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1 Introduction

Linear models have been the focus of theoretical and applied econometrics for most
of the 20th Century. It was only starting from the 1990s that nonlinear models were
greatly developed, also under the stimulus of the economic theory who frequently
suggested nonlinear relationships between variables. Consequently, it also emerged
the interest in testing whether or not a single economic series or group of series may
be generated by a linear model against the alternative that they were nonlinearly
related instead.

Linear models have the advantage of being undoubtedly simple and intuitive.
However, they also have several limit ations, some of which can be overcome via
nonlinear modeling: i) linear models cannot allow for strong asymmetries in data,
ii) they are not suitable for data characterized by sudden and irregular jumps, iii)
they neglect nonlinear dependence, useful for prediction iv) they are not suitable for
series which are not time reversible. Moreover, a failure to recognize and deal with
the presence of nonlinearity in the generating mechanism of a time series can often
lead to poorly behaved parameter estimates and to models which miss important
serial dependencies altogether.

To our knowledge, there is no recent contribute in literature that compares the



2 L. Bisaglia, M. Gerolimetto

tests applied to a variety of parametric models. Of course, there is a number of re-
views, among which Davies and Petruccelli (1986), Lee et al. (1993), Corduas (1994),
Hansen (1999), Teräsvirta (1996), Teräsvirta (2005), Patterson and Ashley (2000)
and a very recent one by Giannerini (2012), however they often do not compare
the tests and, in case they do it, the comparison is made only for a very restricted
number of tests and a few very specific data generating processes.

Bearing this in mind, the purpose of our work is to provide both a review and a
comparison of the major tests for detecting nonlinearity in the generating mechanism
of an economic time series.1 In particular, we want to shed some light on how
these tests work when applied to a variety of nonlinear models via an extensive
Monte Carlo simulation experiment, in order to provide a new and fair picture of
the performance of the tests, also in comparative terms, while highlighting some
particular aspects of nonlinearity tests for time series.

A remark is at this stage in order. This survey is restricted to parametric models2

and, anyway, to stochastic processes, being chaotic processes beyond the scope of
considerations.

The organization of this paper is as follows. Section 2 introduces some nonlinear
time series models. Section 3 reviews the most important linearity tests, that will
be considered in the Monte Carlo experiment, described in section 4. Section 5
concludes.

2 Some nonlinear time series models

In this Section we briefly review the main types of nonlinear models that have most
commonly be used in the empirical literature.

2.1 Bilinear models

Given a stationary process Xt, a parsimonious representation of Xt as a finite order
linear model in the class ARMA(p, q) is:

Xt = c+

p∑
i=1

φiXt−i +

q∑
j=1

θjat−j + at (1)

where at ∼WN(0, σ2) and the autoregressive and moving average parts of the model
satisfy, respectively, the stationarity and invertibility conditions.

The simplest class of nonlinear models is the bilinear model, developed by con-
trol engineers to describe the input-output relationship of a deterministic nonlin-
ear system. Indeed, bilinear models have the property that, although they involve
only a finite number of parameters, they can approximate with arbitrary accuracy
any “well-behaved” non linear relationship (Priestley, 1978). Successively, bilinear

1We want to emphasize that in the recent literature there exists a large number of (non)linearity
tests, yet in this paper we review only those of them that have found application in the analysis of
economic time series.

2For a recent treatment of non parametric models, see Fan and Yao (2003).
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models have been transformed into stochastic models and studied by Granger and
Andersen (1978), Rao (1981), Rao and Gabr (1984).

The most general form of the bilinear model, BL(p, q, r, s), as defined in Granger
and Andersen (1978), is

Xt = c+

p∑
i=1

φiXt−i + at +

q∑
j=1

θjat−j +

r∑
i=1

s∑
j=1

βijXt−iat−j (2)

where at ∼ IID(0, σ2). This model may be regarded as a direct non linear extension
of an ARMA(p, q) model, derived by adding the extra terms Xt−hat−i. However,
because of the generality of model (2), it is very complex to analyze and consequently
theoretical properties, such as stationarity and invertibility conditions have been
derived only for special cases.

Although bilinear models are a natural extension of the ARMA models, in lit-
erature there are only a few applications of these models. One of the most cited is
Maravall (1983), who analyses a Spanish currency time series using bilinear models.
In Maravall’s view, bilinear models seem particularly appropriate for series with oc-
casional outbursts, i.e. sequences of outliers that seem to require a different regime.
Intuitively, the bilinear part is mostly dormant when the usual regime operates, but
it becomes operative in case of atypical behaviours, acting so as to smooth outliers.
This could also be useful to model, for example, seismological data. For some recent
developments on bilinear models see, for example, Rao and Terdik (2003).

2.2 Threshold autoregressive models

Assuming that Xt is expressed as a nonlinear function of its past

Xt = f(Xt−1, Xt−2, ..., Xt−p) + at

where at ∼ IID(0, σ2), Tong and Lim (1980) and Tong (1983) define the Self-
Exciting Threshold Autoregressive Model (SETAR) as a piecewise linear approxi-
mation of the general nonlinear autoregression form

Xt =
k∑
j=1

{
φ
(j)
0 + φ

(j)
1 Xt−1 + . . .+ φ(j)pj Xt−pj + σ(j)at

}
I(Xt−d ∈ Aj) (3)

where at ∼ IID(0, 1), d, p1, . . . , pj are some unknown positive integers, σ(j) > 0 and

φ
(j)
l are unknown parameters and Aj forms a partition of (−∞,∞) in the sense that
∪kj=1Aj = (−∞,∞) and Ai ∩Aj =6 0 for all i 6= j.

The SETAR model is nonlinear, provided that k > 1 and its theoretical prop-
erties are hard to obtain (Chan and Tong (1990); Chan (1993); Chan and Tsay
(1998)). One of the most interesting features of the SETAR model is that for some
parameter values it can generate limit cycles, amplitude dependent frequencies and
jump phenomena. Intuitively, SETAR models exhibit two or more regimes that work
as local data generating processes while the Xt−d variable takes a certain value.
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A special case of SETAR is the very popular TAR (Threshold Autoregressive
model)

Xt = α0 +

p∑
j=1

ajXt−j +

b0 +

p∑
j=1

bjXt−j

 I(Xt−d > r) + at (4)

where I(x) = 1 if x > r, I(x) = 0 otherwise. Basically, model (4) is AR(1) with 2
regimes, where r is the threshold and Xt−1 is the threshold variable, so the delay d
takes value 1.

