
Equihash: Asymmetric Proof-of-Work Based on
the Generalized Birthday Problem

(Full version)

Alex Biryukov
University of Luxembourg

alex.biryukov@uni.lu

Dmitry Khovratovich
University of Luxembourg
khovratovich@gmail.com

Abstract—Proof-of-work is a central concept in modern
cryptocurrencies and denial-of-service protection tools, but the
requirement for fast verification so far made it an easy prey for
GPU-, ASIC-, and botnet-equipped users. The attempts to rely on
memory-intensive computations in order to remedy the disparity
between architectures have resulted in slow or broken schemes.

In this paper we solve this open problem and show how to
construct an asymmetric proof-of-work (PoW) based on a compu-
tationally hard problem, which requires a lot of memory to gen-
erate a proof (called ”memory-hardness” feature) but is instant
to verify. Our primary proposal Equihash is a PoW based on the
generalized birthday problem and enhanced Wagner’s algorithm
for it. We introduce the new technique of algorithm binding to
prevent cost amortization and demonstrate that possible parallel
implementations are constrained by memory bandwidth. Our
scheme has tunable and steep time-space tradeoffs, which impose
large computational penalties if less memory is used.

Our solution is practical and ready to deploy: a reference
implementation of a proof-of-work requiring 700 MB of RAM
runs in 15 seconds on a 2.1 GHz CPU, increases the computations
by the factor of 1000 if memory is halved, and presents a proof
of just 120 bytes long.

Keywords: Equihash, memory-hard, asymmetric, proof-of-
work, client puzzle.

I. INTRODUCTION

Request of intensive computations as a countermeasure
against spam was first proposed by Dwork and Naor in [24]
and denial of service (DoS) protection in the form of TLS
client puzzle by Dean and Stubblefield [21]. Amount of work
is certified by a proof, thus called proof-of-work, which is
feasible to get by an ordinary user, but at the same time slows
down multiple requests from the single machine or a botnet.
Perhaps the simplest scheme is Hashcash [9], which requires
a hash function output to have certain number of leading zeros
and is adapted within the Bitcoin cryptocurrency. Nowadays,
to earn 25 Bitcoins a miner must make an average of 268 calls
to a cryptographic hash function.

Long before the rise of Bitcoin it was realized [23] that
the dedicated hardware can produce a proof-of-work much
faster and cheaper than a regular desktop or laptop. Thus the
users equipped with such hardware have an advantage over
others, which eventually led the Bitcoin mining to concentrate
in a few hardware farms of enormous size and high electricity
consumption. An advantage of the same order of magnitude

is given to “owners” of large botnets, which nowadays often
accommodate hundreds of thousands of machines. For prac-
tical DoS protection, this means that the early TLS puzzle
schemes [9], [20] are no longer effective against the most
powerful adversaries.

a) Memory-hard computing: In order to remedy the
disparity between the ASICs and regular CPUs, Dwork et al.
first suggested memory-bound computations [4], [23], where a
random array of moderate size is accessed in pseudo-random
manner to get high bandwidth. In the later work [25] they
suggested filling this memory with a memory-hard function
(though this term was not used) so that the memory amount can
be reduced only at the large computational cost to the user1.
As memory is a very expensive resource in terms of area and
the amortized chip cost, ASICs would be only slightly more
efficient than regular x86-based machines. Botnets remain a
problem, though on some infected machines the use of GBytes
of RAM, will be noticeable to users. One can also argue
that the reduced ASIC advantages may provide additional
incentives for botnet creators and thus reduce the security of
an average Internet users [19], [33].

No scheme in [23], [25] has been adapted for the practical
use as a PoW. Firstly, they are too slow for reasonably
large amount of memory, and must use too little memory if
required to run in reasonable time (say, seconds). The first
memory-hard candidates [25] were based on superconcentra-
tors [47] and similar constructions explored in the theory of
pebbling games on graphs [31]. To fill N blocks in mem-
ory a superconcentrator-based functions make N logN hash
function calls, essentially hashing the entire memory dozens
of times. Better performance is achieved by the scrypt func-
tion [46] and memory-hard constructions among the finalists
of the Password Hashing Competition [3], but their time-space
tradeoffs have been explored only recently [5], [6], [17].

For example, a superconcentrator-based function using
N = 225 vertices of 32 bytes each (thus taking over 1 GB
of RAM) makes O(N logN) or cN with large c calls to the
hash function (the best explicit construction mentioned in [26]
makes 44N calls), thus hashing the entire memory dozens of
time.

Secondly, the proposed schemes (including the PHC con-

1The actual amount of memory in [25] was 32 MB, which is not that “hard”
by modern standards.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31227294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

structions) are symmetric with respect to the memory use. To
initialize the protocol in [23], [25], a verifier must use the same
amount of memory as the prover. This is in contrast with the
Bitcoin proof-of-work: whereas it can be checked instantly
(thus computational asymmetry) without precomputation, vir-
tually no memory-hard scheme offers memory asymmetry.
Thus the verifier has to be almost as powerful as the prover, and
may cause DoS attacks by itself. In the cryptocurrency setting,
fast verification is crucial for network connectivity. Even one
of the fastest memory-hard constructions, scrypt [46], had to
be taken with memory parameter of 128 KB to ensure fast
verification in Litecoin. As a result, Litecoin is now mined on
ASICs with 100x efficiency gain over CPU [39].

Finally, these schemes have not been thoroughly analyzed
for possible optimizations and amortizations. To prove the
work, the schemes should not allow any optimization (which
adversaries would be motivated to conceal) nor should the
computational cost be amortizable over multiple calls [24].

A reasonably fast and memory-asymmetric schemes would
become a universal tool and used as an efficient DoS coun-
termeasure, spam protection, or a core for a new egalitarian
cryptocurrency.

b) Recent asymmetric candidates: There have been
two notable attempts to solve the symmetry and performance
problems. The first one by Dziembowski et al. [26] suggests an
interactive protocol, called a proof-of-space, where the prover
first computes a memory-hard function and then a verifier
requests a subset of memory locations to check whether they
have been filled by a proper function. The verification can thus
be rather quick. However, the memory-hard core of the scheme
is based on a stack of superconcentrators and is quite slow: to
fill a 1 GB of memory it needs about 1 minute according
to the performance reports in [45]. The scheme in [26] is
not amortization-free: producing N proofs costs as much as
producing one. As a result, a memory-hard cryptocurrency
Spacecoin [45] built on proofs-of-space requires miners to
precommit the space well before the mining process, thus
making the mining process centralized. We also note that
the time-space tradeoff is explored for these constructions for
memory reductions by a logarithmic factor (say, 30 for 1 GB)
and more, whereas the time increases for smaller reductions
are unknown.

A more promising scheme was proposed by Tromp [52] as
the Cuckoo-cycle PoW. The prover must find a cycle of certain
length in a directed bipartite graph with N vertices and O(N)
edges. It is reasonably efficient (only 10 seconds to fill 1 GB
of RAM with 4 threads) and allows very fast verification. The
author claimed prohibitive time-memory tradeoffs. However,
the original scheme was broken by Andersen [7]: a prover
can reduce the memory by the factor of 50 with time increase
by the factor of 2 only. Moreover, Andersen demonstrated a
simple time-memory tradeoff, which allows for the constant
time-memory product (reduced by the factor of 25 compared
to the original). Thus the actual performance is closer to
3-4 minutes per GB2). Apart from Andersen’s analysis, no
other tradeoffs were explored for the problem in [52], there

2The project webpage [52] claims that Andersen’s optimizations are now
integrated into the miner, but the performance numbers are mainly unchanged
since before the cryptanalysis appeared.

is no evidence that the proposed cycle-finding algorithm is
optimal, and its amortization properties are unknown. Finally,
Andersen’s tradeoff allows to parallelize the computations
independently thus reducing the time-memory product and the
costs on dedicated hardware.

Finally, the scheme called Momentum [40] simply looks
for a collision in 50-bit outputs of the hash function with
26-bit input. The designer did not explore any time-space
tradeoffs, but apparently they are quite favourable to the
attacker: reducing the memory by the factor of q imposes
only

√
q penalty on the running time [53] (more details in

Appendix A).

c) Our contributions: We propose a family of fast,
memory-asymmetric, optimization/amortization-free, limited
parallelism proofs of work based on hard and well-studied
computational problems. First we show that a wide range of
hard problems (including a variety of NP-complete problems)
can be adapted as an asymmetric proof-of-work with tunable
parameters, where the ASIC and botnet protection are deter-
mined by the time-space tradeoffs of the best algorithms.

Our primary proposal Equihash is the PoW based on
the generalized birthday problem, which has been explored
in a number of papers from both theoretical and implemen-
tation points of view [15], [16], [35], [42], [54]. To make it
amortization-free, we develop the technique called algorithm
binding by exploiting the fact that Wagner’s algorithm carries
its footprint on a solution.

In our scheme a user can independently tune time, memory,
and time-memory tradeoff parameters. In a concrete setting,
our 700 MB-proof is 120 bytes long and can be found in
15 seconds on a single-thread laptop with 2.1 GHz CPU.
Adversary trying to use 250 MB of memory would pay
1000-fold in computations using the best tradeoff strategy,
whereas a memoryless algorithm would require prohibitive
275 hash function calls. These properties and performance are
unachievable by existing proposals. We have implemented and
tested our scheme in several settings, with the code available
at request. Equihash can be immediately plugged into a
cryptocurrency or used as a TLS client puzzle.

To increase confidence in our proposal, we review and
improve the best existing tradeoff strategies for the generalized
birthday problem.

We also show how to build a PoW from two different hard
problems generically and get the best of the their tradeoffs
when the algorithm binding technique is not applicable. In this
context we explore the hard knapsack problem, for which the
best algorithms have been scrutinized in the recent papers [11],
[22], [32].

d) Outline: This paper is structured as follows. First,
we review the properties required from an asymmetric proof of
work and show how to adapt a computationally hard problem
for a PoW (Section II). We review the generalized birthday
problem and Wagner’s algorithm in Section III and outline
our primary proposal in Section IV. The new results on the
time-space tradeoffs and parallelism are proven in Sections V
and VI. Generic problem composition is left for Appendix.

2

II. PROOFS OF WORK AND HARD COMPUTATIONAL
PROBLEMS

In this section we list the properties that we require from a
proof-of-work and explain in a generic way how to turn a hard
computational problem into a proof-of-work and what are the
necessary conditions for such a problem. A reader interested
in a concrete proposal with technical details may immediately
proceed to Section IV.

A. Properties

We define a problem

P : R× I × S → {true, false}.
as a hard predicate, where R is the set of parameters that
determine the hardness, I is the set of inputs conforming to
R and S is the set of possible solutions. We assume that there
is an algorithm (or a family of algorithms) AR that solves PR
on any I , i.e. finds S such that P(R, I, S) = true.

