted F1 measure, Fw = (λP + λR)PR/(λPP + λRR). With the given weightings, the

preferences to precision or recall can be adjusted. A direct relation between precision and

recall to perplexity and language models has been given in [Azzopardi et al., 2003]. We

apply recall to evaluate accuracy of DR-mining algorithm.

1,956 feedback comments between 31 January and 18 March 2012 for ten sellers on eBay

are used to build the dimension lexicon for the CommTrust DR-mining algorithm. For cross

validation, we evaluate the performance of CommTrust, the trust model as well as DR-

mining algorithm, on ten other random sellers on eBay and ten random sellers on Amazon.

200 comments for each seller are randomly selected, and non-English comments are removed.

Each comment is annotated with dimensions and their associated ratings of positive (+1),

negative (-1) and neutral (0) 2.

To evaluate the CommTrust DR-mining algorithm, as a baseline we implemented the

2Annotation is done by two persons. Agreement is reached by discussions.
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Table 5.3: Overall trust scores and ranks for ten eBay sellers and ten Amazon sellers

eBay Amazon

seller CommTrust eBay seller CommTrust Amazon
trust rank trust rank trust rank trust rank

EA 0.88 7 1.00 1 AA 0.86 4 0.98 1
EB 0.90 3 1.00 2 AB 0.87 3 0.97 4
EC 0.89 5 0.99 7 AC 0.89 1 0.98 2
ED 0.89 6 0.99 8 AD 0.82 10 0.97 5
EE 0.84 9 0.98 9 AE 0.84 8 0.96 8
EF 0.92 1 1.00 3 AF 0.86 5 0.97 6
EG 0.90 4 1.00 4 AG 0.88 2 0.94 9
EH 0.84 10 1.00 5 AH 0.85 6 0.93 10
EI 0.91 2 1.00 6 AI 0.85 7 0.98 3
EJ 0.87 8 0.98 10 AJ 0.84 9 0.97 7

Kendall’s τ 0.3333 0.1556
p-value 0.2164 0.6007

Hu&Liu algorithm as described in [Hu and Liu, 2004b], as follows:

• The Stanford Part of Speech Parser is first used for POS tagging. From the 1,956

feedback comments for eBay sellers used for training, nouns with a frequency of ≥
1% are deemed dimension words, and are then assigned to the four dimensions and

Transaction.

• Adjectives and adverbs close (by default three words before and after) to the dimension

words are opinion words. SentiWordNet is used to decide the polarity of opinion words.

• Negation words are based on the negation word list in [Goryachev et al., 2006], and

are applied as within two words before opinion words.

Figure 5.3 shows the average accuracies of dimension identification for the CommTrust

DR-mining algorithm and the Hu&Liu approach on feedback comments of ten eBay sellers

and ten Amazon sellers for evaluation. Note that the accuracies for four dimensions used in

the trust model of CommTrust as well as that for the Transaction dimension are included. On

both datasets, CommTrust significantly outperforms the Hu&Liu approach for identifying all

dimensions(Wilcoxin signed rank test, p < 0.05). On the eBay dataset CommTrust achieves

accuracies from 79.49% on the Cost dimension to 93.1% on the Delivery dimension, whereas

Hu&Liu can only reach 71.17% on the Delivery dimension. On the Amazon dataset, the

accuracy of CommTrust varies from 62.67% for the Communication dimension to 91.72%
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Table 5.4: Dimension trust scores for ten eBay sellers

Dimension
eBay Sellers

EA EB EC ED EE EF EG EH EI EJ

Product CT 0.91 0.90 0.93 0.94 0.91 0.95 0.93 0.96 0.90 0.90
eBay 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96

Delivery CT 0.95 0.97 0.95 0.92 0.88 0.96 0.95 0.83 0.94 0.96
eBay 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.94

Comm CT 0.73 0.75 0.62 0.77 0.73 0.70 0.75 0.75 0.85 0.71
eBay 0.98 0.98 0.94 0.96 0.94 0.98 0.96 0.96 0.98 0.94

Cost CT 0.76 0.83 0.82 0.79 0.57 0.86 0.75 0.57 0.86 0.56
eBay 1 1 0.98 1 0.98 1 1 1 1 0.98

