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Transfer matrices are used widely for the dynamic analysis of engineering structures,
increasingly so for static analysis, and are particularly useful in the treatment of
repetitive structures for which, in general, the behaviour of a complete structure can be
determined through the analysis of a single repeating cell, together with boundary
conditions if the structure is not of infinite extent. For elastostatic analyses, non-unity
eigenvalues of the transfer matrix of a repeating cell are the rates of decay of self-
equilibrated loading, as anticipated by Saint-Venant’s principle. Multiple unity
eigenvalues pertain to the transmission of load, e.g. tension, or bending moment, and
equivalent (homogenized) continuum properties, such as cross-sectional area, second
moment of area and Poisson’s ratio, can be determined from the associated eigen- and
principal vectors. Various disparate results, the majority new, others drawn from diverse
sources, are presented. These include calculation of principal vectors using the Moore–
Penrose inverse, bi- and symplectic orthogonality and relationship with the reciprocal
theorem, restrictions on complex unity eigenvalues, effect of cell left-to-right symmetry
on both the stiffness and transfer matrices, eigenvalue veering in the absence of
translational symmetry and limitations on possible Jordan canonical forms. It is shown
that only a repeating unity eigenvalue can lead to a non-trivial Jordan block form, so
degenerate decay modes cannot exist. The present elastostatic analysis complements
Langley’s (Langley 1996 Proc. R. Soc. A 452, 1631–1648) transfer matrix analysis of
wave motion energetics.
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1. Introduction

Repetitive (or periodic) structures are analysed most efficiently when such
periodicity is taken into account. A typical approach (Langley 1996) relates a
state vector of displacement and force components on either side of a generic
repeating cell by a transfer matrix, G, which may be determined from the
stiffness matrix K, although discrete displacement field (Karpov et al. 2002a) and
discrete Fourier transform (Karpov et al. 2002b) formulations are also possible.
An eigenvector of the transfer matrix describes a pattern of displacement and
force components which is unique to within a scalar multiplier; translational
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N. G. Stephen2246
symmetry demands that this pattern is preserved as one moves from the left-
hand to the right-hand side of the cell, allowing one to write sRZlsL; this leads
to the standard eigenvalue problem lsLZGsL, or ðGKlI ÞsLZ0. For dynamic
problems, this is an application of Bloch’s theorem (see Brillouin 1953), and leads
to an eigenvalue problem for the propagation constants or, equivalently, the
natural frequencies; the approach is highly developed and has been applied to
both one-dimensional (beam-like) and two-dimensional (plate-like) problems
(Mead 1970, 1996; Meirowitz & Engels 1977; Yong & Lin 1989a,b; Zhong &
Williams 1992, 1995; Langley 1996). The theory is less well developed for static
analysis, but has been applied to one-dimensional prismatic planar (Stephen &
Wang 1996a), asymmetric and pre-twisted (Stephen & Zhang 2004, 2006) and
curved repetitive structures (Stephen & Ghosh 2005).

This paper is concerned largely with the static problem, and presents numerous
results concerning the eigenanalysis of a (real) transfer matrix G; some of these
results are not new, but are drawn from diverse references in order to provide a
convenient resource. As a consequence of the symmetry of the stiffnessmatrixK, the
transfer matrix has the property of being symplectic (Pease 1965), so its eigenvalues
occur as reciprocals, and fall into five possible classes (Meyer & Hall 1991):

(i) The real unity eigenvalue lZ1, which must occur an even number of times;
the inverse is a repeat.

(ii) The negative real unity eigenvalue lZK1, whichmust occur an even number
of times; again the inverse is a repeat.

(iii) The real non-unity eigenvalues occur as a pair l and lK1.
(iv) The complex unity eigenvalues occur as a unitary pair lZeia and lZeKia;

the inverse is simultaneously the complex conjugate.
(v) The general complex eigenvalues occur as a quartet of reciprocals and

complex conjugates, that is lZaC ib, lZaKib, lZðaC ibÞK1 and lZ
ðaKibÞK1 are all, as an ensemble, possible eigenvalues.

A consequence of the above is that the determinant of a symplectic matrix is
equal toC1. Suppose that l is an eigenvalue having multiplicity k, then lK1 is an
eigenvalue also having multiplicity k ; thus, the Jordan blocks corresponding to l
and lK1 have the same structure. The group of real symplectic matrices of size
2n!2n, denoted Spðn;RÞ, is the fundamental group underlying classical
mechanics yet, according to Abraham & Marsden (1978), ‘very little application
of its structure seems to have been made beyond these elementary eigenvalue
properties’. Symplectic matrices have the property of preserving Hamiltonian
structure, and are often employed as similarity matrices within the field of Floquet
(periodic) dynamic systems, such as one finds in the field of celestial mechanics
(Meyer & Hall 1991); they also find application within optimal control engineering
(Stengel 1986), and time-series analysis (Aoki 1987). Their introduction into the
field of solid mechanics is largely due to Zhong et al. (1992), Zhong & Williams
(1992, 1995) and Zhong (1995).

For a one-dimensional (beam-like) repetitive structure, non-unity eigenvalues
pertain to the decay of self-equilibrated loading, as anticipated by Saint-Venant’s
principle. Multiple unity eigenvalues pertain to transmission of end loading, as in
Saint-Venant’s problem, and the associated eigen- and principal (or generalized)
vectors transform the transfer matrix to a Jordan canonical form (JCF), revealing
Proc. R. Soc. A (2006)



Table 1. Notation.

a, A, A constant, cross-sectional area, matrix
b, b, B constant, column vector, similarity matrix
d, d component of, nodal displacement vector
e, E eigenvector, Young’s modulus
F, F component of, nodal force vector
G, G transfer matrix, shear modulus
H Hamiltonian system matrix
I, I identity matrix, second moment of area
J, Jm Jordan canonical form, metric
L left, length
K, k stiffness matrix, dimension of Jordan block, eigenvalue
M nodal moment component
N, n, N nilpotent matrix, index, number of cells, nodal moment component
p, p component of, nodal force vector, principal vector
R, R, R right, reflection matrix, real numbers
s, S state vector, real symmetric matrix
V similarity matrix of eigen- and principal vectors
x, y, z Cartesian coordinates
x vector
X, Y (right) eigenvectors of G and GT

a arbitrary angle
b arbitrary multiple
l eigenvalue
k shear coefficient (in Timoshenko beam theory)
n Poisson’s ratio
q arbitrary angle

gld greatest linear dimension
JCF Jordan canonical form
WD work done

2247Transfer matrix electrostatics
couplings between the various modes; for example, a shearing force is inevitably
coupled to a bending moment. Moreover, equivalent continuum (homogenized)
properties of the reticulated structure may be calculated.

