
Chapter 6

Using Ontologies and Machine Learning
for Hazard Identification and Safety Analysis

O. Daramola, T. Stålhane, I. Omoronyia, and G. Sindre

Abstract Safety analysis (SA) procedures, such as hazard and operability analysis

(HazOp) and failure mode and effect analysis (FMEA), are generally regarded as

repetitious, time consuming, costly and require a lot of human involvement. Previous

efforts have targeted automated support for SA at the design stage of system

development. However, studies have shown that the cost of correcting a safety

error is much higher when done at the later stages than the early stages of system

development. Hence, relative to previous approaches, this chapter presents an

approach for hazard identification (HazId) based on requirements and reuse-oriented

safety analysis. The approach offers a convenient starting point for the identification

of potential system safety concerns from the RE phase of development. It ensures that

knowledge contained in both the requirements document and previously documented

HazOp projects can be leveraged in order to attain a reduction in the cost of SA by

using established technologies such as ontology, case-based reasoning (CBR), and

natural language processing (NLP). The approach is supported by a prototype tool,

which was assessed by conducting a preliminary evaluation. The results indicate that

the approach enables reuse of experience in conducting safety analysis, provides a

sound basis for early identification of system hazards when used with a good domain

ontology and is potentially suitable for application in practice by experts.
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6.1 Introduction

Safety analysis (SA) embraces all of the hazard identification (HazId), risk and safety

assessment activities involved in the development of safety-critical embedded

systems. The goal of SA is to influence safety-critical system design by conducting

several types of safety procedures in order to identify potential system hazards and

risks and to mitigate them to acceptable levels before a system is certified. Safety

analysis procedures, such as hazard and operability analysis (HazOp) and failure

mode and effect analysis (FMEA), are generally regarded as repetitious, time

consuming, costly and require a lot of human involvement [1–3]. Although

human expertise is irreplaceable in the conduct of effective SA procedures at the

moment, there is a need to reduce the amount of human effort and cost of SA.

Previous efforts to address this problem have been based largely on expert system

approaches, which target automated support for SA from the design stage of system

development [1, 4]. However, studies [5, 6] have shown that the cost of correcting a

safety error is much higher when done at the later stages than the early stages of

system development. Since requirements engineering (RE) precedes system design,

it provides a convenient starting point for the identification of potential safety

concerns of a system if the knowledge contained in requirement documents can

be extracted and used as the initial basis for SA. Hence, tool support for SA at the

RE phase will be more beneficial for attaining a reduction in the cost of hazard

identification and hazard mitigation.

HazOp is one of the prominent safety analysis techniques [4]. HazOp is used to

study hazards and operability problems by investigating the effects of deviations from

prescribed design intent in order to mitigate the occurrence of adverse consequences.

It involves early discovery of potential system hazards and operation problems and

recommendation of appropriate safeguard mechanisms by a team of experts.

However, HazOp is a time consuming, costly and a largely human-centred

process [1, 3, 6]. The HazOp process is essentially subjective, relying on the

professional experience, expertise and creativity of the team members involved.

Some of the crucial challenges of HazOp which are still open research issues are:

(1) how to reduce the level of subjectivity, (2) how to reduce the amount of human

effort, (3) how to promote reuse of valuable knowledge gained in previous HazOp

studies and (4) how to facilitate transfer of HazOp experiences among HazOp teams

[3, 7]. These challenges motivate the need for a framework that could enable early

identification of hazards and reuse-oriented HazOp analysis. The first objective of

this work is to provide a decision support tool that could assist the human expert

in the process of identifying potential safety concerns that are contained in

the requirements document. The second is to create a platform for the reuse of

knowledge from previous HazOp studies in subsequent projects, in order to reduce

the amount of human effort needed while conducting HazOp. This work would

be useful in the safety analysis of product line systems or variant systems, where

the systems share a significant degree of commonality. Also, the approach could

be valuable in the context of system development models that are iterative or

incremental in nature where there is a need to continually revise requirements
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and design specifications during the period of development. Our focus on HazOp

stems from the interests of the CESAR project1 that we are currently involved in.

We have adopted an approach that combines three technologies to realise the

stated objectives of this work, namely:

• Case-based reasoning (CBR), which is a pattern-based problem solving para-

digm that enables the reuse of previously gained knowledge in resolving a new

case [8]

• Ontology, which is the semantic representation of the shared formal conceptual-

ization of a domain that provides a platform for the standardisation of terms and

vocabulary in the domain [9]

• Natural language processing (NLP) which is the processing and analysis of

natural language text [10]

A prototype tool called KROSA (knowledge reuse-oriented safety analysis) that

demonstrates the novel integration of these three technologies has been created to

validate our approach. The unique contribution of this work is the integration of

ontology and machine learning technologies into a framework that enables the

identification of hazards from requirements and reduction of effort needed for

HazOp through knowledge reuse. In this chapter, we present a description of the

proposed framework and the evaluation of the prototype tool by an experiment and

opinions provided by domain experts at ABB Norway.

The rest of this chapter is organised as follows: Sect. 6.2 presents the background

for the context of this chapter, while Sect. 6.3 describes a HazOp problem example

and how tool support can be provided for HazId based on requirements. In Sect. 6.4,

we give a description of the KROSA framework and how it can be used for HazOp.

