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Abstract—Distributed storage systems have been receiving
increasing attention lately due to the developments in cloud
and grid computing. Furthermore, a major part of the stored
information comprises of multimedia, whose content can be
communicated even with a lossy (non-perfect) reconstruction. In
this context, Multiple Description Lattice Quantizers (MDLQ)
can be employed to encode such sources for distributed stor-
age and store them across distributed nodes. Their inherent
properties yield that having access to all nodes gives perfect
reconstruction of the source, while the reconstruction quality
decreases gracefully with fewer available nodes. If a set of nodes
fails, lossy repair techniques could be applied to reconstruct
the failed nodes from the available ones. This problem has
mostly been studied with the lossless (perfect) reconstruction
assumption. In this work, a general model, Multiple Description
Lattice Quantizer with Repairs (MDLQR), is introduced that
encompasses the lossy repair problem for distributed storage
applications. New performance measures and repair techniques
are introduced for MDLQR, and a non-trivial identity is derived,
which is related to other results in the literature. This enables
us to find the optimal encoder for a certain repair technique
used in the MDLQR. Furthermore, simulation results are used
to evaluate the performance of the different repair techniques.

I. INTRODUCTION

Distributed storage refers to representing an information

source with data units and storing them across a number of

(probably geographically distributed) nodes. The objective is

to improve reliability, since the information source can be

reconstructed using the data units of a subset of nodes. This

area has gained importance due to the recent developments in

cloud networks and related applications [1], [2].

Starting from this point, we can distinguish two different

cases depending on the type of information source reconstruc-

tion: lossless and lossy reconstruction. In the former case, the

information source has to be perfectly reconstructed in order

to be useful, e.g. documents, software etc. (n, k) Maximum

Distance Separable (MDS) codes (e.g. [3], [4]) can be used in

order to ensure that any k data units can perfectly reconstruct

a source represented by n data units. However, this means

that obtaining access to more than k data units provides

no improvement in reconstruction, while obtaining access to

less than k data units conveys no information at all. This

phenomenon is also known as the “cliff” effect (see Fig.

1). In the latter case, lossy reconstruction can still convey

some useful message, e.g. music, photos, video. This is due

to the way humans perceive media files, meaning that the

message can still be conveyed from imperfect representations
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Fig. 1. Conceptional plot of distortion level with number of received units
for lossless and lossy source reconstruction.

of the source. Furthermore, an estimate of the source can be

acquired even when less that k units are available, while the

reconstruction quality keeps improving even when more than

k units are received. In this direction, Multiple Description

(MD) codes [5], [6] and quantizers [7] can be employed in

order to ensure that the reconstruction quality is an increasing

function of the available nodes k.

Independently of the coding technique, a common problem

in distributed storage systems is how to repair the nodes that

are bound to fail from time to time. When a node fails, the

information it stored is lost forever but it may be possible

to perfectly or approximately recover it using the redundancy

information stored across the distributed storage system. In

lossless reconstruction, this problem has been tackled in the

literature taking also into account the repair network traffic [8]

and exploiting the interference alignment concept inspired by

communication networks [9], [10].

However, there is limited work in the literature about repair-

ing nodes in distributed multimedia storage systems which can

afford lossy reconstruction. To the authors’ knowledge, this

was first investigated in [11] from an experimental point of

view. This paper builds on [11], presenting an analytical model

of the lossy repair problem and introducing three different

repair techniques. For one of the techniques, we derive a result

that shows how to construct the optimal encoder. More specifi-

cally, in section II, the system model is described and the repair

problem is formally defined. In section III, the different repair

techniques are presented and a repair distortion measure is

introduced. Section IV minimizes the repair distortion for one

of the repair techniques. Finally, section V presents numerical

results of the source and repair distortions of the different
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Fig. 2. Scalar Multiple Description Lattice Quantizer (MDLQ).

techniques, and section VI concludes the paper.

II. SYSTEM MODEL

In this section, we start by presenting a mathematical model

of the scalar multiple description lattice quantizer (MDLQ)

system. This system encompasses the distributed storage prob-

lem of interest. Afterwards, we introduce the MDLQ with

repairs (MDLQR) system, which is the focus of this work.

