

Jamova cesta 2 1000 Ljubljana, Slovenija http://www3.fgg.uni-lj.si/

DRUGG – Digitalni repozitorij UL FGG http://drugg.fgg.uni-lj.si/

V zbirki je izvirna različica doktorske disertacije.

Prosimo, da se pri navajanju sklicujete na bibliografske podatke, kot je navedeno:

Jamova cesta 2 SI – 1000 Ljubljana, Slovenia http://www3.fgg.uni-lj.si/en/

DRUGG – The Digital Repository http://drugg.fgg.uni-lj.si/

This is an original PDF file of doctoral thesis.

When citing, please refer as follows:

Sterle, O. 2015. Časovno odvisne geodetske mreže in koordinatni sistemi. = Time variant geodetic networks and coordinate systems. Doctoral dissertation. Ljubljana, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo. (Mentor Stopar, B.)

http://drugg.fgg.uni-lj.si

Datum arhiviranja / Archiving Date: 29-10-2015

DOKTORSKI ŠTUDIJSKI PROGRAM III. STOPNJE GRAJENO OKOLJE

Kandidat: OSKAR STERLE

ČASOVNO ODVISNE GEODETSKE MREŽE IN KOORDINATNI SISTEMI

Doktorska disertacija štev.: 27/GO

TIME DEPENDENT GEODETIC NETWORKS AND COORDINATE SYSTEMS

Doctoral thesis No.: 27/GO

Komisija za doktorski študij je na 20. seji, 21. septembra 2011, po pooblastilu 30. seje Senata Univerze v Ljubljani z dne 20. januarja 2009, dala soglasje k temi doktorske disertacije.

Za mentorja je bil imenovan prof. dr. Bojan Stopar.

Ljubljana, 19. oktober 2015

Komisijo za oceno ustreznosti teme doktorske disertacije v sestavi:

- prof. dr. Bojan Stopar,
- doc. dr. Miran Kuhar,
- prof. dr. Tomislav Bašić, Univerza v Zagrebu, Fakulteta za geodezijo,

je imenoval Senat Fakultete za gradbeništvo in geodezijo na 20. seji 20. aprila 2011.

Poročevalce za oceno doktorske disertacije v sestavi:

- doc. dr. Miran Kuhar,
- doc. dr. Aleš Marjetič,
- prof. dr. Tomislav Bašić, Univerza v Zagrebu, Fakulteta za geodezijo,

je imenoval Senat Fakultete za gradbeništvo in geodezijo na 21. seji 1. julija 2015.

Komisijo za zagovor doktorske disertacije v sestavi:

- prof. dr. Matjaž Mikoš, dekan UL FGG, predsednik,
- prof. dr. Bojan Stopar, mentor,
- doc. dr. Miran Kuhar,
- doc. dr. Aleš Marjetič,
- prof. dr. Tomislav Bašić, Univerza v Zagrebu, Fakulteta za geodezijo,

je imenoval Senat Fakultete za gradbeništvo in geodezijo na 22. seji, 23. septembra 2015.

IZJAVA

Podpisani, mag. **OSKAR STERLE**, univ. dipl. inž. geod., izjavljam, da sem avtor doktorske disertacije z naslovom: "ČASOVNO ODVISNE GEODETSKE MREŽE IN KOORDINATNI SISTEMI".

Izjavljam, da je elektronska različica v vsem enaka tiskani različici.

Izjavljam, da dovoljujem objavo elektronske različice v repozitoriju UL FGG.

Ljubljana, 19. 10. 2015

(podpis)

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN IZVLEČEK

UDK:	$528.22{:}624.04{:}(043.2)$
Avtor:	mag. Oskar Sterle, univ. dipl. inž. geod.
Mentor:	prof. dr. Bojan Stopar
Naslov:	Časovno odvisne geodetske mreže in koordinatni sistemi
Tip dokumenta:	doktorska disertacija
Obseg in oprema:	194 str., 10 pregl., 38 sl., 248 en., 10 pril.
Ključne besede:	GPS, metoda PPP, koordinatni sistem, koordinatni se-
	stav, geodetski datum

Izvleček

V nalogi prikazujemo teoretični in praktični vidik vzpostavitve novega koordinatnega sistema na osnovi ponovljenih opazovanj GNSS, ki se definira v petih korakih. V prvem koraku določimo natančne koordinate geodetskih točk, ki jih v drugem koraku uskladimo z globalnim koordinatnim sistemom. V globalnem koordinatnem sistemu, v tretjem koraku, za geodetske točke, na osnovi ponovljenih izmer GNSS, določimo koordinate v referenčni epohi s pripadajočimi vektorji hitrosti. Vzpostavitev lastnega koordinatnega sistema predstavlja četrti korak, ki ga izvedemo s časovno odvisno prostorsko transformacijo. Na osnovi ocenjenih vektorjev hitrosti v novem koordinatnem sistemu lahko v zadnjem petem koraku, s kolokacijo po metodi najmanjših kvadratov, določimo še geokinematični model obravnavanega območja. Praktični del naloge smo izvedli na osnovi ponovljenih geodetskih opazovanj GNSS na območju Slovenije in njene okolice v zadnjih 20-ih letih. Opazovanja smo pridobili tako na točkah pasivnega omrežja, kot tudi na stalno delujočih postajah. Poleg prikaza vzpostavitve koordinatnega sistema, smo analizirali tudi natančnost in točnost že vzpostavljenega koordinatnega sistema na osnovi opazovanj GNSS, ki je v Sloveniji v uradni uporabi že od leta 2008.

BIBLIOGRAPHIC – DOCUMENTALISTIC INFORMATION AND ABSTRACT

UDC:	$528.22{:}624.04{:}(043.2)$
Author:	Oskar Sterle, M.Sc.
Supervisor:	prof. Bojan Stopar, Ph.D.
Title:	Time variant geodetic networks and coordinate systems
Tip dokumenta:	Ph.D. Thesis
Scope and tools:	194 p., 10 tab., 38 fig., 248 eq., 10 ann.
Key words:	GPS, PPP method, coordinate system, coordinate
Abstract	frame, geodetic datum

This thesis represents the theoretical and practical aspects of establishing a new coordinate system on the basis of repeated GNSS observations, which is defined in five steps. First, we determine the precise coordinates of geodetic stations that are in the second step transformed to a global coordinate system. In the third step we determine the coordinates of geodetic stations for the reference epoch with their corresponding velocity vectors on the basis of repeated GNSS observations. The fourth step is establishing a proper coordinate system performed using a time-dependent spatial transformation. On the basis of the estimated velocity vectors in the newly established coordinate system, the geokinematic model of the corresponding territory can be determined with the least-squares collocation in the final, fifth step. The practical part of the thesis is based on repeated GNSS observations in the territory of Slovenia and its surroundings over the last 20 years. The GNSS observations were obtained for the geodetic stations of the passive GNSS network as well as for permanent GNSS stations. Besides, our work included the establishment of a new coordinate system, and an analysis of the precision and accuracy of the already established coordinate system based on GNSS observations, which has been officially used in Slovenia since 2008.

ZAHVALA

Nekateri imajo to srečo, da jih narava obdari s smislom za pisanje, ki presega zgolj tehnično predstavitev problemov ter njihovo analizo. Sam te sreče nimam, pa tudi, ta manjko vpliva samo na druge, ko jim moje misli niso tako lepo in poetično predstavljeno, kot bi si kdaj sam želel. Ta zahvala bo zato dokaj skopa, a verjemite mi, to kar mislim, mislim iz vsega srca $\ddot{\smile}$.

Zahvalo si v prvi vrsti zaslužita moja starša. Kljub temu, da nisem več najmlajši, sta temelje, ki so pripeljali do te naloge, pomagala oblikovati in postavljati predvsem vidva. Vidva, ki me nikoli nista omejevala in sta mi pustila prosto pot. Brez tega, sem prepričan, ne bi bilo teh vrstic.

Večino dela pri nalogi in študiju je bilo opravljenega v okviru službe, zato gre zahvala sodelavcem. Vas je kar veliko. Posebna zahvala vam, PRE sotrpinom, Bojanu, Miranu, Poloni in Albinu. Zahvala gre tudi številnim ostalim, ki ste zaslužni, da je delavno okolje bolj sproščeno in da se pogovarjamo tudi o drugih rečeh, ne samo o službenih. Hvala Aleš, Klemen², Gašper, Dejan, Anja, Tilen, Anka...Hvala tudi ostalim, ki pa vas ne bom posebej našteval...na voljo imam samo eno stran $\ddot{\smile}$.

Na koncu se vedno pusti najpomembnejše. Tjaša, Margo in Lorelaj. Sploh ne znam opisati, koliko mi pomeni, da ste moje. Vam gre zahvala, da se: "*en človek manj, en bedak več*" ne bo tako kmalu res. Ve, moje tri punce, ste tiste, ki ste mi dale največ in zaradi vas ima vse to smisel.

STRAN ZA POPRAVKE

Stran z napako	Vrstica z napako	Namesto	Naj bo
----------------	------------------	---------	--------

Kazalo vsebine

Bi	ibliog	grafsko) – dokumentacijska stran in izvleček	III
Bi	ibliog	graphi	c – documentalistic information and abstract	V
K	azalo	vsebi	ne	XI
K	azalo	pregl	ednic	XV
K	azalo	slik		XVII
Li	st of	tables	3	XXI
Li	st of	figure	≳S	XXIII
Po	ojasn	ilo kra	atic	XXVII
1	UV	OD		1
	1.1	Izhod	išča naloge	1
	1.2	Oprec		4
	1.3	Sestav	v_{a} naloge	6
2	ME	TODA	A PPP	9
	2.1	Opazo	ovanja GNSS pri metodi PPP	10
	2.2	Vplivi	na opazovanja GNSS	12
		2.2.1	Pogrešek položajev satelitov, satelitovih ur in parametrov v	rtenja
			Zemlje	12
		2.2.2	Vpliv splošne in posebne relativnosti	12
		2.2.3	Vpliv disperzivnega dela atmosfere – ionosfere	13
		2.2.4	Vpliv nevtralnega dela atmosfere - troposfere	13
		2.2.5	Vplivi plimovanj	15
		2.2.6	Vpliv preskoka faze	16
		2.2.7	Nestabilnost tirnice in modela preskoka faze v primeru pož satelita v okolici zveznice Sonce-Zemlja	ložaja 16
		2.2.8	Ne-sovpadanje faznega in geometričnega centra anten spreje	mnika
			in satelitov	16
		2.2.9	Večpotje	17

	2.3	Matem	natični model pri metodi PPP	17
		2.3.1	Funkcionalni model metode PPP	18
		2.3.2	Stohastični model metode PPP	20
		2.3.3	Matematični model metode PPP	22
	2.4	Zagoto	ovitev rešitve matematičnega modela	24
		2.4.1	Konsistentnost linearnega matričnega sistema	25
		2.4.2	Enoličnost linearnega matričnega sistema	26
		2.4.3	Analiza rešitev linearnega sistema	29
		2.4.4	Ocenljive neznanke matematičnega modela PPP	31
	2.5	Rešitev	v matematičnega modela metode PPP	32
		2.5.1	Odstranitev pogreškov ure sprejemnika iz sistema normalnih enačb	32
		2.5.2	Končen izračun neznank metode PPP	33
	2.6	Iskanje	e in odstranjevanje izpadov signala iz faznih opazovanj	35
		2.6.1	Iskanje izpadov signala iz faznih opazovanj pri metodi PPP	36
		2.6.2	Odstranjevanje izpadov signala iz faznih opazovanj pri metodi PPP	39
9	TICT		TEV OCENTENIII KOODDINAT Z METODO DDD IN	
3			NIM KOOPDINATNINA SISTEMOM ITPS	19
	СЦ 2 1	JDALI	ntransformacija	40
	ວ.1 ຊຸງ		a regultatov transformacije	44
	0.2	manz		-11
4	OC	ENA P	OLOŽAJEV IN HITROSTI GEODETSKIH TOČK GNSS	49
	4.1	Modeli	iranje časovnih vrst koordinat geodetskih točk	50
	4.2	Ocena	koordinat in vektorjev hitrosti po MNK	52
		4.2.1	Analiza matematičnega modela izravnave po MNK ob singularni	
			matriki uteži	52
		4.2.2	${\rm Analiza\ matematic nega\ modela\ ocene\ položajev\ in\ vektorjev\ hitrosti}$	
			geodetskih točk GNSS	55
		4.2.3	Končen izračun položajev točk ${\rm GNSS}$ s pripadajočim vektorji hitrosti	57
5	ČAS	SOVN	O ODVISNA PROSTORSKA TRANSFORMACIJA	59
	5.1	Izhodi	šča časovno odvisne prostorske transformacije	59
	5.2	Pripra	va podatkov za izravnavo časovno odvisne prostorske transformacije	62
		5.2.1	Obravnava geodetskega datuma posamezne rešitve geodetske mreže	62
		5.2.2	Zagotovitev enakih približnih vrednosti neznank rešitev geodetske	
			mreže	63

	5.3	Maten	natični model časovno odvisne prostorske transformacije	64
		5.3.1	Funkcionalni model časovno odvisne prostorske transformacije	64
		5.3.2	Stohastični model časovno odvisne prostorske transformacije	66
	5.4	Analiz	za matematičnega modela	67
		5.4.1	Analiza funkcionalnega modela	67
		5.4.2	Analiza funkcionalnega in stohastičnega modela	70
	5.5	Rešite	v matematičnega modela	72
		5.5.1	Rešitev matematičnega modela v primeru singularne matrike uteži .	72
		5.5.2	Rešitev matematičnega modela v primeru matrike uteži polnega ranga	74
	5.6	Koord	linatni sistem ITRS	75
6	INT	TERPO	DLACIJA VEKTORJEV HITROSTI GPS	79
	6.1	Kolok	acija po metodi najmanjših kvadratov	80
	6.2	Enako	vrednost funkcionalnega in stohastičnega modela pri kolokaciji	83
	6.3	Memb	ranska metoda kot metoda statistične interpolacije	86
		6.3.1	Izpeljava membranske metode preko afine transformacije	87
		6.3.2	Primerjava membranske metode in kolokacije po MNK	92
		6.3.3	Izpeljava membranske metode preko tenzorja malih deformacij $\ .$.	93
7	RE	FEREI	NČNI KOORDINATNI SESTAV SLOVENIJE	99
	7.1	Podat	ki GNSS	99
		7.1.1	Točke GNSS uporabljene pri obdelavi	99
		7.1.2	Opazovanja GNSS uporabljena v obdelavi	103
		7.1.3	Produkti službe IGS pri obdelavi opazovanj GNSS	105
	7.2	Obdel	ava opazovanj GNSS in pridobitev dnevnih rešitev	106
		7.2.1	Pridobitev dnevnih rešitev na osnovi metode PPP	106
		7.2.2	Pridobitev dnevnih rešitev s programskim paketom BSW5.0 \ldots .	111
	7.3	Usklad	ditev dnevnih rešitev koordinat PPP z globalnim koordinatnim siste-	
		mom		117
		7.3.1	Transformacije dnevnih koordinat PPP na referenčne koordinate	118
		7.3.2	Primerjava izvedenih transformacij dnevnih rešitev koordinat PPP .	123
	7.4	Izraču	n koordinat in hitrosti v globalnem koordinatnem sestavu $\ldots\ldots\ldots$	128
	7.5	Vzpos	tavitev referenčnega koordinatnega sestava Slovenije	133
		7.5.1	Vzpostavitev uradnega koordinatnega sestava ETRF89	134
		7.5.2	Vzpostavitev optimalnega koordinatnega sestava Slovenije $\ .$	139

	7.6 Geokinematični model Slovenije	. 143
8	ZAKLJUČEK	149
9	POVZETEK	157
10	SUMMARY	165
LI	TERATURA IN VIRI	194
PI	RILOGE	
Α	Seznam geodetskih točk GNSS v obdelavi	A1
В	Količina opazovanj GNSS po posameznih točkah	B1
С	Časovne vrste dnevnih rešitev metode PPP stalno delujočih postaj	C1
D	Ponovljivost koordinat točk dobljenih z metodo PPP	D1
\mathbf{E}	Časovne vrste dnevnih rešitev pridobljene s programskim paketom BSW	$\mathbf{E1}$
F	Ponovljivost koordinat točk dobljenih s programskim paketom BSW	$\mathbf{F1}$
G	Časovne vrste dnevnih rešitev metode PPP stalno delujočih postaj, usklajene s koordinatnim sestavom ITRF	G1
н	Ponovljivost koordinat točk dobljenih z metodo PPP, usklajenih s koordinatnim sestavom ITRF	H1
I	Ocenjene koordinate in vektorji hitrosti v globalnem koordinatnem sistemu	I1
J	Različne variante referenčnega koordinatnega sestava Slovenije	J1

Kazalo preglednic

7.1	Količina podatkov izmer GNSS, ki so uporabljeni pri praktičnem delu nalog	<mark>e</mark> 104
7.2	Seznam stalno delujočih postaj, ki smo jih obdelali z metodo PPP $\ldots\ldots$	108
7.3	Ponovljivost koordinat stalno delujočih postaj dobljenih z metodo PPP,	
	(enote: mm)	110
7.4	Ponovljivost koordinat stalno delujočih postaj dobljenih s programskim	
	paketom BSW5.0 (enote: mm)	116
7.5	Povprečne vrednosti standardnih odklonov odstopanj transformiranih	
	dnevnih koordinat PPP in referenčnih koordinat IGS za vse tri koordinatne	
	komponente	123
7.6	Vpliv ocenjenih transformacijskih parametrov na ocenjene koordinate	
	stalno delujočih postaj, glede na največje pričakovane vrednosti transfor-	
	macijskih parametrov.	124
7.7	Ponovljivost koordinat stalno delujočih postaj dobljenih z metodo PPP, ki	
	so usklajene z globalnim koordinatnim sestavom IGb08 (enote: mm)	127
7.8	$\label{eq:primer} Primerjava \ med \ obema \ uporabljenima \ metodama \ (PPP \ in \ BSW5.0) \ in \ refe-$	
	renčnimi vrednostmi koordinat in vektorjev hitrosti po izvedeni Helmertovi	
	prostorski transformaciji (enote: mm).	131
7.9	Stopnja skladnosti določenih koordinat ETRF89 in uradnih koordinat D96,	
	v milimetrih, za tri različne epohe, in sicer 1993,00, 1995,80 in 1999,40, in	
	za sedanji čas (2015)	139
7.10	Stopnja skladnosti določenih transformiranih koordinat IGb08 in uradnih	
	koordinat D96, v milimetrih, za tri različne epohe, in sicer 1996, 20, 2007,60 $$	
	in 2015,00	142

Kazalo slik

2.1	Modeliranja zenitne troposferske refrakcije kot zvezne odsekoma linearne	
	funkcije	. 19
2.2	Modeliranja horizontalnih gradientov kot linearne funkcije	. 19
2.3	Linearna kombinacija L_4 satelita G05 stalno delujoče postaje Bovec, za dan	
	7. 12. 2004 za namen iskanja izpada signala	. 38
2.4	Linearna kombinacija L_6 satelita G05 stalno delujoče postaje Bovec, za dan	
	7. 12. 2004 za namen iskanja izpada signala	. 39
6.1	Prikaz elementov trikotnika na osnovi Delaunayeve triangulacije pri mem-	
	branski metodi	. 87
7.1	Geodetske točke omrežja EPN in IGS, ki so bile uporabljene v obdelavi $% \mathcal{A}$.	. 100
7.2	Stalno delujoče postaje GNSS na območju in v bližji okolici Slovenije, ki	
	so bile uporabljene v obdelavi	. 101
7.3	Pasivno omrežje geodinamičnih točk ${\rm GNSS}$ na območju Slovenije, ki so bile	
	uporabljene v obdelavi	. 102
7.4	Pasivno omrežje geodinamičnih točk GNSS izven območja Slovenije, ki so	
	bile uporabljene v obdelavi	. 103
7.5	Število dnevnih datotek RINEX opazovanj ${\rm GNSS}$ med leti 1994 in 2014 $% ({\rm Steve})$.	. 105
7.6	$\check{\mathrm{C}}\mathrm{asovne}$ vrste koordinat šestih stalno delujočih postaj, pridobljene z me-	
	todo PPP	. 109
7.7	$\check{\mathrm{C}}\mathrm{asovne}$ vrste koordinat šestih stalno delujočih postaj, pridobljene s pro-	
	gramskim paketom BSW5.0	. 114
7.8	${\rm \check{C}asovne}$ vrste koordinat štirih geodinamičnih točk, pridobljene s program-	
	skim paketom BSW5.0	. 115
7.9	$\check{\mathrm{S}}\mathrm{tevilo}$ vseh (modre pike) in število referenčnih stalno delujočih postaj	
	(rdeče pike) pri usklajevanju dnevnih rešitev koordinat PPP z globalnim	
	koordinantim sistemom	. 118
7.10	Ocenjeni premiki t_x , t_y in t_z pri 3-parametrični transformaciji	. 119
7.11	Ocena kakovosti 3–parametrične transformacije.	. 119
7.12	Ocenjeni premiki t_x, t_y in t_z in sprememba merila m pri 4–parametrični	
	transformaciji	. 120
7.13	Ocena kakovosti 4–parametrične transformacije	. 120
7.14	Ocenjeni premiki t_x,t_y,t_z in zasuki $\omega_x,\omega_y,\omega_z$ pri 6–parametrični transfor-	
	maciji.	. 121

7.15	Ocena kakovosti 6–parametrične transformacije.	. 121
7.16	Ocenjeni premiki t_x, t_y, t_z , zasuki $\omega_x, \omega_y, \omega_z$ in sprememba merila m pri	
	7–parametrični transformaciji.	. 122
7.17	Ocena kakovosti 7–parametrične transformacije.	. 123
7.18	Primerjava med časovnimi vrstami transformiranih koordinat postaj VILL	
	in GRAZ v primeru 3–parametrične (levo) in 7–parametrične (desno) trans-	
	formacije	. 125
7.19	Primerjava ponovljivosti transformiranih koordinat v odvisnosti od števila	
	parametrov transformacije za vse stalno delujoče postaje	. 126
7.20	Primerjava ocenjenih koordinat postaj IGS, z metodo PPP in programom	
	$\operatorname{BSW5.0},$ in referenčnih koordinat po Helmertovi prostorski transformaciji.	129
7.21	Primerjava ocenjenih vektorjev hitrosti postaj IGS, z metodo PPP in pro-	
	gramom BSW5.0, in referenčnih vektorjev hitrosti po Helmertovi prostorski	
	transformaciji.	. 130
7.22	Razlika med ocenjenimi koordinatami metode PPP in programskega paketa	
	BSW5.0 po prostorski transformaciji.	. 132
7.23	Razlika med ocenjenimi vektorji hitrosti metode PPP in programskega pa-	
	keta BSW5.0 po prostorski transformaciji.	. 133
7.24	Ocenjeni vektorji hitrosti geodetskih točk na območju Slovenije in njeni	
	okolici predstavljeni v koordinatnem sestavu IGb08	. 134
7.25	Skladnosti med uradnimi prostorskimi položaji točk v D96 in izračunanimi	
	položaji točk v ETRF89, predstavljene z RMS vrednostmi razlik prostor-	
	skih položajev za različne epohe	. 136
7.26	Razlike med horizontalnimi koordinatami točk v ETRF89 za tri različne	
	epohe (1993,00, 1995,80 in 1999,40) in med uradnimi koordinatami točk v	
	D96	. 137
7.27	Razlike med višinami točk v ${\rm ETRF89}$ za tri različne epohe (1993,00, 1995,80	
	in 1999,40) in med uradnimi višinami točk v D96	. 138
7.28	Izračunani vektorji hitrosti v koordinatnem sestavu ETRF89	. 140
7.29	Skladnosti med uradnimi prostorskimi položaji točk v D96 in izračunanimi	
	položaji točk v IGb08 po prostorski Helmertovi transformaciji, predsta-	
	vljene z RMS vrednostmi razlik prostorskih položajev za različne epohe	. 141
7.30	Izračunani vektorji hitrosti v končnem optimalnem referenčnem sestavu	. 143
7.31	Geokinematični model Slovenije (rdeči vektorji) na osnovi ocenjenih vek-	
	torjev hitrosti (modri vektorji), določeni z membransko metodo.	. 144

7.32	Horizontalna komponenta geokinematičnega modela Slovenije (rdeči vek-
	torji) na osnovi ocenjenih vektorjev hitrosti (modri vektorji), določeni s
	kolokacijo po MNK
7.33	Višinska komponenta geokinematičnega modela Slovenije (rdeči vektorji)
	na osnovi ocenjenih vektorjev hitrosti (modri vektorji), določeni s kolokacijo
	po MNK

List of tables

The amount of the data from GNSS surveys that are used in the case study
part
List of permanent stations that were processed with the method PPP 108
Coordinates' repeatability values of permanent stations obtained with PPP method (units: mm)
Coordinates' repeatability values of permanent stations obtained with
BSW5.0 software (units: mm)
Average values of standard deviations determined as differences between
transformed daily PPP coordinates and reference IGS coordinates for all
three coordinate components
Influence of transformation parameters on estimated coordinates of per-
manent stations with their maximum expected values
${\rm Coordinates'repeatabilityvaluesofpermanentstationsobtainedwithPPP}$
method, represented in global coordinate frame IGb08 (units: mm) 127
A comparison between both used methods (PPP and BSW5.0) with re-
ference values of coordinates and velocity vectors after Helmert spatial
transformation (units: mm)
Level of congruency between determined ETRF89 and official D96 coor-
dinates in millimetres for three different epochs, e.g. for 1993,00, 1995,80
and 1999,40, and for present epoch (2015)
Level of congruency between determined ETRF89 and official D96 coor-
dinates in millimetres for three different epochs, e.g. for 1996,20, 2007,60
and 2015,00

List of figures

2.1	Modelling zenith troposphere refraction as a continuous piece-wise linear	
	function	19
2.2	Modelling horizontal troposphere gradients as a linear function \ldots .	19
2.3	L_4 linear combination of satellite G05 for permanent station Bovec at 7.	
	12. 2004 for cycle slips determination	38
2.4	L_6 linear combination of satellite G05 for permanent station Bovec at 7.	
	12. 2004 for cycle slips determination	39
6.1	Items of a triangle based on Delaunay triangulation in case of membrane	
	method	87
7.1	Geodetic stations of EPN and IGS permanent networks used in data pro-	
	cessing	100
7.2	Permanent GNSS stations on the territory of Slovenia and in the surroun-	
	ding of Slovenia, used in data processing \ldots \ldots \ldots \ldots \ldots \ldots \ldots	101
7.3	Passive network of GNSS stations on the territory of Slovenia used in data	
	processing	102
7.4	Passive network of GNSS stations out of the territory of Slovenia used in	
	data processing	103
7.5	Number of daily RINEX files with GNSS observations between 1994 and	
	2014	105
7.6	Coordinate time series of six permanent stations, obtained with PPP method109	
7.7	Coordinate time series of six permanent stations, obtained with BSW5.0	
	software	114
7.8	Coordinate time series of four geodynamical passive stations, obtained	
	with BSW5.0 software	115
7.9	Number of all (blue points) and number of reference permanent stations	
	(red points) for transforming PPP coordinates to global coordinate system	118
7.10	Estimated translation parameters t_x , t_y and t_z in case of 4-parameter	
	transformation.	119
7.11	Estimated quality of 3-parameter transformation	119
7.12	Estimated translation parameters t_x , t_y and t_z and scale change m in case	
	of 4–parameter transformation	120
7.13	Estimated quality of 4-parameter transformation.	120

7.14	Estimated translation parameters t_x , t_y , t_z and rotation parameters ω_x ,
	ω_y, ω_z in case of 6-parameter transformation
7.15	Estimated quality of 6-parameter transformation
7.16	Estimated translation parameters t_x , t_y , t_z , rotation parameters ω_x , ω_y ,
	ω_z and scale change <i>m</i> in case of 7-parameter transformation
7.17	Estimated quality of 7-parameter transformation
7.18	A comparison of transformed coordinate time series of statins VILL and
	GRAZ in case of 3-parameter (left) and 7-parameter (right) transformation.125
7.19	A comparison transformed coordinate repeatability values as a function of
	transformation parameter number for all permanent stations
7.20	A comparison of estimated coordinates, with PPP method as well as with
	BSW5.0 software, and reference coordinates after Helmert spatial trans-
	formation
7.21	A comparison of estimated velicities, with PPP method as well as with
	BSW5.0 software, and reference velocities after Helmert spatial transfor-
	mation
7.22	Differences in estimated coordinates obtained with PPP method and
	BSW5.0 software after Helmert spatial transformation
7.23	Differences in estimated velocity components obtained with PPP method
	and BSW5.0 software after Helmert spatial transformation
7.24	Estimated velocity vectors of geodetic stations on a territory of Slovenia
	and its surrounding expressed in coordinate frame IGb08
7.25	Congruency between official spatial positions in D96 and determined po-
	sitions in ETRF89, represented with RMS values of spatial position diffe-
	rences for different epochs
7.26	Differences of stations' horizontal coordinates in ETRF89 for three diffe-
	rent epochs $(1993,00, 1995,80 \text{ and } 1999,40)$ and official coordinates in D96. 137
7.27	Differences of stations' heights in ETRF89 for three different epochs
	(1993,00, 1995,80 and 1999,40) and official stations' heights in D96 138
7.28	Velocity vectors determined in coordinate frame ETRF89
7.29	Congruency between official spatial positions in D96 and determined po-
	sitions in IGb08 after spatial Helmert transformation, represented with $\label{eq:general}$
	RMS values of spatial position differences for different epochs
7.30	Velocity vectors determined in final optimal reference frame

7.31	Geokinematic model of Slovenia (red vectors) determined on a basis of
	estimated velocity vectors (blue vectors) and membrane method 144
7.32	Horizontal component of geokinematic model of Slovenia (red vectors) de-
	termined on a basis of estimated velocity vectors (blue vectors) and least
	squares collocation
7.33	Height component of geokinematic model of Slovenia (red vectors) deter-
	mined on a basis of estimated velocity vectors (blue vectors) and least
	squares collocation

Sterle, O. 2015. Časovno odvisne geodetske mreže in koordinatni sistemi.XXVIDokt. dis. Ljubljana, UL FGG, doktorski študijski program III. stopnje Grajeno okolje.

Pojasnilo kratic

AFREF	angl. African Reference Frame
ANTEX	angl. ANTenna EXchange format
APOS	angl. Austrian POsitioning Service
BEV	nem. Bundesamt für Eich- und Vermessungswesen
BSW5.0	angl. Bernese GPS Software, Version 5.0
C/A koda	angl. Coarse Aquisition koda
CERGOP	angl. Central European Geodynamic Research Project
CODE	angl. Center for Orbit Determination in Europe
CROPOS	angl. CROatian POsitioning System
D96	Datum 1996
DCB	angl. Differential Code Biases
DORIS	angl. Doppler Orbitography Radiopositioning Integrated by Satellite
EPN	angl. European Permanent Network
ESA	angl. European Space Agency (Evropska vesoljska agencija)
EUREF	angl. European Reference Frame
FES2004	angl. Finite Element Solution 2004
FReDNet	angl. Friuli Regional Deformation Network
GDA94	angl. Geocentric Datum of Australia 1994
GIM	angl. Global Ionosphere Maps (Globalni Ionosferski Modeli)
GIS	Geografski Informacijski Sistemi
GLONASS	rus. Globalnaja Navigacionnaja Sputnikovaja Sistema
GMF	angl. Global Mapping Function

XXVIII	Sterle, O. 2015. Časovno odvisne geodetske mreže in koordinatni sistemi. Dokt. dis. Ljubljana, UL FGG, doktorski študijski program III. stopnje Grajeno okolje.
GNSS	angl. Global Navigation Satellite Systems (Globalni Navigacijski Satelitski Sistemi)
GNSSnet.hu	Omrežje stalno delujočih postaj Madžarske
GPS	angl. Global Positioning System
GRS80	angl. Geodetic Reference Frame 1980
GSR1	stalno delujoča postaja podjetja GeoServis d.o.o.
IERS	angl. International Earth Rotation and Reference System Service
IGS	angl. International GNSS Service
ITRF	angl. International Terrestrial Reference Frame
ITRS	angl. International Terrestrial Reference System
LLR	angl. Lunar Laser Ranging
MNK	Metoda Najmanjših Kvadratov
MOPS	angl. Minimum Operational Performance Standards troposferski model
NAD83	angl. North American Datum 1983
P koda	angl. Precise koda
РРР	angl. Precise Point Positioning
QIF	angl. Quasi Ionosphere Free
RINEX	angl. Receiver INdependent EXchange format
RMS	angl. Root Mean Square
SIGNAL	S(I)lovenija-Geodezija-Navigacija-Lokacija
SINEX	angl. Solution Independent Exchange format
SIRGAS	špan. Sistema de Referencia Geocéntrico para Las Américas
SLR	angl. Satellite Laser Ranging
SNARF	angl. Stable North American Reference Frame

SNR	angl. Signal to Noise Ratio
SVD	angl. Singular Value Decomposition
TRF	angl. Terrestrial Reference Frame
VLBI	angl. Very Long Baseline Interferometry
VMF1	angl. Vienna Mapping Function

1 UVOD

1.1 Izhodišča naloge

Osnovna naloga geodetske znanosti in stroke je opis geometrije prostora in objektov v njem. Le-ta se najučinkoviteje opiše z določenimi koordinatami karakterističnih točk objektov v izbranem koordinatnem sistemu (Chen, 1983). Skladno s tem je glavna naloga geodezije določiti koordinate točk v izbranem koordinatnem sistemu (Altamimi in sod., 2002). Vendar pa koordinatni sistem sam po sebi ni dan, ampak ga je potrebno vzpostaviti. S koordinatnimi sistemi geodetska opazovanja povežemo s koordinatami točk glede na telo Zemljo. Geodetska obravnava koordinatnih sistemov določa tri komponente (Drewes, 2009; Seeber, 2003):

- koordinatni sistem predstavlja niz teoretičnih definicij in konstant,
- *koordinatni sestav* predstavlja praktično realizacijo koordinatnega sistema, določeno z nizom fizično stabiliziranih točk, ki imajo koordinate podane v koordinatnem sistemu in
- *geodetski datum* predstavlja nedvoumno povezavo med koordinatnim sistemom in koordinatnim sestavom z določenim številom danih datumskih parametrov.

Za praktične naloge je uporaben le koordinanti sestav in je dostopen preko geodetske mreže, ki predstavlja niz geodetskih točk, povezanih z geodetskimi opazovanji (Kuang, 1996).

Najbolj natančen in točen globalni koordinatni sistem je ITRS (Altamimi in sod., 2002; 2007; 2011; Petit in Luzum, 2010), kjer je zadnja realizacija podana z ITRF2008 (Altamimi in sod., 2011; ITRF, 2014). Realizacija sestava ITRF2008 temelji na številnih satelitskih merskih tehnikah, med katerimi so tudi sistemi GNSS (Altamimi in Collilieux, 2009). Za realizacijo sestava ITRF na osnovi opazovanj GNSS je odgovorna služba IGS (Beutler in sod., 1999; Dow in sod., 2009), kjer je realizacija sestava ITRF na osnovi opazovanj GNSS označena z IGb08 (Rebischung in sod., 2012). Določanje koordinat točk s sistemu GNSS je s produkti službe IGS (Kierulf in Plag, 2006; Kouba in Héroux, 2001) in ustrezno metodo/programskim paketom (Dach in sod., 2007; Zumberge in sod., 1997) možno s točnostjo in natančnostjo, ki omogoča določitev premikov zaradi geotektonskih dogajanj Zemeljske skorje (Caporali in sod., 2009; Grenerczy in sod., 2000; Hammond in sod., 2011;
Kenyeres in Bruyninx, 2004; Marjanović, 2009; Perez in sod., 2003; Sella in sod., 2002; Weber in sod., 2010).

Za potrebe lokalnih ali regionalnih območij pa uporaba globalnih koordinatnih sistemov ni praktična, saj je položaj točke v globalnem koordinatnem sistemu obremenjen z globalno geodinamiko. Številne države (ali skupnosti držav) so tako definirale in vzpostavile svoje regionalne (lokalne) koordinatne sestave, ki pa vsi temeljijo na ITRF (Sterle in sod., 2009). Primeri regionalnih koordinatnih sistemov in njihovih realiziacij so SNARF (Blewitt in sod., 2005) na območju Severne Amerike, NAD83 (Craymer, 2006; Soler in Snay, 2004) na območju ZDA in Kanade, GDA94 (Dawson in Woods, 2010) za območje Avstralije, AFREF (Wonnacott, 2005; 2008) za območje Afrike in SIRGAS (Hoyer in sod., 1998) za območje Južne Amerike.

Na področju Evrope se je pod okriljem komisije EUREF vzpostavil ETRS89 (Boucher in Altamimi, 1992; Poder, 1991), za katerega velja (Sterle in sod., 2009):

- definiran na podlagi ITRS,
- pričvrščen na stabilno Evrazijo (glede na ITRS rotira skupaj z Evrazijo),
- $\bullet\,$ identičen z ITRS
89 za epoho 1989,00 in
- identičen z WGS84 na ravni enega metra.

ETRS89 je bil vzpostavljen tako, da so premiki stabilno vzpostavljenih stalno delujočih postaj GPS skozi čas na območju Evrope najmanjši možni (Altamimi in sod., 2011; Boucher in Altamimi, 2011). Za referenčni elipsoid je bil izbran GRS80 (Moritz, 2000). Uradne koordinate točk pri realizaciji ETRS89 naj se ne bi spreminjale, dodatno pa se različnim realizacijam tudi ne bi spreminjala niti merilo niti premik koordinatnega sestava. Prva realizacija je bila izvedena že leta 1989, temeljila pa je na opazovanjih GPS, SLR in VLBI. Skozi čas se je izkazalo, da koordinate točk območja Evrope v ETRS89 niso statične, ampak se zaradi lokalne geodinamike spreminjajo skozi čas. Te spremembe koordinat so veliko večje kot natančnost določitve koordinat, zato se je leta 1994 predlagalo, da se za vzdrževanje koordinatnega sistema ETRS89 uporabijo stalno delujoče postaje, ki bodo zagotovile kakovostne časovne vrste. Koordinatni sistem ETRS89 je tako postal časovno odvisen (Sterle in sod., 2009). Primerjava realizacij ETRS89 je pokazala, da obstajajo razlike med realizacijami po posameznih državah Evrope, a so vseeno dokaj homogene in kakovostne, na nivoju centimetra po vseh treh koordinatnih komponentah (Brockmann, 2009). Z Zakonom o evidentiranju nepremičnin je s 1. januarjem 2008 ETRS89 postal tudi ogrodje novega koordinatnega sistema Slovenije (Sterle in sod., 2009). Realizacija ETRS89 na območju Slovenije je bila izvedena z izračunom leta 2003, ki pa je temeljil na izmerah EUREF v letih 1994, 1995 in 1996, ko se je 49-im točkam določilo koordinate v koordinatnem sestavu ETRF89 (Berk in sod., 2003). Realizacija se je določila za srednjo epoho 1995,55 in označila z D96. Za vzdrževanje koordinatnega sistema Slovenije je bilo vzpostavljeno tudi omrežje stalno delujočih postaj SIGNAL (Berk in sod., 2006), ki ga trenutno sestavlja 15 postaj na območju Slovenije, v samo operativno delovanje pa so vklučene še obmejne postaje vseh sosednjih držav (SIGNAL, 2015). Omrežje je popolnoma operativno od leta 2006, koordinate točkam omrežja SIGNAL v koordinatnem sistemu ETRS89 pa se je določilo s t. i. mini EUREF izmero leta 2007 (GIS, 2007). Vse geodetske točke in stalno delujoče postaje imajo tako koordinate v ETRS89 določene v dveh terminih (srednji epohi 1995,55 ter v letu 2007,23), na osnovi enega tedna opazovanj (Sterle in sod., 2009). Sprememb koordinat v času na tak način vzpostavljanja in vzdrževanja koordinatnega sistema ni možno določiti in vrednotiti, zato tudi nimamo informacije o kakovosti državnega koordinatnega sistema.

Na območju Slovenije izmere GPS potekajo že od leta 1991. Le-te so imele različne namene, od strogo geodetskih nalog (vzpostavitev koordinatnega sistema, naloge inženirske geodezije) do geodinamičnih raziskav (spremljanje geokinematičnega dogajanja) (Berk in sod., 2003; Caporali in sod., 2009; Marjanović, 2009; Pavlovčič Prešeren in sod., 2005; Weber in sod., 2010). Na razpolago imamo opazovanja GPS na okoli 70-ih kakovostno stabiliziranih geodinamičnih točkah, ki so bila opazovana vsaj dvakrat. S postavitvijo stalno delujoče postaje GSR1 leta 1999 se je leta 2001 začelo vzpostavljati omrežje stalno delujočih postaj SIGNAL, ki neprestano spremljajo in beležijo opazovanja GNSS. Poleg geodinamičnih točk in stalno delujočih postaj na območju Slovenije, so na voljo opazovanja GNSS tudi s stalno delujočih postaj v bližnji in širši okolici Slovenije. Na voljo so podatki omrežij IGS, EPN, FReDNet, APOS, CROPOS in GNSSnet.hu. Skupno je to okoli 50 stalno delujočih postaj, za katere imamo na voljo opazovanja v večjem časovnem obdobju. Izraba teh opazovanj omogoča vpogled v še nepoznano geokinematično dogajanje območja Slovenije. Omogočajo pa tudi vpogled v analizo kakovosti vzpostavljenega koordinatnega sistema ETRS89 na območju Slovenije v izmerah EUREF (1994, 1995 in 1996) ter v izmeri mini EUREF (2007).

1.2 Opredelitev teme in hipoteze doktorske naloge

Državni koordinatni sistem predstavlja koordinatno ogrodje države, ki je podlaga večini dejavnosti v prostoru in tako rekoč vsem geodetskih nalogam. Vzpostavljen državni koordinatni sistem mora zagotoviti (Sterle in sod., 2009):

- določitev koordinat poljubne točke v koordinatnem sistemu in zagotoviti ponovljivost koordinat z ustrezno natančnostjo v daljšem časovnem obdobju in
- omogočiti določitev koordinat v neodvisnosti od merske metode ali od izbire geodetskega datuma (realizacije koordinatnega sistema).

Na območju Slovenije je koordinatni sistem vzpostavljen, ni pa vzpostavljenega sistema vzdrževanja in nadzora kakovosti koordinatnega sistema, ki bi zagotovil obe zgoraj podani alineji. Osnova za kontrolo kakovosti vzpostavljenega koordinatnega sistema so ponovljena opazovanja na geodetskih točkah pasivnega omrežja in dnevno izvedena opazovanja na stalno delujočih postaja omrežja SIGNAL. Obdelava opazovanj GPS z najvišjo možno natančnostjo je možja le v okviru aktualnega koordinatnega sestava ITRF, da se zagotovi skladnost koordinat satelitov, izvedenih opazovanj GNSS, koordinat referenčnih postaj in modelov odprave sistematičnih pogreškov v opazovanjih GPS. Pridobljene časovne vrste koordinat geodetskih točk nam podajo možnost ocene referenčnih koordinat v izbrani epohi s pripadajočim vektorjem hitrosti, ki pa so obremenjene z globalno geodinamiko v koordinatnem sestavu ITRF. Uporaba rezultatov obdelave ponovljenih opazovanj GPS na območju Slovenije, ki bodo kakovostno modelirali geometrijo območja z njegovimi časovnimi spremembami, je možna le v okviru na novo vzpostavljenega koordinatnega sistema. Ta bo drugačen od državnega koordinatnega sistema, saj bo določen na bistveno večjem nizu opazovanj, kjer se bo dodatno upoštevalo tudi časovno spremenljivost koordinatnega sistema. Na novo vzpostavljeni koordinatni sistem naj bi imel naslednje lastnosti:

- koordinatni sistem naj bo čim bližje uradnemu sistemu ETRS89, definiran v (Boucher in Altamimi, 2011),
- koordinatni sistem naj bo čim bližje državnemu sistemu Slovenije D96 določen z izmerami EUREF (Berk in sod., 2003) in z mini izmero EUREF (GIS, 2007) in
- koordinatni sistem naj bo čim bolj časovno stabilen skozi čim večje časovno obdobje.

Tri podane alineje so si skladne le v primeru, ko na območju Slovenije ni lokalne geodinamike (območje Slovenije se skozi čas ne deformira) in ko se območje Slovenije glede na celotno Evrazijsko tektonsko ploščo ne premika, zasuka in krči/širi. Na osnovi že narejenih geodinamičnih študij območja Slovenije prva predpostavka ne drži (Caporali in sod., 2009; Grenerczy in sod., 2000; Marjanović, 2009; Pavlovčič Prešeren in sod., 2005; Weber in sod., 2010). Po drugi strani pa glede na rezultate obdelave opazovanj stalno delujoče postaje GSR1, ki jih izvaja analizni center EPN, tudi druga predpostavka ne drži (Bruyninx in sod., 2011; EPN, 2015). Zato smo si v nalogi zadali poglavitno znanstveno vprašanje doktorske naloge:

Kako za nedvoumno določitev koordinat točk v 4-razsežni (kinematični) geodetski mreži ustrezno definirati koordinatni sistem in geodetski datum, da bodo spremembe koordinat točk geodetske mreže prikazovale dejanske spremembe geometrije zemeljskega površja ne pa tudi sprememb koordinatnega sistema/sestava ali geodetskega datuma.

Če predpostavimo, da se geometrija geodetske mreže pasivnega omrežja in omrežja stalno delujočih postaj območja Slovenije skozi čas spreminja zaradi vpliva geodinamike, potem geometrija državnega koordinatnega sistema ni več skladna z dejansko geometrijo območja Slovenije. Skladnost je veljala le za krajše obdobje izmer EUREF, ki pa je odvisno od intenzivnosti geodinamičnega dogajanja območja Slovenije. Jasno je, da je za novo vzpostavljeni koordinatni sistem potrebno podati drugačne temelje. Koordinatni sistem je potrebno definirati tako, da se pravilno upošteva časovne spremembe koordinat geodetskih točk. Hipotezo doktorske naloge smo skladno z poglavitnim vprašanjem postavili kot:

Ponavljajoča geodetska opazovanja lahko uporabimo za vzpostavitev koordinatnega sestava in geodetskega datuma tako, da ne posegamo v definicijo koordinatnega sistema in zagotovimo časovno stabilen koordinatni sestav in geodetski datum.

Novo vzpostavljeni koordinatni sistem mora upoštevati geodinamično dogajanje na območju Slovenije, a hkrati moramo zagotovit časovno čim bolj stabilen koordinatni sistem, da bo uporaben za čim širši spekter prostorskih nalog in posegov v prostor, v čim daljšem časovnem obdobju.

Osnovni cilj doktorske naloge je opredeljen s hipotezo naloge, ostali cilji naloge pa so še:

1. opredeliti metode določitve koordinat geodetskih točk z najvišjo možno točnostjo in natančnostjo, ki so usklajene z globalnim koordinatnim sistemom,

- 2. opredeliti postopke modeliranja časovnih sprememb koordinat točk,
- opredeliti postopke prehoda med različnimi časovno odvisnimi koordinatnimi sistemi oz. vzpostavljanja novih časovno odvisnih koordinatnih sistemov,
- 4. opredeliti postopke definiranja časovno čim manj spremenljivega koordinatnega sistema in
- 5. opredeliti postopke modeliranja časovnih sprememb koordinat za poljubno točko prostora oz. določiti geokinematični model območja.

S sintezo vseh naštetih ciljev bomo utemeljili hipotezo doktorske naloge.

1.3 Sestava naloge

Naloga je razdeljena na posamezna vsebinska poglavja, ki prikazujejo analizo korakov obdelave od izvedenih opazovanj GNSS na posameznih točkah v večih terminskh izmerah do zadnjega koraka, ki je predstavljen z geokinematičnim modelom Slovenije. V nalogi je večji poudarek na teoretičnih osnovah, izpeljavah in zaključkih, saj teoretični del predstavlja prvih 6 poglavij (poglavja 2, 3, 4, 5 in 6), ki sledijo poglavju Uvoda. Poglavje 7 prikazuje praktično izrabo prikazanih teoretičnih orodij na primeru velike količine opazovanj GPS na območju Slovenije in njene okolice. Vsako podpoglavje poglavja 7 prestavlja eno izmed poglavij teoretičnih vsebin.

V poglavju 2 prikazujemo analitičen opis metode PPP, ki smo jo uporabili za določitev koordinat točke na osnovi opazovanj GNSS. Detajlno prikažemo matematični model obdelave opazovanj, tako funkcionalen (opis in prestavitev neznank) kot tudi stohastičen (analiza natančnosti opazovanj GNSS) model, in karakteristike sistematičnih pogreškov (vplivov) na opazovanja GPS. Na primeru matematičnega modela metode PPP prikažemo konsistentnost in enoličnost linearne preslikave metode. Na osnovi opisa ničelnega prostora preslikave predstavimo postopek pridobitve enolične rešitve matematičnega modela in njene lastnosti. Analiziramo ocenljivost neznank metode PPP in lastnosti rešitve neznank z odstranitvijo pogreškov ure sprejemnika in s superpozicijo sistemov normalnih enačb posamezne epohe dobljenih opazovanj. V poglavju prikažemo tudi postopek iskanja in odstranjevanja izpadov signala v faznih opazovanjih GPS.

Z metodo PPP pridobimo koordinate geodetskih točk v koordinatnem sistemu efemerid satelitov GPS. V poglavju 3 prikažemo postopek prostorske transformacije, s katerim uskladimo oz. transformiramo koordinate geodetskih točk, dobljene z metodo PPP, v globalni koordinatni sistem, ki ga imamo realiziranega z znanimi koordinatami referenčnih točk. Rezultate transformacije analiziramo in jih primerjamo z lastnostmi S-transformacije.

Na osnovi ocenjenih koordinat točk, ki jih imamo podane za različne terminske izmere, lahko modeliramo časovne spremembe koordinat točk, kjer se za ustreznega izkaže linearen model. Poglavje 4 prikazuje postopek obdelave časovnih vrst koordinat za pridobitev ocenjenih koordinat geodetskih točk v referenčni epohi s pripadajočimi konstantnimi vektorji hitrosti geodetskih točk v globalnem koordinatnem sistemu. Analiziran je matematični model, ki je sestavljen iz regularnega funkcionalnega modela in iz singularnega stohastičnega modela. Rešitev pridobimo preko diagonalizacije stohastičnega modela in linearne transformacije funckionalnega modela.

Zadnje poglavje obravnave položajev točk v časovno odvisnih koordinatnih sistemih je prestavljeno v poglavju 5. Prikazan je matematičen model časovno odvisne prostorske transformacije, ki predstavlja orodje prehoda med različnimi časovno odvisnimi koordinatnimi sistemi. Poudarek je na analizi problema, ki se izkaže za dokaj kompleksnega, v primerjavi s transformacijami med časovno neodvisnimi koordinatnimi sistemi. Analizirane so geometrične lastnosti časovno odvisne prostorske transformacije, kjer je potrebno predvsem upoštevati singularnost stohastičnega modela. Analitično je prikazana problematika vpliva singularnosti stohastičnega modela na ocenjene neznanke in možno rešitev, ki je bila uporabljena pri vzpostavitvi koordinatnega sestava ITRF.

Rezultat časovno odvisne prostorske transformacije je na novo vzpostavljen koordinatni sestav. Le-ta je realiziran na osnovi koordinat in vektorjev hitrosti na diskretnem nizu geodetskih točk območja. V poglavju 6 analiziramo dve metodi statistične interpolacije. Prva je kolokacija po MNK z osnovo v stohastičnem modelu, druga pa membranska metoda, z osnovo v funckinalnem modelu. Kolokacijo po MNK podrobno analiziramo in prikažemo enakovrednost stohastičnega in funkcionalnega modela. Membransko metodo izpeljemo na dva načina, preko afine transformacije in preko ekstremnih normalnih in strižnih deformacij, analitično pa jo primerjamo tudi s kolokacijo po MNK.

Prikazana teoretična dognanja in orodja v predhodnih poglavjih uporabimo v poglavju 7. Izhodišče nam predstavlja velika količina opazovanj GPS, ki so bila pridobljena na 75-ih točkah pasivnega omrežja, 45-ih stalno delujočih postajah in na 18-ih točkah stalno delujočih postajah omrežja IGS, za katere poznamo kakovostne koordinate v globalnem koordinatnem sestavu IGb08.

2 METODA PPP

V sredini 90-ih let prejšnjega stoletja je prišla v uporabo metoda PPP, ki omogoča določitev položaja z najvišjo možno natančnostjo na osnovi opazovanj GNSS enega samega sprejemnika (Héroux in Kouba, 1995; Zumberge in sod., 1997). Z metodo PPP se absolutne koordinate ene same točke v globalnem koordinatnem sistemu določi na osnovi kodnih in faznih opazovanj GNSS. Koordinatni sistem, v katerem bodo določene koordinate točke, definira koordinatni sistem položajev satelitov, ki se obravnavajo kot dani (Dach in sod., 2007). Za razliko od relativnega določanja položaja na osnovi sistemov GNSS, kjer se s sestavo enojnih, dvojnih ali trojnih faznih razlik odstrani večji del pogreškov prisotnih v opazovanjih (Dach in sod., 2007; Hofmann-Wellenhof in sod., 2001; Kaplan in Hegarty, 2006; Leick, 2004; Xu, 2007), moramo pri metodi PPP vse vplive na opazovanja GNSS pri obdelavi upoštevati. Natančnost in točnost dobljenega položaja z metodo PPP je bila pogojena z razvojem:

- produktov službe IGS, to so precizne efemeride, precizne ure satelitov in parametri rotacije Zemlje (Meindl in sod., 2012; Dach in Jean, 2013).
- modernih globalnih terestričnih koordinatnih sistemov, kjer je napomembnejši med njimi koordinatni sistem ITRS (Altamimi in sod., 2002; 2007; 2011) in
- postopki odstranitve in modeliranja sistematičnih vplivov na opazovanja GNSS (McCarthy, 1996; McCarthy in Petit, 2003; Petit in Luzum, 2010).

Primeri uporabe metode PPP so številni od vzpostavljanja koordinatnih sistemov, spremljanja deformacij Zemeljskega površja, meteorologije, določevanja položajev satelitov, prenosa točnega časa, aerotriangulacije, spremljanja morske gladine in podobno (Bisnath in Gao, 2009; Fund in sod., 2013; Defraigne in Baire, 2011; Tu in sod., 2013; Yuan in sod., 2009). S področja uporabe in analize metode PPP obstaja številna znanstvena literatura, od znanstvenih člankov (Bisnath in Gao, 2009; Cai in Gao, 2013a; Geng in sod., 2011; Fund in sod., 2013; Ge in sod., 2008; Héroux in Kouba, 1995; Kouba in Héroux, 2001; Mervart in sod., 2008; Teferle in sod., 2007; Yuan in sod., 2009; Zumberge in sod., 1997), do doktorskih disertacij (Shi, 2012; Leandro, 2009; Cai, 2009; Abdel-tawwab Abdel-salam, 2005; Witchayangkoon, 2000) in v slovenskem jeziku tudi dve diplomski nalogi (Čadež, 2010; Sterle, 2004). Metodo PPP uporabljajo tudi pri številnih analiznih centrih službe IGS za določevanje produktov IGS z najvišjo natančnostjo (Dach in Jean, 2013). Na spletu je tudi na voljo več brezplačnih in prostodostopnih aplikacij, s katerimi lahko na osnovi metode PPP obdelamo opazovanja GNSS (Čadež, 2010; ESA, 2011; Gakstatter, 2013). Primerjava je pokazala, da so rezultati visoke natančnosti in med seboj primerljivi na milimetrskem nivoju (Čadež, 2010; ESA, 2011). Poleg aplikacij, je na spletu tudi nekaj ponudnikov prostodostopne programske kode obdelave GPS/GLONASS opazovanj, tako v relativnem načinu kot tudi pri metodi PPP (Craymer in Hilla, 1999; Tolman in sod., 2004; Takasu, 2013). Metoda PPP je zaradi uporabe t. i. ne-diferenciranih opazovanj dovolj fleksibilna, da omogoča hitro vključitev opazovanj novih satelitskih sistemov (Schönemann in sod., 2011).

Metoda PPP omogoča določitev absolutnega položaja pri statični in kinematični izmeri s centimetrsko natančnostjo in točnostjo v globalnem koordinatnem sistemu (Bisnath in Gao, 2009; Geng in sod., 2011; Teferle in sod., 2007).

2.1 Opazovanja GNSS pri metodi PPP

Metoda PPP je postopek določitve koordinat geodetske točke na osnovi opazovanj GNSS enega samega sprejemnika GNSS, kjer za doseganje najvišje dosegljive natančnosti in točnost pridejo v poštev opazovanja dvo-frekvenčnih geodetskih sprejemnikov GNSS. Kljub temu, da je že nekaj sistemov GNSS poleg GPS, ki so polno operativni, kot npr. GLO-NASS, in že v uporabi (Cai in Gao, 2013a;b; 2007; Cai, 2009; Schönemann in sod., 2011), ali imajo operativno delujoče satelite (npr. Galileo, Beidou), bomo v nalogi obravnavali le opazovanja sistema GPS. Dodatno bomo kljub potekajoči posodobitvi sistema GPS (Fosburgh in Peetz, 2004; Schönemann in sod., 2011), kjer je pomembna predvsem uvedba novega (tretjega) nosilnega valovanja L5 na novejših satelitih GPS, obravnavali le opazovanja (L_1 , L_2 , P_1 in P_2) na obeh osnovnih nosilnih valovanjih L1 in L2.

V primeru geodetskega dvo-frekvenčnega sprejemnika GPS imamo tako na voljo vrednosti faznih (L_1 [m] in L_2 [m]) in kodnih opazovanj (P_1 [m] in P_2 [m]), ki jih modeliramo kot (Dach in sod., 2007; Kouba in Héroux, 2001; Kouba, 2009a; Hofmann-Wellenhof in sod., 2001; Leick, 2004; Xu, 2007):

$$L_{1} = \rho + c\Delta t + T - I + \lambda_{1}N_{1} + \xi + \phi_{1} + \eta_{L_{1}} + \varepsilon_{L_{1}}$$

$$L_{2} = \rho + c\Delta t + T - \gamma I + \lambda_{2}N_{2} + \xi + \phi_{2} + \eta_{L_{2}} + \varepsilon_{L_{2}}$$

$$P_{1} = \rho + c\Delta t + T + I + D_{1} + \xi + \eta_{P_{1}} + \varepsilon_{P_{1}}$$

$$P_{2} = \rho + c\Delta t + T + \gamma I + D_{2} + \xi + \eta_{P_{2}} + \varepsilon_{P_{2}}$$
(2.1)

V enačbi 2.1 oznake določajo:

ρ	geometrična razdalja med položajem satelita (X, Y, Z) v času oddaje signala in med položajem sprejemnika (x, y, z) v času sprejema signala,
Δt	pogrešek ure sprejemnika (c predstavlja hitrost svetlobe v vakuumu),
Т	vpliv nevtralnega dela atmosfere – troposfere,
Ι	vpliv disperzivnega dela atmosfere – ionosfere ($\gamma = \frac{f_1^2}{f_2^2}$, kjer sta f_1 in f_2 frekvenci obeh nosilnih valovanj L1 in L2),
N_1, N_2	fazni nedoločenosti oz. neznana števila celih valov za obe fazni opazovanji,
λ_1,λ_2	valovni dolžini obeh nosilnih valovanj,
D_1, D_2	kodna zamika (DCB) za obe kodni opazovanji,
ξ	ostali vplivi, kot npr. pogrešek položaja in ure satelita, vpliv plimovanj, re- lativnost, nesovpadanje faznega in geometričnega centra antene sprejemnika in anten satelitov (glej poglavje 2.2),
ϕ_1, ϕ_2	vpliv preskoka faze za obe fazni opazovanji,
η_{L_1},η_{L_2}	vpliv večpotja signala za obe fazni opazovanji,
η_{P_1},η_{P_2}	vpliv večpotja signala za obe kodni opazovanji,
$\varepsilon_{L_1}, \varepsilon_{L_2}$	slučajna pogreška obeh faznih opazovanj in
$\varepsilon_{P_1}, \varepsilon_{P_2}$	slučajna pogreška obeh kodnih opazovanj.

Največji vpliv na opazovanja GPS predstavlja vpliv ionosfere, ki se ga odstrani s sestavo dveh linearnih kombinacij oblike (Dach in sod., 2007; Kouba in Héroux, 2001; Kouba, 2009a; Hofmann-Wellenhof in sod., 2001; Leick, 2004; Xu, 2007):

$$L_{3} = \frac{f_{1}^{2}}{f_{1}^{2} - f_{2}^{2}} L_{1} - \frac{f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}} L_{2} = \rho + c\Delta t + T + N_{3} + \xi + \phi_{3} + \eta_{L_{3}} + \varepsilon_{L_{3}}$$

$$P_{3} = \frac{f_{1}^{2}}{f_{1}^{2} - f_{2}^{2}} P_{1} - \frac{f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}} P_{2} = \rho + c\Delta t + T + D_{3} + \xi + \eta_{P_{3}} + \varepsilon_{P_{3}}$$

$$(2.2)$$

Enačbi 2.2 predstavljata dve novi opazovanji, ki ju uporabimo pri metodi PPP in sta praktično neodvisni od vpliva ionosfere (glej poglavje 2.2.3). Fazno nedoločenost N_3 dobimo na osnovi faznih nedoločenosti N_1 in N_2 :

$$N_3 = \frac{f_1^2}{f_1^2 - f_2^2} \lambda_1 N_1 - \frac{f_2^2}{f_1^2 - f_2^2} \lambda_2 N_2 \approx 2,55 \cdot \lambda_1 N_1 - 1,55 \cdot \lambda_2 N_2$$
(2.3)

Enako kot fazni nedoločenosti N_1 in N_2 iz enačbe 2.3 se pretvorita kodna zamika D_1 in D_2 v D_3 , vpliva faznega preskoka ϕ_1 in ϕ_2 v ϕ_3 in vpliva odboja signala η_{L_1} (η_{p_1}) in η_{L_2} (η_{P_2}) v η_{L_3} (η_{P_3}) za kodna in fazna opazovanja. Slučajni pogreški ε_{L_3} in ε_{P_3} se obravnavajo v skladu z zakonom o prenosu varianc in kovarianc (Mikhail in Ackermann, 1976; Koch, 1999), kjer se izkaže, da se velikost slučajnih pogreškov ε_{L_3} in ε_{P_3} poveča za faktor približno 3, glede na osnovne slučajne pogreške iz enačb 2.1 (glej poglavje 2.3.2).

2.2 Vplivi na opazovanja GNSS

Za zagotovitev najvišje kakovosti koordinat, določenih z metodo PPP, je potrebno vse vplive, ki so po velikosti večje od milimetra, odstraniti oz. modelirati. Ti vplivi so različnih velikosti, imajo različen izvor (Cai, 2009; Kouba, 2009a; Leandro, 2009; Leick, 2004; Xu, 2007; Witchayangkoon, 2000) in so prikazani v nadaljevanju.