In spite of its apparent simplicity, this model is general enough to capture fea-
tures, neglected by linear models, but commonly observed in practice, such as asym-
metries in declining and rising patterns of a process, or the presence of jumps.

A criticism of TAR models is that its conditional mean equation is not continu-
ous with discontinuity points at the thresholds. As a consequence, the parameters
change between regimes abruptly and this is quite unrealistic for many real time
series. Hence a wider class of models has been proposed, called Smooth Transi-
tion Autoregressive models (STAR), which allow for “smooth” transitions between
regimes (Teräsvirta (1994), van Dijk et al. (2002)).

2.3 Markov Switching models

Hamilton (1989) introduces Markov Switching model of order p, denoted by MS(p).
In case of two regimes, the model can take the following form:

Xt =

{
α1 +

∑p
i=1 φ1,iXt−i + a1,t if st = 1

α2 +
∑p

i=1 φ2,iXt−i + a2,t if st = 2
(5)

where ai,t ∼ IID(0, σ2i ) independent of each other, and st assumes values 1, 2.

The state variable st is unobservable and we assume that it is governed by a first
order Markov chain with transition probabilities:

P =

[
p11 p12
p21 p22

]
where pij = P (st = j|st−1 = i) and p11 + p12 = p21 + p22 = 1.
A small pij means that the model tends to stay longer in state i. The expected
duration of the process to stay in state i is 1/pij . The number of regime can be
r ≥ 2.

Although the MS(p) model looks very similar to the SETAR, there is a crucial
difference. In particular, in the SETAR model the regimes are defined by the past
values of the time series itself and the transition between regimes are governed by a
deterministic scheme, once Xt−d is observed. In the MS(p) model, instead, regimes
are defined by the exogenous state of the Markov chain; the transition scheme is
stochastic, hence one is never certain about which state Xt belongs to in a MS
model. This difference has important practical implications in forecasting. In a
MS(p) model, when the sample size is large, one can use some filtering techniques
to draw inferences on the state of Xt, while in a SETAR model, as long as Xt−d is
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observed, the regime of Xt is known. Thus, forecasts of a MS(p) model are always a
linear combination of forecasts produced by submodels of individual states. Those
of a SETAR model, instead, only come from a single regime provided that Xt−d
is observed. It is only when the forecast horizon exceeds the delay d also SETAR
forecasts become a linear combination of those produced by models of individual
regimes.

Moreover, it is much harder to estimate a MS(p) model, because the states are
not directly observable. In order to estimate the parameters of a MS model with this
uncertainty, one must compute probabilities associated with each possible regime.
Such probabilities are estimated using Hamilton’s recursive filter (Hamilton, 1994).

Following McCulloch and Tsay (1993) it is possible to generalize the MS model
by considering the transition probabilities as logistic or probit functions of some
explanatory variable available at time t− 1.

2.4 Long-memory models

It is generally accepted that many time series of practical interest exhibit strong
dependence, i.e., long memory. For such series, the sample autocorrelations decay
slowly and the spectral density exhibits a pole at the origin. To describe these
features, a particular class of models is required, one such is the class of the au-
toregressive fractionally integrated moving average (ARFIMA) models. Although
ARFIMA are linear models, they are often considered nonlinear, because their fea-
tures change dramatically the statistical behaviour of estimates and predictions. As
a consequence, many of the theoretical results and methodologies used for analyzing
short memory linear time series (as for example ARMA processes) are no longer
appropriate for long memory models. For these reasons we also consider the class of
ARFIMA models as nonlinear.

There exist different definitions of long memory processes. In the time domain,
a stationary discrete time series is said to be long memory if its autocorrelation
function decays to zero like a power function. This definition implies that the de-
pendence between successive observations decays slowly as the number of lags tends
to infinity. On the other hand, in the frequency domain, a stationary discrete time
series is said to be long memory if its spectral density is unbounded at the zero
frequency. Other definitions are equivalent and can be found in Beran (1994). More
recently Boutahar et al. (2007) provides an updated review on the topic.

In this paper we consider one of the most popular long memory processes that
takes into account this particular behaviour of the autocorrelation and of the spectral
density function, i.e. the ARFIMA(p, d, q), independently introduced by Granger
and Joyeux (1980) and Hosking (1981). This process simply generalizes the usual
ARIMA(p, d, q) process by allowing d to assume any real value.

Let at ∼WN(0, σ2.) The process {Xt, t ∈ Z} is said to be an ARFIMA(p, d, q)
process with d ∈ (−0.5, 0.5), if it is stationary and satisfies the difference equation

Φ(B) ∆(B) (Xt − µ) = Θ(B)at, (6)

where Φ(z) and Θ(z) are polynomials of degree p and q, respectively, satisfying
Φ(z) 6= 0 and Θ(z) 6= 0 for all z such that |z| ≤ 1, B is the backward shift operator,
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∆(B) = (1−B)d =
∑∞

j=0 πjB
j with πj = Γ(j − d)/[Γ(j + 1)Γ(−d)], and Γ(·) is the

gamma function.
The estimation of the long memory parameter d has been of interest for many

authors (see Palma (2007) for a good review). In the following we will concentrate
on ARFIMA processes with d ∈ (0, 0.5): for this range of values the process is
stationary, invertible and possesses long range dependence.

2.5 ARCH class models

Data in which the variances of the error terms are not equal are said to suffer from
heteroskedasticity. The standard warning is that in the presence of heteroskedas-
ticity, the regression coefficients for an ordinary least squares regression are still
unbiased, but the standard errors and confidence intervals estimated by conven-
tional procedures will be too narrow, giving a false sense of precision. Instead of
considering this as a problem to be corrected, ARCH and GARCH models treat
heteroskedasticity as a feature to be modeled. As a result, not only are the deficien-
cies of least squares corrected, but a prediction is computed for the variance of each
error term.