Studies by the present author and co-workers have previously concentrated on
pin-jointed repetitive structures; this choice was made because the finite-element
analysis (FEA) of such structures may be regarded as exact; in turn, predictions
from the eigenanalysis can be verified by comparison with what may be regarded
as exact FEA results. This does not imply that pin-jointed structures are not of
interest in their own right; indeed, the removal of members from such a structure
can reduce it to a mechanism, which in turn allows its transportation in a very
compact form, an attribute likely to find favour in aerospace application. Here we
record the effect of rigid- rather than pin-jointing; the continuum properties are
virtually unchanged, and one has new decay modes associated with self-
equilibrated moments applied at the nodes. Repetitive structures are not limited
to frameworks, or lattice structures; a continuum structure such as a metre rule
would be perfectly repetitive were it not for the progressive numbering along its
length—each centimetre of rule is identical to that preceding and following. Thus,
Stephen & Wang (1996b) have developed a hybrid finite element/transfer matrix
Proc. R. Soc. A (2006)
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method that allows one to calculate the Saint-Venant decay rates of self-
equilibrated loading for rods or beams of general cross-section. On the other hand,
if there is no discretization of the continuum, then the symplectic transfer matrix
G is replaced by a Hamiltonian system matrix H, within a relationship of the form

ds

dx
ZHs; ð1:1Þ

where the state vector s consists of the displacement components and the cross-
sectional stress components. This state-space approach to the Theory of Elasticity
was developed by Zhong (1995), and an exposition was presented recently by
Stephen (2004) for the elastostatics of a prismatic rod or beam, where it was also
shown that only a repeating zero eigenvalue can lead to a non-trivial Jordan block
form.

The present paper may be seen as complementary to a recent analysis of wave
motion energetics using transfer matrices (Langley 1996). However, besides some
introductory definitions and results, the focus is quite different; the latter specifically
excludes issues relating to principal eigenvectors attendant upon the multiple
(unity) eigenvalues, which is a particular feature of the static analysis. Moreover,
dynamic analyses typically assume the structure to be of infinite extent, which
avoids issues relating to boundary conditions. For the static case, while general
results may be gleaned from a single cell, boundary conditions at both ends of the
structure must be taken into account in order to provide a complete solution to any
particular problem. The introductory material includes previously known results,
including the reciprocal eigenvalue properties as a consequence of the symplectic
nature of the transfer matrix, bi- and symplectic orthogonality and the relationship
with the Betti–Maxwell reciprocal theorem, and the impossibility of complex unity
eigenvalues for prismatic repetitive structures. The Moore–Penrose pseudo-inverse
is introduced as a rational approach to the computation of principal vectors
associated with the multiple unity eigenvalues. Employing a strain energy
argument, it is shown that only the eigenvalues lZG1 can give rise to a non-
trivial JCF, at least for the prismatic structure. An example of a structure for which
the transfer matrix has repeating negative unity eigenvalue is one possessing a
scissor-like mechanism, and this possibility can be gleaned through simple
arguments regarding the dimension of the transfer matrix. A planar structure,
previously treated as pin-jointed, is reconsidered as rigid-jointed; the additional
rotational nodal degrees of freedom give rise to new Saint-Venant decaymodes—the
number of transmission modes associated with unity eigenvalues is fixed—while the
equivalent continuum properties are practically unaffected. This confirms the
practice of treating real, rigid-jointed structures as pin-jointed, at least for small
deflection elastic analysis. A variety of relationships between partitions of both the
stiffness and transfer matrices results are presented for a cell possessing left-to-right
symmetry. On the other hand, lack of symmetry implies less restriction, and one has
splitting of unity eigenvalues for a tapered cell that lacks translational symmetry.
2. Transfer matrix formulation

The rigid- or pin-jointed planar framework under consideration is shown in
figure 1. The geometric and material properties are identical to those employed by
Proc. R. Soc. A (2006)
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Figure 1. Rigid- or pin-jointed planar framework, fixed at left-hand end and subject to tensile force
at the right; the length of the truss is equal to the number of the cells, N.
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Figure 2. Single, (nC1)th, cell of rigid-jointed framework in figure 1; (a) and (b) show positive joint
force and moment according to transfer matrix and FEA sign conventions, respectively.
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Stephen & Wang (1996a): the Young modulus of each member is
EZ200!109 N=m2, horizontal and vertical members are of length LZ1 m and
have (circular) cross-sectional area AZ1 cm2; the diagonal members have lengthffiffiffi
2

p
m and cross-sectional area 0:5 cm2. However, since vertical members are

regarded as being shared between adjacent cells, the repeating single cell must
have vertical members with one-half stiffness; for the pin-jointed structure, this
just requires that the cross-sectional areas should be A/2. For the rigid-jointed
structure, the members can also carry bending moment, so it is also required that
the bending stiffness and, hence, the second moment of area should be halved.

A typical cell located between the nth and (nC1)th sections of the structure in
figure 1 is shown in figure 2. Let pn and dn denote the generalized nodal force and
displacement vectors, respectively, associated with the nth section; the state
vectors at the section nth and ðnC1Þth sections are then snZ ½dT

n pT
n �T and

snC1Z ½dT
nC1 pT

nC1�T, and they are related by the transfer matrix G through the
equation

snC1 ZGsn; ð2:1Þ
Proc. R. Soc. A (2006)
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or in partitioned form
dnC1

pnC1

� �
Z

Gdd Gdp

Gpd Gpp

" #
dn

pn

� �
: ð2:2Þ

Two consecutive state vectors are also related by a scalar l as

snC1 Z lsn; ð2:3Þ
this is the static equivalent of an application of Bloch’s theorem for systems
possessing translational symmetry. Substitution of the above into equation (2.1)
leads directly to the standard eigenproblem

½GKlI �sn Z 0; ð2:4Þ
where I is the identity matrix of the appropriate size. The eigenvalues of the
transfer matrix describe how associated eigenvectors scale as one moves from one
nodal section to the next. A unity eigenvalue implies that it is transmitted
unchanged, while a non-unity eigenvalue jlj!1 implies that the nodal
displacements and forces decay as one moves from cell to cell, left-to-right; the
reciprocal, jlK1jO1 represents an increase from left-to-right, hence a decay from
right-to-left.