Section 6.5 presents the evaluation procedure used for assessing the KROSA tool,

while Sect. 6.6 discusses the results of the evaluation and the threats to validity of

results. In Sect. 6.7, we review some closely related work, and the chapter is

concluded in Sect. 6.8 with a brief note and indication of our future research plans.

6.2 Background

In this section, we give a brief overview of the general HazOp process and the key

technologies that are relevant to this work.

6.2.1 Overview of the HazOp Process

A hazard and operability study (HazOp) is a structured and semiformalised team-

based procedure that focuses on the study of a system under design, in order to

identify and evaluate potential hazards that may constitute a risk to personnel or

1 http://www.cesarproject.eu
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equipment or prevent efficient operation of the system. A HazOp study is

undertaken by a HazOp team through a series of brainstorming sessions in order

to stimulate creativity used to reveal potential hazards in the system and their

cause–effect relationships [1, 4]. HazOp is based on the assumption that a problem

can only arise when a system deviates from its design and operational intents.

Hence, the HazOp study entails a detailed walkthrough of the process and

instrumentation diagram models of a system to spot every likely deviation from

its intended operation using a set of guidewords. Generally, guidewords represent

variations of known system parameters that may cause deviation from design

intentions. They are chosen and interpreted based on particular design representa-

tion and context. Examples include no, not, more, less, before, after, late, too often

and early. Examples of parameter–guidewords pairs include arrive late, arrive

early, no flow, not sent and sent after. Guidewords are carefully selected to

stimulate reasoning about all potential system hazards. A point of observation

pertaining to a system or process that can be a source of a potential hazard is called

a study node. As each deviation is derived, the HazOp team discusses potential

causes, consequences and safeguards and recommend appropriate control actions to

forestall or mitigate its occurrence.

Typically, it takes about 1–8 weeks for a HazOp team with 4–8 members to

conduct a HazOp, depending on the size and complexity of the system in question.

It is widely accepted that HazOp analysis is an extremely time-consuming process

[1, 3, 4]. More on the procedure of HazOp study and ideals of HazOp team,

membership composition can be found in [11].

6.2.2 Case-Based Reasoning (CBR)

CBR is an instance-based machine learning paradigm that emulates the human

reasoning process of solving problems based on past experiences. In CBR, problems

are modelled as abstraction called cases which consist of the problem part and the

solution part. The CBR life cycle [8] is a four-stage process that consists of (1) case

retrieval – where old cases that are similar to a new case are identified by comparing

the problem parts of the old cases and that of the new case using a similarity metric;

(2) case reuse – which entails applying the solution part of the most relevant old case

or group of old cases to the new case, and this may also involve adaptation of the old

solutions to fit the new case; (3) case revision – where the reused solution is tested for

appropriateness in the new case, and if need be, the reused solution is revised to fit the

new case; and (4) case retention – which entails storing a solved case in the case base

(repository) for future reuse. CBR provides a mechanism of organising, storing and

reusing an organisation’s memory or experiences. As such, it offers a credible model

of experience-based problem solving once relevant cases exist [12]. The CBR

paradigm is considered particularly relevant to the context of HazOp because of its

potential to support the acquisition, retrieval, reuse and retention of knowledge,

which provides a basis for documented experiences from previous HazOp studies

to be leveraged in subsequent HazOp projects.

120 O. Daramola et al.



6.2.3 Ontology

Ontology which is a shared formal conceptualization of a domain is a key technology

to shaping and exploiting information for the effective management of knowledge

that pertains to specific domains [13]. Ontologies have human and machine-readable

semantics that allow definition of semantic relationships between entities and

inference of knowledge through reasoning at runtime. According to [14], ontologies

have the capability to (1) enable knowledge reuse, (2) ensure better understanding

of a knowledge area, (3) support analysis of the structure of knowledge, (4) foster

understanding of available knowledge in a domain and (5) provide embedded

knowledge for an application that can be used by machines. Ontology is considered

relevant to the HazOp problem because of its potential to facilitate (1) formalised

semantic description of relevant domain knowledge for identification of system

hazards, (2) interoperable transmission of knowledge among HazOp teams and

(3) knowledge reuse while conducting HazOp.

6.2.4 Natural Language Processing (NLP)

NLP is concerned with the process of extracting meaningful information from natural

language text through the use of statistical machine learning algorithms [10]. In NLP,

machine learning algorithms automatically learn rules through the analysis of large

corpora of real-world examples. A corpus (plural, “corpora”) is a set of documents

that have been manually annotated with the correct values to be learned. The learned

rules are then used to classify words into various word categories (part of speech)

following the supervised learning model. Key NLP operations include sentence

tokenisation, part-of-speech tagging, coreference resolution, anaphora resolution,

named-entity recognition and morphology analysis. NLP is a necessity for automated

requirements analysis because requirements are mostly written as natural language

text. Therefore, our approach uses NLP in combination with ontology to enable the

extraction of useful knowledge from natural language requirement documents for the

early identification of potential system hazards.