The ARCH and GARCH models (AutoRegressive Conditional Heteroskedasticity
and Generalized AutoRegressive Conditional Heteroskedasticity) are designed to
deal with these issues. They have become widespread tools for dealing with time
series heteroskedastic models. The goal of such models is to provide a volatility
measure that can be used in financial decisions concerning risk analysis, portfolio
selection and derivative pricing.

The first model that provides a systematic framework for volatility modeling is
the ARCH model of Engle (1982), used to parametrize conditional heteroskedasticity
in a wage-price equation for the United Kingdom.

Formally, let εt be a random variable that has a mean and a variance conditionally
on the information set Ft−1 (the σ-field generated by εt−j , j ≥ 1), an ARCH(p)
model assumes that:

εt = σtat, σ2t = α0 +

p∑
i=1

αiε
2
t−i

where at ∼ IID(0, 1), α0 > 0 and αi ≥ 0, i > 0.
The parameter restrictions form a necessary and sufficient condition for positivity
of the conditional variance. In practice at is often assumed to follow the N(0, 1)
or a standardized Student t-distribution. It is possible to prove that: (i) the un-
conditional variance of εt is constant, that is, unconditionally the process is ho-
moskedastic; (ii) εt have zero-autocovariances; (iii) εt has a heavier tail than the
Normal distribution (heavy tails are a common feature of financial data, for this
reason ARCH models are very popular in this field). Besides that, other reasons
for choosing ARCH models are that they are simple and easy to handle, they take
care of clustered errors, nonlinearities and changes in the econometricians ability to
forecast.

In spite of their simplicity, ARCH models often require many parameters to
adequately describe the volatility process of an asset return, thus Bollerslev (1986)
proposes a useful extension known as the Generalized ARCH (GARCH) model.
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Formally a GARCH(p, q) model assumes that:

εt = σtat, σ2t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j (7)

where at ∼ IID(0, 1), α0 > 0, αi ≥ 0, βj ≥ 0 and
∑max(p,q)

i=1 (αi + βi) < 1.
The latter constraint on αi + βi implies that the unconditional variance of εt is

finite, whereas its conditional variance σ2t evolves over time, at is often assumed to
be a standard normal or standardized Student-t distribution.

A possible limitation of ARCH and GARCH models is that they assume that
positive and negative shocks have the same effects on volatility as the latter depends
on the square of the previous shocks. Actually, many financial series respond dif-
ferently to positive and negative shocks and ARCH models do not provide any new
insight for understanding the source of variations of this type of time series. To
overcome this many others ARCH-type models (IGARCH, EGARCH, GARCH-M,
CHARMA, APARCH, FIGARCH, . . .) have been developed in literature (see, for
example, Tsay (2010)). Finally, for nonlinear GARCH models see also Teräsvirta
(2006) .

3 Testing linearity

In general, to test for (non)linearity, the system of hypotheses is:{
H0 : linearity
H1 : nonlinearity

Sometimes, the DGP under H1 is specifically prechosen and in this case testing for
nonlinearity is in fact testing for a specific nonlinear feature. In some other cases,
the DGP under H1 is still relatively general and the problem of hypothesis testing
is then also generic.

3.1 Linearity against non specific nonlinear alternatives

3.1.1 McLeod and Li (1983) test

A portmanteau-test type statistic, based on the autocorrelation function of squared
residuals obtained from an ARMA model fit, has been proposed by McLeod and
Li (1983). The idea is to apply the Ljung-Box statistics to the squared residuals
of an ARMA(p, q) model to check for model inadequacy. Consequently, the null
hypothesis is H0 : ARMA(p, q) and the test statistic is:

Q(m) = n(n+ 2)
m∑
i=1

ρ̂2i (a
2
t )

n− i

where n is the sample size, m is a properly chosen number of autocorrelations used
in the test, at denotes the residual series, and ρ̂i(a

2
t ) is the lag-i ACF of a2t . Under

the null hypothesis
Q(m)→Xm−p−q
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where typically m is taken around 20.3 The motivation for using squared data values
to detect nonlinearity is provided by a result inherent in the work of Granger and
Newbold (1976). They showed that for a series Xt which is normal (and therefore
linear)

ρk(X
2
t ) = (ρk(Xt))

2

Consequently, any departure from this result presumably would indicate a degree of
nonlinearity, as pointed out by Granger and Andersen (1978).

The Q-statistic is also useful in detecting conditional heteroskedasticity of a
(returns) series εt and is asymptotically equivalent to the Lagrange multiplier test
statistic of Engle (1982) for ARCH models illustrated in the next pages.

Under this circumstance, the null hypothesis of the statistic is

H0 : β1 = · · · = βm = 0

where βi is the coefficient of ε2t−i in the linear regression

ε2t = β0 + β1ε
2
t−1 + · · ·+ βmε

2
t−m + at, t = m+ 1, . . . , n

As shown by Davies and Petruccelli (1986) via simulations, Q has higher power when
the time series is really generated by an ARCH model, whereas it may result quite
ineffective with respect to other structures.

3.1.2 BDS test

The BDS test (Brock et al., 1987), developed within chaos theory, is one of the most
popular tests for nonlinearity. It is a nonparametric test, originally designed to
test for independence and identical distribution (iid), but shown to have also power
against a large gamma of linear and nonlinear alternatives (see for example, Brock
et al. (1991)). Moreover it can be used as a portmanteau test or miss-specification
test when applied to the residuals from a fitted model.