CT: CommTrust

Table 5.5: Dimension trust scores for ten Amazon sellers

Dimension
Amazon Sellers

AA AB AC AD AE AF AG AH AI AJ

Product 0.89 0.89 0.93 0.77 0.87 0.89 0.95 0.91 0.88 0.89

Delivery 0.93 0.96 0.95 0.92 0.93 0.94 0.91 0.93 0.94 0.89

Comm 0.57 0.57 0.57 0.62 0.57 0.57 0.50 0.50 0.50 0.62

Cost 0.75 0.78 0.75 0.81 0.73 0.73 0.81 0.67 0.75 0.76

CT: CommTrust

for the Cost dimension, whereas the Hu&Liu accuracy varies from 42.34% on the Delivery

dimension to 63.83% on the Communication dimension. The biggest gap in accuracy between

CommTrust and Hu&Liu lies in identifying the Transaction dimension. This is mainly due to

that phrases are often used to express ratings directly, without explicitly using any nouns for

transactions. In CommTrust the Transaction dimension can be inferred from the dimension-

associated opinion expressions but they are missed by the Hu&Liu approach.

Figure 5.4 compares the accuracies of dimension rating identification of CommTrust and

Hu&Liu, averaged over ten sellers eBay and Amazon respectively. Identifying dimension

ratings depends on identifying dimensions first, and so the accuracy for dimension rat-

ing identification is generally lower than that for identifying the corresponding dimension.

CommTrust generally achieves consistently high accuracy. On the eBay dataset, it has ac-

curacies of 76.12% for Cost rating to 89.64% for Delivery rating. On the Amazon dataset,

it achieves accuracies from 70.55% for Product rating to 84.04% for Transaction rating. In

contrast, Hu&Liu achieves reasonably good accuracy on the eBay dataset – from 44.48% for

Transaction rating to 68.3% for Communication rating, but very modest accuracy on the
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Figure 5.5: The comprehensive trust profiles by CommTrust for eBay sellers

Amazon dataset – from 25.33% for Communication rating to 61.39% for Cost rating. The

consistently higher accuracy of CommTrust is due in part to the application of dependency

relation analysis for DR-patterns to identify opinion words and in part to the application

of a refined opinion lexicon of SentiWordNet. The odd low accuracy with high variance for

both CommTrust and Hu&Liu on Communication ratings on the Amazon data results from

the fact that comments on Communication is extremely rare – four out of ten sellers have

only one comment on Communication and missing this only rating results in an accuracy of

zero.

5.3.2 Evaluation of the trust model

Table 5.3 shows the overall trust scores and rankings for ten eBay sellers and ten Amazon

sellers, where dimension weights are computed using Equation 5.1 (k = 2). It can be seen

from Table 5.3 that the eBay feedback score is generally very high (0.98–1.00) for all ten

sellers, and it is impossible to rank sellers. With 5-star ratings of finer grain, the Amazon

feedback score partially remedy the problem, but still the feedback scores are high and very

close to each other (0.93–0.98). The CommTrust overall trust scores are at a more reasonable

level, and more importantly can effectively rank sellers. The ranking by CommTrust does

not correlate with the eBay system (τ = 0.3333, p = 0.2164) for eBay sellers, it also does
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Figure 5.6: The comprehensive trust profiles by CommTrust for Amazon sellers

not correlate to the Amazon system (τ = 0.1556, p = 0.6007) for Amazon sellers. This is

suggesting that CommTrust has provided distinct information that is not included in any

other models.

The dimension trust scores by CommTrust are shown in Table 5.4 and Table 5.5. The

dimension trust scores by CommTrust are at a more reasonable level and sellers show different

trust profiles along different dimensions. On the Cost dimension for example, the trust

scores by CommTrust for eBay sellers vary from 0.56 for seller EJ to 0.86 for seller EI.