A. Scalar MDLQ system

A scalar MDLQ system is depicted in Figure 2. A source

outputs real-valued symbols {Xj}
∞
j=0 belonging to some al-

phabet X . The source symbol X is quantized to the closest

element µ ∈ Ac, where Ac is a central codebook which is a

discrete (typically one-dimensional) lattice. The volume of a

Voronoi cell in Ac is denoted as ν. Next, µ is mapped onto

a K-dimensional vector (λ1(µ), . . . , λK(µ)) by an encoding

function λ : Ac → A1 × . . . × AK , where Ak ⊂ Ac is

the side codebook for λk, 1 ≤ k ≤ K (when no confusion

arises, we will omit denoting the dependency of λk(µ) on

µ)12. The side codebooks are also lattices, typically similar

to the central codebook [12], of index I = [Ac : Ak],
1 ≤ k ≤ K. The element λj , j = 1, . . . ,K, also known

as a description, is coded by Rj bits (e.g. by entropy coding)

and transmitted across the j:th channel that carries Rj bits at

most. Let h(X) denote the differential entropy of the source.

The rate Rc of the central codebook is approximately [12]

Rc ≈ h(X)− log2(ν). The rate Rj of the j:th side codebook

is Rj ≈ h(X) − log2(Iν) = Rc − log2(I). At the decoder,

the information across channel j is either received error free

or completely discarded if errors occur. If the j:th channel is

free of errors, then the corresponding channel indicator (CI)

variable cj = 1, otherwise cj = 0. A joint CI probability

function (CIPF) p(c1, . . . , cK) represents the error probability

of the channels. The decoder observes m ≤ K descriptions

λj1 , . . . , λjm , 1 ≤ j1 ≤ . . . ≤ jm ≤ K and applies a decoding

function β : Aj1 × . . . × Ajm → Ac to obtain an estimate

µ̂ = β(λj1 , . . . , λjm) of the sent symbol. The main practical

problem is to design the encoding and decoding functions,

such that the rate constraints of the channels are met, in order

1In distributed storage applications, each element λj , 1 ≤ j ≤ K is stored
in a node.

2The encoding is also refered to as index assignment in the literature.

to minimize the average distortion D = E{‖µ− µ̂‖2}, where

henceforth ‖.‖ denotes the Frobenius norm. The expectation

is taken over the central codebook and the CI variables cj ,

j = 1, . . . ,K.

In the case of independent CIs, the model in Figure 2

reduces to the classical symmetric, scalar MDLQ problem

(henceforth, we implicitly assume scalar systems, and thus

omit writing scalar). This problem has been studied from an

achievability point of view in [13]–[16], where the goal is

to determine the minimum possible distortion for each set

of constraint rates. In [12], [17], [18], the same problem is

studied from a practical point of view, where the aim is to

design practical encoding and decoding functions achieving

low distortions.

In contrast, for a distributed storage application, dependency

between CIs is common. For example, if only one channel

at a time fails, then all joint erasure probabilities equal 0.

Thus, for distributed storage applications, it is of interest to

specify the joint distribution of the CIs, rather than individual

probabilities.

B. Multiple Description Lattice Quantizer with Repairs

In Figure 3, the setup is similar to Figure 2, but with

the main difference being that we have consecutive MDLQ

systems, with the possibility of repairing the lost descriptions

in each step [11]. We call this system the multiple description

lattice quantizer with repairs (MDLQR). If no intermediate

repairs are allowed, MDLQR is equivalent to MDLQ. How-

ever, if repairs are allowed at each step, performance gains are

possible and the problem is different. For example, assume that

the original descriptions λ1, . . . , λK are completely repaired

at some step in the MDLQR. Then, with higher probability,

the destination will receive more descriptions than without

repairing, which produces a lower source distortion. Note that

for MDLQR, the CIs and the CIPFs are now depending on the

step j in the system. Hence, at each step, a new probability

function determines the error behavior.