The BDS statistics is based on the correlation integral, a measure of the num-
ber of times with which temporal pattern are repeated in the data. Given a time
series Xt, t = 1, 2, ..., n and define its m-history as Xm

t = (xt, xt−1, ..., xt−m+1), the
correlation integral at the embedding dimension m is

Cm,T (ε) =
∑
t<s

Iε (Xm
t , X

m
s )

{
2

Tm(Tm − 1)

}
where Tm = T − (m − 1) and IXm

t ,X
m
s

is an indicator function which equals 1 if
the sup norm ‖Xm

t −Xm
s ‖ < ε and equals 0 otherwise. Basically, Cm,T (ε) counts

up the number of m-histories that lie within a hypercube of size ε of each other.
Put it differently, the correlation integral estimates the probability that any two
m-dimensional points are within a distance of ε of each other

P (|Xt −Xs| < ε,|Xt−1 −Xs−1| < ε, . . . ,|Xt−m+1 −Xs−m+1| < ε)

3Because the statistic is computed from the observed residuals, the number of degrees of freedom
is m− p− q.
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If the Xt are iid, this probability should be equal to the following in the limiting
case

C1,T (ε)m = P (|Xt −Xs| < ε)m

Brock et al. (1996) define the BDS statistics as follows

Vmε =
√
T
Cm,T (ε)− C1,T (ε)m

sm,T

where sm,T is the standard deviation and can be estimated consistently as docu-
mented by Brock et al. (1987). Under fairly moderate regularity conditions, the
BDS statistic converges in distribution to N(0, 1)

3.1.3 White (1989) and Terasvirta et al (1993) Neural Network tests

The Neural Network test (White, 1989) for neglected nonlinearity, NN test herafter,
is built on neural network models. One of the most common is the single hidden layer
feedforward network where unit inputs send a vector X of signals Xi, i = 1, . . . , k
along links (connections) that attenuate or amplify the original signals by a factor
γij (weights). The intermediate or hidden processing unit j receives the signals
Xiγij , i = 1, . . . , k and processes them. In general, incoming signals are summed by
the hidden units so that an output is produced by means of an activation function
Φ(X̃ ′, γj), where Φ is typically the logistic function4 and X̃ = (1, X1, . . . , Xk), passed
to the output layer

f(X, δ) = β0 +

q∑
j=1

βjΦ(X̃ ′γj), q ∈ N (8)

where β0, . . . , βq are hidden to output weights and δ = (β0, . . . , βq, γ
′
1, . . . , γ

′
q)
′.

The NN test in particular employs a single hidden layer network, augmented by
connections from input to output. The output o of the network is

o = X̃ ′θ +

q∑
j=1

βjΦ(X̃ ′γj)

and the null hypothesis of linearity is equivalent to the optimal weights of the network
being equal to zero, that is the null hypothesis of the NN test is β∗j = 0 for j =
1, 2, . . . , q for given q and γj .

Operatively, the NN test can be implemented as a Lagrange multiplier test:{
H0 : E(Φte

∗
t ) = 0

H1 : E(Φte
∗
t ) 6= 0

where the elements Φt ≡ (Φ(X̃ ′tΓ1), . . . ,Φ(X̃ ′tΓq)) and Γ ≡ (Γ1, . . . ,Γq) are chosen
a priori, independently of Xt and for given q. To practically carry out the test,

4By definition, Φ belongs to a class of flexible functional forms. White (1989) showed that for
wide class of nonlinear functions Φ, the neural network can provide arbitrarily accurate approxima-
tions to arbitrary functions in various normed function spaces if q is large enough.
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the element et are replaced by the OLS residuals et = yt − X̃ ′θ̂, to obtain the test
statistic

Mn =

(
n−1/2

n∑
t=1

Φtêt

)′
Ŵ−1n

(
n−1/2

n∑
t=1

Φtêt

)
where Ŵ is a consistent estimator of W ∗ = var(n−1/2

∑n
t=1 Φte

∗
t ) and under H0

Mn
d→ χ2(q). To circumvent multicollinearity of Φt with themselves and Xt as well

as computational issues when obtaining Ŵn, two practical solutions are adopted.
First, the test is conducted for q∗ < q principal components of Φt, Φte

∗
t . Second,

the following equivalent test statistic is used to avoid calculation of Ŵn,

nR2 d→ χ2(q)

where R2 is the uncentered squared multiple correlation from a standard linear
regression of êt on Φ∗t , X̃t.

Teräsvirta et al. (1993) proved that the result of this test is affected by the
presence of the intercept in the power of the logistic function chosen as activation
function. Moreover, he documented a loss of power due to the random choice of
the γ parameters. Building on this, Teräsvirta et al. (1993) replaced the expression∑q

j=1 βjΦ(X̃ ′γj) in (8) with an approximation based on the Taylor expansion and
derived an alternative LM test has been shown to have better power properties.

3.1.4 Ramsey (1969) RESET test

Ramsey (1969) proposes a specification test for linear least squares regression anal-
ysis, whose argument is that nonlinearity will be reflected in the diagnostics of a
fitted linear model if the residuals of the linear model are correlated with terms to
a certain power. In other words, this test, referred to as a RESET test, focuses on
specification errors in the linear regression, including those coming from unmodeled
non-linearity and is readily applicable to linear AR models.

Consider the linear AR(p) model:

Xt = φ0 + φ1Xt−1 + · · ·+ φpXt−p + at.

The first step of the RESET test is to obtain the least squares estimate φ̂,
compute the residuals ât = Xt − X̂t, and the sum of squared residuals:

SSR0 =
n∑

i=p+1

â2t

where n is the sample size.
In the second step, consider the linear regression

ât = X′t−1a + M′t−1b + vt

where Xt−1 = (1, Xt−1, . . . , Xt−p) and Mt−1 = (X̂2
t , . . . , X̂

s+1
t ) for some s ≥ 1, and

compute the least squares residuals

v̂t = ât −X′t−1â−M′t−1b̂
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In the third step sum of squared residuals is computed

SSR1 =
n∑

i=p+1

v̂2t

If the linear AR(p) model is adequate, then a and b should be zero. This can be
tested in the fourth step by the usual F statistic given by:

F =
(SSR0 − SSR1)/g

SSR1/(n− p− g)
with g = s+ p+ 1

which under linearity and normality, has an Fg,n−p−g.

3.1.5 Keenan’s (1985) test and Tsay’s (1986) test

Keenan (1985) proposes a nonlinearity test for time series that uses X̂2
t only and

modifies the second step of the RESET test to avoid multicollinearity between
X̂2
t and Xt−1. In particular, Keenan assumes that the series can be approximated

(Volterra expansion) as follows:

Xt = µ+
∞∑

u=−∞

∞∑
v=−∞

θuat−u +
∞∑

u=−∞

∞∑
v=−∞

θuvat−uat−v

Clearly, if
∑∞

u=−∞
∑∞

v=−∞ θuvat−uat−v is zero, the approximation is linear, so Keenan’s
idea shares the principle of an F test. The procedure is in the same steps as Ram-
sey’s test. Firstly, select (with a selection criterion, e.g. AIC) the value p of the
number of lags involved in the regression, then fit Xt on (1, Xt−1, . . . , Xt−p to ob-
tain the fitted values (X̂t), the residuals set (ât) and the residual sum of squares
SSR. Then regress X̂2

t on (1, Xt−1, . . . , Xt−p) to obtain the residuals set (ζ̂t). Finally
calculate

η̂t =

∑n
t=p+1 âtζ̂t∑n
t=p+1 ζ̂t

2

and the test statistic equals

F̂ =
(n− 2p− 2)η̂2

(SSR− η̂2)
Under the null hypothesis of linearity, i.e.