Note that the trust scores for Communication and Cost are much lower than those for

Product and Delivery. This is due to the lack of ratings on Communication and Cost in

comments. Nevertheless CommTrust can effectively rank sellers on dimensions. The rankings

of sellers on dimensions do not correlate (max τ = −0.32, with p = 0.26). This is showing

that the CommTrust dimension trust model can effectively capture the differences between

dimensions. Table 5.4 also lists the DSR scores by the eBay reputation system for eBay

sellers on the corresponding dimensions. Obviously all ten eBay sellers have consistently

high DSR scores (0.94–1). Moreover, ranking by DSR scores on Product is highly correlated

with that on Delivery (Kendall’s τ = 1, p = 0.01) and ranking on Communication is highly

correlated with that on Cost (τ = 0.80, p = 0.02). It is obviously difficult to rank sellers

dimensions by the eBay DSR scores.
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Figure 5.7: Dimension trust weight with respect to number of comments on eBay

5.3.3 Trust profiles for sellers

The dimension trust scores and weights together form the complete trust profiles for sellers

in e-commerce applications. Figure 5.5 and Figure 5.6 depicts the different trust profiles for

three representative eBay and Amazon sellers respectively. For each seller, the upward bars

represent trust scores for dimensions while the downward bars represent their weights. For

example in Figure 5.6, while having the highest overall trust score of 0.89, Amazon seller

AC has a low dimension trust score of 0.57 for Communication. Sellers AE and AJ have the

same overall trust score of 0.84, but their dimension trust profiles are different. Seller AE

has a high trust score for Delivery with a low weight of 0.32 whereas seller AJ has a lower

trust score for Delivery with a high weight of 0.47. The complete trust profiles of eBay sellers

and Amazon sellers as shown in Figure 5.5 and Figure 5.6 clearly illustrate the variation of

dimension trust for each seller horizontally and those across different sellers vertically. Such

comprehensive trust profiles certainly can cater to buyers’ preferences for different dimensions

and guide buyers in making informed decisions when choosing sellers.

In Figure 5.7 and Figure 5.8, the dimension weights for eBay seller EB and Amazon

seller AE are plotted, with respect to the number of comments (Dimension weights for other

sellers show similar trends and are omitted to save space). In the figure, when the number

of comments is increased from ten to 190 (recall that a seller has 200 comments) the dimen-
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Figure 5.8: Dimension trust weight with respect to number of comments on Amazon

sion weights converge at 140 and 150 comments for eBay seller EB and Amazon seller AE

respectively. This suggests that a reasonable number of comments is sufficient to reliably

estimate dimension weights. It is obvious from the figure that Communication and Cost

dimensions have low weights (0.11 and 0.12 respectively), whereas Product and Delivery

have high weights (0.31 and 0.46 respectively). This result is consistent with our observation

that there are few positive and negative ratings on Communication and Cost in feedback

comments.

5.4 Summary

In this chapter, we have answered research questions on how to identify dimension from

feedback comments and how to evaluate the weights of each dimension.

We have proposed a knowledge-based approach that incorporates domain knowledge,

meta-data, and general grammatical patterns to accurately identifying dimension ratings

from feedback comments.

We have formulated the problem of computing dimension weights from ratings as a factor

analytic problem and propose a matrix factorisation technique to automatically compute

weights for dimensions from the sparse and noisy dimension rating matrix.

The findings from the experiments on evaluating the overall trust score illustrate the
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rankings is correlated to the results from the previous user study that we conducted, as ex-

plained in Chapter 3. This shows that our proposed trust model is efficient to rank sellers and

identify a trustworthy seller. Moreover, the accuracy of DR-mining algorithm is conducted

to evaluate the dimension accuracy and the dimension rating accuracy on eBay and Amazon

datasets. This shows our algorithm can achieve reasonable results on identifying dimension

and dimension ratings.
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Chapter 6

Conclusions and Future work

The “all good sellers” problem is well known for the reputation management systems of pop-

ular e-commerce web sites like eBay and Amazon. The high reputation scores for sellers can

not effectively rank sellers and therefore can not guide potential buyers to select trustworthy

sellers to transact with. On the other hand, it is observed that although buyers may give

high feedback ratings on transactions, they often express direct negative opinions on aspects

of transactions in free text feedback comments.