The transfer matrix G is obtained from the stiffness matrix K of the single
repeating cell; referring to figure 2b, the generalized force and displacement vectors
F and d are related by the stiffness matrix equation FZKd, or in partitioned
form

Fn

FnC1

" #
Z

KLL KLR

KRL KRR

" #
dn

dnC1

" #
: ð2:5Þ

Transfer matrix analysis employs the sign conventions of the Theory of Elasticity,
so set FnZKpn, FnC1ZpnC1, and substitute into equation (2.5), expand and
rearrange to give

dnC1

pnC1

� �
ZG

dn

pn

� �
; ð2:6Þ

when the transfer matrix G becomes

GZ
KKK1

LRKLL KKK1
LR

KRLKKRRK
K1
LRKLL KKRRK

K1
LR

" #
: ð2:7Þ

Having performed the eigenanalysis, a similarity matrix V consisting of all eigen-
and principal vectors including both decay and transmission modes can be
constructed and this transforms the transfer matrix G to JCF according to

VK1GV ZJ; ð2:8Þ
where J is the JCF. The multiple unity eigenvalue typically appears in two or
more distinct Jordan blocks, so the transfer matrix G is both defective and
derogatory. Not only does the JCF reveals the coupling between the various
modes, e.g. the shearing force principal vector is coupled to the bending moment
vector, it also allows one to calculate powers of the transfer matrix G in the most
efficient and accurate manner; suppose one knows the applied state vector s(0) on
the zeroth left-hand end of the structure in figure 1, the state vector on the right-
hand side of this first cell is given by

sð1ÞZGsð0Þ; ð2:9Þ
Proc. R. Soc. A (2006)
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and the state vector on the right-hand side of the nth cell is then

sðnÞZGnsð0Þ: ð2:10Þ
Powers of the transfer matrix (the cumulative transfer matrix) are evaluated
according to

Gn Z ðVJVK1Þn Z ðVJVK1ÞðVJVK1Þ.ðVJVK1ÞZVJnVK1: ð2:11Þ
Moreover, the nth power of the JCF simply requires evaluation of the nth power of
the diagonal elements, although for the non-trivial Jordan blocks, a more involved
treatment is required. Let Ji be a Jordan block pertaining to eigenvalue li , having
dimension k!k, written as

Ji Z

li 1

1 1

li 1

li

2
66664

3
77775Z liI CNi; ð2:12Þ

where Ni is the nilpotent matrix

Ni Z

0 1

1 1

0 1

0

2
66664

3
77775: ð2:13Þ

The kth power of the nilpotent matrix is zero, so the binomial expansion of Jn
i Z

ðliICNiÞn has a finite number of terms as

ðliI CNiÞn Z lni I C
n

1

 !
lnK1
i Ni C

n

2

 !
lnK2
i N 2

i C/C
n

kK1

 !
lnKkC1
i N kK1

i ;

ð2:14Þ
since higher powers ofNi are zero; in the above, the binomial coefficients are given by

n

b

 !
Z

nðnK1ÞðnK2Þ/ðnKbC1Þ
b!

: ð2:15Þ

The nth power of the Jordan block becomes

Jn
i Z

lni nlnK1
i

nðnK1Þ
2

lnK2
i /

0 lni nlnK1
i /

0 0 lni /

/ / / /

2
6666666664

3
7777777775
: ð2:16Þ

Expression (2.10) becomes

sðnÞZVJnVK1sð0Þ; ð2:17Þ
but before it can be applied one requires complete knowledge of the state vector
s(0); typically one has partial information at both ends of the structure. Referring
Proc. R. Soc. A (2006)



N. G. Stephen2252
to figure 1, one knows the force vector pN at the Nth nodal cross-section, but not
the displacement components. On the other hand, at the fully fixed left-hand end,
one knows the displacement vector d0 (equal to a zero column) but not the force
vector p0 which, besides the reaction to the tensile force, must contain self-
equilibrating load sufficient to suppress Poisson’s ratio contraction effects. The
state vectors at either end are related by a cumulative transfer matrix as

sðNÞZVJNVK1sð0Þ; ð2:18Þ
or in more detail

dN

pN

� �
Z

GddN GdpN

GpdN GppN

" #
d0

p0

� �
; ð2:19Þ

where GddN ; GdpN ; GpdN andGppN are square partitions of VJNVK1. With the
exception of GpdN , these partitions are invertible; partitionGpdN must be singular,
as the displacement vector d0 cannot be calculated from knowledge of the force
vectors at each end—one can always add rigid body displacements or rotations.
From the second row, one has p0ZGK1

ppNpNKGK1
ppNGpdNd0, and substituting this

into the second row yields dNZðGddNKGdpNG
K1
ppNGpdN Þd0CGdpNG

K1
ppNpN . One

now has complete knowledge of the state vectors at each end. This process may be
extended to other end conditions: for example, suppose that the uppermost
support at the left-hand of the structure, figure 1, is removed; now only four of the
elements of the vector d0 are equal to zero, but two of the elements of p0 would
now also be equal to zero. Thus, the state vector sð0Þ can be re-ordered as six
known (subscript k) and six unknown (subscript u) components as

dN

pN

� �
Z

GdkN GduN

GpkN GpuN

" #
skð0Þ
suð0Þ

" #
; ð2:20Þ

with rows and columns of the complete structure transfer matrix being rearranged
accordingly; the above manipulations are now applied to equation (2.20) rather
than (2.19).
3. Calculation of principal vectors: the pseudo-inverse

Numerical determination of a non-trivial JCF of a matrix is generally unstable, and
is possible only if the matrix elements are known exactly, for example, as integers or
integer fractions, or if the repeating eigenvalues are known exactly, for example, on
physical grounds (Kailath 1980); fortunately, the latter is true for the multiple real
and complex unity eigenvalues that arise in the present approach. The majority of
textbooks (e.g. Ogata 1990) suggest that one should start by calculating the
principal vector of highest grade, that is, for a chain of k eigen- and principal
vectors, one should first determine the principal vector pk from the equation

½GKlI �kpk Z 0; ð3:1Þ
this entails an arbitrary choice of some elements of pk, since ½GKlI �k is rank
deficient, but once this choice has been made, all of the principal vectors of lower
grade (including the eigenvector) follow unambiguously. Instead of this procedure,
the present author has previously calculated the chain in reverse order, primarily
because the eigenvectors are obviously the rigid body displacements and possibly
Proc. R. Soc. A (2006)
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rotation; essentially, this is a trade between choosing arbitrary elements of the
principal vector of highest grade just once (but with no guarantee that this will
lead to the simplest eigenvector) and making a simple choice several times over as
one works along the chain toward the highest grade principal vector. The Moore–
Penrose or pseudo-inverse of a rank-deficient matrix removes this element of
choice and assigns values to the arbitrary elements in a rational manner.

Consider the matrix equation AxZb; the most common application of the
pseudo-inverse is when one has more equations than unknowns, which is typical of
linear regression of experimental data and there is no solution in the classical
sense. Matrix A has more rows than columns, so is obviously not invertible. Pre-
multiply by AT to give

ATAx ZATb: ð3:2Þ
Matrix ATA is now square and may be inverted to give xZðATAÞK1ATb, or
xZALMb, where the left pseudo-inverse is ALMZðATAÞK1AT. This solution is
often denoted as x8 and has the property of minimizing the norm kAx8Kbk.