H0 :
∞∑

u=−∞

∞∑
v=−∞

θuvat−uat−v = 0

and the assumption that (at) are i.i.d. Gaussian, asymptotically F̂ ∼ F1,n−2p−2.
Tsay (1986) improved on the power of the Keenan (1985) test by allowing for

disaggregated nonlinear variables (all cross products Xt−iXt−j , i, j = 1, . . . , p) thus
generalizing Keenan test by explicitly looking for quadratic serial dependence in
the data. While the first step of Keenan test is unchanged, in the second step of
Tsay test, instead of (X̂t)

2, the products Xt−iXt−j , i, j = 1, . . . , p are regressed
on (1, Xt−1, . . . , Xt−p. Hence, the corresponding test statistic F̃ is asymptotically
distributed as Fm,n−m−p−1, where m = p(p− 1)/2.
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3.2 Linearity against specific nonlinear alternatives

3.2.1 TAR-LR test

Chan and Tong (1986) propose a likelihood ratio (LR) test for discriminating a
particular subset of the self-exciting TAR models, i.e. TAR(2, p, p), from linear AR
models when p, R and d are known (or assumed). Using the same notation as in
the previous section, H0 : Xt ∼ AR(p), is tested against H1:

Xt =

{
φ1,0 +

∑p
i=1 φ1,iXt−i + a1,t if Xt−d < r

φ2,0 +
∑p

i=1 φ2,iXt−i + a2,t if Xt−d ≥ r

where r is the threshold. Assuming that at is iid independent of Xs, s < t, the Chan
and Tong LR test is given by:

LR1 =
{
σ2(NL, r)/σ2

}n−p+1
2

where σ2(NL, r) and σ2 are the respective estimators of the error variance from
TAR(2; p, p) and AR(p) models. Under the null hypothesis of linearity, the AR
coefficients in the TAR regimes will be not significantly different, i.e. H0 : φ1i = φ2i
(i = 0, 1, . . . , p), and −2log(LR1) is asymptotically distributed as χ2

p+1. In practice,
r is generally unknown and needs to be estimated. The LR test then turns into:

LR2 =
{
σ2(NL)/σ2

}n−p+1
2

As a consequence, the likelihood function is irregular and the asymptotic distribu-
tion of the statistics is no longer χ2. However, Chan and Tong (1986) propose a
numerical evaluation of the likelihood function and a likelihood ratio test based on
that numerical approximation. For the restricted case indicated above, theoretical
results allow tabulation of the asymptotic null distribution of LR2 (see Moeanaddin
and Tong (1988), Chan and Tong (1990), for details).

3.2.2 Engle (1982) LM test

The Lagrange multipliers (LM) test by Engle (1982) has been introduced to test for
ARCH effects mainly for its computational simplicity, as the LM test only demands
estimation of the linear model. It is equivalent to the F statistic to test for the null
hypothesis of coefficients not significantly different from zero in the regression of the
squared residuals from the fit of a linear model on the lagged (up to m) values of
the same squared residuals.

â2t = α0 + α1â
2
t−1 + · · ·+ αmâ

2
t−1 + εt, t = m+ 1, . . . , n

Once the quantities SSR0 =
∑n

t=m+1(a
2
t − ā)2 and SSR1 =

∑n
t=m+1 ε̂

2 are com-
puted, the F statistic is easily obtained:

F =
(SSR0 − SSR1)/m

SSR1/(n− 2m− 1)

that is asymptotically distributed as χm. Note that, as it is an LM test, it is possible
to resort to nR2 that, asymptotically has the same distribution as F.
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4 Monte Carlo experiment

The Monte Carlo experiment presented in this section has the aim of showing the
performance in terms of power and size of the (non)linearity tests illustrated in the
previous section for various data generating processes (DGPs).

The Monte Carlo experiment is two fold because both size and power are studied
for all considered tests. The considered sample sizes are n = 100, 250, 500, 1000, for
2000 Monte Carlo simulations. The significance level is α = 0.05. Simulations are
conducted using the software R Development Core Team (2011).

To study the size of the tests the following linear DGP’s are considered, where
for all models the innovations are distributed as N(0, 1):

1. White Noise

2. AR(1), where φ = −0.9,−0.5, 0.5, 0.9

3. MA(1), where θ = −0.9,−0.5, 0.5, 0.9

4. ARMA(1,1), where φ = 0.6, θ = 0.3

5. ARFIMA(1,d,1), where d = 0.1, 0.3, 0.45

To study the power of the tests the following nonlinear DGP’s are considered,
once more the innovations are distributed as N(0, 1):

1. ARCH(1), where Xt = σtat, σ
2
t = 0.01 + αX2

t−1, α = 0.3, 0.6, 0.9

2. ARCH(2), where Xt = σtat, σ
2
t = 0.01 + 0.8X2

t−1 + 0.025Xt−2

3. GARCH(1), where Xt = σtat, σ
2
t = 0.011 + 0.12X2

t−1 + 0.85σ2t−1

4. TAR(1,1), where

Xt =

{
−0.5Xt−1 + at Xt−1 ≤ 1
0.4Xt−1 + at Xt−1 > 1

Xt =

{
2 + 0.5Xt−1 + at Xt−1 ≤ 1
0.5− 0.4Xt−1 + at Xt−1 > 1

Xt =

{
1− 0.5Xt−1 + at Xt−1 ≤ 1
1 + at Xt−1 > 1

5. MS(1), where

Xt =

{
−0.5Xt−1 + at st = 1
0.4Xt−1 + at st = 2

with p11 = p22 = 0.5, 0.9.