The MDLQR is characterized by three different functions:

an encoding function λ as in the MDLQ, a repair function

α : Aj1 × . . . × Ajm → Ajm+1
× . . . × AjK , and a final

decoding function β : A1 × . . . × AK → Ac. Note that the

repair function has the original side codebooks as input and

output as well. Let λ
(k)
j ∈ Aj denote the j:th description at the

k:th step of the MDLQR, 1 ≤ k ≤ N , with λ
(0)
j

△
= λj being

the output of the encoding function λ. In general, after several

steps, we have λ
(k)
j 6= λ

(0)
j . As for the MDLQ, the main goal

of the MDLQR is to minimize the final source distortion

Ds = E{µ− β(λ
(N)
1 , . . . , λ

(N)
K )}. (1)

The expectation is across the central codebook and the CIs.

Note that Ds depends on the encoding function λ, the repair

function α and the decoding function β.

III. ENCODING, REPAIR AND DECODING FUNCTIONS

The encoding function is assumed to be injective, both for

the MDLQ system and the MDLQR, in order to uniquely
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Fig. 3. Scalar Multiple Description Lattice Quantizer with Repairs (MDLQR).

Name Description

At step k:

CDrep For m < l ≤ K, the lost descriptions are recovered as

λ
(k)
jl

= αjl = Qjl

{

∑m
s=1 λ

(k)
js

m

}

.

CDSrep For m < l ≤ K, the lost descriptions are recovered as

λ
(k)
jl

= αjl = Qjl

(

Qc

{

∑m
s=1 λ

(k)
js

m

})

.

CDSSrep First, the source symbol µ̂ = Qc

{

∑m
s=1 λ

(k)
js

m

}

is estimated. Next, the closest source symbol µ
to µ̂ that has the descriptions that match

λ
(k)
j1

, . . . , λ
(k)
jm

is chosen. The lost

descriptions are then λ
(k)
jm+1

(µ), . . . , λ
(k)
jK

(µ).

TABLE I
REPAIR TECHNIQUES INVESTIGATED IN THIS PAPER.

identify the source from its descriptions. Beside this require-

ment, the encoding function is constructed in a way that

minimizes the source distortion. However, this construction

clearly depends on the specific repair and decoding functions

that are used. The decoding function, β, used in this work is

the common decoding (CD) method [12] [17] [18]

β(λ
(N)
j1

, . . . , λ
(N)
jm

) =

∑m

k=1 λ
(N)
jk

m
. (2)

The main advantage of using the common decoding method

is its simplicity and low complexity.

We will investigate three different repair functions in this

work, and characterize the optimal λ function for one of

them. The repair functions are summarized in Table I. In the

table, Qj{.} denotes the quantization (mapping to the closest

element) to the j:th side codebook, with Qc{.} denoting

quantization to Ac. CDSSrep has the highest computational

complexity, since a search in the central codebook (which is

denser than the side codebooks) is necessary for recovering

the lost descriptions. The quantization operation has a negli-

gible complexity, and thus CDrep and CDSrep have roughly

the same complexity, with CDrep having K − 1 additional

quantization operations compared to CDSrep. On the other

hand, CDSrep needs an index assignment lookup table, which

requires additional memory.

In order to measure and compare the performance of dif-

ferent repair functions in the first step of the MDLQR, we

introduce the first order repair distortion, which is defined as

D(1)
r

△
= E{‖(λjm+1

, . . . , λjK )− α(λj1 , . . . , λjm)‖2}

= E{‖(λ1, . . . , λK)− (λ
(1)
1 , . . . , λ

(1)
K )‖2}. (3)

The expectation is over the central codebook and the CIs in the

first step. Hence, (3) measures the average distortion between

the original symbols and the symbols after the first step in

the MDLQR. Minimizing this distortion results in an index

assignment that is robust to the first step in the MDLQR. This

minimization will be performed for the CDrep repair function.

Let LK,m denote the set of m-tuples taken from {1, 2, . . . ,K}.