2.2.1 Pogrešek položajev satelitov, satelitovih ur in parametrov vrtenja Zemlje

Določevanje položaja poljubne točke s sistemom GPS temelji na poznanih položajih satelitov in poznanem stanju ur satelitov (Leick, 2004). V osnovi so položaji in stanje ur satelitov podani v s satelita oddanih efemeridah¹ s Keplerjevimi elementi, kot del navigacijskega sporočila (Leick, 2004; Pavlovčič Prešeren in Stopar, 2004). Poračunani položaji in stanja ur satelitov GPS, na osnovi s satelita oddanih efemerid, so določeni z natančnostjo na metrskem nivoju (http://www.igs.org/components/prods.html) in nikakor niso uporabni za natančno absolutno določitev položaja s sistemi GPS, saj bi pogrešili položaj točke tudi do 10 m. Za uspešno uporabo metode PPP je nujna uporaba produktov službe IGS (precizne efemeride, precizne popravke ur satelitov in parametrov orientacije Zemlje) (Meindl in sod., 2012; Dach in Jean, 2013). Produkti službe IGS so določeni s centimetrsko natančnostjo in točnostjo in predstavljajo ključni del obdelave opazovanj GPS pri metodi PPP.

2.2.2 Vpliv splošne in posebne relativnosti

Zaradi velike oddaljenosti satelitov GPS od Zemlje, kjer je vpliv težnosti približno četrtina težnosti na površini Zemlje, in velike hitrosti gibanja satelitov glede na Zemljo, okoli 4

¹angl. Broadcast ephemeris

km/s, na sistem GPS vplivata tako splošna kot posebna relativnost (Ashby, 2003; Ashby in Spilker Jr., 1996; Jelenc, 2006). Skupen vpliv splošne in posebne relativnosti povzroči, da ure na krovu satelita prehitevajo ure na Zemlji za 38 ms/dan (posebna relativnost poda zaostajanje ure satelita za 7 ms/dan, splošna pa prehitevanje ure satelita za 45 ms/dan). Vpliv obeh relativnosti je odstranjen tako, da je frekvenca osnovnega oscilatorja na satelitih $f_0 = 10,22999999543$ MHz, namesto nominalne frekvence sistema GPS, ki znaša $f_0 = 10,23$ MHz. Na tek satelitove ure vpliva tudi ekscentričnost elipse tirnice. To je periodični vpliv velikosti okoli 7 m. Sledi Sagnacov efekt in je posledica vrtenja Zemlje, saj se Zemlja zasuka za določen kot v času potovanja signala od satelita do sprejemnika. Zasuk Zemlje povzroči spremembo na geometrični razdalji med satelitom in sprejemnikom, ki znaša po velikosti do nekaj 10 m. Zadnji vpliv je t. i. vpliv razlike koordinatne in geometrične razdalje², ki predstavlja razliko med izmerjeno razdaljo satelit-sprejemnik v fizičnem prostoru in poračunano razdaljo iz koordinat, in znaša okoli 2 cm.

2.2.3 Vpliv disperzivnega dela atmosfere – ionosfere

Vpliv ionosfere je največji vpliv na opazovanja GPS (Leick, 2004; Xu, 2007). V primeru dvo-frekvenčnih opazovanj je najučinkovitejši način zmanjšanja vpliva ionosfere sestava linearnih kombinacij na osnovi faznih oz. kodnih opazovanj iz enačb 2.2. S sestavo linearnih kombinacij odstranimo veliko večino vpliva ionosfere – okoli 99,9 % vpliva ionosfere (Petit in Luzum, 2010), neodstranjen del pa je v splošnem zanemarljiv. Druge, a dosti slabše možnosti za zmanjšanje vpliva ionosfere so uporaba modelov ionosfere, npr. modelov GIM (Shaer, 1999) ali Klobucharjevega modela (Klobuchar, 1996) ali modeliranje vpliva ionosfere iz opazovanj GPS (Sterle in sod., 2013). Vpliv ionosfere na ocenjene koordinate točk znaša od nekaj metrov do nekaj 10 m v odvisnosti predvsem od vpliva Sončeve aktivnosti in pogreši predvsem višino točke (Sterle in sod., 2013). Vpliv na kodna opazovanja se kaže v podaljšanju psevdorazdalje (glej enačbe 2.1), medtem ko se vpliv na fazna opazovanja kaže kot skrajšanje psevdorazdalje.

2.2.4 Vpliv nevtralnega dela atmosfere - troposfere

Troposfera vpliva na vse opazovane količine iz enačb 2.1 enako, zato je modeliranje edina možnost za odstranitev vpliva troposfere. Vpliv troposfere T razdelimo na vpliv suhe komponente T_s in mokre komponente T_m (Kouba in Héroux, 2001; Kouba, 2009a; Le-

 $^{^{2}}$ angl. path range delay

ick, 2004; Xu, 2007). Suha komponenta troposfere T_s predstavlja okoli 90 % celotnega vpliva troposfere T in se jo lahko modelira z ustrezno natančnostjo, tj. z milimetrsko natančnostjo pod predpostavko hidrostatičnega ravnovesja (Langley, 1998a; Leick, 2004; Tregoning in Herring, 2006). Ostalih 10 % predstavlja vpliv mokre troposfere T_m , ki je posledica prisotnosti vodne pare v ozračju. Modeliranje vodne pare v zraku je težavno, saj se količina vodne pare v ozračju spreminja tako v odvisnosti od položaja, kot tudi v odvisnosti od časa. Natančnost modeliranja vodne pare oz. mokre komponente troposfere T_m je na nivoju par centimetrov (Langley, 1998a; Leick, 2004).

Pri metodi PPP je za dosego najvišje natančnosti koordinat točk potrebno mokro komponento troposfere T_m oceniti v postopku obdelave opazovanj GPS, torej predstavlja dodatno vrsto neznanke v matematičnem modelu (Héroux in Kouba, 1995; Kouba, 2009a; Leandro, 2009; Witchayangkoon, 2000; Zumberge in sod., 1997). Vpliv mokre komponente troposfere T_m se modelira kot (Bar-Sever in sod., 1998; Petit in Luzum, 2010; Shüler, 2001):

$$T_m = M_m T_m^z + M_g \left(G_N \cos \alpha + G_E \sin \alpha \right) \tag{2.4}$$

V enačbi 2.4 količine predstavljajo:

 T_m^z zenitna troposferska refrakcija mokre komponente troposfere,

- M_m projekcijska komponenta zenitne troposferske refrakcije mokre komponente troposfere,
- G_N, G_E horizontalna gradienta troposfere v smeri S-J (G_N) in V-Z (G_E) , kjer α predstavlja azimut satelita glede na sprejemnik v lokalnem geodetskem koordinatnem sistemu sprejemnika GPS,
- M_g projekcijska komponenta gradientov troposfere.

Zenitna troposferska refrakcija T_m^z prestavlja zakasnitev signala, če bi se satelit nahajal v zenitu glede na postavljeno anteno GPS. A-priori vrednost se lahko poračuna na osnovi modelov, kot npr. Saastamoinen, Hopfield, Ifadis, Mendes, MOPS (Hofmann-Wellenhof in sod., 2001; Leick, 2004; Xu, 2007; Shüler, 2001; Witchayangkoon, 2000).

Projekcijska komponenta zenitne troposferske refrakcije mokre komponente M_m predstavlja projekcijo zenitne troposferske refrakcije mokre komponente T_m^z na poljuben višinski kot *e* in azimut α satelita. Projekcijske komponente zenitne troposferske refrakcije M_m , ki z najvišjo točnostjo projecirajo zenitno troposfersko refrakcijo T_m^z (tako za mokro kot tudi suho komponento troposfere) so Niellova projekcijska komponenta (Niell, 1996), VMF1 (Boehm in sod., 2006b) in GMF (Boehm in sod., 2006a).

Horizontalna gradienta troposfere G_N in G_E s projekcijsko komponento M_g modelirata vpliv azimutalne nesimetrije troposfere, ki je posledica različne debeline plasti troposfere na polu in na ekvatorju ter vpliv lokalnih sprememb troposfere (Dach in sod., 2007; Meindl in sod., 2004; Petit in Luzum, 2010). Velikostni red neupoštevanja horizontalnih gradientov je za opazovanja GPS in VLBI na nivoju milimetra (Bar-Sever in sod., 1998; Chen in Herring, 1997).

Vpliv troposfere se kaže kot podaljšanje kodne in fazne psevdorazdalje, ki ima na ocenjene koordinate vpliv velikosti nekaj metrov, predvsem po višini.

2.2.5 Vplivi plimovanj

Na enak način, kot plimujejo morja in oceani, pri opazovanjih GPS obravnavamo vplive plimovanj. Le-te lahko razdelimo na tri vrste (Cai, 2009; McCarthy, 1996; McCarthy in Petit, 2003; Petit in Luzum, 2010; Kouba, 2009a; Kouba in Héroux, 2001; Shüler, 2001; Witchayangkoon, 2000):

- Plimovanje trdne Zemlje:³ predstavlja vpliv spremembe položaja točke v globalnem koordinatnem sistemu, ko trdna Zemlja plimuje enako kot oceani in morja. Velikostni red vpliva na položaj točke je do okoli 30 cm po višini in okoli 10 cm po obeh horizontalnih oseh.
- 2. **Vpliv plimovanja oceanov:**⁴ predstavlja vpliv plimovanja oceanov na položaje točk na kopnem. Velikostni red je manjši kot pri plimovanju trdne Zemlje in lahko znaša nekaj centimetrov.
- 3. Plimovanje atmosfere:⁵ predstavlja vpliv spremembe zračnega tlaka nekega območja in posledično spreminjanje pritiska zračnih mas na povšino Zemlje tega območja. Velikostni red je na nivoju centimetra, a je vpliv težko modelirati (Witchayangkoon, 2000).

³angl. solid Earth tide

⁴angl. ocean tide loading

⁵angl. atmospheric pressure loading

2.2.6 Vpliv preskoka faze

Vpliv preskoka faze⁶ vpliva le na fazna opazovanja in je posledica lastnosti nosilnih valovanj oddanih s satelitov GPS. Ker je nosilno valovanje desnosučno krožno polarizirano, se kakršnokoli sukanje sprejemnika/satelita okoli zveznice sprejemnik-satelit odraža kot sprememba merjene faze na sprejemniku (Héroux in Kouba, 1995; Kouba in Héroux, 2001; Cai, 2009). Neupoštevanje preskoka faze bi omogočilo le decimetrsko natančnost koordinat, določenih z metodo PPP.

2.2.7 Nestabilnost tirnice in modela preskoka faze v primeru položaja satelita v okolici zveznice Sonce-Zemlja

Položaj satelita v okolici zveznice Sonce-Zemlja ima dvojni vpliv, in sicer vpliv na ocenjen položaj satelita in vpliv na model izračuna preskoka faze (ESA, 2014; Kouba, 2009a; Leick, 2004). V primeru, ko je satelit v senčni strani Zemlje, le-ta ni osvetljen in vpliv sevanja Sonca⁷ izgine in je zato modeliranje vpliva težavnejše (ESA, 2014; Kouba, 2009a), kar lahko povzroči napačno določen položaj satelita. Po drugi strani, pa vpliv položaja satelita v okolici zveznice Sonce-Zemlja povzroči probleme pri modeliranju vpliva preskoka faze, ki izhaja iz orientiranja satelita glede na Sonce. V času, ko je satelit v senci (za Zemljo), je podvržen naključnemu sukanju okoli zveznice satelit-Zemlja, kar povzroči nekontrolirano napako vpliva preskoka faze (ESA, 2014; Kouba in Héroux, 2001; Kouba, 2009b). Zaradi težavnega modeliranja vpliva položaja satelita v okolici zveznice Sonce-Zemlja (Kouba, 2009b), se v večini primerov opazovanja v teh trenutkih izloči iz obdelave.

2.2.8 Ne-sovpadanje faznega in geometričnega centra anten sprejemnika in satelitov

Opazovanja GPS se nanašajo na fazne in ne na geometrične centre anten sprejemnika in satelitov. Fazni center antene sprejemnika je točka, na katero se nanašajo vrednosti izmerjenih količin (faze oz. kode), ki pa ni stalna točka, ampak se spreminja v odvisnosti od zenitne razdalje in azimuta satelita (Mader, 1999). Po drugi strani, pa je fazni center antene satelita odvisen le od nadirnega kota sprejemnika na satelitu (Schmid in sod., 2007). Za določitev razdalje med satelitom in sprejemnikom je potrebno opazovane količine, ki

⁶angl. phase wind-up

⁷angl. solar radiation pressure

se nanašajo na fazne centre, reducirati na geometrijske centre antene satelitov in sprejemnika. Določitev odstopanja in modeli odstopanj faznega od geometričnega centra anten sprejemnikov in satelitov so opisani v Schmid in sod. (2007). Ne-sovpadanje med geometričnim in faznim centrom antene sprejemnika/satelitov povzroči napako v koordinatah točke tudi okoli 10 cm, predvsem v višinski komponenti.

2.2.9 Večpotje

Večpotje⁸ je edini sistematični vpliv, za katerega ne moremo vzpostaviti zanesljivega modela. Teoretično lahko večpotje za kodna opazovanja doseže polovico valovne dolžine kode, kar predstavlja do 150 m pri civilno dostopni kodi C/A in do 15 m pri kodi P, medtem ko pri faznih opazovanjih večpotje lahko doseže kvečjemu četrtino valovne dolžine nosilnega valovanja, kar znaša od 5 do 6 cm (Cai, 2009; Langley, 1998a). Praktično znaša večpotje pri kodnih opazovanjih nekaj metrov, predvsem zaradi postopka obdelave signala v inštrumentih GPS (Cai, 2009). Vpliv večpotja se lahko zmanjša z izbiro primerne lokacije geodetske točke in uporabo antenskih in dušilnih obročev na antenah GPS (Cai, 2009).

Večpotje je povsem odvisno le od okolice točke in geometrične razporeditve satelitov, zato obstaja možnost predikcije oz. odstranitve večpotja na osnovi ponovljenih opazovanj na isti lokaciji ob isti geometrični razporeditvi satelitov GPS. Informacijo o vplivu večpotja za kodna opazovanja lahko dobimo z izvedenimi opazovanji dvofrekvenčnega sprejemnika na osnovi linearnih kombinacij faznih in kodnih opazovanj (Estey in Meertens, 1999). Večpotja faznih opazovanj ne moremo ne modelitati ne odstraniti, zato se v celoti prenese na popravke opazovanj oziroma v neznanke.

2.3 Matematični model pri metodi PPP

Matematični model je sestavljen iz funkcionalnega in stohastičnega modela (Mikhail in Ackermann, 1976), kjer funkcionalni model predstavlja funkcijske povezave med opazovanji in neznankami, stohastični model pa predstavlja natančnost opazovanj.

⁸angl. multi-path

2.3.1 Funkcionalni model metode PPP

Za sestavo funkcionalnega modela predpostavimo, da imamo podatke opazovanj statične izmere GPS opravljene na eni geodetski točki. Opazovanja so zabeležena v n-tih epohah, kjer je v i-ti epohi zabeleženih $4n_i$ opazovanj do satelitov, ts. dve kodni opazovanji (P_1 in P_2) in dve fazni opazovanji (L_1 in L_2), kot to opisuje enačba 2.1. Za satelit k v epohi i lahko sestavimo dve linearni kombinaciji in tako lahko zapišemo dve enačbi, kot v primeru enačb 2.2 z upoštevanjem enačbe 2.4 za modeliranje mokre komponente troposfere T_m :

$$L_{3}^{k} = \rho_{k} + c\Delta t_{i} + T_{s}^{k} + M_{m}^{k}T_{m}^{z} + M_{g}^{k} (G_{N}\cos\alpha_{k} + G_{E}\sin\alpha_{k}) + N_{3}^{k} + \xi_{k} + \phi_{3,k} + \varepsilon_{L_{3}^{k}}$$

$$(2.5)$$

$$P_{3}^{k} = \rho_{k} + c\Delta t_{i} + T_{s}^{k} + M_{m}^{k}T_{m}^{z} + M_{g}^{k} (G_{N}\cos\alpha_{k} + G_{E}\sin\alpha_{k}) + D_{3}^{k} + \xi_{k} + \varepsilon_{P_{3}^{k}}$$

V zgornjih enačbah 2.5 indeks k predstavlja oznako satelita in indeks i oznako epohe. Enačbi 2.5 predstavljata osnovo za sestavo funkcionalnega modela metode PPP, kjer opazovanja (P_3 in L_3) parametriziramo z neznankami. V enačbah 2.5 nastopajo različne vrste neznank, in sicer; koordinate točke, neznanke troposfere (zenitne troposferske refrakcije in horizontalni gradienti troposfere), fazne nedoločenosti za fazna opazovanja, kodni zamiki za kodna opazovanja in popravki ure sprejemnika za vsako epoho izmere. Vpliv večpotja signala je v enačbi 2.5 zanemarjen.

Koordinate točke

Koordinate točke (x, y in z), na kateri je postavljena antena GPS, nastopajo v geometrijski razdalji $\rho_k = \sqrt{(x_k - x)^2 + (y_k - y)^2 + (z_k - z)^2}$. Pri statični izmeri imamo $u_X = 3$ koordinatne neznanke. Pri izravnavi po metodi najmanjših kvadratov, kjer so enačbe opazovanj nelinearne (enačbe 2.5), ocenjujemo popravke približnih koordinat točke (δx , δy in δz). Vektor koordinatnih neznank nastavimo kot:

$$\boldsymbol{\Delta}_{\mathbf{X}} = \begin{bmatrix} \delta x & \delta y & \delta z \end{bmatrix}^{\mathrm{T}}$$
(2.6)

Zenitna troposferska refrakcija

Stanje vodne pare v ozračju se v okolici točke, kjer izvajamo statično izmero GPS, spreminja skozi čas. Pri daljših statičnih izmerah troposferske refrakcije T_m^z zato ne moremo modelirati kot konstanto za celotno obdobje izmere, ampak jo modeliramo kot zvezno odsekoma linearno funkcijo – zvezno linearno lomljenko skozi čas (Dach in sod., 2007). Vsaka lomna točka lomljenke predstavlja eno neznanko zenitne troposferske refrakcije. Slika 2.1 prikazuje način modeliranja zenitne troposferske refrakcije T_m^z za celoten čas izmere.

Slika 2.1: Modeliranja zenitne troposferske refrakcije kot zvezne odsekoma linearne funkcije Figure 2.1: Modelling zenith troposphere refraction as a continuous piece-wise linear function

Stevilo neznank zenitne troposferske refrakcije u_T je odvisno od izbranega časovnega intervala Δt_T med lomnimi točkami, kot prikazuje slika 2.1 Pri izbranem intervalu $\Delta t_T = 2$ h in dnevnih opazovanjih imamo $u_T = 13$ neznank zenitne troposferske refrakcije, ki jih zapišemo v obliki:

$$\boldsymbol{\Delta}_{\mathbf{T}} = \begin{bmatrix} \delta T_{m,1}^z & \delta T_{m,2}^z & \cdots & \delta T_{m,u_T}^z \end{bmatrix}^{\mathrm{T}}$$
(2.7)

Horizontalni gradienti troposfere

Horizontalne gradiente troposfere G_N (smer S-J) in G_E (smer V-Z) modeliramo kot zvezno funkcijo za celoten termin izmere. Modeliranje horizontalnih gradientov troposfere je podobno kot pri modeliranju zenitne troposferske refrakcije, a le z začetnim in končnim gradientom za vsako smer (S-J in V-Z) za celotno izmero. Število neznank gradientov troposfere je $u_G = 4$, dva za vrednost gradienta v smeri V-Z in dva za vrednost gradienta v smeri S-J, kot prikazuje slika 2.2.

Slika 2.2: Modeliranja horizontalnih gradientov kot linearne funkcije Figure 2.2: Modelling horizontal troposphere gradients as a linear function

Vse neznane vrednosti gradientov troposfere združimo v vektorju $\Delta_{\mathbf{G}}$, kot prikazuje

enačba 2.8.

$$\boldsymbol{\Delta}_{\mathbf{G}} = \begin{bmatrix} \delta G_{E,1} & \delta G_{E,2} & \delta G_{N,1} & \delta G_{N,2} \end{bmatrix}^{\mathrm{T}}$$
(2.8)

Fazne nedoločenosti

Fazna nedoločenost N_3^k se nanaša le na fazna opazovanja in je konstantna vrednost za satelit za celotno obdobje zveznih opazovanj, kjer ne pride do izpada signala satelita. Število neznanih faznih nedoločenosti u_N je tako enako ali večje od števila vseh satelitov, ki jih je sprejemnik beležil. Fazne nedoločenosti zberemo v vektorju Δ_N :

$$\boldsymbol{\Delta}_{\mathbf{N}} = \begin{bmatrix} \delta N_3^{1,1} & \delta N_3^{1,2} & \delta N_3^{2,1} & \cdots & \delta N_3^{s,i} \end{bmatrix}^{\mathrm{T}}$$
(2.9)

V enačbi 2.9 je vsaka fazna nedoločenost predstavljena kot $N_3^{s,i}$, kjer s predstavlja oznako satelita, i pa i-to fazno nedoločenost satelita s.

Kodni zamiki

Kodni zamiki za vsak satelit (D_3^k) predstavljajo relativni časovni zamik kode, nanešene na obe nosilni valovanji. Kodni zamik je konstanten za posamezen satelit, za celotno obdobje izmere, tako da je število neznank kodnih zamikov $u_D = s$ enako številu satelitov, ki jih je sprejemnik beležil. Neznane vrednosti kodnih zamikov zberemo v vektorju $\Delta_{\mathbf{D}}$ (enačba 2.10), kjer oznaka v potenci podaja oznako satelita na katerega se nanaša kodni zamik.

$$\boldsymbol{\Delta}_{\mathbf{D}} = \begin{bmatrix} \delta D_3^1 & \delta D_3^2 & \cdots & \delta D_3^{u_D} \end{bmatrix}^{\mathrm{T}}$$
(2.10)

Pogreški ure sprejemnika GPS

Pri izmeri s sistemom GPS, se za vsako epoho zabeleženih opazovanj s satelitov nastavi ena neznanka pogreška ure sprejemnika GPS. Število pogreškov ure sprejemnika je enako številu epoh izmere $u_C = n$. Vse pogreške ure sprejemnika GPS podamo v vektorju Δ_C :

$$\boldsymbol{\Delta}_{\mathbf{C}} = \begin{bmatrix} \delta c \Delta t_1 & \delta c \Delta t_2 & \cdots & \delta c \Delta t_{u_C} \end{bmatrix}^{\mathrm{T}}$$
(2.11)

Skupno število vseh neznanku je tako enako:

$$u = u_X + u_T + u_G + u_N + u_D + u_C (2.12)$$

2.3.2 Stohastični model metode PPP

Stohastičen model predstavlja variančno-kovariančna matrika Σ oz. matrika uteži **P** opazovanj z referenčno varianco a-priori σ_0^2 (Mikhail in Ackermann, 1976). Teoretično

popolna obravnava stohastičnega modela opazovanj GPS pomeni vsem opazovanjem GPS določiti prave natančnosti in medsebojne korelacije. Obravnava natančnosti opazovanj GPS pomeni obravnavo različnih vidikov:

 Natančnost je odvisna od vrste opazovanj, kjer opazovanja iste vrste obravnavamo enako natančna (σ_L = σ_{L1} = σ_{L2} in σ_P = σ_{P1} = σ_{P2}) in je razmerje med natančnostjo kodnih in faznih opazovanj podana z (Dach in sod., 2007; Hofmann-Wellenhof in sod., 2001; Langley, 1998b; Leick, 2004):

$$\frac{\sigma_P}{\sigma_L} \approx 100 \tag{2.13}$$

Fazna opazovanja so približno 100-krat bolj natančna kot kodna opazovanja, kar pa se nanaša le na prisotnost slučajnih vplivov.

- Natančnost faznik in kodnih opazovanj je v največji meri odvisna od vrednosti razmerja med signalom in šumom (SNR), kar pa se z visoko točnostjo lahko predstavi v odvisnosti od višinskega kota satelita (Amiri-Simkooei in sod., 2009; Dach in sod., 2007; Leick, 2004; Collins in Langley, 1999; Wieser in Brunner, 2000).
- Opazovanja GNSS so med seboj korelirana, tako v času, kot tudi v prostoru (Amiri-Simkooei in sod., 2009; Teunissen in sod., 1998; Wang in sod., 2002).

Zaradi zgoraj naštetih lastnosti je stohastičen model opazovanj GPS težko v popolnosti definirati in praktično udejaniti. Opredelitev stohastičnega modela opazovanj GPS je problematična zaradi nezmožnosti ločitve slučajnih od sistematičnih pogreškov, saj nismo zmožni popolne odstranitve oz. modeliranja sistematičnih vplivov na opazovanja, kjer so problem predvsem neodstranjen vpliv atmosfere (ionosfera, troposfera), vpliv večpotja (Luo in sod., 2011) in pogreški položajev in ur satelitov (Wang in sod., 2002).

Praktična implementacija stohastičnega modela tako v prvem koraku zajema določitev natančnosti osnovnih faznih (σ_L) in kodnih (σ_P) opazovanj:

$$\sigma_L = 0,002 \text{ m} \qquad \sigma_P = 0,2 \text{ m}$$
 (2.14)

Enačba 2.14 prikazuje natančnosti osnovnih faznih in kodnih opazovanj, ki je skladna z enačbo 2.13. V drugem koraku je potrebno nastaviti še utežno funkcijo $p(e_k)$, ki modelira odvisnost natančnosti opazovanj od višinskega kota satelita e_k (Dach in sod., 2007):

$$p(e_k) = \cos(e_k) \tag{2.15}$$

Na osnovi enačb 2.14 in 2.15 in upoštevanjem, da pri metodi PPP v obdelavo vzamemo linearni kombinaciji L_3 in P_3 (enačbi 2.2), lahko sedaj zapišemo končne natančnosti opazovanj GPS pri metodi PPP:

$$\sigma_{L_3}^2 = \left[\left(\frac{f_1^2}{f_1^2 - f_2^2} \right)^2 + \left(\frac{f_2^2}{f_1^2 - f_2^2} \right)^2 \right] \frac{\sigma_L^2}{p(e_k)} \approx 9 \frac{\sigma_L^2}{p(e_k)}$$

$$\sigma_{P_3}^2 = \left[\left(\frac{f_1^2}{f_1^2 - f_2^2} \right)^2 + \left(\frac{f_2^2}{f_1^2 - f_2^2} \right)^2 \right] \frac{\sigma_P^2}{p(e_k)} \approx 9 \frac{\sigma_P^2}{p(e_k)}$$
(2.16)

Enačbi 2.16 sta dobljeni na osnovi zakona o prenosu varianc in kovarianc (Mikhail in Ackermann, 1976; Koch, 1999). Referenčno varianco a-priori σ_0^2 in uteži (p_{L_3} in p_{P_3}) za opazovanja GPS lahko nastavimo kot:

$$\sigma_0^2 = \left(\frac{\sigma_P}{10}\right)^2 = (0, 02 \text{ m})^2 \qquad p_{L_3} = \frac{\sigma_0^2}{\sigma_{L_3}^2} \qquad p_{P_3} = \frac{\sigma_0^2}{\sigma_{P_3}}$$
(2.17)

Kljub temu, da je bilo pokazano, da so opazovanja GPS med seboj korelirana, bomo v nadaljnje korelacije med opazovanji GPS zanemarili, saj trenutno še ni zanesljivega modela korelacij med opazovanji GPS.

2.3.3 Matematični model metode PPP

Za opis matematičnega modela obdelave opazovanj z metodo PPP si pomagamo s sestavo matematičnega modela za eno samo, *i*-to epoho izmere. Osnova funkcionalnega modela sta enačbi 2.2, osnova stohastičnega modela pa enačbe 2.17. Vsa opazovanja iz enačbe 2.2 vseh n_i satelitov je potrebno linearizirati (Mikhail in Ackermann, 1976; Koch, 1999) in zapisati v matrični obliki:

$$\mathbf{v}_i + \mathbf{B}^{\mathbf{X}}_{\ i} \cdot \boldsymbol{\Delta}_{\mathbf{X}} + \mathbf{B}^{\mathbf{T}}_{\ i} \cdot \boldsymbol{\Delta}_{\mathbf{T}} + \mathbf{B}^{\mathbf{G}}_{\ i} \cdot \boldsymbol{\Delta}_{\mathbf{G}} + \mathbf{B}^{\mathbf{N}}_{\ i} \cdot \boldsymbol{\Delta}_{\mathbf{N}} + \mathbf{B}^{\mathbf{D}}_{\ i} \cdot \boldsymbol{\Delta}_{\mathbf{D}} - \mathbf{1} \cdot \delta c \Delta t_i = \mathbf{f}_i \quad (2.18)$$

Oziroma v kompaktni obliki:

$$\mathbf{v}_i + \mathbf{B}_i \boldsymbol{\Delta}_i = \mathbf{f}_i \tag{2.19}$$

Matematični model metode PPP je nastavljen iz funkcionalnega modela iz enačbe 2.19 in stohastičnega modela na osnovi enačbe 2.17:

$$\mathbf{v}_i + \mathbf{B}_i \boldsymbol{\Delta}_i = \mathbf{f}_i \qquad \mathbf{P}_i = \sigma_0^2 \boldsymbol{\Sigma}_i^{-1}$$
 (2.20)

V enačbah 2.18, 2.19 in 2.20 nastopajo:

 \mathbf{v}_i vektor popravkov vseh opazovanj v epohi *i*, velikosti $2n_i \times 1$,

- \mathbf{f}_i vektor odstopanj v enačbah popravkov v epohi *i*, velikosti $2n_i \times 1$,
- $\mathbf{B}^{\mathbf{X}}_{i}$ matrika koeficientov (parcialnih odvodov) enačb popravkov v epohi *i*, ki se nanašajo na neznane koordinate točke, zbrane v vektorju $\Delta_{\mathbf{X}}$, velikosti $2n_{i} \times u_{X} = 2n_{i} \times 3$,
- $\mathbf{B}^{\mathbf{T}_{i}}$ matrika koeficientov (parcialnih odvodov) enačb popravkov v epohi *i*, ki se nanašajo na neznane vrednosti zenitne troposferske refrakcije, zbrane v vektorju $\boldsymbol{\Delta}_{\mathbf{T}}$, velikosti $2n_{i} \times u_{T}$,
- $$\begin{split} \mathbf{B}^{\mathbf{G}}_{i} & \text{matrika koeficientov (parcialnih odvodov) enačb popravkov v epohi$$
 i $, ki se nanašajo na neznane vrednosti gradientov troposfere, zbrane v vektorju <math>\mathbf{\Delta}_{\mathbf{G}}$, velikosti $2n_{i} \times u_{G}$,
- $$\begin{split} \mathbf{B^N}_i & \text{matrika koeficientov (parcialnih odvodov) enačb popravkov v epohi$$
 i $, ki se nanašajo na neznane vrednosti faznih nedoločenosti, zbrane v vektorju <math>\mathbf{\Delta_N}$, velikosti $2n_i \times u_N$,
- $$\begin{split} \mathbf{B}^{\mathbf{D}_{i}} & \text{matrika koeficientov (parcialnih odvodov) enačb popravkov v epohi$$
 i $, ki se nanašajo na neznanke kodnih zamikov, zbrane v vektorju <math>\mathbf{\Delta}_{\mathbf{D}}$, velikosti $2n_{i} \times u_{D}$,
- $\mathbf{P}_i,\, \mathbf{\Sigma}_i \qquad$ matrika uteži in kovariančna matrika opazovanj v epoh
ii,obe velikosti $2n_i\times 2n_i,$
- 1 vektor enic, velikosti $2n_i \times 1$.

Enačbi 2.18 in 2.20 predstavljata zvezo med $2n_i$ (n_i kodnimi in n_i faznimi) opazovanji (enačba 2.2) in vsemi neznankami v epohi i; 3 neznane koordinate točke, 2 neznane vrednoste zenitne troposferske refrakcije, 4 neznane vrednoste gradienta troposfere, n_i neznanih faznih nedoločenosti, n_i neznanih kodnih zamikov in 1 neznana vrednost pogreška ure sprejemnika. Parcialni odvodi po koordinatah in parametrih troposfere so odvisni od geometrijske razporeditve satelitov, medtem ko so paricalni odvodi po faznih nedoločenostih, kodnih zamikih in pogreških ure sprejemnika vedno enaki -1. Matrika uteži in kovariančna matrika opazovanj v epohi i opisuje statistične lastnosti opazovanj matematičnega modela.

Iz zapisanega je razvidno, da je število neznank v epohi i večje od števila opazovanj v epohi i, zato je potrebno za končno oceno neznank pridobiti opazovanja več epoh (Leick, 2004;

Kleusberg in Teunissen, 1998). Razširitev matričnega sistema iz enačbe 2.19 z dodatnimi opazovanji izvedenimi v ostalih epohah je torej nujna.

2.4 Zagotovitev rešitve matematičnega modela

Enačbe 2.18, 2.19 in 2.20 prikazujejo matematični model, kjer nastopajo opazovanja *i*-te epohe in vse neznanke v tej epohi. Če želimo pridobiti končne rezultate, ts. ocenjene neznanke po metodi najmanjših kvadratov z vsemi opazovanji (v vseh *n*-tih epohah), je potrebno definirati matematični model izravnave za vse epohe. Izhajamo iz enačb 2.18 in 2.20 ter nastavimo matematični model metode PPP za celoten termin izmere - za vse epohe:

V kompaktni obliki lahko enačbo 2.21 zapišemo kot:

$$\mathbf{v} + \mathbf{B} \boldsymbol{\Delta} = \mathbf{f} \tag{2.22}$$

Stohastični model metode PPP za vse epohe izmere definiramo na osnovi enačbe 2.20:

$$\mathbf{P} = \sigma_0^2 \boldsymbol{\Sigma}^{-1} \quad \leftrightarrow \quad \begin{bmatrix} \mathbf{P}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{P}_n \end{bmatrix} = \sigma_0^2 \begin{bmatrix} \boldsymbol{\Sigma}_1^{-1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_2^{-1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{\Sigma}_n^{-1} \end{bmatrix}$$
(2.23)

V enačbah 2.22 in 2.23 matrika 0 predstavlja matriko ničel ustrezne velikosti, da so vse matrike določene pravilno. Matematični model v enačbah 2.21 in 2.23 predstavlja

povezavo vseh $n_o = \sum 2n_i$ izvedenih opazovanj z vsemi u neznankami v matematičnem modelu. Večanje števila epoh v izmeri pomeni večanje števila opazovanj in posledično tudi števila nadštevilnih opazovanj $r = n_0 - u$ v matematičnem modelu (Kleusberg in Teunissen, 1998).

Lastnosti matričnega modela izravnave iz enačb 2.21 in 2.22 nam podajo tudi obliko rešitve modela, tj. lastnosti vektorja neznank Δ , pri tem pa moramo analizirati matrični sistem linearnih enačb:

$$\mathbf{B}\boldsymbol{\Delta} = \mathbf{f} \tag{2.24}$$

Enačba 2.24 predstavlja linearno preslikavo iz *u*-razsežnega vektorskega prostora \mathbb{R}^{u} ($\Delta \in \mathbb{R}^{u}$) v n_{o} -razsežni prostor $\mathbb{R}^{n_{o}}$ ($\mathbf{f} \in \mathbb{R}^{n_{o}}$), pri tem da velja $n_{o} > u$ (Križanič, 1993; Strang in Borre, 1997). Matrika **B** predstavlja linearni operator in lastnosti matrike **B** nam definirajo rešitev linearnega sistema iz enačbe 2.24, kjer pa je potrebno podati vse štiri osnovne vektorske prostore, ki definirajo linearne preslikave (Križanič, 1993; Strang in Borre, 1997; Teunissen, 1985):

- Im(**B**) slika linearne preslikave **B**, kjer je Im(**B**) $\subset \mathbb{R}^{n_o}$ (angl. range or column space of **B**),
- $\operatorname{Ker}(\mathbf{B})$ jedro linearne preslikave \mathbf{B} , kjer je $\operatorname{Ker}(\mathbf{B}) \subset \mathbb{R}^{u}$ (angl. null space of \mathbf{B}),
- Im(\mathbf{B}^{T}) slika linearne preslikave \mathbf{B}^{T} , kjer je Im(\mathbf{B}^{T}) $\subset \mathbb{R}^{u}$ (angl. range space of \mathbf{B}^{T} , row space of \mathbf{B}),

 $\operatorname{Ker}(\mathbf{B}^{\mathrm{T}})$ jedro linearne preslikave \mathbf{B}^{T} , kjer je $\operatorname{Ker}(\mathbf{B}^{\mathrm{T}}) \subset \mathbb{R}^{n_{o}}$ (angl. null space of \mathbf{B}^{T}).

Trivialen primer je, ko velja $n_o = u$ oz. ko je matrika **B** kvadratna. Če obstaja inverz **B**⁻¹ matrike **B**, potem je sistem konsistenten in zagotovi enolično rešitev vektorja neznank Δ . Kadar imamo linearen sistem, ki je predoločen $(n_o > u)$, kot to velja za linearen sistem iz enačbe 2.24, ga je za pridobitev rešitve potrebno analizirati. Definirati je potrebno konsistentnost in enoličnost linearnega sistema.

2.4.1 Konsistentnost linearnega matričnega sistema

Konsistentnost linearnega sistema določa rešljivost sistema. Matrični sistem iz enačbe 2.24 je konsistenten, če lahko vektor **f** predstavimo kot linearno kombinacijo stolpičnih vektorjev matrike **B** oz. ko velja $\mathbf{f} \in \text{Im}(\mathbf{B})$ (Strang in Borre, 1997; Teunissen, 1985), kar

se lahko zapiše kot:

$$rang(\mathbf{B}) = rang\left(\begin{bmatrix} \mathbf{B} & \mathbf{f} \end{bmatrix}\right)$$
 (2.25)

V večini primerov (ne samo v primeru geodetskih nalog) je vektor \mathbf{f} sestavljen na osnovi izvedenih opazovanj, ki so obremenjena s (vsaj slučajnimi) pogreški (Mikhail in Ackermann, 1976; Koch, 1999; Teunissen, 1985) in posledično moramo vektorju \mathbf{f} dodati vektor popravkov opazovanj \mathbf{v} , da zagotovimo konsistentnost linearnega matričnega sistema iz enačbe 2.24. Za vektor \mathbf{v} podamo pogoj najmanjših (uteženih) kvadratov (Koch, 1999; Strang in Borre, 1997):

$$\mathbf{v}^{\mathrm{T}}\mathbf{P}\mathbf{v} \to min$$
 (2.26)

Pogoj minimalnosti kvadratov popravkov opazovanj iz enačbe 2.26 vedno definira vektor \mathbf{v} kot ortogonalno projekcijo na vektorski prostor Im(\mathbf{B}), torej kot vektor iz vektorskega prostora Ker(\mathbf{B}^{T}), tudi v primeru utežene metode najmanjših kvadratov⁹ (Teunissen, 2003). Konsistentnost matričnega linearnega sistema iz enačbe 2.24 je tako zagotovljena z vektorjem popravkov opazovanj \mathbf{v} (Strang in Borre, 1997).

2.4.2 Enoličnost linearnega matričnega sistema

Enoličnost linearnega matričnega modela določa število možnih rešitev (vektor Δ) iz enačbe 2.24. V primeru, ko en sam vektor Δ reši enačbo 2.24, govorimo o enoličnosti matričnega modela, v nasprotnem primeru enačbo 2.24 reši neskončno mnogo vektorjev Δ in sistem ni enoličen (Strang in Borre, 1997; Teunissen, 1985). Enoličnost linearnega sistema je zagotovljena, če je matrika **B** polnega ranga oz. ko velja $rang(\mathbf{B}) = min\{n_o, u\} = u$ in potem velja $\mathbf{By} = \mathbf{0}$ natanko tedaj, ko velja $\mathbf{y} = \mathbf{0}$ (Križanič, 1993; Strang in Borre, 1997). Vendar pa glede na obliko matrike **B** iz enačbe 2.21 lahko nastavimo vektor:

$$\mathbf{y} = \begin{bmatrix} \mathbf{0}_{1 \times u_X} & \mathbf{0}_{1 \times u_T} & \mathbf{0}_{1 \times u_G} & \mathbf{1}_{1 \times u_N} & \mathbf{1}_{1 \times u_D} & -\mathbf{1}_{1 \times u_C} \end{bmatrix}^{\mathrm{T}}$$
(2.27)

za katerega se enostavno lahko pokaže, da velja $\mathbf{By} = \mathbf{0}$. Matrika \mathbf{B} potem ni polnega ranga in ima defekt ranga d, za katerega velja (Strang in Borre, 1997):

$$d = u - rang(\mathbf{B}) = dim(\text{Ker}(\mathbf{B})) \tag{2.28}$$

Če analiziramo enačbi 2.2 lahko vidimo, da pogrešek ure sprejemnika $c\Delta t$ v poljubni epohi $i \ (i \in \{1, 2, ..., n\})$ vedno nastopa v vsoti s fazno nedoločenostjo N_3 , v primeru faznih

⁹angl. weighted least squares

opazovanj in s kodnim zamikom D_3 , v primeru kodnih opazovanj. V primeru, ko določen niz neznank v enačbah vedno nastopa v obliki vsote, pogoj opazovanosti¹⁰ ni zagotovljen (Gelb, 1974) in posledično dobimo singularno matriko **B** (Kleusberg in Teunissen, 1998). V primeru metode PPP je matrika **B** vedno singularna, zato ima rang enak u-d. Kolikšen je defekt ranga d lahko, glede na enačbo 2.28, določimo s tem, da definiramo kolikšen je $rang(\mathbf{B})$. Numeričen postopek za določitev ranga poljubne matrike je redukcija matrike z Gaussovo eliminacijo v zgornje trikotno obliko, kjer nato preštejemo neničelne pivote (Strang in Borre, 1997). Postopek nam za matriko **B** iz enačbe 2.21 poda $rang(\mathbf{B}) = u-1$ oz. d = 1, kar je potrjeno tudi s stolpičnim vektorjem **y** iz enačbe 2.27.

Matriko **B** lahko razstavimo na dve podmatriki, oblike $\mathbf{B} = \begin{bmatrix} \mathbf{B}^{\mathbf{XTG}} & \mathbf{B}^{\mathbf{NDC}} \end{bmatrix}$, kjer so v matriki $\mathbf{B}^{\mathbf{XTG}}$ parcialni odvodi po koordinatah in troposferskih parametrih (zenitna troposferska refrakcija in horizontalni gradienti troposfere), v matriki $\mathbf{B}^{\mathbf{NDC}}$ pa parcialni odvodi po faznih nedoločenostih, kodnih zamikih in pogreških ure sprejemnika. Matrika $\mathbf{B}^{\mathbf{XTG}}$ prikazuje modeliranje sistematično pogrešene prostorske trilateracije. Parcialni odvodi po koordinatah so predstavljeni s smernimi kosinusi (prostorska trilateracija) (Farrell, 2008), parcialni odvodi po troposferskih parametrih pa predstavljajo modeliranje sistematičnih pogreškov opazovanih psevdorazdalj. Elementi matrike $\mathbf{B}^{\mathbf{XTG}}$ so odvisni od geometrijske razporeditve satelitov, in ker se le-ta neprestano spreminja, je v splošnem matrika $\mathbf{B}^{\mathbf{XTG}}$ polnega ranga (Kleusberg in Teunissen, 1998). Zaključimo lahko, da se defekt ranga matrike **B** nahaja le v podmatriki $\mathbf{B}^{\mathbf{NDC}}$ in je v popolnosti opisan z enačbo 2.28 in jedro Ker(**B**) napenja samo vektor **y** iz enačbe 2.27.

Matrični sistem iz enačbe 2.21 vsebuje matriko \mathbf{B} z defektom ranga, zato neskončno mnogo vektorjev Δ matrični sistem reši in so vsi invariantni na vektor popravkov opazovanj \mathbf{v} (Strang in Borre, 1997; Teunissen, 2003). V splošnem vsak vektor oblike:

$$\boldsymbol{\Delta} = \boldsymbol{\Delta}_p + \gamma \mathbf{y} \tag{2.29}$$

predstavlja rešitev linearnega matričnega sistema iz enačbe 2.22, kjer Δ_p predstavlja partikularno rešitev, $\gamma \in \mathbb{R}$ poljubno realno število in je pogoj najmanjših kvadratov iz enačbe 2.26 izpolnjen (Koch, 1999; Strang in Borre, 1997; van Mierlo, 1980; Teunissen, 2006a). Da pridobimo eno samo ustrezno rešitev, je potrebno nastaviti vezne enačbe (Eshagh, 2006; Leick, 2004; Papo, 2003), ki so v splošni obliki podane kot:

$$\mathbf{H}^{\mathrm{T}} \boldsymbol{\Delta} = \mathbf{0} \tag{2.30}$$

¹⁰angl. observability

kjer je s \mathbf{H} označena matrika veznih enačb. Pri oblikovanju veznih enačb iz enačbe 2.30 sta pomembna dva pogoja (Teunissen, 2006a):

- 1. Vektor Δ mora biti izračunan, kar pomeni, da je potrebno nadstaviti vsaj d veznih enačb.
- 2. Vektor popravkov opazovanj \mathbf{v} in posledično pogoj vsote najmanjših kvadratov iz enačbe 2.26 mora biti invarianten glede na izbiro veznih enačb iz enačbe 2.30.

V primeru, ko sta oba zgoraj podana kriterija izpolnjena, govorimo o rešitvi MNK z minimalnim številom vezi¹¹. Vsaka matrika veznih enačb \mathbf{H} , ki jo lahko definiramo kot:

$$\mathbf{H} = \mathbf{E}\mathbf{y} \tag{2.31}$$

in je matrika E poljubna matrika polnega ranga, bo zadostila obema kriterijema za rešitev MNK z minimalnim številom vezi (Leick, 2004; Teunissen, 2006a). Zadosten pogoj lahko podamo tudi z (Teunissen, 2006a):

$$\mathbb{R}^{u} = \operatorname{Im}(\mathbf{H}) \oplus \operatorname{Im}(\mathbf{B}^{\mathrm{T}})$$
(2.32)

Vektorski prostor $Im(\mathbf{H})$ v enačbi 2.32 mora biti komplementaren vektorskemu prostoru $Im(\mathbf{B}^{T})$ (Teunissen, 2006a) oz. stolpični vektorji matrike \mathbf{H} morajo biti linearno neodvisni od vrstičnih vektorjev matrike \mathbf{B} (Eshagh, 2006; Leick, 2004). Izbira veznih enačb, ki nam zagotovijo rešitev MNK z minimalnim številom vezi, predstavlja optimalno izbiro veznih enačb, da matričnemu sistemu zagotovimo enolično rešitev in da ne posegamo v geometrijo rešitev matričnega sistema (Kotsakis, 2013).

Pomembna partikularna rešitev linearnega sistema Δ_p je v primeru, ko velja $\mathbf{H} = \mathbf{y}$ ($\mathbf{E} = \mathbf{I}_{u \times u}$) in se jo označi kot rešitev z notranjimi vezmi¹² (Eshagh, 2006; Leick, 2004; Papo, 2003). Kljub določenim prednostim rešitve z notranjimi vezmi, kot je najmanjša možna vsota varianc neznank in minimalna norma vektorja Δ_p (Eshagh, 2006; Papo, 2003), le-ta redko predstavlja končno rešitev linearnega sistema, saj je neposredno odvisna od približnih vrednosti neznank v obdelavi (Papo, 2003). Geometrična predstavitev veznih enačb v primeru rešitve z notranjimi vezmi je:

$$\mathbf{y}^{\mathrm{T}} \mathbf{\Delta} = 0 \quad \rightarrow \quad \sum_{j=1}^{u_N} \delta N_3^j + \sum_{j=1}^{u_D} \delta D_3^j - \sum_{j=1}^{u_C} \delta c \Delta t_j = 0 \tag{2.33}$$

¹¹angl. minimally constrained least squares solution

¹²angl. inner constraints solution

Vezna enačba 2.33 povezuje fazne nedoločenosti in kodne zamike s pogreški ure sprejemnika.

2.4.3 Analiza rešitev linearnega sistema

Končni korak predstavlja izračun numeričnih vrednosti neznank, tj. rešitev linearnega sistema iz enačbe 2.21 in 2.22. Sistem normalnih enačb je definiran kot (Brockmann, 1996; Koch, 1999; Mikhail in Ackermann, 1976):

$$\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B}\cdot\mathbf{\Delta} = \mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{f} \qquad \leftrightarrow \qquad \mathbf{N}\cdot\mathbf{\Delta} = \mathbf{b}$$
(2.34)

Matrični sistem normalnih enačb je singularen, saj je singularna matrika N, z defektom ranga d = 1. S sestavo vezne enačbe v splošni obliki (enačba 2.30) lahko pridobimo partikularno rešitev Δ_p in njeno matriko kofaktorjev \mathbf{Q}_{Δ_p} kot:

$$\boldsymbol{\Delta}_{p} = (\mathbf{N} + \mathbf{H}\mathbf{H}^{\mathrm{T}})^{-1} \cdot \mathbf{b}$$

$$\mathbf{Q}_{\boldsymbol{\Delta}_{p}} = (\mathbf{N} + \mathbf{H}\mathbf{H}^{\mathrm{T}})^{-1} - \mathbf{y} (\mathbf{y}^{\mathrm{T}}\mathbf{H}\mathbf{H}^{\mathrm{T}}\mathbf{y})^{-1} \mathbf{y}^{\mathrm{T}}$$
(2.35)

V splošnem sta vektor Δ_p in matrika kofaktorjev \mathbf{Q}_{Δ_p} odvisna od izbire veznih enačb (od matrike **H**) in nista enolična (Eshagh, 2006). V primeru rešitve MNK z minimalnim številom vezi je vedno možno izbrati drugačno vezno enačbo (v primeru geodetske mreže - spremeniti geodetski datum), ki je definirana z vezno matriko **W**, kjer pridobimo vektor Δ_W in matriko kofaktorjev $\mathbf{Q}_{\Delta W}$. Postopek se imenuje S-transformacija (Baarda, 1981; Marjetič in Stopar, 2007; Papo, 2003; Teunissen, 1985; 2006a), kjer je v splošnem potrebno sestaviti transformacijsko matriko **S** oblike:

$$\mathbf{S} = \mathbf{I} - \mathbf{B}_N \left(\mathbf{W}^{\mathrm{T}} \mathbf{B}_N \right)^{-1} \mathbf{W}^{\mathrm{T}}$$
(2.36)

V enačbi 2.36 predstavlja I enotsko matriko, \mathbf{B}_N matriko, ki napenja vektorski prostor Ker(\mathbf{B}) in \mathbf{W} matriko, ki predstavlja nove vezne enačbe (nov geodetski datum). Če enačbo 2.36 definiramo za primer metode PPP, dobimo:

$$\mathbf{S} = \mathbf{I} - \mathbf{y} \left(\mathbf{W}^{\mathrm{T}} \mathbf{y} \right)^{-1} \mathbf{W}^{\mathrm{T}}$$
(2.37)

Na osnovi transformacijske matrike **S** iz enačbe 2.37 lahko pridobimo partikularno rešitev Δ_W in njeno matriko kofaktorjev $\mathbf{Q}_{\Delta W}$ kot (Baarda, 1981; Marjetič in Stopar, 2007; Papo, 2003; Teunissen, 2006a):

$$\begin{aligned} \mathbf{\Delta}_W &= \mathbf{S}\mathbf{\Delta}_p \\ \mathbf{Q}_{\mathbf{\Delta}W} &= \mathbf{S}\mathbf{Q}_{\mathbf{\Delta}p}\mathbf{S}^{\mathrm{T}} \end{aligned}$$
 (2.38)

Enačba 2.38 ob pogoju rešitve MNK z minimalnim številom vezi (enačba 2.35) predstavljata možnost za poljubno izbiro veznih enačb in posledično za izračun poljubne partikularne rešitve s pripadajočo matriko kofaktorjev (Kotsakis, 2013).

Glede na obliko transformacijske matrike \mathbf{S} iz enačbe 2.37, in glede na obliko vektorja \mathbf{y} iz enačbe 2.27, ki napenja vektorski prostor Ker(\mathbf{B}), lahko transformacijsko matriko \mathbf{S} zapišemo kot:

$$\mathbf{S} = \begin{bmatrix} \mathbf{I}_{u_X} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{u_T} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{u_G} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \Gamma_{u_N}^{11} & \Gamma_{u_N \times u_D}^{12} & \Gamma_{u_N \times u_C}^{13} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \Gamma_{u_D \times u_N}^{21} & \Gamma_{u_D}^{22} & \Gamma_{u_D \times u_C}^{23} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \Gamma_{u_C \times u_N}^{31} & \Gamma_{u_C \times u_D}^{32} & \Gamma_{u_C}^{33} \end{bmatrix}$$
(2.39)

Matrika **S** je blok diagonalna in je sestavljena iz dveh delov. Zgornji del (določen z $\mathbf{I}_i, i = \{u_X, u_T, u_G\}$) je očitno enotska matrika, medtem ko je spodnji del (določen z $\mathbf{\Gamma}_{i \times j}, i, j = \{u_N, u_D, u_C\}$) v splošnem polna kvadratna matrika. Zaradi singularnosti matrike sistema normalnih enačb **N** iz enačbe 2.35, je rešitev vektorja neznank $\boldsymbol{\Delta}$ vedno pristranska (Grafarend in Schaffrin, 1974; Koch, 1999; Teunissen, 2006a) in velja trditev:

$$E(\mathbf{\Delta}) = \mathbf{S}\hat{\mathbf{\Delta}} \neq \hat{\mathbf{\Delta}} \tag{2.40}$$

V enačbi 2.40 so s strešico označene prave vrednosti neznank in z $E(\cdot)$ operator pričakovane vrednosti (Koch, 1999). Na osnovi enačb 2.39 in 2.40 dobimo:

$$E(\boldsymbol{\Delta}) = S\hat{\boldsymbol{\Delta}} \quad \rightarrow \quad \begin{aligned} E(\boldsymbol{\Delta}_{\mathbf{X}}) &= \hat{\boldsymbol{\Delta}}_{\mathbf{X}} \\ E(\boldsymbol{\Delta}_{\mathbf{T}}) &= \hat{\boldsymbol{\Delta}}_{\mathbf{T}} \\ E(\boldsymbol{\Delta}_{\mathbf{G}}) &= \hat{\boldsymbol{\Delta}}_{\mathbf{G}} \\ E(\boldsymbol{\Delta}_{\mathbf{G}}) &= \Gamma_{u_{N}}^{11}\hat{\boldsymbol{\Delta}}_{\mathbf{N}} + \Gamma_{u_{N}\times u_{D}}^{12}\hat{\boldsymbol{\Delta}}_{\mathbf{D}} + \Gamma_{u_{N}\times u_{C}}^{13}\hat{\boldsymbol{\Delta}}_{\mathbf{C}} \\ E(\boldsymbol{\Delta}_{\mathbf{D}}) &= \Gamma_{u_{D}\times u_{N}}^{21}\hat{\boldsymbol{\Delta}}_{\mathbf{N}} + \Gamma_{u_{D}}^{22}\hat{\boldsymbol{\Delta}}_{\mathbf{D}} + \Gamma_{u_{D}\times u_{C}}^{23}\hat{\boldsymbol{\Delta}}_{\mathbf{C}} \\ E(\boldsymbol{\Delta}_{\mathbf{C}}) &= \Gamma_{u_{C}\times u_{N}}^{31}\hat{\boldsymbol{\Delta}}_{\mathbf{N}} + \Gamma_{u_{C}\times u_{D}}^{32}\hat{\boldsymbol{\Delta}}_{\mathbf{D}} + \Gamma_{u_{C}}^{33}\hat{\boldsymbol{\Delta}}_{\mathbf{C}} \end{aligned}$$
(2.41)

Enačba 2.41 podaja pomembno lastnost matematičnega modela metode PPP, dobljenega na osnovi poljubne matrike veznih enačb \mathbf{W} in sicer, da so ocenjene koordinate in parametri troposfere vedno neodvisni od izbire matrike \mathbf{W} in vse možne variacije matrike

W bodo podale identične vrednosti za neznanke v vektorjih $\Delta_{\mathbf{X}}$, $\Delta_{\mathbf{T}}$ in $\Delta_{\mathbf{G}}$ (enačbe 2.6, 2.7 in 2.8). Po drugi strani pa so vrednosti izračunanih faznih nedoločenosti ($\Delta_{\mathbf{N}}$ iz enačbe 2.9), kodnih zamikov ($\Delta_{\mathbf{D}}$ iz enačbe 2.10) in pogreškov ur sprejemnikov ($\Delta_{\mathbf{C}}$ iz enačbe 2.11) neposredno odvisni od izbire matrike veznih enačb \mathbf{W} . Matematični model metode PPP, predstavljen tu, predstavlja nepristransko cenilko za koordinate in parametre troposfere in pristransko cenilko za fazne nedoločenosti, kodne zamike in pogreške ure sprejemnikov (Teunissen, 2006a).

2.4.4 Ocenljive neznanke matematičnega modela PPP

Enačba 2.41 prikazuje tudi, da so neznanke $\Delta_{\mathbf{X}}$, $\Delta_{\mathbf{T}}$ in $\Delta_{\mathbf{G}}$ ocenljive¹³, medtem ko neznanke $\Delta_{\mathbf{N}}$, $\Delta_{\mathbf{D}}$ in $\Delta_{\mathbf{C}}$ niso ocenljive, so pa ocenljive ustrezne linearne kombinacije (funkcije) teh neznank (Grafarend in Schaffrin, 1974; Kounias in Chalikias, 2008; Koch, 1999). Linearne kombinacije neocenljivih neznank nastavimo na osnovi opisa jedra Ker(\mathbf{B}), ki je opisano v enačbi 2.27 in je geometrično predstavljeno v enačbi 2.33. Linearne kombinacije neocenljivih neznank imajo obliko (Grafarend in Schaffrin, 1974; Kounias in Chalikias, 2008):

$$\begin{bmatrix} \Delta_{\mathbf{N}}^{*} \\ \Delta_{\mathbf{D}}^{*} \\ \Delta_{\mathbf{C}}^{*} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{I}_{u_{N}} & \mathbf{0} & \mathbf{1}_{u_{N}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{u_{D}} & \mathbf{1}_{u_{D}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\mathbf{1}_{u_{C}-1} & \mathbf{I}_{(u_{C}-1)\times u_{C}} \end{bmatrix}}_{\mathbf{K}} \begin{bmatrix} \Delta_{\mathbf{N}} \\ \Delta_{\mathbf{D}} \\ \delta c \Delta t_{1} \\ \Delta_{\mathbf{C},1} \end{bmatrix}$$
(2.42)

V enačbi 2.42 $\delta c \Delta t_1$ predstavlja prvo neznanko pogreška ure sprejemnika in $\Delta_{C,1}$ vektor vseh ostalih neznank pogreška ure sprejemnika. Ocenljive neznanke na levi strani enačaja so:

- $\Delta_{\mathbf{N}}^* = \Delta_{\mathbf{N}} + \delta c \Delta t_1$ vsota neznank faznih nedoločenosti in prvega pogreška ure sprejemnika,
- $\Delta_{\mathbf{D}}^* = \Delta_{\mathbf{D}} + \delta c \Delta t_1$ vsota neznank kodnih zamikov in prvega pogreška ure sprejemnika ter
- $\Delta_{\mathbf{C}}^* = \Delta_{\mathbf{C},1} \delta c \Delta t_1$ razlike posameznih pogreškov ure sprejemnika $\delta c \Delta t_i$ $(i = \{2, \ldots, u_C\})$ in prvega pogreška ure sprejemnika.

Posledica je, da s sistemom GPS ne moremo ocenjevati točnega časa, ampak samo točne razlike ure sprejemnika med posameznimi epohami (Grafarend in Schaffrin, 1974). Pri

¹³angl. estimable

sistemih GNSS je tako za točno določitev časa vedno potrebno rezultate obdelave vezati na zunanji referenčni čas oz. na zunanjo atomsko uro (Schönemann in sod., 2011).

Matrika \mathbf{K} v enačbi 2.42 predstavlja linearni operator, ki transformira neocenljive (pristransko ocenljive) neznanke v ocenljive (nepristransko ocenljive) neznanke (Grafarend in Schaffrin, 1974). Za matriko \mathbf{K} velja:

$$\mathbf{K}\mathbf{y} = \mathbf{0} \qquad \rightarrow \qquad \mathbf{B}\mathbf{K}^{\mathrm{T}} \neq \mathbf{0} \tag{2.43}$$

Vrstični vektorji matrike \mathbf{K} so ortogonalni na vektor \mathbf{y} in so zato ortogonalni na jedro Ker(\mathbf{B}), kar pomeni, da se vrstične vektorje matrike \mathbf{K} da predstaviti kot linearna kombinacija vrstičnih vektorjev matrike \mathbf{B} . Transformirane neznanke iz enačbe 2.42 so, glede na enačbo 2.43, ocenljive (Grafarend in Schaffrin, 1974; Kounias in Chalikias, 2008; Koch, 1999).

2.5 Rešitev matematičnega modela metode PPP

V primeru statične izmere GPS imamo opravka z velikim številom opazovanj in neznank, kar pomeni, da je matrični model za rešitev v enem koraku (za vse epohe skupaj) iz enačbe 2.35 lahko zelo velik. Postopek, ki nam ob zmanjšanju matričnega modela zagotovi enake rezultate, je odstranitev pogreškov ure sprejemnika za vsako epoho izmere iz sistema normalnih enačb (Brockmann, 1996) in nato uporaba zaporedne izravnave po metodi najmanjših kvadratov (Koch, 1999; Mikhail in Ackermann, 1976).