As for the implementation of the tests, a few remarks are in order. The Tsay
test, Keenan test and Terasvirta and White tests have been conducted for p = 2, 4.
The BDS test has been implemented for m = 2, 3 and ε = 1. For the McLeod-Li
test the parameter m has been set to

√
n rounded to the closest integer. The Engle
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LM test has been run for m = 5. Finally the TAR test has been implemented for
d = 1 and a = 0.25, b = 0.75.

The results are presented in Tables 1-9 in the Appendix. By reading the tables,
several comments can be made about both size and power performance of the tests.

As for the size (Tables 1-3), the results obtained with respect to the considered
linear models are quite in line with the expectations, a part from the BDS test and
the TAR-LR test. Relatively to the latter, the size becomes very slowly close to
0.05 with the increase of the sample size, thus revealing a tendency of the test to
overeject the null hypothesis of linear model even when the DGP is in fact linear.
This behaviour can be easily explained by considering the piecewise linear nature
of the TAR models. As for the BDS test, the explanation is quite different, in
particular this test needs very long series to work properly, according to the results
the sample size should be bigger than 500.

In terms of power (Tables 4-8), we expect that tests designed to recognize non
linearity in mean (variance) perform better in case the DGP is nonlinear in mean
(variance). In general, this is confirmed by the results of the experiment. In case of
ARCH/GARCH DGPs the tests whith the highest power are McLeod and Li test
and Engle LM test, in case of TAR DGPs the test with the largest power is the LR-
TAR test, followed by the tests Tsay, Keenan, Terasvirta and White. There is no
big difference between the power obtained by the LR-TAR test and Tsay, Keenan,
Terasvirta and White. This interesting result reveals that these tests work well in
case of TAR models.

The only test that exhibits large power both for ARCH/GARCH and TAR DGPs
is the BDS, though the sample size should be larger than 500.

In case of MS models, the performance of the tests changes. One could expect
the power results being similar to those obtained for TAR DGPs as these models
share with MSs the same regime switching nature. In fact, the responses of the
tests are quite different. Tsay, Keenan, Terasvirta and White test exhibits very
poor power, while the McLeod and Li test and Engle LM test (although thery are
designed to detect nonlinearity in variance) are characterized by extremely good
power that reaches high values at the increase of the sample size.5

Finally, some ARFIMA models (Tables 9) have been included in the experiment
to find out whether some of the tests could capture their peculiarity compared to
ARMA models. In general the tests do not recognize elements of difference from the
linearity. It is only when d is close to 0.5 that Keenan’s test, Terasvirta and White
tests, can distinguish ARFIMA from ARMA linear models.

The BDS test exhibits the highest power in detecting nonlinearity, and for this
reason it should be the first to be used. However it does not provide indications about
the type of nonlinearity, hence some other tests must be necessarily employed. The
simulation results show that Tsay test has better power properties than Keenan’s,
hence it should be preferred. Terasvirta and White tests perform similarly to the
Tsay test, except for the MS DGP.

As a final comment, we observe that the tests do not seem to be affected by the
various values that the coefficients characterizing the models can take.

5These results are in line with those obtained by Patterson and Ashley (2000).
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5 Conclusion

In this paper we provide a review and a comparative analysis of the main tests to
detect nonlinearity in economic time series.

As emphasized by Giannerini (2013), it is difficult to offer a unified framework
where all nonlinearity tests can be included. Still, at the end of this compara-
tive analysis work, we can conclude that, in spite of the large number of tests for
(non)linearity, almost all of them are influenced by the specific hypothesis under
which they have been conceived. This means that every single test, in fact, works
properly only in specific cases, in which, on the other hand very high power is
reached. It seems that using more than one test to detect nonlinearity, starting
from the BDS test, is then the safest strategy.
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6 Appendix

WN n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 4.8 5.0 4.5 5.5
Tsay, p=4 4.7 5.5 5.2 4.8
Keenan, p=2 4.5 6.1 4.2 5.6
Keenan, p=4 3.6 5.6 4.5 4.5
Terasvirta 5.6 4.4 3.8 5.4
White 5.5 5.1 3.5 6.0
BDS, m=2 13.9 6.9 5.5 6.3
BDS, m=3 14.0 8.0 6.6 6.5
McLeod-Li 4.4 5.1 5.2 4.7
EngleLM 2.7 4.0 3.9 4.6
TAR-LR 11.6 12.7 10.0 9.9

Table 1: DGP: WN. Empirical size of tests (nominal level 0.05)



Section 6 Appendix 19

AR(1) φ=-0.9 φ=-0.5
n = 100 n = 250 n = 500 n = 1000 n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 4.5 4.8 4.3 5.3 4.1 5.1 5.3 4.8
Tsay, p=4 4.8 4.4 5.1 4.9 3.7 4.9 4.9 4.9
Keenan, p=2 5.2 5.1 3.8 4.9 5.2 5.7 4.9 4.6
Keenan, p=4 5.1 5.2 4.0 5.0 5.0 5.7 5.9 4.3
Terasvirta 4.8 5.3 4.2 5.6 5.8 5.4 5.2 4.7
White 5.5 5.3 3.8 5.5 6.1 5.4 4.9 5.0
BDS, m=2 12.0 6.9 7.0 5.4 13.4 8.0 5.8 5.6
BDS, m=3 13.3 6.5 6.7 5.7 14.6 7.3 6.0 5.6
McLeod-Li 4.7 5.2 4.5 5.8 4.5 5.3 3.9 5.2
EngleLM 3.1 4.4 4.0 4.5 3.2 3.7 4.0 5.4
TAR-LR 11.8 10.2 9.8 10.3 12.4 11.6 10.6 10.4
AR(1) φ=0.9 φ=0.5