On the other hand, whenA has more columns than rows (rank deficient), which
is typical of the situation when calculating eigen- and principal vectors, there are
an infinite number of solutions (recall that an eigenvector is a unique pattern
which may be multiplied by a scalar to give an equally valid eigenvector; similarly,
one may add an arbitrary multiple of a generating eigenvector to a principal vector
and it is still a principal vector). Now, one requires the right pseudo-inverse defined
as ARMZATðAATÞK1, for which

AARM ZAATðAATÞK1 Z I ; ð3:3Þ
the above expression (which is equal to a conforming identity matrix) is now shoe-
horned into equation (3.2) to give

ATAx8ZAT

 
AATðAATÞK1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

I

!
b: ð3:4Þ

As with the left pseudo-inverse, now pre-multiply by ðATAÞK1 to give

x8ZATðAATÞK1b|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ARM

: ð3:5Þ

Of the infinite number of solutions, the above is that which has minimum norm kx8k,
i.e. x8 is closest to the origin. Physically, one is adding multiples of the generating
eigenvector (the rigid body displacement), such that the principal vector has
displacements that are, on average, closest to the origin. For the symmetric cell shown
in figure 1, when calculating the principal vector describing tension, the minimum
norm solution provided by the pseudo-inverse is such that the axial (x -direction)
displacement is zero, and the average of nodal displacements in the y -direction is also
zero. Node 2 has zero vertical displacement, while the Poisson ratio effects on nodes
1 and 3 are equal and opposite; this is exactly what one would have chosen.
4. Rigid- versus pin-jointing

Reconsider the planar structure treated by Stephen & Wang (1996a), but with the
addition of rigid joints. The transfer matrix is now of size 18!18, and since the
Proc. R. Soc. A (2006)



Table 2. Saint-Venant decay factors.

pin-jointed rigid-jointed

0.28286 0.28292
K0.070207 K0.069779
0.059596 0.059597

K0.15548
K0.13734
K0.063740

N. G. Stephen2254
number of transmission modes having unity eigenvalue is unchanged at six, the
immediate effect of rigid-jointing is to double the number of (left-to-right) Saint-
Venant decay modes from three to six, as shown in table 2, together with their
reciprocals which are not shown.

Rigid jointing has negligible effect on the three left-to-right decay rates of the
pin-jointed cell; the main effect is the introduction of three new decay modes, two
of which (lZK0.15548 and K0.13734) decay at approximately twice the rate of
the dominant (slowest rate of decay) mode (lZ0.28292); the minus sign indicates
that the decay is oscillatory from cell to cell. For the pin-jointed structure, the
decay eigenvectors consist of nodal forces which self-equilibrate in the x - and y -
directions, it being impossible to apply a moment at a pin-joint. With rigid-joints,
these modes now have a very small additional self-equilibrated moment—indeed,
just sufficient that the displacement components of the eigenvector should decay
with the specified eigenvalue. The new decay modes still have self-equilibrated
force loading in the x - and y-directions, but with the addition of comparatively
large self-equilibrating nodal moments. The force and moment components of the
left-to-right decay eigenvectors are shown in figure 3.

A comparison of the equivalent continuum properties is shown in table 3. As
might be expected, the effect of rigid-jointing is to increase all of the equivalent
stiffness’—note that a decrease in Poisson’s ratio is equivalent to an increase in the
shear modulus G since the Young modulus E is regarded as fixed; however, these
increases are quite negligible.
5. Symplectic nature of the transfer matrix and consequences

The (2n!2n) transfer matrix G satisfies the relationship

GTJmGZJm; ð5:1Þ
where Jm is the metric matrix

Jm Z
0 I

KI 0

" #
;

with JT
mZJK1

m ZKJm, and I is the (n!n) identity matrix. This relationship
depends solely on the symmetry of the stiffness matrix K, and can be verified by
direct substitution from equation (2.7). Moreover, the symplectic relationship,
equation (5.1), requires that partitions of the transfer matrix satisfy the
Proc. R. Soc. A (2006)
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Figure 3. Nodal force and moment components for left-to-right decay in rigid-jointed cell.

2255Transfer matrix electrostatics
relationships

GT
ddGpd Z ðGT

ddGpdÞT; ð5:2aÞ

GT
dpGpp Z ðGT

dpGppÞT; ð5:2bÞ

GT
ddGppKGT

pdGdp Z I : ð5:2cÞ
The symplectic relationship GTJmGZJm can be rearranged to give
JK1
m GTJmZGK1; thus, the inverse of G is similar to the transpose of G, which

in turn has the same eigenvalues as G. Thus, the eigenvalues occur as reciprocals.
Alternatively, one may employ a theorem by Taussky & Zassenhaus (1959): for
Proc. R. Soc. A (2006)



Table 3. Effect of nodal joining on equivalent continuum stiffness properties.

equivalent property rigid-joint pin-joint difference (%)

cross-sectional area, A (m2) 3.52246!10K4 3.52241!10K4 C0.0015
second moment of area, I (m4) 2.1306154!10K4 2.1306019!10K4 C0.0006
Poisson’s ratio, n 0.261188 0.2612039 K0.006
shear coefficient, k 0.4957 0.4956 C0.02
shear modulus, G (N mK2) 79.29031!109 79.28932!109 C0.00125

N. G. Stephen2256
every real square matrix G, there exists a (non-unique) non-singular real
symmetric matrix S, such that GTZSK1GS; that is, G is similar to its transpose.
Combining the above two relationships yields

ðSJmÞK1GðSJmÞZGK1; ð5:3Þ
thus, the inverse of G is similar to G, and not only do the eigenvalues occur as
reciprocals, but G and the inverse of G also have the same JCF. Thus, the
multiplicity of an eigenvalue and its inverse must be the same, and any non-trivial
Jordan block structure must be the same for an eigenvalue and its inverse.
Moreover, from equation (2.8) one has GZVJVK1 and its inverse
GK1ZVK1JK1V , and substituting into equation (5.3) yields

ðVK1SJmV ÞK1JðVK1SJmV ÞZJK1: ð5:4Þ
Thus, the JCF and its inverse are similar, and one may conclude that the JCF of
JK1 is nothing other than J. The structure of the similarity matrix Bb
VK1SJmV may be determined (Gantmacher 1959) as follows: first re-arrange
equation (5.4) as JBKBJK1Z0, or in block form

J1 0 /

0 J2

« 1

2
64

3
75

B11 B12 /

B21 B22

« 1

2
64

3
75K

B11 B12 /

B21 B22

« 1

2
64

3
75

JK1
1 0 /

0 JK1
2

« 1

2
664

3
775Z 0;

ð5:5Þ
where Bij is a (not necessarily square) block decomposition of B, compatible
(conforming) with the size of the Jordan blocks. Each of the Jordan blocks
may be written as JiZliICNi, where Ni is nilpotent; the inverse of the block,
according to equation (2.16), may be written as JK1

i ZlK1
i IC �N i, where �N i is also

nilpotent. Equation (5.5) is then broken up and rearranged as

ðliKlK1
j ÞBij ZBij

�N jKNiBij: ð5:6Þ
Now for ðliKlK1

j Þs0, one may multiply by ðliKlK1
j Þ, and substitute from

equation (5.6) to give

ðliKlK1
j Þ2Bij ZBij

�N
2
j K2NiBij

�N j CN 2
iBij: ð5:7Þ

This process may be repeated a sufficient number of times, when the right-hand
side eventually becomes equal to zero because of the nilpotency of Ni and �N j .
Thus, one concludes that ðliKlK1

j ÞBijZ0, and hence

Bij Z 0; for ðliKlK1
j Þs0: ð5:8Þ
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For ðliKlK1
j ÞZ0, or liljZ1, one has