As an example, l = (l1 l2 l3) = (1 3 4) is an m-tuple in LK,3

for K ≥ 4. Furthermore, let Pr{cl11, . . . , clk1} denote the

probability of error free reception across channels l1, . . . , lk
and erroneous reception across the rest (henceforth, Pr{.} is

the probability operator). With this notation, a more explicit

expression for (3) is

D(1)
r =

∑

µ∈Ac

∑

l∈LK,m

Pr{µ}Pr{cl11, . . . , clk1}

K
∑

n=m+1

(λln(µ)− αn(λl1(µ), . . . , λlm(µ)))2. (4)

IV. MINIMIZING THE FIRST ORDER REPAIR DISTORTION

FOR CDREP

The goal in this section is to find an encoding function that

minimizes the first order repair distortion in (3) (from now

on, for convenience, refered to as the repair distortion) for

CDrep. In this work, we assume that the source is uniformly

distributed. Beside being a practical assumption, it is also

a natural one if no prior information about the source is

at hand. Moreover, we assume that Pr{cl11, . . . , clk1} has

the same value for any realization of l1, . . . , lm (i.e., we

assume a symmetrical system) with the additional constraint

that all other events (i.e., fewer or more than m erasures) have

probability 0. These assumptions are also implicitly used in

[18]. In order to obtain a mathematically tractable problem,

we will discard the quantization operation Qj{.}, which then



results in α = β, i.e., the repair function is the common

decoding method. Under the above assumptions, (3) becomes

proportional to

D(1)
r ∼ D̃(1)

r =
∑

µ∈Ac

∑

l∈LK,m

K
∑

j=m+1

(

λlj −

∑m

k=1 λlk

m

)2

.

(5)

As in [12] [18], define

λ̄
△
=

∑K

j=1 λj

K
.

We now prove

Theorem 1.

D̃(1)
r =

K(m+ 1)
(

K−2
m−1

)

m2

∑

µ∈Ac

K
∑

j=1

(λj − λ̄)2

=
(m+ 1)

(

K−2
m−1

)

m2

∑

µ∈Ac

K−1
∑

i=1

K
∑

j=i+1

(λi − λj)
2.

Proof. See Appendix.

Geometrically, the first equality in Theorem 1 implies that

minimizing the repair distortion for CDrep amounts to finding

K points λ1, . . . , λK that are closest to their centroid. The

second equality in Theorem 1 shows that this is equivalent to

finding K points whose sum of pairwise squared distances

(SPSD) is minimal. Theorem 1 also shows that the repair

distortion is proportional to the SSD costs defined in [18] and

the SPSD term in Theorem 3.1 in [12]. Hence, the optimal

index assignment presented in those papers can be applied to

minimize the repair distortion. In [18], it is shown that if the

side codebooks are translated lattices, the index assignment

minimizing the SSD costs is obtained by finding shortest

vectors in translated AK−1 lattices. In this case, the minimum

value of D̃
(1)
r for CDrep can be expressed through the theta

series of the AK−1 lattice. The theta series can be calculated

only up to 3 dimensions, while it is unknown for higher

dimensions [18].

V. NUMERICAL RESULTS

In this section, we numerically evaluate the source and

repair distortions for the three repair techniques in Table I.

As side codebooks, we use translated lattices as in [18]. The

i:th codebook is Ai = {Kǫzi + (2i−K + 1)ǫ/2 : zi ∈ Z},

where Z is the set of integers and ǫ is a scaling factor. The

reference lattice Ar = {ω1+...+ωK

K
: ωi ∈ Ai, 1 ≤ j ≤

K} = {ǫz : z ∈ Z} arising from the centroids of the different

description is dense for the translated lattices, compared to

the side codebooks which are of lower density. Hence, as a

result, a good reconstruction of the source and the descrip-

tions is achieved from the CD method when using translated

lattices [18]. Based on Ar, the central lattice is constructed as

Ac = { ǫ
M
z+ ǫ

2M mod(M +1, 2) : z ∈ Z}, where mod(a, b)
means a modulo b. This definition of Ac ensures that there

are exactly M central lattice points within the Voronoi region

of Ar. It follows that the index I equals I = KM , since
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Fig. 4. D
(1)
r versus M for K = 10 descriptions and scaling factor ǫ = 1.