2.5.1 Odstranitev pogreškov ure sprejemnika iz sistema normalnih enačb

Pri postopku odstranitve pogreškov ure sprejemnika iz sistema normalnih enačbe izhajamo iz matričnega modela izravnave za epoho i iz enačbe 2.18. Definirajmo vektor \mathbf{x} kot:

$$\mathbf{x}_{(u_X+u_T+u_G+u_N+u_D)\times 1} = \begin{bmatrix} \mathbf{\Delta}_{\mathbf{X}} & \mathbf{\Delta}_{\mathbf{T}} & \mathbf{\Delta}_{\mathbf{G}} & \mathbf{\Delta}_{\mathbf{N}} & \mathbf{\Delta}_{\mathbf{D}} \end{bmatrix}^{\mathrm{T}}$$
(2.44)

kot vektor vseh neznank razen pogreška ure sprejemnika $\delta c \Delta t_i$. Dodatno definirajmo matriko $\tilde{\mathbf{B}}_i$ kot:

$$\tilde{\mathbf{B}}_{i} = \begin{bmatrix} \mathbf{B}^{\mathbf{X}}_{i} & \mathbf{B}^{\mathbf{T}}_{i} & \mathbf{B}^{\mathbf{G}}_{i} & \mathbf{B}^{\mathbf{N}}_{i} & \mathbf{B}^{\mathbf{D}}_{i} \end{bmatrix}^{\mathrm{T}}$$
(2.45)

torej kot matriko parcialnih odvodov opazovanj po vseh neznankah, razen po neznanem pogrešku ure sprejemnika v epohii. Skladno z enačbama 2.44 in 2.45 lahko enačbo 2.19

zapišemo kot:

$$\mathbf{v}_i + \tilde{\mathbf{B}}_i \cdot \mathbf{x} - \mathbf{1} \cdot \delta c \Delta t_i = \mathbf{f}_i \qquad \leftrightarrow \qquad \mathbf{v}_i + \mathbf{B}_i \Delta_i = \mathbf{f}_i \tag{2.46}$$

Sistem normalnih enačb (Brockmann, 1996; Koch, 1999; Mikhail in Ackermann, 1976) za model iz enačbe 2.46 zapišemo kot:

$$\mathbf{B}_{i}^{\mathrm{T}} \mathbf{P}_{i} \mathbf{B}_{i}^{\mathrm{T}} \cdot \boldsymbol{\Delta}_{i} = \mathbf{B}_{i}^{\mathrm{T}} \mathbf{P}_{i} \mathbf{f}_{i} \qquad \leftrightarrow \qquad \mathbf{N}_{i} \cdot \boldsymbol{\Delta}_{i} = \mathbf{b}_{i}$$
(2.47)

kjer sta matrika \mathbf{N}_i in vektor \mathbf{t}_i matrika oz. vektor sistema normalnih enačb v epohi *i*. Z razcepom vektorja neznank Δ_i na dva dela (enačbi 2.44 in 2.46), lahko sistem normalnih enačb iz enačbe 2.47 zapišemo kot:

$$\begin{bmatrix} \mathbf{N}_{11,i} & \mathbf{N}_{12,i} \\ \mathbf{N}_{21,i} & \mathbf{N}_{22,i} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x} \\ \delta c \Delta t_i \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{1,i} \\ \mathbf{b}_{2,i} \end{bmatrix}$$
(2.48)

Z odstranitvijo pogreška ure sprejemnika iz sistema normalnih enačb iz enačbe 2.48 dobimo reduciran sistem normalnih enačb, ki pa še vedno ohranja vse informacije matematičnega modela (Brockmann, 1996) in je dan z:

$$\left(\mathbf{N}_{11,i} - \mathbf{N}_{12,i}\mathbf{N}_{22,i}^{-1}\mathbf{N}_{21,i}\right)\mathbf{x} = \mathbf{b}_{1,i} - \mathbf{N}_{12,i}\mathbf{N}_{22,i}^{-1}\mathbf{b}_{2,i}$$
(2.49)

Odstranitev pogreška ure sprejemnika iz sistema normalnih enačb (enačba 2.49) v posamezni epohi opravimo, da zmanjšamo velikost končnega sistema normalnih enačb, saj je število pogreškov ure sprejemnika bistveno večje kot število ostalih neznank.

2.5.2 Končen izračun neznank metode PPP

Končen reduciran sistem normalnih enačb za izračun neznank v vektorju \mathbf{x} je določen s superpozicijo sistemov normalnih enačb posameznih epoh (Brockmann, 1996; Mikhail in Ackermann, 1976) in ima obliko:

$$\left[\sum_{i=1}^{n} \left(\mathbf{N}_{11,i} - \mathbf{N}_{12,i} \mathbf{N}_{22,i}^{-1} \mathbf{N}_{21,i}\right)\right] \mathbf{x} = \sum_{i=1}^{n} \left(\mathbf{b}_{1,i} - \mathbf{N}_{12,i} \mathbf{N}_{22,i}^{-1} \mathbf{b}_{2,i}\right) \quad \rightarrow \quad \tilde{\mathbf{N}} \cdot \mathbf{x} = \tilde{\mathbf{b}} \quad (2.50)$$

Enačba 2.50 predstavlja reduciran sistem normalnih enačb, ki pa vsebuje vse informacije za izračun vseh neznank (Brockmann, 1996). Vendar pa ne glede na zmanjšanje velikosti sistema normalnih enačb, ostaja matrika $\tilde{\mathbf{N}}$ singularna, saj obstaja defekt ranga d (enačba 2.28) matrike **B** (enačba 2.21). Končna oblika veznih enačb iz enačbe 2.30 se lahko nastavi, ko sestavimo reduciran sistem normalnih enačb (enačba 2.50). Zaradi reduciranja sistema normalnih enačb je nemogoče nastaviti vezne enačbe z notranjimi vezmi, zato moramo izbrati drugačno matriko veznih enačb. Geometrično smiselno vezno enačbo lahko nastavimo tako, da postavimo pogoj:

$$\sum_{j=1}^{u_D} \delta D_3^j = 0 \tag{2.51}$$

oz. v matrični obliki:

$$\mathbf{h}^{\mathrm{T}}\mathbf{x} = 0 \qquad \mathbf{h} = \begin{bmatrix} \mathbf{0}_{1 \times u_{X}} & \mathbf{0}_{1 \times u_{T}} & \mathbf{0}_{1 \times u_{G}} & \mathbf{0}_{1 \times u_{N}} & \mathbf{1}_{1 \times u_{D}} \end{bmatrix}^{\mathrm{T}}$$
(2.52)

Vezna enačba iz enačbe 2.51 in 2.52 je geometrijsko smiselna zato, ker kodni zamiki predstavljajo časovno neusklajenost nanešenih kod na nosilna valovanja posameznih satelitov in naj bi bili teoretično vsi enaki 0 (Larson, 2015).

Končna rešitev neznank matematičnega modela metode PPP, vektor \mathbf{x} s pripadajočo matriko kofaktorjev $\mathbf{Q}_{\mathbf{x}}$, je tako podana z (Koch, 1999; Leick, 2004):

$$\begin{bmatrix} \mathbf{x} \\ \boldsymbol{\omega} \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{N}} & \mathbf{h} \\ \mathbf{h}^{\mathrm{T}} & 0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \tilde{\mathbf{b}} \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \tilde{\mathbf{N}} & \mathbf{h} \\ \mathbf{h}^{\mathrm{T}} & 0 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{Q}_{\mathbf{x}} & \mathbf{Q}_{\mathbf{x}\boldsymbol{\omega}} \\ \mathbf{Q}_{\boldsymbol{\omega}\mathbf{x}} & q_{\boldsymbol{\omega}} \end{bmatrix} \cdot$$
(2.53)

V enačbi 2.53 predstavlja ω Lagrange-jev multiplikator (Koch, 1999). Vektor neznank **x** predstavlja izračunane neznanke, kjer pa ni pogreškov ure sprejemnika. Za vsako epoho i se lahko pogrešek ure sprejemnika $\delta c \Delta t_i$ in pripadajoč kofaktor $q_{\delta c \Delta t_i}$ poračuna kot (Brockmann, 1996):

$$\delta c \Delta t_{i} = \mathbf{N}_{22,i}^{-1} \left(\mathbf{b}_{2,i} - \mathbf{N}_{21,i} \mathbf{x} \right) q_{\delta c \Delta t_{i}} = \mathbf{N}_{22,i}^{-1} + \mathbf{N}_{22,i}^{-1} \mathbf{N}_{21,i} \mathbf{Q}_{\mathbf{x}} \mathbf{N}_{12,i} \mathbf{N}_{22,i}^{-1}$$
(2.54)

Končni korak predstavlja še izračun kvadratne forme iz enačbe 2.26 in referenčna varianca a-posteriori $\hat{\sigma}_0^2$ (Brockmann, 1996; Koch, 1999):

$$\mathbf{v}^{\mathrm{T}} \mathbf{P} \mathbf{v} = \mathbf{f}^{\mathrm{T}} \mathbf{P} \mathbf{f} - \mathbf{x}^{\mathrm{T}} \tilde{\mathbf{b}} - \sum_{i=1}^{n} \mathbf{b}_{2,i}^{\mathrm{T}} \mathbf{N}_{22,i}^{-1} \mathbf{b}_{2,i}$$
$$\hat{\sigma}_{0}^{2} = \frac{\mathbf{v}^{\mathrm{T}} \mathbf{P} \mathbf{v}}{n_{o} - u + d}$$
(2.55)

Izbira poljubne drugačne vezne enačbe, ki je definirana z matriko \mathbf{W} je spet možna s Stransformacijo (glej poglavje 2.4.2). Partikularno rešitev Δ_p lahko sestavimo z vektorjem **x** iz enačbe 2.53 in z vsemi neznankami pogreškov ure sprejemnika $\delta c \Delta t_i$ $(i = \{1, \ldots, n\})$ iz enačbe 2.54. Po drugi strani pa matrike kofaktorjev $\mathbf{Q}_{\Delta p}$ ne moremo v popolnosti rekonstruirati, saj imamo na voljo le matriko kofaktorjev $\mathbf{Q}_{\mathbf{x}}$ iz enačbe 2.53 in kofaktorje $q_{\delta c \Delta t_i}$ iz enačbe 2.54. Sestavimo lahko le približno matriko kofaktorjev $\tilde{\mathbf{Q}}_{\Delta}$:

$$\tilde{\mathbf{Q}}_{\mathbf{\Delta}} = \operatorname{diag} \left[\mathbf{Q}_{\mathbf{x}} \quad q_{\delta c \Delta t_1} \quad q_{\delta c \Delta t_2} \quad \cdots \quad q_{\delta c \Delta t_n} \right]$$
(2.56)

Obdelava opazovanj GNSS z zaporedno izravnavo po MNK, z odstranitvijo pogreškov ure sprejemnika in z nastavitvijo veznih enačb za pridobitev rešitve z minimalnim številom vezi nam poda rezultate, kjer je le vektor neznank Δ možno transformirati v poljubno drugo rešitev z minimalnim številom vezi (S-transformacija). Po drugi strani tega ni možno narediti z matriko kofaktorjev, saj nimamo možnosti sestave celotne matrike kofaktorjev ampak le približno, določeno v enačbi 2.56.

2.6 Iskanje in odstranjevanje izpadov signala iz faznih opazovanj

Metoda PPP je učinkovita, natančna in točna le v primeru, ko uporabimo fazna opazovanja, kjer pa je potrebno vse izpade signala¹⁴ poiskati in odstraniti. Izpad signala se v faznih opazovanjih L_1 in L_2 odraža kot sprememba fazne nedoločenosti ΔN_1 oz. ΔN_2 za cele vrednosti valovnih dolžin (Leick, 2004), ki je sicer za posamezen satelit konstantna vrednost. Vzroki za izpad signala določenega satelita so predvsem trije (Hofmann-Wellenhof in sod., 2001):

- ovire v okolici antene GPS, ki motijo signal (drevesa, stavbe, mostovi...),
- nizka vrednost razmerja SNR zaradi večpotja, povečane ionosferske refrakcije, hitrega premikanja antene GPS, ... in
- napake v obdelavi signala na sprejemniku GPS.

Predpogoj za uspešno iskanje in odpravljanje izpadov signala je odstranitev milisekundnih skokov¹⁵ v opazovanjih GPS, ki se pojavijo zaradi usklajevanja ure sprejemnika s pravim časom GPS na nivoju mili sekunde (Guo in Zhang, 2014).

Postopek obravnave izpadov signala je vedno sestavljen iz dveh korakov (Blewitt, 1990; Hofmann-Wellenhof in sod., 2001; Leick, 2004; Liu, 2011):

¹⁴angl. cycle slips

 $^{^{15}\}mathrm{angl:}$ milli second (ms) jumps

- lociranje izpada signala, kar pomeni za vsak satelit poiskati epohe, kje je prišlo do izpada signala in
- odstranitev izpada signala, kar pomeni:
 - določitev vrednosti spremembe fazne nedoločenosti ΔN_1 oz. ΔN_2 v območju celih števil in vsa opazovanja satelita L_1 in L_2 po izpadu signala popraviti za vrednosti ΔN_1 in ΔN_2 oz.
 - če ne moremo določiti ΔN_1 ali ΔN_2 v območju celih števil, nastavitev nove fazne nedoločenosti za obravnavan satelit od trenutka izpada signala naprej.

Postopek iskanja in odstranjevanja izpadov signala iz faznih opazovanj za dvo-frekvenčne sprejemike je bil predstavljen v Blewitt (1990) in se od takrat ni bistveno spremenil. Podobni algoritmi so predstavljeni tudi v Bisnath (2000); Liu (2011); Sharma in sod. (2011) in Zhalilo (2003). Možnost uporabe Dopplerjevih opazovanj je opisan v Ren in sod. (2012), kjer je poudarek na iskanju izpada signala v realnem času.

2.6.1 Iskanje izpadov signala iz faznih opazovanj pri metodi PPP

Pri metodi PPP imamo na voljo opazovanja enega samega sprejemnika in poskušamo ugotoviti nenadne skoke v faznih opazovanjih med posameznimi epohami. Ker se vrednosti opazovanj pri GPS spreminjajo tudi do 800 m/s (Leick, 2004), le-ta niso uporabna za iskanje izpadov signala. Sestaviti je potrebno linearno kombinacijo faznih ali faznih in kodnih opazovanj, ki je čim bolj časovno stabilna s čim višjo natančnostjo. Dve taki linearni kombinacij sta t. i. geometrije prosta linearna kombinacija¹⁶ L_4 in Melbourne-Wübbena linearna kombinacija¹⁷ L_6 (Blewitt, 1990; Dach in sod., 2007; Hofmann-Wellenhof in sod., 2001; Leick, 2004; Xu, 2007):

$$L_{4} = L_{1} - L_{2}$$

$$L_{6} = \left[\frac{f_{1}}{f_{1} - f_{2}}L_{1} - \frac{f_{2}}{f_{1} - f_{2}}L_{2}\right] - \left[\frac{f_{1}}{f_{1} + f_{2}}P_{1} + \frac{f_{2}}{f_{1} + f_{2}}P_{2}\right]$$
(2.57)

Linearna kombinacija L_4

Na osnovi enač
b ${\bf 2.1}$ in enačbe ${\bf 2.57},$ lahko pokažemo, da je line
arna kombinacija L_4 odvisna

¹⁶angl. geometry-free

¹⁷tudi linearna kombinacija širokega pasu (angl. wide-lane linear combination)

le še od ionosfere in faznih nedoločenosti (Dach in sod., 2007; Hofmann-Wellenhof in sod., 2001; Leick, 2004; Xu, 2007), saj velja:

$$L_4 = L_1 - L_2 = (\gamma - 1)I + \lambda_1 N_1 - \lambda_2 N_2 + \varepsilon_{L_4}$$
(2.58)

V enačbi 2.58 predstavlja ε_{L_4} vpliv slučajnih pogreškov in večpotja, ki se ga za namene iskanja signala lahko zanemari. Natančnost linearne kombinacije L_4 je primerljiva z natančnostjo faznih opazovanj, saj po prenosu varianc in kovarianc (Koch, 1999; Mikhail in Ackermann, 1976) in glede natančnosti opazovanj v poglavju 2.3.2 velja:

$$\sigma_{L_4} = \sqrt{\sigma_{L_1}^2 + \sigma_{L_2}^2} = \sqrt{2}\sigma_L \tag{2.59}$$

Če predpostavimo izpad signala na faznih opazovanjih L_1 in L_2 za vrednosti ΔN_1 in ΔN_2 med epohama i-1 in i, se le-ta na linearni kombinaciji L_4 pozna kot:

$$L_{4,i-1} = (\gamma - 1)I_{i-1} + \lambda_1 N_1 - \lambda_2 N_2$$

$$L_{4,i} = (\gamma - 1)I_i + \lambda_1 (N_1 + \Delta N_1) - \lambda_2 (N_2 + \Delta N_2)$$
(2.60)

Razlika ΔL_4 med vrednostima linearne kombinacije $L_{4,i-1}$ v epohi i-1 in $L_{4,i}$ v epohi i predstavlja mero za iskanje izpada signala na linearni kombinaciji L_4 in ima obliko:

$$\Delta L_4 = L_{4,i} - L_{4,i-1} = (\gamma - 1)\Delta I_{i-1,i} + \lambda_1 \Delta N_1 - \lambda_2 \Delta N_2 \approx \lambda_1 \Delta N_1 - \lambda_2 \Delta N_2 \qquad (2.61)$$

Sprememba vpliva ionosfere med dvema zaporednima epohama $\Delta I_{i-1,i} = I_i - I_{i-1}$ je velikostnega reda nekaj centimetrov (Estey in Meertens, 1999), tako da večji del razlike ΔL_4 predstavlja ravno sprememba faznih nedoločenosti ΔN_1 in ΔN_2 . Linearna kombinacija L_4 tako predstavlja dobro orodje za iskanje izpadov signala.

Na sliki 2.3 je prikazana oblika linearne kombinacije L_4 na stalno delujoči postaji v Bovcu, za satelit G05 in datum 7. 12. 2004. Iz slike je razvidno, da se linearna kombinacija L_4 razmeroma malo spreminja skozi čas in je gladka krivulja, kar kaže na visoko natančnost faznih opazovanj. Izpad signala, ki je prisoten med 9⁰⁰ in 10⁰⁰ uro, je jasno viden.

Linearna kombinacija L_6

Enako, kot v primeru linearne kombinacije L_4 , tudi za linearno kombinacijo L_6 lahko pokažemo, da je odvisna le še od faznih nedoločenosti in večpotja kodnih opazovanj (Dach in sod., 2007; Hofmann-Wellenhof in sod., 2001; Leick, 2004; Xu, 2007), saj velja:

$$L_6 = \frac{f_1}{f_1 - f_2} \lambda_1 N_1 - \frac{f_2}{f_1 - f_2} \lambda_2 N_2 - \eta_6 + \varepsilon_{L_6}$$
(2.62)

Slika 2.3: Linearna kombinacija L_4 satelita G05 stalno delujoče postaje Bovec, za dan 7. 12. 2004 za namen iskanja izpada signala

Figure 2.3: L_4 linear combination of satellite G05 for permanent station Bovec at 7. 12. 2004 for cycle slips determination

V enačbi 2.62 predstavlja η_6 vpliv večpotja obeh kodnih opazovanj P_1 in P_2 na linearno kombinacijo L_6 , ε_{L_6} pa slučajne vplive. Valovna dolžina λ_6 linearne kombinacije L_6 se določi kot (Blewitt, 1990; Leick, 2004; Hofmann-Wellenhof in sod., 2001):

$$\lambda_6 = \frac{c}{f_1 - f_2} \approx 86, 2 \text{ cm}$$
 (2.63)

Pokazati se da, da je natančnost linearne kombinacije σ_{L_6} enaka (Blewitt, 1998; Dach in sod., 2007):

$$\sigma_{L_6} = \sqrt{\sigma_L^2 \left(\left(\frac{f_1}{f_1 - f_2}\right)^2 + \left(\frac{f_2}{f_1 - f_2}\right)^2 \right) + \sigma_P^2 \left(\left(\frac{f_1}{f_1 + f_2}\right)^2 + \left(\frac{f_2}{f_1 + f_2}\right)^2 \right) \approx 0, 7\sigma_P$$
(2.64)

Dobra lastnost linearne kombinacije L_6 je, da je konstantna skozi čas (enačba 2.62), slaba pa, da je neposredno odvisna od natančnosti in velikosti večpotja kodnih opazovanj (enačba 2.64).

Če predpostavimo izpad signala na faznih opazovanjih L_1 in L_2 za vrednosti ΔN_1 in ΔN_2 med epohama i - 1 in i, se le-ta na linearni kombinaciji L_6 pozna kot:

$$L_{6,i-1} = \frac{f_1}{f_1 - f_2} \lambda_1 N_1 - \frac{f_2}{f_1 - f_2} \lambda_2 N_2 - \eta_{6,i-1}$$

$$L_{6,i} = \frac{f_1}{f_1 - f_2} \lambda_1 (N_1 + \Delta N_1) - \frac{f_2}{f_1 - f_2} \lambda_2 (N_2 + \Delta N_2) - \eta_{6,i}$$
(2.65)

Razlika ΔL_6 med vrednostima linearne kombinacije $L_{6,i-1}$ v epohi i-1 in $L_{6,i}$ v epohi i predstavlja mero za iskanje izpada signala na linearni kombinaciji L_6 in ima obliko:

$$\Delta L_6 = L_{6,i} - L_{6,i-1} = \frac{f_1}{f_1 - f_2} \lambda_1 \Delta N_1 - \frac{f_2}{f_1 - f_2} \lambda_2 \Delta N_2 + \eta_{6,i-1} - \eta_{6,i}$$
(2.66)

Glede na velikost λ_6 iz enačbe 2.63 in obliko linearne kombinacije L_6 iz enačbe 2.57 lahko pokažemo, da se v primeru izpada signala (spremembe vrednosti ΔN_1 oz. ΔN_1), ΔL_6 spreminja le za cele vrednosti valovne dolžine λ_6 :

$$\Delta L_6 \approx (\Delta N_1 - \Delta N_2) \cdot \lambda_6 \approx (\Delta N_1 - \Delta N_2) \cdot 86, 2 \text{ cm}$$
(2.67)

Slika 2.4 prikazuje linearno kombinacijo L_6 za satelit G05, na točki Bovec 7. 12. 2004. Iz slike je razvidno, da je L_6 konstantna funkcija, ki pa je obremenjena s šumom in večpotjem kodnih opazovanj. Izpad signala je viden med 9⁰⁰ in 10⁰⁰ uro, kjer je vrednost $\Delta L_6/\lambda_6$ iz enačbe 2.67 celo število oz. je dolžina rdeče črte točno določen faktor števila λ_6 .

Slika 2.4: Linearna kombinacija L_6 satelita G05 stalno delujoče postaje Bovec, za dan 7. 12. 2004 za namen iskanja izpada signala

Figure 2.4: L_6 linear combination of satellite G05 for permanent station Bovec at 7. 12. 2004 for cycle slips determination

Lastnost linearne kombinacije L_6 je, da sprememba fazne nedoločenosti ΔN_1 ali ΔN_2 za k valovnih dolžin, povzroči spremembo ΔL_6 za vrednost $k \cdot 86, 2$ cm. Ob nekaj decimetrski natančnosti kodnih opazovanj je potem tudi natančnost σ_{L_6} nekaj decimetrska (enačba 2.64) in lahko razliko $\Delta N_1 - \Delta N_2$ iz enačbe 2.67 zanesljivo določimo kot celo število. Tudi linearna kombinacija L_6 tako predstavlja zanesljivo orodje pri iskanju izpada signala.

2.6.2 Odstranjevanje izpadov signala iz faznih opazovanj pri metodi PPP

Naslednji korak obravnave izpadov signala iz faznih opazovanj predstavlja odstranitev izpada signala. Ko uspešno lociramo izpad signala na obeh linearnih kombinacijah L_4 in

 L_6 , je potrebno določiti spremembe fazne nedoločenosti ΔN_1 ali ΔN_2 v območju celih števil.

Sprememba fazne nedoločenosti na L_6

Na osnovi enačbe 2.67 lahko definiramo spremembo fazne nedoločenosti ΔN_6 linearne kombinacije L_6 kot Blewitt (1990):

$$\Delta N_6 = \Delta N_1 - \Delta N_2 \tag{2.68}$$

Vrednost spremembe fazne nedoločenosti ΔN_6 določimo po MNK na osnovi vrednosti linearne kombinacije L_6 pred in po izpadu signala. Ocenjeno vrednost $\Delta \hat{N}_6$ pridobimo kot:

$$\Delta \hat{N}_{6} = \frac{\bar{L}_{6,>}}{\lambda_{6}} - \frac{\bar{L}_{6,<}}{\lambda_{6}} = \frac{\sum L_{6,>}}{n_{6} \cdot \lambda_{6}} - \frac{\sum L_{6,<}}{n_{6} \cdot \lambda_{6}}$$
(2.69)

V enačbi 2.69 oznaka $\bar{L}_{6,<}$ pomeni povprečje n_6 vrednosti $L_{6,<}$ linearne kombinacije pred izpadom signala in $\bar{L}_{6,>}$ pomeni povprečje n_6 vrednosti $L_{6,>}$ linearne kombinacije po izpadu signala (znak < pomeni indeks epohe pred izpadom signala, > pa indeks epohe po izpadu signala). Natančnost $\sigma_{\Delta \hat{N}_6}$ ocenjene vrednosti $\Delta \hat{N}_6$ je dobljena kot:

$$\sigma_{\Delta\hat{N}_6} = \frac{\sigma_{L_6}\sqrt{2}}{\lambda_6\sqrt{n_6}} \tag{2.70}$$

kjer σ_{L_6} predstavlja natančnost linearne kombinacije L_6 iz enačbe 2.64. Nastavimo dva pogoja:

$$\left|\Delta \hat{N}_{6} - round\left(\Delta \hat{N}_{6}\right)\right| \leq \delta_{6} \quad \wedge \quad \sigma_{\Delta \hat{N}_{6}} \leq \sigma_{\delta_{6}} \tag{2.71}$$

kjer δ_6 predstavlja največjo možno odstopanje ocenjene vredosti $\Delta \hat{N}_6$ od najbližjega celega števila in σ_{δ_6} največjo možno vrednost ocenjene natančnosti $\sigma_{\Delta \hat{N}_6}$. Vsi parametri so podani v valovnih dolžinah λ_6 in operator round() predstavlja zaokrožitev na najbližjo celo vrednost. Če oba pogoja iz enačbe 2.71 veljata, potem lahko sprejmemo ΔN_6 kot celo število, ki ima vrednost:

$$\Delta N_6 = round \left(\Delta \hat{N}_6\right) \tag{2.72}$$

Sprememba fazne nedoločenosti na L_4

Sprememba linearne kombinacije ΔL_4 iz enačbe 2.61 se glede na enačbo spremembe fazne nedoločenosti ΔN_6 lahko zapiše kot (Blewitt, 1990):

$$\Delta L_4 = (\gamma - 1)\Delta I_{i-1,i} + \lambda_1 \Delta N_6 - (\lambda_2 - \lambda_1)\Delta N_2$$
(2.73)

kjer ΔN_6 predstavlja celo število iz enačbe 2.72 določeno na osnovi pogojev iz enačbe 2.71.

V prvem koraku po MNK ocenimo vrednost $\Delta \hat{N}_4$ s pripadajočo natančnostjo $\sigma_{\Delta \hat{N}_4}$ na osnovi n_4 vrednosti linearne kombinacije L_4 pred in po izpadu signala. Linearno kombinacijo L_4 lahko modeliramo kot polinom 2. stopnje (glej sliko 2.3), kjer za vse vrednosti L_4 po izpadu signala upoštevamo dodaten člen $\Delta \hat{N}_4$. Na osnovi enačbe 2.73, ocenjene vrednosti $\Delta \hat{N}_4$ in pripadajoče natančnost $\sigma_{\Delta \hat{N}_4}$ ocenimo spremembo fazne nedoločenosti $\Delta \hat{N}_2$ in njeno natančnost $\sigma_{\Delta \hat{N}_2}$ kot:

$$\Delta \hat{N}_2 = \frac{\lambda_1 \Delta N_6 - \Delta \hat{N}_4}{\lambda_2 - \lambda_1} \qquad \sigma_{\Delta \hat{N}_2} = \frac{\sigma_{\Delta \hat{N}_4}}{\lambda_2 - \lambda_1} \tag{2.74}$$

Če velja:

$$\left|\Delta \hat{N}_2 - round\left(\Delta \hat{N}_2\right)\right| \le \delta_2 \quad \wedge \quad \sigma_{\Delta \hat{N}_2} \le \sigma_{\delta_2} \tag{2.75}$$

kjer imata parametra δ_2 in σ_{δ_2} enako vlogo kot v enačbi 2.71, potem lahko sprejmemo ΔN_2 kot celo število, ki ima vrednost:

$$\Delta N_2 = round \left(\Delta \hat{N}_2\right) \tag{2.76}$$

Sprememba fazne nedoločenosti na L_1

Ko imamo določene spremembe faznih nedoločenosti ΔL_6 in ΔL_2 v območju celih števil, je spremembo fazne nedoločenosti ΔL_1 enostavno dobiti iz enačbe 2.68 kot $\Delta L_1 = \Delta L_2 + \Delta L_6$.

Odstranitev izpadov signala iz opazovanj

V primeru, da uspemo določiti spremembe faznih nedoločenosti ΔL_1 in ΔL_2 kot celo število, potem je možno vsa fazna opazovanja L_1 in L_2 od odkritega izpada signala popraviti. Če nam katerega izmed ΔL_1 in ΔL_2 ne uspe določiti kot celo število, moramo od izpada signala za fazna opazovanja L_1 in L_2 nastaviti novi neznanki faznih nedoločenosti N_1 in N_2 .

Pri metodi PPP v obdelavi, poleg P_3 , uporabimo tudi opazovanja L_3 (enačba 2.2). Izpad signala, ki ga po zgoraj predstavljenem postopku ne uspemo locirati, bo predstavljal niz prisotnih grobih pogreškov konstantne vrednosti v faznih opazovanjih. Le-ti so lahko v najboljšem primeru velikosti nekaj centimetrov, v neugodnih primerih pa lahko predstavljajo navzgor neomejene konstantne vrednosti, ki lahko znašajo več tisoč kilometrov.

3 USKLADITEV OCENJENIH KOORDINAT Z ME-TODO PPP IN GLOBALNIM KOORDINATNIM SISTEMOM ITRS

Metoda PPP določi koordinate točke v koordinatnem sistemu, v katerem so podane efemeride, ki so bile vzete v obdelavo (Dach in sod., 2007; Zumberge in sod., 1997). Koordinatni sistem preciznih efemerid je označen z IGb08 (Rebischung in sod., 2012) in predstavlja realizacijo globalnega koordinatnega sistema samo na osnovi GNSS, ki pa ni identičen realizaciji ITRF, saj se pojavljajo razlike tako v položaju, zasukih in spremembi merila (Altamimi in sod., 2002; 2007; 2011). Druga neskladnost, ki se lahko pojavi je v razliki uporabljenega algoritma metode PPP in algoritma, s katerim so bile določene efemeride in precizne ure satelitov GPS (Kenyeres in Bruyninx, 2004; Kierulf in Plag, 2006). Tretja neskladnost pa se pojavi zaradi uporabe ne-diferenciranih opazovanj pri metodi PPP, kjer je nemogoče v popolnosti odstraniti oz. modelirati vplive na opazovanja. Pogreški preciznih efemerid in ur satelitov, netočnost modelov troposfere, plimovanj, kalibracijskih parametrov anten sprejemnikov in satelitov, nepopolna odstranitev vpliva ionosfere, večpotje, lokalna geodinamika, lokalna meteorologija, ... se prenesejo v ocenjene koordinate točk in posledično povzročijo neskladnost ocenjenih koordinat točk s koordinatami točke v ITRF (Davis in sod., 2012; Kenyeres in Bruyninx, 2004; King in Watson, 2010; Mao in sod., 1999; Santamaría-Gómez in sod., 2011; Stewart in sod., 2005). Neskladnost koordinat točke, dobljene z metodo PPP in koordinat točke v ITRF, ima lahko sistematične značilnosti za vse točke, vzete v obdelavo, lahko pa se od točke do točke spreminja (Caporali, 2003). Sistematične značilnosti lahko obravnavamo s postopki prostorske transformacije, ki ima v splošnem obliko (Bock, 1998; Hofmann-Wellenhof in sod., 2001; Leick, 2004):

$$\mathbf{X}^{II} = \mathbf{T} + (1+m)\mathbf{R}_a(\omega_x, \, \omega_y, \, \omega_z)\mathbf{X}^I$$
(3.1)

V enačbi 3.1 nastopa 7 parametrov transformacije, in sicer trije parametri premika t_x , t_y in t_z , ki se nahajajo v vektorju premika $\mathbf{T} = \begin{bmatrix} t_x & t_y & t_z \end{bmatrix}^{\mathrm{T}}$, trije parametri zasuka ω_x , ω_y in ω_z , ki se nahajajo v matriki zasuka $\mathbf{R}_a(\omega_x, \omega_y, \omega_z) = \mathbf{R}_x(\omega_x)\mathbf{R}_y(\omega_y)\mathbf{R}_z(\omega_z)$, in sprememba merila m. Enačba 3.1 prikazuje, kako na osnovi 7-ih transformacijskih parametrov, transformiramo koordinate točke $\mathbf{X}^I = \begin{bmatrix} x^I & y^I & z^I \end{bmatrix}^{\mathrm{T}}$ iz sistema I v sistem II, v katerem so koordinate točke podane z $\mathbf{X}^{II} = \begin{bmatrix} x^{II} & y^{II} & z^{II} \end{bmatrix}^{\mathrm{T}}$. Pod predpostavko majhnih zasukov, majhnih premikov in majhne spremembe merila, se model transformacije iz enačbe 3.1 lahko zapiše kot (Altamimi in sod., 2002; 2007; 2011; Boucher, 1990;

Boucher in Altamimi, 1993; Han, 2006; Boucher in Altamimi, 2011; Petit in Luzum, 2010; Soler in Snay, 2004):

$$\mathbf{X}^{II} = \mathbf{X}^{I} + \mathbf{T} + m\mathbf{X}^{I} + \mathbf{R}(\omega_{x}, \, \omega_{y}, \, \omega_{z})\mathbf{X}^{I}$$
(3.2)

oz. v razširjeni obliki:

$$\begin{bmatrix} x^{II} \\ y^{II} \\ z^{II} \end{bmatrix} = \begin{bmatrix} x^{I} \\ y^{I} \\ z^{I} \end{bmatrix} + \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix} + m \begin{bmatrix} x^{I} \\ y^{I} \\ z^{I} \end{bmatrix} + \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix} \begin{bmatrix} x^{I} \\ y^{I} \\ z^{I} \end{bmatrix}$$
(3.3)

3.1 Izračun transformacije

Predpostavimo, da imamo opazovanja GPS izvedena na n_p točkah in vsa opazovanja obdelamo z metodo PPP, kot je to predstavljeno v poglavju 2.5. Za vsako točko pridobimo ocenjene neznanke, ki so predstavljene v poglavju 2.3.1, kjer nas trenutno zanimajo ocenjene koordinate točk. Za vsako izmed točk pridobimo vektor koordinat točke \mathbf{X}_i^P s pripadajočo kovariančno matriko $\boldsymbol{\Sigma}_i^P$:

$$\mathbf{X}_{i}^{P} = \begin{bmatrix} x_{i}^{P} \\ y_{i}^{P} \\ z_{i}^{P} \end{bmatrix} \qquad \mathbf{\Sigma}_{i}^{P} = \sigma_{0,i}^{2} \mathbf{Q}_{i}^{P} = \sigma_{0,i}^{2} \begin{bmatrix} q_{x_{i}^{P}} & q_{x_{i}^{P}y_{i}^{P}} & q_{x_{i}^{P}z_{i}^{P}} \\ q_{x_{i}^{P}y_{i}^{P}} & q_{y_{i}^{P}} & q_{y_{i}^{P}z_{i}^{P}} \\ q_{x_{i}^{P}z_{i}^{P}} & q_{y_{i}^{P}z_{i}^{P}} & q_{z_{i}^{P}} \end{bmatrix}$$
(3.4)

V enačbi 3.4 indeks *i* predstavlja indeks točke $(i \in \{1, 2, ..., n_p\})$, *P* oznako, da so koordinate dobljene z metodo PPP, \mathbf{X}_i^P in \mathbf{Q}_i^P pa sta pridobljena iz enačbe 2.53. Za vse opazovane točke sta vektorja vseh koordinat \mathbf{X}^P s pripadajočo kovariančno matriko $\mathbf{\Sigma}^P$ definirana kot:

$$\mathbf{X}^{P} = \begin{bmatrix} \mathbf{X}_{1}^{P} \\ \mathbf{X}_{2}^{P} \\ \vdots \\ \mathbf{X}_{k}^{P} \end{bmatrix} \qquad \mathbf{\Sigma}^{P} = \begin{bmatrix} \sigma_{0,1}^{2} \mathbf{Q}_{1}^{P} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \sigma_{0,2}^{2} \mathbf{Q}_{2}^{P} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \sigma_{0,k}^{2} \mathbf{Q}_{k}^{P} \end{bmatrix}$$
(3.5)

Matrika kofaktorjev \mathbf{Q}^P vseh točk je dobljena na osnovi referenčne variance a-priori σ_0^2 (referenčna varianca a-posteriori iz enačbe 2.55) in je defirana kot:

$$\mathbf{Q}^P = \frac{1}{\sigma_0^2} \mathbf{\Sigma}^P \tag{3.6}$$

Predpostavimo, da imamo za niz $n_{p,R}$ točk, kjer velja $n_{p,R} < n_p$, podane kakovostne koordinate v koordinatnem sestavu ITRF (Altamimi in sod., 2011; ITRF, 2014), za ostale točke pa imamo samo približne koordinate podane v ITRF. Koordinate *i*-te točke v ITRF označimo z $\mathbf{X}_i^I = \begin{bmatrix} x_i^I & y_i^I & z_i^I \end{bmatrix}^{\mathrm{T}}$.

Za vsako točko obravnavamo koordinate dobljene s PPP kot opazovanja, koordinate ITRF pa kot konstantne referenčne vrednosti, in za vsako točko lahko oba niza koordinat povežemo na osnovi enačb 3.2 in 3.3 v obliki enačb popravkov (Mikhail in Ackermann, 1976) kot:

$$\begin{bmatrix} v_{x_i^P} \\ v_{y_i^P} \\ v_{z_i^P} \end{bmatrix} + \begin{bmatrix} -1 & 0 & 0 & 0 & -z_i^I & y_i^I & -x_i^I \\ 0 & -1 & 0 & z_i^I & 0 & -x_i^I & -y_i^I \\ 0 & 0 & -1 & -y_i^I & x_i^I & 0 & -z_i^I \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \\ \omega_x \\ \omega_y \\ \omega_z \\ m \end{bmatrix} = \begin{bmatrix} x_i^I - x_i^P \\ y_i^I - y_i^P \\ z_i^I - z_i^P \end{bmatrix}$$
(3.7)

Enačbo 3.7 lahko zapišemo tudi v matrični obliki:

$$\mathbf{v}_i + \mathbf{M}_i \boldsymbol{\beta} = \mathbf{f}_i = \mathbf{X}_i^I - \mathbf{X}_i^P \tag{3.8}$$

V enačbi 3.8 vektor $\mathbf{v}_i = \begin{bmatrix} v_{x_i^P} & v_{y_i^P} & v_{z_i^P} \end{bmatrix}^{\mathrm{T}}$ predstavlja popravke koordinat točke, dobljene z metodo PPP in \mathbf{f}_i vektor odstopanj enačb popravkov. Za vse izmerjene točke lahko matrični model iz enačbe 3.8 oblikujemo kot:

$$\begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \vdots \\ \mathbf{v}_{k} \end{bmatrix} + \begin{bmatrix} \mathbf{M}_{1} \\ \mathbf{M}_{2} \\ \vdots \\ \mathbf{M}_{k} \end{bmatrix} \beta = \begin{bmatrix} \mathbf{f}_{1} \\ \mathbf{f}_{2} \\ \vdots \\ \mathbf{f}_{k} \end{bmatrix} \quad \leftrightarrow \quad \mathbf{v} + \mathbf{M}\beta = \mathbf{f}$$
(3.9)

Matriko uteži koordinat metode PPP vseh točk nastavimo kot:

$$\mathbf{P} = \begin{bmatrix} \mathbf{P}_{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_{2} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{P}_{k} \end{bmatrix} \quad \leftrightarrow \quad \mathbf{P}_{i} = \delta \cdot \tilde{\mathbf{P}}_{i}$$
(3.10)

Za parameter δ iz enačbe 3.10 velja, da ima vrednost $\delta = 1$, če ima *i*-ta točka dobro določene koordinate v sestavu ITRF oz. $\delta = 0$, če ima točka le približne koordinate v

ITRF. S parametrom δ torej nastavimo, ali bo *i*-ta točka vezna točka transformacije ali ne. Matrika uteži *i*-te točke $\tilde{\mathbf{P}}_i$ je v primeru, ko uporabimo Helmertovo transformacijo, določena z enotsko matriko $\tilde{\mathbf{P}}_i = \mathbf{I}_{3\times 3}$, v primeru podobnostne transformacije pa se utež nastavi na osnovi enačbe 3.4 kot:

$$\tilde{\mathbf{P}}_{i} = \frac{\sigma_{0}^{2}}{\sigma_{0,i}^{2}} \left(\mathbf{Q}_{i}^{P}\right)^{-1}$$
(3.11)

Referenčna varianca $\sigma_{0,i}^2$ je definirana v enačbi 3.4, referenčna varianca σ_0^2 pa predstavlja natančnost vseh koordinat točk, dobljenih z metodo PPP oz. referenčno varianco a-priori funckionalnega model izravnave iz enačbe 3.8 in je določena v enačbi 3.6.

Rešitev matematičnega modela izravnave, ki je določen s funkcionalnim modelom iz enačbe 3.8 in stohastičnim modelom iz enačb 3.10 in 3.11, je dobljena z izračunom vektorja neznank β s pripadajočo matriko kofaktorjev \mathbf{Q}_{β} in vektorjem popravkov \mathbf{v} s pripadajočo matriko kofaktorjev $\mathbf{Q}_{\mathbf{v}}$ (Koch, 1999; Kuang, 1996; Leick, 2004; Mikhail in Ackermann, 1976) kot:

$$\beta = (\mathbf{M}^{\mathrm{T}} \mathbf{P} \mathbf{M})^{-1} \mathbf{M}^{\mathrm{T}} \mathbf{P} \mathbf{f} \qquad \mathbf{Q}_{\beta} = (\mathbf{M}^{\mathrm{T}} \mathbf{P} \mathbf{M})^{-1}$$

$$\mathbf{v} = \mathbf{f} - \mathbf{M}\beta = (\mathbf{I} - \mathbf{M} \mathbf{Q}_{\beta} \mathbf{M}^{\mathrm{T}} \mathbf{P}) \mathbf{f} \qquad \mathbf{Q}_{\mathbf{v}} = (\mathbf{I} - \mathbf{M} \mathbf{Q}_{\beta} \mathbf{M}^{\mathrm{T}} \mathbf{P}) \mathbf{Q}^{P} (\mathbf{I} - \mathbf{M} \mathbf{Q}_{\beta} \mathbf{M}^{\mathrm{T}} \mathbf{P})^{\mathrm{T}}$$
(3.12)

Enačbe 3.12 predstavljajo rešitev modela transformacije po MNK, kjer vektor β predstavlja izravnane transformacijske parametre pri prehodu iz koordinat ITRF v koordinate PPP. Nas dejansko zanimajo obratni parametri β_o , za katere pa na osnovi enačb 3.2 in 3.3 velja (Papo, 2003):

$$\beta_o = -\left(\mathbf{M}^{\mathrm{T}}\mathbf{P}\mathbf{M}\right)^{-1}\mathbf{M}^{\mathrm{T}}\mathbf{P}\mathbf{f} = -\beta$$
(3.13)

Na osnovi zakona o prenosu varianc in kovarianc (Koch, 1999; Kuang, 1996; Mikhail in Ackermann, 1976) lahko pokažemo, da je matrika kofaktorjev obratnih parametrov \mathbf{Q}_{β_o} enaka:

$$\mathbf{Q}_{\beta_o} = \left(\mathbf{M}^{\mathrm{T}} \mathbf{P} \mathbf{M}\right)^{-1} = \mathbf{Q}_{\beta} \tag{3.14}$$

Transformirane koordinate PPP točk na podane koordinate ITRF \mathbf{X}^t dobimo iz enačbe 3.9 kot:

$$\mathbf{X}^{t} = \mathbf{X}^{P} + \mathbf{M}\boldsymbol{\beta} = \mathbf{X}^{I} - \mathbf{v}$$
(3.15)

Pripadajoča matrika kofaktorjev transformiranih koordinat $\mathbf{Q}_{\mathbf{X}^t}$ ima obliko:

$$\mathbf{Q}_{\mathbf{X}^t} = \mathbf{Q}_{\mathbf{v}} \tag{3.16}$$

Najprej definirajmo matriko $\mathbf{W}^{\mathrm{T}} = \mathbf{M}^{\mathrm{T}}\mathbf{P}$ in nato matriko \mathbf{S} na osnovi enačbe 3.12 kot:

$$\mathbf{S} = \left(\mathbf{I} - \mathbf{M}\mathbf{Q}_{\beta}\mathbf{M}^{\mathrm{T}}\mathbf{P}\right) = \left(\mathbf{I} - \mathbf{M}\left(\mathbf{W}^{\mathrm{T}}\mathbf{M}\right)^{-1}\mathbf{W}^{\mathrm{T}}\right)$$
(3.17)

Na osnovi enačbe 3.17 in spodnjih dveh enačb iz enačbe 3.12, vidimo, da se vektor popravkov in pripadajoča matrika kofaktorjev lahko zapiše kot:

$$\mathbf{v} = \mathbf{S}\mathbf{f} \qquad \mathbf{Q}_{\mathbf{v}} = \mathbf{S}\mathbf{Q}^{P}\mathbf{S}^{\mathrm{T}} \tag{3.18}$$

Iz enačbe 3.18 vidimo, da je le-ta praktično identična enačbi za S-transformacijo iz enačbe 2.38. Vektor \mathbf{v} predstavlja osnovo za izračun transformiranih koordinat \mathbf{X}^t iz enačbe 3.15, matrika kofaktorjev $\mathbf{Q}_{\mathbf{v}}$ pa osnovo za izračun matrike kofaktorjev transformiranih koordinat $\mathbf{Q}_{\mathbf{X}^t}$ iz enačbe 3.16.

Število transformacijskih parametrov u_t smo v zgornjem primeru definirali kot 7, tj. število vseh transformacijskih parametrov v 3R prostoru pri podobnostni transformaciji. V primeru, da želimo manjše število transformacijskih parametrov, iz osnovnega matričnega modela enačbe 3.7 enostavno odstranimo odgovarjujoče neznanke iz vektorja β in odgovarjujoče stolpce iz matrike **M**. Število transformacijskih parametrov je na ta način lahko $0 < u_t \leq 7$.

3.2 Analiza rezultatov transformacije

Iz vsebine poglavja 3.1 je razvidno, da uskladitev ocenjenih koordinat PPP s koordinatnim sistemom ITRS izvedemo z izravnavo prostorske transformacije, ki pa se prevede na enačbe S-transformacije (enačba 3.18). Lastnosti izračunanih količin lahko torej pridobimo iz lastnosti S-transformacije in iz lastnosti projekcij in projektorjev, kjer velja (Križanič, 1993; Marjetič in Stopar, 2007; van Mierlo, 1980; Teunissen, 2003):

- Matrika **S** je idempotentna, torej je projektor, ki projicira poljubne vektorje $\mathbf{r} \in \mathbb{R}^{3n_p}$ na ortogonalni komplement $\operatorname{Im}(\mathbf{M})^{\perp}$ vzdolž prostora $\operatorname{Im}(\mathbf{M})$.
- Rang $rang(\mathbf{S}) = 3n_p u_t$, kjer je n_p število točk v transformaciji in u_t število transformacijskih parametrov (število stolpcev matrike **M**).
- Rang $rang(\mathbf{Q}_{\mathbf{X}^t}) = rang(\mathbf{S}) = 3n_p u_t$, na osnovi matematičnega modela metode PPP (poglavje 2.4.2) pa po drugi strani velja $rang(\mathbf{Q}^P) = 3n_p$.
- Jedro in slika transformirane matrike kofaktorjev $\mathbf{Q}_{\mathbf{X}^t}$ sta: jedro $\operatorname{Ker}(\mathbf{Q}_{\mathbf{X}^t}) = \operatorname{Ker}(\mathbf{S}) = \mathbf{M}$ in slika $\operatorname{Im}(\mathbf{Q}_{\mathbf{X}^t}) = \operatorname{Im}(\mathbf{S}) = \mathbf{M}^{\perp}$.

Na osnovi zgornjih alinej vidimo, da je matrika kofaktorjev \mathbf{Q}^{P} , ki opisuje natančnosti ocenjenih koordinat točk PPP iz enačbe 3.6, polnega ranga, kar pa ne velja za transformirano matriko kofaktorjev $\mathbf{Q}_{\mathbf{X}^{t}}$. Zadnja pridobi defekt ranga, ki je enak številu določenih transformacijskih parametrov v izravnavi, z jedrom, ki ga opiše matrika **M** (van Mierlo, 1980).

S-transformacija v splošnem predstavlja orodje, s katerim je možno prehajati med različnimi realizacijami geodetskega datuma geodetske mreže, določenega z minimalnim številom vezi (Baarda, 1981; Marjetič in Stopar, 2007; Teunissen, 2006a). Z uporabo Stransformacije spreminjamo geodetski datum neznank in matrike kofaktorjev neznank, a ohranjamo rang transformirane matrike kofaktorjev glede na vhodno matriko kofaktorjev neznank (Marjetič in Stopar, 2007). Zgornji primer pa kaže, da se lahko S-transformacijo uporabi tudi v primeru, ko ranga ne želimo ohranjati, saj je vhodna matrika kofaktorjev \mathbf{Q}^P polnega ranga, izhodna matrika $\mathbf{Q}_{\mathbf{X}^t}$ pa ima defekt ranga. Za rang $\mathbf{Q}_{\mathbf{X}^t}$ lahko zapišemo:

$$3n_p = rang(\mathbf{Q}^P) \ge rang(\mathbf{Q}_{\mathbf{X}^t}) = 3n_p - u_t \ge 3n_p - 7 \tag{3.19}$$

Enačba 3.19 kaže, da ima matrika $\mathbf{Q}_{\mathbf{X}^t}$ lahko rang kvečjemu tak kot matrika \mathbf{Q}^P , a najmanjšega kot $3n_p - 7$. Enačba 3.19 pomeni, da lahko s S-transformacijo iz rezultatov izravnave (vektor neznank in matrika kofaktorjev neznank) odstranimo določene datumske parametre, ki jih vsebujejo opazovanja, na osnovi katerih smo izravnavo izvršili.

4 OCENA POLOŽAJEV IN HITROSTI GEODET-SKIH TOČK GNSS

Poglavje 2 prikazuje, kako na osnovi opazovanj GPS na številnih točkah, v isti terminski izmeri, pridobimo kakovostne koordinate vseh točk v globalnem koordinatnem sistemu. Pri različnih geodetskih nalogah, kjer je potrebna najvišja dobljena natančnost ocenjenih koordinat geodetskih točk, kot npr. vzpostavitev in vzdrževanje modernih koordinatnih sistemov (Altamimi in sod., 2002; 2007; 2011; Altamimi in Collilieux, 2009; Ray in sod., 2004) ali najnatančnejših geodinamičnih izmerah GNSS (Caporali, 2003; Caporali in sod., 2009; Grenerczy in sod., 2000; Hammond in sod., 2011), ena sama terminska izmera ni dovolj. Predvsem nas zanimajo spremembe položajev (koordinat) točk skozi čas, zato je nujno položaje točk izmeriti čim večkrat.

S časovnimi vrstami koordinat označimo niz ocenjenih koordinat geodetske točke, ki so bile določene v različnih terminskih izmerah in so obravnavane kot slučajne spremenljivke (Shumway in Stoffer, 2006). Časovne vrste koordinat posamezne geodetske točke predstavljajo osnovno količino za opis položaja točke skozi čas. Položaj točke $\mathbf{X}(t)$ v poljubnem trenutku t modeliramo kot (Boucher in Altamimi, 1993; Caporali, 2003; Hammond in sod., 2011):

$$\mathbf{X}(t) = \mathbf{X} + (t - t_R)\dot{\mathbf{X}} + \Delta\mathbf{X}(t) + \epsilon(t)$$
(4.1)

V enačbi 4.1 predstavlja t_R izbrano referenčno epoho, **X** položaj točke v referenčni epohi, $\dot{\mathbf{X}}$ konstantno vrednost vektorja hitrosti točke, $\Delta \mathbf{X}(t)$ časovno odvisne sistematične vplive na položaj geodetske točke in $\epsilon(t)$ prisotne slučajne vplive. Časovno odvisne sistematične vplive na položaj točke $\Delta \mathbf{X}(t)$ lahko, glede na modeliranje vplivov pri metodi PPP v poglavju 2, odstranimo že v postopku obdelave geodetskih opazovanj. S pravilno izbiro lokacije geodetske točke lahko v veliki meri odstranimo spremembe položaja točke zaradi vplivov neposredne okolice točke (potresi, posedanja, nihanje podtalnih voda ...). Tako položaj geodetske točke modeliramo kot linearen trend na osnovi **X** in $\dot{\mathbf{X}}$, ki se je izkazal kot ustrezen model za geodetske potrebe (Amiri-Simkooei in sod., 2007). Enačbo 4.1 poenostavimo v:

$$\mathbf{X}(t) = \mathbf{X} + (t - t_R)\dot{\mathbf{X}} + \epsilon(t)$$
(4.2)

Sprememba položaja skozi čas iz enačbe 4.2 je določena s konstatnim vektorjem hitrosti $\dot{\mathbf{X}}$, ki predstavlja predvsem gibanje litosferske plošče geodetske točke v izbranem koordinatnem sistemu (Altamimi in sod., 2012; Boucher in Altamimi, 1993). Kljub vsemu, lahko

v časovnih vrstah koordinat točke še vedno nastopajo določene variacije, ki odstopajo od trenda. Le-te imajo številne vzroke, od nepopolnega modeliranja vplivov na opazovanja do lokalnih in globalnih geodinamičnih procesov (Amiri-Simkooei in sod., 2007; Caporali, 2003; Mao in sod., 1999) in povzročijo, da je slučajni pogrešek $\epsilon(t)$ časovno koreliran, kar pa vpliva predvsem na oceno kakovosti izračunanih koordinat in komponent vektorja hitrosti (Caporali, 2003; Mao in sod., 1999). Osnovni matematično model gibanja geodetskih točk v izbranem koordinatnem sistemu tako predstavlja enačba 4.2.

4.1 Modeliranje časovnih vrst koordinat geodetskih točk

Predpostavimo, da imamo rezultate izmere GNSS na n_p -tih točkah v n_T terminskih izmerah. Za *i*-to terminsko izmero, določeno z epoho t_i ($i = \{1, 2, ..., n_T\}$), pridobimo vektor transformiranih koordinat točk \mathbf{X}_i^t (enačba 3.15), pripadajočo matriko kofaktorjev $\mathbf{Q}_{\mathbf{X}_i^t}$ (enačba (3.16)) in referenčno varianco¹⁸ σ_{0i}^2 (enačba (2.55)). Na osnovi parametrizacije položaja poljubne točke iz enačbe 4.2 vektor \mathbf{X}_i^t modeliramo kot:

$$\mathbf{v}_i + \mathbf{X}_i^t = \begin{bmatrix} \mathbf{I} & (t_i - t_R)\mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \dot{\mathbf{X}} \end{bmatrix}$$
(4.3)

Enačbe popravkov za i-to terminsko izmero sestavimo na osnovi enačbe 4.3 v obliki (Mikhail in Ackermann, 1976):

$$\mathbf{v}_i + \begin{bmatrix} -\mathbf{I} & -(t_i - t_R)\mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \dot{\mathbf{X}} \end{bmatrix} = -\mathbf{X}_i^t \qquad \leftrightarrow \qquad \mathbf{v}_i + \mathbf{B}_i \mathbf{\Delta}_i = \mathbf{f}_i \qquad (4.4)$$

Stohastični model predstavimo z matriko uteži $\mathbf{P}_{\mathbf{X}_{i}^{t}}$ in pripadajočo referenčno varianco σ_{0i}^{2} , kjer matriko uteži $\mathbf{P}_{\mathbf{X}_{i}^{t}}$ dobimo z invertiranjem matrike kofaktorjev $\mathbf{Q}_{\mathbf{X}_{i}^{t}}$ (Koch, 1999; Mikhail in Ackermann, 1976):

$$\mathbf{P}_{\mathbf{X}_{i}^{t}} = \mathbf{Q}_{\mathbf{X}_{i}^{t}}^{-1} \tag{4.5}$$

Enačba 4.5 velja le v primeru polnega ranga matrike kofaktorjev $\mathbf{Q}_{\mathbf{X}_{i}^{t}}$, kar pa v našem primeru ne drži. Glede na zaključke poglavja 3.2 in glede na enačbo 3.19 velja, da ima matrika $\mathbf{Q}_{\mathbf{X}_{i}^{t}}$ defekt velikosti u_{t} , ki predstavlja število ocenjenih transformacijskih parametrov, ko uskladimo rezultate metode PPP z globalnim koordinatnim sistemom. Posledično inverz matrike $\mathbf{Q}_{\mathbf{X}_{i}^{t}}^{-1}$ ne obstaja, zato moramo matriko uteži $\mathbf{P}_{\mathbf{X}_{i}^{t}}$ določiti drugače. Za izračun matrike uteži $\mathbf{P}_{\mathbf{X}_{i}^{t}}$, ki bo vsebovala enake informacije o natančnostih koordinat točk

 $^{^{18} {\}rm Varianca\ ima\ vlogo\ referenčne\ variance\ a-priori,\ saj\ v\ tem\ primeru\ predstavlja\ natančnost\ opazovanj.}$

kot matrika kofaktorjev $\mathbf{Q}_{\mathbf{X}_{i}^{t}}$, je potrebno določiti matriko \mathbf{Y} , ki napenja jedro $\operatorname{Ker}(\mathbf{Q}_{\mathbf{X}_{i}^{t}})$ in matriko \mathbf{H} , ki opisuje niz veznih enačb, ki realizirajo jedro $\operatorname{Ker}(\mathbf{Q}_{\mathbf{X}_{i}^{t}})$. Za obe matriki (glej poglavje 3.2) velja:

$$\mathbf{Y} = \mathbf{M} \qquad \qquad \mathbf{H} = \mathbf{P}\mathbf{M} \tag{4.6}$$

Jedro Ker $(\mathbf{Q}_{\mathbf{X}_{i}^{t}})$ je glede na enačbo 3.16, enačbo 3.12 in zaključke poglavja 3.2 kar matrika koeficientov **M** prostorske transformacije iz enačbe 3.9. Matriko veznih enačb **H**, ki realizirajo Ker $(\mathbf{Q}_{\mathbf{X}_{i}^{t}})$, pa dobimo na osnovi enačbe 3.17. Matrika **P** je blok diagonalna matrika, definirana v enačbi 3.10 in ima po diagonali neničelne vrednosti le za referenčne točke (Marjetič in Stopar, 2007). Osnovni nastavek za izračun matrike uteži $\mathbf{P}_{\mathbf{X}_{i}^{t}}$ je lahko, glede na van Mierlo (1980), enačba za izračun matrike kofaktorjev neznank $\mathbf{Q}_{\Delta\Delta}$ na osnovi singularne matrike sistema normalnih enačb **N** (Chen, 1983; Kuang, 1996; Leick, 2004):

$$\mathbf{Q}_{\Delta\Delta} = \left(\mathbf{N} + \mathbf{H}\mathbf{H}^{\mathrm{T}}\right)^{-1} - \mathbf{Y} \left(\mathbf{Y}^{\mathrm{T}}\mathbf{H}\mathbf{H}^{\mathrm{T}}\mathbf{Y}\right)^{-1}\mathbf{Y}^{\mathrm{T}}$$
(4.7)

Matrika $\mathbf{Q}_{\Delta\Delta}$ iz enačbe 4.7 napenja isti prostor kot matrika **N**, torej ima enako sliko $\operatorname{Im}(\mathbf{Q}_{\Delta\Delta}) = \operatorname{Im}(\mathbf{N})$, enako jedro $\operatorname{Ker}(\mathbf{Q}_{\Delta\Delta}) = \operatorname{Ker}(\mathbf{N})$ in ima vse lastnosti generalizirane inverzije \mathbf{N}^- (Chen, 1983; Rao in Mitra, 1971). Izračun matrike **N** je tako podan z:

$$\mathbf{N} = \left(\mathbf{Q}_{\Delta\Delta} + \mathbf{Y}\left(\mathbf{Y}^{\mathrm{T}}\mathbf{H}\mathbf{H}^{\mathrm{T}}\mathbf{Y}\right)^{-1}\mathbf{Y}^{\mathrm{T}}\right)^{-1} - \mathbf{H}\mathbf{H}^{\mathrm{T}}$$
(4.8)

Na osnovi enačbe 4.8 dobimo postopek za izračun matrike uteži $\mathbf{P}_{\mathbf{X}_{i}^{t}}$ kot:

$$\mathbf{P}_{\mathbf{X}_{i}^{t}} = \left(\mathbf{Q}_{\mathbf{X}_{i}^{t}} + \mathbf{Y}\left(\mathbf{Y}^{\mathrm{T}}\mathbf{H}\mathbf{H}^{\mathrm{T}}\mathbf{Y}\right)^{-1}\mathbf{Y}^{\mathrm{T}}\right)^{-1} - \mathbf{H}\mathbf{H}^{\mathrm{T}}$$
(4.9)

Enačba 4.9 prikazuje, kako pridobiti matriko uteži $\mathbf{P}_{\mathbf{X}_{i}^{t}}$, ki ni odvisna od zagotovitve geodetskega datuma, prisotnega v matriki kofaktorjev $\mathbf{Q}_{\mathbf{X}_{i}^{t}}$. Glede na enačbo 4.8 ugotovimo tudi, da matrika $\mathbf{P}_{\mathbf{X}_{i}^{t}}$ dejansko predstavlja matriko sistema normalnih enačb, ki bi bila uporabljena za izračun matrike $\mathbf{Q}_{\mathbf{X}_{i}^{t}}$. Lastnost izhaja iz ekvivalence združevanja sistemov normalnih enačb in združevanja ocenjenih vrednosti neznank s pripadajočimi kovariančnimi matrikami (Brockmann, 1996). Enačba 4.9 prikazuje, da je za izračun matrike $\mathbf{P}_{\mathbf{X}_{i}^{t}}$ iz singularne matrike $\mathbf{Q}_{\mathbf{X}_{i}^{t}}$ potrebno poznati niz veznih enačb (geodetski datum), ki so bile uporabljene za izračun $\mathbf{Q}_{\mathbf{X}_{i}^{t}}$, saj bo le na ta način izračunana matrika $\mathbf{P}_{\mathbf{X}_{i}^{t}}$ ustrezno določena. Preprosta uporaba psevdo-inverzije (Leick, 2004; Rao in Mitra, 1971) kot:

$$\mathbf{P}_{\mathbf{X}_{i}^{t}} = \left(\mathbf{Q}_{\mathbf{X}_{i}^{t}} + \mathbf{Y}\mathbf{Y}^{\mathrm{T}}\right)^{-1} - \mathbf{Y}\left(\mathbf{Y}^{\mathrm{T}}\mathbf{Y}\mathbf{Y}^{\mathrm{T}}\mathbf{Y}\right)^{-1}\mathbf{Y}^{\mathrm{T}} = \mathbf{Q}_{\mathbf{X}_{i}^{t}}^{+}$$
(4.10)

ni priporočljiva, saj v splošnem poda pristranske rešitve po metodi najmanjših kvadratov (Björk, 1996). Enačba 4.10 je možno uporabiti le v primeru, ko velja $\mathbf{Q}_{\mathbf{X}_{i}^{t}} = \mathbf{N}^{+}$, saj le v tem primeru velja $\mathbf{P}_{\mathbf{X}_{i}^{t}} = \mathbf{Q}_{\mathbf{X}_{i}^{t}}^{+} = (\mathbf{N}^{+})^{+} = \mathbf{N}$ (Rao in Mitra, 1971).