Bij
�N jKNiBij Z 0 ð5:9Þ

for a non-trivial block. This may be solved according to the structure of the
nilpotent matrices, and several of the elements of the Bij will be arbitrary. The
process is best illustrated by a simple example: assume a 6!6 JCF

J1

J2

l2

lK1
2

2
66664

3
77775Z

l1 1

l1

lK1
1 1

lK1
1

l2

lK1
2

2
666666666664

3
777777777775
; ð5:10Þ

where the remaining elements are zero. We thus have two Jordan blocks and two
trivial diagonal blocks. The block decomposition of B has four 2!2 blocks
ðB11; B12; B21 and B22Þ, four 2!1 blocks ðB13; B14; B23 andB24Þ, four 1!2
blocks ðB31; B32; B41 and B42Þ; the remaining blocks are scalar. Immediately, on
account of equation (5.8), the only non-zero blocks are B12; B21 and the scalar
blocks B34 and B43 For a block such as B12, equation (5.9) becomes
B12

�N 2KN 1B12Z0, or explicitly

b1 b2

b3 b4

" #
0 KlK2

1

0 0

" #
K

0 1

0 0

" #
b1 b2

b3 b4

" #
Z 0; ð5:11Þ

expanding gives

Kb3 Kb4KlK2
1 b1

0 KlK2
1 b3

" #
Z 0; ð5:12Þ

from which one has b3Z0 and b4ZKlK2
1 b1, and the block takes the form

B12 Z
b1 b2

0 KlK2
1 b1

" #
: ð5:13Þ

The scalar blocks are arbitrary, and the similarity matrix takes the form

BZ

0 0 b1 b2 0 0

0 0 0 KlK2
1 b1 0 0

b3 b4 0 0 0 0

0 Kl21b3 0 0 0 0

0 0 0 0 0 b5

0 0 0 0 b6 0

2
66666666664

3
77777777775
: ð5:14Þ

Since the repeating eigenvalue l1 and the (non-zero) elements b1;2;.;6 in this
example are quite arbitrary, one may conclude from this example that similarity of
a JCF to its inverse does not, in general, impose any restriction on the eigenvalues
which can give rise to a non-trivial Jordan block.
Proc. R. Soc. A (2006)
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6. Bi- and symplectic orthogonality and the reciprocal theorem

Since the transfer matrix G is not symmetric, one would normally employ bi-
orthogonality as the means of modal decomposition of an arbitrary state vector.
Let X i be a (right) eigenvector of G associated with the eigenvalue li, such that

GX i Z liX i; ð6:1Þ
let Y j be a (right) eigenvector of GT associated with the eigenvalue lj , such that

GTY j Z ljY j : ð6:2Þ
Pre-multiply equation (6.1) by YT

j to give

YT
j GX i Z liY

T
j X i; ð6:3Þ

transpose equation (6.2), and post-multiply by X i to give

YT
j GX i Z ljY

T
j X i: ð6:4Þ

Subtraction gives

ðliKljÞYT
j Xi Z 0; ð6:5Þ

and the bi-orthogonality relationship

YT
j X i Z 0; for lislj : ð6:6Þ

In principle, the disadvantage of this approach is the need to perform a second
eigenanalysis of the transpose of G, although in practice one needs only to
compute the eigen- and principal vectors, as the eigenvalues of GT are the same as
those of G. Instead, symplectic orthogonality is determined as follows: transpose
equation (6.1) to give

XT
i G

T Z liX
T
i : ð6:7Þ

Post-multiply by JmGX j to give

XT
i G

TJmGX j Z liX
T
i JmGX j : ð6:8Þ

NowGTJmGZJm andGX jZljX j , and substituting these expressions into (6.8)
yields

ð1KliljÞXT
i JmX j Z 0: ð6:9Þ

Thus, an eigenvector is symplectic adjoint orthogonal to all vectors, including
itself, but excluding the vector(s) associated with its reciprocal eigenvalue.

The two orthogonality relationships are clearly related, as follows: Y j is the
(right) eigenvector of GT having eigenvalue lj or, equivalently, YT

j is the left
eigenvector of G having eigenvalue lj . On the other hand, from equation (6.1), one

has GK1X jZlK1
j X j , but GK1ZJK1

m GTJm, leading to JK1
m GTJmX jZlK1

j X j ;

finally, pre-multiply by Jm and transpose to give ðJmX jÞTGZlK1
j ðJmX jÞT, and

one sees that ðJmX jÞT is a left eigenvector ofGhaving eigenvalue lK1
j ; effectively, the

left eigenvectors do not have to be explicitly computed if the right eigenvectors are
already known. Replace YT

j and lj in the bi-orthogonality relationship (6.5) by
ðJmX jÞT and lK1

j , respectively, to give

ðliKlK1
j ÞðJmX jÞTX i Z 0; ð6:10Þ

but ðJmX jÞTZKXT
j Jm, and multiplying by lj gives the symplectic orthogonality

relationship, equation (6.9).
Zhong & Williams (1993) have shown that the symplectic orthogonality

relationship is a consequence of the reciprocal theorem of Betti–Maxwell; the
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latter, in turn, underlies symmetry of the stiffness matrix K. According to the
reciprocal theorem, for two different load systems applied to the cell, denoted by
subscripts 1 and 2, the work done by the forces F1 acting through the
displacements d2 is equal to the work done by the forces F2 acting through the
displacements d1. For the single cell, figure 2, this may be written as

dT
L1FL2CdT

R1FR2 ZdT
L2FL1CdT

R2FR1: ð6:11Þ
Express the right-hand side vectors, in terms of the left-hand side vectors
according to

dR1 Z l1dL1; dR2 Z l2dL2; FR1 ZpR1 Z l1pL1 ZKl1FL1;

FR2 ZpR2 Z l2pL2 ZKl2FL2;
ð6:12Þ

to give

KdT
L1pL2Cl1l2d

T
L1pL2 ZKdT

L2pL1Cl1l2d
T
L2pL1; ð6:13Þ

or

ð1Kl1l2Þ½dT
L1pL2KdT

L2pL1�Z 0: ð6:14Þ
But the term

½dT
L1pL2KdT

L2pL1�ZXT
1 JmX2; ð6:15Þ

which indicates that equation (6.14) is a re-expression of the symplectic
orthogonality relationship (6.9).
7. Restrictions on complex unity eigenvalues and Jordan canonical form

Synge (1945) considered the problem of Saint-Venant, which is a beam subjected
to end loading only, with the surface generators being free of traction, specifically
for a prismatic homogenous elastic cylinder, and for the decay modes considered
stress varying as

ekxf ðy; zÞ: ð7:1Þ
According to Synge, ‘A purely imaginary k implies a periodic distribution of

displacement and stress. Consider the energy in a length of cylinder equal to this
period. It is equal to the work done by the terminal stress in passing from the
natural state to the strained state. But from the periodicity, this is zero. Hence the
energy of a strained state is zero, which is contrary to a basic postulate of
elasticity. Hence there can be no purely imaginary eigenvalue k. It should be added
that we cannot assert this if (Poisson’s ratio) n is arbitrary. It is necessarily only
true if strain energy is positive definite, i.e. ifK1!n!1=2’, indicating that this
simple and ingenious argument was originally put forward by Dougall (1913).