6.2.5 Knowledge Management in Requirements Engineering

In recent times, the application of knowledge management technologies such as

ontologies, NLP and CBR has gained momentum in requirements engineering. In

[15], the SoftWiki approach was reported as a way of semantifying requirements

engineering. According to the authors, semantification of RE entails representing each

requirement as a unique instance of the Semantic Web having its own URI such that

spatially distributed stakeholders – including developers and users – can collect,

semantically enrich, classify and aggregate requirements within the context of
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collaborative software development. The approach uses the SoftWiki Ontology for

Requirements Engineering (SWORE) to facilitate the semantification process. Simi-

larly, [14] gave an elaborate overview of how ontologies can be applied in collabora-

tive software development and the vision of a software engineering Semantic Web.

In [16], a framework for requirements elicitation using ontology reasoning

was proposed. NLP was used to parse initial requirements to obtain key concepts

that can be mapped to functions in the domain ontology. Thereafter, the rules

and relations among functions in the ontology were used to reason about errors

and potential requirements. Other research efforts where ontologies have been

applied for requirements elicitation and analysis include [17] where a domain

ontology and requirements meta-model were used to elicit and define textual

requirements; in [18], an approach for goal-oriented and ontology-driven

requirements elicitation (GOORE) was proposed. In GOORE, the knowledge of a

specific domain is represented as an ontology, which is then used for goal-oriented

requirements analysis.

In [19], a perspective for the application of CBR for requirements engineering was

provided. Also, [12] gave a detailed account of the probable applications of CBR in

software engineering in the aspects of prediction and reuse. In [20], CBR was used to

evaluate the requirements quality by referring to previously stored software

requirements quality analysis cases (past experiences) in order to ensure that the

quality of the prepared SRS is acceptable, while [21] proposed a framework for

managing implicit requirements by using a combination of ontology and CBR. All

of these efforts indicate an increasing interest in the application of ontology, NLP and

CBR as knowledge management technologies in requirements engineering.

6.3 Simplified Steam Boiler Example

The steam boiler system is a simplified version of an industrial steam boiler,

developed as a first pilot system for testing CESAR concepts. In order to have a

simple system, important components such as the feeding tank and the blow down

valve are left out.

The functional requirements of the steam boiler are as follows:

1. The steam boiler shall deliver steam at a predefined, constant pressure to an

industrial process.

2. Steam is produced by heating water using an electric heating element.

3. The steam pressure is controlled by regulating the temperature setting on the

heating element thermostat.

4. The water level in the tank is controlled by a feeding pump which pumps water

into the tank via a non-return valve.

5. The safety of the steam boiler is taken care of by a safety valve that opens to air.

The release pressure for the safety valve is fixed, based on the boiler’s strength.

6. The system shall be safety integrity level two (SIL2) certifiable.
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In the CESAR project, we have embraced the notion of requirements

boilerplates2 which stems from the work in [22, 23] for writing requirements in

semiformalised form. A boilerplate is a textual template for requirements specifi-

cation that is based on predefined patterns, which reduces the level of inconsistency

in the way requirements are expressed. We have also introduced additional require-

ment boilerplates patterns that are considered well suited for embedded systems

requirements.

For the steam boiler example, we will now use the following predefined sample

boilerplates2:

BP1: The < system > shall < action>
BP2: The < system > shall be able to < action > using < system>
BP3: If < condition>, the < system > shall < action>

The functional requirements of the steam boiler can then be transformed to a

semiformal form as follows:

R1: The < steam boiler > shall be able to < deliver > [<steam > to < an

industrial process>] – BP1

R2: The < steam boiler > shall be able to < produce > [<steam > using

(<electrical > <heating element>)] – BP2

R3: The < steam boiler > shall be able to < control > [<steam pressure >
using (<thermostat > of < electrical > <heating element>)] – BP2

R4: The < steam boiler > shall be able to < control > [<water level > using

(<feeding pump>)] – BP2

R5: The < feeding pump > shall be able to < deliver > [<water > using

(<non-return valve>)] – BP2

R6: If [<steam pressure > greater than < critical pressure level>], the < steam

boiler > shall [<open > <safety valve>] – BP3

6.3.1 Preliminary HazOp (PHA) for Steam Boiler

Usually, based on a concept diagram for system – say a steam boiler – a team of

experts would run a PHA by brainstorming on specific requirements and

components of the system in order to identify potential hazards that may arise

from possible deviations from the design intent of the steam boiler. The result of

such a PHA for a steam boiler system would be a manually generated preliminary

HazOp table. A small part of such a table is shown in Table 6.1.

2www.requirementsengineering.info/boilerplates.htm
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6.3.2 Tool Support for HazId Based on Requirements

Our objective in this work is to provide tool-based support for HazId based on

requirements – which is usually a costly manual procedure – such that:

1. Requirement documents can be analysed semantically using a combination of

shallow NLP and domain knowledge as contained in the domain ontology, to

identify potential system hazards automatically. Hence using the steam boiler

ontology (see Fig. 6.2), columns 1 and 2 of Table 6.1 – a HazOp table for the

steam boiler system – can be automatically generated.

2. The user is able to partially or totally reuse relevant parts of previously

documented HazOp projects in order to generate causes, effect, safeguards and

appropriate control actions for each system hazard that has been identified –

generate data for columns 2–5 of specific hazards (study node) in Table 6.1.

