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ABSTRACT: Phthalocyanines and their main group and metal complexes are
important classes of organic semiconductor materials but are usually highly insoluble
and so frequently need to be processed by vacuum deposition in devices. We report
two highly soluble silicon phthalocyanine (SiPc) diester compounds and
demonstrate their potential as organic semiconductor materials. Near-infrared (λEL
= 698−709 nm) solution-processed organic light-emitting diodes (OLEDs) were
fabricated and exhibited external quantum efficiencies (EQEs) of up to 1.4%. Binary
bulk heterojunction solar cells employing P3HT or PTB7 as the donor and the SiPc
as the acceptor provided power conversion efficiencies (PCE) of up to 2.7% under
simulated solar illumination. Our results show that soluble SiPcs are promising
materials for organic electronics.

KEYWORDS: silicon phthalocyanines, single crystals, near-IR emission, solution-processable organic light-emitting diodes,
organic solar cells

■ INTRODUCTION

Phthalocyanines (Pcs) are thermally and chemically stable
planar 18 π-electron aromatic macrocycle analogs of porphyrins
consisting of four nitrogen-linked isoindole units. Pcs and their
metal complexes have attracted tremendous recent interest in
materials science due to their diverse optoelectronic and
magnetic properties.1 Notable in particular is the impressive
light-harvesting capacity of Pcs as a result of intense absorption
of the Q-bands in the region of 700 nm.2 Metal complexes of
Pcs have thus historically been used as blue-green dyes and
pigments.2 Phthalocyanines have been incorporated into a wide
range of functional devices ranging from organic field effect
transistors,3,4 sensors,3 optical storage devices, organic light-
emitting diodes (OLEDs),5 and organic (OSC) and dye-
sensitized solar cells (DSSC).6−8 Silicon phthalocyanines
(SiPcs) are a particularly attractive subclass of Pcs given the
elemental abundance and very low toxicity levels of silicon
coupled with their low band gap (∼1.7 eV). However, to date,
only a single report exists on the use of SiPcs as emitters in
OLEDs, and there are but a handful of reports of SiPcs used as
dyes in solar cells.6,9−12 The very low solubility in common
organic solvents of SiPcs is very likely a contributing factor to
the paucity of reports of OLED and solar cell devices. Here, we
demonstrate that by disubstituting at the axial positions of SiPc
complexes with suitably functionalized carboxylate groups (1
and 2, Figure 1a), solubility of these materials in organic
solvents can be readily enhanced, and solution-processed NIR

OLEDs and OSCs can be fabricated. Solution-processed
devices are attractive and exciting alternatives to vacuum-
deposited devices as fabrication relies on robust and high-
throughput infrastructure to produce large-area devices at
significantly reduced cost.13

■ RESULTS AND DISCUSSION

Synthesis and Compound Characterization. SiPc 1 and
2 were prepared in modest yield by the substitution of the axial
chloride ligands of commercially available silicon phthalocya-
nine dichloride, SiPcCl2, with, respectively, eicosanoic acid and
3,5-di-tert-butylbenzoic acid in diglyme at 160 °C (Figure 1a).
These compounds were easily purified by column chromatog-
raphy, wherein each of 1 and 2 eluted first as a distinct blue
band. The purity and identity of the compounds was confirmed
by 1H NMR spectroscopy, high-resolution mass spectrometry,
and elemental analysis. The melting point of 1 was found to be
168−170 °C, and that of 2 is significantly higher at >380 °C.
Both compounds are highly soluble in chlorinated solvents but
insoluble in polar aprotic solvents such as acetonitrile. Solubility
of these compounds in chlorinated solvents such as in 1,2-
dichlorobenzene [1 (>10 mg mL−1) and 2 (>35 mg mL−1)]
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make these compounds amenable for solution processing in
optoelectronic devices (vide infra).
Additionally, single crystals of suitable quality for X-ray

diffraction structure analysis were grown by slow evaporation of
mixed solutions of CH2Cl2−ethanol for 1 and CH2Cl2−
acetonitrile for 2. Their structures are shown in Figure 1b. Each
SiPc possesses a hypervalent silicon(IV) in a distorted
octahedral SiN4O2 coordination environment with a crystallo-
graphic inversion center at the silicon atom; therefore, the SiN4