It is usual in such continuum problems to express the decay characteristic in
terms of a greatest linear dimension (‘gld’) of the cross-section, when the decay
characteristic can be expressed as ek

0ðx=gldÞ, where k 0Zk!gld is now dimension-
less. For a repetitive structure, the eigenvalue l relates to the k 0 as lZek

0
. Thus, if

an expression k 0Z iq is inadmissible, so too is an eigenvalue of the form
lZek

0
ZeiqZcos qC i sin q. On the other hand, such complex unity eigenvalues

take the place of some of the real unity eigenvalues for structures having a pre-
twisted form (Stephen & Zhang 2006), and also for a curved beam-like structure
(Stephen & Ghosh 2005); for both cases, the transfer matrix expressed in a local
Proc. R. Soc. A (2006)
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Figure 4. Single cell of pin-jointed cell having partial mechanism with displacements shown; force
components are zero.

N. G. Stephen2260
coordinate system rotating with the cross-section has such complex unity
eigenvalues pertaining to the rigid body displacements, when obviously no energy
is stored.

Elementary arguments based on the dimension of the transfer matrix of a
repeating cell can lead to restrictions on the possible coupling of eigenvectors, and
in turn the possible JCF. Consider the simple planar cell shown in figure 6: as there
are two displacement degrees of freedom per node, so the stiffness matrix K and
the transfer matrix G are both of size ð8!8Þ. As with any straight planar
structure, there must be precisely six unity eigenvalues—rigid body displacement
in the x -direction and tension are coupled within a ð2!2Þ Jordan block, while
rigid body displacement in the y -direction, cross-sectional rotation, bending
moment and shear, are coupled within a ð4!4Þ Jordan block. Thus, the Jordan
block structure must take the form

l 0

0 lK1

1 1

1

1 1

1 1

1 1

1

2
66666666666666664

3
77777777777777775

; ð7:2Þ

where the single unknown eigenvalue l occurs as a pair with its inverse, and with a
possible unity element replacing the zero to its right. Now a necessary, but not
sufficient, condition for a principal vector to be coupled to an eigenvector, when
one does have a unity on the superdiagonal in that block, is that an eigenvalue is
repeated; for a matrix of this dimension this can only occur when lZlK1, which in
turn implies lZG1. The repeated eigenvalue lZK1, within a non-trivial block,
does indeed occur for the cell, figure 4, which acts as a scissors-mechanism when
subject to the self-equilibrated loading shown. A more general proof leading to the
Proc. R. Soc. A (2006)
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same conclusion that the only possible repeating eigenvalues which can give rise to
a non-trivial Jordan block are lZG1 is now developed.

(a ) Eigenvectors associated with lZG1 do no work

If the left-hand side eigenvector is written as

eZ
dL

pL

� �
; ð7:3Þ

then the right-hand side vector is

leZ
ldL

lpL

" #
; ð7:4Þ

and the force and displacement vectors, according to the sign conventions of FEA,
are

F Z
FL

FR

" #
Z

KpL

lpL

" #
; d Z

dL

ldL

" #
: ð7:5Þ

Now the strain energy stored within the cell is equal to the work done (WD),
which is

WDZ 1

2
dTF Z 1

2
½dT

L ldT
L �

KpL

lpL

" #
Z 1

2
ðl2K1ÞdT

LpL Z
1

2
ð1Kl2ÞdT

LFL: ð7:6Þ

Clearly, the WD is zero for lZG1. This agrees with experience: the only known
eigenvectors having lZ1 are rigid body translations and rotations, while the only
known eigenvectors having lZK1 pertain to structures having a partial scissors-
mechanism, as in figure 4.

(b ) Work associated with a principal vector

If the left-hand side principal vector is written as

pZ
dp
L

pp
L

" #
; ð7:7Þ

where the superscript ‘p’ denotes principal, then the right-hand side vector is

lpCeZ
ldp

L CdL

lpp
L CpL

" #
; ð7:8Þ

and the force and displacement vectors are

F Z
Kpp

L

lpp
LCpL

" #
; d Z

dp
L

ldp
L CdL

" #
; ð7:9Þ

and the strain energy is

WDZ 1

2
dTF Z 1

2
½ðl2K1ÞdpT

L pp
LClðdpT

L pL CdT
Lp

p
LÞCdT

LpL�: ð7:10Þ
Again, this expression agrees with experience: the only known repeating
eigenvalues giving rise to a non-trivial Jordan block form are lZG1. Consider
the coupling of tension with rigid body displacement in the x -direction: the first
term in equation (7.10) is zero as lZ1, the last term is zero as pLZ0, that is the
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rigid body displacement has no force components, and the second term reduces to

WDZ 1

2
dT
Lp

p
L; ð7:11Þ

which is one-half of the extension (the displacement components of the
eigenvector) times the tensile force (the force components of the principal vector).

Now, it is known that principal vectors are not unique: one may add an
arbitrary multiple, say b, of the generating eigenvector and it is still a principal
vector, that is

GpZ lpCe; ð7:12Þ
and also

GðpCbeÞZ lðpCbeÞCe; since GbeZ lbe: ð7:13Þ
(On the other hand, one cannot arbitrarily add multiples of a principal vector of
one grade to a principal vector of another grade.) Now re-calculate the work
associated with the modified principal vector as follows: on the left-hand side one
has

pCbeZ
dp
LCbdL

pp
LCbpL

" #
; ð7:14Þ

while the right-hand side state vector is

lðpCbeÞCeZ
ldp

LCðlbC1ÞdL

lpp
LCðlbC1ÞpL

" #
; ð7:15Þ

with cell force and displacement vectors

F Z
Kpp

LKbpL

lpp
L CðlbC1ÞpL

" #
; d Z

dp
LCbdL

ldp
LCðlbC1ÞdL

" #
: ð7:16Þ

The strain energy is then

WDZ 1

2
½ðl2K1ÞdpT

L pp
LCððl2K1ÞbClÞðdpT

L pLCdT
Lp

p
LÞCððl2K1Þb2

C2lbC1ÞdT
LpL�: ð7:17Þ

Now make the assertion that the strain energy must be independent of arbitrary b,
that is expressions (7.10) and (7.17) must be identical; this requires