A proof-of-work scheme based on P (and implicitly on the
algorithm A for it) is an interactive protocol, which operates
as follows:

1) The Verifier sends a challenge input I ∈ I and
parameters R ∈ R to the Prover.

2) The Prover finds solution S such that P(R, I, S) =
true and sends it to the Verifier.

3) The Verifier computes P(R, I, S).

A non-interactive version (e.g., for cryptocurrencies) can be
derived easily. In this setting I contains some public value (last
block hash in Bitcoin) and prover’s ID. The prover publishes
S so that every party can verify the proof.

Informally, A should be moderately hard to impose signif-
icant costs on the prover. We also want that all the provers,
equipped with sufficient memory, be in equal position so that
no secret optimization or amortization can be applied. We
summarize these requirements to P and A and the other
properties it must satisfy in order to become ASIC- and botnet-
resistant in the following list (cf. [24], [34]).

Progress-free process. In Bitcoin-like cryptocurrencies the
mining process is usually a race among the miners who
finds the proof first. To avoid centralization and mitigate the
network delays, the mining must be a stochastic process, where
the probability of the proof generation at any given time is
non-zero and independent of the previous events. Therefore,
the mining must resemble to the Poisson process with the
number of proofs found in given timeframe following the
Poisson distribution and the running time of the algorithm AR
following the exponential distribution:

T (AR) ∼ Exponential(λ(R)).

The Poisson process is often emulated by the difficulty filter:a
fixed-time algorithm B, which additionally takes some nonce
N as input, is concatenated with a hash function G, whose
output should have a certain number of trailing zeros. In
this case, the algorithm B must also be amortization-free, i.e.
producing q outputs for B should be q times as expensive.

A scheme that requires noticeable initialization time is not
truly progress-free, although after the initialization the mining

could become Poisson again such as in [45]. An informal
statement could be that the shorter the initialization is, the
more decentralized the mining will be.

Large AT cost. We expect that the ASIC or FPGA imple-
mentation of algorithms with large area requirements and high
area-time product (AT) would not be much better than desktop
implementations by the Price-Performance parameter. The area
is maximized by the memory requirements. Therefore, for a
regular user, the optimal implementation of AR should require
sufficiently large memory M . Most desktops and laptops can
handle 1 GB of RAM easily, whereas 1 GB of memory on
chip is expensive3.

Small proof size and instant verification. The solution
must be short enough and verified quickly using little memory
in order to prevent DoS attacks on the verifier. We assume
that some verifiers may use lightweight hardware such as
smartphones with limited RAM and network bandwidth.

This requirement effectively cuts off straightforward use
of memory-hard functions such as scrypt or the faster Ar-
gon2 [18]. Even though a prover can be required to make
exponentially more calls to these functions than the verifier,
the latter still has to make at least one call and use a lot of
memory, which would motivate denial-of-service attacks on
verifiers.

Steep time-space tradeoffs. Memory requirements are
worthwhile as long as the memory reduction disproportionally
penalizes the user. Many memory-intensive algorithms can
run with reduced memory. Suppose that AR is a family of
algorithms using different amounts of memory. Then we can
think of it as a single algorithm taking the available memory
amount as a parameter.

Let TR(M) be the average running time of AR with
memory M . We also fix some standard implementation and its
default memory requirements M0. Let us consider the running
time growth when only M0/q memory is used, q > 1:

CR(q) =
TR(M0/q)

TR(M0)
.

We say that the time-space tradeoff for AR is polynomial with
steepness s if CR(q) can be approximated by a polynomial of q
of degree s. We say that the tradeoff is exponential if CR(α) is
exponential of q. We note that polynomial steepness with s = 1
(which we call linear) implies that the memory can be equally
traded for time. This keeps the AT cost constant, but reduces
the design and production cost of a potential chip. Thus higher
steepness is desirable. Finding time-space tradeoffs for most
hard problems is a non-trivial task [10], [27], as the best
algorithms are usually optimized for computational complexity
rather than for space requirements.

Flexibility. To account for further algorithm improvements
and architecture changes, the time, memory, and steepness of

3An increase in the AT cost for ASICs can be illustrated as follows. A
compact 50-nm DRAM implementation [29] takes 500 mm2 per GB, which
is equivalent to about 15000 10 MHz SHA-256 cores in the best Bitcoin
40-nm ASICs [1] and is comparable to a CPU size. Therefore, an algorithm
requiring 1 GB for 1 minute would have the same AT cost as an algorithm
requiring 242 hash function calls, whereas the latter can not finish on a PC
even in 1 day. In other words, the use of memory can increase the AT cost
by a factor of 1000 and more at the same time cost for the desktop user.

3

the PoW must be tunable independently. For cryptocurrencies
this helps to sustain constant mining rate. We recommend the
following procedure (Figure 1). To adjust M , we change R and
get a new complexity (T ′,M ′). To increase T by the factor 2d,
we harden P in the style of the Bitcoin difficulty filter: H(S)
must have d leading zero bits, where H is a cryptographic
hash function.

Parallelism-constrained. When a large portion of ASIC
is occupied by memory, adding a few extra cores does not
increase the area. If A can be parallelized, then the total
time may be reduced and thus the AT cost can be lowered.
However, if these cores have to communicate with each other,
then the parallelism is limited by the network bandwidth.
Thus if a specific PoW allows parallelism, the parallel version
of algorithm AR should be bandwidth-hard, i.e. it quickly
encounters the bottleneck in the network or RAM bandwidth.

Optimization-free. To avoid a clever prover getting advan-
tage over the others, A must be the most efficient algorithm
to date, already employing all possible optimizations and
heuristics, and it should be hard to find better algorithms.

We can now identify the problems with the Cuckoo-cycle
PoW [52]. It can be parallelized, which lowers the AT cost.
Dramatic optimizations were identified [7]. Its time-space
tradeoff has steepness 1. Finally, it has not been explored for
amortization.

B. Memory-hard proof-of-work based on a hard problem

Several hard computational problems suitable for a proof-
of-work (PoW) were studied by Dwork and Naor [24] and later
by Back [9]. These were PoWs with computational shortcuts: a
verifier spends much less time than the prover. One could hope
for memory shortcuts as well, i.e. verification requiring much
less memory than the generation. However, a memory-hard
PoW with a memory shortcut has been an open problem for
quite a long time, as the existing proposals implicitly require
both the verifier and the prover to allocate the same amount
of memory.

Nevertheless, almost any hard problem can be turned into
a proof-of-work in the framework outlined in Section II-A.
Any reader with an expertise in a particular problem is thus
encouraged to create his own PoW. The well-known NP(-
complete) problems (including their search and optimization
analogs) are the most natural candidates, since the best algo-
rithms for them run in exponential time, i.e. log T = O(|I|).
On the other hand, the verification is polynomial in |I|, so
it is polylogarithmic in T . Thus the verification for NP-
complete-based PoW should be fast compared to the running
time. Moreover, the best algorithms for NP-complete problems
usually require non-negligible amount of memory and exhibit
non-trivial time-space tradeoffs [27]. SAT solving, cliques, and
Hamiltonian paths are all candidates for a PoW. The problems
not demonstrated to be NP-complete but with best algorithms
running in exponential time like factoring and discrete logs are
natural proposals as well.

C. Inevitable parallelism

It is interesting to explore whether parallelism can be com-
pletely avoided; in other words if there exists a hardproblem-
based PoW that is inherently sequential.

M Memory

Time

PR

PR′

Increasing time

Reducing memory

Diff(q) ◦ PRqT

M ′

T

Fig. 1. Tuning time and memory requirements for proof-of-work. The
problem with parameters R can be solved in time T and memory M . In
order to change M to M ′, we replace R with R′. To increase time by the
factor of q, we add the difficulty filter q in addition to R.

We want that the PoW algorithm, which runs in time T
and memory M ≈ T on a single processor (thus implying
the time-area cost of O(T 2)), can not be significantly sped up
using O(T) processors. We believe that this is impossible in
the following PoW-building paradigms.

First approach could be to formulate the problem en-
tirely for the short original input without explicit expansion.
However, as we require fast verification and short input, i.e.
|I| = O(log T), the problem we solve is implicitly in NP.
Therefore, it can be solved in log T time using T processors
(which basically try all possible solutions).

Second approach (which we undertake in Equihash) is to
expand the input from I to Î (so that |I| = log |Î|) using some
PRNG (e.g., a hash function in the counter mode as we do) and
apply a problem from P to Î . Here we too have an obstacle:
many problems from P can be solved in polylogarithmic time
using polynomial number of processors, i.e. actually belong to
the class NC. It is conjectured though that NC (P, which
would imply the existence of P-problems outside of NC. If
they exist, they belong to the class of P-complete problems,
which reduce to each other with polylogarithmic number
of parallel processors. Unfortunately, the known P-complete
problems and those assumed to be inherently sequential (such
as the GCD problem) are not known to be verifiable in
logarithmic time, even if we somehow manage to generate
their inputs from logarithmically shorter ones.

To conclude, there is little foundation to prevent parallelism
in hardproblem-based PoW, so we cope with it in a different
manner – by showing that any parallel solution would enlarge
the chip prohibitively or require enormous memory bandwidth.

D. Choosing a hard problem for PoW

It turns out that the properties that we listed in Section II-A
are hard to satisfy simultaneously. A great difficulty lies in the
optimization-free requirement, as the complexity of the most
algorithms for hard problems is not evaluated with sufficient
precision. Many algorithms are inherently amortizable. The
existing implementations contain a number of heuristics. We
concluded that the problem and the best algorithm must be very
simple. So far we identified three problems, for which the best
algorithms are explored, scrutinized, and implemented:

4

• The generalized-birthday, or k-XOR problem, which
looks for a set of n-bit strings that XOR to zero.
The best existing algorithm is due to Wagner [54]
with minor modifications in [42]. The algorithm was
implemented in [16], and its time-space tradeoffs were
explored in [15]. This problem is the most interesting,
as we can manipulate the tradeoff by changing k.

• The hard-knapsack problem, which looks for a subset
of signed integers summing to 0. Whereas earlier
instances of the knapsack problem can be solved in
polynomial time [51], certain parameters are consid-
ered hard. For the latter the best algorithms are given
in [11], [32]. This problem is appealing as its solution
is likely to be unique, and the time and memory
complexity are roughly the same.

• The information set decoding problem, which looks
for a codeword in random linear code. Many al-
gorithms were proposed for this problem [12], and
many were implemented so we expect them to be
well scrutinized. However, in the typical setting the
memory complexity is significantly lower than the
time complexity.