4.2 Ocena koordinat in vektorjev hitrosti po MNK

Ocenjene koordinate vseh točk **X** v referenčni epohi t_R in pripadajoče vektorje hitrosti $\dot{\mathbf{X}}$ pridobimo s posredno izravnavo po MNK (Koch, 1999; Leick, 2004; Mikhail in Ackermann, 1976) na osnovi fukcionalnega modela iz enačbe 4.4 in stohastičnega modela, ki ga predstavljata matrika uteži $\mathbf{P}_{\mathbf{X}_i^t}$ iz enačbe 4.10 in referenčna varianca a-priori σ_{0i}^2 . Sistem normalnih enačb za *i*-to terminsko izmero sestavimo enako kot v primeru enačbe 2.47 in ima obliko:

$$\begin{bmatrix} \mathbf{P}_{\mathbf{X}_{i}^{t}} & (t_{i} - t_{R})\mathbf{P}_{\mathbf{X}_{i}^{t}} \\ (t_{i} - t_{R})\mathbf{P}_{\mathbf{X}_{i}^{t}} & (t_{i} - t_{R})^{2}\mathbf{P}_{\mathbf{X}_{i}^{t}} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{X} \\ \dot{\mathbf{X}} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{\mathbf{X}_{i}^{t}}\mathbf{X}_{i}^{t} \\ (t_{i} - t_{R})\mathbf{P}_{\mathbf{X}_{i}^{t}}\mathbf{X}_{i}^{t} \end{bmatrix} \quad \leftrightarrow \quad \mathbf{N}_{i} \cdot \mathbf{\Delta} = \mathbf{b}_{i}$$

$$(4.11)$$

Kljub temu, da je matrika koeficientov \mathbf{B}_i iz enačbe 4.4 nesingularna, je matrika sistema normalnih enačb \mathbf{N}_i , izračunana na osnovi 2.47, singularna. Vzrok za singularnost matrike \mathbf{N}_i se nahaja v singularnosti matrike uteži $\mathbf{P}_{\mathbf{X}_i^t}$. V primeru ocenjevanja koordinat in vektorjev hitrosti geodetskih točk na osnovi ponovljenih terminskih izmer GNSS, smo soočeni z naslednjo obliko matematičnega modela izravnave:

- funkcionalni model: $\mathbf{v} + \mathbf{B} \boldsymbol{\Delta} = \mathbf{f}$
- stohastični model: σ_o^2 in **P**

kjer je matrika koeficientov **B** polnega ranga in velja $rang(\mathbf{B}) = u$ (kjer u predstavlja število vseh neznank), a imamo matriko uteži **P**, za katero velja $rang(\mathbf{P}) = n - d < n$ (kjer n predstavlja število opazovanj), torej je singularna in zato pozitivno semi-definitna (Lampret, 2013; Leick, 2004; Strang in Borre, 1997).

4.2.1 Analiza matematičnega modela izravnave po MNK ob singularni matriki uteži

Karakteristična funkcija MNK Φ je definirana z (Mikhail in Ackermann, 1976; Koch, 1999; Leick, 2004; Jäger in sod., 2005):

$$\Phi = \mathbf{v}^{\mathrm{T}} \mathbf{P} \mathbf{v} \to min. \tag{4.12}$$

Zapišimo matriko uteži P kot (Björk, 1996; Golub in Van Loan, 1989):

$$\mathbf{P} = \mathbf{C}\mathbf{C}^{\mathrm{T}} \tag{4.13}$$

V primeru, ko je matrika uteži **P** pozitivno definitna, kar pomeni da ni singularna, je razcep iz enačbe 4.13 določen enolično z Choleskyevim razcepom (Björk, 1996; Golub in Van Loan, 1989; Jäger in sod., 2005; Koch, 1999; Lampret, 2013). V nasprotnem primeru, ko je matrika uteži **P** singularna (zato kvečjemu pozitivno semi-definitna), pa Choleskyjev razcep iz enačbe 4.13 zanjo ne obstaja (Björk, 1996; Golub in Van Loan, 1989). Obstajata pa dva razcepa, ki zaradi lastnosti matrike uteži **P** (da je pozitivno semi-definitna), podajata enak rezultat; to sta razcep na singularne vrednosti (razcep SVD) in diagonalizacija (Lampret, 2013; Leick, 2004; Strang in Borre, 1997; Teunissen, 1985). Matriko uteži **P** razcepimo na:

$$\mathbf{P} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}} \tag{4.14}$$

V enačbi 4.14 je matrika **U** matrika velikosti $n \times n$, je ortogonalna, polnega ranga in vsebuje lastne vektorje matrike **P**. Matrika Λ je diagonalna in ima na diagonali singularne vrednosti (so tu enake lastnim vrednostim) $\lambda_1, \lambda_2, \ldots, \lambda_n$, izmed katerih je n-d singularnih vrednosti pozitivnih neničelnih, d singularnih vrednosti pa je enakih 0 (Björk, 1996; Golub in Van Loan, 1989; Lampret, 2013; Leick, 2004; Strang in Borre, 1997; Teunissen, 1985). Povezava med enačbo 4.13 in 4.14 je:

$$\mathbf{P} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\mathrm{T}} = \mathbf{U}\sqrt{\mathbf{\Lambda}}\sqrt{\mathbf{\Lambda}}\mathbf{U}^{\mathrm{T}} = (\mathbf{U}\sqrt{\mathbf{\Lambda}})(\mathbf{U}\sqrt{\mathbf{\Lambda}})^{\mathrm{T}} = \bar{\mathbf{C}}\bar{\mathbf{C}}^{\mathrm{T}}$$
(4.15)

Enačba 4.15 prikazuje, da se da tudi pozitivno semi-definitno matriko razcepiti v obliko, kot je definirana v enačbi 4.13. Razcep matrike uteži \mathbf{P} v obliko iz enačbe 4.15 lahko uporabimo za zapis karakteristične funkcije Φ iz enačbe 4.12 kot:

$$\Phi = \mathbf{v}^{\mathrm{T}} \mathbf{P} \mathbf{v} = \mathbf{v}^{\mathrm{T}} \bar{\mathbf{C}} \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{v} = (\bar{\mathbf{C}}^{\mathrm{T}} \mathbf{v})^{\mathrm{T}} (\bar{\mathbf{C}}^{\mathrm{T}} \mathbf{v}) = \bar{\mathbf{v}}^{\mathrm{T}} \bar{\mathbf{v}} \to min.$$
(4.16)

Enačba 4.16 prikazuje linearno transformacijo vektorja popravkov¹⁹ iz \mathbf{v} v obliko $\bar{\mathbf{v}}$ (Björk, 1996; Golub in Van Loan, 1989; Jäger in sod., 2005; Koch, 1999). Linearno transformacijo iz enačbe 4.16 izvedemo tudi za vektor opazovanj l, matriko uteži \mathbf{P} in celoten funkcionalni model. Transformiran matematični model izravnave po MNK ima tako obliko:

$$\bar{\mathbf{l}} = \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{l} \qquad \rightarrow \qquad \bar{\mathbf{v}} = \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{v}$$
$$\bar{\mathbf{C}}^{\mathrm{T}} \mathbf{v} + \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{B} \boldsymbol{\Delta} = \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{f} \qquad \rightarrow \qquad \bar{\mathbf{v}} + \bar{\mathbf{B}} \boldsymbol{\Delta} = \bar{\mathbf{f}} \qquad (4.17)$$
$$\bar{\boldsymbol{\Sigma}} = \bar{\mathbf{C}}^{\mathrm{T}} \boldsymbol{\Sigma} \bar{\mathbf{C}} \qquad \rightarrow \qquad \bar{\boldsymbol{\Sigma}} = \sigma_0^2 \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{P}^- \bar{\mathbf{C}} = \sigma_0^2 \bar{\mathbf{I}}$$

¹⁹nem. Homogenisierung (Jäger in sod., 2005), angl. homoscedasticity (Koch, 1999)

Enačbe 4.17 opisujejo, da se da z ustrezno linearno transformacijo vsak primer utežene MNK transformirati v primer, ko so vsa opazovanja med seboj nekorelirana in enake natančnosti (Jäger in sod., 2005; Koch, 1999). Enačbe 4.17 pa predstavljajo tudi osnovo za analizo stohastičnega in funkcionalnega modela. Analiza matrike koeficientov $\bar{\mathbf{B}}$ nam poda (na osnovi enačbe 4.15):

$$\bar{\mathbf{B}} = \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{B} = \sqrt{\Lambda} \mathbf{U}^{\mathrm{T}} \mathbf{B} = \begin{bmatrix} \tilde{\mathbf{B}}_{(n-d) \times u} \\ \mathbf{0}_{d \times u} \end{bmatrix}$$
(4.18)

Matrika koeficientov \mathbf{B} se v enačbi 4.18 transformira v matriko $\bar{\mathbf{B}}$, ki ima d ničelnih vrstičnih vektorjev. Rang matrike $\bar{\mathbf{B}}$ določijo vse tri matrike, ki nastopajo v produktu, in sicer:

- matrika **B** je polnega ranga, torej $rang(\mathbf{B}) = u$,
- matrika **U** je polnega ranga, torej $rang(\mathbf{U}) = n$ in
- matrika $\sqrt{\Lambda}$ je singularna in ima $rang(\sqrt{\Lambda}) = n d$

V splošnem velja:

$$n - d \ge u \quad \rightarrow \quad \begin{cases} rang(\bar{\mathbf{B}}) < u & \text{defekt konfiguracije} \\ rang(\bar{\mathbf{B}}) = u & \text{ni defekta konfiguracije} \\ n - d < u \quad \rightarrow \quad rang(\bar{\mathbf{B}}) < u \end{cases}$$
(4.19)

Enačba 4.19 prikazuje, da singularnost matrike uteži \mathbf{P} ni zadosten pogoj za singularnost matrike $\mathbf{\bar{B}}$. Matrika $\mathbf{\bar{B}}$ bo regularna, če bo imela vsaj u nepraznih vrstic in ne pride do defekta konfiguracije matematičnega modela (Krüger, 1980; van Mierlo, 1980). V ostalih primerih pridobimo singularno matriko koeficientov $\mathbf{\bar{B}}$.

Enak zaključek, kot v primeru matrike koeficientov \mathbf{B} , lahko naredimo tudi za ostale količine, ki nastopajo v izravnavi; $\mathbf{\bar{l}}$, $\mathbf{\bar{v}}$, in $\mathbf{\bar{f}}$. Vse tri vektorje sestavlja n - d nepraznih elementov in d praznih elementov:

$$\bar{\mathbf{l}} = \begin{bmatrix} \tilde{\mathbf{l}}_{(n-d)\times 1} \\ \mathbf{0}_{d\times 1} \end{bmatrix} \qquad \bar{\mathbf{v}} = \begin{bmatrix} \tilde{\mathbf{v}}_{(n-d)\times 1} \\ \mathbf{0}_{d\times 1} \end{bmatrix} \qquad \bar{\mathbf{f}} = \begin{bmatrix} \tilde{\mathbf{f}}_{(n-d)\times 1} \\ \mathbf{0}_{d\times 1} \end{bmatrix}$$
(4.20)

Matrika uteži $\bar{\mathbf{P}}$ je dobljena na osnovi kovariančne matrike $\bar{\boldsymbol{\Sigma}}$ iz enačbe 4.17 in referenčne variance a-priori σ_0^2 se izračuna kot:

$$\bar{\mathbf{P}} = \sigma_0^2 \bar{\mathbf{\Sigma}}^+ = \sigma_0^2 \begin{bmatrix} \mathbf{I}_{(n-d)\times(n-d)} & \mathbf{0}_{(n-d)\times d} \\ \mathbf{0}_{d\times(n-d)} & \mathbf{0}_{d\times d} \end{bmatrix}$$
(4.21)

Izkaže se, da se singularnost matrike uteži \mathbf{P} kaže kot funckijska odvisnost vrstic matrike koeficientov \mathbf{B} (Mikhail in Ackermann, 1976). Iz oblike transformiranih elementov matematičnega modela (enačbe 4.18, 4.20 in 4.21) je razvidno, da se funkcijska odvisnost lahko odstrani tako, da se iz seznama opazovanj odstrani tista opazovanja, ki so (glede na matriko uteži \mathbf{P}) funkcijsko odvisna od ostalih opazovanj. Če odstranimo preveč opazovanj (d > n - u), ali če odstranimo napačna opazovanja (povzročimo defekt konfiguracije), pridobimo singularno matriko $\mathbf{\bar{B}}$. Na nivoju kovariančne matrike se funkcijska odvisnost prikaže kot popolna koreliranost opazovanj.

4.2.2 Analiza matematičnega modela ocene položajev in vektorjev hitrosti geodetskih točk GNSS

S pomočjo zaključkov poglavja 4.2.1 lahko sedaj analiziramo matematični model ocene položajev in vektorjev hitrosti na osnovi ponovljenih terminskih izmer GNSS. Izhajamo iz enačb popravkov, ki so zapisane v enačbah 4.4 in 4.9 za izračun matrike uteži za posamezno (*i*-to) terminsko izmero. Linearno transformacijo enačb popravkov 4.4 izvedemo z matriko $\bar{\mathbf{C}}^{\mathrm{T}} = \sqrt{\Lambda} \mathbf{U}^{\mathrm{T}}$, ki je definirana v enačbi 4.15 in dobimo:

$$\sqrt{\Lambda}\mathbf{U}^{\mathrm{T}}\mathbf{v}_{i} + \begin{bmatrix} -\sqrt{\Lambda}\mathbf{U}^{\mathrm{T}} & -(t_{i} - t_{R})\sqrt{\Lambda}\mathbf{U}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \dot{\mathbf{X}} \end{bmatrix} = \sqrt{\Lambda}\mathbf{U}^{\mathrm{T}}\mathbf{f} \quad \leftrightarrow \quad \bar{\mathbf{v}}_{i} + \bar{\mathbf{B}}_{i}\boldsymbol{\Delta}_{i} = \bar{\mathbf{f}}_{i}$$

$$(4.22)$$

Transformirana matrika koeficientov $\bar{\mathbf{B}}_i$ iz enačbe 4.22 je velikosti $3n_p \times 6n_p$, sestavljena iz dveh podmatrik velikosti $3n_p \times 3n_p$ in ima obliko:

$$\bar{\mathbf{B}}_{i} = \begin{bmatrix} \tilde{\mathbf{B}}_{i} & (t_{i} - t_{R})\tilde{\mathbf{B}}_{i} \end{bmatrix} \quad \leftrightarrow \quad \tilde{\mathbf{B}}_{i} = \sqrt{\Lambda}\mathbf{U}^{\mathrm{T}} = \begin{bmatrix} \mathbf{B}_{i}^{R} \\ \mathbf{0} \end{bmatrix}$$
(4.23)

V enačbi 4.23 je matrika \mathbf{B}_i^R velikosti $3n_p \times (3n_p - d)$ (število vrstic je torej manjše od števila stolpcev) in je polnega ranga $rang(\mathbf{B}_i^R) = 3n_p - d$, saj napenja enak prostor kot $3n_p - d$ stolpičnih vektorjev matrike \mathbf{U} , ki pripadajo $3n_p - d$ neničelnim singularnim vrednostim matrike $\mathbf{\Lambda}$. Vrstični vektorji matrike \mathbf{B}_i^R so med seboj linearno neodvisni, medtem ko so stolpični vektorji med seboj linearno odvisni. Posledično velja, da je matrika $\tilde{\mathbf{B}}_i$ singularna z rangom:

$$rang(\tilde{\mathbf{B}}_i) = rang(\mathbf{B}_i^R) = 3n_p - d \tag{4.24}$$

Iz desne enačbe 4.23 je razvidno, da se matriko $\tilde{\mathbf{B}}_i$ izračuna na osnovi diagonalne matrike $\sqrt{\Lambda}$ in ortogonalne matrike U. Matrika U je polnega ranga in je sestavljena iz dveh

podmatrik oblike:

$$\mathbf{U} = \begin{bmatrix} \mathbf{G}_{3n_p \times (3n_p - d)} & \mathbf{F}_{3n_p \times d} \end{bmatrix}$$
(4.25)

Matrika **G** iz enačbe 4.25 pripada neničelnim lastnim vrednostim matrike Λ in napenja sliko Im $(\mathbf{P}_{\mathbf{X}_{i}^{t}})$, matrika **F** pa pripada ničelnim lastnim vrednostim matrike Λ in napenja jedro Ker $(\mathbf{P}_{\mathbf{X}_{i}^{t}})$ (Leick, 2004; Strang in Borre, 1997; Teunissen, 1985). Posledica tega je, da za transformirano podmatriko $\tilde{\mathbf{B}}_{i}$ matrike koeficientov $\bar{\mathbf{B}}_{i}$ velja:

$$\operatorname{Im}(\tilde{\mathbf{B}}_{i}) = \operatorname{Im}(\mathbf{U}) = \operatorname{Im}(\mathbf{P}_{\mathbf{X}_{i}^{t}})$$

$$\operatorname{Ker}(\tilde{\mathbf{B}}_{i}) = \operatorname{Ker}(\mathbf{U}) = \operatorname{Ker}(\mathbf{P}_{\mathbf{X}_{i}^{t}}) = \mathbf{M}$$

$$(4.26)$$

Matrika $\tilde{\mathbf{B}}_i$ napenja isti prostor kot matrika uteži $\text{Im}(\mathbf{P}_{\mathbf{X}_i^t})$, bistveno pa je, da ima tudi enako jedro, ki ga lahko predstavimo z matriko **M** iz enačbe 3.9.

Na osnovi ene terminske izmere koordinat \mathbf{X} , s pripadajočimi vektorji hitrosti \mathbf{X} , ne moremo oceniti, zato potrebujemo vsaj dve terminski izmeri. V primeru dveh terminskih izmer bodo neznanke določene enolično, v primeru več terminskih izmer pa imamo predoločen sistem (Mikhail in Ackermann, 1976). Rešitev neznank poteka preko sistema normalnih enačb za vse n_T terminske izmere, ki jih sestavimo na osnovi enačbe 4.11:

$$\left\{\sum_{i=1}^{n_T} \mathbf{N}_i\right\} \cdot \mathbf{\Delta} = \left\{\sum_{i=1}^{n_T} \mathbf{b}_i\right\} \quad \leftrightarrow \quad \mathbf{N} \cdot \mathbf{\Delta} = \mathbf{b}$$
(4.27)

Matrika in vektor sistema normalnih enač
b za posamezno terminsko izmero \mathbf{N}_i in \mathbf{b}_i imata obliko:

$$\mathbf{N}_{i} = \mathbf{B}_{i}^{\mathrm{T}} \mathbf{P}_{\mathbf{X}_{i}^{t}} \mathbf{B}_{i} = \tilde{\mathbf{B}}_{i}^{\mathrm{T}} \tilde{\mathbf{B}}_{i} = \begin{bmatrix} \mathbf{P}_{\mathbf{X}_{i}^{t}} & (t_{i} - t_{R}) \mathbf{P}_{\mathbf{X}_{i}^{t}} \\ (t_{i} - t_{R}) \mathbf{P}_{\mathbf{X}_{i}^{t}} & (t_{i} - t_{R})^{2} \mathbf{P}_{\mathbf{X}_{i}^{t}} \end{bmatrix}$$

$$\mathbf{b}_{i} = \mathbf{B}_{i}^{\mathrm{T}} \mathbf{P}_{\mathbf{X}_{i}^{t}} \mathbf{f}_{i} = \tilde{\mathbf{B}}_{i}^{\mathrm{T}} \tilde{\mathbf{f}}_{i} = \begin{bmatrix} \mathbf{P}_{\mathbf{X}_{i}^{t}} \mathbf{X}_{i}^{t} \\ (t_{i} - t_{R}) \mathbf{P}_{\mathbf{X}_{i}^{t}} \mathbf{X}_{i}^{t} \end{bmatrix}$$

$$(4.28)$$

Matrični sistem iz enačbe 4.27 je singularen, saj je sestavljen na osnovi singularne matrike uteži $\mathbf{P}_{\mathbf{X}_{i}^{t}}$ oz. po linearni transformaciji na osnovi singularne matrike $\tilde{\mathbf{B}}_{i}$. Posledica singularnosti sistema normalnih enačb je neskončno mnogo vektorjev $\boldsymbol{\Delta}$, ki enačbo 4.27 rešijo. Enolično rešitev matematičnega modela zagotovimo na enak način, kot v primeru rešitve matematičnega modela metode PPP iz poglavja 2.4.2. Na osnovi enačbe 4.26 definiramo matriko \mathbf{Y} , ki napenja jedro Ker(\mathbf{N}) z:

$$\mathbf{Y} = \begin{bmatrix} \alpha \mathbf{I}_{n \times n} & \beta \mathbf{I}_{n \times n} \\ \gamma \mathbf{I}_{n \delta n} & \delta \mathbf{I}_{n \times n} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{n \times (n-d)} & \mathbf{0}_{n \times (n-d)} \\ \mathbf{0}_{n \times (n-d)} & \mathbf{M}_{n \times (n-d)} \end{bmatrix}$$
(4.29)

V enačbi 4.29 predstavljajo α , β , γ in δ poljubne skalarje, ki pa morajo podati regularno matriko **Y**. Posebna oblika matrike **Y** je, ko velja:

$$\alpha = \delta = 1 \land \beta = \gamma = 0 \quad \rightarrow \quad \mathbf{Y} = \begin{bmatrix} \mathbf{M}_{n \times (n-d)} & \mathbf{0}_{n \times (n-d)} \\ \mathbf{0}_{n \times (n-d)} & \mathbf{M}_{n \times (n-d)} \end{bmatrix}$$
(4.30)

Enačbi 4.29 in 4.30 prikazujeta, da ima matrika sistema normalnih enačb \mathbf{N} iz enačbe 4.28 defekt 2*d*, kjer se en del defekta (*d*) nanaša na koordinatne neznanke, drugi del (*d*) pa na neznanke hitrosti. Kadar poleg položajev ocenjujemo tudi vektorje hitrosti, se nam število nedefiniranih datumskih parametrov v splošnem podvoji (Sterle, 2007).

Ob matriki **Y** iz enačbe 4.30 ima enačba $\mathbf{Y}^{\mathrm{T}} \boldsymbol{\Delta} = \mathbf{0}$ tudi jasen geometrijski pomen, ki odraža lastnosti proste mreže, tj. naj se ocenjenim koordinatam glede na približne vrednosti koordinat ne spremeni težišče, merilo in orientacija (Kuang, 1996; Papo, 2003). Enako velja tudi za vektorje hitrosti.

Pridobitev enoličnih vrednosti neznank ob jasno definiranem geodetskem datumu, pri tem da pridobimo rešitev MNK z minimalnim številom vezi, je dobljena ob sestavi niza 2*d* veznih enačb v obliki:

$$\mathbf{H}^{\mathrm{T}} \mathbf{\Delta} = \mathbf{0} \quad \rightarrow \quad \mathbf{H} = \begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{0} & \mathbf{E} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} \end{bmatrix}$$
(4.31)

Matrika \mathbf{E} v enačbi 4.31 je enotska matrika, ki ima enice po diagonali samo za referenčne točke (referenčne točke izračuna koordinat in vektorjev hitrosti so lahko drugačne kot referenčne točke transformacije iz poglavja 3) (Marjetič in Stopar, 2007).

4.2.3 Končen izračun položajev točk GNSS s pripadajočim vektorji hitrosti

Ob sestavljenem sistemu normalnih enačb (enačba 4.27) in ob veznih enačbah (enačba 4.31), ki odstranijo defekt geodetskega datuma matematičnega modela, je vektor neznank Δ s pripadajočo matriko kofaktorjev \mathbf{Q}_{Δ} dobljen z (Koch, 1999; Kuang, 1996; Leick, 2004):

$$\mathbf{Q}_{\Delta} = \left(\mathbf{N} + \mathbf{H}\mathbf{H}^{\mathrm{T}}\right)^{-1} - \mathbf{Y} \left(\mathbf{Y}^{\mathrm{T}}\mathbf{H}\mathbf{H}^{\mathrm{T}}\mathbf{Y}\right)^{-1} \mathbf{Y}^{\mathrm{T}}$$

$$\Delta = \mathbf{Q}_{\Delta}\mathbf{b}$$
(4.32)

Iz rezultatov enačbe 4.32 se lahko izračuna vektor popravkov opazovanj \mathbf{v}_i za vsako terminsko izmero (lahko tudi vektor transformiranih popravkov opazovanj $\bar{\mathbf{v}}_i$), iz katerih se izračuna referenčna varianca a-posteriori $\hat{\sigma}_0^2$ (Koch, 1999; Kuang, 1996; Leick, 2004):

$$\mathbf{v}_{i} = \mathbf{f}_{i} - \mathbf{B}_{i} \boldsymbol{\Delta} \qquad \bar{\mathbf{v}}_{i} = \bar{\mathbf{f}}_{i} - \bar{\mathbf{B}}_{i} \boldsymbol{\Delta}$$

$$\hat{\sigma}_{0}^{2} = \frac{\sum_{i=1}^{n_{T}} \mathbf{v}_{i}^{\mathrm{T}} \mathbf{P}_{\mathbf{X}_{i}^{t}} \mathbf{v}_{i}}{n_{o} - u + d} = \frac{\sum_{i=1}^{n_{T}} \bar{\mathbf{v}}_{i}^{\mathrm{T}} \bar{\mathbf{v}}_{i}}{n_{o} - u + d} \qquad (4.33)$$

Rezultat izravnave so še ostale količine in postopki (Grigillo in Stopar, 2003; Koch, 1999; Krakiwsky in sod., 1999; Kuang, 1996; Leick, 2004; Mikhail in Ackermann, 1976):

- matrika kofaktorjev popravkov opazovanj $\mathbf{Q}_{\mathbf{v}}$ in kovariančna matrika popravkov opazovanj $\boldsymbol{\Sigma}_{\mathbf{v}}$,
- vektor izravnanih opazovanj \hat{l} , matrika kofaktorjev izravnanih opazovanj $Q_{\hat{l}}$ in kovariančna matrika popravkov opazovanj $\Sigma_{\hat{l}}$,
- $\bullet\,$ matrika nadštevilnosti ${\bf R},$
- globalni test $\frac{\hat{\sigma}_0^2}{\sigma_0^2}$,
- zanesljivosti opazovanj in neznank in
- testi prisotnosti, lociranja in izločevanja grobih pogreškov.

V primeru, da se za katero izmed referenčnih točk, ki definirajo geodetski datum v veznih enačbah 4.31, izkaže, da je slabe kakovosti, je le-to potrebno izločiti iz seznama referenčnih točk. Posledica je sprememba geodetskega datuma, tj. nov nabor referenčnih točk, kar lahko izvedemo naknadno s S-transformacijo (Eshagh, 2006; Marjetič in Stopar, 2007; Papo, 2003; Teunissen, 1985; 2006a).

5 ČASOVNO ODVISNA PROSTORSKA TRANS-FORMACIJA

Osnovna naloga geodezije je določitev položaja poljubne točke glede na izbran koordinatni sistem (Altamimi in sod., 2002; Chen, 1983). V poglavju 2 opisujemo metodo PPP, ki omogoča določitev koordinat točke z visoko natančnostjo, v poglavju 3 pa prilagoditev ocenjenih koordinat globalnemu koordinatnemu sestavu ITRF. Vendar pa ne želimo vedno določiti položaja določene točke v koordinatnem sestavu ITRF, ampak tudi v poljubnem drugem koordinatnem sestavu (lokalnem, državnem, regionalnem ...), ki je za določeno geodetsko nalogo bolj ustrezen. V tem primeru je potrebno poznati povezavo med koordinatnim sestavom ITRF in vsemi ostalimi uporabljenimi koordinatnimi sestavi. Pri tem je potrebno upoštevati, da točke v posameznih koordinatnih sistemih niso statične, se skozi čas spreminjajo, zato imajo poleg ocenjenega položaja \mathbf{X} , ocenjene tudi komponente vektorja hitrosti $\dot{\mathbf{X}}$ (enačba 4.32). Ocenjene koordinate so časovno odvisne in se nanašajo na neko izbrano referenčno epoho, medtem ko so komponente vektorja hitrosti konstantne.

5.1 Izhodišča časovno odvisne prostorske transformacije

Osnovno izhodišče časovno odvisne prostorske transformacije podajata enačbi za transformacijo koordinat in vektorjev hitrosti, pod predpostavko majhnih premikov, zasukov, sprememb merila in njihovih prvih odvodov (Altamimi in sod., 2002; 2007; 2011; Boucher, 1990; Boucher in Altamimi, 1993; Han, 2006; Boucher in Altamimi, 2011; Petit in Luzum, 2010; Soler in Snay, 2004):

$$\mathbf{X}^{II} = \mathbf{X}^{I} + \mathbf{T} + m\mathbf{X}^{I} + \mathbf{R}(\omega_{x}, \, \omega_{y}, \, \omega_{z})\mathbf{X}^{I}$$
$$\dot{\mathbf{X}}^{II} = \dot{\mathbf{X}}^{I} + \dot{\mathbf{T}} + \dot{m}\mathbf{X}^{I} + \dot{\mathbf{R}}(\dot{\omega}_{x}, \, \dot{\omega}_{y}, \, \dot{\omega}_{z})\mathbf{X}^{I}$$
(5.1)

oz. v razširjeni obliki:

$$\begin{bmatrix} x^{II} \\ y^{II} \\ z^{II} \end{bmatrix} = \begin{bmatrix} x^{I} \\ y^{I} \\ z^{I} \end{bmatrix} + \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix} + m \begin{bmatrix} x^{I} \\ y^{I} \\ z^{I} \end{bmatrix} + \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix} \begin{bmatrix} x^{I} \\ y^{I} \\ z^{I} \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}^{II} \\ \dot{y}^{I} \\ \dot{z}^{II} \end{bmatrix} = \begin{bmatrix} \dot{x}^{I} \\ \dot{y}^{I} \\ \dot{z}^{I} \end{bmatrix} + \begin{bmatrix} \dot{t}_{x} \\ \dot{t}_{y} \\ \dot{t}_{z} \end{bmatrix} + \dot{m} \begin{bmatrix} x^{I} \\ y^{I} \\ z^{I} \end{bmatrix} + \begin{bmatrix} 0 & -\dot{\omega}_{z} & \dot{\omega}_{y} \\ \dot{\omega}_{z} & 0 & -\dot{\omega}_{x} \\ -\dot{\omega}_{y} & \dot{\omega}_{x} & 0 \end{bmatrix} \begin{bmatrix} x^{I} \\ y^{I} \\ z^{I} \end{bmatrix}$$
(5.2)

Elementi enačbe 5.1 in 5.2 so predstavljeni v poglavju 3. Iz enačb 5.1 in 5.2 je razvidno, da imamo v primeru časovno odvisne prostorske transformacije 14 transformacijskih parametrov, tj. 7 transformacijskih parametrov za koordinate $(t_x, t_y, t_z, \omega_x, \omega_y, \omega_z \text{ in } m)$ ter 7 transformacijskih parametrov za vektorje hitrosti $(\dot{t}_x, \dot{t}_y, \dot{t}_z, \dot{\omega}_x, \dot{\omega}_y, \dot{\omega}_z \text{ in } \dot{m})$, ki so določeni s spremembami koordinatnih transformacijskih parametrov skozi čas (Altamimi in sod., 2002; 2007; 2011; Boucher, 1990; Boucher in Altamimi, 1993; Han, 2006; Han in van Gelden, 2006; Han in sod., 2008; Boucher in Altamimi, 2011; Petit in Luzum, 2010; Soler in Snay, 2004; Sterle, 2007). V primeru velikih vrednosti transformacijskih parametrov sta osnovni enačbi iz 5.1 predstavljeni v Han (2006), Han in van Gelden (2006) in Han in sod. (2008).

Pri opisu in modeliranju časovne prostorske transformacije imamo podane količine določene kot (Altamimi in sod., 2002; 2004; Han, 2006):

- geodetska mreža n_p točk s podanimi približnimi vrednostmi koordinat ($\mathbf{X}_{0,i} = \begin{bmatrix} x_{0,i} & y_{0,i} & z_{0,i} \end{bmatrix}^{\mathrm{T}}$) in vektorji hitrosti ($\dot{\mathbf{X}}_{0,i} = \begin{bmatrix} \dot{x}_{0,i} & \dot{y}_{0,i} & \dot{z}_{0,i} \end{bmatrix}^{\mathrm{T}}$) ($i = \{1, \ldots, n_p\}$), ki definirajo referenčni (združeni²⁰) koordinatni sistem,
- niz n_s ocenjenih rešitev geodetske mreže, kjer je za j-to rešitev $(j = \{1, \ldots, n_s\})$ i-ta točka podana z nizom ocenjenih koordinat $\mathbf{X}_{s,j,i} = [x_{s,j,i} \ y_{s,j,i} \ z_{s,j,i}]^{\mathrm{T}}$ s pripadajočim ocenjenim vektorjem hitrosti $\dot{\mathbf{X}}_{s,j,i} = [\dot{x}_{s,j,i} \ \dot{y}_{s,j,i} \ \dot{z}_{s,j,i}]^{\mathrm{T}}$ v epohi $t_{s,j}$ in je informacija o natančnosti obeh vektorjev določena v polni matriki kofaktorjev $\mathbf{Q}_{s,j}$ vseh točk rešitve (enačba 4.32), ob referenčni varianci $\sigma_{0,j}^2$ iz enačbe 4.33, ter
- n_s različnih koordinatnih sistemov, v katerih so lahko določene ocenjene rešitve geodetske mreže (iz prejšnje alineje) (v Altamimi in sod. (2002), je število različnih koordinatnih sistemov sicer $n_t \neq n_s$, a naša posplošitev ne spremeni obravnave časovno odvisne prostroske transformacije).

Rezultati časovno odvisne prostorske transformacije pa so podani z:

- ocenjene koordinate $\mathbf{X}_i = \begin{bmatrix} x_i & y_i & z_i \end{bmatrix}^T$ in vektorji hitrosti $\dot{\mathbf{X}}_i = \begin{bmatrix} \dot{x}_i & \dot{y}_i & \dot{z}_i \end{bmatrix}^T$ za vse točke v referenčni epohi t_0 in v končnem (združenem) koordinatnem sistemu s pripadajočimi ocenami natančnosti in
- 14 ocenjenih transformacijskih parametrov $\mathbf{T}_{k} = \begin{bmatrix} t_{x,k} & t_{y,k} & t_{z,k} \end{bmatrix}^{\mathrm{T}}, m_{k}, \mathbf{\Omega}_{k} = \begin{bmatrix} \omega_{x,k} & \omega_{y,k} & \omega_{z,k} \end{bmatrix}^{\mathrm{T}}, \dot{\mathbf{T}}_{k} = \begin{bmatrix} \dot{t}_{x,k} & \dot{t}_{y,k} & \dot{t}_{z,k} \end{bmatrix}^{\mathrm{T}}, \dot{m}_{k}, \dot{\mathbf{\Omega}}_{k} = \begin{bmatrix} \dot{\omega}_{x,k} & \dot{\omega}_{y,k} & \dot{\omega}_{z,k} \end{bmatrix}^{\mathrm{T}} \text{ med}$

²⁰angl. combined

posameznim k-tim koordinatnim sistemom ($k = \{1, \ldots, n_s\}$) v epohi $t_{t,k}$ in združenim koordinatnim sistemom s pripadajočimi natančnostmi.

Na osnovi vhodnih in izhodnih količin časovno odvisne prostorske transformacije določimo tri različne vrste epoh:

- t_0 referenčna epoha na katero se nanašajo rezultati (ocenjene koordinate in vektorji hitrosti) v referenčnem koordinatnem sistemu,
- $t_{s,j}$ epoha podanih ocenjenih koordinat in vektorjev hitrosti (epoha, na katero se nanašajo količine v enačbi 4.32) za j-to rešitev geodetske mreže,
- $t_{t,k}$ epoha, za katero so določeni transformacijski parametri med referenčnim koordinatnim sistemom in k-tim koordinatnim sistemom, v katerem imamo podane ocenjene položaje in vektorje hitrosti.

Pri obravnavi zgoraj podanih količin nam opazovanja predstavljajo koordinate $\mathbf{X}_{s,j,i}$ in vektorji hitrosti $\dot{\mathbf{X}}_{s,j,i}$ v epohi $t_{s,j}$ (za vse $i = \{1, \ldots, n_p\}$ in $j = \{1, \ldots, n_s\}$), neznanke pa koordinate \mathbf{X}_i in vektorji hitrosti $\dot{\mathbf{X}}_i$ v referenčni epohi t_0 ter niz 14-ih transformacijskih parametrov za vsak k-ti koordinatni sistem. Povezavo med vsemi količinami dobimo v treh korakih (Han, 2006), kjer bomo zaradi preglednejšega zapisa izpustili indekse i, j in k. V prvem koraku predstavimo položaj poljubne točke v referenčnem koordinatnem sistemu za trenutek podanih transformacijskih parametrov (t_t) kot:

$$\mathbf{X}(t_t) = \mathbf{X} + (t_t - t_0)\dot{\mathbf{X}}$$
(5.3)

Koordinate $\mathbf{X}(t_t)$ in vektor hitrosti $\dot{\mathbf{X}}$ iz enačbe 5.3 transformiramo v koordinatni sistem ocenjenih koordinat točke na osnovi enačb 5.1, kjer pridobimo koordinate $\mathbf{X}_s(t_t)$ in vektor hitrosti $\dot{\mathbf{X}}_s$ kot:

$$\mathbf{X}_{s}(t_{t}) = \mathbf{X} + (t_{t} - t_{0})\dot{\mathbf{X}} + \mathbf{T} + m\mathbf{X} + \mathbf{R}\mathbf{X}$$

$$\dot{\mathbf{X}}_{s} = \dot{\mathbf{X}} + \dot{\mathbf{T}} + \dot{m}\mathbf{X} + \dot{\mathbf{R}}\mathbf{X}$$
(5.4)

Položaj točke v epohi t_s , v katerem imamo podane ocenjene položaje dobimo na enak način kot v enačbi 5.3, in sicer:

$$\mathbf{X}_s(t_s) = \mathbf{X}_s(t_t) + (t_s - t_t)\dot{\mathbf{X}}_s$$
(5.5)

Z upoštevanjem enačbe 5.5 in enačb 5.4 dobimo končni enačbi za časovno odvisno prostorsko transformacijo:

$$\mathbf{X}_{s}(t_{s}) = \mathbf{X} + (t_{s} - t_{0})\dot{\mathbf{X}} + \mathbf{T} + m\mathbf{X} + \mathbf{R}\mathbf{X} + (t_{s} - t_{t})(\dot{\mathbf{T}} + \dot{m}\mathbf{X} + \dot{\mathbf{R}}\mathbf{X})$$

$$\dot{\mathbf{X}}_{s} = \dot{\mathbf{X}} + \dot{\mathbf{T}} + \dot{m}\mathbf{X} + \dot{\mathbf{R}}\mathbf{X}$$
(5.6)

Enačba 5.6 prikazuje funkcionalno povezavo med ocenjenimi koordinatami \mathbf{X}_s in vektorjem hitrosti $\dot{\mathbf{X}}_s$ poljubne točke v trenutku izmere t_s , v poljubnem koordinatnem sistemu s koordinatami in vektorjem hitrosti, v referenčnem koordinatnem sistemu v epohi t_0 in transformaciskimi parametri med obema koordinatnima sistemoma (Altamimi in sod., 2002; 2004; 2007; Han, 2006; Soler in Snay, 2004).

5.2 Priprava podatkov za izravnavo časovno odvisne prostorske transformacije

Podatki, ki nastopajo pri izravnavi časovno odvisne prostorske transformacije, lahko izhajajo iz daljšega časovnega odbdobja (Altamimi in sod., 2011) in so bili pridobljeni z različnimi tehnikami obdelave (Bähr in sod., 2007). Usklajenost podatkov je pomembna predvsem pri uporabi približnih vrednosti neznank za vsako rešitev mreže (Bähr in sod., 2007; Brockmann, 1996; Thaller, 2008) in pri pravilni obravnavi zagotovitve geodetskega datuma posamezne rešitve (Altamimi in sod., 2002; 2007; 2011; Bähr in sod., 2007; Sillard in Boucher, 2001).

5.2.1 Obravnava geodetskega datuma posamezne rešitve geodetske mreže

Pri obravnavi geodetskega datuma izhajamo iz rezultatov izračuna referenčnih položajev, s pripadajočimi vektorji hitrosti točk v geodetski mreži, ki so prikazani v poglavju 4.2.3, v enačbi 4.32, in so določeni z ocenjenimi neznankami (koordinate in vektorji hitrosti) $\bar{\mathbf{X}}_s = \begin{bmatrix} \mathbf{X}_s^{\mathrm{T}} & \dot{\mathbf{X}}_s^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$, s pripadajočo matriko kofaktorjev $\mathbf{Q}_{\bar{\mathbf{X}}_s}$ (enačba 4.32) in z referenčno varianco a-priori $\sigma_{0,s}^2$. Tako vektor neznank kot tudi matrika kofaktorjev sta odvisna od zagotovitve geodetskega datuma (Baarda, 1981; Eshagh, 2006; Teunissen, 1985) iz enačbe 4.31, kar pa je problematično predvsem za matriko kofaktorjev, saj le-ta predstavlja pristransko oceno natančnosti točk geodetske mreže. Vpliv geodetskega datuma odstranimo tako, da izračunamo matriko uteži $\mathbf{P}_{\bar{\mathbf{X}}_s}$ na enak način, kot v primeru enačbe 4.9, ob upoštevanju veznih enačb iz enačbe 4.31 kot:

$$\mathbf{P}_{\bar{\mathbf{X}}_{S}} = \left(\mathbf{Q}_{\bar{\mathbf{X}}_{s}} + \mathbf{Y}\left(\mathbf{Y}^{\mathrm{T}}\mathbf{H}\mathbf{H}^{\mathrm{T}}\mathbf{Y}\right)^{-1}\mathbf{Y}^{\mathrm{T}}\right)^{-1} - \mathbf{H}\mathbf{H}^{\mathrm{T}}$$
(5.7)

Matrika uteži iz enačbe 5.7 je neodvisna od izbire geodetskega datuma in ima enake lastnosti kot matrika kofaktorjev $\mathbf{Q}_{\bar{\mathbf{X}}_s}$.

5.2.2 Zagotovitev enakih približnih vrednosti neznank rešitev geodetske mreže

Superpozicija sistemov normalnih enačb je možna le v primeru, ko se vsi sistemi normalnih enačb nanašajo na enake približne vrednosti neznank (Brockmann, 1996; Thaller, 2008), enako pa velja tudi za superpozicijo ocenjenih neznank s pripadajočimi kovariančnimi matrikami (Brockmann, 1996). Izhajamo iz osnovne enačbe posredne izravnave (glej enačbo 2.22), kjer za vektor neznank Δ velja linearna transformacija v obliki

$$\Delta = \mathbf{C}\bar{\Delta} + \mathbf{c} \tag{5.8}$$

V enačbi 5.8 vektor $\overline{\Delta}$ predstavlja nove, transformirane neznanke, matrika C je poljubna kvadratna matrika polnega ranga in vektor c poljuben vektor. Osnovni matrični model posredne izravnave se zapiše kot:

$$\mathbf{v} + \mathbf{B}(\mathbf{C}\bar{\mathbf{\Delta}} + \mathbf{c}) = \mathbf{f} \quad \rightarrow \quad \mathbf{v} + \mathbf{B}\mathbf{C}\bar{\mathbf{\Delta}} = \mathbf{f} - \mathbf{B}\mathbf{c} \quad \rightarrow \quad \mathbf{v} + \bar{\mathbf{B}}\bar{\mathbf{\Delta}} = \bar{\mathbf{f}}$$
(5.9)

Transformiran sistem normalnih enačb in referenčna varianca a-posteriori so dobljeni kot:

$$\bar{\mathbf{N}} = \bar{\mathbf{B}}^{\mathrm{T}} \mathbf{P} \bar{\mathbf{B}} = \mathbf{C}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{P} \mathbf{B} \mathbf{C} = \mathbf{C}^{\mathrm{T}} \mathbf{N} \mathbf{C}$$
$$\bar{\mathbf{b}} = \bar{\mathbf{B}}^{\mathrm{T}} \mathbf{P} \bar{\mathbf{f}} = \mathbf{C}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{P} (\mathbf{f} - \mathbf{B} \mathbf{c}) = \mathbf{C}^{\mathrm{T}} \mathbf{b} - \mathbf{C}^{\mathrm{T}} \mathbf{N} \mathbf{c}$$
$$\bar{\sigma}_{0}^{2} = \sigma_{0}^{2} + \frac{\mathbf{c}^{\mathrm{T}} \mathbf{N} \mathbf{c} - 2\mathbf{c}^{\mathrm{T}} \mathbf{b}}{r}$$
(5.10)

Kjer **N** in **b** predstavljata originalen sistem normalnih enačb, $\bar{\mathbf{N}}$ in $\bar{\mathbf{b}}$ transformiran sistem normalnih enačb in r število prostostnih stopenj (Brockmann, 1996; Thaller, 2008). V primeru samo spremembe približnih vrednosti neznank velja:

$$\Delta_0 + \Delta = \bar{\Delta}_0 + \bar{\Delta} \quad \rightarrow \quad \Delta = \bar{\Delta} + (\bar{\Delta}_0 - \Delta_0) \tag{5.11}$$

torej, $\mathbf{C} = \mathbf{I}$ in $\mathbf{c} = \bar{\mathbf{\Delta}}_0 - \mathbf{\Delta}_0$. Na osnovi enačb 5.10 in 5.11 je razvidno, da sprememba približnih vrednosti neznank vpliva le na vektor $\bar{\mathbf{b}}$ in na referenčno varianco a-posteriori

 $\bar{\sigma}_0^2$. V primeru uporabe končnih vrednosti neznank s pripadajočo matriko kofaktorjev in referenčno varianco a-posteriori (rezultati poglavja 4.2.3) sprememba približnih vrednosti neznank vpliva le na izračun $\bar{\sigma}_0^2$. Pri linearni transformaciji neznank je potrebno zagotoviti le, da sprememba približnih vrednosti neznank ne vpliva na izračun matrik **N** in vektorja **b** (Brockmann, 1996).

5.3 Matematični model časovno odvisne prostorske transformacije

Matematični model določimo z določitvijo funkcionalnega in stohastičnega modela (Mikhail in Ackermann, 1976), kot je tudi opisano v poglavju 2.3.

5.3.1 Funkcionalni model časovno odvisne prostorske transformacije

Funkcionalni model predstavlja funkcijsko povezavo med opazovanji in neznankami v modelu izravnave. Izhajamo iz enačb 5.6, ki jih lahko zapišemo v matrični obliki kot (Altamimi in sod., 2002; 2004; Bähr in sod., 2007; Soler in Snay, 2004):

$$\hat{\mathbf{X}}_{s}(t_{s}) - \left[\mathbf{X} + \Delta t_{0}^{s}\dot{\mathbf{X}} + \mathbf{T} + m\mathbf{X} + \mathbf{R}\mathbf{X} + \Delta t_{t}^{s}(\dot{\mathbf{T}} + \dot{m}\mathbf{X} + \dot{\mathbf{R}}\mathbf{X})\right] = \mathbf{0}$$

$$\hat{\mathbf{X}}_{s} - \left[\dot{\mathbf{X}} + \dot{\mathbf{T}} + \dot{m}\mathbf{X} + \dot{\mathbf{R}}\mathbf{X}\right] = \mathbf{0}$$
(5.12)

V enačbi 5.12 predstavljata $\Delta t_0^s = (t_s - t_0)$ in $\Delta t_t^s = (t_s - t_t)$, glede na oznake iz poglavja 5.1 pa so, zaradi preglednejšega prikaza, izpuščeni indeksi *i*, *j* in *k*. S strešico smo označili izravnane vrednosti opazovanih količin. Iz enačbe je razvidno, da se opazovanja (ocenjene koordinate $\hat{\mathbf{X}}_s(t_s)$ v epohi t_s in ocenjene komponente vektroja hitrosti $\hat{\mathbf{X}}_s$ rešitve geodetske mreže *s*) parametrizirajo z referenčnimi koordinatami (\mathbf{X}) v epohi t_0 , z referenčnimi komponentami vektorja hitrosti ($\hat{\mathbf{X}}$), s transformacijskimi parametri (\mathbf{T} , *m*, $\mathbf{\Omega}$) in njihovimi spremembami skozi čas ($\dot{\mathbf{T}}$, \dot{m} , $\dot{\mathbf{\Omega}}$) v epohi t_t in koordinatnim sistemom *k*.

Funkcionalni model določimo z linearizacijo enačb 5.12 okoli približnih vrednosti neznank, in sicer koordinat $\mathbf{X}_{0,i}$ in vektorjev hitrosti $\dot{\mathbf{X}}_{0,i}$ točke *i*, transformacijskih parametrov $\mathbf{\Gamma}_{0,k} = \begin{bmatrix} \mathbf{T}_{0,k}^{\mathrm{T}} & \mathbf{\Omega}_{0,k}^{\mathrm{T}} & m_{0,k} \end{bmatrix}^{\mathrm{T}}$ ter njihovih časovnih sprememb $\dot{\mathbf{\Gamma}}_{0,k} = \begin{bmatrix} \dot{\mathbf{T}}_{0,k}^{\mathrm{T}} & \dot{\mathbf{\Omega}}_{0,k}^{\mathrm{T}} & \dot{m}_{0,k} \end{bmatrix}^{\mathrm{T}}$ glede na koordinatni sistem *k*. V matrični obliki enačbe popravkov za *i*-to točko v *j*-ti rešitvi in glede na k-ti koordinatni sistem zapišemo kot:

$$\begin{bmatrix} \mathbf{v}_{\mathbf{X}_{s,j,i}} \\ \mathbf{v}_{\dot{\mathbf{X}}_{s,j,i}} \end{bmatrix} + \mathbf{A}_{j,i,k} \begin{bmatrix} \delta \mathbf{X}_i \\ \delta \dot{\mathbf{X}}_i \end{bmatrix} + \mathbf{B}_{j,i,k} \begin{bmatrix} \delta \Gamma_k \\ \delta \dot{\Gamma}_k \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{\mathbf{X}_{s,j,i,k}} \\ \mathbf{f}_{\dot{\mathbf{X}}_{s,j,i,k}} \end{bmatrix}$$
(5.13)

Elementi enačbe 5.13 so določeni kot:

- $\mathbf{v}_{\mathbf{X}_{s,j,i}}$, $\mathbf{v}_{\dot{\mathbf{X}}_{s,j,i}}$ vektorja popravkov opazovanih koordinat in komponent vektroja hitrosti točke i,
- $\delta \mathbf{X}_i, \delta \dot{\mathbf{X}}_i$ popravki približnih vrednosti referenčnih koordinat in komponent vektorja hitrosti točke i,
- $\mathbf{A}_{j,i,k}$ matrika koeficientov enačb popravkov, ki se nanašajo na referenčne koordinate in vektorje hitrosti, in ima obliko:

$$\mathbf{A}_{j,i,k} = -\begin{bmatrix} (1+m_{0,k})\mathbf{I} + \mathbf{R}_{0,k} + \Delta t_t^s(\dot{m}_{0,k}\mathbf{I} + \dot{\mathbf{R}}_{0,k}) & \Delta t_0^s\mathbf{I} \\ \dot{m}_{0,k}\mathbf{I} + \dot{\mathbf{R}}_{0,k} & \mathbf{I} \end{bmatrix}$$
(5.14)

• $\mathbf{B}_{j,i,k}$ matrika koeficientov enačb popravkov, ki se nanašajo na transformacijske parametre in njihove spremembe skozi čas, in ima obliko:

$$\mathbf{B}_{j,i,k} = -\begin{bmatrix} \mathbf{M}_i & \Delta t_0^s \mathbf{M}_i \\ \mathbf{0} & \mathbf{M}_i \end{bmatrix} \rightarrow \mathbf{M}_i = \begin{bmatrix} 1 & 0 & 0 & z_{0,i} & -y_{0,i} & x_{0,i} \\ 0 & 1 & 0 & -z_{0,i} & 0 & x_{0,i} & y_{0,i} \\ 0 & 0 & 1 & y_{0,i} & -x_{0,i} & 0 & z_{0,i} \end{bmatrix}$$
(5.15)

• $\mathbf{f}_{\mathbf{X}_{s,j,i,k}}, \, \mathbf{f}_{\dot{\mathbf{X}}_{s,j,i,k}}$ vektorja odstopanj enačb
 popravkov, ki imata obliko:

$$\begin{aligned} \mathbf{f}_{\mathbf{X}_{s,j,i,k}} &= \mathbf{X}_{0,i} + \Delta t_0^s \dot{\mathbf{X}}_{0,i} + \mathbf{T}_{0,k} + m_{0,k} \mathbf{X}_{0,i} + \mathbf{R}_{0,k} \mathbf{X}_{0,i} + \\ &+ \Delta t_t^s (\dot{\mathbf{T}}_{0,k} + \dot{m}_{0,k} \mathbf{X}_{0,i} + \dot{\mathbf{R}}_{0,k} \mathbf{X}_{0,i}) - \mathbf{X}_{s,j,i} (t_s) \end{aligned}$$
(5.16)
$$\mathbf{f}_{\dot{\mathbf{X}}_{s,j,i,k}} &= \dot{\mathbf{X}}_{0,i} + \dot{\mathbf{T}}_{0,k} + \dot{m}_{0,k} \mathbf{X}_{0,i} + \dot{\mathbf{R}}_{0,k} \mathbf{X}_{0,i} - \dot{\mathbf{X}}_{s,j,i} \end{aligned}$$

Matrična oblika za vse točke $(i = \{1, 2, ..., n_j\})$ v j-ti rešitvi geodetske mreže, ki se nanaša na k-ti koordinatni sistem ima glede na enačbo 5.13 obliko:

$$\begin{bmatrix} \mathbf{v}_{\mathbf{X}_{s,j,1}} \\ \mathbf{v}_{\dot{\mathbf{X}}_{s,j,1}} \\ \mathbf{v}_{\mathbf{X}_{s,j,2}} \\ \mathbf{v}_{\dot{\mathbf{X}}_{s,j,2}} \\ \vdots \\ \mathbf{v}_{\mathbf{X}_{s,j,n_j}} \\ \mathbf{v}_{\dot{\mathbf{X}}_{s,j,n_j}} \end{bmatrix} + \begin{bmatrix} \mathbf{A}_{j,1,k} \\ \mathbf{A}_{j,2,k} \\ \vdots \\ \mathbf{A}_{j,n_j,k} \end{bmatrix} \begin{bmatrix} \delta \mathbf{X}_1 \\ \delta \dot{\mathbf{X}}_1 \\ \delta \mathbf{X}_2 \\ \delta \dot{\mathbf{X}}_2 \\ \vdots \\ \delta \mathbf{X}_{n_j} \\ \delta \dot{\mathbf{X}}_{n_j} \end{bmatrix} + \begin{bmatrix} \mathbf{B}_{j,1,k} \\ \mathbf{B}_{j,2,k} \\ \vdots \\ \mathbf{B}_{j,n_j,k} \end{bmatrix} \begin{bmatrix} \delta \Gamma_k \\ \delta \dot{\Gamma}_k \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{\mathbf{X}_{s,j,1,k}} \\ \mathbf{f}_{\dot{\mathbf{X}}_{s,j,2,k}} \\ \mathbf{f}_{\dot{\mathbf{X}}_{s,j,2,k}} \\ \vdots \\ \mathbf{f}_{\mathbf{X}_{s,j,n_j,k}} \\ \mathbf{f}_{\dot{\mathbf{X}}_{s,j,n_j,k}} \end{bmatrix}$$
(5.17)

Enačbo 5.17 zapišemo v kompaktnejši obliki kot:

$$\mathbf{v}_{s,j} + \mathbf{A}_{j,k} \Delta_{\mathbf{X}} + \mathbf{B}_{j,k} \Delta_{\Gamma_k} = \mathbf{f}_{s,j,k}$$
(5.18)

F

Na koncu lahko z upoštevanjem enačb 5.13, 5.17 in 5.18 zapišemo končen funkcionalni model, ki povezuje vsa opazovanja z vsemi neznankami, tj. funkcionalni model vseh rešitev geodetske mreže $(j = \{1, 2, ..., n_s\})$, v odvisnosti od vseh koordinatnih sistemov $(k = \{1, 2, \dots, n_s\}):$

Prvi indeks (j) pri matrikah $\mathbf{A}_{j,k}$ in $\mathbf{B}_{j,k}$ v enačbi 5.19 se nanaša na j-to rešitev geodetske mreže, drugi indeks (k) pa na k-ti koordinatni sistem. Funkcionalni model iz enačbe 5.19 predstavlja neko vmesno varianto funkcionalnega modela, predstavljenega v Altamimi in sod. (2002; 2004); Bähr in sod. (2007) in funkcionalnim modelom, predstavljenim v Han (2006); Han in van Gelden (2006); Han in sod. (2008). Funkcionalni model Altamimi in sod. (2002) je v popolnosti poenostavljen, saj predpostavlja le zelo male premike, zasuke in vektorje hitrosti, medtem ko je funkcionalni model v Han (2006) popoln, določen za poljubne velikosti količin, ki nastopajo v transformaciji. V našem primeru predpostavljamo male premike, zasuke in vektorje hitrosti, a funkcionalni model upošteva pravilne matrike koeficientov v enačbah 5.14 in 5.15, medtem ko so v primeru Altamimi in sod. (2002) tudi te poenostavljene.

5.3.2Stohastični model časovno odvisne prostorske transformacije

Stohastični model predstavlja mero natančnosti opazovanj, ki nastopajo v časovno odvisni prostorski transformaciji. Za vsako rešitev geodetske mreže imamo podano matriko kofaktorjev ocenjenih koordinat in vektorjev hitrosti $\mathbf{Q}_{s,j}$ (enačba 4.32) s pripadajočo referenčno varianco a-priori $\sigma_{0,j}^2$ (enačba 4.33) (
 $j=\{1,2,\ldots,n_s\}).$ Matriko uteži $\mathbf{P}_{s,j},$ ki jo uporabimo v izravnavi, dobimo na osnovi enačbe 5.7, kjer odstranimo vpliv definicije geodetskega datuma pri izračunu rešitve geodetske mreže. Matriko uteži $\mathbf{P}_{s,j}$ določimo kot:

$$\mathbf{P}_{s,j} = \frac{\sigma_0^2}{\sigma_{0,j}^2} \left[\left(\mathbf{Q}_{s,j} + \mathbf{Y} \left(\mathbf{Y}^{\mathrm{T}} \mathbf{H} \mathbf{H}^{\mathrm{T}} \mathbf{Y} \right)^{-1} \mathbf{Y}^{\mathrm{T}} \right)^{-1} - \mathbf{H} \mathbf{H}^{\mathrm{T}} \right]$$
(5.20)

kjer se referenčna varianca σ_0^2 nanaša na vse rešitve geodetske mreže. Celotna matrika uteži \mathbf{P}_s , za vse rešitve geodetske mreže, je definirana kot:

$$\mathbf{P}_{s} = \begin{bmatrix} \mathbf{P}_{s,1} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_{s,j} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{P}_{s,n_{s}} \end{bmatrix}$$
(5.21)

Funkcionalni model iz enačbe 5.19 in stohastični model iz enačbe 5.21 sestavljata matematični model, na osnovi katerega se oceni neznanke po metodi najmanjših kvadratov.

5.4 Analiza matematičnega modela

Rešitev matematičnega modela izravnave pri časovni prostorski transformaciji je podana preko sistema normalnih enačb (Brockmann, 1996; Koch, 1999; Mikhail in Ackermann, 1976):

$$\mathbf{N} = \mathbf{B}^{\mathrm{T}} \mathbf{P}_{s} \mathbf{B} \qquad \mathbf{b} = \mathbf{B}^{\mathrm{T}} \mathbf{P}_{s} \mathbf{f} \qquad \leftrightarrow \qquad \mathbf{N} \cdot \mathbf{\Delta} = \mathbf{b}$$
(5.22)

Vendar pa enačba 5.22 ni enolično rešljiva, saj matrika sistema normalnih enačb \mathbf{N} ni polnega ranga. Polnega ranga ni matrika \mathbf{B} (Han, 2006), kot tudi ne matrika \mathbf{P}_s . Za enolično določitev neznank (določitev partikularne rešitve) (Koch, 1999; Strang in Borre, 1997) je potrebno zgornji sistem linearnih enačb analizirati, tj. določiti jedro Ker(\mathbf{B}) in jedro Ker(\mathbf{N}), saj ta zaradi singularnosti matrike \mathbf{P}_s nista enaka (glej poglavje 4).

5.4.1 Analiza funkcionalnega modela

Pri analizi funkcionalnega modela bomo predpostavili, da je matrika uteži \mathbf{P}_s poljubna matrika polnega ranga. V tem primeru je dovolj, če analiziramo matematični model, ki ima obliko:

$$\mathbf{v} + \mathbf{B} \boldsymbol{\Delta} = \mathbf{f} \qquad \mathbf{P}_s = \mathbf{I} \tag{5.23}$$

Enačba 5.23 izhaja iz linearne transformacije vektorja popravkov \mathbf{v} (Björk, 1996; Golub in Van Loan, 1989; Jäger in sod., 2005; Koch, 1999), kot je opisano v poglavju 4.2.1. Sistem

normalnih enačb iz enačbe 5.22 se poenostavi v:

$$\mathbf{N} = \mathbf{B}^{\mathrm{T}}\mathbf{B} \qquad \mathbf{b} = \mathbf{B}^{\mathrm{T}}\mathbf{f} \qquad \rightarrow \qquad \mathbf{N} \cdot \mathbf{\Delta} = \mathbf{b}$$
 (5.24)

Oblika matrike **N** iz enačbe 5.24 podaja, da velja $\text{Ker}(\mathbf{B}) = \text{Ker}(\mathbf{N})$ (Björk, 1996; Golub in Van Loan, 1989; Koch, 1999; Strang in Borre, 1997), zato je dovolj analizirati matriko **B**.

Število rešitev geodetske mreže: $n_s = 1$

Predpostavimo, da imamo na voljo le eno rešitev geodetske mreže, ki je vezana le na en koordinatni sistem ($n_s = 1$) in referenčne koordinate z vektorji hitrosti. V tem primeru se matrika **B** iz enačbe 5.19 poenostavi v:

$$\mathbf{B} = \left[\begin{array}{cc} \mathbf{A}_{1,1} & \mathbf{B}_{1,1} \end{array} \right] \tag{5.25}$$

V enačbi 5.25 je matrika **B** velikosti $(6n_p) \times (6n_p + 14)$, je pravokotna in ima večje število stolpcev kot vrstic (n_p predstavlja število opazovanih točk). Nastavimo lahko matriko **Y** za katero velja (Strang in Borre, 1997):

$$\mathbf{Y} = \begin{bmatrix} \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \\ -\mathbf{I} \end{bmatrix} \rightarrow \mathbf{B} \mathbf{Y} = \mathbf{0}$$
(5.26)

Ker je matrika $\mathbf{A}_{1,1}$ polnega ranga (izhaja iz enačbe 5.14, če vse približne vrednosti transformacijskih parametrov nastavimo na nič), obstaja njen inverz (Križanič, 1993; Strang in Borre, 1997), zato tudi obstaja matrika \mathbf{Y} , ki v popolnosti napenja jedro Ker(\mathbf{B}).