fragment is planar (irrespective of any distortions within the
phthalocyanine ring itself), the SiO2 fragment is linear, and only
two of the Si−N and one of the Si−O bonds are unique. The
Si−N bonds are significantly longer [1.9065(11)−1.9188(19)
Å] than the Si−O bonds [1.7472(9)−1.7518(17) Å]. The axial
carboxylate ligands disrupt intermolecular interaction in the
solid state and significantly increase the solubility of these
SiPcs. The linear alkyl chains of the eicosanoate ligands present
in 1 are arranged parallel to the plane of the phthalocyanine
ring, whereas the 3,5-di-tert-butylbenzoate ligands in 2 are

arranged nearly orthogonal to the Pc plane. As a function of the
differences in orientation of the carboxylate ligands, 1 packs
with coparallel but diagonally offset Pc rings with Si···Si
distances of 9.1436(15) Å, and 2 packs in a herringbone motif
with two crystallographically distinct SiPc compounds, resulting
in much longer Si···Si distances of 11.313(2) Å. Neither 1 nor 2
show any intermolecular π···π and C−H···π interactions
(Figure 1c).

Optoelectronic Properties. Compounds 1 and 2 exhibit
nearly identical electrochemistry in dichloromethane (DCM)
solution (Table 1). Reversible oxidation waves were found at
0.59 and 0.60 V for 1 and 2, respectively, versus Fc/Fc+. These
values are similar to alkoxy-disubstituted SiPcs.14 SiPc 1 shows
a single reversible reduction wave at −1.16 V (a second
irreversible reduction wave is present at more negative
potentials), while for SiPc 2, two reversible waves at −1.14
and −1.57 V are observed (cyclic voltammograms shown in
Figure S1). These potentials are typical of the redox processes
centered on the Pc macrocycle.15 The reduction wave at −1.57

Figure 1. (a) Synthesis of SiPc 1 and 2. (b) Structures of 1 and 2 (50% probability ellipsoids; H atoms omitted for clarity). Heteroatoms: O, red; N,
blue; Si, yellow. Selected bond lengths (Å): (1) Si−O 1.7472(9), Si−N1 1.9065(11), Si−N2 1.9161(16); (2) Si1−O1 1.7485(17), Si41−O1
1.7518(17), Si1−N1 1.906(2), Si1−N2 1.913(2), Si41−N1 1.898(2), Si41−N2 1.9188(19). (c) Solid-state arrangements of 1 and 2.

Table 1. Optoelectronic Characterization Data for 1 and 2a

λabs /nm [ε/104 M−1 cm−1] λem /nm ΦPL/%
b τe/ns HOMO/eV LUMO/eV ΔE /eV

1 291 [2.4], 360 [7.1], 614 [3.8], 652 [3.2], 683 [26] 690 50 7.0 −5.39 −3.64 1.75
2 291 [2.4], 359 [7.1], 616 [3.7], 654 [3.1], 685 [27] 690 48 7.1 −5.40 −3.66 1.74

aMeasurements in DCM at 298 K. For electrochemistry, 0.1−0.2 M n-Bu4NPF6 was added as the supporting electrolyte to the solution, and Fc/Fc+

was used as the internal reference; glassy-carbon working electrode, platinum-spiral counter electrode, and platinum-wire quasi-reference electrode
were used at a scan rate of 0.1 V s−1. The HOMO and LUMO energies were calculated using the relation EHOMO/LUMO = −(Eox/Ered + 4.8) eV,
where Eox and Ered are first oxidation and reduction potentials, respectively. ΔE = −(EHOMO − ELUMO).

17 bMeasured in an integrating sphere (see the
Supporting Information for details).
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V is assigned to a second reduction of the Pc ring system. The
first reduction potentials in 1 and 2 are cathodically shifted by
ca. 170 mV compared to axially alkoxy-disubstituted SiPcs (Ered
= −990 mV).16 The redox gaps for both compounds are
similar, ranging from 1.74 to 1.75 V. Both SiPc compounds are
intensely blue solids. In DCM solution, their absorption spectra
are dominated by sharp Q-band transitions at 683 nm for 1 and
685 nm for 2 (ε = 26 × 104 M−1 cm−1 for 1 and 27 × 104 M−1

cm−1 for 2). There are lower intensity high-energy absorption
Soret bands spanning 290−400 nm that are characteristic of
silicon phthalocyanines (Table 1).2