With this proposed approach, we aim to provide relevant tool support for the

HazOp experts so as to reduce the amount of effort needed and also to offer a good

starting point for HazOp in instances where there is paucity of experts. We will now

describe the architecture of our approach in the next section.

6.4 The KROSA Framework

The architectural framework of our proposed approach is an integration of the three

core technologies NLP, CBR and ontology. A view of the architecture is presented

in Fig. 6.1. The core system functionalities are depicted as rectangular boxes, while

the logic, data and knowledge artefacts that enable core system functionalities are

depicted using oval boxes. A detailed description of the KROSA framework is

given in the following.

6.4.1 Knowledge Representation and Extraction

In this section, we describe the parts of the KROSA architecture that deals with

knowledge representation and extraction.

(a) Data Preprocessing

The input to the framework is a preprocessed requirements document.

Preprocessing is a manual procedure that ensures that source documents are

transformed into a form that is suitable for the framework. It entails extraction of

requirements in form of sentences from source documents, extracting sentences that

define system requirements and replacing information conveyed in figures, diagrams

and tables with equivalent sentences. Also, the requirements could be expressed in
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semiformalised way using requirement boilerplates. Boilerplate requirements will also

be more susceptible to treatment by NLP algorithms (Fig. 6.1).

(b) HazOp Ontology

The HazOp ontology defines, in a generic form, the concept of a study node,

its elements and the relationships between them. These are types of study node,

description, guidewords, deviations, causes, consequences, risk level, safeguards and

recommendation. The HazOp ontology was developed using OWL DL language

and consists of 17 classes, 23 object properties and 43 restrictions. Figure 6.3 presents

a schematic view of the structure of the HazOp ontology. It has two important

roles: (1) helping to identify potential hazards during study nodes recommendation

since its specification clearly defines which type of domain concept could be a study

node and (2) validation of the structure of the HazOp information before it is stored

in the case library during case retention. A HazOp study node must be one of the

types defined in the HazOp ontology.

(c) Ontology Library

The ontology library is a repository of domain ontologies. The domain

ontologies (.owl/.rdf) could be those that have been developed for the purpose of

a) Document Pre-processing  

e) Study node  
recommendation

d) NL   
Processor

Knowledge 
Retrieval 

Knowledge 
Retention 

Knowledge 
Query 

Adaptation 
Procedure 

Case 

Library  

Processed 
Requirements 

Boilerplate 
Requirements 

f ) CBR  MODULE

b) HazOp ontology

c) Ontology Library

g) Reports 
Generation

Domain ontologies

Fig. 6.1 Architectural framework for reuse-oriented HAZOP
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safety analysis or an existing ontology that is based on domain-specific safety

standards. The domain ontology consists of all the terms in the domain and the

set of relationships between terms in the domain. The domain ontology plays two

Water 

level

Boiler-tank
Feeding-pump
Non-return valve
Tank

Max-critlimit

Pump

On
Off

infers

has

Is 
controlled 
by Min water level

Max.Water level  
Water level indicator

Control-system

infer

has-state

is-coupled 
with

Heating 
element

Pressure indicator
Temprature 
indicator

infer

is-coupled  to 

isa

isa

Owl:Thing

Fig. 6.2 A view of a part of the steam boiler ontology

Owl: Thing

Study node

Component

Event

isa

Activity

System

Interface

Operation

isa

isa

isa

isa

isa

isa

Context description

Consequence

Cause

Recommendation

Deviation

Guide word

has

Risk Level

Safe guard

isa

has

has

has

has

has

has

has

isa

isa

isa

isa

isa

isa

isa

Fig. 6.3 A view of the classes and restrictions in the HAZOP ontology
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roles: (1) identification of valid domain concepts that are contained in requirements

document and (2) ensuring that standardised terms used in describing HazOp

information during knowledge (case) retention agree with the established vocabu-

lary of the domain. As an example, a view of part of the steam boiler ontology

which describes the concepts of the steam boiler system and the interrelationships

between the concepts is shown in Fig. 6.2. The ontology library, the HazOp

ontology and the case library jointly constitute the knowledge model of the

framework.

(d) NL Processor

The NL processor component facilitates the processing of natural language and

boilerplate requirements during the process of automatic recommendation of

HazOp study nodes. The core natural language processing operations implemented

in the architecture are:

• Tokenisation: Splitting of requirements statements (sentences) into word parts.

• Parts of speech tagging: Classification of tokens (words) in requirements

statements into parts of speech such as noun, verb, adjective and pronoun.

• Pronominal anaphora resolution: The process of identifying pronouns

(anaphors) which have noun phrases as antecedents in requirements statements.

This is essential in associating sentences that refer to the same requirement.

• Lexical parsing: Creating the syntax tree that represents the grammatical

structure of requirements statements, in order to determine phrases, subjects,

objects and predicates.

The stanford NLP toolkit3 for natural language processing was used to implement

all NLP operations.