The repair distortion increases with M , since longer vectors in the AK−1

lattice are used as descriptions. Moreover, D
(1)
r decreases with increasing

m. CDrep is the most efficient repairing method, followed by CDSSrep and
CDSrep.

there are KM central lattice points within the Voronoi cell

of a side codebook. Hence, the central codebook rate is

Rc ≈ h(X)−log2(ν), where ν = ǫ/M . The rate Rj of the j:th

side codebook is Rj ≈ h(X)− log2(Iν) = Rc − log2(KM).
Hence, increasing M increases the gap in rate between the

side descriptions and the central lattice points. Theorem 1 and

results in [18] show that for translated lattices, the optimal λ
that minimizes the repair distortion for CDrep is constructed

by translating the M shortest vectors from the AK−1 lattice.

We use this index assignment for all the repairing techniques

and the CD method.

To evaluate the repair distortion, a central lattice point is

chosen uniformly, and m out of its K descriptions are also

chosen uniformly – the other K −m descriptions are recon-

structed with the repair techniques in Table I. This corresponds

to a probability distribution where Pr{cl11, . . . , clk1} = 1/
(

K
m

)

for any realization of l1, . . . , lm. This procedure is repeated

300 000 times in order to obtain an estimate of D
(1)
r . In Figure

4, D
(1)
r is evaluated for different values of M . As seen, the

distortion increases slightly with M since longer vectors in

the AK−1 lattice are used as descriptions, which increases

the repair distortion. Moreover, the repair distortion decreases

when more descriptions are received, which is expected.

The most efficient repairing method is CDrep, followed by

CDSSrep and CDSrep. Note that when few descriptions are

received, CDrep is significantly better than the other two, while

CDSSrep comes close to CDrep when more descriptions are

received. Since CDSSrep is of slightly higher complexity than

CDrep (a search is necessary), CDrep is to prefer.

For the source distortion, in each simulation instance, a

central lattice point is chosen uniformly, and its descriptions

are sent through the N cascaded channels in Figure 3. It

is assumed that each step in the system produces K − m
erasures, where m is predetermined. It is further assumed that

all the CIPFs are the same as the one described above for the

repair distortion. When repairing, at each step in the repair
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1. The source distortion increases with M , since longer vectors in the AK−1

lattice are used as descriptions. Furthermore, more steps in the MDLQR makes
CDrep the most effective technique, while CD gives lowest distortion for a
few steps.

system, a repair technique from Table I is applied. At the

receiver, K descriptions are obtained, on which the common

decoding method is applied in order to estimate the original

central lattice point. If no repairing is performed, the common

decoding method is applied on the descriptions that have not

been erased.

In Figure 5, the source distortion is evaluated for m = 1.

Without repairing, more steps (larger N ) in the MDLQR

worsens the performance of the CD method, since fewer

descriptions are received at the destination. However, with

repairs, CDrep performs better than CD. Hence, in case of

many erasures, repairing has the possibility to recover the

source with lower distortion than the well-known CD method.

For a few number of erasures (N = 4), CD produces a lower

distortion than any repair technique, since faulty repairing

introduces additional distortion which dominates for a small

number of erasures. Note that CDSrep and CDSSrep have

discontinuous jumps in distortion for different M values.

The reason is that with increasing M , new descriptions are

included such that when being repaired with search methods

CDSrep and CDSSrep, give rise to vectors that are far from or

sometimes close to the source symbol after the final common

decoding reconstruction. This results in increased or decreased

distortion, which thus fluctuates with M . Figure 6 shows the

source distortion for m = 2. Same conclusions can be drawn

as for m = 1.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented an analytical model of the

lossy repair problem in distributed storage. Different repairing

techniques were defined, and a repair distortion resulting from

performing a single repair is introduced. The optimal index

assignment minimizing the repair distortion is derived for the

CDrep repair method. Through numerical simulations, it is

shown that CDrep is the best repairing method when using

translated lattices and the index assignment that is optimal for

CDrep. Moreover, for the final source distortion, repairing era-

sures with CDrep gives better performance than the common
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CDrep the most effective technique, while CD gives lowest distortion for a
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decoding method when several consecutive erasures occur. On

the other hand, for few erasures, CD performs better than all

repair techniques. Future work will attempt to find the optimal

index assignment minimizing the repair distortion for CDrep

for more than one step in the MDLQR.