Matrika **B** v enačbi 5.25 predstavlja funkcionalni model, kjer imamo podane ocenjene koordinate in vektorje hitrosti točk, določiti pa želimo referenčne koordinate in hitrosti ter transformacijske parametre in njihove časovne spremembe. Funkcionalni model je z geometričnega stališča nedoločen in ne zagotavlja enolične rešitve, saj lahko neznane referenčne koordinate poljubno transformiramo in te transformacije kompenziramo z ocenjenimi transformacijskimi parametri (Altamimi in sod., 2004; 2009; Bähr in sod., 2007; Han, 2006; Han in van Gelden, 2006; Han in sod., 2008). Defekt ranga matrike **B** je tako ravno število neznank transformacijskih parametrov Δ_{Γ_1} .

Število rešitev geodetske mreže: $n_s = 2$

V primeru dveh rešitev geodetske mreže, ki se vežeta na dva koordinatna sistema $(n_s = 2)$ in referenčne koordinate z vektorji hitrosti, lahko matriko **B** iz enačbe 5.19 poenostavimo v:

$$\mathbf{B} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{B}_{1,1} & \mathbf{0} \\ \mathbf{A}_{2,2} & \mathbf{0} & \mathbf{B}_{2,2} \end{bmatrix}$$
(5.27)

Pomembno je, da ima matrika **B** iz enačbe 5.27 enak defekt ranga kot matrika **B** iz enačbe 5.25 (Altamimi in sod., 2004; 2009; Bähr in sod., 2007; Han, 2006; Han in van Gelden, 2006; Han in sod., 2008). Podane ocenjene koordinate v dveh rešitvah geodetske mreže $\mathbf{X}_{s,1}$ in $\mathbf{X}_{s,2}$ zagotovijo možnost ocene samo enega niza transformacijskih parametrov (in njihovih časovnih sprememb), in sicer parametre med obema rešitvama. Še vedno pa ne moremo oceniti transformacijskih parametrov do referenčnih koordinat, ki so tudi obravnavane kot neznanke. Posledično je izhodišče za določitev jedra Ker(**B**) nastavljeno kot:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \\ -\mathbf{K}_1 \\ -\mathbf{K}_2 \end{bmatrix}$$
(5.28)

veljati pa mora:

$$\mathbf{BY} = \mathbf{0} \quad \rightarrow \quad \begin{bmatrix} \mathbf{A}_{1,1}\mathbf{A}_{1,1}^{-1}\mathbf{B}_{1,1} - \mathbf{B}_{1,1}\mathbf{K}_1 \\ \mathbf{A}_{2,2}\mathbf{A}_{1,1}^{-1}\mathbf{B}_{1,1} - \mathbf{B}_{2,2}\mathbf{K}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$
(5.29)

Na osnovi desnih dveh enačb v 5.29 izpeljemo matriko \mathbf{Y} , ki napenja jedro Ker (\mathbf{B}) kot:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \\ -\mathbf{I} \\ -(\mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{B}_{2,2})^{-1} \mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{A}_{2,2} \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \end{bmatrix}$$
(5.30)

Število rešitev geodetske mreže: n_s

Pri poljubnem številu rešitve geodetske mreže samo posplošimo enačbo 5.28, saj za matriko **B** iz enačbe 5.19 izhodišče za matriko **Y** nastavimo kot:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \\ -\mathbf{K}_1 \\ -\mathbf{K}_2 \\ \vdots \\ -\mathbf{K}_{n_s} \end{bmatrix}$$
(5.31)

Iz pogoja $\mathbf{BY} = \mathbf{0}$ na enak način kot v primeru enačbe 5.29 izpeljemo matriko \mathbf{Y} kot:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \\ -\mathbf{I} \\ -(\mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{B}_{2,2})^{-1} \mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{A}_{2,2} \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \\ -(\mathbf{B}_{3,3}^{\mathrm{T}} \mathbf{B}_{3,3})^{-1} \mathbf{B}_{3,3}^{\mathrm{T}} \mathbf{A}_{3,3} \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \\ \vdots \\ -(\mathbf{B}_{n_{s},n_{s}}^{\mathrm{T}} \mathbf{B}_{n_{s},n_{s}})^{-1} \mathbf{B}_{n_{s},n_{s}}^{\mathrm{T}} \mathbf{A}_{n_{s},n_{s}} \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \end{bmatrix}$$
(5.32)

Splošna oblika matrike \mathbf{Y} je podana z:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{A}_{i,i}^{-1} \mathbf{B}_{i,i} \\ -\mathbf{K}_{1} \\ -\mathbf{K}_{2} \\ \vdots \\ -\mathbf{K}_{n_{s}} \end{bmatrix} \qquad \mathbf{K}_{j} = \mathbf{B}_{j,j}^{-} \mathbf{A}_{j,j} \mathbf{A}_{i,i}^{-1} \mathbf{B}_{i,i} \qquad (5.33)$$

ob poljubnem $i \in \{1, \ldots, n_s\}$ in za vse $j \in \{1, \ldots, n_s\}$. Izračun matrike \mathbf{K}_j je določen z generalizirano inverzijo $\mathbf{B}_{j,j}^-$ (Rao in Mitra, 1971), ki se pri pogoju i = j prevede na $\mathbf{K}_j = \mathbf{I}$.

5.4.2 Analiza funkcionalnega in stohastičnega modela

Pri analizi funkcionalnega in stohastičnega modela bomo uporabili matriko uteži \mathbf{P}_s , kot je definirana v enačbi 5.21 in analizirali funkcionalni model iz enačbe 5.22. Na osnovi zaključkov poglavja 4.2.1 lahko ugotovimo, da Ker(\mathbf{B}) \neq Ker(\mathbf{N}), velja pa Ker($\mathbf{\bar{B}}$) = Ker(\mathbf{N}), kjer matriko $\mathbf{\bar{B}}$ dobimo z linearno transformacijo vektorja popravkov \mathbf{v} (Björk, 1996; Golub in Van Loan, 1989; Jäger in sod., 2005; Koch, 1999), kot je to določeno z enačbami 4.15, 4.16 in 4.17 v poglavju 4.2.1.

Število rešitev geodetske mreže: $n_s = 1$

V tem primeru imamo matriko **B** in pripadajočo matriko uteži \mathbf{P}_s (glej enačbi 5.20 in 5.21) določeno kot:

$$\mathbf{B} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{B}_{1,1} \end{bmatrix} \qquad \mathbf{P}_s = \mathbf{P}_{s,1} \tag{5.34}$$

Diagonalizacija (oz. razcep na singularne vrednosti) (Lampret, 2013; Leick, 2004; Strang in Borre, 1997; Teunissen, 1985) matrike uteži \mathbf{P}_s je določena v enačbi 4.14 in jo uporabimo za linearno transformacijo matrike \mathbf{B} , kot v primeru enačbe 4.17:

$$\bar{\mathbf{B}} = \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{B} = \begin{bmatrix} \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{A}_{1,1} & \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{B}_{1,1} \end{bmatrix} = \begin{bmatrix} \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{A}_{1,1} & \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{B}_{1,1} \\ \mathbf{A}_{1,1} & \mathbf{0} & \bar{\mathbf{B}}_{1,1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$
(5.35)

Matriki $\mathbf{A}_{1,1}$ (velikosti $(6n_p) \times (6n_p)$) in $\mathbf{B}_{1,1}$ (velikosti $(6n_p) \times (14)$) sta polnega ranga, medtem ko je matrika \mathbf{C}^{T} (velikosti $(6n_p) \times (6n_p)$) singularna in ima defekt ranga 2d (glej poglavje 4.2.2). Matrika $\bar{\mathbf{B}}$ ima posledično 2*d* ničelnih vrstic (glej enačbo 4.23 v poglavju 4.2.2). Če matrika $\mathbf{Y}_{\mathbf{P}}$ iz enačbe 4.30 napenja jedro Ker(\mathbf{P}_s), vidimo, da je 2*d* vektorjev matrike $\mathbf{B}_{1,1}$ iz prostora Ker(\mathbf{P}_s), zato ima matrika $\bar{\mathbf{C}}^{\mathrm{T}}\mathbf{B}_{1,1}$ tudi 2*d* ničelnih stolpcev. Matriki $\bar{\mathbf{A}}_{1,1}$ in $\bar{\mathbf{B}}_{1,1}$ sta polnega ranga, zato je defekt ranga matrike $\bar{\mathbf{B}}$ enak 14 + 2*d*. Če nastavimo matriko \mathbf{Y} kot:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{\mathbf{P}} & \mathbf{A}_{1,1}^{-1} \mathbf{B}_{1,1} \\ \mathbf{I}_{14 \times 2d} & -\mathbf{I} \end{bmatrix}$$
(5.36)

Matrika **Y** iz enačbe 5.36 je velikosti $(6n_p + 14) \times (2d + 14)$, je polnega ranga, zagotavlja $\bar{\mathbf{B}}\mathbf{Y} = \mathbf{0}$, torej napenja jedro Ker $(\bar{\mathbf{B}})$ (Even-Tzur, 2011; 2012; Papo, 1986).

Število rešitev geodetske mreže: n_s

Pri splošnem številu rešitev geodetske mreže izhajamo iz enačbe 5.19 za matriko **B** in enačbe 5.21 za matriko uteži \mathbf{P}_s . Transformirano matriko $\bar{\mathbf{B}}$ dobimo na enak način kot v primeru enačbe 5.35 in ima obliko:

$$\bar{\mathbf{B}} = \bar{\mathbf{C}}^{\mathrm{T}} \mathbf{B} = \begin{bmatrix} \bar{\mathbf{C}}_{1}^{\mathrm{T}} \mathbf{A}_{1,1} & \bar{\mathbf{C}}_{1}^{\mathrm{T}} \mathbf{B}_{1,1} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \\ \bar{\mathbf{C}}_{2}^{\mathrm{T}} \mathbf{A}_{2,2} & \mathbf{0} & \bar{\mathbf{C}}_{2}^{\mathrm{T}} \mathbf{B}_{2,2} & \mathbf{0} & \dots & \mathbf{0} \\ \bar{\mathbf{C}}_{3}^{\mathrm{T}} \mathbf{A}_{3,3} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{C}}_{3}^{\mathrm{T}} \mathbf{B}_{3,3} & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \bar{\mathbf{C}}_{n_{s}}^{\mathrm{T}} \mathbf{A}_{n_{s},n_{s}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \bar{\mathbf{C}}_{n_{s}}^{\mathrm{T}} \mathbf{B}_{n_{s},n_{s}} \end{bmatrix}$$
(5.37)

V enačbi 5.37 matrike \mathbf{C}_i , $i = \{1, \ldots, n_s\}$ predstavljajo rezultat diagonalizacije posamezne matrike uteži $\mathbf{P}_{s,i}$, saj je matrika \mathbf{P}_s blok diagonalna. Na osnovi analize vsake vrstice matrike $\mathbf{\bar{B}}$ iz enačbe 5.37 in lastnosti matrike $\mathbf{\bar{B}}$ iz enačbe 5.35 vidimo, da je matrika $\mathbf{\bar{B}}$ iz enačbe 5.37 singularna z defektom ranga 14 + n_s2d (Papo, 1986). Vsaka dodatna rešitev geodetske mreže, nam ob singularni matriki uteži rešitve geodetske mreže doda dodatnih 2d dimenzij k jedru Ker($\mathbf{\bar{B}}$). Matrika \mathbf{Y} , ki napenja Ker($\mathbf{\bar{B}}$), ima glede na enačbe 5.33, 5.36 in 5.37 obliko (Papo, 1986):

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_{\mathbf{P}_{1}} & \mathbf{Y}_{\mathbf{P}_{2}} & \mathbf{Y}_{\mathbf{P}_{3}} & \dots & \mathbf{Y}_{\mathbf{P}_{ns}} & \mathbf{A}_{i,i}^{-1} \mathbf{B}_{i,i} \\ \mathbf{I}_{14 \times 2d} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & -\mathbf{K}_{1} \\ \mathbf{0} & \mathbf{I}_{14 \times 2d} & \mathbf{0} & \dots & \mathbf{0} & -\mathbf{K}_{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{14 \times 2d} & \dots & \mathbf{0} & -\mathbf{K}_{3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{I}_{14 \times 2d} & -\mathbf{K}_{ns} \end{bmatrix} \quad \mathbf{K}_{j} = \mathbf{B}_{j,j}^{-1} \mathbf{A}_{j,j} \mathbf{A}_{i,i}^{-1} \mathbf{B}_{i,i} \quad (5.38)$$

ob poljubnem $i \in \{1, \ldots, n_s\}$ in za vse $j \in \{1, \ldots, n_s\}$. Matrika $\mathbf{I}_{14 \times 2d}$ označuje pravokotno matriko velikosti $14 \times 2d$, ki ima po diagonali enice, na izvendiagonalnih elementih pa so ničle.

5.5 Rešitev matematičnega modela

Rešitev matematičnega modela časovno odvisne prostorske transformacije bomo prikazali za oba načina analize matematičnega modela iz poglavja 5.4, tako za primer matrike uteži polnega ranga (poglavje 5.4.1), kot za primer matrike uteži, ki nima polnega ranga (poglavje 5.4.2).

5.5.1 Rešitev matematičnega modela v primeru singularne matrike uteži

Rešitev matematičnega modela časovno odvisne prostorske transformacije je dobljena na osnovi sistema normalnih enačb iz enačbe 5.22. Matrika **N** in vektor **b** imata, glede na enačbe popravkov iz 5.19, obliko:

$$\mathbf{N} = \begin{bmatrix} \sum_{i,j=1}^{n_{s,n}s} \mathbf{A}_{i,j}^{\mathrm{T}} \mathbf{P}_{s,i} \mathbf{A}_{i,1} & \mathbf{A}_{1,1}^{\mathrm{T}} \mathbf{P}_{s,1} \mathbf{B}_{1,1} & \mathbf{A}_{2,2}^{\mathrm{T}} \mathbf{P}_{s,2} \mathbf{B}_{2,2} & \dots & \mathbf{A}_{n_{s,ns}}^{\mathrm{T}} \mathbf{P}_{s,ns} \mathbf{B}_{n_{s,ns}} \mathbf{B}_{n_{s,ns}} \\ \mathbf{B}_{1,1}^{\mathrm{T}} \mathbf{P}_{s,1} \mathbf{A}_{1,1} & \mathbf{B}_{1,1}^{\mathrm{T}} \mathbf{P}_{s,1} \mathbf{B}_{1,1} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{P}_{s,2} \mathbf{A}_{2,2} & \mathbf{0} & \mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{P}_{s,2} \mathbf{B}_{2,2} & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{B}_{n_{s,ns}}^{\mathrm{T}} \mathbf{P}_{s,ns} \mathbf{A}_{n_{s,ns}} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{B}_{n_{s,ns}}^{\mathrm{T}} \mathbf{P}_{s,ns} \mathbf{B}_{n_{s,ns}} \end{bmatrix}$$
(5.39)
$$\mathbf{t} = \begin{bmatrix} \sum_{i,j=1}^{n_{s,ns}} \mathbf{A}_{i,j}^{\mathrm{T}} \mathbf{P}_{s,i} \mathbf{f}_{s,i} \\ \mathbf{B}_{1,1}^{\mathrm{T}} \mathbf{P}_{s,i} \mathbf{f}_{s,i} \\ \mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{P}_{s,2} \mathbf{S}_{s,2} \\ \vdots \\ \mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{P}_{s,2} \mathbf{S}_{s,2} \\ \vdots \\ \mathbf{B}_{n_{s,ns}}^{\mathrm{T}} \mathbf{P}_{s,ns} \mathbf{S}_{s,ns} \end{bmatrix}$$
(5.40)

Vendar pa je matrika **N** singularna, z defektom ranga $14 + n_s 2d$, zato je za pridobitev enolične rešitve potrebno sestaviti $14 + n_s 2d$ veznih enačb (Eshagh, 2006; Leick, 2004; Papo, 2003) v obliki (glej poglavje 2.4.2):

$$\mathbf{H}^{\mathrm{T}} \boldsymbol{\Delta} = \mathbf{0} \qquad \wedge \qquad \mathbf{H} = \mathbf{E} \mathbf{Y} \tag{5.41}$$

Nastavitev matrike $\mathbf{E} = \mathbf{I}$ nam poda rešitev z notranjimi vezmi (Eshagh, 2006; Leick, 2004; Papo, 2003), ki pa se v primeru prostorske transformacije ne priporoča, saj je le-ta

popolnoma odvisna od približnih vrednosti neznank (Papo, 2003), kjer so problematične približne vrednosti transformacijskih parametrov, ki se jih po navadi nastavi na nič (Bähr in sod., 2007). Za pridobitev geometrično smiselnih rezultatov izravnave je potrebno podrobno analizirati matriko sistema normalnih enačb **N** iz enačbe 5.39, pri upoštevanju lastnosti podmatrik $\mathbf{A}_{i,j}$ ($\bar{\mathbf{A}}_{i,j}$), $\mathbf{P}_{s,i}$ in $\mathbf{B}_{i,j}$ ($\bar{\mathbf{B}}_{i,j}$) iz enačbe 5.35. Matrika **N** ima obliko:

$$\mathbf{N} = \begin{bmatrix} \sum_{i,j=1}^{n_s,n_s} \bar{\mathbf{A}}_{i,j}^{\mathrm{T}} \bar{\mathbf{A}}_{i,j} & \mathbf{0} & \bar{\mathbf{A}}_{1,1}^{\mathrm{T}} \bar{\mathbf{B}}_{1,1} & \mathbf{0} & \bar{\mathbf{A}}_{2,2}^{\mathrm{T}} \bar{\mathbf{B}}_{2,2} & \dots & \mathbf{0} & \bar{\mathbf{A}}_{n_s,n_s}^{\mathrm{T}} \bar{\mathbf{B}}_{n_s,n_s} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{1,1}^{\mathrm{T}} \bar{\mathbf{A}}_{1,1} & \mathbf{0} & \bar{\mathbf{B}}_{1,1}^{\mathrm{T}} \bar{\mathbf{B}}_{1,1} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{2,2}^{\mathrm{T}} \bar{\mathbf{B}}_{2,2} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{B}}_{2,2} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{B}}_{2,2} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{0}} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{0}} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{0}} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{0}} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{0}} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{0}} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \bar{\mathbf{0}} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \bar{\mathbf{B}}_{2,2}^{\mathrm{T}} \bar{\mathbf{A}}_{2,2} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{$$

Iz oblike matrike \mathbf{N} v enačbi 5.42 je razvidno, da je polna ničelnih elementov. Očitne so ničelne vrstice (oz. stolpci, saj je matrika simetrična), ki so posledica defekta ranga matrike \mathbf{B} . Število ničelnih vrstic je enako $n_s 2d$ in se nanašajo na manjkajoče datumske parametre v posamezni matriki uteži $\mathbf{P}_{s,i}$, ki smo jih odstranili v enačbi 5.7. Iz oblike matrike \mathbf{N} se neposredno vidi, da le-ta ni sposobna oceniti teh manjkajočih $n_s 2d$ transformacijskih parametrov. Preostalih 14 nedoločenih datumskih parametrov matrike \mathbf{N} iz enačbe 5.42 se nahaja v prvem elementu prve vrstice matrike in se nanaša na nesposobnost funkcionalnega modela iz enačb 5.19 oz. 5.21, da ločeno določi referenčne koordinate in vektorje hitrosti ter vse transformacijske parametre in njihove časovne spremembe. Geometrično smiselen niz veznih enačb iz enačbe 5.41 bo določen z:

- $n_s 2d$ transformacijskih parametrov, ki predstavljajo manjkajoče datumske parametre v posamezni matriki uteži $\mathbf{P}_{s,i}$, naj bodo po izravnavi enaki 0 in
- ocenjene referenčne koordinate in vektorji hitrosti naj bodo glede na približne vrednosti določeni po principu proste mreže (Kuang, 1996).
Matriko veznih enač
b ${\bf H}$ nastavimo kot:

$$\mathbf{H} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{M} \\ \mathbf{I}_{14 \times 2d} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{14 \times 2d} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{14 \times 2d} & \dots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{I}_{14 \times 2d} & \mathbf{0} \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} \mathbf{M}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_1 \\ \mathbf{M}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_2 \\ \vdots & \vdots \\ \mathbf{M}_{n_p} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{n_p} \end{bmatrix}$$
(5.43)

Zgoraj podano prvo alinejo definira prvih n_s stolpičnih matrik, ki vsebujejo matriko $\mathbf{I}_{14\times 2d}$. Drugo alinejo pa definira zadnja stolpična matrika, s podmatriko \mathbf{M} .

Rešitev matematičnega modela časovno odvisne prostorske transformacije je določen z izračunanim vektorjem neznank Δ s pripadajočo matriko kofaktorjev \mathbf{Q}_{Δ} (Koch, 1999; Kuang, 1996; Leick, 2004), ki je podana v enačbi 4.32. Vektor popravkov opazovanj **v** in referenčna varianca a-posteriori $\hat{\sigma}_0^2$ se izračunata z (Koch, 1999; Kuang, 1996; Leick, 2004):

$$\mathbf{v} = \mathbf{f} - \mathbf{B}\boldsymbol{\Delta} \qquad \hat{\sigma}_0^2 = \frac{\mathbf{v}^{\mathrm{T}} \mathbf{P}_s \mathbf{v}}{n - (6n_p + 14n_s) + (14 + n_s 2d)}$$
(5.44)

V enačbi 5.44 *n* predstavlja število vseh opazovanj, $(6n_p + 14n_s)$ število vseh neznank in $(14 + n_s 2d)$ defekt datuma matrike **N** iz enačbe 5.42 oz. število stolpcev matrike **Y** iz enačbe 5.43.

5.5.2 Rešitev matematičnega modela v primeru matrike uteži polnega ranga

V primeru, ko pri izravnavi uporabimo matriko uteži polnega ranga, je dovolj prikazati rezultate na sistemu normalnih enačb, ki so prikazane v enačbi 5.24. Matrika **N** in vektor **b** imata obliko:

$$\mathbf{N} = \begin{bmatrix} \sum_{i,j=1}^{n_s,n_s} \mathbf{A}_{i,j}^{\mathrm{T}} \mathbf{A}_{i,j} & \mathbf{A}_{1,1}^{\mathrm{T}} \mathbf{B}_{1,1} & \mathbf{A}_{2,2}^{\mathrm{T}} \mathbf{B}_{2,2} & \dots & \mathbf{A}_{n_s,n_s}^{\mathrm{T}} \mathbf{B}_{n_s,n_s} \\ \mathbf{B}_{1,1}^{\mathrm{T}} \mathbf{A}_{1,1} & \mathbf{B}_{1,1}^{\mathrm{T}} \mathbf{B}_{1,1} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{A}_{2,2} & \mathbf{0} & \mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{B}_{2,2} & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{B}_{n_s,n_s}^{\mathrm{T}} \mathbf{A}_{n_s,n_s} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{B}_{n_s,n_s}^{\mathrm{T}} \mathbf{B}_{n_s,n_s} \end{bmatrix}$$
(5.45)

$$\mathbf{t} = \begin{bmatrix} \sum_{i,j=1}^{n_s,n_s} \mathbf{A}_{i,j}^{\mathrm{T}} \mathbf{f}_{s,i} \\ \mathbf{B}_{1,1}^{\mathrm{T}} \mathbf{f}_{s,1} \\ \mathbf{B}_{2,2}^{\mathrm{T}} \mathbf{s}_{s,2} \\ \vdots \\ \mathbf{B}_{n_s,n_s}^{\mathrm{T}} \mathbf{s}_{s,n_s} \end{bmatrix}$$
(5.46)

V tem primeru velja $\text{Ker}(\mathbf{B}) = \text{Ker}(\mathbf{N})$ in je matrika \mathbf{Y} , ki napenja jedro $\text{Ker}(\mathbf{B})$, definirana v enačbi 5.33 in ima 14 stolpcev, ki se nanašajo na nesposobnost funkcionalnega modela iz enačb 5.20 in 5.21, da oceni en niz transforamcijskih parametrov. Zato je za izračun enolične rešitve potrebno definirati le 14 veznih enačb, ki so v splošni obliki podani v enačbi 5.41. Geometrično smiselen niz veznih enačb naj bo določen tako, da bodo ocenjene referenčne koordinate in vektorji hitrosti glede na približne vrednosti določene po principu proste mreže (Kuang, 1996). S tako podanim pogojem matriko veznih enačb \mathbf{H} nastavimo kot:

$$\mathbf{H} = \begin{bmatrix} \mathbf{M}^{\mathrm{T}} & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix}^{\mathrm{T}}$$
(5.47)

kjer je matrika **M** definirana v enačbi 5.43. Rešitev matematičnega modela je, kot v primeru poglavja 5.5.2, dobljena po enačbi 4.32. Vektor popravkov opazovanj **v** in referenčna varianca a-posteriori $\hat{\sigma}_0^2$ sta, v tem primeru, določeni z:

$$\mathbf{v} = \mathbf{f} - \mathbf{B}\boldsymbol{\Delta} \qquad \hat{\sigma}_0^2 = \frac{\mathbf{v}^{\mathrm{T}}\mathbf{v}}{n - (6n_p + 14n_s) + (14)} \tag{5.48}$$

V enačbi 5.48 (14) predstavlja defekt datuma matrike N iz enačbe 5.45.

5.6 Koordinatni sistem ITRS

Koordinatni sitem ITRS je koordinatni sistem, ki je pričvrščen na telo Zemljo in se giblje skupaj z Zemljo v vesolju (Bosy, 2013; Petit in Luzum, 2010). Medtem ko referenčni koordinatni sistem predstavlja niz definicij, konstant in modelov, opredeljenih v IERS konvenciji 2010 (Petit in Luzum, 2010), je njegova realizacija opredeljena kot referenčni koordinatni sestav in jo predstavlja niz fizično stabiliziranih geodetskih točk (postaj) z določenimi koordinatami in vektorji hitrosti v opredeljenem koordinatnem sistemu (Altamimi in sod., 2002; Bähr in sod., 2007; Bosy, 2013; Drewes, 2009; Petit in Luzum, 2010; Seeber, 2003). Koordinatni sestav sistema ITRS je poimenovan ITRF, kjer so koordinate in vektorji hitrosti določeni na osnovi združevanja posameznih rešitev TRF različnih merskih tehnik, in sicer VLBI, LLR, SLR, DORIS in GPS (Altamimi in sod., 2002; 2007; 2009; Altamimi, 2009; Altamimi in sod., 2011; Bähr in sod., 2007; Bosy, 2013; Petit in Luzum, 2010).

Združevanje rešitev TRF različnih merskih tehnik temelji na ocenjenih koordinatah in vektorjih hitrosti (tudi parametrov orientacije Zemlje) s polnimi kovariančnimi matrikami, ki so podane v formatu SINEX (Blewitt in sod., 1994). Vendar pa nobena izmed merskih tehnik ni sposobna oceniti absolutnih koordinat v prostoru, ampak le geometrijo poliedra, določenega s fizičnimi stabilizacijami geodetskih točk (Altamimi in sod., 2009; Bähr in sod., 2007; Sillard in Boucher, 2001; Thaller, 2008), zato je nujno določiti niz manjkajočih datumskih parametrov geodetske mreže (koordinatnega sestava) posamezne merske tehnike in pripadajoče vezne enačbe, ki geodetski datum definirajo v celoti (Bähr in sod., 2007; Sillard in Boucher, 2001). Posledično so vse kovariančne matrike rešitve TRS posameznih geodetskih tehnik ali singularne ali pa vsebujejo dodane informacije (vezne enačbe), ki so v postopku združevanja teh kovariančnih matrik nezaželene (glej poglavje 5.2.1).

V delu Sillard in Boucher (2001) je bil predstavljen postopek, ki zagotovi nesingularno matriko sistema normalnih enačb in hkrati ne posega v geometrijo končnih ocenjenih neznank v postopku časovno odvisne prostorske transformacije oz. v postopku vzpostavitve ciljnega koordinanega sestava ITRF (Bähr in sod., 2007). Vezne enačbe se zapiše v obliki:

$$\boldsymbol{\Delta}_{\boldsymbol{\Gamma}} = \left(\mathbf{M}^{\mathrm{T}} \mathbf{M} \right)^{-1} \mathbf{M}^{\mathrm{T}} \boldsymbol{\Delta} \mathbf{X} = \mathbf{H} \boldsymbol{\Delta} \mathbf{X} = \mathbf{0}$$
(5.49)

Matrika **M** v enačbi 5.49 je definirana v enačbi 5.43 in predstavlja vezne enačbe proste mreže (Brockmann, 1996; Koch, 1999; Krüger, 1980; Kuang, 1996), vektor Δ_{Γ} predstavlja vektor ocenjenih transformacijskih parametrov s pripadajočimi časovnimi spremembami le-teh (ki se po principu proste mreže nastavijo na nič) in vektor $\Delta \mathbf{X} = \mathbf{X} - \mathbf{X}_R$, kjer vektor **X** predstavlja ocenjene koordinate in vektorje hitrosti posamezne merske tehnike, \mathbf{X}_R pa referenčne koordinate z vektorji hitrosti, ki določajo končni referenčni koordinatni sestav (Bähr in sod., 2007). Kovariančna matrika $\bar{\Sigma}$ rešitve TRF posamezne merske tehnike, ki je polnega ranga in ne vpliva na geometrijo mreže, je dobljena z:

$$\bar{\boldsymbol{\Sigma}} = \left(\hat{\sigma}_0^2 \mathbf{P}_{\mathbf{X}} + \mathbf{H}^{\mathrm{T}} \boldsymbol{\Sigma}_{\mathbf{H}}^{-1} \mathbf{H}\right)^{-1}$$
(5.50)

kjer je matrika $\mathbf{P}_{\mathbf{X}}$ dobljena po enačbi 5.7, $\hat{\sigma}_0^2$ predstavlja referenčno varianco a-posteriori rešitve mreže posamezne merske tehnike in matrika $\Sigma_{\mathbf{H}}$ predstavlja kovariančno matriko, ki vsebuje informacije o natančnosti določenih transformacijskih parametrov iz enačbe 5.49 (Altamimi in sod., 2002; 2004; Bähr in sod., 2007; Sillard in Boucher, 2001). Na ta način je končna rešitev referenčnega terestričnega koordinatnega sistema dobljena po enačbah iz poglavja 5.5.2 in ob veznih enačbah iz enačbe 5.47 pridobimo ocenjene končne referenčne koordinate in ocenjene vse transforamcijske parametre do vseh podanih koordinatnih sistemov.

Rešitev pri vzpostavljanju koordinatnega sestava ITRF, kot je opisana zgoraj, izhaja iz problematike časovno odvisne prostorske transformacije pri singularni matriki uteži posameznih rešitev geodetske mreže (poglavje 5.5.1). Rešitev v tem primeru je podana z matriko veznih enačb iz enačbe 5.43, ki pa jasno kaže na nesposobnost matematičnega modela ocene tistih transformacijskih parametrov, ki predstavljajo defekt geodetskega datuma posamezne rešitve geodetske mreže. Posledično to pomeni, da bi morali poznati prave koordinate v končnem koordinatnem sistemu že na nivoju uskladitve ocenjenih koordinat PPP z aktualnim sestavom ITRF (poglavje 3), kar pa je nemogoče, saj končnega koordinatnega sistema še nismo vzpostavili.

6 INTERPOLACIJA VEKTORJEV HITROSTI GPS

V poglavju 5 je prikazan postopek časovno odvisne prostorske transformacije, ki se jo lahko vidi kot postopek določitve novega koordinatnega sistema na način, da so spremembe koordinat točk v novem sistemu najmanjše možne, a še vedno te spremembe niso ničelne. Na vsaki geodetski točki tako še vedno obstaja neničelna vrednost vektorja hitrosti točke, ki povzroči spreminjanje koordinat skozi čas. Končen (diskreten) niz vektorjev hitrosti na nizu geodetskih točk predstavlja osnovo za izgradnjo geokinematičnega modela vektorjev hitrosti obravnavanega območja in temelji na interpolacijskih tehnikah.

Interpolacijske metode lahko v grobem razdelimo na tri sklope:

- interpolacija z znanimi funkcijami (polinomi, racionalnimi funkcijami, zlepki, trigonometričnimi funkcijami) (Press in sod., 2007),
- aproksimacija po MNK z znanimi funkcijami (Vanicek in Wells, 1972) in
- statistične metode interpolacije (kolokacija po MNK (Krarup, 2006; Mikhail in Ackermann, 1976; Moritz, 1972), kriging (Gielsdorf in Hillmann, 2012), membranska metoda (Gielsdorf in Grundig, 1997)).

Z uporabo znanih funckij (prvi dve metodi) z izbiro funkcije že določamo obliko interpolacijske funkcije, kar se lahko izkaže za slabo (npr. osciliranje polinomske interpolacijske funkcije). Pri prvi metodi tudi ne upoštevamo statističnih lastnosti podatkov, na osnovi katerih izvajamo interpolacijo. Izkaže se, da je optimalna izbira interpolacije neke nepoznane funkcije kolokacija po MNK, tako s stališča splošnosti metode, kot tudi s stališča statističnih lastnosti dobljenih rezultatov. Kolokacija po MNK je neodvisna od oblike opazovanj, kjer le-ta lahko vsebujejo slučajno komponento, lahko tudi ne. Ocenjene neznanke in interpolirane vrednosti so nepristranske in dobljene z najvišjo natančnostjo na osnovi opazovanj, ki so na razpolago (Moritz, 1972).

Predstavljena je bila tudi metoda, ki temelji na lastnostih metode končnih elementov, imenovana membranska metoda (Gielsdorf in Grundig, 1997; Gielsdorf in Hillmann, 2012; Gielsdorf in sod., 2004; Gielsdorf, 2007), in je bila uporabljena predvsem na nivoju GIS za potrebe izboljšanja Zemljiškega Katastra (Čeh in sod., 2011; 2012). Za razliko od kolokacije po MNK, kjer so interpolirane vrednosti obravnavane kot opazovanja, so pri membranski metodi le-te obravnane kot neznanke.

V nadaljevanju bosta predstavljeni ti dve metodi, in sicer kolokacija po MNK in membran-

ska metoda. Metodi sta izbrani zato, ker obe temeljita na MNK in ne zahtevata a-priori védenja o obliki interpolacijske funkcije (kot npr. aproksimacija s polinomi). Medtem ko kolokacija po MNK deluje na osnovi statističnih lastnosti opazovanj in interpoliranih vrednosti, deluje membranska metoda na osnovi najmajših kvadratov deformacij geodetske mreže (Gielsdorf in Grundig, 1997; Mikhail in Ackermann, 1976; Moritz, 1972).

6.1 Kolokacija po metodi najmanjših kvadratov

Kolokacija po MNK je bila prvič predstavljena v Krarup (2006) kot postopek določitve ploskve motečega potenciala težnosti T (Hofmann-Wellenhof in Moritz, 2006) na osnovi izvedenih opazovanj na končnem številu geodetskih točk območja. Kolokacija je bila izčrpno predstavljena za naloge fizikalne geodezije in določenanja težnostnega polja Zemlje, pri čemer je bil poudarek na analitično določeni kovariančni funkciji motečega potenciala težnosti T (Argentiero in Lowrey, 1977; Argentiero, 1978; Hofmann-Wellenhof in Moritz, 2006; Moritz, 1972; 1978; Tscherning, 1978). Metoda se je izkazala kot kakovostno orodje statistične interpolacije (Mikhail in Ackermann, 1976) tudi za druge naloge, npr. statistična interpolacija vektorjev hitrosti GNSS (Egli in sod., 2007; Drewes, 2009) ali statistična interpolacija signala iz obsega celih števil (Teunissen, 2006b).

Pri kolokaciji po MNK izhajamo iz niza n opazovanj, zbranega v vektorju l, ki ga parametriziramo v obliki enačb popravkov kot (Koch, 1999; Mikhail in Ackermann, 1976):

$$\mathbf{v} + \mathbf{B} \boldsymbol{\Delta} = \mathbf{d} - \mathbf{l} = \mathbf{f} \tag{6.1}$$

V enačbi 6.1 je vektor d
 vektor konstant, ${\bf v}$ vektor popravkov opazovanj, za katerega pa
 vemo, da velja:

$$\mathbf{v} = \mathbf{s} + \mathbf{r} \tag{6.2}$$

Enačba 6.2 prikazuje, da je vektor popravkov \mathbf{v} sestavljen iz dveh komponent, in sicer iz vektorja signala \mathbf{s} in iz vektorja šuma \mathbf{r} (Krakiwsky, 1975; Mikhail in Ackermann, 1976; Moritz, 1972; 1978). Pričakovane vrednosti signala, šuma in posledično vektorja popravkov so:

$$\mathbf{E}\{\mathbf{r}\} = \mathbf{0} \land \mathbf{E}\{\mathbf{s}\} = \mathbf{0} \quad \rightarrow \quad \mathbf{E}\{\mathbf{v}\} = \mathbf{0} \tag{6.3}$$

Kovariančne matrike za vse tri vektorje pa so določene z:

$$D\{\mathbf{r}\} = \boldsymbol{\Sigma}_{\mathbf{rr}} = (\delta_{ij}\sigma_i^2) \land D\{\mathbf{s}\} = \boldsymbol{\Sigma}_{\mathbf{ss}} \land D\{\mathbf{v}\} = \boldsymbol{\Sigma}_{\mathbf{vv}} = \boldsymbol{\Sigma}_{\mathbf{rr}} + \boldsymbol{\Sigma}_{\mathbf{ss}}$$
(6.4)

V enačbi 6.4 predstavlja δ_{ij} Kroneckejevo delta funkcijo²¹, kar definira kovariančno matriko šuma Σ_{rr} kot diagonalno matriko, tj. šum **r** predstavlja nekoreliran slučajni vektor. Kovariančna matrika signala Σ_{ss} je polna in regularna matrika in definira signal kot slučajni vektor s koreliranimi komponentami. Iz zadnjega dela enačbe 6.4 velja, da je kovariančna matrika popravkov opazovanj Σ_{vv} vsota kovariančnih matrik obeh komponent (Σ_{rr} in Σ_{ss}), kar priča o tem, da sta vektorja šuma **r** in signala **s** med seboj nekorelirana, tj. E{ sr^{T} } = **0** (Krakiwsky, 1975; Mikhail in Ackermann, 1976; Moritz, 1972; 1978).

Dodatno imamo na voljo tudi m neznanih vrednosti signala, zapisanega v vektorju \mathbf{s}_0 , ki se nanašajo na točke, na katerih pa nimamo izvedenih opazovanj. S kolokacijo po MNK želimo pridobiti optimalno oceno vrednosti neznanega signala \mathbf{s}_0 na osnovi opazovanj l, ki pa niso izvedena na istih točkah. Če zberemo vektorja popravkov \mathbf{v} in neznanega signala \mathbf{s}_0 v en vektor kot (Krakiwsky, 1975; Mikhail in Ackermann, 1976):

$$\dot{\mathbf{v}}_{(n+m)\times 1} = \begin{bmatrix} \mathbf{v} \\ \mathbf{s}_0 \end{bmatrix}$$
(6.5)

lahko zapišemo osnovni matrični model kolokacije po MNK kot:

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{s}_0 \end{bmatrix} + \mathbf{B}\boldsymbol{\Delta} = \mathbf{f} \quad \rightarrow \quad \dot{\mathbf{A}}\dot{\mathbf{v}} + \mathbf{B}\boldsymbol{\Delta} = \mathbf{f}$$
(6.6)

Stohastičen model, ki pripada funkcionalnemu modelu iz enačbe 6.6 je določen z (Krakiwsky, 1975; Mikhail in Ackermann, 1976):

$$\Sigma = \begin{bmatrix} \Sigma_{\mathbf{vv}} & \Sigma_{\mathbf{ss}_0} \\ \Sigma_{\mathbf{s}_0\mathbf{s}} & \Sigma_{\mathbf{s}_0\mathbf{s}_0} \end{bmatrix} = \begin{bmatrix} \Sigma_{\mathbf{ss}} + \Sigma_{\mathbf{rr}} & \Sigma_{\mathbf{ss}_0} \\ \Sigma_{\mathbf{s}_0\mathbf{s}} & \Sigma_{\mathbf{s}_0\mathbf{s}_0} \end{bmatrix}$$
(6.7)

Enačba 6.7 prikazuje, kako so med seboj korelirane vse vrednosti signala, tako merjene kot neznane.

Rešitev kolokacije po MNK je določena z oceno neznank Δ s pripadajočo kovariančno matriko $\Sigma_{\Delta\Delta}$ ter ocenjen vektor interpoliranih vrednosti signala $\hat{\mathbf{s}}_0$ s pripadajočo kovariančno matriko $\Sigma_{\hat{\mathbf{s}}_0 \hat{\mathbf{s}}_0}$ (Argentiero, 1978; Dermanis, 1976; Egli in sod., 2007; Mikhail in Ackermann, 1976; Moritz, 1972; 1978; Papo in Perelmuter, 1993; Teunissen, 2006b; Tscherning, 1978):

$$\boldsymbol{\Delta} = \left(\mathbf{B}^{\mathrm{T}}(\boldsymbol{\Sigma}_{\mathbf{v}\mathbf{v}})^{-1} \mathbf{B} \right)^{-1} \mathbf{B}^{\mathrm{T}}(\boldsymbol{\Sigma}_{\mathbf{v}\mathbf{v}})^{-1} \mathbf{f} \qquad \boldsymbol{\Sigma}_{\boldsymbol{\Delta}\boldsymbol{\Delta}} = \left(\mathbf{B}^{\mathrm{T}}(\boldsymbol{\Sigma}_{\mathbf{v}\mathbf{v}})^{-1} \mathbf{B} \right)^{-1} \\ \hat{\mathbf{s}}_{0} = \boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}}(\boldsymbol{\Sigma}_{\mathbf{v}\mathbf{v}})^{-1} (\mathbf{f} - \mathbf{B}\boldsymbol{\Delta}) \qquad \boldsymbol{\Sigma}_{\hat{\mathbf{s}}_{0}\hat{\mathbf{s}}_{0}} = \boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}_{0}} - \boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}}(\boldsymbol{\Sigma}_{\mathbf{v}\mathbf{v}})^{-1} \boldsymbol{\Sigma}_{\mathbf{s}\mathbf{s}_{0}}$$
(6.8)

²¹glej npr. http://mathworld.wolfram.com/KroneckerDelta.html

Enačbe 6.8 prikazujejo rešitev kolokacije po MNK, v primeru da velja $E\{f\} = B\Delta$, opazovanja vsebujejo nek trend, ki ga modeliramo z nizom neznank v vektorju Δ . Če pa smo predhodno iz opazovanj trend že odstranili ($E\{l\} = 0$ in f = -l), pa se enačbi 6.8 za ocenjen signal zapišejo kot:

$$\hat{\mathbf{s}}_0 = \boldsymbol{\Sigma}_{\mathbf{s}_0 \mathbf{s}} (\boldsymbol{\Sigma}_{\mathbf{rr}} + \boldsymbol{\Sigma}_{\mathbf{ss}})^{-1} \mathbf{f} \qquad \boldsymbol{\Sigma}_{\hat{\mathbf{s}}_0 \hat{\mathbf{s}}_0} = \boldsymbol{\Sigma}_{\mathbf{s}_0 \mathbf{s}_0} - \boldsymbol{\Sigma}_{\mathbf{s}_0 \mathbf{s}} (\boldsymbol{\Sigma}_{\mathbf{rr}} + \boldsymbol{\Sigma}_{\mathbf{ss}})^{-1} \boldsymbol{\Sigma}_{\mathbf{ss}_0}$$
(6.9)

Enačba 6.9 prikazuje končna izraza za optimalno oceno signala $\hat{\mathbf{s}}_0$ s pripadajočo kovariančno matriko $\Sigma_{\hat{\mathbf{s}}_0 \hat{\mathbf{s}}_0}$. Enačbi 6.9 pridobimo tudi z verjetnostnega stališča, če nastavimo slučajni vektor \mathbf{y} s pripadajočo kovariančno matriko $\Sigma_{\mathbf{yy}}$ kot (Argentiero in Lowrey, 1977; Argentiero, 1978; Gray in Davisson, 2004):

$$\mathbf{y} = \begin{bmatrix} \mathbf{f} \\ \mathbf{s}_0 \end{bmatrix} \qquad \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}} = \begin{bmatrix} \mathbf{\Sigma}_{\mathbf{v}\mathbf{v}} & \mathbf{\Sigma}_{\mathbf{s}\mathbf{s}_0} \\ \mathbf{\Sigma}_{\mathbf{s}_0\mathbf{s}} & \mathbf{\Sigma}_{\mathbf{s}_0\mathbf{s}_0} \end{bmatrix}$$
(6.10)

Pričakovana vrednost vektorja \mathbf{s}_0 pri neki realizaciji vektorja \mathbf{f} se označi kot $\mathrm{E}\{\mathbf{s}_0|\mathbf{f}\}$ in izračuna kot pričakovana vrednost pogojne porazdelitve (Argentiero, 1978; Gray in Davisson, 2004; Moritz, 1978):

$$E\{\mathbf{s}_0|\mathbf{f}\} = E\{\mathbf{s}_0\} + \boldsymbol{\Sigma}_{\mathbf{s}_0\mathbf{s}}(\boldsymbol{\Sigma}_{\mathbf{v}\mathbf{v}})^{-1}(\mathbf{f} - E\{\mathbf{f}\}) = \boldsymbol{\Sigma}_{\mathbf{s}_0\mathbf{s}}(\boldsymbol{\Sigma}_{\mathbf{v}\mathbf{v}})^{-1}\mathbf{f}$$
(6.11)

Pripadajoča kovariančna matrika predstavlja disperzijo $D\{s_0|f\}$ in ima obliko (Argentiero, 1978; Gray in Davisson, 2004; Moritz, 1978):

$$D\{\mathbf{s}_0|\mathbf{f}\} = \boldsymbol{\Sigma}_{\mathbf{s}_0\mathbf{s}_0} - \boldsymbol{\Sigma}_{\mathbf{s}_0\mathbf{s}}(\boldsymbol{\Sigma}_{\mathbf{v}\mathbf{v}})^{-1}\boldsymbol{\Sigma}_{\mathbf{s}\mathbf{s}_0}$$
(6.12)

Razvidno je, da sta enačbi6.11 in 6.12 identični izrazoma v enačbi6.9.

Iz zgornjih enačb je razvidno, da je ključna komponenta kolokacije po MNK kovariančna matrika signala iz enačbe 6.7. Kovariančna matrika za primere modeliranja motečega potenciala težnosti T je izpeljana analitično, na osnovi ustrezne kovariančne funkcije in so posledično statistične lastnosti potenciala T znane (Hofmann-Wellenhof in Moritz, 2006; Krarup, 2006; Moritz, 1972; 1976; 1978; Tscherning, 1978). Nepoznavanju kovariančne funkcije se lahko izognemo z uporabo različnih splošnih kovariančnih funkcij, za katere pa mora veljati lastnost pozitivne definitnosti (Moritz, 1976). Kovariančno funkcijo za posamezne primere lahko dobimo tudi na osnovi analize opazovanj in aproksimacije izračunanih kovarianc med opazovanji s preprostejšimi funkcijami (Moritz, 1978; 1976) in s tem ne vplivamo na končne rezultate v znatni meri. Kljub vsemu se pojavi vprašanje, ali je možno stohastični model, ki je določen s kovariančno funkcijo enakovredno nadomestiti z ustreznim funkcionalnim modelom.

6.2 Enakovrednost funkcionalnega in stohastičnega modela pri kolokaciji

Predpostavimo, da imamo opravljenih n opazovanj, ki jih zberemo v vektor l s podano kovariančno matriko Σ , jih parametriziramo z u neznankami, zbranimi v vektorju Δ , in nastavimo matematični model izravnave kot (Krakiwsky, 1975; Koch, 1999; Leick, 2004; Mikhail in Ackermann, 1976):

$$\mathbf{v} + \mathbf{B} \boldsymbol{\Delta} = \mathbf{f} \qquad \mathbf{P} = \sigma_0^2 \boldsymbol{\Sigma}^{-1}$$
 (6.13)

Dodatno predpostavimo, da imamo a-priori informacijo o vrednosti neznank, tj. podan imamo vektor Δ_m , s pripadajočo kovariančno matriko Σ_{Δ_m} , kar lahko zapišemo kot dodaten niz enačb popravkov (Krakiwsky, 1975; Koch, 1999; Mikhail in Ackermann, 1976):

$$\mathbf{v}_m - \mathbf{I} \boldsymbol{\Delta} = \boldsymbol{\Delta}_0 - \boldsymbol{\Delta}_m \qquad \mathbf{P}_{\boldsymbol{\Delta}_m} = \sigma_0^2 \boldsymbol{\Sigma}_{\boldsymbol{\Delta}_m}^{-1}$$
(6.14)

V enačbi 6.14 je z I označena enotska matrika, z Δ_0 pa vektor približnih vrednosti neznank. Če izberemo, da so približne vrednosti neznank enake a-priori vrednostim neznank ($\Delta_0 = \Delta_m$), lahko enačbi 6.13 in 6.14 združimo v enoten matematičen model:

$$\begin{bmatrix} \mathbf{v} \\ \mathbf{v}_m \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ -\mathbf{I} \end{bmatrix} \mathbf{\Delta} = \begin{bmatrix} \mathbf{f} \\ \mathbf{0} \end{bmatrix} \qquad \bar{\mathbf{P}} = \sigma_0^2 \begin{bmatrix} \mathbf{\Sigma}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{\mathbf{\Delta}_m}^{-1} \end{bmatrix}$$
(6.15)

Rešitev matematičnega modela iz enačbe 6.15 je dobljena z (Krakiwsky, 1975; Koch, 1999; Kuang, 1996; Leick, 2004; Mikhail in Ackermann, 1976; Teunissen, 2003):

$$\Delta = (\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B} + \mathbf{P}_{\Delta_{m}})^{-1} \mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{f}$$

$$\mathbf{Q}_{\Delta} = (\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B} + \mathbf{P}_{\Delta_{m}})^{-1}$$
(6.16)

Na osnovi dveh Shurovih identitet (Argentiero in Lowrey, 1977; Argentiero, 1978; Henderson in Searle, 1981; Koch, 1999; Mikhail in Ackermann, 1976), ki imata obliko:

$$\left(\mathbf{A} \pm \mathbf{B} \mathbf{D}^{-1} \mathbf{C}\right)^{-1} = \mathbf{A}^{-1} \mp \mathbf{A}^{-1} \mathbf{B} \left(\mathbf{D} \pm \mathbf{C} \mathbf{A}^{-1} \mathbf{B}\right)^{-1} \mathbf{C} \mathbf{A}^{-1}$$

$$\mathbf{D}^{-1} \mathbf{C} \left(\mathbf{A} \pm \mathbf{B} \mathbf{D}^{-1} \mathbf{C}\right)^{-1} = \left(\mathbf{D} \pm \mathbf{C} \mathbf{A}^{-1} \mathbf{B}\right)^{-1} \mathbf{C} \mathbf{A}^{-1}$$
(6.17)

lahko enačbi 6.16 zapišemo kot:

$$\Delta = \mathbf{P}_{\Delta_m}^{-1} \mathbf{B}^{\mathrm{T}} \left(\mathbf{B} \mathbf{P}_{\Delta_m}^{-1} \mathbf{B}^{\mathrm{T}} + \mathbf{P}^{-1} \right)^{-1} \mathbf{f}$$

$$\mathbf{Q}_{\Delta} = \mathbf{P}_{\Delta_m}^{-1} - \mathbf{P}_{\Delta_m}^{-1} \mathbf{B}^{\mathrm{T}} \left(\mathbf{B} \mathbf{P}_{\Delta_m}^{-1} \mathbf{B}^{\mathrm{T}} + \mathbf{P}^{-1} \right)^{-1} \mathbf{B} \mathbf{P}_{\Delta_m}^{-1}$$
(6.18)

Če referenčno varianco a-priori iz enačb 6.13 in 6.14 določimo kot enotsko ($\sigma_0^2 = 1$) in zapišemo inverze matrik uteži iz enačbe 6.18 kot kovariančne matrike, lahko enačbo 6.18 zapišemo v končni obliki:

$$\Delta = \Sigma_{\Delta_m} \mathbf{B}^{\mathrm{T}} \left(\mathbf{B} \Sigma_{\Delta_m} \mathbf{B}^{\mathrm{T}} + \Sigma \right)^{-1} \mathbf{f}$$

$$\mathbf{Q}_{\Delta} = \Sigma_{\Delta_m} - \Sigma_{\Delta_m} \mathbf{B}^{\mathrm{T}} \left(\mathbf{B} \Sigma_{\Delta_m} \mathbf{B}^{\mathrm{T}} + \Sigma \right)^{-1} \mathbf{B} \Sigma_{\Delta_m}$$
(6.19)

Če v prvem koraku oznake iz enačbe 6.19 zamenjamo z:

$$\mathbf{s}_{0} = \boldsymbol{\Delta}_{m} \qquad \boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}_{0}} = \boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{m}}$$

$$\hat{\mathbf{s}}_{0} = \boldsymbol{\Delta} \qquad \boldsymbol{\Sigma}_{\hat{\mathbf{s}}_{0}\hat{\mathbf{s}}_{0}} = \mathbf{Q}_{\boldsymbol{\Delta}}$$
(6.20)

se enačba6.19 prepiše v:

$$\hat{\mathbf{s}}_{0} = \boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}_{0}} \mathbf{B}^{\mathrm{T}} \left(\mathbf{B}\boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}_{0}} \mathbf{B}^{\mathrm{T}} + \boldsymbol{\Sigma} \right)^{-1} \mathbf{f}$$

$$\boldsymbol{\Sigma}_{\hat{\mathbf{s}}_{0}\hat{\mathbf{s}}_{0}} = \boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}_{0}} - \boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}_{0}} \mathbf{B}^{\mathrm{T}} \left(\mathbf{B}\boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}_{0}} \mathbf{B}^{\mathrm{T}} + \boldsymbol{\Sigma} \right)^{-1} \mathbf{B}\boldsymbol{\Sigma}_{\mathbf{s}_{0}\mathbf{s}_{0}}$$

$$(6.21)$$

Če dodatno v enačbi 6.21 količine označimo z:

$$\Sigma_{\mathbf{rr}} = \Sigma$$

$$\Sigma_{\mathbf{ss}} = \mathbf{B}\Sigma_{\Delta_m}\mathbf{B}^{\mathrm{T}}$$

$$\Sigma_{\mathbf{s}_0\mathbf{s}} = \Sigma_{\mathbf{s}_0\mathbf{s}_0}\mathbf{B}^{\mathrm{T}} = \Sigma_{\mathbf{ss}_0}^{\mathrm{T}}$$
(6.22)

Lahko zapišemo končni enačbi izravnave:

$$\hat{\mathbf{s}}_0 = \boldsymbol{\Sigma}_{\mathbf{s}_0 \mathbf{s}} (\boldsymbol{\Sigma}_{\mathbf{rr}} + \boldsymbol{\Sigma}_{\mathbf{ss}})^{-1} \mathbf{f} \qquad \boldsymbol{\Sigma}_{\hat{\mathbf{s}}_0 \hat{\mathbf{s}}_0} = \boldsymbol{\Sigma}_{\mathbf{s}_0 \mathbf{s}_0} - \boldsymbol{\Sigma}_{\mathbf{s}_0 \mathbf{s}} (\boldsymbol{\Sigma}_{\mathbf{rr}} + \boldsymbol{\Sigma}_{\mathbf{ss}})^{-1} \boldsymbol{\Sigma}_{\mathbf{ss}_0}$$
(6.23)

Enačba6.23 je identična enačbi6.9,kar dokazuje enakovrednost stohastičnega in funckionalnega modela izravnave.

Po drugi strani, če gledamo z vidika statistične obravnave, kot v primeru enačbe 6.10, moramo slučajni vektor \mathbf{y} , s pripadajočo kovariančno matriko $\Sigma_{\mathbf{yy}}$, nastaviti kot:

$$\mathbf{y} = \begin{bmatrix} \mathbf{f} \\ \mathbf{\Delta}_m \end{bmatrix} \qquad \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}} = \begin{bmatrix} \mathbf{B}\mathbf{\Sigma}_{\mathbf{\Delta}_m}\mathbf{B}^{\mathrm{T}} + \mathbf{\Sigma} & \mathbf{B}\mathbf{\Sigma}_{\mathbf{\Delta}_m} \\ \mathbf{\Sigma}_{\mathbf{\Delta}_m}\mathbf{B}^{\mathrm{T}} & \mathbf{\Sigma}_{\mathbf{\Delta}_m} \end{bmatrix}$$
(6.24)

Pričakovana vrednost vektorja $\Delta = E\{\Delta_m | \mathbf{f}\}$ s pripadajočo kovariančno matriko $\mathbf{Q}_{\Delta} = D\{\Delta_m | \mathbf{f}\}$ se na osnovi enačbe 6.24 zapiše kot (Argentiero, 1978; Gray in Davisson, 2004):

$$\boldsymbol{\Delta} = \mathrm{E}\{\boldsymbol{\Delta}_{\mathrm{m}}|\mathbf{f}\} = \boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{m}}\mathbf{B}^{\mathrm{T}} \left(\mathbf{B}\boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{m}}\mathbf{B}^{\mathrm{T}} + \boldsymbol{\Sigma}\right)^{-1}\mathbf{f}$$

$$\mathbf{Q}_{\boldsymbol{\Delta}} = \mathrm{D}\{\boldsymbol{\Delta}_{\mathrm{m}}|\mathbf{f}\} = \boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{m}} - \boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{m}}\mathbf{B}^{\mathrm{T}} \left(\mathbf{B}\boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{m}}\mathbf{B}^{\mathrm{T}} + \boldsymbol{\Sigma}\right)^{-1}\mathbf{B}\boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{m}}$$
(6.25)

Izraza v enačbi 6.25 sta evidentno identična izrazoma iz enačbe 6.19. Na osnovi zapisanega lahko sedaj definiramo povezavo med posredno izravnavo in kolokacijo po MNK (Argentiero in Lowrey, 1977; Argentiero, 1978).

• Prehod iz elementov kolokacije po MNK v elemente izravnave:

$$\Sigma_{\Delta_m} = \Sigma_{\mathbf{s}_0 \mathbf{s}_0}$$

$$\mathbf{B} = \Sigma_{\mathbf{s}_0} \Sigma_{\mathbf{s}_0 \mathbf{s}_0}^{-1}$$

$$\Sigma = \Sigma_{\mathbf{v}\mathbf{v}} - \Sigma_{\mathbf{s}_0} \Sigma_{\mathbf{s}_0 \mathbf{s}_0}^{-1} \Sigma_{\mathbf{s}_0}$$
(6.26)

• Prehod iz elementov izravnave v elemente kolokacije po MNK:

$$\Sigma_{\mathbf{s}_0 \mathbf{s}_0} = \Sigma_{\Delta_m}$$

$$\Sigma_{\mathbf{s}_0 \mathbf{s}} = \Sigma_{\Delta_m} \mathbf{B}^{\mathrm{T}}$$

$$\Sigma_{\mathbf{v} \mathbf{v}} = \Sigma + \mathbf{B} \Sigma_{\Delta_m} \mathbf{B}^{\mathrm{T}}$$
(6.27)

Enačbi 6.26 in 6.27 prikazujeta enakovrednost med kolokacijo po MNK in posredno izravnavo (Papo in Perelmuter, 1993; Tapley, 1976). Iz zgoraj napisanega lahko sklepamo o enakovrednosti med funckionalnim in stohastičnim modelom metode najmanjših kvadratov, na kar je bilo nakazano že v poglavju 4.2.1, ko je bil analiziran matematični model izravnave ob singularni matriki kofaktorjev opazovanj.

Kljub vsemu pa enačbi 6.26 in 6.27 še vedno prikazujeta potrebo po izračunu kovariančne matrike signala, ki pa je od primera do primera različna (Moritz, 1976). Pri kolokaciji po MNK je edini pogoj, ki se nanaša na signal **s** podan s pričakovano vrednostjo signala ($E{s} = 0$) in z obliko disperzije oz. kovariančne funkcije signala Σ_{ss} . Funkcijski opis signala na obravnavanem območju ni potreben, saj s stohastičnim modelom enostavneje, točneje in natančneje modeliramo nepoznavanje signala (Krakiwsky, 1975).

6.3 Membranska metoda kot metoda statistične interpolacije

Membranska metoda je bila definirana za obdelavo prostorskih (geometričnih) podatkov slojev GIS, predvsem v primeru posodabljanja natančnosti in točnosti koordinat točk sloja (Gielsdorf in sod., 2004; Gielsdorf, 2007; Gielsdorf in Hillmann, 2012). Metoda se je izkazala za učinkovito predvsem pri zemljiškem katastru, kjer je informacija o točnem in natačnem položaju zemljiško-katastrskih točk ključna za lastnike parcel (Čeh in sod., 2011; 2012).

Membranska metoda interpolacije je bila predstavljena v Gielsdorf in Grundig (1997) kot interpolacijska metoda v ravnini, kjer se geodetske točke geodetske mreže obravnava kot niz točk na elastični membrani, ki pokriva celotno geodetsko mrežo. Znani premiki na geodetskih točkah povzročijo elastične deformacije membrane in posledično tudi premike poljubne točke na membrani. Lastnost obravnave geodetske mreže kot membrane izhaja iz visoke korelacije koordinat sosednjih točk (Gielsdorf, 2007; Gielsdorf in Hillmann, 2012), saj so koordinate v geodeziji določene na osnovi opazovanj, izvedenih med sosednjimi točkami. Predpostavke, ki morajo veljati za interpolirane vrednosti premikov so (Gielsdorf in Grundig, 1997):

- F1: Neznani premiki na geodetskih točkah morajo biti odvisni le od razdalje do znanih premikov geodetskih točk.
- F2: Pri vpeljavi geometričnih vezi morajo sosedski odnosi med geodetskimi točkami ostati nespremenjeni.
- F3: Določitev neznanih premikov mora biti neodvisna od razporeditve geodetskih točk z znanimi premiki.
- F4: Določitev neznanih premikov mora biti neodvisna od razporeditve geodetskih točk z neznanimi premiki.

Pri membranski metodi povezave med geodetskimi točkami z znanimi in neznanimi premiki definiramo na osnovi Delaunayeve triangulacije, kjer za vseh n_t sestavljenih trikotnikov postavimo pogoj:

$$\sum_{i=1}^{n_t} s_i \cdot (r_{m_{x_i}}^2 + r_{m_{y_i}}^2 + r_{\alpha_i}^2) \to \min.$$
(6.28)

Pogoj iz enačbe 6.28 zadošča vsem štirim zgoraj podanim zahtevam in predstavlja karakteristično funkcijo membranske metode, ki pravi, da morajo biti premiki na neznanih točkah določeni tako, da so spremembe merila v smereh koordinatnih osi $(r_{m_x} \text{ in } r_{m_y})$ ter spremembe pravih kotov koordinatnih osi (r_{α}) minimalne možne in se kot utež definiranih pogojev poda površina trikotnika (s) (Gielsdorf in Grundig, 1997).