Among these, the generalized birthday problem appeared
the most suitable as its tradeoff steepness is tunable. In the
next sections we introduce the problem and build our primary
PoW proposal on it.

III. EQUIHASH: GENERALIZED-BIRTHDAY
PROOF-OF-WORK

In this section we expose the generalized birthday problem
and the algorithm for it by Wagner [54].

a) Problem: The generalized birthday problem for one
list is formulated as follows: given list L of n-bit strings {Xi},
find distinct {Xij} such that

Xi1 ⊕Xi2 ⊕ · · · ⊕Xi
2k

= 0.

We consider the setting where Xi are outputs of some (non-
keyed) PRNG, e.g. a hash function H in the counter mode.
Thus we have to find {ij} such that

H(i1)⊕H(i2)⊕ · · · ⊕H(i2k) = 0. (1)

For k = 1 this problem is the collision search, and can be
solved trivially by sorting in 2n/2 time and space complexity if
|L| > 2n/2. However, for k > 1 and smaller lists the problem
is harder. For instance, from the information-theoretic point of
view we expect a solution for k = 2 in a list of size 2n/4, but
no algorithm faster than 2n/3 operations is known.

Wagner demonstrated an algorithm for k > 1 and the lists
are large enough to contain numerous solutions. It has time
and space complexity of O(2

n
k+1) for lists of the same size.

Wagner’s algorithm generalizes easily to some operations other
than XOR (e.g., to the modular addition). We also note that for
k ≥ log2 n a XOR solution can be found by the much faster
Gaussian elimination [13] with complexity of O(2k) string
operations.

b) Wagner’s algorithm: The basic algorithm to find a
solution to Equation (1) is described in Algorithm 1.

Algorithm 1 Basic Wagner’s algorithm for the generalized
birthday problem.
Input: list L of N n-bit strings (N � 2n).

1) Enumerate the list as {X1, X2, . . . , XN} and store
pairs (Xj , j) in a table.

2) Sort the table by Xj . Then find all unordered pairs
(i, j) such that Xi collides with Xj on the first n

k+1
bits. Store all tuples (Xi,j = Xi ⊕ Xj , i, j) in the
table.

3) Repeat the previous step to find collisions in Xi,j

on the next n
k+1 bits and store the resulting tuples

(Xi,j,k,l, i, j, k, l) in the table.
... Repeat the previous step for the next n

k+1 bits, and
so on until only 2n

k+1 bits are non-zero.
k + 1 At the last step, find a collision on the last 2n

k+1 bits.
This gives a solution to the original problem.

Output: list {ij} conforming to Equation (1).

c) Analysis: For the further text, assume that sorting
l = O(N) elements is computationally equivalent4 to l calls
to the hash function H . Let a single call to H be our time
unit.

Proposition 1: For N = 2
n

k+1+1 and k2 < n Algorithm 1
produces two solutions (on average) using (2k−1 + n)N/8
bytes of memory in time (k + 1)N .

Proof: Suppose we store N = 2
n

k+1+1 tuples at the first
step. Then after collision search we expect

(N(N − 1)/2)/(N/2) = N − 1

entries for the second table, then N − 3 entries for the third
table, and so on. Before the last (k-th) collision search we
expect N − 2k−1 + 1 ≈ N = 2

n
k+1+1 entries, thus on average

we obtain two solutions after the last step.

The computational complexity is dominated by the com-
plexity of list generation (N hash calls) and subsequent k
sortings of N elements. Therefore, the total computational
complexity is equivalent to

(k + 1)N = (k + 1)2
n

k+1+1

hash function calls. This ends the proof.

We have not computed the variance of the number of
solutions, but our experiments demonstrate that the actual
number of solutions at each step is very close (within 10%) to
the expected number.

If larger lists are used, the table will grow in size over the
steps. We have taken the list size exactly so that the expected
number of solutions is small and the table size does not change
much.

d) Algorithm binding: The generalized birthday prob-
lem in its basic form lacks some necessary properties as a
proof-of-work. The reason is that Wagner’s algorithm can be
iterated to produce multiple solutions by selecting other sets of
colliding bits or using more sophisticated techniques [16]. If
more memory is available, these solutions can be produced

4The actual ratio depends on the hash function and the sorting algorithm.

5

at much lower amortized cost (Proposition 3). Since this
property violates the non-amortization requirement for the
PoW (Section II-A), we suggest modifying the problem so
that only two solutions can be produced on average.

Our modification is inspired by the fact that a solution
found by Wagner’s algorithm carries its footprint. Namely,
the intermediate 2l-XORs have leading nl

k+1 bits, for example
Xi4 ⊕Xi5 ⊕Xi6 ⊕Xi7 collide on certain 2n

k+1 bits. Therefore,
if we pre-fix the positions where 2l-XORs have zero bits, we
bind the user to a particular algorithm flow. Moreover, we
can prove that the the total number of possible solutions that
conform to these restrictions is only 2 on average, so that
the problem becomes amortization-free for given input list
L. We only have to take care of duplicate solutions which
appear if we swap 2l−1-XORs within the 2l-XOR, for any l.
We simply require that every 2l-XOR is ordered as a pair,
e.g. with lexicographic order. We stress that a certain order is
a prerequisite as otherwise duplicate solutions (produced by
swaps in pairs, swaps of pairs, etc.) would be accepted.

With this modification the Gaussian elimination algo-
rithm [13] does not apply anymore, so we can use larger k
with no apparent drop in complexity. Moreover,

e) Time-space tradeoffs: The time-space tradeoffs for
Wagner’s algorithm are explored in details in Section V-B.
Here we report the main results. First, we consider optimiza-
tions, which are based on methods from [16].

Proposition 2: Optimized Wagner’s algorithm (Algo-
rithm 2) for N = 2

n
k+1+1 runs in M(n, k) = 2

n
k+1 (2k +

n
2(k+1)) bytes of memory and T (n, k) = k2

n
k+1+2 time 5.

The next proposition is a corollary from results in [15].

Proposition 3: Using qM(n, k) memory, a user can find
2qk+1 solutions with cost qT (n, k), so that the amortized cost
drops by qk−1.

Our novel result is the following tradeoffs for standard and
algorithm-bound problems.

Proposition 4: Using M(n, k)/q memory, a user can find
2 solutions in time C1(q)T (n, k), where

C1(q) ≈ 3q
k−1
2 + k

k + 1
.

Therefore, Wagner’s algorithm for finding 2k-XOR has a
tradeoff of steepness (k − 1)/2. At the cost of increasing
the solution length, we can increase the penalty for memory-
reducing users.

Proposition 5: Using constant memory, a user can find one
algorithm-bound solution in time

2
n
2 +2k+ n

k+1 .

Proposition 6: Using M(n, k)/q memory, a user can find
2 algorithm-bound solutions in time C2(q)T (n, k), where

C2(q) ≈ 2kqk/2kk/2−1.

Therefore, the algorithm-bound proof-of-work has higher
steepness (k/2), and the constant is larger.

5This result was independently obtained in [43].

f) Parallelism: So far we equalized the time and com-
putational complexity, whereas an ASIC-equipped user or the
one with a multi-core cluster would be motivated to parallelize
the computation if this reduces the AT cost. The following
result, also stated in [15], is explained in details in Section VI.

Proposition 7: With p� T (n, k) processors and M(n, k)
shared memory a user can find 2 algorithm-bound solutions in
time T (n,k)

p (1− logN p). Additionally, the memory bandwidth
grows by the factor of p.

For fixed memory size, memory chips with bandwidth
significantly higher than that of typical desktop memory (such
as DDR3) are rare. Assuming that a prover does not have
access to memory with bandwidth higher than certain Bwmax,
we can efficiently bound the time-memory (and thus the time-
area) product for such implementations.

Corollary 1: Let the reference memory of size M have
bandwidth Bw, and let the prover be equipped with memory
chips of bandwidth Bwmax. Then the time-area product for
the prover can be reduced by the factor Bwmax

Bw using Bwmax

Bw
parallel sorting processors.

To the best of our knowledge, the highest reported band-
width in commercial products does not exceed 512 GB/s
(Radeon R9 variants), whereas the desktop DDR3 can have
as high as 17 GB/s bandwidth [2]. Thus we conclude that
the highest advantage a prover can get from parallel on-stock
hardware does not exceed the factor of 30. This may mean that
our proof-of-work is GPU- and desktop-friendly, whereas it is
also ASIC-resistant in the sense that an ASIC implementation
does not yield smaller time-area product.

IV. OUR PRIMARY PROPOSAL

A. Specification

To generate an instance for the proof protocol, a verifier
selects a cryptographic hash function H and integers n, k, d,
which determine time and memory requirements as follows:

• Memory M is 2
n

k+1+k bytes.

• Time T is (k + 1)2
n

k+1+d calls to the hash function
H .

• Solution size is 2k(n
k+1 + 1) + 160 bits.

• Verification cost is 2k hashes and XORs.

Then he selects a seed I (which may be a hash of
transactions, block chaining variable, etc.) and asks the prover
to find 160-bit nonce V and (n

k+1 +1)-bit x1, x2, . . . , x2k such

6

that

/ ∗ Gen.birthday− condition ∗ /
H(I||V ||x1)⊕H(I||V ||x2)⊕ · · · ⊕H(I||V ||x2k) = 0,

/ ∗ Difficulty− condition ∗ /
H(I||V ||x1||x2|| . . . ||x2k) has d leading zeros,

/ ∗ Alg.binding− condition ∗ /
H(I||V ||xw2l+1)⊕ . . .⊕H(I||V ||xw2l+2l)

has nl
k+1 leading zeros for all w, l

(xw2l+1||xw2l+2|| . . . ||xw2l+2l−1) <

< (xw2l+2l−1+1||xw2l+2l−1+2|| . . . ||xw2l+2l).
(2)

Here the order is lexicographical. A prover is supposed to run
Wagner’s algorithm and then H (Figure 2).

The analysis in Section III shows that Wagner’s algorithm
produces 2 solutions per call on average for each V . Thus to
produce a hash with d leading zeros it must be called 2d−1

times with distinct V , which yields the time complexity (k +
1)2

n
k+1+d. The memoryless verifier checks all the conditions.

Note that computations for V = V0 can not be reused for
another V 6= V0. Note that the order of two (or more solutions)
produced by Wagner’s algorithm is not important; we do not
have to enumerate them; only the one that passes the d-zero
test is needed. Also note that shorter (2l, l < k) solutions are
not allowed neither full solutions based on them (the order
prohibits this).