(e) Study Node Recommendation

The procedure for automatic study node recommendation is based on a heuristic

algorithm that is derived from basic knowledge of HazOp. Study node generation is

not intended to replace human capability but rather to create a credible starting

point for early hazard identification and to alleviate the amount human effort

involved. The algorithm searches for potential study nodes in two ways:

• Requirements level (RL): A requirement statement is considered a candidate if

the following criteria are satisfied: (1) the requirement statement contains an

action-entity pair such as “open valve”, “close valve”, “start pump” or “stop

pump” (action and entity may not necessarily follow each other in a sentence);

(2) the actionmust be an instance of a generic HazOp action word (such as: stop,

close, open, send, reset, cut, receive, start or their synonyms) or one of a set of

3 http://nlp.stanford.edu/software/lex-parser.shtml
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user specified keywords, while entity is a valid concept in the domain ontology;

and (3) the entity identified in requirement statement belongs to one of the

predefined study node types (components, system, etc.) as described in the

HazOp ontology.

• Component level(CL): A term (word) contained in a requirement statement is

considered a candidate study node if the following criteria are satisfied: (1) the

term is a valid concept in the domain ontology; (2) there exists at least one axiom

that pertains to the term in the domain ontology which indicates that it could be a

study node (In other words, it is one of several types of study nodes as defined by

the HazOp ontology) and (3) the term has failure modes or guidewords defined on

it (such as stuck, omission, commission) in the domain ontology. At the CL level,

terms that satisfy the criteria (1) and (3), (1), (2) and (3) or (1) and (3) are

considered to be candidates. However, a term is ignored if it is same as, equivalent

to or a subclass of another term that has been selected as a potential study node.

6.4.2 Knowledge Reuse

This section describes the parts of the KROSA architecture that deals with knowl-

edge reuse and also report generation.

(f) CBR Module

The CBR component facilitates the knowledge reuse capability of the frame-

work. It emulates the typical workflow of the CBR life cycle which is retrieve,

reuse, revise and retain [8, 24]. Retrieval by the CBR module is performed by

displaying a ranked list of cases similar to a target case. Two types of reuse are

supported: (1) total reuse – all parts of a case are reused for a new case, and

(2) partial reuse – only parts of an existing case are reused in a target case. Revision

can be effected by the HazOp expert by making modifications to the selected case to

suit the new target case. Retention is done through storage of study node informa-

tion into the case library. The case library is implemented as a MySQL database

management system (DBMS) in order to leverage its inherent capabilities for

effective case organisation, case indexing, case storage and case retrieval.

(g) Report Generation

This module enables the generation of HazOp reports based on query posed by

the user. HazOp reports are queried based on date and the HazOp id.

6.4.3 Case Model and Case Similarity

The case model is an abstraction of the way HazOp information is represented in the

framework. A HazOp case encapsulates information attributes such as name of a
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study node (unique), context description and set of applicable guidewords,

deviations, causes, consequences, risk levels, safeguards and recommendations.

The case model is partitioned into a problem part and a solution part. The three

elements of a HazOp case model that constitute the problem part are contextual

description, study node type and the set of guidewords; the remaining elements of

the case model make up the solution part.

At the instance of a new (target) case, an algorithm is used to compute the

similarity between the problem parts of the new case and all existing relevant cases

in the case library to determine suitable candidates for retrieval. The solution part of

a chosen retrieved case is then used verbatim or revised as the solution part of the

target case. There are several candidate similarity algorithms that can be used for

case retrieval depending on the value of attributes of data elements [25]. The

similarity algorithm used for comparing cases is based on the degree of intersection

between two attributes of a case, which are the set of contextual descriptions and the

set of guidewords, while the type of study node is used to determine relevant cases.

Similarity between an attribute of the new case U and a corresponding attribute of

an existing case V is determined by computing the metric:

SimðU;VÞ ¼
U \ Vj j

Uj j
(6.1)

where

U \ V ¼ fx : x 2 Uandx 2 Vg

Case Similarity: Finally, the similarity between two cases is computed by using

the weighted sum of the individual similarity metrics, where wi denotes the weight

assigned to the ith attribute of a case. This is given as [26]:

Sim final ¼ w1simðcontextÞ þ w2sim2ðguidewordsÞ (6.2)

We have used equal weights (i.e., w1 ¼ w2 ¼ 1) since the parameters are

considered as equally important.

6.5 Performing HazOp with KROSA

The process of using the KROSA tool for HazOp is as follows:

Step 1: Preprocessing of source documents to get the requirements into MS Excel or

text file format and devoid of graphics, images and tables.

Step 2: Select existing domain ontology or create a new one to be used for the

HazOp.
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Step 3: Import requirement documents and domain ontology into the KROSA

environment.

Step 4: Supply the set of keywords that best describe the focus of the HazOp.

Step 5: Obtain recommended study nodes from KROSA.

Step 6: Expert approves a set of study nodes for the HazOp by selecting from or

adding to the recommendations by KROSA.

Step 7: For each approved study node, expert leverages KROSA’s case retrieval,

reuse and retention features to generate information for specific study nodes. By

doing so, the user attempts to save some effort by using content of the reuse

repository to provide information for new study nodes. Figures 6.4 and 6.5 are

snapshots of the interfaces for study node recommendation and case retrieval for

reuse in the KROSA tool, respectively.

Fig. 6.4 A view of recommended study nodes by the KROSA tool

Fig. 6.5 A view of ranked list of similar cased retrieved by the tool
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6.6 Evaluation

We have developed the KROSA4 (knowledge reuse-oriented safety analysis) tool, a

domain-independent CBR platform for ontology-supported HazOp that is based on

the Eclipse plug-in architecture. In following subsections, we discuss how the

KROSA tool can be integrated into the HazOp process and subsequently describe

the procedure used for its evaluation.