Both compounds emit strongly in the near-infrared (NIR) in
DCM solution with λmax of 691 nm (cf. Figure S2 for 1 and
Figure 2 for 2). They show similar photoluminescence

quantum yields, ΦPL, of 50 and 48% for 1 and 2, respectively
(Table 1). These values are typical of SiPc compounds,
although the emission is modestly red-shifted compared to
alkoxy- and silyloxy-disubstituted silicon phthalocyanines.2 The
short monoexponentially decaying emission lifetimes (τe ca. 7
ns), the mirror image spectral features (cf. Figure 2), and the
small Stokes shifts all point to emission originating from the
lowest excited singlet state. The emission is significantly
quenched in the neat solid (ΦPL < 1%).
Organic Light-Emitting Diodes. The high efficiency and

narrow spectral range of luminescence make the SiPc suitable
luminophores for NIR light sources. NIR light sources offer
distinct advantages for sensing, information security, and
imaging, particularly in a biological context where tissue
samples exhibit minimal absorption and autofluorescence.18−21

To the best of our knowledge, there is only one report on the
use of SiPc compounds as emitters in OLEDs, and the external
quantum efficiency (EQE) was not reported.14 A further report
describes the use of SiPc compounds in electrochemilumines-
cence studies.22 The electroluminescence of SiPc 1 and 2 was
studied in organic light-emitting diodes (OLED). The device
architecture is shown in Figure 3 and consists of the following
layers: ITO/PEDOT:PSS (30 nm)/PVK (30 nm)/
CBP:PBD:SiPc [30:(70−x):x; x = 1, 5, or 10 wt %; SiPc = 1
or 2; 30 nm]/B3PYMPM (50 nm)/Ca (20 nm)/Al (100 nm).
PEDOT:PSS is a hole-injecting layer. Poly(N-vinylcarbazole)
(PVK) is a hole-transporting and electron- and exciton-
blocking layer with lowest-unoccupied molecular orbital

(LUMO) of 2.0 eV.23,24 N,N′-Dicarbazolyl-4−4′-biphenyl
(CBP) and 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxa-
diazole (PBD) are the hosts. These three layers were deposited
by spin-coating. 4,6-Bis(3,5-di(pyridin-3-yl)phenyl)-2-methyl-
pyrimidine (B3PYMPM) is an electron-transporting and hole-
blocking layer with electron mobility of approximately 10−5 cm2

(V s)−1 and a highest-occupied molecular orbital (HOMO) of
6.8 eV.25 The multilayer architecture helps to achieve better
electroluminescence performance by balancing the hole and
electron injection and by confining the excitons in the emitting
layer.
The topographical morphology of the emitting layer ITO/

PEDOT:PSS (30 nm)/PVK (30 nm)/CBP:PBD:SiPc [30:
(70−x):x; x = 1, 5, or 10 wt %; SiPc = 1 or 2; 30 nm] was
measured by optical and atomic force microscopies (OM and
AFM). The film roughness increases at high doping levels of 2.
At 10 wt % of 2, the film has pinholes and is visually
nonuniform. Pinholes induce current leakage, thereby deteri-
orating the device performance. In contrast, the films with 1 are
of better quality and do not have as many pinholes (Figure 4).
The emitting layer was doped with 1, 5, or 10 wt % SiPc. A

higher doping or a neat SiPc were not used to avoid
concentration quenching of the luminescence. Both 1 and 2
exhibit NIR electroluminescence (EL) in the OLED. Their EL
spectra are similar to their photoluminescence spectra (Figure
5). The EL spectra show maxima ranging from 698−709 nm
and have full width at half-maximum of 21−27 nm that are
especially narrow for a near IR organic emitter.
The current, voltage, and light-output characteristics of the

OLED employing 2 as the emitter are shown in Figure 6. Light
output of OLEDs is often expressed in photometric units (i.e.,
units that take account of the responsivity of the eye, such as cd
m−2). Because we are interested in NIR emission, the eye
response is not relevant, and so instead, we show the power per
unit area emitted, a quantity known as radiant exitance. For the
1 wt % sample shown, NIR light output is obtained for applied
voltages of 5 V and more. The external quantum efficiency

Figure 2. Normalized absorption and emission spectra of 2 in DCM at
298 K.