We have proposed a multi-dimensional trust evaluation model CommTrust for computing

comprehensive trust profiles for sellers in e-commerce applications. Different from existing

multi-dimensional trust models, we compute dimension trust scores and dimension weights

automatically via extracting dimension ratings from feedback comments. Our experiments

on eBay and Amazon data show that CommTrust can compute comprehensive trust profiles

for sellers that manifest distinct valuable information not available in feedback scores by eBay

or Amazon reputation systems. Our model can distinctively identify the reputable sellers

from another seller that have had bad history with previous buyers. Moreover, the ratings are

more reasonable and acceptable, and not all sellers have high scores, as compared to other

e-commerce websites. It can significantly reduce the strong positive bias in e-Commerce

reputation systems, and solve the “all good sellers” problem. This model is good assistance

to the buyers when doing online transaction, as to shield them from being a victim of fraud

and untrusted sellers.

The research questions presented in the introduction relate to building CommTrust, a

comprehensive trust model. This model is aimed as a guideline for potential buyers to assess

the most trusted and reliable sellers. In the following we will summarize how each research
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question are answered.

Research question 1: How can multi-dimensional trust from extracted di-

mensions and the associated opinion polarity be computed?

In e-commerce environments, different transactions may have different contexts. The

trustworthiness of a seller displayed on the e-commerce websites should be a reliable

indication for the potential buyers to purchase items or service from them. Therefore,

our trust model is aimed to provide a clear and objective ranking for the sellers. The

trust model, which is built from the previous feedback comments would assist the

potential buyers in making the right decision when attempting to purchase from a

particular seller.

Research question 2: How can dimensions from online feedback comments

that customers have expressed their opinions on be more accurately iden-

tified?

The first approach applied topic modelling to automatically generate the dimensions.

We proposed the Lexical-LDA algorithm to group aspect expressions into semantically

coherent categories, which we refer as dimensions. These dimensions are based on

lexical knowledge which discussed in Section 4.2. This approach is able to achieve

more effective clustering, can be used across different domains and also to avoid manual

time-consuming annotation. The findings of the experiment on the e-commerce data

set using Lexical-LDA illustrate that the Rand Index is over 0.75 and the accuracy

is around 70%. The dimensions are more accurate and easy to understand. We also

applied this technique to another data set, which is a hotel review data set. The results

showed stable performance across domains. In addition to that, the features are more

transparent and easy to understand by users.

In the second approach, given the five dimensions based on eBay Seller Detailed Rat-

ings, which are products as described, communication, postage time and charges, we

proposed a Dimension Rating mining algorithm to automatically identify the dimen-

sion rating expressions from the comments such as “nice item”, “quick shipping”, “great

service” and many more. The five dimensions that we used in our study are products,

delivery, communication, cost and transaction (the definition of these five dimensions

presented in Section 5.1). From the training data, we extracted these five dimension

word list and the dimension-associated opinion expressions. We also used the product
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metadata from eBay and Amazon to identify the product dimension. The experiment

shows a comparatively better baseline from Hu&Liu Hu and Liu [2004b] approach.

Research question 3: How can weights for each dimension that customers

have expressed their preference on be more efficiently evaluated?

We applied latent factor models to discover the latent features from the observed data,

which is the dimension rating matrix.

In lexical-LDA approach, automatically group the aspect opinion expressions. The

total number of expressions is normalized to produce the dimension weight.

In matrix factorization model, we observed the occurrences of terms in the dimensions

and assign rating to the respective dimensions. From here, we applied Singular Value

Decomposition (SVD) to estimate the uncorrelated factors. These factors are then used

to compute the weight for each dimension.

These weights are compared with the user study ranking results. The findings show that

applying the weights, the ranking has significant correlation with user study results.

In contrast, the same model without these weights, the ranking is not correlated to the

user study results. Thus, this proves that the weights computed using latent factor is

accurate in determining the aspect opinion expressions.

Research question 4: How can sentiment from textual feedback for each

dimension be more accurately classified?

Sentiment classification aims to identify view-point from information expressed in text.

Whether a piece of text is expressing positive or negative attitude towards associated

aspect of comments need to be identified.

We applied general opinion word lexicon SentiWordNet, which is a widely used public

domain NLP resource to identify opinion polarities. SentiWordNet has three different

scores; positive, negative and neutral. Since our research only requires positive or

negative score, we add the sum of positive and negative scores. If it is greater than

or equal to 0.5, then only it is considered as an aspect opinion expressions. If the

positive score is higher, it carries the positive polarity, and if negative score is higher,

it carries the negative polarity. Our experiments on both approaches, topic modelling

and machine learning approachs, showed better than baseline.
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Future work

The CommTrust proposed in this thesis can be used to reliably evaluate the trustworthi-

ness of sellers. However, it is still need improvement to mine more detailed information from

feedback comments.