6.6.1 Evaluation Procedure

KROSA has been subjected to two kinds of evaluation: first, an in-house simulation

experiment to assess the quality of its recommendation of study nodes, using

requirements specifications obtained from ABB Norway, one of our partners in

the CESAR project. Second, we performed a field assessment where industry

experts from ABB Norway assessed the usability of KROSA for an industrial

HazOp process. The objectives of the field evaluation were threefold: (1) to assess

the consistency of the outcome of the tool as judged by the human experts, (2) to

assess the potential of the tool to enable reuse-oriented HazOp and (3) to determine

its usefulness as a support tool for safety analysis. Also, we wanted to identify areas

of possible improvement of the tool.

6.6.1.1 Simulation Experiment

In the simulation experiment, we worked with three sets of requirements: (1) rail

lock system, (2) steam boiler control system and (3) adaptive cruise control (ACC)

system. Three ontologies used for the experiment are rail lock system ontology,

steam boiler ontology and ACC ontology. Two of the ontologies (steam boiler and

ACC ontology) had existed prior to KROSA, having been used to support previous

ontology-based research project in CESAR [27]. These two ontologies have a fairly

wide circulation among CESAR partners. The rail lock system ontology was

created for this experiment, based on information obtained from the specification

of the GP rail lock system. The three ontologies have the common characteristics

that they were developed to be usable for safety analysis in addition to other uses.

This is because (1) safety relevant terms were used to describe ontological

concepts, e.g., object properties such as isComponent, isConcept, isFailuremode

and isInterface exist in the ontologies; (2) the semantic description of components

included the definition of generic failure modes such as stuck, omission and

commission. The simulation experiment compared recommendations from

KROSA with those obtained from four safety experts (researchers) for the same

4KROSA tool can be downloaded at https://www.idi.ntnu.no/~wande/Krosa-user-guide.htm
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set of requirements. We then computed the recall and precision scores for KROSA

relative to the recommendations made by each of the four safety experts that

participated in the experiment (see Eqs. 6.3 and 6.4):

precision ¼
jfExpert:recommgj \ jfKROSA:recommgj

jfKROSA:recommgj
(6.3)

recall ¼
jfExpert:recommgj \ jfKROSA:recommgj

jfExpert:recommgj
(6.4)

6.6.1.2 Expert Assessment

For the field assessment, the direct method of expert systems evaluation [28, 29]

was used. This method entails making qualified human experts to use a system for

solving a simple benchmark problem; thereafter based on their experience, the

human expert answers a set of questions about the system. The questions are

quantitative and based on a 0 (completely false) to 5 (very true) numerical scales.

A metric called “satisfaction level” that ranges from 0 (least satisfied user) to 5

(most satisfied user) is then computed based on the data obtained from all

participants. The satisfaction level is a measure of the likelihood of the system to

satisfy a prospective user.

The questions, the objective of each question and the weight associated with

each question (which all the participants agreed on) are as follows:

1. Sufficient information is provided for guidance and orientation of evaluators

prior to conducting the experiment (orientation) – (2).

2. The KROSA tool reaches a conclusion similar to that of a human expert

(correctness of result) – (2).

3. Does the KROSA tool provide reasonable justification for its conclusion?

(correctness of result) – (2).

4. The KROSA tool is accurate in its suggestions of study nodes (accuracy of

result) – (2).

5. The result is complete. The user does not need to do additional work to get a

usable result (accuracy of result) – (2).

6. Does the result of the system change if changes are made to the system

parameters? (sensitivity) – (1).

7. The overall usability of the KROSA tool is satisfactory (confidence) – (1).

8. The KROSA tool gives useful conclusions (confidence) – (2).

9. The KROSA tool adequately supports reuse of knowledge for HazOp (support

for reuse) – (2).

10. The KROSA tool improves as data, or experience is inserted (support for

reuse) – (1).
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11. The limitations of the KROSA tool can be detected at this point in time

(limitation) – (1).

12. There are still many limitations to make the KROSA tool usable (limitation) – (1).

An evaluator gives a score between 0 and 5 per question. From the scores, a

weighted score for the satisfaction level per evaluator can be calculated using the

metric below:

Re sult ¼
Xn

k¼1

weight)scorevalueð Þ=
Xn

k¼1

weight (6.5)

where n is the number of questions.

A one-day orientation workshop on how to use the tool was conducted for all

participants, after which they had one full week to interact with the tool. The expert

participants also had a detailed user manual as further guide for using the tool.

6.7 Evaluation Results

In this section, we give an overview of results from the two evaluations carried out.

6.7.1 Simulation

Table 6.2 shows the recall and precision scores computed for KROSA relative to

the four safety experts’ (E1–E4) recommendations. Although the experts differed in

their recommendations, confirming the subjective nature of HazOp, there exist

significant agreements between study nodes recommended by KROSA and experts

at the requirements level. At the component level (CL), there was a greater degree

of agreement because the opinions of the safety experts generally agree that all

components and interfaces between components and systems should be study nodes

as recommended by KROSA. Since the experts were generally not very specific in

their recommendations at the CL, recommendations at CL were not considered

when arriving at the values in Table 6.2. The result – precision5 and recall6 values –

shown in Table 6.2 is an improved version of the one reported in [27] since we have

had more time to improve on the quality of the domain ontologies.