6.3.1 Izpeljava membranske metode preko afine transformacije

Pri membranski metodi izhajamo iz:

- znanih premikov (vektorjev hitrosti) na k_z točkah in
- neznanih premikov (vektorjev hitrosti) na k_n točkah.

Karakteristična funkcija iz enačbe 6.28 obravnava vsak trikotnik posebej, zato lahko membransko metodo izpeljemo na osnovi poljubnega trikotnika. V poljubnem trikotniku imamo podane tri točke s tremi vektorji premikov. Označimo elemente trikotnika, kot prikazuje slika 6.1:

- točke s koordinatami kot: $T_1(x_1, y_1), T_2(x_2, y_2)$ in $T_3(x_3, y_3)$ in
- premike kot: $v_1(v_{x_1}, v_{y_1}), v_2(v_{x_2}, v_{y_2})$ in $v_3(v_{x_3}, v_{y_3})$.

Slika 6.1: Prikaz elementov trikotnika na osnovi Delaunayeve triangulacije pri membranski metodi

Figure 6.1: Items of a triangle based on Delaunay triangulation in case of membrane method

Slika 6.1 prikazuje, kako se trikotnik deformira zaradi premikov na geodetskih točkah, kjer lahko pričakujemo premik trikotnika (po obeh koordinatnih oseh), spremembo merila (za obe koordinatni osi), zasuk trikotnika in spremembo pravega kota med obema koordinatnima osema. Stanje (ts. koordinate točk) pred in po premikih lahko povežemo z afino transformacijo (Mikhail in sod., 2001):

$$\begin{bmatrix} \bar{x}_i \\ \bar{y}_i \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} \quad \leftrightarrow \quad \bar{\mathbf{x}}_i = \mathbf{x}_0 + \mathbf{M}\mathbf{x}_i \tag{6.29}$$

Enačba 6.29 prikazuje osnovno obliko afine transformacije, v kateri nastopa 6 neznank, dva premika (x_0, y_0) in štiri neznanke (a, b, c in d), ki modelirajo zasuk koordinatnega sistema α , spremembo pravega kota med koordinatnima osema $\Delta \alpha$ in spremembi merila obeh osi m_x in m_y . Matriko **M** lahko zapišemo kot produkt treh matrik (Mikhail in sod., 2001):

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} m_x & 0 \\ 0 & m_y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\sin(\Delta\alpha) & \cos(\Delta\alpha) \end{bmatrix} \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix} \leftrightarrow \mathbf{M} = \mathbf{SHR}$$
(6.30)

V enačbi 6.30 matrika **S** modelira spremembi merila obeh koordinatnih osi, matrika **H** spremembo pravega kota med koordinanima osema in matrika **R** zasuk trikotnika oz. koordinatnega sistema. Če v enačbi 6.30 pomnožimo vse tri matrike in upoštevamo osnovne izreke vsote in razlike sinusne ter kosinusne funkcije (Bronštejn in sod., 1997), dobimo (Albertz in Kreiling, 1989):

$$\mathbf{M} = \begin{bmatrix} m_x \cos(\alpha) & m_x \sin(\alpha) \\ -m_y \sin(\alpha + \Delta \alpha) & m_y \cos(\alpha + \Delta \alpha) \end{bmatrix}$$
(6.31)

V primeru, ko imamo na točkah določene premike iz slike 6.1, lahko enačbo afine transformacije iz enačbe 6.29 zapišemo kot:

$$\bar{\mathbf{x}}_i = \mathbf{x}_i + \mathbf{v}_i = \mathbf{x}_0 + \mathbf{M}\mathbf{x}_i \quad \leftrightarrow \quad \mathbf{v}_i = \mathbf{x}_0 + (\mathbf{M} - \mathbf{I})\mathbf{x}_i = \mathbf{x}_0 + \bar{\mathbf{M}}\mathbf{x}_i$$
 (6.32)

Matriko $\overline{\mathbf{M}}$ iz enačbe 6.32 zapišemo kot:

$$\bar{\mathbf{M}} = \begin{bmatrix} m_x \cos(\alpha) - 1 & m_x \sin(\alpha) \\ -m_y \sin(\alpha + \Delta \alpha) & m_y \cos(\alpha + \Delta \alpha) - 1 \end{bmatrix} = \begin{bmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{bmatrix}$$
(6.33)

Za vse tri točke in pripadajoče premike iz slike 6.1 lahko sedaj zapišemo tri matrične enačbe, v obliki:

$$\begin{bmatrix} v_{x_i} \\ v_{y_i} \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} \quad \leftrightarrow \quad \mathbf{v}_i = \mathbf{x}_0 + \bar{\mathbf{M}}\mathbf{x}_i \quad \{i = 1, 2, 3\} \tag{6.34}$$

Enačba 6.34 prikazuje 3 vektorske oz. 6 skalarnih enačb, kjer imamo 6 vrednosti premikov točk, v_{x_1} , v_{y_1} , v_{x_2} , v_{y_2} , v_{x_3} in v_{y_3} , in 6 parametrov afine transformacije, x_0 , y_0 , \bar{a} , \bar{b} , \bar{c} in \bar{d} . V karakteristični funkciji iz enačbe 6.28 nas zanimajo samo spremembe meril in sprememba pravih kotov, ki pa se nahajajo le v elementih \bar{a} , \bar{b} , \bar{c} in \bar{d} , Zato lahko enačbe 6.34 preuredimo v obliko:

$$\begin{bmatrix} v_{x_2} - v_{x_1} \\ v_{y_2} - v_{y_1} \\ v_{x_3} - v_{x_1} \\ v_{y_3} - v_{y_1} \end{bmatrix} = \begin{bmatrix} x_2 - x_1 & y_2 - y_1 & 0 & 0 \\ 0 & 0 & x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 & 0 & 0 \\ 0 & 0 & x_3 - x_1 & y_3 - y_1 \end{bmatrix} \begin{bmatrix} \bar{a} \\ \bar{b} \\ \bar{c} \\ \bar{d} \end{bmatrix}$$
(6.35)

Rešitev enačbe 6.35 je dobljena enolično, kjer se izkaže, da je le-ta oblike:

$$\begin{bmatrix} \bar{a} \\ \bar{b} \\ \bar{c} \\ \bar{d} \end{bmatrix} = \begin{bmatrix} k_{11} & 0 & k_{13} & 0 \\ k_{21} & 0 & k_{23} \\ 0 & k_{32} & 0 & k_{34} \\ 0 & k_{42} & 0 & k_{44} \end{bmatrix} \begin{bmatrix} v_{x_2} - v_{x_1} \\ v_{y_2} - v_{y_1} \\ v_{x_3} - v_{x_1} \\ v_{y_3} - v_{y_1} \end{bmatrix}$$
(6.36)

Elementi k_{ij} v enačbi 6.36 so dobljeni z inverzom matrike v enačbi 6.35. Na osnovi enačbe 6.36 lahko sedaj prikažemo rešitev parametrov transformacije v odvisnosti od premikov na točkah:

$$\bar{a} = -(k_{11} + k_{13})v_{x_1} + k_{11}v_{x_2} + k_{13}v_{x_3}
\bar{b} = -(k_{21} + k_{23})v_{x_1} + k_{21}v_{x_2} + k_{23}v_{x_3}
\bar{c} = -(k_{32} + k_{34})v_{y_1} + k_{32}v_{y_2} + k_{34}v_{y_3}
\bar{d} = -(k_{42} + k_{44})v_{y_1} + k_{42}v_{y_2} + k_{44}v_{y_3}$$
(6.37)

V enačbah 6.36 in 6.37 so vsi koeficienti k_{ij} odvisni samo od položajev točk in so konstantne vrednosti. Razvidno je, da sta parametra transformacije \bar{a} in \bar{b} odvisna le od premikov v smeri x osi, parametra transformacije \bar{c} in \bar{d} pa odvisna le od premikov v smeri y osi.

Izračunani parametri transformacije \bar{a} , \bar{b} , \bar{c} in \bar{d} predstavljajo osnovo za izračun psevdoopazovanj m_x , m_y in $\Delta \alpha$, ki bodo definirala karakteristično funkcijo iz enačbe 6.28. Na osnovi elementov matrike $\bar{\mathbf{M}}$ iz enačbe 6.32 psevdo-opazovanja definiramo kot:

$$\alpha = \arctan \frac{\bar{b}}{\bar{a}+1} \qquad \alpha + \Delta \alpha = -\arctan \frac{\bar{c}}{\bar{d}+1}$$
$$m_x = \operatorname{sgn}\left(\frac{\bar{a}+1}{\cos \alpha}\right)\sqrt{(\bar{a}+1)^2 + \bar{b}^2}$$

$$m_y = \operatorname{sgn}\left(\frac{\bar{d}+1}{\cos(\alpha+\Delta\alpha)}\right)\sqrt{(\bar{d}+1)^2 + \bar{c}^2}$$

$$\Delta\alpha \approx \sin(\Delta\alpha) = -\frac{\bar{c}(\bar{a}+1) + (\bar{d}+1)\bar{c}}{m_x m_y}$$
(6.38)

Enačbe 6.38 predstavljajo osnovo za sestavo matričnega modela izravnave, kjer se po MNK ocenijo premiki na vseh točkah geodetske mreže. Za vsak trikotnik lahko nastavimo tri enačbe, za katere velja:

$$\hat{m_x} = 1$$

$$\hat{m_y} = 1$$

$$\hat{\Delta \alpha} = 0$$
(6.39)

Enačbe popravkov sestavimo tako, da vse tri enačbe iz enačbe 6.39 lineariziramo v okolici približnih vrednosti neznank $(v_{x_1}^0, v_{y_1}^0, v_{x_2}^0, v_{y_2}^0, v_{x_3}^0$ in $v_{y_3}^0)$ (Koch, 1999; Mikhail in Ackermann, 1976):

$$r_{m_x} + \frac{\partial m_x}{v_{x_1}} \delta v_{x_1} + \frac{\partial m_x}{v_{x_2}} \delta v_{x_2} + \frac{\partial m_x}{v_{x_3}} \delta v_{x_3} = 1 - m_x^0$$

$$r_{m_y} + \frac{\partial m_y}{v_{y_1}} \delta v_{y_1} + \frac{\partial m_y}{v_{y_2}} \delta v_{y_2} + \frac{\partial m_y}{v_{y_3}} \delta v_{y_3} = 1 - m_y^0$$

$$\frac{\partial \Delta \alpha}{\partial \Delta \alpha} = \frac{\partial \Delta \alpha}{\partial \Delta \alpha} = \frac{$$

$$r_{\alpha} + \frac{\partial \Delta \alpha}{v_{x_1}} \delta v_{x_1} + \frac{\partial \Delta \alpha}{v_{y_1}} \delta v_{y_1} + \frac{\partial \Delta \alpha}{v_{x_2}} \delta v_{x_2} + \frac{\partial \Delta \alpha}{v_{y_2}} \delta v_{y_2} + \frac{\partial \Delta \alpha}{v_{x_3}} \delta v_{x_3} + \frac{\partial \Delta \alpha}{v_{y_3}} \delta v_{y_3} = -\Delta \alpha^0$$

Parcialni odvodi iz enačb popravkov 6.40 so določeni kot:

• Parcialni odvodi m_x :

$$\frac{\partial m_x}{\partial v_{x_i}} = \frac{\partial m_x}{\partial \bar{a}} \frac{\partial \bar{a}}{\partial v_{x_i}} + \frac{\partial m_x}{\partial \bar{b}} \frac{\partial \bar{b}}{\partial v_{x_i}} \qquad \frac{\partial m_x}{\partial v_{y_i}} = 0 \quad \{i = 1, 2, 3\}$$

$$\frac{\partial m_x}{\partial v_{x_1}} = -\frac{\bar{a}+1}{m_x} (k_{11}+k_{13}) - \frac{\bar{b}}{m_x} (k_{21}+k_{23})$$

$$\frac{\partial m_x}{\partial v_{x_2}} = \frac{\bar{a}+1}{m_x} k_{11} + \frac{\bar{b}}{m_x} k_{21}$$

$$\frac{\partial m_x}{\partial v_{x_3}} = \frac{\bar{a}+1}{m_x} k_{13} + \frac{\bar{b}}{m_x} k_{23}$$
(6.41)

• Parcialni odvodi m_y :

$$\frac{\partial m_y}{\partial v_{y_i}} = \frac{\partial m_y}{\partial \bar{c}} \frac{\partial \bar{c}}{\partial v_{y_i}} + \frac{\partial m_y}{\partial \bar{d}} \frac{\partial \bar{d}}{\partial v_{y_i}} \qquad \frac{\partial m_y}{\partial v_{x_i}} = 0 \qquad \{i = 1, 2, 3\}$$

$$\frac{\partial m_y}{\partial v_{x_1}} = -\frac{\bar{c}}{m_y} (k_{32} + k_{34}) - \frac{\bar{d} + 1}{m_y} (k_{42} + k_{44})$$

$$\frac{\partial m_y}{\partial v_{x_2}} = \frac{\bar{c}}{m_y} k_{32} + \frac{\bar{d} + 1}{m_y} k_{42}$$

$$\frac{\partial m_y}{\partial v_{x_3}} = \frac{\bar{c}}{m_y} k_{34} + \frac{\bar{d} + 1}{m_y} k_{44}$$
(6.42)

• Parcialni odvodi $\Delta \alpha$:

$$\frac{\partial\Delta\alpha}{\partial v_{x_i}} = \frac{\partial\Delta\alpha}{\partial\bar{a}}\frac{\partial\bar{a}}{\partial v_{x_i}} + \frac{\partial\Delta\alpha}{\partial\bar{b}}\frac{\partial\bar{b}}{\partial v_{x_i}} \qquad \frac{\partial\Delta\alpha}{\partial v_{y_i}} = \frac{\partial\Delta\alpha}{\partial\bar{c}}\frac{\partial\bar{c}}{\partial v_{y_i}} + \frac{\partial\Delta\alpha}{\partial\bar{d}}\frac{\partial\bar{d}}{\partial v_{y_i}} \qquad \{i = 1, 2, 3\}$$

$$\frac{\partial\Delta\alpha}{\partial v_{x_1}} = \frac{\bar{c}m_x m_y + \Delta\alpha(\bar{a}+1)}{m_x^2 m_y^2} (k_{11} + k_{13}) + \frac{(\bar{d}+1)m_x m_y + \Delta\alpha\bar{b}}{m_x^2 m_y^2} (k_{21} + k_{23})$$

$$\frac{\partial\Delta\alpha}{\partial v_{y_1}} = \frac{(\bar{a}+1)m_x m_y + \Delta\alpha\bar{c}}{m_x^2 m_y^2} (k_{32} + k_{34}) + \frac{\bar{b}m_x m_y + \Delta\alpha(\bar{d}+1)}{m_x^2 m_y^2} (k_{42} + k_{44})$$

$$\frac{\partial\Delta\alpha}{\partial v_{x_2}} = -\frac{\bar{c}m_x m_y + \Delta\alpha(\bar{a}+1)}{m_x^2 m_y^2} k_{11} - \frac{(\bar{d}+1)m_x m_y + \Delta\alpha\bar{b}}{m_x^2 m_y^2} k_{21} \qquad (6.43)$$

$$\frac{\partial\Delta\alpha}{\partial v_{y_2}} = -\frac{(\bar{a}+1)m_x m_y + \Delta\alpha\bar{c}}{m_x^2 m_y^2} k_{32} - \frac{\bar{b}m_x m_y + \Delta\alpha(\bar{d}+1)}{m_x^2 m_y^2} k_{42}$$

$$\frac{\partial\Delta\alpha}{\partial v_{x_3}} = -\frac{\bar{c}m_x m_y + \Delta\alpha(\bar{a}+1)}{m_x^2 m_y^2} k_{13} - \frac{(\bar{d}+1)m_x m_y + \Delta\alpha\bar{b}}{m_x^2 m_y^2} k_{23}$$

$$\frac{\partial\Delta\alpha}{\partial v_{y_3}} = -\frac{(\bar{a}+1)m_x m_y + \Delta\alpha\bar{c}}{m_x^2 m_y^2} k_{34} - \frac{\bar{b}m_x m_y + \Delta\alpha(\bar{d}+1)}{m_x^2 m_y^2} k_{44}$$

Vsak trikotnik predstavlja 3 enačbe popravkov, na osnovi enačbe 6.40 in parcialnih odvodov iz enačb 6.41, 6.42 in 6.43, ki se lahko v matrični obliki zapišejo kot:

$$\mathbf{v}_{Ai} + \mathbf{B}_{Ai} \boldsymbol{\Delta} = \mathbf{f}_{Ai} \quad \mathbf{P}_{Ai} = s_i \mathbf{I} \tag{6.44}$$

Vektor Δ predstavlja vektor neznank, ts. premiki na vseh točkah geodetske mreže, s_i pa površino trikotnika, da je enačba 6.44 skladna s karakteristično funkcijo membranske metode iz enačbe 6.28. Enačbe popravkov za vse trikotnike skupaj lahko zapišemo kot:

$$\mathbf{v}_A + \mathbf{B}_A \mathbf{\Delta} = \mathbf{f}_A \qquad \mathbf{P}_A = \operatorname{diag} \left[\begin{array}{ccc} \mathbf{P}_{A1} & \cdots & \mathbf{P}_{An_t} \end{array} \right]$$
(6.45)

Enačbe 6.45 predstavljajo samo relativna razmerja med premiki geodetske točke, s pogojem najmanšega možnega raztezanja oz. krčenja (spremembe meril) in striženja (sprememba pravega kota med koordinatnimi osmi). Matrika \mathbf{B}_A je zato singularna in za enolično določitev premikov na vseh točkah je potrebno nastaviti še matematični model izravnave za znane premike na točkah geodetske mreže v obliki:

$$\mathbf{v} + \mathbf{B}\mathbf{\Delta} = \mathbf{f} \qquad \mathbf{P} = \mathbf{\Sigma}^{-1}$$
 (6.46)

Rešitev premikov na točkah je dobljena s superpozicijo obeh sistemov normalnih enačb v obliki (Koch, 1999; Mikhail in Ackermann, 1976):

$$\Delta = (\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B} + \mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{B}_{A})^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{f} + (\mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{B}_{A} + \mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B})^{-1}\mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{f}_{A}$$

$$\mathbf{Q}_{\Delta} = (\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B} + \mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{B}_{A})^{-1}$$
(6.47)

6.3.2 Primerjava membranske metode in kolokacije po MNK

Enačbo za rešitev neznank (premikov točk) Δ po membranski metodi iz enačbe 6.47 se v skladu s Shurovo identiteto iz enačbe 6.17 zapiše kot:

$$\boldsymbol{\Delta} = \left(\mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{B}_{A}\right)^{-1}\mathbf{B}^{\mathrm{T}}\left(\mathbf{B}\left(\mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{B}_{A}\right)^{-1}\mathbf{B}^{\mathrm{T}}+\mathbf{P}^{-1}\right)^{-1}\mathbf{f} + \left(\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B}\right)^{-1}\mathbf{B}_{A}^{\mathrm{T}}\left(\mathbf{B}_{A}\left(\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B}\right)^{-1}\mathbf{B}_{A}^{\mathrm{T}}+\mathbf{P}_{A}^{-1}\right)^{-1}\mathbf{f}_{A}$$

$$(6.48)$$

 $\check{\mathrm{C}}\mathrm{e}$ elemente enačbe 6.48 označimo z:

$$\mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{B}_{A} = \mathbf{P}_{\boldsymbol{\Delta}_{A}}$$

$$\left(\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B}\right)^{-1} = \boldsymbol{\Sigma}_{\boldsymbol{\Delta}}$$

$$\mathbf{P}_{A}^{-1} = \boldsymbol{\Sigma}_{A}$$
(6.49)

Lahko enačbo 6.48 zapišemo kot:

$$\boldsymbol{\Delta} = (\mathbf{P}_{\boldsymbol{\Delta}_{A}})^{-1} \mathbf{B}^{\mathrm{T}} \left(\mathbf{B} \left(\mathbf{P}_{\boldsymbol{\Delta}_{A}} \right)^{-1} \mathbf{B}^{\mathrm{T}} + \boldsymbol{\Sigma} \right)^{-1} \mathbf{f} + \boldsymbol{\Sigma}_{\boldsymbol{\Delta}} \mathbf{B}_{A}^{\mathrm{T}} \left(\boldsymbol{\Sigma}_{\boldsymbol{\Delta}} \mathbf{B}_{A}^{\mathrm{T}} + \boldsymbol{\Sigma}_{A} \right)^{-1} \mathbf{f}_{A}$$
(6.50)

Primerjava enačbe 6.50 in enačbe 6.19, kjer je bila prikazana ekvivalenca funkcionalnega in stohastičnega modela kolokacije po MNK, nam poda:

- Enačbi se razlikujeta za celoten desni člen enačbe 6.50, ki je prisoten zaradi neničelnosti vektorja $\mathbf{f}_A \neq \mathbf{0}$.
- Za enakost enačb bi bilo nujno izračunati matriko $\Sigma_{\Delta_A} = (\mathbf{P}_{\Delta_A})^{-1}$.

Obe zgornji razliki izhajata iz istega vzroka. Da bi bila membranska metoda ekvivalentna kolokaciji po MNK, bi morala obstajati enolična rešitev matematičnega modela iz enačbe 6.45 kot:

$$\boldsymbol{\Delta}_{A} = \left(\mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{B}_{A}\right)^{-1}\mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{f}_{A}$$

$$\boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{A}} = \left(\mathbf{B}_{A}^{\mathrm{T}}\mathbf{P}_{A}\mathbf{B}_{A}\right)^{-1}$$
(6.51)

Če bi v tem primeru za matematični model iz enačbe 6.46 za znane premike privzeli približne vrednosti neznank kar Δ_A , bi enačbo 6.50 lahko zapisali kot:

$$\boldsymbol{\Delta} = \boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{A}} \mathbf{B}^{\mathrm{T}} \left(\mathbf{B} \boldsymbol{\Sigma}_{\boldsymbol{\Delta}_{A}} \mathbf{B}^{\mathrm{T}} + \boldsymbol{\Sigma} \right)^{-1} \mathbf{f}$$
(6.52)

s pripadajočo variančno kovariančno matriko:

$$\Sigma_{\Delta} = \Sigma_{\Delta_A} - \Sigma_{\Delta_A} \mathbf{B}^{\mathrm{T}} \left(\mathbf{B} \Sigma_{\Delta_A} \mathbf{B}^{\mathrm{T}} + \Sigma \right)^{-1} \mathbf{B} \Sigma_{\Delta_A}$$
(6.53)

Enačbi 6.52 in 6.53 sta vidno ekvivalentni enačbama 6.19 (razlika je le v indeksu A in m), kar bi pomenilo, da je membranska metoda ekvivalentna kolokaciji po MNK. Vendar pa enolična rešitev matematičnega modela enačbe 6.51 ne obstaja, saj je matrika \mathbf{B}_A singularna z defektom d = 3. Singularnost matrike \mathbf{B}_A ima vzrok v enačbah 6.39, kjer ne modeliramo premikov in zasuka okoli z osi. Rešitev 6.51 bi bila možna z generalizirano inverzijo ali pa s psevdo-inverzijo (Chen, 1983; Rao in Mitra, 1971), a bi pridobili singularno kovariančno matriko Σ_{Δ} , kar pa je v nasprotju z osnovnim pogojem pri kolokaciji po MNK, in sicer, da je kovariančna matrika signala Σ_{ss} polnega ranga (Krakiwsky, 1975; Mikhail in Ackermann, 1976; Moritz, 1972; 1978).

6.3.3 Izpeljava membranske metode preko tenzorja malih deformacij

Premike točk v geodetski mreži lahko predstavimo kot posledico deformiranja Zemeljskega površja. Če za vsak trikotnik geodetske mreže, določen z Delaunayevo triangulacijo, predpostavimo homogene deformacije, potem lahko ravninsko deformacijsko stanje trikotnika predstavimo z (Grant, 1988; Srpčič, 2003; Stanek in Turk, 1998; Sterle, 2007):

$$\begin{bmatrix} v_{x_i} \\ v_{y_i} \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} + \omega_z \\ \varepsilon_{xy} - \omega_z & \varepsilon_{yy} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} \iff \mathbf{v}_i = \mathbf{x}_0 + (\varepsilon + \omega) \mathbf{x}_i \quad \{i = 1, 2, 3\}$$
(6.54)

V enačbi 6.54 predstavlja ε tenzor malih deformacij, z elementi ε_{xx} , ε_{xy} in ε_{yy} , in ω tenzor majnih zasukov, določen z zasukom ω_z okoli osi z (Srpčič, 2003; Stanek in Turk, 1998).

Pri homogenih deformacijah definiramo elemente ε kot konstantne vrednosti, zato je modeliranje premika s homogenimi deformacijami ekvivalentno afini transformaciji (Grant, 1988). Karakteristična funkcija membranske metode na osnovi malih deformacij se glasi:

$$\sum_{i=1}^{n_t} s_i \cdot (r_{\varepsilon_{1_i}}^2 + r_{\varepsilon_{2_i}}^2 + r_{\gamma_i}^2) \to \min.$$
(6.55)

Enačba 6.55 podaja pogoj, da morata biti ekstremni normalni (ε_{1_i} in ε_{2_i}) in ekstremna strižna (γ_i) deformacija minimalne možne. Ekstremni normalni in strižna deformacija se določijo kot (Srpčič, 2003; Stanek in Turk, 1998):

$$\varepsilon_{1} = \frac{\varepsilon_{xx} + \varepsilon_{yy}}{2} + \sqrt{\frac{1}{4} (\varepsilon_{xx} - \varepsilon_{yy})^{2} + \varepsilon_{xy}^{2}}$$

$$\varepsilon_{2} = \frac{\varepsilon_{xx} + \varepsilon_{yy}}{2} - \sqrt{\frac{1}{4} (\varepsilon_{xx} - \varepsilon_{yy})^{2} + \varepsilon_{xy}^{2}}$$

$$\gamma = \sqrt{\frac{1}{4} (\varepsilon_{xx} - \varepsilon_{yy})^{2} + \varepsilon_{xy}^{2}}$$
(6.56)

Iz karakteristične funkcije 6.55 in enačb
 za ekstremne vrednosti deformacij 6.56, je razvidno, da potrebujemo vrednosti tenzorja malih deformacij
 ε . Na osnovi enačbe 6.54 sestavimo 4 enačbe, kot v primeru 6.35:

$$\begin{bmatrix} v_{x_2} - v_{x_1} \\ v_{y_2} - v_{y_1} \\ v_{x_3} - v_{x_1} \\ v_{y_3} - v_{y_1} \end{bmatrix} = \begin{bmatrix} x_2 - x_1 & 0 & y_2 - y_1 & y_2 - y_1 \\ 0 & y_2 - y_1 & x_2 - x_1 & -(x_2 - x_1) \\ x_3 - x_1 & 0 & y_3 - y_1 & y_3 - y_1 \\ 0 & y_3 - y_1 & x_3 - x_1 & -(x_3 - x_1) \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \\ \omega_z \end{bmatrix}$$
(6.57)

Rešitev deformacijskih elementov in zasuka iz enačbe 6.57 je dobljena enolično, v obliki:

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \\ \omega_{z} \end{bmatrix} = \begin{bmatrix} g_{11} & 0 & g_{13} & 0 \\ 0 & g_{22} & 0 & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{34} \\ g_{41} & g_{42} & g_{43} & g_{44} \end{bmatrix} \begin{bmatrix} v_{x_2} - v_{x_1} \\ v_{y_2} - v_{y_1} \\ v_{x_3} - v_{x_1} \\ v_{y_3} - v_{y_1} \end{bmatrix}$$
(6.58)

Elemente deformacijskega tenzorja ε_{xx} , ε_{xy} in ε_{yy} kot funkcijo premikov točk dobimo tako kot:

$$\varepsilon_{xx} = -(g_{11} + g_{13})v_{x_1} + g_{11}v_{x_2} + g_{13}v_{x_3}
\varepsilon_{yy} = -(g_{22} + g_{24})v_{y_1} + g_{22}v_{y_2} + g_{24}v_{y_3}
\varepsilon_{xy} = -(g_{31} + g_{33})v_{x_1} + g_{31}v_{x_2} + g_{33}v_{x_3} - (g_{32} + g_{34})v_{y_1} + g_{32}v_{y_2} + g_{34}v_{y_3}$$
(6.59)

V enačbah 6.59 so koeficienti g_{ij} odvisni le od koordinat točk in so zato konstante. Za vsak trikotnik nastavimo tri enačbe, ki imajo obliko:

$$\hat{\varepsilon}_1 = 0$$

$$\hat{\varepsilon}_2 = 0 \tag{6.60}$$

$$\hat{\gamma} = 0$$

Enačbe popravkov sestavimo tako, da vse tri enačbe iz enačbe 6.60 lineariziramo v okolici približnih vrednosti neznank $(v_{x_1}^0, v_{y_1}^0, v_{x_2}^0, v_{y_2}^0, v_{x_3}^0$ in $v_{y_3}^0)$ (Koch, 1999; Mikhail in Ackermann, 1976):

$$r_{\varepsilon_{1}} + \sum_{i=1}^{3} \frac{\partial \varepsilon_{1}}{v_{x_{i}}} + \sum_{i=1}^{3} \frac{\partial \varepsilon_{1}}{v_{y_{i}}} = -\varepsilon_{1}^{0}$$

$$r_{\varepsilon_{2}} + \sum_{i=1}^{3} \frac{\partial \varepsilon_{2}}{v_{x_{i}}} + \sum_{i=1}^{3} \frac{\partial \varepsilon_{2}}{v_{y_{i}}} = -\varepsilon_{2}^{0}$$

$$r_{\gamma} + \sum_{i=1}^{3} \frac{\partial \gamma}{v_{x_{i}}} + \sum_{i=1}^{3} \frac{\partial \gamma}{v_{y_{i}}} = -\gamma^{0}$$
(6.61)

Parcialni odvodi iz enačb popravkov 6.61 so določeni kot:

• Parcialni odvodi ε_1 :

$$\frac{\partial \varepsilon_{1}}{\partial v_{x_{i}}} = \frac{\partial \varepsilon_{1}}{\partial \varepsilon_{xx}} \frac{\partial \varepsilon_{xx}}{\partial v_{x_{i}}} + \frac{\partial \varepsilon_{1}}{\partial \varepsilon_{xy}} \frac{\partial \varepsilon_{xy}}{\partial v_{x_{i}}} \quad \frac{\partial \varepsilon_{1}}{\partial v_{y_{i}}} = \frac{\partial \varepsilon_{1}}{\partial \varepsilon_{yy}} \frac{\partial \varepsilon_{yy}}{\partial v_{y_{i}}} + \frac{\partial \varepsilon_{1}}{\partial \varepsilon_{xy}} \frac{\partial \varepsilon_{xy}}{\partial v_{y_{i}}} \quad \{i = 1, 2, 3\}$$

$$\frac{\partial \varepsilon_{1}}{\partial v_{x_{1}}} = -\left(\frac{1}{2} + \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) (g_{11} + g_{13}) - \frac{\varepsilon_{xy}}{\gamma} (g_{31} + g_{33})$$

$$\frac{\partial \varepsilon_{1}}{\partial v_{y_{1}}} = -\left(\frac{1}{2} - \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) (g_{22} + g_{24}) - \frac{\varepsilon_{xy}}{\gamma} (g_{32} + g_{34})$$

$$\frac{\partial \varepsilon_{1}}{\partial v_{x_{2}}} = \left(\frac{1}{2} + \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) g_{11} + \frac{\varepsilon_{xy}}{\gamma} g_{31}$$

$$\frac{\partial \varepsilon_{1}}{\partial v_{y_{2}}} = \left(\frac{1}{2} - \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) g_{22} + \frac{\varepsilon_{xy}}{\gamma} g_{32}$$

$$\frac{\partial \varepsilon_{1}}{\partial v_{x_{3}}} = \left(\frac{1}{2} + \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) g_{13} + \frac{\varepsilon_{xy}}{\gamma} g_{33}$$

$$\frac{\partial \varepsilon_{1}}{\partial v_{y_{3}}} = \left(\frac{1}{2} - \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) g_{24} + \frac{\varepsilon_{xy}}{\gamma} g_{34}$$

• Parcialni odvodi ε_2 :

$$\frac{\partial \varepsilon_2}{\partial v_{x_i}} = \frac{\partial \varepsilon_2}{\partial \varepsilon_{xx}} \frac{\partial \varepsilon_{xx}}{\partial v_{x_i}} + \frac{\partial \varepsilon_2}{\partial \varepsilon_{xy}} \frac{\partial \varepsilon_{xy}}{\partial v_{x_i}} - \frac{\partial \varepsilon_2}{\partial v_{y_i}} = \frac{\partial \varepsilon_2}{\partial \varepsilon_{yy}} \frac{\partial \varepsilon_{yy}}{\partial v_{y_i}} + \frac{\partial \varepsilon_2}{\partial \varepsilon_{xy}} \frac{\partial \varepsilon_{xy}}{\partial v_{y_i}} \quad \{i = 1, 2, 3\}$$

$$\frac{\partial \varepsilon_2}{\partial v_{x_1}} = -\left(\frac{1}{2} - \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) (g_{11} + g_{13}) + \frac{\varepsilon_{xy}}{\gamma} (g_{31} + g_{33})$$

$$\frac{\partial \varepsilon_2}{\partial v_{y_1}} = -\left(\frac{1}{2} + \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) (g_{22} + g_{24}) + \frac{\varepsilon_{xy}}{\gamma} (g_{32} + g_{34})$$

$$\frac{\partial \varepsilon_2}{\partial v_{x_2}} = \left(\frac{1}{2} - \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) g_{11} - \frac{\varepsilon_{xy}}{\gamma} g_{31}$$

$$\frac{\partial \varepsilon_2}{\partial v_{y_2}} = \left(\frac{1}{2} + \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) g_{22} - \frac{\varepsilon_{xy}}{\gamma} g_{32}$$

$$\frac{\partial \varepsilon_2}{\partial v_{x_3}} = \left(\frac{1}{2} - \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) g_{13} - \frac{\varepsilon_{xy}}{\gamma} g_{33}$$

$$\frac{\partial \varepsilon_2}{\partial v_{y_3}} = \left(\frac{1}{2} + \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma}\right) g_{24} - \frac{\varepsilon_{xy}}{\gamma} g_{34}$$

• Parcialni odvodi γ :

$$\frac{\partial\gamma}{\partial v_{x_i}} = \frac{\partial\gamma}{\partial \varepsilon_{xx}} \frac{\partial\varepsilon_{xx}}{\partial v_{x_i}} + \frac{\partial\gamma}{\partial \varepsilon_{xy}} \frac{\partial\varepsilon_{xy}}{\partial v_{x_i}} - \frac{\partial\gamma}{\partial v_{y_i}} = \frac{\partial\gamma}{\partial \varepsilon_{yy}} \frac{\partial\varepsilon_{yy}}{\partial v_{y_i}} + \frac{\partial\gamma}{\partial \varepsilon_{xy}} \frac{\partial\varepsilon_{xy}}{\partial v_{y_i}} \quad \{i = 1, 2, 3\}$$

$$\frac{\partial\gamma}{\partial v_{x_1}} = -\frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma} (g_{11} + g_{13}) - \frac{\varepsilon_{xy}}{\gamma} (g_{31} + g_{33})$$

$$\frac{\partial\gamma}{\partial v_{y_1}} = \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma} (g_{22} + g_{24}) - \frac{\varepsilon_{xy}}{\gamma} (g_{32} + g_{34})$$

$$\frac{\partial\gamma}{\partial v_{x_2}} = \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma} g_{11} + \frac{\varepsilon_{xy}}{\gamma} g_{31}$$

$$\frac{\partial\gamma}{\partial v_{y_2}} = -\frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma} g_{22} + \frac{\varepsilon_{xy}}{\gamma} g_{32}$$

$$\frac{\partial\gamma}{\partial v_{x_3}} = \frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma} g_{13} + \frac{\varepsilon_{xy}}{\gamma} g_{33}$$

$$\frac{\partial\gamma}{\partial v_{y_3}} = -\frac{\varepsilon_{xx} - \varepsilon_{yy}}{4\gamma} g_{24} + \frac{\varepsilon_{xy}}{\gamma} g_{34}$$

Na enak način, kot v primeru izpeljave membranske metode na osnovi afine transformacije iz enačbe 6.44, tudi tu sestavimo matrični sistem enačb popravkov za vsak trikotnik v obliki:

$$\mathbf{v}_{Di} + \mathbf{B}_{Di} \boldsymbol{\Delta} = \mathbf{f}_{Di} \quad \mathbf{P}_{Di} = s_i \mathbf{I} \tag{6.65}$$

in za vse trikotnike skupaj kot:

$$\mathbf{v}_D + \mathbf{B}_D \mathbf{\Delta} = \mathbf{f}_D \qquad \mathbf{P}_D = \operatorname{diag} \left[\mathbf{P}_{D1} \cdots \mathbf{P}_{Dn_t} \right]$$
(6.66)

Rešitev matematičnega modela je dobljena na osnovi matričnega modela iz enačbe 6.66 in matričnega modela znanih premikov na geodetskih točkah, ki je definiran v enačbi 6.46, se

izrazi enako kot v primeru enačbe 6.47 in ima obliko (Koch, 1999; Mikhail in Ackermann, 1976):

$$\Delta = (\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B} + \mathbf{B}_{D}^{\mathrm{T}}\mathbf{P}_{D}\mathbf{B}_{D})^{-1}\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{f} + (\mathbf{B}_{D}^{\mathrm{T}}\mathbf{P}_{D}\mathbf{B}_{D} + \mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B})^{-1}\mathbf{B}_{D}^{\mathrm{T}}\mathbf{P}_{D}\mathbf{f}_{D}$$

$$\mathbf{Q}_{\Delta} = (\mathbf{B}^{\mathrm{T}}\mathbf{P}\mathbf{B} + \mathbf{B}_{D}^{\mathrm{T}}\mathbf{P}_{D}\mathbf{B}_{D})^{-1}$$
(6.67)

Enačba 6.67 poda identične rezultate kot enačba 6.47 v primeru membranske metode definirane na osnovi afine transformacije.

7 REFERENČNI KOORDINATNI SESTAV SLOVE-NIJE

Na območju Slovenije in njene neposredne okolice so se od pojava sistemov GNSS izvajale številne izmere GNSS, ki pa so imele različne namene; od geodinamičnih nalog do vzpostavljanja koordinanih sistemov na lokalnih območjih (Berk in sod., 2003; Caporali in sod., 2009; Marjanović, 2009; Weber in sod., 2010). Poleg izmer na kakovostno stabiliziranih geodetskih točkah pasivnega omrežja, se je v Sloveniji izgradilo tudi aktivno omrežje stalno delujočih postaj SIGNAL, ki je leta 2006 postalo tudi polno operativno (Berk in sod., 2006). Število izmerjenih točk in pridobljenih podatkov je postalo relativno veliko, hkrati pa je postal velik tudi časovni razpon izmerjenih opazovanj GNSS. Izraba pridobljenih opazovanj GNSS na širšem območju Slovenije za vzpostavitev in vzdrževanje kakovostne časovno (ne)odvisne referenčne osnove je postala realno možna (Sterle in sod., 2009).

7.1 Podatki GNSS

7.1.1 Točke GNSS uporabljene pri obdelavi

Točke, katerih opazovanja GNSS smo obdelali, so v osnovi razdeljene na dva sklopa. Prvi sklop sestavljajo referenčne točke, katerih koordinate s pripadajočimi hitrostmi v globalnem koordinatnem sestavu dobro poznamo (Altamimi in sod., 2011), drugi sklop pa predstavljajo nove točke (Leick, 2004). Po svojem izvoru, pa lahko uporabljene geodetske točke GNSS razdelimo glede na njihovo lokacijo in vrsto, kot so razdeljene tudi v prilogi A:

- stalno delujoče postaje omrežja IGS (Dow in sod., 2009; Rebischung in sod., 2012), ki so prikazane na sliki 7.1,
- stalno delujoče postaje omrežja EPN (Bruyninx in sod., 2011; Kenyeres in Bruyninx, 2004), ki so prikazane na sliki 7.1,
- stalno delujoče postaje omrežij FReDNet (Zuliani in sod., 2002), SIGNAL (Berk in sod., 2006) in APOS (Höggerl in Imrek, 2007), ki so prikazane na sliki 7.2
- tri stalno delujoče postaje, in sicer KOPR (stalno delujoča postaja na stavbi podjetja Harpha Sea d.o.o. v Kopru), ZAGR (stalno delujoča postaja hrvaškega omrežja

CROPOS) in ZALA (stalno delujoča postaja madžarskega omrežja GNSSnet.hu), ki so prikazane na sliki 7.2 in

• številne točke pasivnega omrežja GNSS, ts. stabilne geodinamične točke na območju Slovenije (slika 7.3) in njene okolice (slika 7.4), na katerih so se skozi številne kampanje GNSS zbirala opazovanja GNSS.

Slika 7.1: Geodetske točke omrežja EPN in IGS, ki so bile uporabljene v obdelavi Figure 7.1: Geodetic stations of EPN and IGS permanent networks used in data processing

Slika 7.1 prikazuje stalno delujoče postaje službe IGS in službe EPN, ki smo jih uporabili v obdelavi opazovanj GNSS. Tako IGS kot tudi EPN postaje imajo dobro določene koordinate v aktualnem koordinatnem sestavu IGS (IGb) (Bruyninx in sod., 2011; Rebischung in sod., 2012). Za referenčne točke smo izbrali podniz 13-ih postaj IGS (glej prilogo A), ki imajo stabilne časovne vrste skozi daljše obdobje. Ostale postaje imajo status kontrolnih postaj, saj lahko primerjamo njihove ocenjene in dane koordinate in vektorje hitrosti (Dach in sod., 2007). Opazovanja GNSS, v formatu RINEX ali Hatanaka RINEX, vseh točk IGS so dobljeni preko podatkovnih centrov službe IGS (glej (IGS, 2015)), točk EPN pa preko podatkovnih centrov omrežja EPN (glej (EPN, 2015)). Kakovostno ocenjene koordinate s pripadajočimi vektorji hitrosti točk se nahajajo v objavljenih seznamih koordinat in ocenjenih vektrojev hitrosti s spletne strani:

- za IGS točke: http://itrf.ensg.ign.fr/ITRF_solutions/2008/doc/ITRF2008_ GNSS.SSC.txt in
- za EPN točke: ftp://epncb.oma.be/epncb/station/coord/EPN/EPN_A_IGb08. SSC.

Opazovanja stalnih postaj IGS in EPN so podane za vse termine izvedenih opazovanj novih točk, ts. vse ostale točke, ki sledijo v nadaljevanju.

Slika 7.2: Stalno delujoče postaje GNSS na območju in v bližji okolici Slovenije, ki so bile uporabljene v obdelavi

Figure 7.2: Permanent GNSS stations on the territory of Slovenia and in the surrounding of Slovenia, used in data processing

Slika 7.2 prikazuje stalno delujoče postaje na območju Slovenije (omrežje SIGNAL) in njeni okolici, tj. na območju Italije (omrežje FReDNet) in na območju Avstrije (omrežje APOS). Opazovanja stalno delujočih postaj Hrvaške (CROPOS) in Madžarske (GNS-SNet.hu) v času obdelave opazovanj niso bila na voljo. Opazovanja GNSS z vseh treh omrežij smo pridobili od:

 za omrežje FReDNet so podatki prostodostopni s spletne strani ftp://www.crs. inogs.it/pub/gps/,

- za omrežje SIGNAL skrbi Slubžba za GPS v okviru Geodetskega Inštituta Slovenije (http://www.gis.si/) in
- za omrežje APOS skrbi BEV (http://www.bev.gv.at/portal/page?_ pageid=713,2152237&_dad=portal&_schema=PORTAL/).

Slika 7.3: Pasivno omrežje geodinamičnih točk GNSS na območju Slovenije, ki so bile uporabljene v obdelavi

Figure 7.3: Passive network of GNSS stations on the territory of Slovenia used in data processing

Sliki 7.3 in 7.4 prikazujeta niz kakovostno stabiliziranih geodetskih točk pasivnega omrežja na območju Slovenije in njene okolice, predvsem Hrvaške. Opazovanja so bila pridobljena skozi številne kampanje izmer GNSS od leta 1994 naprej. Razlogi so bili različni, od vzpostavitve novega koordinatnega sistema (izmere EUREF 1994, 1995 in 1996), novega višinskega sistema (izmere EUVN), merjenja višine morske gladine (t. i. kampanja "4 mareografi"), do geodinamičnih raziskav (okolica Krškega, Posočja, Velenja), mednarodnih projektov (projekt CERGOP) do izmer na mejnih območjih Slovenije in Hrvaške in podobno. Posledično smo pridobili številne geodinamične geodetske točke, ki so imele opazovanja pridobljena v vsaj dveh terminskih izmerah, kar je pogoj za oceno tudi časovnih sprememb koordinat točke.

Slika 7.4: Pasivno omrežje geodinamičnih točk GNSS izven območja Slovenije, ki so bile uporabljene v obdelavi

Figure 7.4: Passive network of GNSS stations out of the territory of Slovenia used in data processing

7.1.2 Opazovanja GNSS uporabljena v obdelavi

Preglednica 7.1 prikazuje količino podatkov GNSS, ki so bili obdelani za potrebe naloge. Za vsako omrežje je podano število točk, število dnevnih datotek RINEX in časovni razpon v letih, za katera so pridobljeni podatki. Glavni omrežji sta pasivno omrežje in omrežje SIGNAL, saj se točke obeh omrežij nahajajo predvsem na območju Slovenije. Omrežja FReDNet, APOS in Ostalo so dodana za dopolnitev območja s stalno delujočimi postajami tudi na mejnem območju Italije in Avstrije, omrežje EPN za zgostitev omrežja IGS, omrežje IGS pa je dodano zaradi dobro določenih koordinat v koordinatnem sestavu IGS in predstavlja omrežje referenčnih postaj. To je tudi razlog, zakaj je število datotek in časovni razpon podatkov omrežja IGS največje, saj je potrebno za vsak dan pridobljenih opazovanj na območju Slovenije pridobiti tudi opazovanja referenčnih postaj IGS. Iz preglednice je razvidno, da je količina opazovanj velika, skupaj več kot 150 000 dnevnih datotek RINEX s skupaj 138 točk GNSS v skoraj 20-ih letih.

Preglednica 7.1: Količina podatkov izmer GNSS, ki so uporabljeni pri praktičnem delu naloge

Omrežje	#Točk	$\# \mathbf{Datotek}$	Časovni razpon
SIGNAL	15	$23 \ 207$	2002-2013*
FReDNet	14	36 165	2002-2013
APOS	8	$11\ 531$	2003-2010
EPN	5	$7\ 943$	2002-2013
Ostalo	3	3 250	2000-2010
Pasivno	75	$1\ 352$	1994 - 2011
IGS	18	71 696	1994-2013
SKUPAJ	138	$155\ 144$	1994-2013

Table 7.1: The amount of the data from GNSS surveys that are used in the case study part

*Od leta 2010 imamo podatke le za točko GSR1, ki je del omrežja EPN (glej prilogo B)

Slika 7.5 prikazuje število dnevnih datotek RINEX za vsak dan, ko so bila opazovanja GNSS na voljo. Iz slike je razvidno, da pred letom 2000 ni opazovanj stalno delujočih postaj na območju Slovenije (in njeni okolici), ampak so opazovanja le terminskih izmer, ki so se po pravilu izvajala v toplejših delih leta. Po letu 2000 so se začela vzpostavljati omrežja stalno delujočih postaj na območju Slovenije (SIGNAL) in njeni okolici (FReDNet in APOS), tako da so dnevne datoteke podane za vsak dan letno. Najmanjše število dnevnih datotek je bilo 9, medtem ko je bilo največje število dnevnih datotek 59. V povprečju je bilo za vsak dan opazovanj podanih kar 33 dnevnih datotek. Skupno je bilo, med letoma 1994 in 2014, kar 4666 dni, za katere imamo podane dnevne datoteke RINEX z opazovanji GNSS.

V prilogi B prikazujemo količino opazovanj GNSS po posameznih omrežjih, znotraj katerih je grafičen prikaz količine datotek RINEX za posamezno točko omrežja. Iz slik je razvidno:

- kampanjske izmere GNSS so se dokaj enakomerno vršile od leta 1994 do okoli leta 2006, potem pa so le-te počasi zamenjevala opazovanja stalno delujočih postaj na posameznih področjih,
- opazovanja omrežja SIGNAL so v večini le od leta 2006 do leta 2010, z izjemo štirih točk, ts. MARI, GSR1, CRNO IN BOVE,

Slika 7.5: Število dnevnih datotek RINEX opazovanj GNSS med leti 1994 in 2014 Figure 7.5: Number of daily RINEX files with GNSS observations between 1994 and 2014

- pri omrežju APOS velja podobno, kot v primeru omrežja SIGNAL, le da so podatki malo mlajši,
- podatki omrežja FReDNet so starejši in ker so le-ti prosto dostopni so do leta 2013,
- v primeru stalno delujočih postaj KOPR, ZALA in ZAGR, imamo praktično le opazovanja postaje KOPR in
- opazovanja IGS so podana za skoraj vse točke in za vse dni podanih opazovanj ostalih omrežij.

7.1.3 Produkti službe IGS pri obdelavi opazovanj GNSS

Za obdelavo opazovanj GNSS z najvišjo možno točnostjo in natančnostjo (glej poglavje 2) potrebujemo številne podatke in modele, ki jih brezplačno zagotavlja služba IGS že skoraj 20 let. Ti podatki so:

- končne precizne efemeride satelitov GPS, popravki ur satelitov GPS (na 30 s) in končni precizni parametri orientacije Zemlje (ftp://igs.ensg.ign.fr/pub/igs/ products/),
- model ionosfere službe CODE in kodni zamiki P₁-C₁ in P₁-P₂ (ftp://ftp.unibe. ch/aiub/CODE/),
- kalibracijski parametri anten sprejemnikov in satelitov v formatu ANTEX (ftp:// igs.org/pub/station/general/),

• parametre modela FES2004 plimovanja oceanov (http://holt.oso.chalmers.se/ loading/)

V primeru metode PPP ne potrebujemo podatkov službe CODE, saj vpliv ionosfere odstranimo z linearnima kombinacijama L_3 in P_3 iz enačbe 2.5, medtem ko se kodni zamiki ocenijo v postopku izravnave po MNK (glej poglavje 2.3). Model ionosfere in kodne zamike službe CODE potrebujemo pri uporabi programa BSW5.0 za določitev faznih nedoločenosti v območju celih števil in za sinhronizacijo ur sprejemnikov s časom GPS (Dach in sod., 2007).

7.2 Obdelava opazovanj GNSS in pridobitev dnevnih rešitev

Z dnevno rešitvijo opredelimo niz ocenjenih koordinat geodetskih točk GNSS s pripadajočimi natančnostmi, ki smo jih pridobili na osnovi opazovanj GNSS za obravnavan dan. Pri obdelavi opazovanj GNSS poleg samih koordinat točk ocenjujemo tudi številne ostale neznanke (parametri troposfere s pripadajočimi gradienti, kodni zamiki, fazne nedoločenost in pogreški ure sprejemnikov), a bomo v sklopu naloge obravnavali le ocenjene koordinate. Pri vsakem dnevu podanih opazovanj GNSS (datotek RINEX) imamo opazovanja podana za nove kot tudi za dane (IGS) točke, ki nam podajajo možnost vklopa dnevnih rešitev v aktualni globalni koordinatni sestav IGS (IGb08) (Rebischung in sod., 2012), ki predstavlja realizacijo koordinatnega sistema ITRS na osnovi opazovanj GPS. V nadaljevanju bomo prikazali dnevne rešitve dveh načinov obdelave, in sicer z metodo PPP in s programskim paketom BSW5.0. Pri obdelavi smo uporabili le opazovanja GPS, saj opazovanja sistema GLONASS niso bila možna za večje število dnevnih datotek RINEX in tudi za številne sprejemnike, ki so bili uporabljeni v (predvsem) terminskih izmerah.

7.2.1 Pridobitev dnevnih rešitev na osnovi metode PPP

Teoretične osnove metode PPP so opisane v poglavju 2, kjer izhajamo iz izvedenih opazovanj na posamezni točki GPS. Opazovanja GPS obdelamo na podlagi modelov in nastavitev, ki so:

- končni precizni produkti službe IGS (efemeride, popravki ur satelitov, parametri orientacije Zemlje),
- vpliv splošne in posebne relativnosti,

- kalibracijski parametri anten sprejemnikov in satelitov,
- modela plimovanja čvrste Zemlje in plimovanja oceanov,
- Saastamoinenov model troposfere z Niellovo projekcijsko komponento zenitne troposferske refrakcije (za mokro in suho komponento), z modeliranjem mokre zenitne troposferske refrakcije kot kosoma linearna funkcija s korakom $\Delta_{t_T} = 2$ h,
- horizontalni gradienti troposfere za modeliranje azimutalne nesimetrije troposfere, definiranih kot linearna funkcija čez cel dan,
- vpliv preskoka faze pri faznih opazovanjih,
- odstranitev faznih opazovanj v času, ko je satelit v okolici zveznice Sonce-Zemlja,
- modeliranje natančnosti faznih in kodnih opazovanj v odvisnosti od višinskega kota satelita (kosinusni model),
- nastavitev minimalnega višinskega kota na 8°,
- nastavitev mejne vrednosti za iskanje velikih grobih pogreškov iz vektorja odstopanj enačb popravkov **f** kot $\delta_{\mathbf{f}} = 1000, 0$ m,
- nastavitev mejnih vrednosti δ_{v_L} (fazna opazovanja) in δ_{v_P} (kodna opazovanja) za iskanje grobih pogreškov iz vektorja popravkov opazovanj **v**, in sicer v odvisnosti od podanih preciznih popravkov ur satelitov službe IGS:
 - precizne ure so podane na 15 minut: $\delta_{v_L} = 0, 2 \text{ m in } \delta_{v_P} = 15, 0 \text{ m},$
 - precizne ure so podane na 5 minut: $\delta_{v_L} = 0, 1 \text{ m in } \delta_{v_P} = 10, 0 \text{ m ali}$
 - precizne ure so podane na 30 sekund: $\delta_{v_L} = 0,05$ m in $\delta_{v_P} = 5,0$ m,
- nastavitev iteracijskega postopka, dokler velja $||\Delta|| > 10^{-4}$ m.

Rezultat obdelave z metodo PPP je niz neznank za vsako geodetsko točko na obravnavan dan:

- ocenjene kartezične koordinate x, y in z,
- 13 parametrov mokre komponente zenitne troposferske refrakcije,
- 4 parametri gradientov troposfere,
- u_N faznih nedoločenosti,
- u_D kodnih zamikov in
- u_C pogreškov ure sprejemnika.

Z metodo PPP smo obdelali le opazovanja stalno delujočih postaj, v obdobju od leta 2001 do leta 2014. Skupno je bilo obdelanih 60 postaj iz omrežih IGS, EPN, SIGNAL, FRe-DNet, APOS in točke KOPR, ZALA in ZAGR. Seznam obdelanih točk je predstavljen v preglednici 7.2. Pri metodi PPP pridobimo koordinate točk v koordinatnem sistemu, v katerem so podane precizne efemeride satelitov. Za celoten termin izmer se je realizacija globalnega koordinatnega sistema ITRF večkrat spremenila, zato so podane efemeride in parametri orientacije Zemlje med seboj teoretično neskladne. Transformacijo vseh datotek preciznih efemerid in parametrov orientacije Zemlje v enoten koordinatni sestav (ITRF2008) smo izvedli s programom trnfsp3n.exe (Kouba, 2002) in na ta način zagotovili enotnost globalnega koordinanega sestava preciznih efemerid za celoten termin podanih datotek RINEX, tj. od leta 1994 do leta 2013.

Preglednica 7.2: Seznam stalno delujočih postaj, ki smo jih obdelali z metodo PPP

Omrežje	Točke
SIGNAL	BODO, BOVE, BREZ, CELJ, CRNO, GSR1, ILIB, KOPE,
	MARI, NOVG, PTUJ, RADO, SLOG, TREB, VELP
FReDNet	ACOM, AFAL, CANV, CODR, FUSE, JOAN, MDEA, MPRA,
	NOVE, PAZO, TRIE, UDI1, UDIN, ZOUF
APOS	BLE2, BLEI, DLBG, FLDB, KLA2, KLAG, LAN2, LANK
EPN	GARI, DUBR, OSJE, SBG2, SRJV
Ostalo	KOPR, ZALA, ZAGR
IGS	BOR1, CAGL, GRAS, GRAZ, HFLK, JOZE, KOSG, MATE,
	MEDI, METS, PADO, PENC, POTS, SOFI, UPAD, VILL,
	WTZR, ZIMM

Table 7.2: List of permanent stations that were processed with the method PPP

Rezultat obdelave opazovanj GPS z metodo PPP za vsako točko iz preglednice 7.2 in za vsak dan podanih opazovanj (glej prilogo B) so časovne vrste koordinat točk skozi čas v globalnem koordinatnem sestavu, tj. v koordinatnem sestavu IGb08. Slika 7.6 prikazuje primer časovnih vrst koordinat šestih stalno delujočih postaj za celoten čas izmere. Časovne vrste koordinat so prikazane tako, da se je vsem koordinatam odstranila povprečna vrednost in linearen trend spreminjanja koordinat točk (odstranjen vpliv konstantne vrednosti vektorja hitrosti). Časovne vrste koordinat so predstavljene v lokalnem geodetskem koordinatnem sistemu, s koordinatami označenimi z N – smer SJ (rdeče pike), E – smer

VZ (zelene pike) in U – smer višine (modre pike). Vsem koordinatam N je, zaradi jasnejšega prikaza, prišteta konstanta -50 mm, vsem koordinatam U pa konstanta +50 mm. Izbor točk na sliki 7.6 je dokaj naključen, saj so časovne vrste med točkami zelo podobne. Prikaz časovnih vrst koordinat točk metode PPP za vseh 63 točk je v prilogi C.

Slika 7.6: Casovne vrste koordinat šestih stalno delujočih postaj, pridobljene z metodo PPP Figure 7.6: Coordinate time series of six permanent stations, obtained with PPP method

Iz slike 7.6 je razvidna podobnost prvih petih grafov (za točke GRAZ, MATE, SRJV, BLEI in GSR1), odstopa pa graf časovnih vrst koordinat točke KOPR. Pri stalno delujoči postaji KOPR se vidi preskok po višini pred letom 2004 in navidezno "lezenje" točke navzgor, kar je posledica zamenjave antene GPS in pomanjkljive dokumentacije o vrsti antene na točki. Pri ostalih točkah pa lahko vidimo prisotnost sistematičnega periodičnega vpliva na položaj točke, ki je prevladujoč predvsem pri višinski komponenti in ima periodo približno eno leto. Periodični vpliv v časovnih vrstah predstavlja nemodelirane vplive v opazovanjih, ki pa ima regionalno oz. tudi globalno razsežnost, saj je na vseh postajah podobni. Vzrok za prisotnost periodičnega vpliva je še neznan in ga bo potrebno v prihodnje raziskati.
Preglednica 7.3: Ponovljivost koordinat stalno delujočih postaj dobljenih z metodo PPP, (enote: mm)

Omrežje	$\bar{\sigma}_N$	$\min(\sigma_N)$	$\bar{\sigma}_E$	$\min(\sigma_E)$	$\bar{\sigma}_U$	$\min(\sigma_U)$
	[mm]	$\max(\sigma_N)$	[mm]	$\max(\sigma_E)$	[mm]	$\max(\sigma_U)$
SIGNAL	4,44	$3,\!66$	5,88	4,99	$10,\!21$	8,25
		$6,\!08$		$7,\!15$		$12,\!32$
FReDNet	4,18	$3,\!15$	$5,\!66$	$4,\!15$	$9,\!46$	7,72
		6,75		$7,\!85$		$13,\!25$
APOS	$4,\!37$	$3,\!55$	5,51	4,50	10,84	$9,\!04$
		5,02		$6,\!84$		$12,\!67$
EPN	4,46	$3,\!33$	$5,\!60$	$3,\!95$	$9,\!91$	8,65
		6,24		$7,\!36$		$10,\!95$
Ostalo	$3,\!68$	2,23	4,86	2,81	$11,\!46$	$5,\!34$
		$6,\!17$		$6,\!81$		21,28
IGS	6,21	$5,\!17$	6,75	5,88	11,84	$10,\!31$
		8,10		9,24		15,74
Skupaj	4,84	2,23	5,96	2,81	10,62	5,34
		8,10		9,42		21,28

Table 7.3: Coordinates' repeatability values of permanent stations obtained with PPP method (units: mm)

Kar se tiče same natančnosti ocenjenih koordinat, le-to pridobimo kot stopnjo ponovljivosti dnevnih rešitev, tj. izračunan standardni odklon (σ_N , σ_E in σ_U) na osnovi odstopanj dnevnih rešitev koordinat od srednjih vrednosti, z odstranitivjo linearnega trenda. Izračunane ponovljivosti za posamezno omrežje in koordinatno komponento so predstavljene v preglednici 7.3. Z oznako $\bar{\sigma}_i$, $i = \{N, E, U\}$ so označene srednje vrednosti ponovljivosti, z oznakama min(σ_i) in max(σ_i) pa najmanjša in največja vrednost ponovljivosti za *i*-to koordinato. Numerične vrednosti pričajo o visoki natančnosti dobljenih koordinat, kljub prisotnemu periodičnemu sistematičnemu vplivu v koordinatnih odstopanjih (slika 7.6). V splošnem je najnatančneje določena koordinatna komponenta N s srednjo ponovljivostjo $\bar{\sigma}_N = 4,84$ mm, nato sledi komponenta E s srednjo ponovljivostjo $\bar{\sigma}_E = 5,96$ mm in kot najslabše določena višinska komponenta U, s srednjo ponovljivostjo $\bar{\sigma}_E = 10,62$ mm. Ocenjene natačnosti so skladne z že objavljenimi rezultati izmer z metodo PPP (Anquela in sod., 2013; Kouba in Héroux, 2001; Perez in sod., 2003). Horizontalni komponenti sta tako določeni s pol-centimetrsko natančnostjo, medtem ko je višinska komponenta določena s centimetrsko natančnostjo.

7.2.2 Pridobitev dnevnih rešitev s programskim paketom BSW5.0

BSW5.0 predstavlja visoko dovršen programski paket za obdelavo opazovanj GNSS z najvišjo natančnostjo in točnostjo rezultatov in temelji na uporabi dvojnih faznih razlik opazovanj GNSS in celih vrednostih faznih nedoločenosti (Dach in sod., 2007). Kljub svoji univerzalnosti programskih modulov, je poudarek BSW5.0 na statični izmeri GNSS in globalnih razsežnostih geodetskih mrež GNSS. BSW5.0 so razvili na Astronomskem inštitutu na Univerzi v Bernu (glej http://www.bernese.unibe.ch/) in predstavlja enega izmed visoko dovršenih programskih paketov za obdelavo opazovanj GNSS analiznih centrov službe IGS (Meindl in sod., 2012; Dach in Jean, 2013).