In on-line feedback comments, casual language is commly used to express users’ opinon.

For example, some users type in “prod” to refer as “product”. Currectly in our research,

when identifying the term in comments, we relied on the type dependency relations, ignored

the spelling. As the results of dimension terms, “prod” and “product” may both identified.

In future work, we can improve mining techniques to identify terms more acurately.

Currently, we applied the SentiWordNet to distinguish the positive and negative com-

ments. Future work can explore the possibility of understanding the contents more in-depth.

For example, a comment that states the products price is cheap does not necessarily means

the product is not of a good quality. Further more, the CommTrust only take into consid-

eration of the positive and negative comments. Future work also can include the neutral

opinions in the comments as the input to build the trust model.

In e-commerce reputation systems, users can leave text comments and an overall ranking

score based on their experience. In order to solve the “all good repuation” problem, in our

research we only look at the comments regarless the overall ranking score. Somehow the

overall ranking rated by the user is useful information on some level. Future work can be

expanded by including the overall ranking from the users with the comments and compute

a new trust value.
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An SVD Example

This appendix presents an SVD example using the sample data of dimension ratings for a

seller on eBay.

The 4 × 10 matrix A below represents a rating matrix. The row vectors of A are the

dimension vectors, where each of ten components corresponds to a comment. The column

vectors of A are the comment vectors, where each of four components corresponds to a

dimension.

A =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10


1 0 0 1 0 0 0 1 −1 −1

0 0 0 −1 0 0 1 0 −1 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

Applying the reduced SVD model with k = 2 to matrix A produces the decomposition as
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follows:

A ≈ UDV T =


1.00 0.00

0.00 1.00

0.00 0.00

0.00 0.00


[

2.24 0

0 1.73

]



0.45 0.00

0.00 0.00

0.00 0.00

0.45 −0.58

0.00 0.00

0.00 0.00

0.00 0.58

0.45 0.00

−0.45 −0.58

−0.45 0.00



T

The above rating matrix A on ratings {-1, 0, +1} is mapped to a rating matrix B on

ratings {1, 3 5} as follows:

B =


5 3 3 5 3 3 3 5 1 1

3 3 3 1 3 3 5 3 1 3

3 3 5 3 3 3 3 3 3 3

3 3 3 3 3 5 3 3 3 3


SVD produces the following reduced decomposition for B:

B ≈ UDV T =


0.53 −0.83

0.45 0.44

0.51 0.24

0.51 0.24


[

19.88 0

0 4.06

]



0.35 −0.35

0.30 0.06

0.35 0.18

0.31 −0.57

0.30 0.06

0.35 0.18

0.35 0.28

0.35 −0.35

0.20 0.25

0.25 0.47



T

68



Bibliography

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. Int. Conf.

on VLDB, 1994.

L. Azzopardi, M. Girolami, and K. van Risjbergen. Investigating the relationship between

language model perplexity and ir precision-recall measures. In Proceedings of the 26th

annual international ACM SIGIR conference on Research and development in informaion

retrieval, pages 369–370. ACM, 2003.

S. Baccianella, A. Esuli, and F. Sebastiani. SentiWordNet 3.0: An enhanced lexical resource

for sentiment analysis and opinion mining. In Proc. 7th Int. Conf. on Language Resources

and Evaluation, 2010.

R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume 463. ACM

press New York, 1999.

D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. the Journal of machine Learning

research, 3:993–1022, 2003.

J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders:

Domain adaptation for sentiment classification. In ACL, volume 7, pages 440–447, 2007.

S. Brody and N. Elhadad. An unsupervised aspect-sentiment model for online reviews. In

Proc. Human Language Technologies: The 2010 Annual Conference of the North American

Chapter of the Association for Computational Linguistics, pages 804–812, 2010.

G. Carenini, R. Ng, and E. Zwart. Extracting knowledge from evaluative text. In Proceedings

of the 3rd international conference on Knowledge capture, pages 11–18. ACM, 2005.