Our observation from the simulation experiment (see Figs. 6.6 and 6.7) is that

the performance of the KROSA tool depends significantly on the quality of the

5 Precision – percentage of suggested hazards that are relevant compared to expert’s

recommendation.
6Recall – percentage of relevant hazards suggested by tool compared to expert’s recommendation.
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Table 6.2 Showing recall and precision values of KROSA

Recall E1 E2 E3 E4

Steam boiler system (HazOp on water level) 0.57 0.67 0.75 0.60

ACC system (HazOp on speed control) 0.50 0.67 0.71 0.60

Rail lock system (HazOp on communication) 0.54 0.78 0.71 0.60

Precision E1 E2 E3 E4

Steam boiler system (HazOp on water level) 0.67 0.67 0.50 0.50

ACC system (HazOp on speed control) 0.80 0.80 1.0 0.6

Rail lock system (HazOp on communication) 0.78 0.78 0.56 0.33

Fig. 6.6 Recall metric for

KROSA

Fig. 6.7 Precision metric for

KROSA
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domain ontology, even though the input of highly relevant keywords can enhance

the appropriateness of the recommended study nodes. Specific ontology qualities

are considered most crucial here, which are [30] (1) syntactic quality – the measure

of the correctness of terms in the ontology and the richness of syntax used to

describe terms in the ontology, (2) semantic quality – the measure how well the

meaning of terms is defined in the ontology and (3) pragmatic quality – the measure

of the how well it covers the scope of a domain judged by the number of classes and

properties it contains and how accurate and relevant the information is that it

provides. A domain ontology that contains a large number of concepts that are

credible and are richly described with axioms will be more suitable for KROSA in

the task of study node recommendation. Initially, we noticed that the KROSA tool

had a relatively lower precision for HazOp of the steam boiler system compared to

its performance in the HazOp for the ACC and rail lock systems. The reason for this

was that the steam boiler ontology has a lower semantic quality than the ACC

ontology and rail lock system ontology. After we improved on the quality of

description of concepts and interrelationships between concepts of the steam boiler

ontology, we obtained better results. This is not difficult to comprehend since the

domain ontology provides the knowledge base from which inferences are made by

the KROSA tool when determining what could be a potential system hazard (study

node). Thus, we conclude that the overall quality of the domain ontology affects the

performance of KROSA tool significantly, as it determines the extent to which

inferences can be made for identification of study nodes.

6.7.2 Expert Evaluation

Each of the three industry experts that took part in the assessment returned an

evaluation report from which we computed a mean weighted score of 3.27 out of 5

for the KROSA tool in relation to the evaluation objectives of the field assessment.

The tool obtained its highest mean score ratings in the aspects of support for reuse

(4.08), sensitivity (3.67), confidence (3.25) and accuracy of result (3.25), while the

lowest mean score ratings were in the aspects of: limitations (3.0) and correctness

of result (2.7). These mean score ratings reveal the perception of the experts in

terms of the strengths and weaknesses of the current version of the tool. The experts

also submitted a detailed report on desired improvements needed to make the tool

more usable. Key aspects mentioned as needing improvement were (1) the possi-

bility of providing some form of guidance to users in the selection of the most

appropriate keywords for study node recommendation and (2) the need to provide

some form of traceability links between cases that have inherited some parts from

old cases through reuse. The experts were unanimous in confirming that the tool

will be a valuable support for the conduct of HazOp, with the potential to alleviate

the complexity of the HazOp process by enabling reuse of experience.

The experts agreed that the existence of a domain ontology and a case library

where previous knowledge is stored in a structured format would help to resolve
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some of the existing difficulties associated with searching, update and interopera-

bility of knowledge during HazOp. They expressed preference for the adoption of

KROSA as a support tool for HazOp over the current scenario where MS Excel

software is the main tool support for their safety analysis.

6.7.3 Threats to Validity

Our short discussion on the validity of the preliminary evaluation will be based on

the categories defined by Wohlin et al. in [31]. We consider each threat before

giving a summary of validity of our results.

Conclusion Validity: In order to ensure reliable treatment, all participants were

provided with an introduction and instructions for the experiment prior to the

experiment. Also, we used standard measures – recall and precision to assess

recommendations by the tool in order to avoid misunderstanding or misinterpreta-

tion of the results. Ordinarily using four participants in the experiment will translate

to low statistical power, but for highly technical domain like HazOp and a prelimi-

nary evaluation, we consider this to be sufficient for a first trial.

Internal Validity: A key requirement is that participants have sufficient experi-

ence or knowledge of the domain. The participants had minimum master-level

education in the area of systems safety. They were also provided with detailed

instructions of what should be done. Therefore, there were no factors other than the

treatment that influenced the outcome of the experiment.

Construct Validity: In order to ensure a realistic experiment, all participants had

the same instruction for the experiment. Also, they performed exactly the same task

which is to identify hazards (study nodes). Hence, the results obtained from

participants depend only on this task (one single variable), which eliminates any

mono-method bias effect.