Programski paket BSW5.0 smo v nalogi uporabili za obdelavo vseh opazovanj GPS, tako za stalno delujoče postaje kot tudi za geodinamične točke pasivnega omrežja in za celotno obdobje podanih opazovanj, tj. od leta 1994 do leta 2014. Postopek obdelave je temeljil na postopkih, ki jih uporabljajo analizni centri službe IGS (Dow in sod., 2009; Rebischung in sod., 2012) in EPN (Bruyninx in sod., 2011) za obdelavo globalnih geodetskih mrež GNSS, ter na postopkih za obdelavo opazovanj GNSS za najnatančnejše geodinamične raziskave (Caporali in sod., 2009; Vezočnik in sod., 2009). Zaradi obdelave opazovanj GPS na manjšem območju (gledano globalno), smo postopek obdelave delno optimizirali, da v čim večji meri izkoristimo prednost krajših baznih vektorjev (Marjanović, 2009).

Obdelava opazovanj GPS s programskim paketom BSW5.0 temelji na obdelavi dvojnih faznih razlik v baznih vektorjih, zato se za posamezen dan obdelajo vsa opazovanja GPS vseh opazovanih točk skupaj. Postopek obdelave prikazujejo spodaj nanizani koraki (Dach in sod., 2007; Marjanović, 2009).

- Pretvorba vseh vhodnih podatkov v obliko, ki je berljiva s programom BSW.50. Uvozijo in pretvorijo se datoteke RINEX, datoteka preciznih efemerid in datoteka parametrov orientacije Zemlje. Datoteke s kodnimi zamiki in modeli ionosfere so že podani v obliki, ki jo BSW5.0 lahko uporabi.
- 2. Sinhronizacija ur sprejemnikov s časom GPS se izvede na osnovi kodnih opazovanj GPS ločeno za vsako točko posebej. Namen sinhronizacije ur sprejemnikov je pridobiti približne vrednosti pogreškov ure sprejemnikov za vsak trenutek s točnostjo

vsaj 1 μ s, ki so pomembne za izračun razdalje satelit-sprejemnik s točnostjo višjo od 1 mm. Dodatno se v postopku pregleda tudi kakovost kodnih opazovanj in izloči grobo pogrešena opazovanja.

- 3. Sestava baznih vektorjev temelji na principu največjega možnega števila sestavljenih enojnih faznih razlik v celotni mreži. V našem primeru smo za vsak dan opazovanj imeli dva niza točk, in sicer niz novih točk, ki so bila vsa na ali v okolici območja Slovenije, in niz danih IGS točk, ki so locirane na celotnem območju Evrope. Da izkoristimo krajše bazne vektorje med novimi točkam, v prvem koraku na principu najvišjega možnega števila skupnih opazovanj bazne vektorje sestavimo le za točke območja Slovenije in njene bližnje okolice. V drugem koraku sestavljeno mrežo baznih vektorjev povežemo z baznimi vektorji do danih IGS točk na osnovi enakega algoritma, tj. največje skupno število sestavljenih enojnih faznih razlik.
- 4. Pregled in analiza faznih opazovanj ter določitev območij faznih nedoločenosti se izvede za vsak bazni vektor posebej. Obdelava temelji na linearni kombinaciji L_3 , kjer je poudarek na združevanju faznih opazovanj posameznega satelita, ki pripada isti fazni nedoločenosti. V postopku se išče izpade signala, se jih locira, poskuša oceniti in odstraniti. Dodatno se fazna opazovanja tudi analizira in odstrani grobo pogrešena fazna opazovanja. Cilj obdelave je izločiti grobo pogrešena opazovanja in nastaviti najmanjše možno število faznih nedoločenosti, ki se nanašajo na fazna opazovanja.
- 5. Prva rešitev geodetske mreže GPS temelji na linearni kombinaciji L_3 in se geodetski datum določi s psevdo-opazovanji (Sterle, 2007). Vsem točkam, ki imajo podane kakovostne koordinate v IGb08 sestavu, se nastavijo natančnosti koordinat v izravnavi na $\sigma = 0,01$ m. V obdelavi se poleg koordinat in faznih nedoločenosti ocenijo tudi parametri mokre komponente troposfere, ki se modelirajo kot zvezna kosoma linearna funkcija s korakom 4 h. Končni rezultat so ocenjeni popravki faznih opazovanj, ki se v naslednjem koraku pregledajo, da bi se izločili še zadnji prisotni grobi pogreški.
- 6. Druga rešitev geodetske mreže temelji na očiščenih opazovanjih L_3 in ima enake nastavitve kot prva rešitev. Razlika se pojavi v podanih natančnostih psevdoopazovanj ($\sigma = 0,001$ m) za dane IGS točke in v manjšem številu uporabljenih opazovanj, saj se interval registracije nastavi na 180 s. Končni rezultat so ocenjene koordinate, parametri troposfere (na 4 h) in ocenjene fazne nedoločenosti v območju realnih števil. Realne vrednosti faznih nedoločenosti definirajo rešitev mreže kot t. i.

"float"²² rešitev.

- 7. Določitev faznih nedoločenosti v območju celih števil temelji na rezultatih prejšnjega koraka (druga rešitev geodetske mreže GPS). Ocenjene koordinate in parametri troposfere se obravnavajo kot dane količine, ionosfera se modelira z modelom ionosfere službe CODE, fazne nedoločenosti pa se določijo kot cela števila na dva načina:
 - za krajše vektorje (do 170 km) se prvo ocenijo fazne nedoločenosti na linearni kombinaciji L_5^{23} in na osnovi le-teh se določijo še fazne nedoločenosti na opazovanjih L_1 in L_2 ,
 - za daljše vektorje (nad 170 km) se fazne nedoločenosti določijo kot cela števila na osnovi algoritma QIF (Mervat, 1995).

Postopek določevanja faznih nedoločenosti v območju celih števil pri obeh metodah določi cela števila le tistim faznim nedoločenostim, ki zadostijo podanim statističnim testom.

- 8. Tretja in končna rešitev geodetske mreže na osnovi faznih opazovanj L_3 in faznih nedoločenosti kot celih števil. V postopku obdelave se geodetski datum določi s psevdo-opazovanji ($\sigma = 0,01$ m) za vse dane IGS točke. Parametri troposfere se ocenijo na vsaki dve uri s pripadajočimi horizontalnimi gradienti. Korelacije med dvojnimi faznimi razlikami se v popolnosti upoštevajo, tako na nivoju posameznega baznega vektorja, kot tudi med posameznimi baznimi vektorji.
- 9. Zagotovitev geodetskega datuma z minimalnim številom vezi. Program na osnovi sistema normalnih enačb iz končne rešitve izračuna končnih vrednosti neznank, ki so usklajene z globalnim koordinantim sestavom IGb08. Ker bazni vektorji zagotovijo datumske parametre zasukov in merila, je potrebno z minimalnim številom vezi modelirati le premik geodetske mreže (Leick, 2004; Kuang, 1996). Datumske parametre premika geodetske mreže GPS se modelira po principu proste mreže (notranje vezi), a le za referenčne točke IGS (Dach in sod., 2007).
- 10. Končne ocenjene koordinate točk se s Helmertovo transformacijo, kjer se ocenijo le premiki po vseh treh koordinatnih oseh, primerjajo z danimi vrednostmi referenčnih koordinat. Če je pri kateri izmed referenčnih točk odstopanje ocenjenih koordinat od danih večje od 10 mm pri koordinatah N in E ali večje od 30 mm pri višini, se ta točka izloči kot referenčna točka in se ponovi korak 9.

 $^{^{22}}$ float se v tem primeru prevede kot plavajoča vejica, kar je lastnost realnih števil

 $^{^{23}\}mathrm{t.}$ i. "wide lane" linearna kombinacija oz. linearna kombinacija širokega pasu

11. Zadnji korak predstavlja samo zmanjšanje sistema normalnih enačb iz koraka 9, tako da v izhodnem sistemu normalnih enačb nastopajo le koordinate točk. Ta korak je pomemben le pri nadaljnjem ocenjevanju vektorjev hitrosti točk, ki temelji na dnevnih rešitvah geodetske mreže. Pri zlaganju²⁴ dnevnih sistemov normalnih enačb v skupnega je zaželeno, da le-ti vsebujejo čim manj neznank.

Slika 7.7: Časovne vrste koordinat šestih stalno delujočih postaj, pridobljene s programskim paketom BSW5.0

Figure 7.7: Coordinate time series of six permanent stations, obtained with BSW5.0 software

Rezultat obdelave opazovanj GPS s programskim paketom BSW5.0 so ocenjene dnevne koordinate geodetskih točk GPS za vse dni, za katera so na voljo opazovanja GPS. Časovne vrste koordinat točk, ki jih tako pridobimo, so zaradi koraka 9 pri obdelavi dnevnih opazovanj GPS tudi že usklajene z globalnim koordinanim sistemom, ki ga definirajo referenčne točke GPS. Prikazi časovnih vrst točk, dobljenih s programskim paketom BSW5.0, so v prilogi E. Slika 7.7 prikazuje ocenjene časovne vrste istih šestih stalno delujočih postaj, kot v primeru 7.6 in na enak način. Časovne vrste predstavljajo torej odstopanja dnev-

²⁴angl. stacking of normal equations

nih rešitev koordinat od srednjih vrednosti koordinat z dodatnim upoštevanjem vektorja hitrosti točke.

Iz grafov na sliki 7.7 je razvidna višja natančnost časovnih koordinat kot v primeru metode PPP. V primeru stalno delujoče postaje MATE se pri višini vidi velika razpršenost in razmejitev (bela lisa) med dnevi, ko je bila MATE določena kot referenčna točka in med dnevi, ko je bila zaradi večjega odstopanja po višini izločena iz nabora referenčnih točk. V primeru stalno delujoče postaje KOPR so vzroki za obliko časovnih vrst koordinat enaki kot v primeru metode PPP. Visoka natančnost ocenjenih dnevnih koordinat in posledično časovnih vrst omogoča iskanje nelinearnih in nezveznih sprememb koordinat skozi čas, kot v primeru postaje GSR1 leta 2004 ali postaje GRAZ leta 2005.

Slika 7.8: Časovne vrste koordinat štirih geodinamičnih točk, pridobljene s programskim paketom BSW5.0

Figure 7.8: Coordinate time series of four geodynamical passive stations, obtained with BSW5.0 software

Na sliki 7.8 prikazujemo časovne vrste štirih geodinamičnih točk pasivnega omrežja na območju Slovenije. Točki FGG3 in MALJ sta točki, ki sta bili izmerjeni v največ kampanjah. Primerjava s časovnimi vrstami stalno delujočih postaj s slike 7.7 jasno prikazuje v čem je prednost stalno delujočih postaj v primerjavi s točkami pasivnih omrežij. Večje kot je število dnevnih koordinat točke, večji je nadzor nad časovnimi spremembami koordinat točke, višja je zanesljivost in natančnost ocenjenih koordinat in njenih časovnih sprememb. Točki JELO in KANI pa predstavljata točki, ki sta bili izmerjeni le dvakrat. Ocenimo lahko le položaj in linearno spremembo položaja skozi čas. Kakršne koli pogreške pri izmeri (npr. napačna višina antene) je težavno odkriti, saj ne moremo jasno vedeti, v kateri izmeri je prišlo do napake. Prikaz časovnih vrst vseh ostalih točk pasivnega omrežja so v prilogi E.

Preglednica 7.4: Ponovljivost koordinat stalno delujočih postaj dobljenih s programskim paketom BSW5.0 (enote: mm)

Omrežje	$\bar{\sigma}_N$	$\min(\sigma_N)$	$\bar{\sigma}_N$	$\min(\sigma_E)$	$\bar{\sigma}_N$	$\min(\sigma_U)$
	[mm]	$\max(\sigma_N)$	[mm]	$\max(\sigma_E)$	[mm]	$\max(\sigma_U)$
SIGNAL	2,42	2,01	2,41	2,05	5,38	4,25
		$3,\!37$		3,27		$7,\!11$
${ m FReDNet}$	$2,\!48$	2,09	2,43	$1,\!95$	$4,\!93$	4,03
		3,52		4,16		$7,\!85$
APOS	2,75	$2,\!43$	$2,\!43$	2,18	7,14	5,73
		3,20		$2,\!66$		8,42
EPN	3,22	$2,\!30$	2,88	2,16	7,75	5,18
		$4,\!82$		4,51		$11,\!30$
Ostalo	2,28	$1,\!46$	$3,\!65$	$1,\!95$	10,14	4,80
		$3,\!48$		$6,\!61$		$20,\!69$
IGS	$3,\!55$	$2,\!30$	3,40	2,08	6,28	6,82
		$6,\!80$		$6,\!94$		$4,\!41$
Skupaj	2,85	1,46	2,80	1,95	6,33	4,03
		6,80		6,94		20,69
Pasivno omrežje	3,72	0,80	3,32	1,49	9,28	2,95
		$15,\!19$		$11,\!46$		$66,\!35$

Table 7.4: Coordinates' repeatability values of permanent stations obtained with BSW5.0 software (units: mm)

Opredelitev merila natančnosti dnevnih rešitev koordinat in časovnih vrst točk pridobljenih s programskim paketom BSW5.0 je prikazana v preglednici 7.4. Oznake stolpcev in vsebine stolpcev so identične kot v primeru preglednice 7.3 in predstavljajo srednjo vrednost ponovljivosti ter največjo in najmanjšo vrednost ponovljivosti posameznih koordinat in za posamezno omrežje. Numerične vrednosti prikazujejo od 2 mm do 3 mm ponovljivost za horizontalni koordinati (N in E) ter okoli 5 mm ponovljivost ocenjenih višin. V vrstici z oznako *Skupaj* je predstavljena povprečna vrednost ponovljivosti z ekstremnima vrednostima za vse stalno delujoče postaje. Točke pasivnega omrežja so predstavljene v zadnji vrstici in so ločene od stalno delujočih postaj. Najnatančneje je določena koordinata E, nato sledi N in kot najslabše določena je višina U. Ponovljivost je v preglednici 7.4 pri horizontalnih koordinatah ravno obratna kot v primeru metode PPP (preglednica 7.3), kar ima vzrok predvsem v faznih nedoločenostih ocenjenih v območju celih števil (Perez in sod., 2003).

7.3 Uskladitev dnevnih rešitev koordinat PPP z globalnim koordinatnim sistemom

Ocenjene koordinate z metodo PPP, predvsem pa njihove časovne vrste, iz slike 7.6 in priloge C jasno kažejo na prisotnost neodstranjenih sistematičnih vplivov, ki povzročijo navidezen nelinearen premik točk skozi čas. Ta premik ima pri skoraj vseh stalno delujočih postajah enako obliko in se vidi kot sinusno valovanje po posamezni komponenti. Ob predpostavkah linearnega premikanja točk glede na izbran koordinatni sistem (glej poglavje 4) lahko zaključimo, da ocenjene koordinate PPP niso skladne s koordinatami točk v globalnem koordinatnem sestavu IGb08. Ocenjene koordinate z metodo PPP z globalnim koordinatnim sestavom IGb08 uskladimo s prostorsko transformacijo, kakor je to opisano v poglavju 3.

Za vsak dan podanih datotek RINEX z metodo PPP pridobimo ocenjene koordinate s pripadajočimi natančnostmi za vsako točko posebej. Te koordinate lahko s prostorsko transformacijo transformiramo na znane koordinate referenčnih IGS točk. Izvedli smo 4 različne transformacije, in sicer:

- 3-parametrično prostorsko transformacijo (trije premiki t_x, t_y in t_z),
- 4-parametrično prostorsko transformacijo (trije premiki t_x , t_y , t_z in sprememba merila m),
- 6-parametrično prostorsko transformacijo (trije premiki t_x, t_y, t_z in trije zasuki $\omega_x, \omega_y, \omega_z$) in
- 7-parametrično prostorsko transformacijo (trije premiki t_x , t_y , t_z , trije zasuki ω_x , ω_y , ω_z in sprememba merila m).

Slika 7.9 prikazuje število permanentnih postaj pri obdelavi opazovanj GPS z metodo PPP in število referenčnih permanentnih postaj IGS, na koordinate katerih so se za vsak dan

Slika 7.9: Število vseh (modre pike) in število referenčnih stalno delujočih postaj (rdeče pike) pri usklajevanju dnevnih rešitev koordinat PPP z globalnim koordinantim sistemom
Figure 7.9: Number of all (blue points) and number of reference permanent stations (red points) for transforming PPP coordinates to global coordinate system

transformirale dnevne PPP koordinate (na vse štiri načine). Število izbranih referenčnih točk je 12, saj smo točko METS izločili iz seznama referenčnih točk, predvsem zaradi velikega nihanja časovne vrste po višini, ki je predstavljeno v prilogi C. Po drugi strani pa se število referenčnih točk lahko od dneva do dneva spreminja. Prvi vzrok je lahko manjkajoča datoteka RINEX za kako izmed referenčnih postaj, drugi pa slabo določene koordinate PPP za določen dan. Pri izravnavi prostorske transformacije smo nastavili največje dovoljeno odstopanje transformiranih koordinat od danih kot 25 mm po horizontalnih koordinatah (N in E) in 50 mm za višino. Če je pri kateri izmed referenčnih postaj in transformacija se je izvedla ponovno.

7.3.1 Transformacije dnevnih koordinat PPP na referenčne koordinate

3-parametrična prostorska transformacija:

V tem primeru smo za vsak dan ocenili tri parametre, in sicer vse tri parametre premika t_x , t_y in t_z . Slika 7.10 prikazuje vse tri ocenjene parametre za vsak dan izračunanih dnevnih rešitev koordinat PPP postaj. Iz slike je razvidno, da se vrednost premika po posamezni koordinatni osi spreminja med okoli -20 mm do okoli 20 mm. Spreminjanje premikov je periodično, z valovno dolžino okoli enega leta.

Kakovost izvedenih transformacij lahko opredelimo s standardnim odklonom, ki ga izračunamo na osnovi odstopanj ocenjenih koordinat PPP od danih referenčnih koordinat po izvedeni transformaciji. Standardne odklone izračunamo za vse tri koordinatne osi, za

Slika 7.10: Ocenjeni premiki t_x , t_y in t_z pri 3-parametrični transformaciji. Figure 7.10: Estimated translation parameters t_x , t_y and t_z in case of 4-parameter transformation.

Slika 7.11: Ocena kakovosti 3-parametrične transformacije. Figure 7.11: Estimated quality of 3-parameter transformation.

N (σ_N), za E (σ_E) in za U (σ_U). Slika 7.11 prikazuje izračunane standardne odklone σ_N , σ_E in σ_U za vsak posamezen dan podanih rešitev PPP. Iz slike je razvidno, da je spet najbolje določena koordinata N (srednja vrednost standardnega odklona $\bar{\sigma}_N = 3, 1 \text{ mm}$), nato sledi koordinata E ($\bar{\sigma}_E = 5, 1 \text{ mm}$), najslabše pa je določena višina U ($\bar{\sigma}_U = 7, 8 \text{ mm}$).

4-parametrična prostorska transformacija:

V primeru 4-parametrične prostorske transformacije smo za vsako dnevno rešitev koordinat PPP ocenili vse tri premike t_x , t_y , t_z in dodatno še spremembo merila m. Slika 7.12 prikazuje ocenjene vse parametre za vsak dan ocenjenih koordinat PPP. Parametri premika so glede na 3-parametrično transformacijo iz slike 7.10 praktično enaki. Dodatno ocenjen parameter spremembe merila pa ima v poprečju vrednost okoli 0, z ekstremnimi vrednostmi med -5 ppb in 5 ppb. Glede na velikosti parametrov premika je vpliv spremembe merila praktično zanemarljiv, saj bi za velikost območja Slovenije vpliv spremembe merila znašal največ en milimeter.

Slika 7.13 prikazuje mero kakovosti izvedene 4-parametrične transformacije na enak način kot slika 7.11 v primeru 3-parametrične transformacije. Srednje vrednosti standardnih odklonov so podane kot $\bar{\sigma}_N = 3, 1$ mm, $\bar{\sigma}_E = 4, 9$ mm in $\bar{\sigma}_U = 7, 8$ mm. Rezultati

Slika 7.12: Ocenjeni premiki t_x, t_y in t_z in sprememba merila m pri 4–parametrični transformaciji.

Figure 7.12: Estimated translation parameters t_x , t_y and t_z and scale change m in case of 4-parameter transformation.

Slika 7.13: Ocena kakovosti 4-parametrične transformacije. Figure 7.13: Estimated quality of 4-parameter transformation.

so skoraj identični kot v primeru 3-parametrične transformacije, kar priča o tem, da dodatno modeliranje vpliva spremembe merila ne doprinese k izboljšanju končne kakovosti transformiranih koordinat.

6-parametrična prostorska transformacija:

Pri 6-parametrični transformaciji smo za vsako dnevno rešitev ocenjenih koordinat PPP ocenili vse tri premike (t_x, t_y, t_z) in vse tri zasuke $(\omega_x, \omega_y, \omega_z - \text{enote mili sekunde m"})$. Rezultate, vse ocenjene transformacijske parametre, predstavlja slika 7.14. Vrednosti premikov spet ostajajo praktično enaki, medtem ko so vrednosti zasukov v mejah nekaj mili sekund. Za razliko od zasukov ω_x in ω_z , ki imata bolj kot ne slučajno obliko, ima zasuk ω_y izrazito nihajočo obliko s periodo enega leta. Glede na obravnavano območje (osrednji del Evrope), sukanje okoli y osi pomeni v večji meri spreminjanje višine točk, a na nivoju do nekaj mm na oddaljenosti nekaj 100 km. Vpliv modeliranja spremembe zasukov je torej veliko manjši kot vpliv spremembe premika in vpliva predvsem na višinsko komponento.

Slika 7.14: Ocenjeni premiki t_x , t_y , t_z in zasuki ω_x , ω_y , ω_z pri 6-parametrični transformaciji. Figure 7.14: Estimated translation parameters t_x , t_y , t_z and rotation parameters ω_x , ω_y , ω_z in case of 6-parameter transformation.

Slika 7.15 pa prikazuje oceno kakovosti 6-parametrične transformacije, ki je predstavljena s standardnimi odkloni odstopanj transformiranih koordinat od danih, za vse tri koordinatne komponente. Srednje vrednosti standardnih odklonov so podane kot $\bar{\sigma}_N = 3, 1 \text{ mm}, \bar{\sigma}_E = 5, 0 \text{ mm}$ in $\bar{\sigma}_U = 6, 4 \text{ mm}$. Srednji vrednosti standardnih odklonov za horizontalni koordinati (E in N) ostajata praktično enaki kot v primeru 3-parametične (slika 7.11) ali 4-parametrične (slika 7.13) transformacije, medtem ko je vpliv modeliranja zasukov povišal natančnost transformiranih koordinat za okoli 1,5 mm po višini, kar je posledica zasuka okoli y osi.

Slika 7.15: Ocena kakovosti 6-parametrične transformacije. Figure 7.15: Estimated quality of 6-parameter transformation.

7-parametrična prostorska transformacija:

Slika 7.16: Ocenjeni premiki t_x , t_y , t_z , zasuki ω_x , ω_y , ω_z in sprememba merila m pri 7-parametrični transformaciji.

Figure 7.16: Estimated translation parameters t_x , t_y , t_z , rotation parameters ω_x , ω_y , ω_z and scale change m in case of 7-parameter transformation.

Pri 7-parametrični transformaciji smo ocenili vse transformacijske parametre prostorske podobnostne transformacije, in sicer vse tri premike (t_x, t_y, t_z) , vse tri zasuke $(\omega_x, \omega_y, \omega_z)$ in eno spremembo merila (m). Ocenjene transformacijske parametre predstavlja slika 7.16. Prikazani rezultati prikazujejo enake rezultate kot v primeru zgoraj opravljenih transformacij. Premiki ostajajo enaki kot v primeru 3-parametrične transformacije, zasuki kot v primeru 6-parametrične transformacije in sprememba merila enaka kot v primeru 4-parametrične transformacije. Tudi v primeru 7-parametrične transformacije premiki po koordinatnih oseh predstavljajo največji del odstopanj med koordinatami PPP in referenčnimi koordinatami, medtem ko ostali štirje parametri ne pridajo veliko končni skladnosti transformiranih koordinat.

Slika 7.17 prikazuje končno oceno kakovosti izvedene 7–parametrične transformacije, kot v primeru slik 7.15, 7.13 in 7.11. Srednje vrednosti standardnih odklonov so $\bar{\sigma}_N = 3, 1$ mm, $\bar{\sigma}_E = 4, 8$ mm in $\bar{\sigma}_U = 6, 4$ mm, kar je praktično identično rezultatom 6–parametrične transformacije iz slike 7.15.

Slika 7.17: Ocena kakovosti 7-parametrične transformacije. Figure 7.17: Estimated quality of 7-parameter transformation.

7.3.2 Primerjava izvedenih transformacij dnevnih rešitev koordinat PPP

Pri primerjavi rezultatov vseh štirih različnih transformacij iz prejšnjega poglavja lahko v prvem koraku primerjamo standardne odklone odstopanj transformiranih koordinat PPP in danih koordinat IGS za referenčne točke. V preglednici 7.5 so predstavljene povprečne vrednosti standardnih odklonov odstopanj za posamezno transformacijo. Ne glede na število definiranih transformacijskih parametrov, sta vrednosti standardnih odklonov $\bar{\sigma}_N$ in $\bar{\sigma}_E$ praktično enaki, medtem ko vpliv modeliranja zasukov prida okoli 1,5 mm k višji natančnosti po višini ($\bar{\sigma}_U$).

- Preglednica 7.5: Povprečne vrednosti standardnih odklonov odstopanj transformiranih dnevnih koordinat PPP in referenčnih koordinat IGS za vse tri koordinatne komponente.
- Table 7.5: Average values of standard deviations determined as differences between transformeddaily PPP coordinates and reference IGS coordinates for all three coordinate components.

Transformacija	$\bar{\sigma}_N \; [\mathrm{mm}]$	$\bar{\sigma}_E \; [\mathrm{mm}]$	$\bar{\sigma}_U \; [\mathrm{mm}]$
3–parametrična	3,1	5,1	7,8
4–parametrična	3,1	4,9	7,8
6–parametrična	3,1	5,0	6,4
7–parametrična	3,1	4,8	6,4

Iz preglednice je razvidno, da spreminjanje števila transformacijskih parametrov praktično ne vpliva na izračunana odstopanja. Že rezultati 3-parametrične transformacije odstranijo skoraj celoten del neskladnosti koordinat PPP z referenčnimi koordinatami. Rezultat je skladen z rezultati obdelave opazovanj GPS na osnovi faznih razlik, kjer vemo, da je geodetska GPS mreža določena s štirimi datumskimi parametri (zasuki in sprememba merila), medtem ko datumski parametri premika niso določeni (Leick, 2004; Kuang, 1996). Vpliv transformacijskih parametrov na ocenjene koordinate točk je predstavljen v preglednici 7.6. Za vse tri vrste transformacijskih parametrov (premik, zasuk in merilo) je izračunana največja pričakovana vrednost (v stolpcu z oznako **Vrednost**) kot trikratnik standardnega odklona parametrov iz slik 7.10, 7.12, 7.14 in 7.16. Za premike je največja vrednost določena okoli 25 mm, za zasuke okoli 5 m" in pri spremembi merila okoli 7 ppb. Za različne velikosti geodetske mreže, 100 km, 200 km, 500 km in 1000 km, je predstavljen vpliv posamezne vrste parametrov na ocenjene koordinate. Razvidno je, da je vpliv premika konstanten in po vrednosti največji. Vpliv zasukov in merila je odvisen od velikosti mreže, kjer je vpliv merila tudi na največji velikosti mreže znatno manjši od premika. Vpliv zasukov je pri 1000 km primerljiv s premiki, kar pomeni, da zasuki vplivajo kvečjemu na zunanje postaje geodetske mreže iz slike 7.1.

Preglednica 7.6: Vpliv ocenjenih transformacijskih parametrov na ocenjene koordinate stalno delujočih postaj, glede na največje pričakovane vrednosti transformacijskih parametrov.

 Table 7.6: Influence of transformation parameters on estimated coordinates of permanent stations with their maximum expected values.

Parameter	$\mathbf{Vrednost}\;[\mathrm{mm}]$	100 km	200 km	$500 \mathrm{km}$	1000 km
premik	$25 \mathrm{~mm}$	25,0	25,0	25,0	25,0
zasuk	5 m"	2,4	4,8	12,1	24,2
merilo	7 ppb	0,7	1,4	3,6	7,2

Rezultati iz preglednice 7.6 skupaj z rezultati iz preglednice 7.5 kažejo na to, da je vpliv premika na vse točke enak in predstavlja večino razlik med ocenjenimi in transformiranimi koordinatami PPP. Vpliv zasukov je največji za zunanje točke mreže, medtem ko je pri notranjih postajah manj izrazit. Te rezultate prikazuje tudi slika 7.18 časovnih vrst koordinat za postajo VILL (zunanja točka) in za postajo GRAZ (notranja točka), za primer 3-parametrične transformacije (levo) in za primer 7-parametrične transformacije (desno). Časovnih vrst za 4-parametrično transformacijo ni prikazanih, saj so praktično enake časovnim vrstam 3-parametrične transformacije, medtem ko časovnih vrst 6-parametričnih transformacij ni prikazanih, ker so praktično enake časovnim vrstam 7-parametričnih transformacij.

Na sliki 7.18 vidimo, da je razpršenost časovnih vrst pri postaji VILL veliko manjša pri višinski komponenti na desnem grafu (7–parametrična transformacija), kot v primeru levega grafa (3–parametrična transformacija), medtem ko pri obeh horizontalnih komponentah

Slika 7.18: Primerjava med časovnimi vrstami transformiranih koordinat postaj VILL in GRAZ v primeru 3–parametrične (levo) in 7–parametrične (desno) transformacije.

Figure 7.18: A comparison of transformed coordinate time series of statins VILL and GRAZ in case of 3-parameter (left) and 7-parameter (right) transformation.

ostaja enaka. Rezultat kaže na to, da so zasuki in spremembe merila samo posledica prisotnosti pogreškov v ocenjenih višinah točk in ne v ocenjenih horizontalnih koordinatah. Vendar pa je potrebno vzeti v obzir tudi velikost obravnavane geodetske mreže, saj je le-ta majhna v primerjavi z velikostjo Zemlje in je v takih primerih ocenjevanje transformacijskih parametrov geodetske mreže problematično zaradi visoke stopnje koreliranosti transformacijskih parametrov in matematični model ni sposoben jasno ločiti med premiki in spremembami merila oz. med premiki in zasuki (Han, 2006).

Slika 7.19 prikazuje vpliv števila transformacijskih parametrov na izračunane vrednosti ponovljivosti koordinat posamezne stalno delujoče postaje. Ponovljivost posamezne koordinatne komponente za poljubno točko je določena enako kot v primeru preglednice 7.3, torej kot standardni odklon odstopanj transformiranih dnevnih koordinat od srednjih vrednosti koordinat, z upoštevanjem konstantnega vektorja hitrosti točke. Za vsako izmed stalno delujočih postaj, ki je označena na abscisi so prikazane tri ponovljivosti (σ_N , σ_E in σ_U), kjer so za vsako izmed koordinatnih osi predstavljene 4 različne ponovljivosti. S črnimi kvadratki so označene ponovljivosti na osnovi transformiranih koordinat s 3parametrično transformacijo, z rdečimi kvadratki ponovljivosti na osnovi 4-parametrične transformacije, z zelenimi kvadratki ponovljivosti na osnovi 6-parametrične transformacije in z modrimi kvadratki ponovljivosti na osnovi 7-parametrične transformacije. Za vsako točko so tako prikazani štirje kvadratki, ki pa so za jasnejši prikaz malo zamaknjeni eden glede na drugega.

Slika 7.19: Primerjava ponovljivosti transformiranih koordinat v odvisnosti od števila parametrov transformacije za vse stalno delujoče postaje.

Figure 7.19: A comparison transformed coordinate repeatability values as a function of transformation parameter number for all permanent stations.

Iz slike je razvidno, da spreminjanje števila transformacijskih parametrov praktični nima vpliva na ocenjene ponovljivosti, razlika se pojavi pri točkah VILL in METS, ki sta obe izrazito zunanji točki geodetske mreže ter pri komponenti E za točko BOR1. Sistematična odstopanja ocenjenih koordinat PPP od referečnih IGS koordinat pričajo tudi o nemodeliranih vplivih v matematičnem modelu, ki jih (kljub vsem vplivom v poglavju 2) nismo odstranili iz opazovanj GPS. Velikost in izvor prisotnih nemodeliranih sistematičnih vplivov v opazovanjih GPS sta trenutno še neznana in jih bo potrebno v prihodnje raziskati. Izvor lahko nakažemo na nemodelirane atmosferske vplive, realne vrednosti faznih nedoločenosti in pri nekaterih točkah tudi na lokalne premike točk.

Končni rezultat predstavljajo transformirane koordinate PPP na referenčne koordinate IGS za vsak dan podanih opazovanj GPS, kjer kot končen model uporabimo 3– parametrično transformacijo. V prilogi G so prikazane časovne vrste transformiranih koordinat za vse točke posebej. V primerjavi s prvotnimi (ocenjenimi) koordinatami PPP iz priloge C je vidna izboljšana natančnost transformiranih koordinat. Kakovost ocenjenih dnevnih koordinat spet lahko predstavimo s ponovljivostjo koordinat $\bar{\sigma}_N$, $\bar{\sigma}_E$ in $\bar{\sigma}_U$, enako kot v primeru preglednice 7.3 na osnovi PPP koordinat oz. v primeru preglednice 7.4 na osnovi koordinat dobljenih s programskim paketom BSW5.0.

Preglednica 7.7: Ponovljivost koordinat stalno delujočih postaj dobljenih z metodo PPP, ki so usklajene z globalnim koordinatnim sestavom IGb08 (enote: mm)

Omrežje	$\bar{\sigma}_N$	$\min(\sigma_N)$	$\bar{\sigma}_N$	$\min(\sigma_E)$	$\bar{\sigma}_N$	$\min(\sigma_U)$
	[mm]	$\max(\sigma_N)$	[mm]	$\max(\sigma_E)$	[mm]	$\max(\sigma_U)$
SIGNAL	2,82	2,03	3,88	3,02	6,43	$5,\!13$
		4,48		$4,\!75$		$7,\!97$
FReDNet	2,50	1,84	4,09	$3,\!34$	5,76	$4,\!27$
		$3,\!77$		$5,\!30$		8,03
APOS	3,16	2,83	4,00	3,40	7,73	5,84
		3,52		$4,\!99$		$9,\!85$
EPN	3,13	2,35	4,26	2,98	6,80	$5,\!11$
		4,78		$5,\!91$		8,55
Ostalo	2,85	1,60	3,25	2,41	9,86	4,43
		4,79		$4,\!55$		$19,\!67$
IGS	3,07	2,36	4,80	$3,\!74$	7,57	$5,\!31$
		4,28		8,46		$13,\!89$
Skupaj	2,89	1,60	4,20	2,41	6,97	4,27
		4,79		8,46		19,67

Table 7.7: Coordinates' repeatability values of permanent stations obtained with PPP method, represented in global coordinate frame IGb08 (units: mm)

Preglednica 7.7 prikazuje izračunane ponovljivosti transformiranih koordinat PPP na referenčne koordinate IGS posameznega omrežja stalno delujočih postaj, kjer smo uporabili 3– parametrično transformacijo. Natančnost določenih koordinat je najvišja za komponento N, okoli 3 mm, nato sledi komponenta E, okoli 4 mm in na koncu sledi še komponenta U, okoli 7 mm. Ponovljivost transformiranih koordinat PPP se je z uporabo transformacije skoraj prepolovila, če rezultate preglednice 7.7 primerjamo z rezultati ponovljivosti ocenjenih koordinat PPP iz preglednice 7.3. Če primerjamo ponovljivosti iz preglednice 7.7 s ponovljivostmi koordinat ocenjenih s programskim paketom BSW5.0 (preglednica 7.4) pa ugotovimo, da z uporabo transformacije koordinat PPP pridobimo primerljivo natančnost transformiranih koordinat kot v primeru programa BSW5.0. Prikaz ponovljivosti koordinat za posamezno točko je v prilogi H.

Empirični rezultati iz poglavja prikazujejo, da metoda PPP predstavlja enakovredno metodo ocenjevanja koordinat točk pri dnevnih opazovanjih na regionalnem oz. lokalnem nivoju kot že uveljavljene metode, ki temeljijo na faznih razlikah. Rezultati so enakovredni z numeričnega stališča, saj metoda PPP zagotovi enako stopnjo ponovljivosti koordinat kot programski paket BSW5.0. Natančnosti določitve dnevnih koordinat je na nekaj milimetrskem nivoju za horizontalni koordinati N in E in dobrih 5 mm natančnosti za višino. Rezultati so enakovredni tudi s teoretičnega stališča. Rezultat programskega paketa BSW5.0 so ocenjene vrednosti koordinat s pripadajočo kovariančno matriko. Le-ta je singularna, saj pri geodetski mreži GPS, ki je določena na osnovi faznih razlik, nimamo definiranih datumskih parametrov zasuka. V primeru programa BWS5.0 se geodetski datum zagotovi z danimi koordinatami referenčnih točk in se modelira le premike (glej alinejo 9 pri opisu postopka obdelave s BSW5.0 v poglavju 7.2.2), z minimalnim številom vezi. V primeru metode PPP pa za vsak dan pridobimo ocenjene koordinate s pripadajočo kovariančno matriko, ki je polnega ranga. Ko ocenjene dnevne rešitve koordinat uskladimo z globalnim koordinatnim sistemom in, na osnovi rezultatov tega poglavja, uporabimo le 3-parametrično transformacijo, ima transformirana kovariančna matrika koordinat defekt ranga 3, ki predstavlja ravno nedefinirane datumske parametre premika (glej poglavje 3).

7.4 Izračun koordinat in hitrosti v globalnem koordinatnem sestavu

Na osnovi ocenjenih dnevnih rešitev, ki so usklajene z globalnim koordinatnim sistemom, izračunamo koordinate vseh točk v referenčni epohi s pripadajočimi komponentami vektorjev hitrosti. Postopek ocene koordinat in vektorjev hitrosti je opisan v poglavju 4. Koordinate in hitrosti smo ocenili tako za rezutate pridobljene z metodo PPP, kot tudi za rezultate, ki so pridobljeni s programskim paketom BSW5.0, v obeh primerih pa smo referenčno epoho nastavili na $t_0 = 2005, 0$ let.

Prvo oceno kakovosti izvedemo za postaje IGS na osnovi znanih koordinat referenčnih točk. Slika 7.20 prikazuje razlike med ocenjenimi koordinatami (PPP in BSW5.0) in referenčnimi koordinatami postaj IGS po izvedeni prostorski transformaciji. Razlike so predstavljene v horizontalni ravnini (svetli vektorji) in po višini (temni vektorji), kjer rdeča barva predstavlja vrednotenje rezultatov programskega paketa BSW5.0, modra pa vrednotenje rezultatov metode PPP.

Slika 7.20: Primerjava ocenjenih koordinat postaj IGS, z metodo PPP in programom BSW5.0, in referenčnih koordinat po Helmertovi prostorski transformaciji.

Figure 7.20: A comparison of estimated coordinates, with PPP method as well as with BSW5.0 software, and reference coordinates after Helmert spatial transformation.

Iz primerjave na sliki 7.20 sta izločeni točki WETT in UPAD, saj je bila točka WETT operativna le do leta 1997, UPAD pa do leta 2002, in imata tako zelo kratke časovne vrste. Iz primerjave smo izločili tudi višinsko komponento postaje HFLK, saj smo pridobili razliko v višini okoli 20 cm glede na referenčne koordinate. Pri referenčnih postajah (na sliki so označene z znakom *) smo največje razlike pridobili za postajo MATE po koordinati N (-4,8 mm), za postaji VILL in SOFI po koordinati E (2,2 mm) ter za postajo PENC po višini (7,1 mm). V primeru ostalih postaj, ki niso bile referenčne, pa smo pridobili največja odstopanja za postajo METS po koordinati N 3,0 mm, po koordinati E 4,1 mm in po višini -3,8 mm.

Enako primerjavo na referenčnih točkah IGS lahko naredimo tudi za ocenjene vektorje hitrosti, kar prikazuje slika 7.21. Slika 7.21 ima enako vsebino kot slika 7.20, le da gre za vektorje hitrosti. Iz te slike sta izvzeti samo točki WETT in UPAD. Pri točki HFLK se vidi

visoka stopnja ujemanja ocenjenih komponent vektorja hitrosti z referenčnimi. Največja razlika se pojavi pri postaji GRAS po horizontalnih komponentah (-1.4 mm/leto za N in -0.5 mm/leto za E) in pri točki PENC v višinski komponenti (skoraj 2 mm/leto), kar je vidno tudi iz časovnih vrst iz prilog C in E. Pri postaji GRAS gre verjetno za dejansko spremembo položaja točke okoli leta 2005, medtem ko je pri postaji PENC vzrok po vsej verjetnosti napaka v višini antene.

Slika 7.21: Primerjava ocenjenih vektorjev hitrosti postaj IGS, z metodo PPP in programom BSW5.0, in referenčnih vektorjev hitrosti po Helmertovi prostorski transformaciji.

Figure 7.21: A comparison of estimated velicities, with PPP method as well as with BSW5.0 software, and reference velocities after Helmert spatial transformation.

Na osnovi primerjav ocenjenih koordinat in komponent vektorjev hitrosti (PPP in BSW5.0) z danimi koordinatami in vektorji hitrosti lahko izračunamo RMS vrednosti *s* odstopanj transformiranih koordinat in vektorjev hitrosti od referenčnih vrednosti za obe metodi, kar predstavlja preglednica 7.8. Preglednica prikazuje razpršenost razlik med koordinatami in vektroji hitrosti glede na različne rešitve, ts. razlike med referenčnimi vrednostmi in rezultati programa BSW5.0 (prva vrstica), med referenčnimi vrednostmi in rezultati PPP (druga vrstica), prikazuje pa tudi stopnjo skladnosti med rezultati BSW5.0 in PPP (zadnja vrstica). Primerjave so prikazane tako za ocenjene koordinate (enote mm), kot tudi za ocenjene vektorje hitrosti (enote mm/leto). Pri vsaki primerjavi je podano tudi število veznih točk (pod stolpcem #TC), na osnovi katerih se je izvedla prostorska transformacija. Primerjava z referenčnimi koordinatami je možna le z 12-imi točkami, medtem ko smo primerjavo med obema postopkoma izvedli na osnovi 56 točk. Iz zadnje primerjave so izvzete točke ZAGR in ZALA (premalo podatkov) ter BLE2, MARI, PTUJ, GARI in METS, zaradi prevelikih odstopanj po izvedeni transformaciji.

Preglednica 7.8: Primerjava med obema uporabljenima metodama (PPP in BSW5.0) in referenčnimi vrednostmi koordinat in vektorjev hitrosti po izvedeni Helmertovi prostorski transformaciji (enote: mm).

Table 7.8: A comparison between both used methods (PPP and BSW5.0) with reference values of coordinates and velocity vectors after Helmert spatial transformation (units: mm).

Primerjava [mm]	#TC	s_N	s_E	s_U	s_{v_N}	s_{v_E}	s_{v_U}
BSW5.0-REF	12	$1,\!9$	$1,\!5$	3,1	0,5	0,3	0,8
PPP-REF	12	1,3	$1,\!6$	2,9	0,5	0,4	0,9
BSW5.0-PPP	56	2,8	2,9	8,3	0,3	0,5	0,9

Grafični prikaz primerjave rezultatov ocenjenih koordinat in komponent vektorjev hitrosti med obema uporabljenima metodama (PPP in BSW5.0) je na spodnjih dveh slikah, na sliki 7.22 in 7.23. Slika 7.22 prikazuje razlike v ocenjenih koordinatah, medtem ko slika 7.23 prikazuje razlike v ocenjenih vektorjih hitrosti.

Največje razlike v ocenjenih horizontalnih koordinatah so za postajo PTUJ in znašajo $\Delta N = 10,7$ mm in $\Delta E = 12,1$ mm, torej razlika v položaju okoli 1,5 cm. Po višini so odstopanja večja, kjer je največje odstopanje $\Delta U = 29,2$ mm za postajo MARI. V splošnem je skladnost ocenjenih koordinat po obeh metodah (iz preglednice 7.8) nekaj mm za horizontalne koordinate in okoli centimetra po višini. Rezultati v primeru vektorjev hitrosti so predstavljeni na sliki 7.23. Največje odstopanje po horizontalnih komponentah je dobljeno za postajo KLA2, kjer odstopanja znašajo $\Delta v_N = 1,2$ mm/leto in $\Delta v_E = -0,3$ mm/leto. Pri višinski komponenti sta problematični predvsem VELP ($\Delta v_U = -2,7$ mm/leto) in PTUJ ($\Delta v_U = -2,0$ mm/leto). Pri višinski komponenti se največkrat pojavi problem neustreznega evidentiranja višine in tipa antene, predvsem pri zamenjavi stare antene z novo, kar se je pri obeh točkah v letu 2008 tudi zgodilo. Po drugi strani pa je višinska komponenta določena veliko slabše kot horizontalni komponenti in so večje

Slika 7.22: Razlika med ocenjenimi koordinatami metode PPP in programskega paketa BSW5.0 po prostorski transformaciji.

Figure 7.22: Differences in estimated coordinates obtained with PPP method and BSW5.0 software after Helmert spatial transformation.

razlike pričakovane.

V prilogi I so prikazani rezultati ocene koordinat v referenčni epohi $t_0 = 2005, 0$ s pripadajočim vektorjem hitrosti, v globalnem koordinatnem sistemu IGb08. Rezultati so podani za programski paket BSW5.0, saj smo le z njim ocenili koordinate in vektorje hitrosti vseh točk v obdelavi (pasivno in aktivna omrežja). V drugem delu pa prikazujemo razlike v ocenjenih (istih) rezultatih z metodo PPP. V rezultatih prikazujemo le ocenjene količine brez ocenjenih mer natančnosti. Natančnost ocenjenih koordinat programskega paketa BSW5.0 je prikazana s ponovljivostjo koordinat v prilogi F in opisana v poglavju 7.2.2 in preglednici 7.4, metode PPP pa s ponovljivostjo koordinat v prilogi H in poglavju 7.3 in preglednici 7.7. Pri vrednotenju ocene natančnosti vektorjev hitrosti, so formalne natančnosti ocenjenih komponent vektorjev hitrosti, zaradi velikega števila dnevnih rešitev točk, precenjenae, in je ne podajamo. Kot mero natančnosti podajamo le razpršenosti razlik vektorjev hitrosti v preglednici 7.8.

Končen rezultat ocene, predvsem vektorjev hitrosti, predstavlja slika 7.24, ki prikazuje ocenjene horizontalne komponente ocenjenih vektorjev hitrosti geodetskih točk na območju Slovenije in njeni okolici. Iz slike je razvidna skoraj enaka oblika vektorjev hitrosti, tj. letni premik vseh točk širšega območja Slovenije za okoli 3 cm v smeri SV. Tak premik predstavlja gibanje Evrazijske tektonske plošče v globalnem koordinatnem sistemu ITRS

Slika 7.23: Razlika med ocenjenimi vektorji hitrosti metode PPP in programskega paketa BSW5.0 po prostorski transformaciji.

Figure 7.23: Differences in estimated velocity components obtained with PPP method and BSW5.0 software after Helmert spatial transformation.

(Altamimi in sod., 2012).

7.5 Vzpostavitev referenčnega koordinatnega sestava Slovenije

Ocenjene koordinate točk s pripadajočimi vektorji hitrosti iz priloge I in slike 7.24, ki so opisane v poglavju 7.4, podajajo realizacijo koordinatnega sestava IGb08 na območju Slovenije. Iz slike 7.24 je razvidno, da je koordinatni sestav IGb08 časovno odvisen, saj se koordinate vseh točk modelirajo kot linearna funkcija, tj. s konstantnim vektorjem hitrosti (glej poglavje 4). Praktična uporaba takega koordinatnega sestava od uporabnika zahteva, da za vsak trenutek uporabe koordinatnega sestava upošteva časovno spremenljivost in ustrezno modelira koordinate vseh točk sestava. Tak način je možen za znanstvene namene, ni pa možen v splošni uporabi, saj moramo predvideti tudi take uporabnike koordinatnega sestava, ki nimajo znanja o geotektonskih premikih območja Slovenije glede na celotno Zemljo. Za praktično uporabo je smiseln tak koordinatnega sistema čim bolj nespremenljive skozi čim daljše časovno obdobje (Sterle in sod., 2009). Na voljo imamo različne možnosti:

• vzpostavitev koordinatnega sestava ETRF89 na osnovi koordinat in vektorjev hi-

Slika 7.24: Ocenjeni vektorji hitrosti geodetskih točk na območju Slovenije in njeni okolici predstavljeni v koordinatnem sestavu IGb08.

Figure 7.24: Estimated velocity vectors of geodetic stations on a territory of Slovenia and its surrounding expressed in coordinate frame IGb08.

trosti v IGb08 (ITRF2008), kot je to prikazano v (Boucher in Altamimi, 2011),

- vzpostavitev lokalnega koordinatnega sestava, ki je najbolj skladen s koordinatnim sestavom D96 (Berk in sod., 2003) ali
- vzpostavitev lokalnega koordinatnega sestava, ki je najbolj skladen s koordinatnim sestavom D96 (Berk in sod., 2003), a realiziran preko stalno delujočih postaj omrežja SIGNAL (GIS, 2007).

Ne glede na to, kakšen model uporabimo, imamo dva končna kriterija. Na novo vzpostavljen koordinatni sestav naj spremeni obstoječega v čim manjši meri. Odstopanja med uradnimi koordinatami geodetskih točk in ocenjenimi morajo biti najmanjša možna. Drugi kriterij zagotavlja čim manjšo spremenljivost koordinat skozi čas, kar pomeni da morajo biti v končnem referenčnem sestavu vrednosti vektorjev hitrosti geodetskih referenčnih točk najmanjše možne.

7.5.1 Vzpostavitev uradnega koordinatnega sestava ETRF89

Vzpostavitev uradne verzije ETRF89 temelji na dokumentu Boucher in Altamimi (2011) in je realizirana na spletni strani službe EPN (EPN, 2015). Realizacija ETRF89 je določena preko zadnje realizacije sestava ITRF2008 (Altamimi in sod., 2012) in se izvede v naslednjih korakih:

- 1. korak predstavlja izračun položajev točk v ITRF2008 v epohi 2005,00, tj. v epohi podanih transformacijskih parametrov med sestavi ITRF.
- 2. korak predstavlja transformacija iz ITRF2008 v ITRF2005 v epohi 2005,00.
- 3. korak predstavlja transformacija iz ITRF2005 v ITRF2000 v epohi 2005,00.
- 4. korak predstavlja transformacijo iz ITRF2000 v ITRF89 v epohi 2005,00.
- 5. korak predstavlja transformacijo iz ITRF89 v ETRF89 v epohi 2005,00.
- 6. korak predstavlja izračun položajev točk v ETRF89 v končni izbrani epohi.

Najkakovostnejša transformacija med ITRF in ETRF89 je za ITRF2000, zato je potrebno vse koordinate pretvoriti v ITRF2000 za trenutek 2005,00. Vsi prehodi v istem koordinatnem sistemu, a pri drugačnih epohah, se izvedejo preko vektorjev hitrosti. Če le-ti niso poznani, se predpostavi, da so vrednosti vektorjev hitrosti enaki nič. Vprašanje pa se pojavi, katera je končna epoha transformiranih koordinat, saj imamo podane uradne koordinate v različnih epohah. Uradna rešitev izmer EUREF je bila podana v epohi 1995,55 (Berk in sod., 2003), medtem ko so koordinate točk omrežja SIGNAL določene za epoho 2007,23 (GIS, 2007). Po drugi strani, pa zapis ETRF89 pomeni, da je referenčna epoha koordinatnega sestava ETRF89 1989,0 (Sterle in sod., 2009).

Rezultat transformacije iz koordinatnega sestava ITRF2008 v koordinatni sestav ETRF89 so transformirane koordinate v izbrani epohi in transformirani vektorji hitrosti, ki pa so neodvisni od časa (glej poglavje 5). Izbrana epoha se nanaša samo na koordinate točk in naj bo taka, da bodo razlike med uradnimi koordinatami v D96 in izračunanimi ETRF89 koordinatami čim manjše. Slika 7.25 prikazuje empiričen način določitve epohe izračunanih koordinat, ki bodo najbolj skladne z uradnimi koordinatami D96. Grafi predstavljajo vrednosti RMS razlik med prostorskimi položaji D96 in ETRF89, kjer so zadnje izračunane za različne epohe, od 1989,0 do 2010,0 s korakom 0,1 leta. Za vsako epoho so se na osnovi koordinat in vektorjev hitrosti v ETRF89 izračunale koordinate v izbrani epohi. Na osnovi teh koordinat so se najprej izračunale razlike do koordinat D96 in nato še vrednosti RMS razlik prostorskih položajev. Vrednosti RMS smo izračunali za tri različne podnize veznih točk, in sicer za točke pasivnega omrežja (rdeče pike), za postaje SIGNAL (modre pike) in za vse vezne točke pasivnega omrežja in omrežja SIGNAL skupaj (črne pike). Grafi kažejo na tri različne epohe največje skladnosti koordinat D96 s sestavom ETRF89, na epoho 1993,0 za pasivno omrežje, na epoho 1999,4 za omrežje SIGNAL in epoho 1995,8 za vse točke skupaj. Iz grafov je razvidno, da so bile koordinate točk pasivnega omrežja skladne z uradnim koordinatnim sestavom ETRF89 na nivoju centimetra le za čas izmere EUREF. Razlika med izračunano epoho 1993,0 in epoho 1995,55 določitve koordinat iz izmere EUREF je tudi v slabši natančnosti takratne realizacije koordinatnega sestava ETRF89. Zaradi nepoznavanja vektorjev hitrosti točk pasivnega omrežja s časom neskladnost s sestavom ETRF89 narašča in je za leto 2010,0 le še na nivoju okoli 5 cm za prostorski položaj. Omrežju SIGNAL so se koordinate določile na osnovi opazovanj GPS za srednjo epoho 2007,23, a graf prikazuje epoho 1999,4. Ker so bile koordinate postaj SIGNAL prilagojene uradnim koordinatam 5-ih točk pasivnega omrežja SIGNAL neskladne s sestavom ETRF89. Iz grafa pa je razvidno tudi, da so koordinate postaj ETRF89 neskladne tudi s koordinatami pasivnega omrežja, saj tudi za postaje omrežja SIGNAL vektorji hitrosti niso bili poznani.

Slika 7.25: Skladnosti med uradnimi prostorskimi položaji točk v D96 in izračunanimi položaji točk v ETRF89, predstavljene z RMS vrednostmi razlik prostorskih položajev za različne epohe.
Figure 7.25: Congruency between official spatial positions in D96 and determined positions in ETRF89, represented with RMS values of spatial position differences for different epochs.

Koordinate točk v koordinatnem sestavu ETRF89 smo določili za vse tri epohe, ki zagotovijo največjo možno skladnost s koordinatami D96, torej za 1993,00, za 1995,80 in za 1999,40. Sliki 7.26 in 7.27 prikazujeta razlike med določenimi ETRF89 koordinatami (za vse tri epohe) in med uradnimi koordinatami, določenimi v datumu D96. Iz vektorjev razlik koordinat s slike 7.26 (horizontalne koordinate) je razvidno isto, kar prikazujejo grafi na sliki 7.25. Razlike med koordinatami ETRF89 in D96 so za točke pasivnega omrežja najmanjše za leto 1993,00, medtem ko so za točke omrežja SIGNAL najmanjše za epoho 1999,40. Pri srednji epohi (1995,80) se razlike razporedijo na točke obeh omrežij. Na točki LEND se vidi velika vrednost razlike v epohah 1993,00 in 1999,40, saj je bilo že leta 2003 razvidno, da je točka nestabilna. Koordinate so skladne za epoho 1995,80, saj se je točki položaj izračunal iz opazovanj leta 1995.

Slika 7.26: Razlike med horizontalnimi koordinatami točk v ETRF89 za tri različne epohe (1993,00, 1995,80 in 1999,40) in med uradnimi koordinatami točk v D96.

Figure 7.26: Differences of stations' horizontal coordinates in ETRF89 for three different epochs (1993,00, 1995,80 and 1999,40) and official coordinates in D96.

V primeru višin na sliki 7.27 se vidi, da je za postaje omrežja SIGNAL najvišja skladnost višin za epoho 1999,40, medtem ko za obe ostali epohi znašajo razlike tudi do 6 cm (postaja NOVG). Višine točk pasivnega omrežja so za epohi 1993,00 in 1995,80 relativno skladne (na nivoju centimetra), medtem ko za epoho 1999,40 razlike sistematično narastejo.

Razlike v izračunanih koordinatah, predstavljene v treh različnih realizacijah koordinatnega sestava ETRF89 (za tri različne epohe), in uradnimi koordinatami v D96 lahko uporabimo za izračun RMS vrednosti za vse tri koordinatne komponente s_N , s_E in s_U , kot to predstavlja preglednica 7.9. Za vsa tri leta so predstavljene vrednosti RMS (v milimetrih) ločeno za točke pasivnega omrežja, stalno delujoče postaje omrežja SIGNAL in na koncu še za vse geodetske točke GPS skupaj. Dodatno podajamo v zadnjih treh stolpcih tudi RMS vrednosti za leto 2015, ki pričajo o stopnji skladnosti državnega koordinatnega

Slika 7.27: Razlike med višinami točk v ETRF89 za tri različne epohe (1993,00, 1995,80 in 1999,40) in med uradnimi višinami točk v D96.

Figure 7.27: Differences of stations' heights in ETRF89 for three different epochs (1993,00, 1995,80 and 1999,40) and official stations' heights in D96.

sistema D96 s sestavom ETRF89 v sedanjem času. Iz preglednice je razvidno, da je skladnost koordinat D96 točk pasivnega omrežja s sestavom ETRF89 na nivoju centimetra le za prvi dve leti (1993,00 in 1995,80), medtem ko se razlike s časom linearno večajo (glej obliko grafov iz slike 7.25). V sedanjem času je skladnost le še na nivoju decimetra. Podobna je situacija za koordinate točk omrežja SIGNAL. Zaradi usklajevanja izračunanih koordinat v epohi 2007,22 z državnim koordinatnim sistemom, imamo neskladje s sestavom ETRF89, ki pa je drugačno kot za točke pasivnega omrežja. V povprečju, iz zadnje vrstice preglednice, lahko vidimo, da je skladnost državnega koordinatnega sistema s sestavom ETRF89 na nivoju 6 cm za koordinato N, 2 cm za koordinato E in 3 cm za višine.

Rezultati iz slik 7.26 in 7.27 in preglednice 7.9 prikazujejo stanje referenčnega koordinatnega sestava na območju Slovenije. Le-ta je bil realiziran preko samo dveh preračunov, in sicer preračunov EUREF iz let 1994, 1995 in 1996, ter z vklopom postaj omrežja SIGNAL leta 2007. Zaradi nepoznavanja globalne in lokalne geodinamike lahko samo predpostavimo togo gibanje širšega območja Slovenije glede na Zemljo. Rezultati prikazujejo, da referenčni koordinatni sistem Slovenije ni usklajen z ITRF in ETRF, prav tako tudi niso Preglednica 7.9: Stopnja skladnosti določenih koordinat ETRF89 in uradnih koordinat D96, v milimetrih, za tri različne epohe, in sicer 1993,00, 1995,80 in 1999,40, in za sedanji čas (2015).

Table 7.9: Level of congruency between determined ETRF89 and official D96 coordinates in millimetres for three different epochs, e.g. for 1993,00, 1995,80 and 1999,40, and for present epoch (2015).

		1993,00)		1995,80)	1999,40			$2015,\!00$		
MREŽA	s_N	s_E	s_U	s_N	s_E	s_U	s_N	s_E	s_U	s_N	s_E	s_U
Pasivno	6,8	4,8	6,3	$12,\!2$	3,0	4,9	19,7	3,4	9,7	$53,\!5$	$16,\!8$	$39,\!3$
SIGNAL	28,7	21,2	35,8	$32,\!1$	16,7	29,1	37,7	10,9	$20,\!6$	68,5	14,7	18,2
Skupaj	$16,\!8$	12,3	20,3	$20,\!3$	9,5	16,5	26,3	6,6	$13,\!8$	57,9	$16,\! 0$	33,8

usklajene koordinate točk pasivnega omrežja in postaj omrežja SIGNAL. Vendar pa je za stopnjo skladnosti obeh omrežji le-to potrebno poiskati preko časovno odvisne prostorske transformacije (glej naslednje podpoglavje).

Na koncu lahko prikažemo še vrednosti izračunanih vektorjev hitrosti glede na koordinatni sestav ETRF89, kar prikazuje slika 7.28. Iz prikaza smo izločili točke DAVC, LEND, SNZZ in JELO. Točki DAVC in LEND sta nestabilni, medtem ko imata točki SNZZ in JELO veliko vrednost vektorja hitrosti po višini, kar očitno kaže na nek prisoten grobi pogrešek v višinah točk pri izmeri. Na sliki se vidijo velikosti vektorjev hitrosti za horizontalno komponento (rdeči vektorji hitrosti) in za višinski komponento (modri vektorji hitrosti), ki znašajo do nekaj mm/leto. Razvidno je, da območje Slovenije glede na ETRS89 ni stabilno, ampak obstaja vsaj premik v smeri JV, ki znaša okoli mm/leto. To je tudi eden izmed razlogov, zakaj uporaba koordinatnega sestava ETRF89 neposredno kot referečnega sestava Slovenije ni povsem praktična, saj premiki skozi čas niso najmanjši možni. Da bi temeljil državni koordinatni sistem na sistemu ETRF89, bi morali dobro poznati vektorje hitrosti številnih točk na območju Slovenije, da bi lahko modelirali gibanje območja Slovenije znotraj Evrazijske litosferske plošče.

7.5.2 Vzpostavitev optimalnega koordinatnega sestava Slovenije

Iz analize primerjave ocenjenih koordinat geodetskih točk in uradnimi koordinatami v D96 smo ugotovili, da obstajajo razlike v predstavljeni geometriji in v koordinatnem sestavu, v katerem sta oba niza koordinat predstavljena. Ugotovili smo tudi, da koordinate

Slika 7.28: Izračunani vektorji hitrosti v koordinatnem sestavu ETRF89. Figure 7.28: Velocity vectors determined in coordinate frame ETRF89.

točk pasivnega omrežja in koordinate postaj omrežja SIGNAL v D96 niso izračunane v istem geodetskem datumu (koordinatnem sestavu). Vzpostavitev optimalnega koordinatnega sestava območja Slovenije pomeni, da poiščemo tak koordinatni sestav, ki bo imel najmanjšo možno časovno spremenljivost (vektorji hitrosti naj bodo najmanjši možni) in najmanjša možna odstopanja od uradnega državnega koordinatnega sistema D96 (razlike do D96 naj bodo najmanjše možne). Le-to lahko izvedemo s časovno odvisno prostorsko transformacijo (glej poglavje 5), kjer nastavimo:

- opazovanja nam predstavljajo ocenjene koordinate in vektorji hitrosti točk v sestavu IGb08 za epoho 2005,00 (glej prilogo I),
- približne vrednosti neznank nam predstavljajo uradne koordinate vseh točk v D96, kjer vse vektorje hitrosti točk nastavimo na nič,
- izberemo si ustrezno epoho t_k , za katero bodo veljavni transformacijski parametri in njihove časovne spremembe med IGb08 in D96,
- neznanke v obdelavi nam predstavljajo ocenjene koordinate in vektorji hitrosti točk, ki imajo podane koordinate v D96 in
- niz transformacijskih parametrov ter njihovih časovnih sprememb v epohi t_k .