n = 100 n = 250 n = 500 n = 1000 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 4.1 4.2 4.8 5.1 2.5 3.8 3.7 4.7
Tsay, p=4 4.1 4.8 5.4 5.0 3.8 3.3 4.2 4.3
Keenan, p=2 4.3 4.4 4.2 5.2 1.2 2.5 3.1 3.2
Keenan, p=4 4.6 4.7 4.2 5.4 1.1 2.7 3.2 3.2
Terasvirta 4.2 4.0 4.2 4.8 7.3 5.9 6.2 4.6
White 4.6 3.9 4.6 4.3 6.7 5.3 5.9 4.7
BDS, m=2 13.7 7.8 6.0 5.1 13.5 8.1 6.5 5.5
BDS, m=3 14.2 7.2 5.8 4.8 13.6 8.3 6.3 4.7
McLeod-Li 4.4 4.7 5.4 4.2 4.6 5.5 5.2 5.3
EngleLM 3.6 4.3 4.4 4.5 3.0 4.5 4.0 4.5
TAR-LR 13.5 10.9 10.4 9.5 12.1 10.9 10.9 10.3
MA(1) θ=-0.9 θ=-0.5

n = 100 n = 250 n = 500 n = 1000 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 3.4 4.1 3.8 3.2 4.6 4.9 3.9 4.4
Tsay, p=4 4.8 5.7 4.6 5.0 4.9 5.2 4.8 6.2
Keenan, p=2 1.5 2.0 1.5 1.4 3.4 3.4 3.5 3.7
Keenan, p=4 1.3 1.1 1.5 2.0 4.4 4.5 4.3 4.7
Terasvirta 8.0 7.0 6.1 5.9 5.9 6.4 5.3 6.3
White 7.2 7.2 6.9 5.7 6.3 6.6 6.0 5.8
BDS, m=2 13.8 7.0 6.2 5.0 13.6 7.7 6.6 5.5
BDS, m=3 14.2 7.1 6.4 4.9 14.7 8.6 6.6 5.7
McLeod-Li 4.3 4.6 4.8 4.7 5.0 4.9 5.7 5.3
EngleLM 3.4 5.3 4.7 5.1 3.1 4.1 4.6 5.3
TAR-LR 13.0 12.8 11.7 11.1 11.4 12.6 11.6 10.4
MA(1) θ=0.9 θ=0.5

n = 100 n = 250 n = 500 n = 1000 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 4.9 5.6 6.4 5.3 4.2 6.1 4.5 5.7
Tsay, p=4 4.7 4.4 5.6 3.6 4.9 5.2 5.3 6.5
Keenan, p=2 4.6 6.0 5.4 5.7 4.3 5.4 4.7 5.0
Keenan, p=4 4.6 4.9 5.8 5.2 5.1 5.4 4.9 4.0
Terasvirta 2.9 2.7 2.6 2.9 1.3 0.9 1.1 0.9
White 3.5 2.8 2.7 2.7 1.4 1.0 1.0 1.2
BDS, m=2 13.7 7.9 5.2 6.3 12.2 7.9 6.9 5.2
BDS, m=3 13.7 8.5 5.9 6.2 13.1 7.5 5.4 5.9
McLeod-Li 4.6 4.8 5.2 4.6 3.9 5.0 4.7 5.0
EngleLM 3.4 5.0 5.5 5.4 3.1 4.6 4.2 4.3
TAR-LR 13.3 10.5 8.5 8.9 13.0 10.8 9.2 9.6

Table 2: DGP: AR(1) and MA(1). Empirical size of tests (nominal level 0.05)



20 L. Bisaglia, M. Gerolimetto

ARMA(1,1) n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 4.0 5.3 5.3 5.7
Tsay, p=4 4.3 4.8 4.7 5.4
Keenan, p=2 3.5 5.4 5.7 6.3
Keenan, p=4 3.3 5.0 5.2 5.2
Terasvirta 1.9 1.4 1.8 1.7
White 1.8 1.5 2.1 2.2
BDS, m=2 13.6 8.2 6.1 5.4
BDS, m=3 12.5 8.1 6.7 5.3
McLeod-Li 4.7 5.1 5.7 5.1
EngleLM 3.3 4.1 4.4 4.3
TAR-LR 10.8 9.6 9.3 8.9

Table 3: DGP: ARMA(1,1). Empirical size of tests (nominal level 0.05)

ARCH(1) - α = 0.3 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 14.4 20.7 25.6 30.1
Tsay, p=4 12.8 20.5 26.3 30.5
Keenan, p=2 11.5 14.0 17.0 19.3
Keenan, p=4 8.6 10.0 13.0 13.5
Terasvirta 19.3 27.2 29.9 35.4
White 15.5 21.2 21.8 23.8
BDS, m=2 52.6 85.5 99.0 100.0
BDS, m=3 49.9 81.0 98.0 100.0
McLeod-Li 24.9 64.6 93.9 99.9
EngleLM 29.0 70.8 96.1 99.4
ARCH(1) - α = 0.6 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 32.7 45.9 56.1 66.3
Tsay, p=4 35.5 53.7 66.8 77.6
Keenan, p=2 21.2 30.1 37.4 42.8
Keenan, p=4 18.0 26.4 32.3 38.0
Terasvirta 36.7 50.5 61.2 67.8
White 29.3 39.4 47.3 53.1
BDS, m=2 86.1 99.8 100 100
BDS, m=3 83.7 99.7 100 100
McLeod-Li 55.1 94.1 99.9 100
EngleLM 55.1 93.9 99.0 99.9
ARCH(1) - α = 0.9 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 48.1 66.1 77.2 87.8
Tsay, p=4 58.0 77.6 89.5 96.7
Keenan, p=2 30.3 43.2 55.0 63.2
Keenan, p=4 27.7 39.1 49.6 61.1
Terasvirta 51.9 68.8 76.1 85.8
White 41.4 56.1 65.9 73.8
BDS, m=2 96.9 100.0 100.0 100.0
BDS, m=3 96.2 100.0 100.0 100.0
McLeod-Li 69.1 95.9 99.8 100.0
EngleLM 66.4 93.0 98.1 99.9

Table 4: DGP: ARCH(1). Empirical power of tests
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ARCH(2) n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 45.8 64.4 74.8 84.1
Tsay, p=4 53.0 75.7 87.3 94.0

Keenan, p=2 29.9 41.1 48.6 58.3
Keenan, p=4 26.6 36.5 45.6 53.1

Terasvirta 51.0 63.5 72.4 81.6
White 41.3 50.8 59.4 67.9

BDS, m=2 95.0 100.0 100.0 100.0
BDS, m=3 94.2 100.0 100.0 100.0
McLeod-Li 66.1 96.2 99.9 100.0
EngleLM 69.0 98.0 99.1 100.0