VII. APPENDIX

Here we prove Theorem 1. Let LK,m
∼j denote the set of m-

tuples taken from {1, 2, . . . ,K} that do not contain index j.

For example, L4,2
∼1 = {(2 3), (2 4), (3 4)}. D̃

(1)
r in (5) can now

be rewritten as

D̃(1)
r =

∑

µ∈Ac

K
∑

j=m+1

∑

l∈LK,m

(

λlj −

∑m

k=1 λlk

m

)2

=
∑

µ∈Ac

K
∑

j=1

∑

l∈L
K,m

∼j

(

λj −

∑m

k=1 λlk

m

)2

. (6)

The second equality follows by noting that lj takes on all the

values 1, . . . ,K in the first identity. We start by expanding the

third inner sum in (6) for a fixed j:

∑

l∈L
K,m

∼j

(

λj −

∑m

k=1 λlk

m

)2

=

(

K − 1

m

)

λ2
j

−
2λj

m

(

K − 2

m− 1

)

∑

k=1
k 6=j

λk +
1

m2

∑

l∈L
K,m

∼j

(

m
∑

k=1

λlk

)2

(7)

=

((

K − 1

m

)

+
2

m

(

K − 2

m− 1

))

λ2
j −

2λj

m

(

K − 2

m− 1

) K
∑

k=1

λk

(8)

+
1

m2

∑

l∈L
K,m

∼j

(

m
∑

k=1

λlk

)2

, (9)

where the last equality follows by adding to and subtracting

from the first sum in (7) the term λj . When summing the



above expression over j, the double sum in (9) becomes

K
∑

j=1

∑

l∈L
K,m

∼j

(

m
∑

k=1

λlk

)2

= (K − 1)

(

K − 2

m− 1

) K
∑

k=1

λ2
k (10)

+ (K − 2)

(

K − 3

m− 2

) K
∑

k,n=1
k 6=n

λkλn

=

(

(K − 1)

(

K − 2

m− 1

)

− (K − 2)

(

K − 3

m− 2

)) K
∑

j=1

λ2
j

+ (K − 2)

(

K − 3

m− 2

)





K
∑

j=1

λj





2

. (11)

The first equality holds by noting that a fixed λ2
i in the left

hand double sum of (10) occurs exactly (K− 1)
(

K−2
m−1

)

times,

since it appears in K− 1 inner sums and in each inner sum it

occurs exactly
(

K−2
m−1

)

times. Similarly, a cross product λiλk

appears in K − 2 inner sums and in each inner sum it occurs
(

K−3
m−2

)

times. For the second equality, we complete the squares

by expressing the sum of cross products as a sum of squares.

By summing the expressions in (8) and (9) over j, using the

formula in (11), and collecting terms, we get

D̃(1)
r =

∑

µ∈Ac

1

m2

(

m2

(

K − 1

m

)

+ 2m

(

K − 2

m− 1

)

+ (K − 1)

(

K − 2

m− 1

)

− (K − 2)

(

K − 3

m− 2

)) K
∑

j=1

λ2
j

+
1

m2

(

(K − 2)

(

K − 3

m− 2

)

− 2m

(

K − 2

m− 1

))





K
∑

j=1

λj





2

.

(12)

By straightforward algebraic manipulations, it follows that

m2

(

K − 1

m

)

+ 2m

(

K − 2

m− 1

)

+ (K − 1)

(

K − 2

m− 1

)

− (K − 2)

(

K − 3

m− 2

)

= K(m+ 1)

(

K − 2

m− 1

)

and

(K − 2)

(

K − 3

m− 2

)

− 2m

(

K − 2

m− 1

)

= −(m+ 1)

(

K − 2

m− 1

)

.

Hence, (12) equals

D̃(1)
r =

K(m+ 1)
(

K−2
m−1

)

m2

∑

µ∈Ac







K
∑

j=1

λ2
j −

1

K





K
∑

j=1

λj





2





.