Our proposal fulfills all the properties from Section II-A.
The large AT cost is ensured by M ≥ 230. The implementation
can be made fast enough to use M = 229, n = 144, k = 5 in 15
seconds with 1 thread. The verification is instant, as it requires
only 2k hashes. The tradeoff has steepness (k − 1)/2 and
a large constant. Parallelism is restricted due to the memory
bandwidth growth in parallel implementations. Optimizations
are explored, and amortization does not reduce costs as the
number of solutions is small on average. Finally, time, memory,
and steepness can be adjusted independently.

I

A
Wagner’s
algorithm

H
Difficulty
filter

V

(x1, x2, . . .)

0

n, k

for 2k-XOR

?

Fig. 2. Equihash: proof-of-work based on the generalized birthday problem.

B. Implementation and concrete parameters

Varying n and k we can reach a wide range of the memory
and time complexity of our proof-of-work proposal. From the
implementation point of view, it is convenient to have n

k+1 as
multiples of 8 so that we can work with integer number of
bytes. The solution size in bits is computed by formula

L = 2k(
n

k + 1
+ 1) + 160.

We suggest a wide range of parameters, which cover differ-
ent memory requirements and tradeoff resistance (Table I). The
memory and time requirements are taken from Proposition 2
with ε = 0 and indices trimmed to 8 bits.

Complexity

Memory-full Memoryless

n k Peak memory Time Time Solution size

96 5 2.5 MB 219.2 274 88 B

128 7 8.5 MB 220 294 292 B

160 9 32.5 MB 220.3 2114 1.1 KB

176 10 64.5 MB 220.4 2124 2.2 KB

192 11 128.5 MB 220.5 2134 4.4 KB

96 3 320 MB 227 278 45 B

144 5 704 MB 227.5 2106 120 B

192 7 4.2 GB 228 2134 420 B

240 9 16.4 GB 228.2 2162 1.6 KB

96 2 82 GB 234.5 284 37 B

288 8 131 GB 236 2192 1.1 KB

TABLE I. CONCRETE PARAMETERS AND THEIR SECURITY LEVEL FOR
EQUIHASH. MEMORY-FULL COMPLEXITIES ARE TAKEN FROM THE

ANALYSIS OF ALGORITHM 2 (PROPOSITION 2). MEMORYLESS
COMPLEXITY IS TAKEN FROM PROPOSITION 5. TIME IS COUNTED IN HASH

CALLS.

As a proof of concept, we have implemented and tested
Equihash with various parameters. Our implementation is
written in C++ with STL without assembly/intrinsic optimiza-
tions6. We used bucket sort and extra memory to store the
resulting collisions. The performance is reported in Table II.
We see that Equihash runs in a few seconds up to hundred of
MBytes, and can be called progress-free if we consider periods
of one minute or longer.

Complexity

n k Minimum memory Time Solution size

96 5 2.5 MB 0.25 sec 88 B

102 5 5 MB < 0.5 sec 92 B

114 5 20 MB < 2 sec 100 B

80 4 1.5 MB 0.2 sec 58 B

90 4 6 MB 1 sec 62 B

100 4 26 MB 4 sec 66 B

96 3 320 MB 10 sec 45 B

144 5 704 MB 15 sec 120 B

200 9 522 MB 10 sec 2.5 KB

TABLE II. PERFORMANCE OF OUR EQUIHASH SOLVER ON 2.1 GHZ
MACHINE WITH A SINGLE THREAD. MINIMUM MEMORY IS THE OPTIMIZED
AMOUNT OF MEMORY GIVEN BY PROPOSITION 2; OUR IMPLEMENTATION

TAKES ABOUT 4 TIMES AS MUCH.

V. TIME-SPACE TRADEOFFS AND OPTIMIZATIONS FOR
THE GENERALIZED BIRTHDAY PROBLEM

There can be two types of time-space tradeoffs for the
generalized birthday algorithm. First, there could be small
optimizations in storing indices, the hash outputs, and sorting
algorithms. We will show that the straightforward imple-
mentation of the generalized birthday algorithm allows the

6https://github.com/khovratovich/equihash

7

https://github.com/khovratovich/equihash

memory reduction by a small factor (2 or 3 depending on
the parameters) with about the same increase in the time
complexity. However, these optimizations are limited.

If the prover wants to save the memory further, he would
have to reduce the total number of tuples. We will show that
this approach would cause him harsh computational penalties.

A. Optimizations

In Algorithm 1 the index size doubles in size at each step,
whereas we can trim n

k+1 of intermediate sum per step. There
can be two types of optimizations, partly explored in [16]:

• Not storing the intermediate XOR value but recom-
puting it at each step from the indices. This approach
was taken in [16]. However, for large k this approach
becomes too expensive.

• Storing only a fraction of index bits, e.g. t bits only
per index. Then after the last step we have to figure
out the missing bits for all 2k-XOR candidates. For
large t this can be done by simply checking the 2-
XOR of all subpairs of the 2k-XOR. For smaller t
we essentially have to repeat our algorithm with 2k

different lists, which gives an overhead time factor
about k, and 2

n
k+1+1−t values in each list.

These two optimizations are illustrated in Figure 3 for
n = 144, k = 5. It appears that the combination of both
optimizations yields the best results, where we recompute the
hashes from at first steps, and trim the indices at later steps
(Algorithm 2).

Algorithm 2 Optimized Wagner’s algorithm for the general-
ized birthday problem.
Input: list L of N n-bit strings.

1) Enumerate the list as {X1, X2, . . . , XN} and store
pairs (j) in a table.

2) Sort the table by Xj , computing it on-the-fly. Then
find all unordered pairs (i, j) such that Xi collides
with Xj on the first n

k+1 bits. Store all such pairs
(i, j) in the table.

3) Repeat the previous step to find collisions in Xi,j

(again recomputing it on the fly) on the next n
k+1 bits

and store the resulting tuples (i, j, k, l) in the table.
... Repeat the previous step for the next n

k+1 bits, and so
on. When indices trimmed to 8 bits plus the length
Xi,j,... becomes smaller than the full index tuple,
switch to trimming indices.

k + 1 At the last step, find a collision on the last 2n
k+1 bits.

This gives a solution to the original problem.
Output: list {ij} conforming to Equation (1).

The optimal pattern depends on n and k, so we checked it
manually for all suggested parameters assuming that we trim
the indices to 8 bits. For all parameters the peak memory use is
in the last step, and for all parameters except n = 96, k = 2, 3
it is optimal to switch to index trimming before the last step.
Therefore, the peak memory is upper bounded by 2k−1 8-bit
indices per tuple at the last step. Therefore, at the last step
the tuple length is 2n

k+1 + 8 · 2k−1 bits, or 2
n

k+1 (2k + n
2(k+1))

bytes in total. To recover the trimmed bits, we generate 2
n

k+1−7

hash values for each ij and run the algorithm again, now
with 2k lists, each 28 times as small. In the multi-list version
of the algorithm, it suffices to keep only k lists in memory
sumultaneously [35]. The time complexity of the multi-list
step is dominated by generating the 2k values, as later lists are
much smaller. Thus the multi-list phase runs in 2

n
k+1−7+k time,

which is smaller than (k − 1)2
n

k+1+1 for all our parameters.
This implies Proposition 2.

Steps

Tuple
448

272

196

170169

21 3 4 5

176

136

49

length

74
128

Standard

Optimized

200

100

Truncated value
full index

Truncated index
full value

300

400

Fig. 3. Tuple length in bits over the steps of Wagner’s algorithm in the basic
and the optimized implementations.

B. Generic tradeoffs

If a prover wants to save even more memory than the
indices allow, he would have to store fewer tuples at each
step. The first time-space tradeoffs of this kind were explored
by Bernstein in [15]. Suppose that the adversary stores only
2

n
k+1+1/q elements at each step, q > 1. Then Bernstein

suggests truncating H to n − (k + 1) log q bits and apply
Wagner’s algorithm to n′ = n−(k+1) log q. After the last step
we check if the remaining (k + 1) log q bits are zero, which
succeeds with probability q−k−1. Therefore, the algorithm
must be repeated qk+1 times, but each step is cheaper by the
factor of q. Thus the computational penalty is computed as
C(q) = qk. We note that the same reasoning applies to the
case where more memory is available: if we have qM(n, k)
memory for q > 1 then we obtain 2qk+1 solutions in the end,
but we spend q times as many computations. This implies
Proposition 3.

In the later paper Bernstein et al. [16] suggested applying
the memoryless collision search method at the last step of
the algorithm. They viewed the first (k − 1) steps as a single
functionH that outputs 2n

k+1+(k+1) log q bits. The complexity
of the memoryless collision search is about the square root of
the output space size [44], [53] with more precise estimate of
4 · 2l/2 for l-bit function. Therefore, the total computational
complexity is

4 · 2 n
k+1+

(k+1) log q
2 · k · 2 n

k+1+1−log q = 4k2
2n
k+1+1 · q(k−1)/2

the total computational penalty is computed as

C(q) ≈ 4 · 2 n
k+1 q

k+1
2 .

8

Later, Kirchner suggested [35] using available memory for the
last step, getting a slightly better tradeoff7. The drawback of
both approaches is that it requires multiple iterations of the
algorithm and thus is very demanding in terms of memory
and network bandwidth in practical implementations.

a) Parallel collision search: The following result is
of great importance for our tradeoff exploration. The parallel
collision search algorithm for the function that maps m bits to
n bits, m ≥ n, due to van Oorschot and Wiener [53], finds T
collisions using 2wm bits of memory in time

2.5T · 2n/2√
w

(3)

. Here the memory is occupuied by w distinguished points,
and about 2n/2

√
w calls must be spent to generate those

points. Every point is a pair of inputs plus some additional
information.

b) Proof of Proposition 4: Our idea to improve Bern-
stein’s tradeoffs is to increase the number of colliding bits at
the first step to n

k+1+k log q and generate 2
n

k+1+1/q collisions.
The next (k − 2) steps require collisions on log q fewer bits
each, and the final step — on 2 log q fewer bits. Then on
average we obtain the same 2 collisions at the last step, thus
being as lucky as in the memory-full approach. Therefore,
we ran Wagner’s algorithm only once, as soon as we get the
necessary amount of inputs. However, the first step is more
expensive.

A straightforward approach to generate that many collisions
would be to carry Bernstein’s idea to the first step of Algo-
rithm 2 and keep only those inputs that yield k log q leading
zero bits. However, this gives the computational penalty factor
of qk−1. A better approach is to use the parallel collision
search method, where the average cost of one collision grows
sublinearly as a function of memory (Equation (3)). Each
distinguished point is smaller than the output of H . Using
2

n
k+1+1/q distinguished points to generate 2

n
k+1+1/q collisions

on n
k+1 + k log q bits, we make

5 · 2 n
2(k+1)

+ k log q
2 + n

2(k+1)
+ 1−log q

2 ≈ 3 · q k−1
2 · 2 n

k+1+1.

calls to H . The next steps calls the equivalent of k
q 2

n
k+1+1

hash calls. The success rate is the same. Thus the total
computational penalty is estimated as

C(q) ≈ 3q
k−1
2 + k

k + 1
.