Ab2 CBbZ 0; ð7:18Þ
where

AZ ðl2K1ÞdT
LpL; B Z ðl2K1ÞðdpT

L pL CdT
Lp

p
LÞC2ldT

LpL: ð7:19Þ
This assertion is equivalent to the demand that the strain energy should be
independent of the choice of coordinate axes, since the eigenvectors are the rigid
body displacements in the x - and y -directions. Now since b is arbitrary, equation
(7.18) clearly requires that AZBZ0. The former requires either ðl2K1ÞZ0, or
dT
LpLZ0, or both. If ðl2K1ÞZ0, then the requirement BZ0 implies dT

LpLZ0; if,
from the requirement AZ0, one chooses dT

LpLZ0, with ðl2K1Þs0, the
requirement BZ0 implies dpT

L pLCdT
Lp

p
LZ0. Thus, one has the two possibilities:

(i) ðl2K1ÞZ0 and dT
LpLZ0, or

(ii) ðl2K1Þs0, with dT
LpLZ0 and dpT

L pLCdT
Lp

p
LZ0.
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Case (i) agrees with experience. However, the first scalar product of case
(ii) implies the existence of an eigenvector associated with a non-unity decay
eigenvalue, forwhich the strain energy in the cell and, indeed, the entire semi-infinite
structure, is zero, which is inconceivable. Thus, one concludes that the only possible
repeating eigenvalues that can give rise to a non-trivial Jordan block are lZG1.
Karpov et al. (2002a) have recently classified possible modes in repetitive structures
as ‘exponential’ (i.e. Saint-Venant decay according to a single non-unity eigenvalue),
‘polynomial’ (that is, transmission associated with multiple unity eigenvalues) and
‘quasi-polynomial’ (that is, degenerate multiple non-unity eigenvalues). It has been
shown that these quasi-polynomial modes cannot exist.

The above arguments presume the eigenvalues and vectors to be real; should
they be complex, then the transpose of the displacement vector is replaced by the
Hermitian conjugate (complex conjugate transpose), and one concludes that
ll�Z1, where ‘�’ denotes the conjugate, in which case the only possibilities are the
complex unity eigenvalues. Again, this is in accord with experience in the
eigenanalysis of pre-twisted (Stephen & Zhang 2006) and curved structures
(Stephen & Ghosh 2005).
8. The effect of cell (a)symmetry

In this section, we note that eigenvalue degeneracy is intrinsic to translational
symmetry, which is the same as the structure being repetitive. In particular,
eigenanalysis of a tapered cell reveals splitting of two unity eigenvalues. On the
other hand, for repetitive structures for which the cell has additional symmetries,
additional constraints (relationships) may be derived for both the stiffness and
transfer matrices; this is explored for a cell having left-to-right (reflective)
symmetry. Symmetry is synonymous with constraint.

(a ) Tapered cell

Consider the tapered, pin-jointed cell shown in figure 5, which is a modification
of the cell shown in figure 2, in which the right-hand side vertical members have
been increased in length to 1.5 m, and the diagonal members to suit. Clearly, such
a cell cannot be part of a repetitive structure, since adjacent cells are obviously
different; eigenanalysis is still a valid mathematical operation, but is not a
practical proposition, as it would have to be repeated for each individual cell;
nevertheless, some interesting observations arise. First, note that the eigenvalues
still occur as reciprocal pairs

1

1

 !
;

1

1

 !
;

3=2

2=3

 !
;

25:1235

0:0398

 !
;

2:7890

0:3585

 !
;

K12:5159

K0:0799

 !
;

as they must, since the stiffness matrix is symmetric, and the transfer matrix will
still be symplectic. More interestingly, the lack of nodal (translational) symmetry
has the effect of eigenvalue splitting: of the original six unity eigenvalues for the
cell of figure 1, two have split to become 2/3 and 3/2. These pertain to the (left-to-
right) rotation vector, which from elementary kinematics must have lZ3=2, while
from consideration of equilibrium, the moment vector must have lZ2=3.
Moreover, the moment vector contains a self-equilibrated load whose nodal force
components are of considerable magnitude—indeed, precisely what is necessary to
Proc. R. Soc. A (2006)



Figure 5. Tapered cell.
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Figure 6. Symmetric cell showing left-to-right reflection.

N. G. Stephen2264
ensure that the displacement components of the moment eigenvector should also
transmit with lZ2=3. Clearly, two of the unity eigenvalues must pertain to a rigid
body displacement in the x -direction, coupled to a tensile force. The other two
pertain to a rigid body displacement in the y -direction and a combined bending
moment and shearing force vector. Shearing force and bending moment are no
longer coupled within the same Jordan block.

(b ) Cells having left-to-right symmetry

Consider the simple X-braced cell shown in figure 6, which clearly has left-to-
right (denoted L5R) symmetry. In figure 6a, the nodal forces are shown
according to the conventions of the Theory of Elasticity, and decay of a self-
equilibrated loading applied to the left-hand nodes is assumed left-to-right, that is
jlj!1. In reflecting the cell to figure 6b, the x -components of force are in the same
direction, while the y -components have changed direction. Similarly, the
components of displacement in the x -direction will change sign, while those in
the y -direction remain unchanged. The eigenvector for the left-to-right decay,
written in full, is

sL Z ½d1x d1y d2x d2y p1x p1y p2x p2y�T: ð8:1Þ
Now by virtue of the symmetry of the cell, the equivalent right-to-left eigenvector,
figure 6b, also having a right-to-left decay of jlj!1, will be

½Kd1x d1y Kd2x d2y p1x Kp1y p2x Kp2y�T ZRsL; ð8:2Þ
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where the reflection (or parity) matrix R may be written in general as

RZ
A 0

0 KA

" #
; ð8:3Þ

and for the particular cell shown

AZ

K1 0 0 0

0 1 0 0

0 0 K1 0

0 0 0 1

2
66664

3
77775: ð8:4Þ

For a planar structure, the essential pattern ofH1 on the leading diagonal will
extend according to the number of nodes on the cross-section. For a three-
dimensional beam-like space structure, the z-components of displacement and
force would be unchanged by the L5R reflection, in which case the structure ofR
would be unchanged, while matrix A would consist of the sequence K1; 1; 1
repeated on the leading diagonal.