Figure 3. (a) Device configuration of the OLEDs. (b) Energy-level
diagram of the OLEDs.
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(EQE) is up to 1.4%, which ranks among the most efficient
solution-processed fluorescent NIR OLEDs.26−30 Higher
current densities and light output are obtained for higher
concentrations of 2 (Figure 6), although the overall efficiency is
lower, probably because of a combination of concentration
quenching of luminescence and deterioration of film quality

(Table 2). The EL at high current comes both from 2 in the
NIR at >660 nm and from the hosts in the visible range at
380−560 nm, even at high doping levels of 2.

For 1, the variation of current density matches that of
irradiance (Figure S6. The host EL is negligible, indicating
efficient host-to-1 energy transfer. The maximum irradiance
and EQE are achieved at 1 wt % of 1 to give EQE of 0.64%,
which is only half that of 2. In contrast, 1 outperforms 2 at
higher doping: the EQE at 5 and 10 wt % of 1 is 0.45 and
0.38%, respectively, while that of 2 is 0.41 and 0.13%. The turn-
on voltage for 1, however, is higher than that for 2 (Table 2).
The lower efficiencies in 1 compared to 2 may be the result of
the insulating alkyl chains present that may lower charge
mobility in the film.

Organic Solar Cells. Silicon phthalocyanines have been
explored more widely as dyes and electron donors and
acceptors in photovoltaic applications than in EL devices.
The highest power conversion efficiency (PCE) in a dye-
sensitized solar cell (DSSC) employing an SiPc dye with the
adsorbing carboxylate unit directly attached to the Pc
macrocycle was recently reported by Sellinger and co-workers
to be 4.5%, with a short-circuit current of 19.0 mA cm−2.6 PCEs
decrease markedly when the adsorbing unit is attached to the
axial ligands about the SiPc.31,32 Silicon phthalocyanines

Figure 4. Optical microscopy [(a,c); 150 × 113 μm2 each] and atomic-force microscopy [(b,d); 2 × 2 μm2 each; 500 nm scale bar] of films ITO/
PEDOT:PSS/PVK/CBP:PBD:SiPc (30:60:10; SiPc = 1 or 2; 30 nm). The film doped with 2 [(a,b)] has more pinholes and higher RMS roughness
Ra = 0.72 nm than the film doped with 1 [(c,d); Ra = 0.4 nm].

Figure 5. Electroluminescence spectra for 1 and 2.

Figure 6. Current density vs voltage (black) and radiant exitance vs
voltage (red) for 2.

Table 2. OLED Performance Data

device SiPca
Von

b

(V) λEL(nm)
fwhm/
nm

EQE (Jeqe) (% (mA/
cm2))

1 1 (1%) 9.9 701 22 0.64 (1.5)
2 1 (5%) 11.5 704 24 0.45 (0.025)
3 1 (10%) 8.6 709 27 0.38 (0.07)
4 2 (1%) 7.4 700 21 1.40 (0.002)
5 2 (5%) 8.6 700 22 0.41 (0.14)
6 2 (10%) 6.9 698 22 0.13 (23.3)

aDoping concentrations in parentheses. bTurn-on voltage that gives an
irradiance of 10−4 mW cm−2
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bearing tri-n-hexylsilyloxy axial substituents have been used as
additives in ternary bulk heterojunction (BHJ) organic solar
cells (OSC), where they act not only as dyes but also as charge
transporting agents.33−35 Efficiencies for these devices reach up
to 4.9%.35 The replacement of n-hexylsiyloxy groups with
fluorinated phenoxy moieties resulted in improved PCE (>2%)
in planar heterojunction OSCs, where the SiPcs can act as both
electron donors or electron acceptors.34