C. Algorithm-bound tradeoffs

In our proof-of-work proposal we explicitly specify that
the solution must carry the footprint of Wagner’s algorithm,
in particular all intermediate 2l-XORs must have nl

k+1 zeros at
certain positions. First we show that the expected total number
of solutions that conform to this property is 2. Indeed, there
are 2

2kn
k+1+2k ordered 2k-tuples of n

k+1 -bit values. There are
2k − 1 intermediate 2l-XORs that must have lexicographic
order, which reduces the total number of tuples to 2

2kn
k+1+1. The

7A rigorous formula is difficult to extract from Kirchner’s manuscript.

n
2

n
k+1

n
k+1

Memory

Solution cost

generic
tradeoff

Best

Bernstein’s
tradeoff

Optimization
tradeoff

Bernstein-Kirchner
tradeoff

Default
implementation

Fig. 4. Computation-memory tradeoffs for the generalized birthday algorithm:
ours (Proposition 4), Bernstein’s [15], and “Bernstein-Kirchner” [16], [35].
The complexities are given in log2.

restriction of having zeros at certain position contains one 2n
k+1 -

bit condition at the last step, two n
k+1)-bit conditions at the

step before last,..., 2k−1 n
k+1 -bit conditions at the first step, or

2k n
k+1 filtering bits in total. Thus there are 2 possible solutions

left on average.

Let us now explore the time-space tradeoffs. It is not
evident that the tradeoffs that we obtained in Section V-B can
be carried out to the algorithm-bound setting. Since the inputs
to H are limited to 2

n
k+1+1 values, it is not trivial even to

find a memoryless attack with complexity smaller than 2n.
Surprisingly, the tradeoffs for algorithm-bound adversaries are
only slightly worse than the original ones.

a) Proof of Proposition 5 : First we show how to find
an algorithm-bound solution with very low memory. Recall
that the memoryless collision search for f works as the ρ-
method: we iterate f till we detect a cycle so that the two
different entry points to the cycle constitute a collision. A cycle
is detected by either iterating f() and f(f()) simultaneously or
by storing a few distinguished points along the iteration. The
time complexity is about 4 ·2l/2 for l-bit f for the success rate
close to 1 [44]. However, we might have to truncate f first to
ensure that its domain is as large as the range.

It is important to know that the basic memoryless algo-
rithm is seeded, i.e. it starts at some point and the eventual
complexity is determined by this point. We can imagine an
oracle Of that takes S as seed and outputs a collision for f .

Consider Equation (2). The algorithm binding requires us
to find a solution such that the intermediate 2l-XORs collide
on certain nl

k+1 bits. Let us denote such XORs by separate
functions:

f2
l

= H(I||x1)⊕H(I||x2)⊕ · · · ⊕H(I||x2l)
Therefore for the original problem we have to find a collision
in f2

k−1

, and in the algorithm-bound setting each of the
colliding inputs must itself be a collision for f2

k−2

on fewer
bits and so on. At each subsequent step we require a collision

9

on n
k+1 bits only, as the colliding bits accumulate from the

nodes of the recursion to the root. Note that f2
k−1

has only
2

n
k+1+1 inputs but a 2n

k+1 -bit output, i.e. it is an expanding
function.

This suggests the memoryless solution search as a recursive
memoryless collision search. The last step makes 9 · 2 3n

2(k+1)

calls to O
f2k−1 (Appendix A) where the seeds are intermediate

inputs to f2
k

. Oracle O
f2k−1 makes 2

n
2(k+1)

+2 calls to O
f2k−2 ,

and so on. In total we make 2
n
2 +2k+ n

k+1 calls to f to find one
collision. This ends the proof.

b) Proof of Proposition 6: The memoryless solution
search can be adapted for the reduced memory settings. The
idea is to replace the memoryless collision search at each level
but the last one with the collision search with distinguished
points. In contrast to Section V-B, we apply the method
recursively, and do not store the solutions. However, we
have to store distinguished points for each recursion level
simultaneously, which affects the computation complexity as
follows.

Suppose we have memory sufficient to store only 2
n

k+1+1/q
tuples for some q > 1. We split the available memory
evenly between k sets of distinguished points (for the sake
of simplicity assume that each point is about the same size as
the tuple), so that each set contains 2

n
k+1

+1

qk points. The sets
are available at all levels. The amortized collision cost using
w distinguished points is 2.5 · 2n/2

√
w

(Equation (3)). Thus we
obtain that oracle O

f2l makes on average

2.5 · 2 n
2(k+1)

− n
2(k+1)

−0.5√qk ≈ 2
√
qk

calls to O
f2l−1 to produce a solution. The final oracle makes

2.5 · 2 3n
2(k+1)

+1.5/
√
w ≈ 2

n
k+1+2√qk calls to O

f2k−1 . There-
fore, the total computational complexity is

2
n

k+1+1 · 2kqk/2kk/2,

and the penalty should be computed as

C(q) ≈ 2kqk/2kk/2−1.

This ends the proof.

Let us take one of our concrete parameters as an example.
Let n = 144, k = 5, i.e. we suggest finding 32-XOR on
144 bits. A straightforward implementation of the generalized
birthday algorithm would require 1.6 GBytes of RAM and
about 1 minute of a single CPU core. Recomputing the hash
values for the first two steps and truncating the indices to
8 bits at the last two steps, we can decrease the peak tuple
length to 176 bits, thus in total requiring 704 MBytes, or
aggressively trim to 4 bits, reaching 500 MBytes. However,
further reductions are more expensive. Using 224 instead of
225 tuples would cause the computational penalty factor of
210, and factor of 220 for using 220 tuples (q = 1/32). We
summarize that for large memory reductions the computational
penalty would be prohibitive even for adversaries equipped
with a number of parallel computational cores.

D. Summary

Here we summarize the security results on Equihash and
our security claims.

It is known that the list must contain at least 2
n

2k tuples
for the solution to the 2k-XOR problem to exist with prob-
ability close to 1 [54]. Since the list entries in Equihash
are efficiently generated, this is only a lower bound on the
computational complexity of any Equihash-solving algorithm.

The lowest computational complexity for the 2k-XOR
problem is still given by Wagner’s algorithm [54]. We conjec-
ture that no faster algorithm will be found in the near future.
We also expect that in the random oracle model the Equihash
problem can not be solved with fewer operations than the 2k-
XOR problem if we count memory access as an operation
with cost 1, which forms the base of the optimization-free.
A straightforward implementation of Wagner’s algorithm for
Equihash requires more memory for the last steps, and there
are several possible optimizations to make the memory use
more even. One of them is given in Proposition 2, but we
admit that some other modifications with constant factor of
memory reduction are possible.

If we ignore the small optimizations and consider a list
element as an atomic memory cell, then there is a family of
algorithms that trade the memory required by the Wagner’s
algorithm for the computational complexity. For Wagner’s
the reduction in memory results in the tradeoff given by
Propositions 4 and 5, and the increase in memory allows many
more solutions in the reduced amortized cost (Proposition 3).
The algorithm-binding requirement makes the first tradeoff
steeper (Proposition 6) and the second one impossible. We
conjecture that all these algorithms are optimal, which forms
the base of our tradeoff steepness requirement.

Compared to proofs-of-space [26], the time-space tradeoff
for Equihash comes from the public scrutiny but the time
penalty is significant even for small reductions. In contrast,
the time penalties in [26] have provable lower bounds, but
they apply only after reductions by the O(logN) factor and
more, with N being the graph size.

We do not claim security against parallel attacks, as the
sorting procedure within Wagner’s algorithm admits a number
of parallel implementations (see next section for details).
However, we expect that any practical parallel implementation
would have to have very high memory bandwidth, which is
currently out of reach for GPU and FPGA. The question
whether an efficient parallel ASIC implementation exists re-
mains open.

a) Future cryptanalysis: New tradeoffs for Wagner’s
algorithm may change the security level of our scheme. In our
model, we consider it a tradeoff attack if it becomes possible
to significantly reduce C(q) for any q. We note that the model
does not distinguish the different types of memory, thus a
practical speed up coming from using less RAM but much
more (say) SSD memory would not be considered a break.

VI. PARALLELISM

A. Parallelized implementations on CPU and GPU

It is rather easy to analyze Wagner’s algorithm from the
parallelism point of view [15], since it consists of well-

10

known procedures: batch hashing and collision search via
sorting. Suppose we have p processors with M(n, k) shared
memory. The hashing step is straightforward to parallelize: the
processors merely fill their own block of memory.

Parallel sorting algorithms have been explored for decades,
and full exposition of these results is beyond the scope of this
work. Whereas the quicksort is traditional choice for single-
thread applications, a number of its variations as well as that
of bucket sort, radix sort, sample sort, and many others have
been proposed, as they all differ in scalability, computational
time, communication complexity, and memory bandwidth.
The implementations on a CPU, a multi-core cluster [30], a
GPU [55], and even FPGA have been reported.

a) Proof of Proposition 7: For our purpose a modifica-
tion of bucket sort, also called a sample sort, suffices. The idea
is the following (for the sake of simplicity assume that p is a
power of 2). Let us denote the total number of tuples by N . We
partition the entire memory into p2 equal cells and represent
it as a (p× p) matrix M [i, j]. At the first step the processors
operate row-wise. They generate the hashes and place them in
one of p cells according to the leading log p bits. This takes
time N/p. Thus column j has only entries starting with j (in
the bit representation), so there is no collision between the
entries from different columns. Then the processors operate
column-wise and sort the columns simultaneously. Then each
processor goes over the sorted column, identifies collisions,
and overwrites the column with placing the collisions into
different buckets, so now row j has only entries starting with
j. At the next step the processors operate rowwise, and so on.
This method requires a small buffer to store the collisions, but
due to uniformity of entries it can be rather small (1% in our
experiments).

Sorting each column with quicksort requires O(Np log N
p)

time, and this can be done independently for each step of the
algorithm. Therefore each collision search step of Wagner’s
algorithm is faster by the factor

p logN

log N
p

=
p

1− logN p
.

We note that each processor must have access to one entire
column and one entire row, so that it is not possible to restrict
a processor to its own memory. Therefore, memory conflicts
are unavoidable, and the memory chip bandwidth becomes the
bottleneck as p increases.

The total bandwidth is calculated as follows. Assuming
that the amount of memory operations in sorting is (almost) a
linear function of array length, we get that if one core needs
R memory reads/writes to sort N entries, then p cores need
R/p operations each. In addition, the cores must distribute
the collisions into different buckets, spending O(N) memory
operations for that. If the running time decreases by the factor
of p, then the bandwidth grows at least by the same factor.