Since RsL is a right-to-left eigenvector having right-to-left decay with
eigenvalue l, it is also a left-to-right eigenvector having left-to-right decay
eigenvalue lK1. Thus, we may write initially,GsLZlsL; pre-multiply by RGK1 to
give RGK1sLZlK1RsL. But from the symmetry argument above, one also has
GRsLZlK1RsL. Symmetry demands that the two should be indistinguishable,

which requires GRZRGK1, orRGRZGK1. Note that the reflection matrixR is
involutory, that is R2ZI, as is matrix A. These arguments are represented
graphically in figure 7. A more rigorous approach is presented in §8c.
(c ) Four pole representation

Following Easwaran et al. (1993), who considered a four pole representation
with positive state variables according to figure 8, define barred positive force and
displacement components according to figure 9. This representation is ideal for the
L5R symmetry of the cell; force components are related to the FE sign
convention according to

�p1x ZKF1x ; �p1y ZF1y; �p2x ZKF2x ; �p2y ZF2y;

�p3x ZF3x ; �p3y ZF3y; �p4x ZF4x ; �p4y ZF4y;

or

�pL

�pR

" #
Z

A 0

0 I

" #
FL

FR

" #
; ð8:5Þ

while displacement components are related according to
�d1x ZKd1x ; �d1y Z d1y; �d2x ZKd2x ; �d2y Z d2y;

�d3x Z d3x ; �d3y Z d3y; �d4x Z d4x ; �d4y Z d4y;

or
�dL

�dR

" #
Z

A 0

0 I

" #
dL

dR

" #
: ð8:6Þ
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Figure 7. Symmetry arguments for reflection of symmetric cell. (a) Left-to-right decay, with
eigenvalue jlj!1. (b) Scale eigenvector: divide by l on both sides of cell. (c) Reflect the cell,
including the coordinate system. (d ) Due to symmetry, this is indistinguishable from left-to-right
decay; replace GK1 by G, reflect the coordinate system, and pre-multiply state (eigen) vector by R.
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Now define the stiffness matrix in this representation as

�pZ �K �d; ð8:7Þ
or more fully

�pL

�pR

" #
Z

�KLL
�KLR

�KRL
�KRR

" #
�dL

�dR

" #
; ð8:8Þ

which may be rearranged as

�pR

�pL

" #
Z

�KRR
�KRL

�KLR
�KLL

" #
�dR

�dL

" #
: ð8:9Þ
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Now symmetry of the cell demands that equations (8.8) and (8.9) be
indistinguishable, which requires

�KLL Z �KRR; ð8:10aÞ
�KLR Z �KRL: ð8:10bÞ

These barred stiffness matrix partitions can now be related to their conventional
counterparts, as follows: first note

�pL Z �KLL
�dLC �KLR

�dR ð8:11aÞ
and

FL ZKLLdL CKLRdR: ð8:11bÞ
Pre-multiply the latter by A, note that �pLZAFL; �dLZAdL; �dRZdR, and
subtract the former to give

ðAKLLK �KLLAÞdLCðAKLRK �KLRÞdR Z 0: ð8:12Þ
Now since the displacement vectors dL and dR are quite arbitrary, one must have

�KLR ZAKLR ð8:13aÞ
and

�KLLAZAKLL ð8:13bÞ
or

�KLL ZAKLLA; ð8:13cÞ
since AK1ZA: Similarly, one has

�pR Z �KRL
�dL C �KRR

�dR and FR ZKRLdL CKRRdR; ð8:14Þ
Proc. R. Soc. A (2006)
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substitute �pRZFR in the latter, and subtract the former, again noting that
�dLZAdL, to give

ðKRLK �KRLAÞdL CðKRRK �KRRÞdR Z 0; ð8:15Þ
and hence

�KRR ZKRR and �KRL ZKRLA: ð8:16Þ
Thus, the symmetry requirements, equations (8.10b) and (8.13a), yield

AKLR ZKRLA or KLR ZAKRLA ð8:17aÞ
and

KRR ZAKLLA or AKRR ZKLLA: ð8:17bÞ
In addition, the stiffness matrix is symmetric, in which case one knows that
KRLZKT

LR; from equation (8.17a), this further implies that AKT
RLZKRLA and

KT
LRAZAKLR. In themselves, these relationships have no explicit implications

for partitions of the transfer matrix G.
The transfer matrix relationship may also be posed in terms of the barred state

variables, as follows: from equations (8.5) and (8.6), note that

dL

pL

� �
Z

A 0

0 KA

" #
�dL

�pL

" #
; ð8:18Þ

or more compactly

sL ZR�sL; ð8:19Þ
while

sR Z �sR: ð8:20Þ
Substitute into equation (2.1), where the nth and ðnC1Þth sections are regarded
as the left- and right-hand sides, respectively, to give

�sR ZGR�sL: ð8:21Þ
Now, if the cell has left-to-right symmetry, then the subscripts ‘L’ and ‘R’ are
interchangeable, that is

�sL ZGR�sR: ð8:22Þ
Substitute (8.22) into (8.21) to give

�sR ZGRGR�sR; ð8:23Þ
hence GR is involutory, that is

ðGRÞðGRÞZ I ð8:24Þ
or

RGRZGK1; ð8:25Þ
which is identical to the relationship derived by the previous, more heuristic,
approach. A relationship can also be established for the JCF of such symmetric
cells: substituting GZVJVK1 and its inverse GK1ZVJK1VK1 into equation
(8.25) gives

ðJBÞðJBÞZ I ; ð8:26Þ
where BZVK1RV ; thus, JB is involutory, as is B itself. Again one has
relationship (5.3) showing that the JCF is similar to its inverse; for this left-to-
right symmetric cell, the similarity matrix is further constrained to be involutory.
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Expanding equation (8.24) into its square partitions leads to the relationships

GddAGddAKGdpAGpdAZ I ; ð8:27aÞ
GdpAGppAKGddAGdpAZ 0; ð8:27bÞ
GpdAGddAKGppAGpdAZ 0; ð8:27cÞ
GppAGppAKGpdAGdpAZ I : ð8:27dÞ

9. Conclusions

A variety of results pertaining to the elastostatic transfer matrix analysis of
repetitive structures has been presented. Results previously known relate to the
reciprocal eigenvalue properties as a consequence of the symplectic nature of the
transfer matrix, bi- and symplectic orthogonality and the impossibility of complex
unity eigenvalues for prismatic repetitive structures. Multiple unity eigenvalues
are a particular feature of the elastostatic eigenanalysis, and the Moore–Penrose
pseudo-inverse is introduced as a rational approach to the computation of
principal vectors. It is shown that only the eigenvalues lZG1 can give rise to a
non-trivial JCF, at least for the prismatic structure. An example of a structure for
which the transfer matrix has repeating negative unity eigenvalue is one possessing
a scissor-like mechanism. A planar structure, previously treated as pin-jointed, is
reconsidered as rigid-jointed; the additional rotational nodal degrees of freedom
give rise to new Saint-Venant decay modes—the number of transmission modes
associated with unity eigenvalues is fixed—while the equivalent continuum
properties are practically unaffected. This is in accord with the practice of treating
real, rigid-jointed structures as pin-jointed, at least for small deflection elastic
analysis. Symmetry implies restriction: a variety of relationships between
partitions of both the stiffness and transfer matrices of a cell possessing left-to-
right symmetry are derived; in contrast, one has splitting of unity eigenvalues for a
tapered cell that lacks translational symmetry. The present elastostatic results
may be seen as complementary to Langley’s (1996) analysis of wave motion
energetics using transfer matrices.
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