In BHJ solar cells, fullerene derivatives are widely used as
acceptors, but their weak absorption in the visible spectrum, the
difficulty in tuning the band gap by chemical modification, and
their high price are all detracting features, which has catalyzed
the search for replacement candidate non-fullerene acceptor
(NFA) materials.36 Among NFA materials investigated to date,
those based on perylenediimide (PDI) have been widely
explored as they possess electron affinities, EA, around 3.9 eV,
which are similar to fullerene acceptors.37 Recently, a PCE of
7.16% has been reported using a wide-band gap polymer
PDBT-T1 donor in concert with a perylene bisimide dimer as
an acceptor in BHJ organic solar cells.38 Cnops and co-workers
reported a PCE of 6.8% using boron subphthalocyanine
(BsubPc)-based donor and acceptor materials.39 Indeed,
PCEs for state-of-the-art NFA OSC have exceeded 8% for
evaporated three-layer devices based on BsubPc acceptors40

while PCEs of 6.8% have been obtained for solution-processed
planar heterojunction photovoltaic devices using a bespoke
conjugated acceptor.41 Acceptors based on phthalocynanines
have also been explored, and the handful of reports in literature
in which silicon and germanium phthalocyanines are used as
acceptors in planar heterojunction photovoltaic devices show
PCEs in the devices of only up to 2%.10,11,34

SiPcs and 1 and 2 were investigated as dyes and electron-
acceptor materials in binary BHJ OSCs in conjunction with
electron donor polymers P3HT or PTB7 (Figure 7). A
reference device based on PTB7:PC71BM was fabricated and
showed a PCE of 6.4% (Figure S9). In the reference device, 1,8-
diiodooctane (DIO) was used as an additive to improve the

morphology of the blends. The obtained PCE is in close
agreement with the values reported in the literature.42,43 The
current density−voltage (J−V) characteristics of the OSCs
using SiPc acceptors are shown in Figure 8, and the device data

is summarized in Table 3. The VOC of the OSC employing
P3HT as the donor is 0.26 V less than when PTB7 acts as the
donor. This difference can be attributed to the HOMO of
P3HT (−5.1 eV) being destabilized compared to PTB7 (−5.31
eV) by a similar value. The higher VOC of the PTB7:2 OSC
combined with the significantly enhanced JSC of 6.18 mA cm−2

results in a far more efficient device (PCE = 2.67%). This PCE,
although lower than the reference OSC, is nevertheless superior
to the previous OSCs using SiPc or GePc acceptor materials.
Replacement of 2 with 1 as the acceptor results in an order of
magnitude lower short-circuit current (JSC = 0.60 mA), which
we speculate is due to the reduced charge mobility of the SiPc
dye due to the insulating eicosanoate groups. A disadvantage of
PC60BM, which is widely used as an acceptor, is its weak
absorption. It is desirable for acceptors to contribute to light
absorption. We investigated this by measuring the EQE spectra
for a range of donor/acceptor weight ratios, and the results for
PTB7:2 and P3HT:2 are shown in Figure 9 and in Figure S8,
respectively. The peak in the region of 360 nm is due to
absorption of 2. In addition it can be seen that 2 contributes to

Figure 7. (a) Device configuration of the OSCs. (b) Energy level
diagram of the OSCs.

Figure 8. Current−voltage characteristics of OSCs under AM1.5G
illumination.

Table 3. Optimized OSC Performance Dataa

OSC ratio
Tanneal
(°C)

JSC (mA
cm−2)

VOC
(V)

FF
(%)

PCE
(%)

PTB7:1 1:1.5 100 0.60 1.00 45 0.27
PTB7:2 1:1.5 100 6.18 1.03 42 2.67
P3HT:2 1:1 120 1.62 0.77 32 0.40

aUnder 100 mW cm−2 AM1.5G illumination. Annealed for 10 min.

Figure 9. External quantum efficiency spectra of OSCs at various
PTB7:2 ratios.
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the absorption in the region of 720 nm. Hence our results show
that the absorption of 2 contributes to the photocurrent. The
highest efficiency is for a 1:1.5 weight ratio of PTB7:2 and
suggest this blend ratio gives the best combination of
absorption and electron transport. AFM studies on PTB7:2
films for the weight ratio 1:1.5 (Figure S7) demonstrate that
annealing at 100 °C leads to the pure phase formation of each
component, which in turn increases the carrier mobility and
enhances the device performance. The 1:1 blend is most likely
less efficient due to worse electron transport, and the 1:2 blend
is likely to have better electron transport but lower absorption.
The annealing temperature of the active layer is another key

parameter in the construction of the optimized OSC.44 Table 4

shows relative OSC performance metrics as a function of
annealing temperature. An annealing temperature (Tanneal) of
100 °C produced a device with the best combination of short-
circuit current and fill factor values. Increasing the annealing
temperature beyond 120 °C resulted in a significant decrease in
both JSC and FF, and annealing temperatures inferior to 100 °C
produced a suboptimal short-circuit current. The poorest
performing device was the one where there was no thermal
annealing with JSC and FF values of 3.10 mA/cm2 and 26%,
respectively.