This ends the proof.

b) Parallel sorting in practice: The observable speedup
on multi-core CPU and GPU is not that big. The fastest GPU
sortings we are aware of have been reported in [41], where
radix sort was implemented and tested on a number of recent
GPUs. The best performance was achieved on GTX480, where

230 32-bit keys were sorted in 1 second8. The same keys
on the 3.2 GHz Core-i7 were sorted with rate 228 keys per
second [49], i.e. only 4 times as slow. Thus the total advantage
of GPU over CPU is about the factor of 4, which is even
smaller than bandwidth ratio (134 GB/s in GTX480 vs 17
GB/s for DDR3). This supports our assumption of very limited
parallelism advantage due to restrictions of memory bandwidth
([49] also mentions high GPU memory latency as a slowing
factor).

B. Parallel sorting on ASICs

a) ASIC implementation that is not quite efficient:
An anonymous reviewer suggested the following ASIC ar-
chitecture for Equihash. Consider an ASIC hashing chip
that performs about 20 GHash/sec. From the Bitcoin mining
hardware [1] we estimate it as an equivalent of 50 MB of
DRAM [29]. The chip is supposed to solve the PoW with
n = 144, k = 5, i.e. using 700 MB of RAM. Therefore the
chip area is small compared to the RAM area. The reviewer
wonders if it is possible to fully utilize the hashing capacity
of the chip in this setting.

Our answer is no. Indeed, the Equihash parameters imply
the total list length of 225 entries. The total number of hash
calls per solution (without the difficulty filter) is 227.5, i.e.
about 200 MHashes. Thus to match the hashing rate the ASIC
must produce 100 solutions per second, and thus make 500
sortings of 225 entries per second. The hypothetical sorting rate
is about 231 keys per second, or 10 times higher than GTX480
does for 32+128-bit keys. The necessary bandwidth9 thus can
reach 1 TB/sec, which is not reported yet for any memory
chip, even for most advanced GPU. Even if it was the case,
the highest reported bandwidth applies to large (a few GB)
memory chips, for which it is not so hard to place sufficiently
many reading pins to get the bandwidth. For smaller chips (700
MB) we presume it to be much harder.

We conclude that the proposed ASIC architecture would
face the memory bandwidth limit quickly. A smaller hashing
chip would be more suitable and indeed would probably
become a reasonable ASIC implementation. However, the
memory will still be the dominating cost in producing such
ASICs, as the memory will dominate the area requirements.

b) Mesh-based parallel sorting: Now we consider a
more promising ASIC implementation of Equihash, which
utilizes the state of the art for parallel sorting algorithms.

Parallel algorithms for sorting have been explored since late
1960s, but most of the results remained theoretical and were
not connected well with potential implementations. Existing
algorithms and their analysis can be partitioned into two
groups: those that take into account the wire length and
bandwidth, and those that do not.

We illustrate the importance of these issues on the follow-
ing example. Let the array X[] consist of N elements of b
bits each. The most straightforward approach to sort the array

8Closer to our n = 144, k = 5 proposal, where 48-bit keys are sorted
together with 128-bit values, GTX480 sorts 32+128-bit entries with rate 227.5

per second, but there is no such benchmark in [49]
9The exact value highly depends on the sorting method, so we do not give

a single number for our scheme.

11

would be to assign a processor to each element x and count
the number of elements greater than x simultaneously for all
x, then relocate x to its position in the sorted array. Assuming
no memory conflicts, this can be done in time N using N
processors, so the time-area product is proportional to N2.

This naive approach can be improved in two directions.
First, the running time can be decreased significantly. Most
of standard sorting algorithms (mergesort, quicksort) were
found to be parallelizable due to their divide-and-conquer
nature, but the internal merge step was apparently difficult
to handle, and optimal algorithms were not found till the
late 1980s. Eventually, it was demonstrated that fixed-length
integers can be sorted in sublogarithmic time on sublinear
number of processors, thus giving the area-time complexity of
order O(N). In turn, the general sorting problem can be solved
with superlinear number of processors in sublogarithmic time,
thus having complexity O(N log1+εN) almost reaching the
time-area lower bound O(N logN). These results and the
survey of previous attempts can be found in [48]. All these
algorithms assume random memory access, which make them
more suitable for GPUs than ASICs. For example, the butterfly
networks that can sort an array in logarithmic time, were found
to require the area of at least O(N2) [8], so the area-time
product is at least O(N2 logN).

The more promising way to get an ASIC-efficient imple-
mentation is to restrict the inter-processor communication. We
require that a processor does not make a cross-memory request
in order to save the area for wires. There exists a group of
parallel algorithms, which sort the array so that the processors
work with a few local memory cells only and communicate
only to its neighbors. The simplest of them is the so called odd-
even transposition sort, which operates in N steps as follows:

• On odd steps, sort pairs (X[2i], X[2i + 1]) for every
i.

• On even steps, sort pairs (X[2i− 1], X[2i]) for every
i.

Its time-area product is O(N2), but the data exchange is local
so that it can be implemented on ASIC with relatively little
wire overhead. It is possible to do better by the quadratic-
mesh algorithm by Lang et al. [37], which was advocated by
Bernstein to speed up the NFS integer factorization algorithm
in [14]. The algorithm needs the memory arranged as a mesh
of dimension

√
N ×

√
N . Each memory slot is assigned with

a processor, which is connected to the four neighbors at the
mesh. There could be different sorting orders on the mesh:
from left to right and then from upper row to lower row; from
top to bottom and then from left column to right column; the
snakelike order (odd rows are sorted from left to right, and
even rows from right to left) and so on. The algorithm in [37]
can sort in any such order, and for the former one it works
recursively as follows:

• Sort each quadrant (upper ones from left to right,
lower ones from right to left).

• Sort columns from top to bottom in parallel using odd-
even-transposition algorithm.

• Sort rows in the snakelike order.

• Sort columns from top to bottom.

• Sort rows from left to right.

As the last four steps take
√
N time each, we get that the time

T (N) complexity of the algorithm fulfills the equation

T (N) = T (N/4) + 4
√
N.

It implies that T (N) ≈ 8
√
N . Thus the time-area product of

sorting is O(N3/2). The wires are very short, so we think
that the real complexity would be close to this number. Since
sorting with 1 processor takes time proportional to O(N logN)
(or N if we sort constant-length numbers with radix sort), the
advantage ranges from O(

√
N) to O(

√
N logN).

These asymptotic estimates are not precise enough to
answer decisively if the ASIC implementation of such sorting
algorithm would worth the design costs, as the hidden constant
factor may make the advantage negligible.

In order to estimate the time and area costs more precisely,
we turn to the hardware cost estimates made in [28], [38] re-
garding Bernstein’s scheme in [14]. For sorting 26-bit numbers
and 8-transistor RAM cells they estimate the processor to take
between 2000 and 2500 transistors, so that the area increase
due to the use of processors is about the factor of 10 or 12. For
smaller memory units (e.g. DRAM) the processors would be
accordingly smaller too. Each step would take 2 cycles then.

For the concrete parameter set (n = 144, k = 5, 225

entries) we thus expect that the implementation of the parallel-
mesh algorithm would require a 10-times bigger chip (equiva-
lent of 5 GB RAM), but would finish after 8 · 212.5+1 = 216.5

cycles, or in 0.1 milliseconds. We recall that GTX-480 sorts
this number of elements using 500 MB of RAM in 150
milliseconds, or 1500 times as slow [41]. Thus the cost
advantage of ASIC would be at most the factor of 150. In fact,
producing collisions and hashing the initial counters would add
additional slowdown to the ASIC performance and the actual
advantage would be even smaller.

We conclude that Equihash can be implemented on ASICs
with the time advantage of the factor of about 1000 over GPU
and CPU, but the chip would be 10-12 times bigger than a
non-parallel ASIC implementation, and for the parameters n =
144, k = 5 would be at least as big as 8GB-RAM chip.

c) Area as prohibitive factor: Despite a large cost
reduction, we actually expect that the high design costs would
prohibit such implementations. Indeed, an 8 GB single chip
would require significant area, and the probability that some
logic is implemented with error becomes very high.

One may argue that even unreliable chips may still produce
collisions. Indeed, an error in the hash generation does not
affect the result unless this particular hash value is part of the
solution (which is unlikely). However, we expect that due to
the recursive nature of our sorting algorithm any comparison
error will diffuse quickly and affect a large part of the
output array. For instance, it was demonstrated that any sorting
algorithm must make Ω(N logN + kN) comparisons to cope
with k comparison mistakes [36]. Therefore, we may hope to
keep sorting work in the same time for a logarithmic number
of corrupted chips only. For large chips this assumption may
be too optimistic.

12

VII. FURTHER DISCUSSION

a) Optimizations with more memory: Proposition 2
illustrated that the memory amount can be slightly reduced
at the cost of small computational overhead. From another
perspective, the increase in memory use results in small
computational savings.

In addition to more efficient memory access, the sorting
procedure can be optimized as well. We have experimented
with various counting sort algorithms and observed that in-
creased memory use admits faster sorting and thus faster
Equihash solvers, although within a small constant factor. This
does not contradicts the optimization-free property per se, but
indicates that actual implementations may not precisely follow
the memory and time requirements of Proposition 2. Also if
implementors wish to support the choice n, k at run-time, the
simplest and/or fastest code may not be the most memory-
optimized.

VIII. ACKNOWLEDGEMENT

Various people from the Bitcoin community, in particular
Gregory Maxwell for some of the properties that a useful
PoW should satisfy. We thank John Tromp for reporting some
mistakes in the discussion on Momentum and clarifying some
points in the Cuckoo cycle scheme.

IX. CONCLUSION

We have described a general approach to construction of
asymmetric proofs of work from hard problems. Given a list of
requirements for an asymmetric and ASIC-resistant PoW we
identified the generalized birthday problem as the one with a
scrutinized algorithms decently studied for tradeoffs.

We showed that the running time of the generalized birth-
day algorithm can be amortized over multiple solutions. We
have introduced a technique called algorithm binding that
prevents solution amortization by making solutions almost
unique. Moreover, we investigated the time-memory tradeoffs
and demonstrated that the new technique gives time-space
tradeoffs that are better for the defender at negligible verifi-
cation overhead. Thanks to the solution length parameter k in
the generalized birthday problem, we may vary the tradeoffs
so we suggest a wide range of time, memory, and tradeoff
parameters for a variety of applications.

We also demonstrated that even though Wagner’s algorithm
is inherently parallel, any parallel implementation of its com-
ponents quickly exhaust available memory bandwidth and thus
has only limited advantage while running on GPU or ASIC.
Altogether, we get a memory-hard, ASIC- and botnet-resistant
PoW with extremely fast verification and very small proof size.