G. Casella and R. L. Berger. Statistical inference. Duxbury Press, 1990.

69



BIBLIOGRAPHY

V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity incoherence

for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

M. De Marneffe and C. Manning. The stanford typed dependencies representation. In Proc.

the workshop on Cross-Framework and Cross-Domain Parser Evaluation, 2008.

M. De Marneffe, B. MacCartney, and C. Manning. Generating typed dependency parses

from phrase structure parses. In Proc. LREC, volume 6, pages 449–454, 2006.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent

semantic analysis. Journal of the American society for information science, 41(6):391–407,

1990.

A. Esuli and F. Sebastiani. Sentiwordnet: A publicly available lexical resource for opinion

mining. In Proceedings of LREC, volume 6, pages 417–422, 2006.

A. Fahrni and M. Klenner. Old wine or warm beer: Target-specific sentiment analysis of

adjectives. In Proc. of the Symposium on Affective Language in Human and Machine,

AISB, pages 60–63, 2008.

J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychological bulletin,

76(5):378, 1971.

M. Gamon. Sentiment classification on customer feedback data: noisy data, large feature

vectors, and the role of linguistic analysis. In 20th Int. Conf. on Computational Linguistics,

2004.

S. Goryachev, M. Sordo, Q. Zeng, and L. Ngo. Implementation and evaluation of four different

methods of negation detection. Technical report, Technical report, DSG, 2006.

N. Griffiths. Task delegation using experience-based multi-dimensional trust. In Proc. the

fourth international joint conference on AAMAS, pages 489–496, 2005.

T. L. Griffiths and M. Steyvers. Finding scientific topics. the National academy of Sciences

of the United States of America, 101(Suppl 1):5228–5235, 2004.

G. Heinrich. Parameter estimation for text analysis. Technical report, University of Leipzig,

2005.

70



BIBLIOGRAPHY

Y. Hijikata, H. Ohno, Y. Kusumura, and S. Nishida. Social summarization of text feedback

for online auctions and interactive presentation of the summary. Knowledge-Based Systems,

20(6):527–541, 2007.

T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual in-

ternational ACM SIGIR conference on Research and development in information retrieval,

pages 50–57. ACM, 1999.

T. Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on

Information Systems (TOIS), 2004.

M. Hu and B. Liu. Mining opinion features in customer reviews. In Proc. the National

Conference on Artificial Intelligence, pages 755–760, 2004a.

M. Hu and B. Liu. Mining and summarizing customer reviews. In Proc. 4th Int. Conf. on

KDD, pages 168–177, 2004b.

A. Jøsang and R. Ismail. The beta reputation system. In Proc. the 15th bled electronic

commerce conference, pages 41–55, 2002.

A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online

service provision. Decision Support Systems, 43(2):618–644, 2007.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust algorithm for repu-

tation management in P2P networks. In Proc. the 12th Int. Conf. on WWW, 2003.

K. Karplus. Evaluating regularizers for estimating distributions of amino acids. In Proc.

Third Int. Conf. on Intelligent Systems for Molecular Biology, volume 3, pages 188–196,

1995.

S. Kim and E. Hovy. Determining the sentiment of opinions. In Proceedings of the 20th

international conference on Computational Linguistics, page 1367. Association for Com-

putational Linguistics, 2004.

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.

In Proc. 14th Int. Conf. on KDD, pages 426–434, 2008.

Y. Koren. Collaborative filtering with temporal dynamics. Communications of the ACM, 53

(4):89–97, 2010.

71



BIBLIOGRAPHY

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.

Computer, 2009.

S. Kubler, R. McDonald, J. Nivre, and G. Hirst. Dependency Parsing. Morgan and Claypool

Publishers, 2009.

J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical data.

biometrics, pages 159–174, 1977.

C. Lin and Y. He. Joint sentiment/topic model for sentiment analysis. In Proc. the 18th

ACM conference on Information and knowledge management, pages 375–384, 2009.

B. Liu. Sentiment analysis and opinion mining. Morgan & Claypool Publishers, 2012.

Y. Lu, C. Zhai, and N. Sundaresan. Rated aspect summarization of short comments. In 18th

Int. Conf. on WWW, 2009.