Table 5: DGP: ARCH(2). Empirical power of tests

GARCH(1,1) n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 11.2 19.4 26.5 33.4
Tsay, p=4 16.1 34.0 45.4 58.4

Keenan, p=2 8.8 13.5 16.1 19.9
Keenan, p=4 7.8 13.2 15.0 20.4

Terasvirta 11.1 17.4 24.4 30.9
White 10.1 12.7 17.7 20.9

BDS, m=2 30.7 58.8 86.4 98.9
BDS, m=3 37.7 70.4 94.7 100
McLeod-Li 32.5 80.1 98.8 100
EngleLM 34.2 83.9 98.3 100

Table 6: DGP: GARCH(1,1). Empirical power of tests
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TAR(1, 1) n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 77.0 99.6 100.0 100.0
Tsay, p=4 50.0 96.3 100.0 100.0
Keenan, p=2 65.3 88.4 96.6 99.9
Keenan, p=4 37.7 66.5 80.1 91.7
Terasvirta 86.8 99.9 100.0 100.0
White 91.5 100.0 100.0 100.0
BDS, m=2 41.7 69.9 91.6 99.6
BDS, m=3 38.9 66.0 89.4 99.3
McLeod-Li 8.9 14.1 24.4 43.9
EngleLM 9.1 16.9 28.0 53.7
TAR-LR 90.3 99.9 100 100

TAR(1, 1) with constant n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 93.1 100 100 100
Tsay, p=4 73.1 99.5 100 100
Keenan, p=2 66.5 98.3 100 100
Keenan, p=4 12.2 31.1 59.6 89.3
Terasvirta 99.7 100 100 100
White 100 100 100 100
BDS, m=2 15.4 15.0 18.9 22.6
BDS, m=3 24.6 34.7 55.3 83.1
McLeod-Li 5.3 8.0 9.5 14.8
EngleLM 4.1 7.8 12.4 18.3
TAR-LR 100 100 100 100

TAR(1, 1) with WN n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 18.1 46.5 77.8 98.3
Tsay, p=4 10.1 26.3 55.5 91.9
Keenan, p=2 40.7 73.2 93.7 99.8
Keenan, p=4 76.0 99.6 100.0 100.0
Terasvirta 33.0 66.7 93.5 99.9
White 36.8 73.5 96.5 99.9
BDS, m=2 13.9 13.9 15.0 22.2
BDS, m=3 14.3 12.8 13.3 19.4
McLeod-Li 4.3 5.3 7.6 9.5
EngleLM 4.3 5.7 7.4 8.7
TAR-LR 36.4 75.7 98.1 100

Table 7: DGP: TAR(1,1). Empirical power of tests
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MS(1) p = q = 0.5 n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 10.6 11.3 13.4 14.0
Tsay, p=4 9.0 10.9 12.9 14.3
Keenan, p=2 8.1 10.1 9.9 11.5
Keenan, p=4 6.5 7.6 8.6 10.5
Terasvirta 15.5 17.5 19.4 20.6
White 12.1 12.8 13.2 14.3
BDS, m=2 41.8 73.2 95.6 100
BDS, m=3 40.4 68.2 91.8 99.9
McLeod-Li 17.3 46.3 79.9 98.8
EngleLM 11.2 41.7 77.2 98.8
TAR-LR 14.8 12.9 14.3 13.7

MS(1) p = q = 0.9 n = 100 n = 250 n = 500 n = 1000

Tsay, p=2 10.0 11.5 12.5 13.3
Tsay, p=4 7.6 10.7 10.3 11.7
Keenan, p=2 5.5 5.1 4.6 3.8
Keenan, p=4 3.8 5.0 4.6 4.4
Terasvirta 14.0 20.3 23.9 27.3
White 11.5 14.6 16.5 21.6
BDS, m=2 34.1 68.4 89.8 99.2
BDS, m=3 33.9 64.0 86.6 98.4
McLeod-Li 13.9 38.4 68.8 93.3
EngleLM 8.4 35.4 67.0 92.2
TAR-LR 14.7 14.5 14.9 16.5

Table 8: DGP: MS(1). Empirical power of tests
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ARFIMA(0,d,0), d = 0.1 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 4.8 4.6 5.0 4.4
Tsay, p=4 4.3 4.1 4.7 4.0
Keenan, p=2 6.8 7.2 10.5 11.5
Keenan, p=4 5.3 5.8 9.1 9.4
Terasvirta 4.7 5.6 5.5 5.2
White 5.4 5.7 5.5 5.3
BDS, m=2 13.8 8.9 6.0 5.4
BDS, m=3 14.5 9.1 6.8 5.3
McLeod-Li 4.9 4.7 4.8 4.3
EngleLM 3.4 4.6 4.0 4.8
ARFIMA(0,d,0), d = 0.3 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 4.3 6.5 6.0 7.0
Tsay, p=4 3.5 5.2 5.0 5.8
Keenan, p=2 8.1 12.2 26.1 40.7
Keenan, p=4 5.2 6.4 15.8 27.4
Terasvirta 5.7 7.1 8.0 9.0
White 5.5 5.1 3.5 6.0
BDS, m=2 13.8 8.0 7.0 5.5
BDS, m=3 13.6 7.6 6.6 5.4
McLeod-Li 4.4 4.8 4.6 4.0
EngleLM 3.2 4.8 4.9 4.5
ARFIMA(0,d,0), d = 0.45 n = 100 n = 250 n = 500 n = 1000
Tsay, p=2 4.5 5.8 7.2 10.1
Tsay, p=4 4.2 4.2 4.9 6.4
Keenan, p=2 26.7 27.3 35.3 46.0
Keenan, p=4 22.5 23.8 28.1 35.6
Terasvirta 8.7 11.5 13.0 18.5
White 9.9 12.5 14.8 20.3
BDS, m=2 14.9 8.8 6.7 5.4
BDS, m=3 14.8 7.8 7.0 5.4
McLeod-Li 4.8 4.5 5.3 5.9
EngleLM 3.6 3.8 4.8 5.1

Table 9: DGP: ARFIMA(0,d,0). Empirical size of tests (nominal level 0.05)
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