■ CONCLUSIONS
We demonstrated that with appropriate axial disubstitution,
high solubility in chlorinated solvents can be conferred to SiPc
carboxylate compounds. Silicon phthalocyanines act as both
efficient near-IR emitters and strong light-absorbers. Their
electrochemical properties make them suitable as electron-
accepting materials in OSCs. SiPc 2 exhibited the greatest
potential, with the OLED showing the highest external
quantum efficiency of 1.4% and the OSC the highest power
conversion efficiency of 2.67%. The abundance and negligible
toxicity profile of silicon makes it an attractive element to be
incorporated into functional materials. These promising results
augur well for future developments in silicon-based organic
electronics.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsami.5b12408.

Additional details on synthesis, X-ray crystallography,
electrochemistry, absorption and emission spectroscopy,
organic light-emitting diodes, organic solar cells, and
NMR spectra. A table showing crystal data and structure
refinement. Figures showing cyclic voltammograms of 1
and 2, absorption and emission spectra of 1 in

dichloromethane, AFM images of films, electrolumines-
cence spectra of OLED, OLED analysis, additional AFM
images, EQE curve for P3HT, current−voltage character-
istics, absorption spectra of films, and NMR spectra.
(PDF)
The research data supporting this publication can be

accessed at http://dx.doi.org/10.17630/129a22c4-55bd-
402b-af9f-2fe87d09fbd0.
CIF of the crystal structures for 1 and 2, CCDC nos.
1434986 and 1434992 (CIF)

■ AUTHOR INFORMATION

Corresponding Authors
*Tel: +44-1334 463826; fax: +44-1334 463808; e-mail: eli.
zysman-colman@st-andrews.ac.uk.
*E-mail: idws@st-andrews.ac.uk.

Present Address
§Optoelectronics Laboratory, Department of Physics, North
Maharashtra University, Jalgaon-425001, India

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
E..Z.-C. acknowledges the University of St. Andrews for
financial support. We thank the EPSRC UK National Mass
Spectrometry Facility at Swansea University for analytical
services. I.D.W.S. acknowledges support from the EPSRC
(grant EP/J01771X), the European Research Council (grant
321305), and a Royal Society Wolfson Research Merit Award.
We thank Dr. Nail Shavaleev for the synthesis of 1 and 2, for
electrochemical measurements, for contributions to the UV−vis
spectroscopy measurements and for suggesting the choice of
materials.

■ REFERENCES
(1) de la Torre, G.; Claessens, C. G.; Torres, T. S. Phthalocyanines:
Old Dyes, New Materials. Putting color in Nanotechnology. Chem.
Commun. 2007, 2000−2015.
(2) Nyokong, T. Effects of Substituents on the Photochemical and
Photophysical Properties of Main Group Metal Phthalocyanines.
Coord. Chem. Rev. 2007, 251, 1707−1722.
(3) Guillaud, G.; Simon, J.; Germain, J. P. Metallophthalocyanines:
Gas Sensors, Resistors and Field Effect Transistors1. Coord. Chem. Rev.
1998, 178−180 (2), 1433−1484.
(4) Melville, O. A.; Lessard, B. H.; Bender, T. P. Phthalocyanine-
Based Organic Thin-Film Transistors: A Review of Recent Advances.
ACS Appl. Mater. Interfaces 2015, 7, 13105−18.
(5) Hohnholz, D.; Steinbrecher, S.; Hanack, M. Applications of
Phthalocyanines in Organic Light Emitting Devices☆. J. Mol. Struct.
2000, 521, 231−237.
(6) Lim, B.; Margulis, G. Y.; Yum, J.-H.; Unger, E. L.; Hardin, B. E.;
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aUnder 100 mW cm−2 illumination. At 1:1.5 PTB7:2 weight ratio
annealed for 10 min.
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