C. Manning and H. Schütze. Foundations of statistical natural language processing. MIT

press, 1999.

A. K. McCallum. MALLET: a machine learning for language toolkit, 2002. URL http:

//mallet.cs.umass.edu.

Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. Topic sentiment mixture: modeling facets

and opinions in weblogs. In Proc. the 16th international conference on World Wide Web,

pages 171–180, 2007.

G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Introduction to wordnet: An

on-line lexical database*. International journal of lexicography, 3(4):235–244, 1990.

A. Mukherjee and B. Liu. Aspect extraction through semi-supervised modeling. In Proc.

the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-

Volume 1, pages 339–348, 2012.

J. ODonovan, B. Smyth, V. Evrim, and D. McLeod. Extracting and visualizing trust rela-

tionships from online auction feedback comments. In Proc. IJCAI’07, pages 2826–2831,

2007.

B. Ohana and B. Tierney. Sentiment classification of reviews using SentiWordNet. 9th. IT

& T Conference, 2009.

72



BIBLIOGRAPHY

B. Pang and L. Lee. Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2

(1-2):1–135, Jan. 2008.

A. Paterek. Improving regularized singular value decomposition for collaborative filtering.

In Proc. KDD Cup and Workshop, 2007.

A. Popescu and O. Etzioni. Extracting product features and opinions from reviews. In

Proceedings of the conference on Human Language Technology and Empirical Methods in

Natural Language Processing, pages 339–346. Association for Computational Linguistics,

2005.

M. F. Porter. An algorithm for suffix stripping, 1980.

G. Qiu, B. Liu, J. Bu, and C. Chen. Expanding domain sentiment lexicon through double

propagation. In Proceedings of the 21st international jont conference on Artifical intelli-

gence, pages 1199–1204. Morgan Kaufmann Publishers Inc., 2009.

G. Qiu, B. Liu, J. Bu, and C. Chen. Opinion word expansion and target extraction through

double propagation. Computational linguistics, 37(1):9–27, 2011.

S. Ramchurn, D. Huynh, and N. Jennings. Trust in multi-agent systems. The Knowledge

Engineering Review, 2004.

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the

American Statistical association, 66(336):846–850, 1971.

S. Reece, A. Rogers, S. Roberts, and N. Jennings. Rumours and reputation: Evaluating multi-

dimensional trust within a decentralised reputation system. In Proc. the 6th international

joint conference on AAMAS, pages 165–172, 2007.

P. Resnick and R. Zeckhauser. Trust among strangers in internet transactions: Empirical

analysis of ebay’s reputation system. The Economics of the Internet and E-commerce,

2002.

P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation Systems: Facilitating

Trust in Internet Interactions. Communications of the ACM, 43:45–48, 2000.

P. Resnick, R. Zeckhauser, J. Swanson, and K. Lockwood. The value of reputation on ebay:

A controlled experiment. Experimental Economics, 9(2):79–101, 2006.

73



BIBLIOGRAPHY

A. Rettinger, M. Nickles, and V. Tresp. Statistical relational learning of trust. Machine

learning, 82:191–209, 2011.

J. Sabater and C. Sierra. Regret: reputation in gregarious societies. In Proc. the fifth

international conference on Autonomous agents, pages 194–195. ACM, 2001.

F. P. . R. M. Schillo, M. Using trust for detecting deceptive agents in artificial societies.

Applied Artificial Intelligence, 14(8):825–848, 2000.

D. Sheskin. Handbook of parametric and nonparametric statistical procedures. CRC PressI

Llc, 2004.

B. Shi and K. Chang. Mining chinese reviews. In Data Mining Workshops, 2006. ICDM

Workshops 2006. Sixth IEEE International Conference on, pages 585–589. IEEE, 2006.

G. Somprasertsri and P. Lalitrojwong. Extracting product features and opinions from product

reviews using dependency analysis. In Fuzzy Systems and Knowledge Discovery (FSKD),

2010 Seventh International Conference on, volume 5, pages 2358–2362. IEEE, 2010.

M. Stark and R. Riesenfeld. Wordnet: An electronic lexical database. In Proceedings of 11th

Eurographics Workshop on Rendering, 1998.
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