To demonstrate the practicality of our solution, we imple-
mented our PoW Equihash on a PC for a 700-MB proof. A
reference, non-optimized implementation runs in 15 seconds
with 1 thread, verification takes microseconds, and the proof
length is tiny, just 120 bytes.

REFERENCES

[1] Avalon asic’s 40nm chip to bring hashing boost for less
power, 2014. http://www.coindesk.com/avalon-asics-40nm-/
/chip-bring-hashing-boost-less-power/.

[2] Memory deep dive: Memory subsystem band-
width, 2015. http://frankdenneman.nl/2015/02/19/
memory-deep-dive-memory-subsystem-bandwidth/.

[3] Password Hashing Competition, 2015. https://password-hashing.net/.

[4] Martı́n Abadi, Michael Burrows, and Ted Wobber. Moderately hard,
memory-bound functions. In NDSS’03. The Internet Society, 2003.

[5] Joël Alwen and Jeremiah Blocki. Efficiently computing data-
independent memory-hard functions. In CRYPTO (2), volume 9815
of Lecture Notes in Computer Science, pages 241–271. Springer, 2016.

[6] Jol Alwen, Peter Gai, Chethan Kamath, Karen Klein, Georg Osang,
Krzysztof Pietrzak, Leonid Reyzin, Michal Rolnek, and Michal Rybr.
On the memory-hardness of data-independent password-hashing func-
tions. Cryptology ePrint Archive, Report 2016/783, 2016. http:
//eprint.iacr.org/2016/783.

[7] David Andersen. A public review of cuckoo cycle. http://www.cs.cmu.
edu/∼dga/crypto/cuckoo/analysis.pdf, 2014.

[8] Aythan Avior, Tiziana Calamoneri, Shimon Even, Ami Litman, and
Arnold L. Rosenberg. A tight layout of the butterfly network. Theory
Comput. Syst., 31(4):475–488, 1998.

[9] Adam Back. Hashcash – a denial of service counter-measure, 2002.
available at http://www.hashcash.org/papers/hashcash.pdf.

[10] Paul Beame, Allan Borodin, Prabhakar Raghavan, Walter L. Ruzzo, and
Martin Tompa. Time-space tradeoffs for undirected graph traversal. In
FOCS’90, pages 429–438. IEEE Computer Society, 1990.

[11] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved
generic algorithms for hard knapsacks. In EUROCRYPT’11, volume
6632 of Lecture Notes in Computer Science, pages 364–385. Springer,
2011.

[12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer.
Decoding random binary linear codes in 2n/20: How 1 + 1 = 0
improves information set decoding. In EUROCRYPT’12, volume 7237
of Lecture Notes in Computer Science, pages 520–536. Springer, 2012.

[13] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-
free hashing: Incrementality at reduced cost. In Walter Fumy, editor,
Advances in Cryptology - EUROCRYPT ’97, International Conference
on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes
in Computer Science, pages 163–192. Springer, 1997.

[14] Daniel J. Bernstein. Circuits for integer factorization: a proposal.
Technical report, 2001. https://cr.yp.to/papers/nfscircuit.pdf.

[15] Daniel J Bernstein. Better price-performance ratios for generalized
birthday attacks. In Workshop Record of SHARCS, volume 7, page
160, 2007.

[16] Daniel J. Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters,
and Peter Schwabe. Fsbday. In INDOCRYPT’09, volume 5922 of
Lecture Notes in Computer Science, pages 18–38. Springer, 2009.

[17] Alex Biryukov and Dmitry Khovratovich. Tradeoff cryptanalysis of
memory-hard functions. In Asiacrypt’15, 2015. available at http://
eprint.iacr.org/2015/227.

[18] Alex Biryukov and Dmitry Khovratovich. Argon2: new generation of
memory-hard functions for password hashing and other applications. In
Euro S&P’16, 2016. available at https://www.cryptolux.org/images/0/
0d/Argon2.pdf.

[19] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A. Kroll, and Edward W. Felten. Sok: Research perspectives
and challenges for bitcoin and cryptocurrencies. In IEEE Symposium
on Security and Privacy, SP 2015, pages 104–121. IEEE Computer
Society, 2015.

[20] Scott A Crosby and Dan S Wallach. Denial of service via algorithmic
complexity attacks. In Usenix Security, volume 2, 2003.

[21] Drew Dean and Adam Stubblefield. Using client puzzles to protect
TLS. In USENIX Security Symposium, volume 42, 2001.

[22] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient
dissection of composite problems, with applications to cryptanalysis,
knapsacks, and combinatorial search problems. In CRYPTO’12, volume
7417 of Lecture Notes in Computer Science, pages 719–740. Springer,
2012.

[23] Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound

13

 http://www.coindesk.com/avalon-asics-40nm-//chip-bring-hashing-boost-less-power/
 http://www.coindesk.com/avalon-asics-40nm-//chip-bring-hashing-boost-less-power/
http://frankdenneman.nl/2015/02/19/memory-deep-dive-memory-subsystem-bandwidth/
http://frankdenneman.nl/2015/02/19/memory-deep-dive-memory-subsystem-bandwidth/
https://password-hashing.net/
http://eprint.iacr.org/2016/783
http://eprint.iacr.org/2016/783
http://www.cs.cmu.edu/~dga/crypto/cuckoo/analysis.pdf
http://www.cs.cmu.edu/~dga/crypto/cuckoo/analysis.pdf
http://www.hashcash.org/papers/hashcash.pdf
https://cr.yp.to/papers/nfscircuit.pdf
http://eprint.iacr.org/2015/227
http://eprint.iacr.org/2015/227
https://www.cryptolux.org/images/0/0d/Argon2.pdf
https://www.cryptolux.org/images/0/0d/Argon2.pdf

functions for fighting spam. In CRYPTO’03, volume 2729 of Lecture
Notes in Computer Science, pages 426–444. Springer, 2003.

[24] Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. In CRYPTO’92, volume 740 of Lecture Notes in Computer
Science, pages 139–147. Springer, 1992.

[25] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs
of work. In CRYPTO’05, volume 3621 of Lecture Notes in Computer
Science, pages 37–54. Springer, 2005.

[26] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and
Krzysztof Pietrzak. Proofs of space. In Rosario Gennaro and Matthew
Robshaw, editors, CRYPTO’15, volume 9216 of Lecture Notes in
Computer Science, pages 585–605. Springer, 2015.

[27] Lance Fortnow. Time-space tradeoffs for satisfiability. J. Comput. Syst.
Sci., 60(2):337–353, 2000.

[28] Willi Geiselmann and Rainer Steinwandt. A dedicated sieving hardware.
In Public Key Cryptography, volume 2567 of Lecture Notes in Computer
Science, pages 254–266. Springer, 2003.

[29] B. Giridhar, M. Cieslak, D. Duggal, R. G. Dreslinski, H. Chen, R. Patti,
B. Hold, C. Chakrabarti, T. N. Mudge, and D. Blaauw. Exploring
DRAM organizations for energy-efficient and resilient exascale mem-
ories. In International Conference for High Performance Computing,
Networking, Storage and Analysis 2013, pages 23–35. ACM, 2013.

[30] David R. Helman, David A. Bader, and Joseph JáJá. A randomized
parallel sorting algorithm with an experimental study. J. Parallel Distrib.
Comput., 52(1):1–23, 1998.

[31] John E. Hopcroft, Wolfgang J. Paul, and Leslie G. Valiant. On time
versus space. J. ACM, 24(2):332–337, 1977.

[32] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for
hard knapsacks. In EUROCRYPT’10, volume 6110 of Lecture Notes in
Computer Science, pages 235–256. Springer, 2010.

[33] Danny Yuxing Huang, Hitesh Dharmdasani, Sarah Meiklejohn, Vacha
Dave, Chris Grier, Damon McCoy, Stefan Savage, Nicholas Weaver,
Alex C. Snoeren, and Kirill Levchenko. Botcoin: Monetizing stolen
cycles. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014. The Internet Society, 2014.

[34] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding
protocols. In Bart Preneel, editor, Secure Information Networks’99,
volume 152 of IFIP Conference Proceedings, pages 258–272. Kluwer,
1999.

[35] Paul Kirchner. Improved generalized birthday attack. IACR Cryptology
ePrint Archive, 2011:377, 2011.

[36] K. B. Lakshmanan, Bala Ravikumar, and K. Ganesan. Coping with erro-
neous information while sorting. IEEE Trans. Computers, 40(9):1081–
1084, 1991.

[37] Hans-Werner Lang, Manfred Schimmler, Hartmut Schmeck, and Heiko
Schröder. Systolic sorting on a mesh-connected network. IEEE Trans.
Computers, 34(7):652–658, 1985.

[38] Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and Eran Tromer.
Analysis of bernstein’s factorization circuit. In ASIACRYPT, volume
2501 of Lecture Notes in Computer Science, pages 1–26. Springer, 2002.

[39] Litecoin: Mining hardware comparison, 2015. available
at https://litecoin.info/Mining hardware comparison and
http://cryptomining-blog.com/3106-quick-//comparison-of-the-/
/available-30-mhs-scrypt-asic-miners/.

[40] Daniel Lorimer. Momentum – a memory-hard proof-of-work via finding
birthday collisions, 2014. available at http://www.hashcash.org/papers/
momentum.pdf.

[41] Duane Merrill and Andrew Grimshaw. High performance and scalable
radix sorting: A case study of implementing dynamic parallelism for
GPU computing. Parallel Processing Letters, 21(02):245–272, 2011.

[42] Lorenz Minder and Alistair Sinclair. The extended k-tree algorithm. In
SODA’09, pages 586–595. SIAM, 2009.

[43] Ivica Nikolic and Yu Sasaki. Refinements of the k-tree algorithm for
the generalized birthday problem. In Tetsu Iwata and Jung Hee Cheon,
editors, Advances in Cryptology - ASIACRYPT 2015, volume 9453 of
Lecture Notes in Computer Science, pages 683–703. Springer, 2015.

[44] Gabriel Nivasch. Cycle detection using a stack. Inf. Process. Lett.,
90(3):135–140, 2004.

[45] Sunoo Park, Krzysztof Pietrzak, Joël Alwen, Georg Fuchsbauer, and
Peter Gazi. Spacecoin: A cryptocurrency based on proofs of space.
IACR Cryptology ePrint Archive, 2015:528, 2015.

[46] Colin Percival. Stronger key derivation via sequential memory-hard
functions. 2009. http://www.tarsnap.com/scrypt/scrypt.pdf.

[47] Nicholas Pippenger. Superconcentrators. SIAM J. Comput., 6(2):298–
304, 1977.