(13)

Further, it holds that

K
∑

j=1

λ2
j −

1

K





K
∑

j=1

λj





2

=

K
∑

j=1

(

λj −
1

K

K
∑

k=1

λk

)2

(14)

=
1

K

K−1
∑

i=1

K
∑

j=1

(λi − λj)
2 (15)

Inserting (14) and (15) into (13) gives the desired identities in

Theorem 1 and completes the proof.

REFERENCES

[1] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia cloud computing,”
Signal Processing Magazine, IEEE, vol. 28, no. 3, pp. 59 –69, May
2011.

[2] A. Marinos and G. Briscoe, “Community cloud computing,” in Cloud

Computing, ser. Lecture Notes in Computer Science, M. Jaatun,
G. Zhao, and C. Rong, Eds. Springer Berlin Heidelberg, 2009, vol.
5931, pp. 472–484.

[3] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Math-

ematics, vol. 8, no. 2, pp. 300–304, 1960. [Online]. Available:
http://dx.doi.org/10.1137/0108018

[4] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” J. ACM, vol. 36, no. 2, pp. 335–348,
1989. [Online]. Available: http://doi.acm.org/10.1145/62044.62050

[5] S. Pradhan, R. Puri, and K. Ramchandran, “n-channel symmetric
multiple descriptions - part i: (n, k) source-channel erasure codes,”
Information Theory, IEEE Transactions on, vol. 50, no. 1, pp. 47 – 61,
Jan. 2004.

[6] R. Puri, S. Pradhan, and K. Ramchandran, “n-channel symmetric
multiple descriptions-part ii:an achievable rate-distortion region,” In-

formation Theory, IEEE Transactions on, vol. 51, no. 4, pp. 1377 –
1392, April 2005.

[7] G. Zhang, J. Klejsa, and W. Kleijn, “Optimal index assignment for
multiple description scalar quantization with translated lattice code-
books,” Signal Processing, IEEE Transactions on, vol. 60, no. 8, pp.
4444 –4451, Aug. 2012.

[8] A. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proceedings of the IEEE,
vol. 99, no. 3, pp. 476 –489, March 2011.

[9] S. Chatzinotas and B. Ottersten, “Cognitive interference alignment
between small cells and a macrocell,” in Telecommunications (ICT),

2012 19th International Conference on, April 2012, pp. 1 –6.
[10] ——, “Interference mitigation techniques for clustered multicell joint

decoding systems,” EURASIP Journal on Wireless Communications

and Networking, Multicell Cooperation for Next Generation Commu-

nication Systems Series, vol. 132, 2011.
[11] S. Chatzinotas, “Repairing multiple description quantizers in distributed

storage systems,” in IEEE International Conference on Communica-

tions, ICC 2013, 2013.
[12] J. Ostergaard, J. Jensen, and R. Heusdens, “n-channel entropy-

constrained multiple-description lattice vector quantization,” Informa-

tion Theory, IEEE Transactions on, vol. 52, no. 5, pp. 1956 – 1973,
May 2006.

[13] A. A. E. Gamal and T. Cover., “Achievable rates for multiple descrip-
tions,” Information Theory, IEEE Transactions on, vol. 28, pp. 851–
857, Nov. 1982.

[14] Z. Zhang and T. Berger, “New results in binary multiple descriptions,”
Information Theory, IEEE Transactions on, vol. 33, no. 4, pp. 502–521,
July 1987.

[15] L. Ozarow, “On a source-coding problem with two channels and three
receivers,” Bell Syst. Tech. J., vol. 59, no. 10, pp. 1909–1921, Dec.
1980.

[16] R. Zamir, “Gaussian codes and shannon bounds for multiple descrip-
tions,” Information Theory, IEEE Transactions on, vol. 45, pp. 2629–
2635, Nov. 1999.

[17] J. Ostergaard and R. Zamir, “Multiple-description coding by dithered
delta-sigma quantization,” Information Theory, IEEE Transactions on,
vol. 55, no. 10, pp. 4661 –4675, Oct. 2009.

[18] G. Zhang, J. Ostergaard, J. Klejsa, and W. Kleijn, “High-rate analysis
of symmetric l-channel multiple description coding,” Communications,

IEEE Transactions on, vol. 59, no. 7, pp. 1846 –1856, July 2011.