External Validity: The key issue here is whether we can generalise our results

from the preliminary evaluation to the system safety industry. For the simulation

experiment, we used four expert researchers all affiliated with NTNU, while the

industrial assessment was done by three safety experts at ABB Norway. A concern

could be that possibly there would have been different results if the evaluations had

been performed with a bigger group of participants with more diverse background,

not only in terms of coming from different institutions and countries but also with

more different educational backgrounds and covering a wider spectrum of safety-

critical domains than could be achieved with only seven persons. The involved

persons mainly had experience in safety analysis in the following domains: railway,

automotive and industrial automation, and it is impossible to know if the tool would

have been found equally promising by experts from other domains, such as nuclear

power, medical technology and aviation. Our mitigation to this threat is to try to

avoid including any domain-specific limitations in our general approach, but this

does not entirely remove the threat. So, while we currently see no reason why the

approach should not also be usable in other companies and other safety-critical
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domains, an interesting point for further research is to have a wider group of experts

to try out the tool.

Hence, we cannot foresee any serious threats to validity for our conclusions on

the simulation experiment performed. Also, the feedback for industry experts

proved that the KROSA tool has sufficient merit for application in an industrial

setting.

6.8 Related Work

Previously a number of attempts to solve some of the problems of HazOp analysis

have been reported in the literature [1, 3, 7]. A significant number of HazOp expert

systems and HazOp system prototypes have been reported in [4]. These include

HazOpEX, Batch HazOpExpert, HazOp Diagraph Model (HDG), STOPHAZ,

OptHazOp, EXPERTOP, HazOpTool and COMHazOp. A common trend for all

of these attempts is that their implementation and application were focussed on the

chemical process industry (CPI), the domain where HazOp originated. Also, they

were essentially rule-based expert systems and were not designed to facilitate the

reuse of experience [4]. Relatively few other automated tools for HazOp in other

domains have been reported in the literature [4]. This situation possibly reveals the

fact that the HazOp procedure in most cases is done manually but aided by the use

of spreadsheet software packages such as MS Excel and Lotus 1-2-3 in many

application domains.

It is only recently that case-based reasoning was introduced into HazOp and

few efforts have been reported so far. Sahar et al. in [6] presents a report on

development of a HazOp analysis management system with dynamic visual

model aid. The system is based entirely on CBR with no ontology support for

HazOp. In [7], a case-based expert system for automated HazOp analysis called

PHASUITE was developed. The PHASUITE system caters to the modification of

existing HazOp models and creation of new ones based on the knowledge in

existing models. It is also equipped with diagnostic reasoning capability and is

suitable mainly for process generic HazOp. It makes use of a suite of informally

specified ontologies. PHASUITE is specialised for application in the chemical

industry domain. The PetroHazOp [1] has specific application for the chemical

domain and was developed to cater to both process generic and non-process generic

HazOp. The system uses an integration of CBR and ontology for the automation of

both process generic and non-process generic HazOp procedures.

The PetroHazOp [1] and PHASUITE [7] systems are the ones most related to our

work since they are based on integration of CBR and ontology. However, none of

them have the capability for HazId based on requirements nor are they designed to

have any bearing or relevance to requirements engineering as conceived by our

approach. Additionally, unlike the two aforementioned tools that are specialised for

the chemical industry domain, our approach is a generic one that can be adapted to

support several types (process, software, human or procedure) of HazOp analysis in
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different application domains, given the existence a relevant domain ontology.

Hence, the novelty of our approach is the attempt to enable early identification of

systems hazards right from the requirements engineering phase of system develop-

ment and the reuse of experience in order to reduce the amount of resources needed

for HazOp. The core idea of this chapter has been reported in [27] in abridged form.

6.9 Conclusion

This work offers support for knowledge management in systems engineering at two

levels. Firstly, at the level of requirements, it facilitates the exploitation of knowl-

edge contained in requirements documentation for early identification of potential

system hazards. The novelty of this is the provision of tool-based support for safety

analysis at an earlier phase of system development as compared to previous efforts

that focus only on the design phase. Secondly, our approach facilitates the reuse

of experience in the conduct of HazOp so that previously documented HazOp

knowledge can be leveraged for reduced effort in new projects.

Specifically, we have provided a tool that can creditably assist, but not replace

the human expert in the conduct of HazOp analysis so as to attain reduction in effort

needed. Considering the fact that HazId is a highly creative process that depends on

the experience and skill of the human domain expert, the KROSA tool would be vital

as a good starting point. Also, from the results of the evaluation, KROSA has

demonstrated a good potential for application in an industrial context. The tool

would particularly be helpful in situations where highly skilled or experienced

HazOp experts are not available, by enabling a platform whereby previously

documented cases can be reused in new scenarios by a less-experienced HazOp team.

In further work, we intend to realise the objective of an extensive semantic

framework for safety analysis by extending the features of KROSA to support

FMEA. We will also investigate the prospects of providing diagnostic reasoning

over potential hazards in order to facilitate a more elaborate automated safety

analysis. In addition, we aim to conduct more extensive industrial case studies on

safety analysis of systems and product lines using the tool and to report our findings

subsequently.
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