[48] Sanguthevar Rajasekaran and John H. Reif. Optimal and sublogarith-
mic time randomized parallel sorting algorithms. SIAM J. Comput.,
18(3):594–607, 1989.

[49] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen,
Victor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast sort on CPUs
and GPUs: A case for bandwidth oblivious SIMD sort. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’10, pages 351–362, 2010.

[50] Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4)
algorithm for certain np-complete problems. SIAM J. Comput.,
10(3):456–464, 1981.

[51] Adi Shamir. On the cryptocomplexity of knapsack systems. In
STOC’79, pages 118–129. ACM, 1979.

[52] John Tromp. Cuckoo cycle: a memory bound graph-theoretic proof-of-
work. Cryptology ePrint Archive, Report 2014/059, 2014. available
at http://eprint.iacr.org/2014/059, project webpage https://github.com/
tromp/cuckoo.

[53] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search
with cryptanalytic applications. J. Cryptology, 12(1):1–28, 1999.

[54] David Wagner. A generalized birthday problem. In CRYPTO’02, volume
2442 of Lecture Notes in Computer Science, pages 288–303. Springer,
2002.

[55] Xiaochun Ye, Dongrui Fan, Wei Lin, Nan Yuan, and Paolo Ienne. High
performance comparison-based sorting algorithm on many-core gpus.
In IPDPS’10, pages 1–10. IEEE, 2010.

APPENDIX

A. Memoryless collision search for expanding functions and
analysis of Momentum

The memoryless collision search algorithm for functions
that maps n bits to n bits is well known [44]. It runs in O(2n/2)
calls to f . However, it is much less efficient if the domain of
f is smaller. For instance, suppose that f maps n bits to 2n
bits (so that only one collision is expected), and we truncate
f(x) to certain n bits to iterate it in the Pollard-rho fashion.
Then each found collision has only 2−n chance to be the right
collision, and we have to rerun the algorithm 2n times to find
the right collision. Therefore, the memoryless algorithm runs
in O(23n/2) time in this case.

To explore the full time-memory tradeoff, we turn to an
alternative view on this collision search. Finding a collision
in an expanding function f mapping n to n + m bits is
the same as finding the golden collision (i.e. one specific
collision) in f truncated to n bits. The golden collision search
in a n-bit function has complexity 5 · 23n/2/√w if we have
enough memory to store w distinguished points [53], where a
distinguished point has size about 2wn bits. For very small w,
this converges to an algorithm with time complexity 9 · 23n/2
for an n-bit function.

Consider now the Momentum PoW [40], where a single
collision in F mapping n bits to 2n bits is the proof of work.
We immediately obtain the following results.

Proposition 8: There is an algorithm that finds the Mo-
mentum PoW in T0 = M0 = O(2n) time and memory.

14

https://litecoin.info/Mining_hardware_comparison
http://cryptomining-blog.com/3106-quick-//comparison-of-the-//available-30-mhs-scrypt-asic-miners/
http://cryptomining-blog.com/3106-quick-//comparison-of-the-//available-30-mhs-scrypt-asic-miners/
http://www.hashcash.org/papers/momentum.pdf
http://www.hashcash.org/papers/momentum.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf
http://eprint.iacr.org/2014/059
https://github.com/tromp/cuckoo
https://github.com/tromp/cuckoo

Proposition 9: The time increase in the Momentum PoW
is a sublinear function of the memory reduction factor:

T (M0/q) =
√
qT (M0); C(q) =

√
q.

Therefore, the Momentum PoW allows a large reduction in
the time-area product as the time grows slower than the area
decreases.

Note that both propositions can be viewed as special cases
(k = 1) of Propositions 5 and 6.

B. Generic problem composition

Our primary proposal consists of two independent steps:
Wagner’s algorithm A and the difficulty filter H . We achieved
amortization-free and tradeoff steepness just by manipulating
A. Now we consider generic problem composition as a tool to
get steeper tradeoffs and restrict the number of solutions. It can
be used when the algorithm binding method is not applicable.

1) Averaging tradeoffs: Our idea is to cascade two (or
more) problems so that the solution to the first is the input
to the second. Interestingly, the resulting time-space tradeoff
is better for the verifier than either of original tradeoffs.

Formally let P1 and P2 be two problems with the following
properties:

• P1 can be solved in time T with memory M and has
strong tradeoffs: any memory reduction causes a large
computational penalty.

• P2 can be solved in time αT and memory M and has
a small, fixed number of solutions.

Let us investigate the time-space tradeoffs for P2 ◦ P1.
Suppose that C1(q)T is the amortized cost of finding a solution
for P1 given qM memory, and αC2(q)T is the amortized
cost of finding a solution for P2 given qM memory. Then
the amortized cost for the composition P2 ◦P1 of problems is

T (q) = C1(q)T + C2(q)αT.

Since for q = 1 the time complexity is (1 + α)T , the
computational penalty is computed as

C(q) =
C1(q)

1 + α
+
αC2(q)

1 + α

For α ≈ 1 we get C(q) > max(C1(q), C2(q))/2, i.e. is at
least the half of the largest penalty.

We may want to change the default memory parameters
from M to M ′, where M ′ is the maximal memory value such
that all memory reductions come at cost above some threshold.
This is illustrated in Figure 5 with α = 1: both P1 and P2

need time T and memory M to be solved but have different
tradeoffs. It is worth to increase M to M ′ so that the decrease
from M ′ would be penalized by P1 whereas the increase from
M ′ would be penalized by P2.

If α is too large or too small, the tradeoff will be largely
determined by one of the two problems. In order to balance
them, we suggest iterating the faster problem 1/α times.

Memory

Amortized
cost

P1

P2

P2 ◦ P1T

M

2T

M ′

3T + ε

M ′′

Fig. 5. Time-memory tradeoff for the composition of hard problems with
different tradeoffs.

2) Composition with the generalized birthday problem:
Let us investigate which problems can be composed with
the generalized birthday problem. The latter with parameters
(n, k) can be solved with 2k+

n
k+1 bytes of memory and time

equivalent to 21+logk+
n

k+1 calls to the hash function H . Thus
the gap between the time and memory exponents is very close;
in other words we need as much time as if we’d hash the entire
memory a few times.

For the second problem P2 we have to choose the param-
eters so that the memory requirements 2l bytes would be very
close to the memory needed by Wagner’s algorithm, i.e.

l ≈ k +
n

k + 1
.

Secondly, the time complexity must be of the same order of
magnitude, i.e. if solving P2 with 2l memory requires 2βl time,
then

β ≈
1 + log k + n

k+1

k + n
k+1

.

Therefore, β must be slightly smaller than 1.

We have searched over several hard problems for such
ratio, but the β value is often much larger. For instance,
the best information set decoding algorithm [12] on random
linear codes of length n with the full decoding setting have
time complexity 20.1n and space complexity 20.076n. If we set
n = 400, then the memory requirements would be 230 and
time would be 240, which is much higher than 228 time we
get for the generalized birthday problem with 230 memory. A
better candidate might be the McEliece decoding parameters,
for which the algorithm in [12] obtains the time complexity
20.067n and space complexity 20.59n.

Although the information set decoding algorithms are well
studied, we found the hard knapsack problem [32], [50] a bit
more scrutinized. In the further text we explain the problem,
show how to instantiate a proof-of-work with it, and describe
existing time-memory tradeoffs.

C. Hard knapsack problem and the proof-of-work based on it

The computational knapsack problem is described as fol-
lows. We are given positive numbers a1, a2, . . ., ak, S of length

15

n and have to find εi ∈ {0, 1} such that

ε1a1 + ε2a2 + . . .+ εkak = S.

The problem is known to be NP-hard [32], though for a subset
of parameters a fast algorithm exists. If k < 0.94n a solution
can be found fast using lattice reduction algorithms. Similar
algorithms apply when k is much larger than, i.e. there are
multiple solutions. The hardest setting is k = n [32], where
the best algorithms are exponential.

In order to construct a proof-of-work protocol, we reformu-
late the problem similarly to the PoW based on the generalized
birthday. We consider the hash function output H(i) as an
integer of n bits. We have to find εi ∈ {0, 1} such that

ε1H(1) + ε2H(2) + . . .+ εnH(n) = H(n+ 1) (mod 2n)

and
∑
i εi = n/2.

The best existing algorithms so far have been proposed
in [32] and [11]. Though the second algorithm is asymptoti-
cally better, for practical n it is outperformed by the algorithm
from [32].

The algorithm in [32] works as follows:

1) Choose integer M ≈ 20.51n and random R < M . Let
us denote H(n+ 1) by S.

2) Solve the original knapsack modulo M with S = R
with a set of solutions L1 and

∑
i εi = n/4.

3) Solve the original knapsack modulo M with S =
S −R with a set of solutions L2 and

∑
i εi = n/4.

4) Merge two solution sets and filter out pairs of solu-
tions that activate the same εi.

The smaller knapsacks are solved with the algorithm from [50]
so that the 20.31n solutions are produced in time 20.31n. Then
the solutions are merged with the total complexity 20.337n

(corrected value from [11]) and 20.3 memory.

The algorithm [50] works similarly: it chooses M = 2n/2,
then splits the knapsack in two and solves the left part for M
and the right part for S −M , then merges the two solutions.

Reducing memory by q results into smaller lists L1, L2

and thus the quadratic decrease in the success rate. Since the
time complexity per iteration also reduces by q, we obtain
the simple time-memory tradeoff TM = 20.63n [11] up to
small M . The best memoryless algorithm found so far has the
complexity 20.72n [11].

It is reported [11] that the algorithm above runs for n = 96
in 15 minutes and requires 1.6 GB of RAM. This memory
requirements correspond to n = 192, k = 7 in the generalized
birthday algorithm, where the time complexity is around 228

hash function calls or about 2 minutes on a single thread. Thus
we conclude that these problems couple well, but to equalize
the time we would have to run the problem P1 several times.

16

	Introduction
	Proofs of work and hard computational problems
	Properties
	Memory-hard proof-of-work based on a hard problem
	Inevitable parallelism
	Choosing a hard problem for PoW

	Equihash: Generalized-Birthday Proof-of-Work
	Our primary proposal
	Specification
	Implementation and concrete parameters

	Time-space tradeoffs and optimizations for the generalized birthday problem
	Optimizations
	Generic tradeoffs
	Algorithm-bound tradeoffs
	Summary

	Parallelism
	Parallelized implementations on CPU and GPU
	Parallel sorting on ASICs

	Further discussion
	Acknowledgement
	Conclusion
	References
	Appendix
	Memoryless collision search for expanding functions and analysis of Momentum
	Generic problem composition
	Averaging tradeoffs
	Composition with the generalized birthday problem

	Hard knapsack problem and the proof-of-work based on it