Ker imamo v IGb08 izračunane tako koordinate kot tudi vektorje hitrosti, lahko za vsak trenutek dobimo geometrijo mreže GPS. Po drugi strani pa vektorjev hitrosti za točke v D96 nimamo, poleg tega pa imamo položaje predstavljene v sestavu, ki ni skladen z ETRF89. Kot prvo je zato potrebno ugotoviti epoho t_k , ki bo podala optimalno prostorsko transformacijo koordinat točk med obema koordinatnima sistemoma za to epoho. Slika 7.29 prikazuje RMS vrednosti odstopanj prostorskih položajev točk med obema koordinatnima sestavoma (IGb08 in D96) za različne epohe med letoma 1989 in 2010, po izvedeni časovno odvisni prostorski transformaciji. Časovno odvisno prostorsko transformacijo smo izvedli na osnovi treh različnih nizov veznih točk, in sicer točk pasivnega omrežja (rdeče pike), postaj omrežja SIGNAL (modre pike) in za vse točke skupaj (črne pike).

Slika 7.29: Skladnosti med uradnimi prostorskimi položaji točk v D96 in izračunanimi položaji točk v IGb08 po prostorski Helmertovi transformaciji, predstavljene z RMS vrednostmi razlik prostorskih položajev za različne epohe.

Figure 7.29: Congruency between official spatial positions in D96 and determined positions in IGb08 after spatial Helmert transformation, represented with RMS values of spatial position differences for different epochs.

Iz slike 7.29 sta jasno razvidni dve epohi, in sicer 1996,20 za pasivno omrežje in 2007,60 za omrežje SIGNAL. Geometrija pasivnega omrežja, ki je predstavljeno s koordinatami D96, se optimalno prilega geometriji koordinat IGb08 za epoho 1996,20, medtem ko se geometrija omrežja SIGNAL, ki je predstavljeno s koordinatami D96, optimalno prilega geometriji koordinat IGb08 za epoho 2007,60. Obe epohi nista naključni, saj je srednja epoha določenih koordinat pasivnega omrežja v D96 1995,55 in srednja epoha omrežja SIGNAL v D96 2007,22. Majhni razliki med obema znanima srednjima epohama in epohama iz slike 7.29 sta verjetno zgolj posledica slučajnih vplivov v ocenjenih koordinatah

in vektorjih hitrosti v IGb08, kakor tudi v slučajnih vplivih v koordinatah D96. Če gledamo vse točke skupaj pa dobimo kot optimalno epoho neko srednjo epoho 2001,10 med ostalima dvema. Epoha 2001,10 ni sredina med 1996,20 in 2007,60, saj je točk pasivnega omrežja več kot postaj omrežja SIGNAL. Slika 7.29 prikazuje tudi kontrolo vseh treh izračunanih koordinat, ts. koordinate pasivnega omrežja (Berk in sod., 2003), koordinate omrežja SIGNAL (GIS, 2007) in koordinate v IGb08, določene v tej nalogi. Za obe epohi (1996,20 in 2007,60) znašata RMS vrednosti slabih 5 mm, kar priča o milimetrski skladnosti geometrije vseh treh nizov koordinat. Gledano splošno, za epoho 2001,10, pa je RMS vrednost okoli 17 mm, kar priča samo še o centimetrski skladnosti celotnega državnega koordinatnega sistema s pravo geometrijo fizično stabiliziranih točk.

Preglednica 7.10: Stopnja skladnosti določenih transformiranih koordinat IGb08 in uradnih koordinat D96, v milimetrih, za tri različne epohe, in sicer 1996,20, 2007,60 in 2015,00.

Table 7.10: Level of congruency between determined ETRF89 and official D96 coordinates in millimetres for three different epochs, e.g. for 1996,20, 2007,60 and 2015,00.

	-	1996,20)	2	$007,\! 6$	0	$2015,\!00$			
MREŽA	s_N	s_E	s_U	s_N	s_E	s_U	s_N	s_E	s_U	
Pasivno	2,1	2,4	3,6	19,4	9,0	24,1	22,4	17,0	$29,\!3$	
SIGNAL	21,1	14,7	30,7	2,5	1,1	4,4	7,6	6,7	8,8	
Skupaj	11,8	8,4	17,1	16,0	7,4	19,9	18,9	14,5	$24,\!5$	

V preglednici 7.10 prikazujemo skladnost koordinat D96 za obe epohi s slike 7.29 in še za sedanjo epoho (2015,00), po transformaciji koordinat IGb08 na koordinate D96. Za epoho 1996,20 smo za vezne točke vzeli točke pasivnega omrežja, medtem ko smo za epohi 2007,60 in 2015,00 za vezne točke vzeli postaje omrežja SIGNAL. Predpostavljamo namreč, da so koordinate in vektorji hitrosti postaj določene bolj kakovostno kot koordinate in vektorji hitrosti točk pasivnega omrežja. Skladnost točk pasivnega omrežja za epoho 1996,20 je visoka, na nekaj milimetrskem nivoju, kar velja tudi za postaje omrežja SI-GNAL za epoho 2007,60. Razvidna je tudi neskladnost med koordinatami točk pasivnega omrežja in koordinatami postaj omrežja SIGNAL, kjer le-ta znaša okoli 2 cm za koordinato N, okoli 1 cm za koordinato E in okoli 2 cm za višino. Iz zadnjih treh stolpcev je tudi razvidno, da koordinate omrežja SIGNAL za leto 2015,00 še določajo geometrijo mreže s centimetrsko natančnostjo, kar pa ne velja za točke pasivnega omrežja. Tu je geometrija določena le na okoli 5 cm nivoju. Primerjava vrednosti RMS za postaje omrežja SIGNAL med epohama 2007,60 in 2015 pa jasno kaže na hitro naraščanje neskladnosti uradnih koordinat D96 glede na pravo geometrijo postaj, saj se je vrednost RMS v 7 letih povečala za trikrat.

Slika 7.30: Izračunani vektorji hitrosti v končnem optimalnem referenčnem sestavu. Figure 7.30: Velocity vectors determined in final optimal reference frame.

Na koncu so prikazani še vektorji hitrosti v končnem izračunanem referenčnem sestavu, ki temelji na koordinatah in vektorjih hitrosti postaj omrežja SIGNAL. Koordinate so določene za epoho 2015,00 tako, da je odstopanje le-teh od uradnih koordinat D96 za postaje omrežja SIGNAL najmanjše možno. Vektorji so določen tako, da se mreža skozi čas ne premika, razteguje oz. krči in ne suka. Vektorji hitrosti so najmanjši možni. Seznam koordinat s pripadajočimi vektorji hitrosti se nahaja na koncu v prilogi J. Slika 7.30 prikazuje vektorje hitrosti v končnem optimalnem referenčnem sestavu Slovenije, kjer je z rdečim vektorjem predstavljena horizontalna komponenta vektorjev hitrosti, z modrim pa vertikalna komponenta.

7.6 Geokinematični model Slovenije

Ocenjeni vektorji hitrosti iz slike 7.30 predstavljajo le še lokalno geodinamično dogajanje na območju Slovenije, saj so iz vektorjev odstranjene komponente premika, raztezanja/krčenja in sukanja (Sterle, 2007). Geokinematiči model Slovenije določimo z zveznim vektorskim poljem vektorjev hitrosti, ki ga dobimo z ustreznim modelom statistične interpolacije znanih vektorjev hitrosti na diskretnem nizu geodetskih točk. Metodi statistične interpolacije, ki sta uporabljeni za določitev geokinematičnega modela Slovenije, sta kolokacija po MNK in membranska metoda. Obe metodi sta detajlno opisani v 6, kjer je kolokacija po MNK opisana v 6.1, membranska metoda pa v 6.3.

Slika 7.31: Geokinematični model Slovenije (rdeči vektorji) na osnovi ocenjenih vektorjev hitrosti (modri vektorji), določeni z membransko metodo.

Figure 7.31: Geokinematic model of Slovenia (red vectors) determined on a basis of estimated velocity vectors (blue vectors) and membrane method.

Membransko metodo smo uporabili na oba predstavljena načina, in sicer na osnovi afine transformacije (poglavje 6.3.1), kot tudi na osnovi deformacijske analize (poglavje 6.3.3). Obe metodi sta definirani le za horizontalne komponente vektorjev hitrosti in podajata enake rezultat. Geokinematični model Slovenije predstavimo z interpoliranimi vektorji hitrosti na diskretnem nizu točk, ki definirajo gridno mrežo z velikostjo osnovne celice 7,5 \times 7,5 km. Z Delaunayevo triangulacijo povežemo vse geodetske točke, za katere imamo podane ocenjene vektorje hitrosti, in vse točke, na katerih bomo izvedli interpolacijo. Rezultat interpolacije z membransko metodo je predstavljen na sliki 7.31. Z rdečimi vektorji je prikazano zvezno vektorsko polje horizontalnega geokinematičnega modela Slovenije na gridnih točkah. Modri vektorji predstavljajo ocenjene vektorje hitrosti na geodetskih točkah in postajah GPS iz slike 7.30. Interpolirani vektorji hitrosti so določeni le za območje Slovenije, a so izračunani na osnovi vseh ocenjenih vektorje v hitrosti na območju Slovenije in njene okolice, torej le brez točk omrežij IGS in EPN. Dodatno so zaradi problematičnih ocenjenih vektorjev hitrosti odstranjene točke DAVC, LEND, SNZZ in JELO.

Druga metoda določitve geokinematičnega modela Slovenije je kolokacija po MNK. Osnova kolokacije je izbrana kovariančna funkcija, ki jo uporabimo pri sestavi variančnokovariančne matrike signala in pri sestavi kovariančne matrike med signalom in opazovanji (Mikhail in Ackermann, 1976). Za naš primer smo izbrali eksponentno kovariančno funkcijo, ki je homogena in izotropna. Odvisna je le od oddaljenosti med točkami in je podana v obliki (Egli in sod., 2007; Moritz, 1978):

$$\sigma_{ij}^2(d) = \sigma_0^2 \mathrm{e}^{-\left(\frac{d_{ij}}{D}\right)^2} \tag{7.1}$$

Slika 7.32: Horizontalna komponenta geokinematičnega modela Slovenije (rdeči vektorji) na osnovi ocenjenih vektorjev hitrosti (modri vektorji), določeni s kolokacijo po MNK.
Figure 7.32: Horizontal component of geokinematic model of Slovenia (red vectors) determined on a basis of estimated velocity vectors (blue vectors) and least squares collocation.

V enačbi 7.1 količina σ_0^2 predstavlja varianco signala in je bila določena s standardnim odklonom $\sigma_0 = 5 \text{ mm/leto}$, d_{ij} predstavlja razdaljo med točkama *i* in *j* in *D* korelacijsko razdaljo, ki smo jo nastavili na D = 80 km (Egli in sod., 2007). Standardni odklon šuma vektorjev hitrosti σ_r smo nastavili na $\sigma_r = 1 \text{ mm/leto}$. Obe vrednosti standardnih odklonov predstavljata splošne vrednosti ocenjenih vektorjev hitrosti, kjer pa stroge statistične analize nismo naredili. Tudi oblika kovariančne funkcije in korelacijska razdalja sta
določeni na osnovi literature (Egli in sod., 2007; Moritz, 1976; 1978) in nismo empirično analizirali oblike kovariančne funkcije iz ocenjenih v vektorjev hitrosti. V primeru kolokacije po MNK lahko prikažemo geokinematični model tako za horizontalni komponenti, kot tudi za višino. Slika 7.32 prikazuje horizontalno komponento geokinematičnega modela Slovenije, ki je določen s kolokacijo po MNK (rdeči vektorji) in izračunan na osnovi ocenjenih vektorjev hitrosti (modri vektorji).

Vertikalno komponento geokinematičnega modela Slovenije prikazuje slika 7.33, kjer so vse predstavljene količine enake kot v primeru slike 7.32.

Slika 7.33: Višinska komponenta geokinematičnega modela Slovenije (rdeči vektorji) na osnovi ocenjenih vektorjev hitrosti (modri vektorji), določeni s kolokacijo po MNK.

Figure 7.33: Height component of geokinematic model of Slovenia (red vectors) determined on a basis of estimated velocity vectors (blue vectors) and least squares collocation.

Za kakovosten geokinematične model so nujni kakovostno ocenjeni vektorji hitrosti, ki naj ne bi bili obremenjeni z grobimi pogreški in lokalnimi premiki točk. Le taki vektorji pravilno odražajo spremembe koordinat točk skozi čas. Določeni vektorji hitrosti na slikah 7.31 in 7.32 kažejo na možna prisotna neskladja, ki jih bo v prihodnosti potrebno poiskati in odpraviti. Prav tako predstavljeni geokinematični modeli za horizontalni komponenti (sliki 7.31 in 7.32) in za vertikalno komponento (slika 7.33) ne prikazuje končnega stanja, saj model izravnave pri membranski metodi in postopek interpolacije pri kolokaciji nista bila podrobno analizirana. Pri membranski metodi je potrebno analizirati vpliv obeh sistemov normalnih enačb, tj. za ocenjene vektorje hitrosti in za parametre deformacije oz. parametre afine transformacije. Predvsem je tu problem usklajenosti uteži ocenjenih vektorjev hitrosti in površin trikotnikov, ki predstavljo uteži parametrov deformacije/afine transformacije. Po drugi strani je potrebno tudi analizirati obliko interpolacijske funkcije, ki jo dobimo z membransko metodo. V primeru kolokacije po MNK pa bi bilo potrebno analizirati obliko kovariančne funkcije, saj je le-ta ključna za izvedbo interpolacije.

8 ZAKLJUČEK

V doktorski nalogi smo obravnavali uporabo ponovljenih opazovanj GPS za opis geometrije prostora z njegovimi časovnimi spremembami v ustreznem koordinatnem sistemu in z najvišjo natančnostjo in točnostjo. Teoretična izhodišča, analitični pristopi in njihova uporaba, ki so prikazani skozi vsa poglavja naloge, opisujejo celotno področje določanja koordinat geodetskih točk na osnovi sistemov GNSS v globalnem koordinatnem sistemu. Prvi korak predstavlja izračun koordinat točk na osnovi opazovanj GPS z visoko natančnostjo (metoda PPP, poglavje 2). Visoko točnost se v drugem koraku zagotovi z uskladitvijo ocenjenih koordinat z globalnim koordinatnim sistemom (poglavje 3), ki zagotavlja časovno stabilen standard. Tretji korak predstavlja modeliranje časovnih sprememb koordinat, tj. ocena koordinat točk v referenčni epohi s spremljajočimi vektorji hitrosti (poglavje 4). Ocenjene koordinate in njihove časovne spremembe, ki so predstavljene v globalnem koordinatnem sistemu, lahko prikažemo v koordinatnem sistemu, ki ni obremenjen z globalno geodinamiko, tj. vzpostavimo nov koordinatni sistem, kjer so premiki le še posledica lokalne geodinamike (poglavje 5). Na koncu lahko časovne spremembe koordinat predstavimo še za poljubno točko prostora (poglavje 6). Analitični zaključki, ki se nanašajo na teoretične dele naloge, so nanizani spodaj.

Metoda PPP

Za najvišjo kakovost dobljenih rezultatov je pri metodi PPP potrebno uporabiti končne precizne produkte službe IGS, modelirati oz. odstraniti vse sistematične pogreške (vplive na opazovanja GNSS) do milimetrskega nivoja in poleg koordinat oceniti tudi pogreške ure sprejemnika, fazne nedoločenosti, kodne zamike in parametre troposfere. V nalogi smo analitično prikazali, da je matemetični model metode PPP vedno singularen, z defektom ranga d = 1, ki se nanaša na nezmožnost matematičnega modela, da ločeno oceni fazne nedoločenosti, kodne zamike in pogreške ure sprejemnika. Analitično smo pokazali, da so ocenljive neznanke matematičnega modela koordinate točk in parametri troposfere, pri ostalih neznankah pa razlike med popravki ure sprejemnika, vsota enega popravka ure sprejemnika s faznimi nedoločenostmi in vsota popravka ure sprejemnika s kodnimi zamiki. Na osnovi S-transformacije smo dokazali, da metoda PPP zagotavlja nepristransko oceno koordinat geodetske točke in parametrov troposfere, medtem ko predstavlja pristransko oceno pogreškov ur sprejemnikov, faznih nedoločenosti in kodnih zamikov. Kadar matematični model obravnavamo celovito, v enem koraku, moramo za izračun enolične rešitve z minimalnim številom vezi sestaviti d = 1 vezno enačbo, ki napenja ničelni prostor matrike koeficientov funkcionalnega modela. Prehod med rezultati različnih oblik veznih enačb je enostavno možen s S-transformacijo. Če pa za izračun uporabimo postopek odstranitve ure sprejemnika iz matematičnega modela in zaporedno izravnavo, bo izbira drugačne vezne enačbe s S-transformacijo možna le za vektor neznank, medtem ko za matriko kofaktorjev neznank to ni več mogoče.

Uskladitev koordinat PPP z globalnim koordinatnim sistemom

Neskladnosti med ocenjenimi koordinatami PPP in referenčnimi koordinatami geodetskih točk odstranimo s 7-parametrično prostorsko transformacijo, kjer, zaradi majhnih razlik, predpostavimo majhne zasuke, premike in spremembe merila. Vhodni podatek prostorske transformacije so ocenjene koordinate PPP s pripadajočimi kovariančnimi matrikami za vse geodetske točke, ki so bile izmerjene v isti terminski izmeri. Pokazali smo, da se rešitev modela po MNK prevede na enačbe S-transformacije, ki nam poda metodo analize rezultatov. Pokazali smo, da z uskladitvijo rezultatov metode PPP (ocenjene koordinate in kovariančne matrike geodetskih točk) na referenčne koordinate danih točk dobimo transformirane koordinate in singularno kovariančno matriko transformiranih koordinat, z defektom ranga, ki je enak številu ocenjenih transformacijskih parametrov. Zaključimo, da lahko s S-transformacijo spreminjamo rang kovariančne matrike koordinat, s tem da iz vhodne kovariančne matrike odstranjujemo določene parametre geodetskega datuma. Ta ugotovitev je pomembna zato, ker smo s tem prikazali enakovrednost metode PPP z metodami, ki temeljijo na uporabi faznih razlik. V primeru faznih razlik vedno dobimo singularno kovariančno matriko, ki ima defekt ranga 3, kar odraža nezmožnosti faznih razlik, da določijo vse tri datumske parametre premika geodetske mreže. Če koordinate PPP z globalnim koordinatnim sistemom uskladimo tako, da definiramo le tri parametre premika, dobimo enakovredne rezultate.

Ocena koordinat in vektorjev hitrosti

Poudarek poglavja je bil pri analizi matematičnega modela izravnave, kjer je funkcionalni model regularen (matrika koeficientov), medtem ko je stohastičen model singularen (kovariančna matrika transformiranih koordinat PPP). Takega matematičnega modela v geodetski literaturi nismo našli, saj se povsod pojavi predpostavka o regularni matriki uteži opazovanj. Pokazali smo, da matriko uteži opazovanj pravilno pridobimo le preko točno znanega postopka izračuna generalizirane inverzije, ki nam poda singularno kovariančno matriko. Potrebno je poznati niz veznih enačb, ki so bile uporabljene za določitev te singularne kovariančne matrike. Z diagonalizacijo singularne matrike uteži in linearno transformacijo matematičnega modela smo prikazali obliko sistema normalnih enačb. Le-ta je singularen le v primeru, ko pridobimo defekt konfiguracije matematičnega modela, ali ko je razsežnost prostora slike singularne kovariančne matrike manjša od števila neznank matematičnega modela. Na primeru ocene koordinat s pripadajočimi vektorji hitrosti smo pokazali, da se defekt geodetskega datuma podvoji, saj nam nedefinirani datumski parametri koordinat povzročijo tudi nedefinirane datumske parametre vektorjev hitrosti. Analitično smo opredelili tudi ničelni prostor sistema normalnih enačb, ki predstavlja osnovo za sestavo veznih enačb za pridobitev enolične rešitve.

Časovno odvisna prostorska transformacija

S časovno odvisno prostorsko transformacijo lahko uskladimo oz. združimo več rešitev časovno odvisne geodetske mreže. Le-te so predstavljene z ocenjenimi koordinatami in vektorji hitrosti, s pripadajočimi (singularnimi) kovariančnimi matrikami, ki pa so med seboj različne, saj je lahko geodetski datum posamezne rešitve drugačen. Na osnovi številnih rešitev geodetske mreže nam je cilj določiti referenčne koordinate in vektorje hitrosti ter transformacijske parametre le-teh do posamezne rešitve geodetske mreže. V nalogi smo analitično prikazali tako funkcionalni kot tudi stohastični model in ugotovili, da sta oba singularna. Singularnost funkcionalnega modela je določena z nezmožnostjo ocene vseh nizov transformacijskih parametrov, saj lahko ocenimo le transformacijske parametre med posameznimi rešitvami geodetske mreže in ne do referenčnih koordinat in vektorjev hitrosti. Singularnost stohastičnega modela pa je določena s singularnostjo kovariančnih matrik posameznih rešitev geodetske mreže, ki se pojavi pri uskladitvi koordinat PPP z referečnimi koordinatami in se prenese preko ocene koordinat in vektorjev hitrosti geodetskih točk posamezne rešitve geodetske mreže. Če rešitev dobimo samo na osnovi funkcionalnega modela (ne upoštevamo matrike uteži), je matematični model vedno singularen, z defektom ranga 14, ki predstavljajo ravno en niz transformacijskih parametrov z njihovimi časovnimi spremembami. Ko pa v matematičnem modelu pravilno upoštevamo tudi stohastični model, pa se defekt datuma poveča, in sicer se vrednosti 14 doda defekt ranga vsake kovariančne matrike posamezne rešitve geodetske mreže. Posledično velja, da se v matematičnem modelu lahko poleg referenčnih koordinat in vektorjev hitrosti ocenijo le tisti transformacijski parametri, do posamezne rešitve geodetske mreže, katerih informacija je v kovariančni matriki tudi prisotna. Točno ta problem so

v primeru koordinatnega sistema ITRS rešili tako, da so vsako singularno kovariančno matriko rešitve geodetske mreže pretvorili v regularno z ustreznim nizom veznih enačb, ki ne posegajo v geometrijo geodetske mreže. Časovno odvisna prostorska transformacija predstavlja orodje izgradnje novega koordinatnega sistema na osnovi ocenjenih koordinat točk (lahko tudi s pripadajočimi vektorji hitrosti) v poljubnem koordinatnem sistemu.

Interpolacija vektorjev hitrosti

Ocenjeni vektorji hitrosti na diskretnem nizu geodetskih točk lahko z ustrezno interpolacijsko metodo uporabimo za oceno vektorjev hitrosti poljubne točke prostora. V nalogi smo se osredotočili na dve metodi, in sicer na kolokacijo po MNK in membransko metodo. Kolokacijo po MNK smo opisali in prikazali enakovrednost stohastičnega in funkcionalnega modela izravnave, kjer je največji poudarek na kovariančni funkciji, s katero sestavimo kovariančni matriki signala in opazovanj. Kot primerjalno metodo smo prikazali membransko metodo, saj tudi ta temelji na izravnavi po MNK. Membransko metodo smo izpeljali preko afine transformacije in preko ekstremmnih normalnih in strižnih deformacij. Na koncu smo še primerjali membransko metodo s kolokacijo po MNK in ugotovili, da nista enakovredni. Problem se pojavi pri membranski metodi, kjer s pogojem najmanjše spremembe meril in pravega kota povzročimo singularni sistem enačb popravkov.

Iz zaključkov teoretičnega dela naloge se vidi, da se skozi vse vsebine (poglavja) vleče rdeča nit singularnosti matematičnega modela, ki je določena z nedefiniranimi parametri geodetskega datuma. Posledica tega je, da je že na nivoju uskladitve koordinat z globalnim koordinatnim sistemom (ali metoda PPP ali fazne razlike, kot v primeru programskega paketa BSW5.0) potrebno podati referenčne koordinate točk, ki bodo v zadnjem koraku (vzpostavitev koordinatnega sistema s časovno odvisno prostorsko transformacijo) določili koordinatni sistem. Praktično je to nemogoče, zato je eden izmed možnih izhodov odstranitev singularnosti posameznih rešitev geodetske mreže z algoritmom določenim v delu Sillard in Boucher (2001), ki je uporabljen za vzpostavitev koordinatnega sestava ITRF (Altamimi in sod., 2011).

Zadnje poglavje prikazuje uporabo teoretičnega dela na primeru ponovljenih opazovanj na območju Slovenije. Empirični zaključki naloge so nanizani spodaj.

Referenčni koordinatni sestav Slovenije

Postopek izgradnje referenčnega sestava smo prikazali na primeru ponovljenih terminskih izmerah na 75-ih točkah pasivnega omrežja in opazovanjih GPS 63-ih stalno delujočih postajah, med katerimi jih je bilo 18 iz omrežja IGS. Podatki so obsegali 138 geodetskih točk, v časovnem obdobju od leta 1994 do leta 2013, podani v več kot 150.000 dnevnih datotekah.

Z metodo PPP smo obdelali le stalno delujoče postaje od leta 2000 naprej, kjer smo pridobili časovne vrste koordinat vseh točk. Na osnovi razpršenosti časovnih vrst smo določili mero natančnosti ocenjenih koordinat kot stopnjo ponovljivosti koordinat in dobili okoli 5 mm za horizontalni koordinati (N, E) in dobrih 10 mm za višino (glej poglavje 7.2.1 in preglednico 7.3). V primeru programskega paketa BSW5.0 pa smo obdelali vsa opazovanja in pridobili časovne vrste s ponovljivostjo okoli 3 mm za N in E in okoli 6 mm za višino pri stalno delujočih postajah in malo slabše rezultate za geodetske točke pasivnega omrežja (3–4 mm za N in E in 9 mm za višino) (glej poglavje 7.2.2 in preglednico 7.4).

Pri usklajevanju dnevnih rešitev koordinat PPP z referenčnimi koordinatami smo naredili 4 različne transformacije (glej poglavje 7.3), in sicer 3-parametrično, 4-parametrično, 6-parametrično in 7-parametrično transformacijo. Rezultati so prikazali, da že 3parametrična transformacija, ko modeliramo le premike, odstrani skoraj celoten del neskladnosti ocenjenih koordinat PPP z referenčnimi koordinatami. Vpliv merila je zanemarljiv, medtem ko je vpliv zasukov znaten le za večje razsežnosti in vpliva le na višino. Ponovljivost transformiranih koordinat PPP, na osnovi 3-parametrične transformacije, je podana v preglednici 7.7 in znaša okoli 3 mm za N, 4 mm za E in 7 mm za višino. Rezultati so tako primerljivi z rezultati, dobljeni s programskim paketom BSW5.0.

Na osnovi časovnih vrst, ki so usklajene z globalnim koordinatnim sestavom IGb08, smo ocenili koordinate v referenčni epohi $t_0 = 2005, 0$ let s pripadajočimi vektorji hitrosti. Primerjava med rezultati metode PPP in programskega paketa BSW5.0 je podana v poglavju 7.4. Razlike ocenjenih koordinat in vektorjev hitrosti referenčnih postaj IGS in danih koordinat in vektorjev hitrosti so prikazane na slikah 7.20 in 7.21, razlike med obema uporabljenima metodama (PPP in BSW5.0) pa na slikah 7.22 in 7.23. Statistiko razlik med danimi in ocenjenimi rezultati prikazuje preglednica 7.8, kjer je razvidno, da so razlike ocenjenih koordinat (obe metodi) od pravih vrednosti koordinat okoli 2 mm po horizontalnih koordinatah in okoli 3 mm po višini. Primerjava vektorjev hitrosti poda razlike na nivoju 0,5 mm/leto za horizontalne komponente in okoli 1 mm/leto za višinsko komponento vektorjev hitrosti. Iz rezultatov je razvidna prisotnost še določenih grobih pogreškov, predvsem po višinski komponenti, ki pa jih še nismo uspeli locirati in odpraviti. Kot končne rezultate smo privzeli ocenjene koordinate in vektorje hitrosti v IGb08 s programskim paketom BSW5.0 (glej sliko 7.24 in prilogo I).

Uporaba rezultatov v koordinatnem sestavu IGb08 je neprimerna zaradi velikih vrednosti hitrosti točk, zato smo vzpostavili lasten koordinatni sistem. Prva varianta novega koordinatnega sistema temelji na uradni verziji ETRS89 iz dokumenta (Boucher in Altamimi, 2011) in je prikazana v poglavju 7.5.1. Skladnost realizacije ETRS89, na osnovi naših rezultatov, in koordinat točk v državnem koordinatnem sistemu D96, je prikazana na sliki 7.25 in v preglednici 7.9, za tri različne nize geodetskih točk; in sicer točke pasivnega omrežja, stalno delujoče postaje SIGNAL in na koncu za vse točke skupaj. Iz slike je razvidno, da so državne koordinate točk pasivnega omrežja izkazale najvišjo skladnost koordinat z ETRS89 za leto 1993,0 in da od tedaj neskladje narašča. Stopnja skladnosti je bila na nivoju do okoli 6 mm po posamezni koordinatni komponenti. Odstopanje ocenjenega leta 1993,0, kot optimalnega s stališča skladnosti, od leta 1995,55, za katerega so bile določene koordinate v sistemu D96, lahko pripišemo slabši realizaciji sistema ETRS89 v letu 2003, ko so bila opazovanja GPS obdelana, in slučajnim pogreškom, ki so prisotni v izračunanih koordinatah. Koordinate postaj omrežja SIGNAL so bile najbolj skladne z ETRS89 leta 1999,4, na nivoju okoli 25 mm po posamezni koordinatni komponenti. Slabši rezultat in napačna epoha (koordinate postajam SIGNAL so bile določene za epoho 2007,23) je rezultat prilagajanja ocenjenih koordinat postaj SIGNAL državnim koordinatam točk na osnovi petih točk pasivnega omrežja (DONA, KORA, VEKO, KUCL in MALJ), ki je opisano v dokumentu GIS (2007). Za leto 2015 lahko vidimo, da je stopnja skladnosti koordinat vseh točk v državnem koordinatnem sistemu D96 s sistemom ETRS89 le še na nivoju okoli 5 cm. Druga varianta novega koordinatnega sistema temelji na dveh predpostavkah, in sicer na najmanjšem odstopanju koordinat novega koordinatnega sistema z državnim sistemom D96 in na predpostavki o najmanjši časovni spremenljivosti koordinat skozi čas (najmanjši vektorji hitrosti). Rezultati so predstavljeni na sliki 7.29 in v preglednici 7.10, kjer so spet prikazane primerjave za pasivno omrežje, omrežje SIGNAL in vse točke skupaj. Rezultati predstavljajo realno stanje natančnosti in točnosti državnega koordinatnega sistema ter njegovih realizacij na osnovi pasivnega omrežja in omrežja SIGNAL. Pri pasivnem omrežju je bilo največja skladnost geometrije našega izračuna in državnih koordinat za epoho 1996,20 s stopnjo skladnosti na nivoju milimetra po posamezni komponenti. Za omrežje SIGNAL je epoha največje skladnosti 2007,60, isto z milimetrsko skladnostjo. Obe epohi odgovarjata stanju izmer in izračunov, kažeta pa na medsebojno neskladnost koordinat obeh nizov točk znotraj državnega omrežja. Skladnost koordinat vseh točk je bila največja za leto 2001,10 na nivoju okoli 1 cm po posamezni komponenti. V sedanjem času je skladnost državnega koordinatnega sistema s pravo geometrijo na nivoju okoli 25 mm prostorskega položaja oz. okoli 15 mm za posamezno koordinatno komponento.

Zadnji korak pri analizi rezultatov obdelave opazovanj GPS je izdelava geokinematičnega modela območja Slovenije. Rezultati so prikazani v poglavju 7.6. Uporabili smo membransko metodo, s katero smo interpolirali le horizontalne komponente vektorjev hitrosti (glej sliko 7.31), medtem ko smo s kolokacijo po MNK interpolacijo izvedli za vse tri komponente vektorjev hitrosti (glej sliki 7.32 in 7.33). Iz obeh prikazov interpoliranih horizontalnih vektorjev je razvidno, da obe metodi dokaj podobno določita vektorje za notranji del območja, razlike pa se pojavijo na robovih interpolacijskega območja. Konkretnih analiz vektorskih polj nismo naredili, prikazi so zgolj informativne narave.

Iz empiričnih rezultatov lahko vidimo dokaj visoko natančnost in točnost pridobljenih rezultatov. Kar se tiče analize stanja državnega koordinatnega sistema D96, pa lahko ugotovimo, da je le-ta natančen le še na nivoju nekaj centimetrov. Če točnost opredelimo kot stopnja ujemanja koordinatnega sistema s sistemom ETRS89, je stopnja točnosti le še na nivoju okoli 5 cm. Koordinatni sistem D96 je časovno stabilen, saj ne predvideva sprememb koordinat točk skozi čas. Iz empiričnih rezultatov se vidi, da je definicija koordinatnega sistema, ki temelji na časovni nespremenljivosti napačna in je bila ustrezna le za obdobje nekaj let po vzpostavitvi koordinatnega sistema, če predpostavimo natančnost koordinat 1 cm. Potreba po novi definiciji in novi vzpostavitvi koordinatnega sistema je zato nujna. Le-ta mora zato nujno vsebovati možnost sprememb koordinat skozi čas in le tako bo točnost in natančnost koordinat na novo določenih točk v poljubnem trenutku na centimetrskem nivoju.

Na koncu lahko samo še potrdimo postavljeno hipotezo na začetku naloge (glej poglavje 1.2 na strani 5). Ponavljajoča opazovanja predstavljajo pogoj za oceno koordinat geodetskih točk in njihovih sprememb skozi čas na območju Slovenije. Z vključitvijo opazovanj stalno delujočih postaj omrežja IGS, katerih koordinate in vektorje hitrosti točk dobro poznamo, pa lahko geodetsko mrežo na območju Slovenije z visoko natančnostjo in točnostjo vmestimo tudi v globalni koordinatni sistem ITRS in posledično tudi v ETRS89. Osnovni pogoj stabilnega koordinatnega sistema za daljše časovno obdobje je skladnost koordinat točk, opazovanj GNSS in položajev satelitov GNSS v poljubnem trenutku, kar pa nam podajo le ocenjene spremembe koordinat skozi čas.

9 POVZETEK

Izmere GPS na območju Slovenije potekajo že od leta 1991 in so imele različne namene, od vzpostavitve koordinatne osnove lokalnega območja, inženirskih nalog, do nalog spremljanja geodinamičnega dogajanja območja. Skupno imamo na območju Slovenije 75 takih pasivnih geodetskih točk, na katerih sta bili v preteklosti izvedeni vsaj dve izmeri GPS. Dostopnost sistemov GNSS je botrovala tudi izgradnji omrežja stalno delujočih postaj SI-GNAL, ki trenutno šteje 15 postaj in je operativno od leta 2006. Poleg opazovanj GPS s pasivnih točk in stalnih postaj na območju Slovenije imamo na voljo opazovanja GNSS za daljše časovno obdobje s stalno delujočih postaj širše okolice Slovenije, in sicer iz omrežij IGS, EPN, FReDNet v Italiji, APOS v Avstriji, CROPOS na Hrvaškem in GNSSnet.h na Madžarskem.

Z letom 2008 je koordinatni sistem ETRS89 postal ogrodje državnega koordinatnega sistema Slovenije. Nov koordinatni sestav se je vzpostavil na osnovi kampanjskih izmer EUREF iz leta 1994, 1995 in 1996 za geodetske točke pasivnega omrežja in na osnovi enega tedna opazovanj v letu 2007 za stalno delujoče postaje omrežja SIGNAL. Koordinatni sestav je bil vzpostavljen na osnovi preračuna opazovanj izmer EUREF v letu 2003, poimenovan je bil kot D96 in predstavlja državni koordinatni sistem Slovenije. Leta 2007 so bile v državni koordinatni sistem D96 vključene še postaje omrežja SIGNAL, kjer se je navezava izvedla z vključitvijo petih točk EUREF v obdelavo opazovanj postaj omrežja SIGNAL. Koordinate postajam omrežja SIGNAL so bile določene tako, da so v čim manjši meri odstopale od koordinat točk pasivnega omrežja. Položaji vseh točk so opisani s koordinatami, ki se obravnavajo kot časovno nespremenljive in je zato vpliv časovnih sprememb položajev točk zanemarjen. Posledično je zanemarjena tudi neskladnost koordinat točk pasivnega omrežja s koordinatami postaj omrežja SIGNAL, ki izhaja iz več kot 10-letnega razmika uporabljenih opazovanj GPS v izračunu koordinat. Neuporaba vseh razpoloženih opazovanj GPS za vzpostavitev državnega koordinatnega sistema onemogoča vrednotenje vzpostavljenega koordinatnega sistema in njegovih časovnih sprememb, ki bi opisale spremembo geometrije površja Slovenije skozi čas.

Motiv naloge izhaja iz obeh predhodnih odstavkov, namen naloge pa je bil opisati uporabo čim večjega števila opazovanj GPS v čim večjem časovnem obdobju za vzpostavitev koordinatnega sestava, ki upošteva možne spremembe koordinat geodetskih točk skozi čas. Poudarek naloge je na analitičnem pristopu opisa postopkov za vzpostavitev koordinatnega sestava. Celoten postopek se razdeli na pet delov, in sicer:

- 1. določitev koordinat geodetskih točk na osnovi opazovanj GPS z najvišjo stopnjo natančnosti (poglavje 2),
- uskladitev dobljenih koordinat z enoličnim globalnim koordinatnim sistemom (poglavje 3),
- 3. modeliranje časovnih sprememb koordinat točk (poglavje 4),
- 4. vzpostavitev lastnega koordinatnega sistema s časovno odvisno prostorsko transformacijo (poglavje 5) in
- 5. optimalna interpolacija vektorjev hitrosti geodetskih točk (poglavje 6).

Vse korake smo ustrezno obravnavali analitično, medtem ko smo praktično uporabo za vse korake predstavili v poglavju 7, kjer smo obdelali opazovanja GPS številnih geodetskih točk in stalno delujočih postaj. Na osnovi rezultatov obdelave opazovanj GPS smo po zgoraj naštetih korakih prikazali, kako vzpostaviti referenčni koordinatni sestav Slovenije.

Metoda PPP – Ocena koordinat geodetskih točk

Metoda PPP predstavlja orodje za oceno koordinat geodetskih točk v koordinatnem sistemu podanih efemerid GNSS, na osnovi opazovanj GNSS enega samega sprejemnika, kjer pa moramo za najvišjo natančnost upoštevati tri kriterije. Prvi kriterij je nujna uporaba končnih preciznih produktov službe IGS (efemeride, parametri rotacije Zemlje in popravki ur satelitov), drugi kriterij je odstranitev in/ali modeliranje sistematičnih pogreškov (vplivov) na opazovanja GNSS do nivoja milimetra. Upoštevati je potrebno vplive, ki imajo izvor na satelitu, v mediju razširjanja signala GNSS (atmosferski vplivi) in vplive, ki imajo izvor v sprejemniku in njegovi okolici. Zadnji, tretji kriterij pa je ustrezna obravnava neznank v matematičnem modelu, saj je poleg koordinat točk in pogreškov ure sprejemnika potrebno oceniti tudi parametre troposfere, kodne zamike in fazne nedoločenosti.

Izkaže se, da je matematični model metode PPP vedno singularen z defektom ranga 1, ki se nanaša na funkcionalni model. Singularnost se nanaša na nezmožnost funkcionalnega modela, da ločeno oceni pogreške ure sprejemnika, fazne nedoločenosti in kodne zamike. Na osnovi S-transformacije smo prikazali, da metoda PPP zagotavlja nepristransko oceno koordinat in parametrov troposfere, medtem ko predstavlja pristransko oceno ostalih neznank (pogreški ure sprejemnika, fazne nedoločenosti in kodni zamiki). Poleg koordinat in parametrov troposfere so ocenljive neznanke razlike med pogreški ure sprejemnika, vsota enega pogreška ure sprejemnika s kodnimi zamiki in vsota enega pogreška ure sprejemnika s faznimi nedoločenostmi. Rešitev matematičnega modela je možna s sestavo ene vezne enačbe, ki odpravi singularnost funkcionalnega modela. Prehod med različnimi rezultati, ki so določeni z različnimi veznimi enačbami je mogoč s S-transformacijo. Kadar pa za izračun neznank uporabimo postopek odstranitve pogreškov ure sprejemnika z zaporedno izravnavo, pa lahko s S-transformacijo transformiramo le vektor neznank, medtem ko za matriko kofaktorjev neznank S-transformacije ni več možno uporabiti.

Uskladitev dobljenih koordinat z enoličnim globalnim koordinatnim sistemom Rezultat metode PPP so ocenjene koordinate geodetskih točk za vsak dan izmere, v koordinatnem sistemu efemerid. Zaradi različnih vzrokov (neskladnost koordinatnih sistemov IGb08 in ITRS, različen postopek obdelave pri izračunu produktov službe IGS, možna prisotnost še neodstranjenih sistematičnih pogreškov pri metodi PPP) so ocenjene koordinate neskladne z enoličnim globalnim koordinatnim sistemom, kot je npr. ITRS. To neskladnost odpravimo s prostorsko transformacijo, kjer zaradi majhnih vrednosti neskladnosti lahko predpostavimo majhne premike, zasuke in spremembe merila. Vhodni podatki v izravnavo prostorske transformacije so ocenjene koordinate vseh točk v posamezni izmeri, pridobljene z metodo PPP, s pripadajočo regularno kovariančno matriko koordinat. Prikazali smo, da se postopek prevede na S-transformacijo, ki nam omogoča analizo rezultatov, ts. transformirane koordinate geodetskih točk v enoličen globalni koordinatni sistem s pripadajočo transformirano kovariančno matriko. Na osnovi lastnosti S-transformacije smo prikazali, da je transformirana kovariančna matrika singularna in je defekt ranga določen s številom uporabljenih transformacijskih parametrov uporabljenih v izravnavi. Pokazali smo, da S-transformacija ne predstavlja le orodja, pri katerem se defekt ranga kovariančne matrike ohranja, ampak lahko defekt ranga tudi spreminjamo, tako da ga povečujemo. S S-transformacijo lahko določene datumske parametre, ki jih kovariančna matrika vsebuje, odstranimo. Na ta način se lahko prikaže enakovrednost metode PPP z metodami obdelave opazovanj GNSS, ki temeljijo na faznih razlikah, kjer je ocenjena kovariančna matrika vedno singularna, z defektom ranga 3, kar se nanaša na nedoločene parametre premika. Enak rezultat dobimo, če pri uskladitvi koordinat PPP v transformaciji določimo le tri transformacijske parametre premika.

Ocena referenčnih koordinat s pripadajočimi vektorji hitrosti – modeliranje časovnih sprememb koordinat točk

Ocenjene koordinate PPP točk, ki so predstavljene v enoličnem globalnem koordinatnem sistemu, s pripadajočo kovariančno matriko pridobimo za vse terminske izmere. Za geodetske točke, ki so kakovostno stabilizirane na geološko stabilnih tleh, je modeliranje časovnih sprememb koordinat ustrezno s koordinatami točk v referenčni epohi in pripadajočimi konstantnimi vektorji hitrosti. Matematični model ocene referenčnih koordinat in vektorjev hitrosti je enostaven, problem se pojavi pri singularni kovariančni matriki ocenjenih (transformiranih) koordinat točk v posamezni terminski izmeri. Matematičen model izravnave je tako sestavljen iz regularnega funkcionalnega modela in singularnega stohastičnega modela, česar v geodetski literaturi nismo zasledili. Prikazali smo, da se pravilna matrika uteži opazovanj, ki je tudi singularna, dobi le preko ustrezne generalizirane inverzije, s katero smo pridobili singularno kovariančno matriko. V splošnem je sistem normalnih enačb singularen le v primeru, ko zaradi singularne matrike uteži pridobimo defekt konfiguracije sistema, ali ko imamo več neznank kot je razsežnost slike (singularne) kovariančne matrike. V primeru, ko ocenjujemo koordinate geodetskih točk v referenčni epohi s pripadajočimi vektorji hitrosti, se defekt geodetskega datuma podvoji, saj nedefinirani datumski parametri koordinat povzročijo tudi nedefinirane datumske parametre vektorjev hitrosti. Rezultat postopka sta rešen funkcionalni model, ts. ocenjene koordinate geodetskih točk v globalnem koordinatnem sistemu, v izbrani referenčni epohi, s pripadajočimi vektorji hitrosti, in rešen stohastični model, tj. pripadajoča singularna kovariančna matrika vektorja neznank.

Časovno odvisna prostorska transformacija – vzpostavitev lastnega koordinatnega sistema

Casovna prostorska transformacija predstavlja orodje, s katerim lahko združimo rezultate več geodetskih mrež v enotnem koordinatnem sistemu. Kot rezultat geodetske mreže obravnavamo ocenjene koordinate geodetskih točk z vektorji hitrosti in pripadajočo kovariančno matriko v izbrani epohi (rezultat prejšnjega koraka). Cilj nam je določiti končne referenčne koordinate točk in njihove vektorje hitrosti, s pripadajočo kovariančno matriko, ter parametre transformacije med posamezno rešitvijo geodetske mreže in končnimi referenčnimi koordinatami, s pripadajočimi vektorji hitrosti. Analiza matematičnega modela je pokazala, da sta tako funkcionalni kot tudi stohastični model singularna. Singularnost funkcionalnega modela se kaže v nezmožnosti modela oceniti niz transformacijskih parametrov med končnimi rezultati (koordinate in vektorji hitrosti) in eno izmed rešitev geodetske mreže, saj lahko ocenimo le transformacijske parametre med samimi rešitvami geodetske mreže. Singularnost stohastičnega modela pa je določena s singularnostjo kovariančnih matrik rešitev geodetske mreže. Ob regularnem stohastičnem modelu bi bil sistem normalnih enačb singularen z defektom ranga 14, kar predstavlja en niz transformacijskih parametrov in njihovih časovnih sprememb. Ob pravilnem upoštevanju singularnega stohastičnega modela pa se defekt ranga poveča, in sicer se vrednosti 14 doda defekt ranga vsake vhodne rešitve geodetske mreže. Posledica tega je dejstvo, da lahko v matematičnem modelu poleg končnih referenčnih koordinat in vektorjev hitrosti geodetskih točk lahko ocenimo le tiste transformacijske parametre, katerih informacije so prisotne v vhodni kovariančni matriki. V primeru koordinatnega sistema ITRS so problematiko nezmožnosti ocene vseh transformacijskih parametrov odpravili z odpravo singularnosti vhodnih kovariančnih matrik. Le-to so odpravili z nizom veznih enačb, ki ne posegajo v geometrijo geodetske mreže in končne rezultate. Časovno odvisna prostorska transformacija podaja možnost vzpostavitve lastnega koordinatnega sistema, ts. ocenjene referenčne koordinate geodetskih točk s pripadajočimi vektorji hitrosti in z ustrezno kovariančno matriko v poljubnem koordinatnem sistemu.

Optimalna interpolacija vektorjev hitrosti geodetskih točk

Ocenjeni vektorji hitrosti na geodetskih točkah predstavljajo informacijo o geodinamičnem dogajanju obravnavanega območja. Z ustreznimi interpolacijskimi tehnikami, lahko ocenimo premik poljubne točke območja. V nalogi smo analizirali dve interpolacijski tehniki, in sicer kolokacijo po MNK in membransko metodo. Obe temeljita na metodi najmanjših kvadratov in ne pogojujeta funkcijske obliko interpoliranih vrednosti premikov (vektorjev hitrosti) točk. Kolokacijo po MNK smo analizirali in analitično prikazali enakovrednost funkcionalnega in stohastičnega modela izravnave. Pri kolokaciji po MNK je ključnega pomena poznavanje kovariančne funkcije, ki opisuje statistične lastnosti opazovanj in signala. Druga predstavljena metoda statistične interpolacije je bila membranska metoda, ki tudi temelji na metodi najmanjših kvadratov. Metodo smo izpeljali preko afine transformacije, kot tudi preko tenzorja malih deformacij, v obeh primerih pa izhajamo iz karakteristične funkcije, za katero predpostavimo najmanjše možne spremembe meril in pravih kotov v trikotnikih, ki jih sestavimo med geodetskimi točkami. Na osnovi analize membranska metoda smo prikazali, da ni enakovredna kolokaciji po MNK, saj membranska metoda vsebuje singularen funkcionalni model, ki izhaja iz oblike karakteristične funkcije.

Referenčni koordinatni sestav Slovenije

Skupno število vseh geodetskih točk, na katerih so se v zadnjih 20-ih letih izvedle ponovljene izmere GPS je 75, v obdelavi pa smo uporabili tudi opazovanja GPS 69-ih stalno delujočih postaj, med katerimi jih je 16 na območju Slovenije. Izmere GPS so se začele izvajati že od leta 1994, tako da je bilo obdobje podanih opazovanj skoraj 20 let. Skupno število vseh dnevnih datotek RINEX je bilo več kot 150 000, kar prikazuje preglednica 7.1.

Z metodo PPP smo obdelali opazovanja le sistema GPS in le opazovanja stalno delujočih postaj od leta 2000. Rezultati so predstavljeni v poglavju 7.2.1 v obliki časovnih vrst,

katerim odstranimo linearen trend. Iz grafov časovnih vrst iz slike 7.6 in iz dodatka C je razvidno, da časovne vrste točk vsebujejo neodstranjen sistematičen pogrešek, ki ima periodo enega leta. Stopnja ponovljivosti ocenjenih koordinat je bila določena okoli 5 mm, 6 mm in 11 mm za koordinatne komponente N, E in U (glej preglednico 7.3). Opazovanja GPS z vseh točk, tako geodetskih točk kot tudi stalno delujočih postaj, smo dodatno obdelali s programskim paketom BSW5.0, kjer so rezultati predstavljeni v poglavju 7.2.2 in dodatku E. Rezultati so tudi tu predstavljeni v obliki časovnih vrst, ki smo jim odstranili linearen trend. Rezultati kažejo na visoko natančnost, kjer je ponovljivost koordinat določena okoli 2 mm do 3 mm za horizontalni koordinati in okoli 5 mm po višini.

Ocenjene koordinate PPP, ki vsebujejo neodstranjen periodični vpliv, smo za vsak dan posebej uskladili z globalnim koordinatnim sistemom, kar smo izvedli s prostorsko transformacijo. Globalni koordinatni sistem so predstavljale kakovostno določene koordinate in vektorji hitrosti 12-ih referenčnih točk v globalnem koordinatnem sistemu IGb08. Uskladitev smo izvedli na štiri različne načine, ki so predstavjeni v poglavju 7.3. V prvem primeru smo izvedli 3-parametrično transformacijo (t_x, t_y, t_z) , v drugem 4-parametrično transformacijo (t_x, t_y, t_z, m) , v tretjem 6-parametrično transformacijo $(t_x, t_y, t_z, \omega_x, \omega_y)$ (ω_z) in v zadnjem, četrtem, koraku še 7-parametrično transformacijo $(t_x, t_y, t_z, \omega_x, \omega_y, \omega_z)$ m). Izkazalo se je, da že samo 3-parametrična transformacija odstrani večino neskladnosti ocenjenih koordinat PPP z globalnim koordinatnim sistemom. Izračunane ponovljivosti transformiranih koordinat so bile dobljene okoli 3 mm, 4 mm in 7 mm za koordinate N, E in U. Ponovljivost transformiranih koordinat PPP je tako enakovredna ponovljivosti koordinat BSW5.0. Rezultati so enakovredni tudi analitično, saj za vsak dan izmere pri metodi PPP pridobimo transformirano kovariančno matriko transformiranih koordinat PPP, ki je singularna in ima defekt datuma 3, kar je enak defekt datuma, kot v primeru rezultatov s programskim paketom BSW5.0.

Ocenjene koordinate geodetskih točk za vsak dan izmere, ki so predstavljene v enoličnem koordinatnem sistemu IGb08 predstavljajo osnovo za izračun koordinat v referenčni epohi $t_0 = 2005, 0, s$ pripadajočimi vektorji hitrosti, kar je predstavljeno v poglavju 7.4. Primerjava ocenjenih koordinat in vektorjev hitrosti je podana v preglednici 7.8, ki prikazuje tri primerjave, in sicer primerjavo med rezultati PPP in danimi (referenčnimi) vrednostmi koordinat in vektorjev hitrosti IGS točk, primerjavo med BSW5.0 in danimi vrednostmi, na koncu pa še primerjavo med rezultati PPP in BSW5.0. Razvidno je, da so rezultati PPP in BSW5.0 z danimi vrednostmi skladni na nivoju nekaj mm za koordinate in nekaj desetink mm za vektorje hitrosti. Primerjava med rezultati PPP in BSW5.0 da skladnost za faktor 2 slabšo, kot prejšnji dve primerjavi, kar pa še vedno kaže na rezultate visoke natančnosti in točnosti.

Zaradi velikih sprememb koordinat skozi čas v koordinatnem sistemu IGb08, ki znašajo okoli 3 cm na leto, smo vzpostavili nov koordinatni sistem. Vzpostavitev novega koordinatnega sistema je predstavljena v poglavju 7.5 in temelji na časovno odvisni prostorski transformaciji. Prikazali smo tri različne variante novega koordinatnega sistema in za vse tri analizirali skladnost uradnega državnega koordinatnega sistema z našimi rezultati. V prvi različici smo vzpostavili uradno verzijo koordinatnega sistema ETRS89. V drugi in tretji različici pa smo vzpostavili koordinatni sistem, ki v čim manjši meri odstopa od že obstoječega koordinatnega sistema D96. Prvo skladnost smo iskali na točkah pasivnega omrežja, drugo pa na stalno delujočih postajah omrežja SIGNAL. Ugotovljeno je bilo, da je bil državni koordinatni sistem D96 na centimetrskem nivoju skladen z ETRS89 le za leta izmere EUREF, medtem ko je v sedanjem času skladnost le še na nivoju okoli 5 cm. Kar se tiče skladnosti za drugo in tretjo različico, pa rezultati kažejo na visoko stopnjo skladnosti naših rezultatov in uradnih koordinat D96 za leta izmere EUREF pri pasivnih točkah (leto 1995) in za leto preračuna omrežja SIGNAL (leto 2007), v obeh primerih na nivoju okoli 5 mm. Za trenutni čas (leto 2015) je natančnost koordinat pasivnih točk v D96 samo še na nivoju nekaj cm, medtem ko je za točke omrežja SIGNAL še vedno na nivoju centimetra. Analiza skladnosti je podala tudi, da je enkratna realizacija koordinatnega sistema za območje Slovenije na nivoju centimetra veljavna največ 5 let. V poglavju 7.6 smo prikazali še rezultate interpolacije vektorjev hitrosti točk v novem koordinatnem sistemu.

Empirični rezultati obdelave opazovanj GPS v daljšem časovnem obdobju na območju Slovenije jasno kažejo, da je statična definicija koordinatnega sistema zastarela in je nujna nova definicija in realizacija koordinatnega sistema. Nova definicija in realizacija morata nujno vključevati tudi modeliranje sprememb koordinat točk skozi čas, da bo koordinatni sistem pravilno opisoval prostor v daljšem časovnem obdobju. Informacijo o časovnih spremembah koordinatnega sistema lahko pridobimo le na osnovi ponovljenih opazovanj GNSS na čim večjem številu točk, v čim pogostejših terminskih izmerah. Ključno vlogo bodo v prihodnosti tako imele stalno delujoče postaje omrežja SIGNAL, ki neprestano sledijo signalu satelitov GNSS.

10 SUMMARY

The GPS surveys in the territory of Slovenia date back to 1991 and had various purposes, e.g. establishing a coordinate frame in a local area, basic engineering tasks, and geodynamical monitoring. There are altogether 75 passive geodetic points, where at least two GPS surveys were performed in the past. The accessibility of the GNSS systems led to the development of SIGNAL, the Slovenian permanent stations network, which currently consists of 15 permanent stations and has been operable since 2006. In addition to the GPS observations from the passive geodetic points and permanent stations, GNSS observations are also available from several permanent networks in the vicinity of Slovenia, e.g. IGS, EPN, FReDNet in Italy, APOS in Austria, CROPOS in Croatia, and GNSSnet.hu in Hungary.

The coordinate system ETRS89 has been the framework of the national coordinate system in Slovenia since 2008. It was established on the basis of the 1994, 1995, and 1996 EUREF campaigns for the geodetic points from the passive network, and on the basis of weekly sets of GPS observations in 2007 for the stations from the SIGNAL permanent network. The coordinate frame was denoted as D96 and defined with the processing of GPS observations from the EUREF campaigns accomplished in 2003. It currently represents the official reference coordinate system of Slovenia. In order to represent the coordinates of the permanent stations from SIGNAL in D96, 5 EUREF passive geodynamic points were included into the processing of the GPS observations. In this way, the estimated coordinates of the permanent stations in SIGNAL were, as far as possible, congruent with those of passive geodynamic points. The positions of all geodetic points and stations are represented with the estimated coordinates that are regarded as time invariant and, consequently, the influence of temporal changes in stations' positions is neglected. Likewise, due to an epoch difference of more than 10 years for the GPS observations used in processing, the lack of congruency between the coordinates of the passive network and the coordinates of the SIGNAL permanent network is also neglected. The fact that only a small portion of the available GPS observations was used for establishing the coordinate system makes it impossible to evaluate the established coordinate system and its temporal changes to describe the changes in the Slovenian territory's geometry.

This thesis is motivated by the aforementioned issues, whereas its purpose is the description of using as many GPS observations over the longest possible time span for establishing the coordinate frame that considers the temporal variability of the coordinates in the geodetic network. The thesis focus is the analytical approach to establishing a coordinate frame. The procedure consists of five parts, namely:

- 1. determination of the coordinates of geodetic points and stations on the basis of GPS observations with the highest level of precision (section 2),
- 2. transformation of the estimated coordinates into a consistent global coordinate system (section 3),
- 3. modelling the temporal variations of the coordinates (section 4),
- 4. establishment of a user-defined coordinate system on the basis of the time-variant spatial transformation(section 5) and
- 5. optimal interpolation of the obtained velocity vectors (section 6).

All five parts were adequately treated in an analytical manner, while the practical use of the parts was represented in section 7, where the GPS observations from many geodetic points and permanent stations were processed. The procedure of establishing a new reference frame of Slovenia was described on the basis of the results from all the parts mentioned.

PPP method – estimation of geodetic point coordinates

The PPP method is a tool for estimating geodetic stations' coordinates that are determined on the basis of GNSS observations from a single receiver only and in the coordinate system of an ephemeris. Nevertheless, three requirements must be met to obtain the highest possible precision. The first requirement is the mandatory use of final IGS products (ephemeris, Earth orientation parameters and satellite clock corrections), the second requirement is the elimination and/or mitigation of biases from the GNSS observations to a millimetre level. We have to consider satellite related biases, propagation medium related biases (atmospheric effects), and receiver related biases. The last, third, requirement is adequate treatment of the unknowns in the mathematical model where troposphere parameters, differential code biases, and phase ambiguities should be estimated besides the coordinates and receiver clock parameters.

The mathematical model of the PPP method is always singular with the rank deficiency of 1, which is related to the functional model. The singularity refers to the inability of a functional model to separately estimate receiver clock parameters, phase ambiguities, and differential code biases. By using S-transformation we proved the unbiasedness of the coordinates and troposphere parameters and the biasedness of all other unknowns (receiver clock parameters, phase ambiguities, and differential code biases). Estimable parameters, next to coordinates and troposphere parameters, are the differences between receiver clock parameters and the sum of differential code biases with one of the receiver clock parameters. A unique solution to the mathematical model is possible with the construction of one constraining equation that removes the singularity from the model. A selection of results determined from different constraining equations is possible with S-transformation. However, when receiver clock parameter elimination with stacking of normal equations is used, only the parameter vector may be transformed with S-transformation, whereas S-transformation may not be used for the cofactor matrix of unknowns.

Transformation of estimated coordinates into a consistent global coordinate system

The result of the PPP method are estimated coordinates of geodetic points for each daily GNSS survey, which are determined in the coordinate system of a satellite ephemeris. The estimated coordinates are due to various reasons (differences in coordinate systems IGb08 and ITRS, different algorithms and methodology for determining precise products of IGS, possible presence of un-modelled biases in the PPP method) not fully compatible with the unique global coordinate system such as ITRS or IGb08. This incompatibility is removed with spatial transformation, where small values of translation, rotation, and scale change are assumed because of the small values of differences. The observations in the adjustment of the spatial transformation are the estimated PPP coordinates of all geodetic points in the corresponding surveys and their regular covariance matrix. The results are transformed coordinates in a unique global coordinate system with their transformed covariance matrix, which were shown to be identical to the results of a S-transformation used to analyze the results. Based on the characteristics of the S-transformation we have shown that the transformed covariance matrix is singular with the rank deficiency equal to the number of adjusted transformation parameters. S-transformation may therefore be used in order to change the rank deficiency of the covariance matrix, i.e. the rank deficiency may be increased, and not solely to retain it. S-transformation may be, in this case, used to remove particular datum parameters from the input covariance matrix. We have shown the equivalence between the PPP method and the methods of GNSS observation processing, where phase differences are used – where a singular covariance matrix is always obtained with the rank deficiency of 3 that is related to undefined translation parameters. Equivalent result would be obtained if only translation parameters were estimated in the

spatial transformation adjustment.

Reference coordinates' estimation with their velocities – modelling temporal variations of coordinates

The estimated PPP coordinates of geodetic points, presented in a unique global coordinate system, with their covariance matrix are obtained for all surveys. For the geodetic points properly stabilized on geologically stable ground, the modelling of coordinate temporal changes is adequate with coordinates in a reference epoch with corresponding constant velocity vectors. The mathematical model for estimating the reference coordinates and velocity vectors is relatively simple; however, difficulties occur due to the singularity of the covariance matrix of the (transformed) coordinates for each survey. The mathematical model therefore consists of a regular functional model and a singular stochastic model -- something that is difficult to find in the geodetic literature. We have shown that the generalized inverse of a singular covariance matrix is the mathematically proper method to obtain the correct singular weight matrix. The singular system of normal equations, due to the singularity of the input covariance matrix, is obtained in general only when a configuration defect is obtained or when the number of unknowns is higher than the dimension of the image space spanned by the (singular) covariance matrix. Undefined coordinate geodetic datum parameters lead to undefined velocity datum parameters and, therefore, the defect of the geodetic datum is doubled when the coordinates in the reference epoch and velocity vectors are estimated. The result is a solution to a functional model, i.e. estimated coordinates of geodetic points in the reference epoch, described within the global coordinate system, and a solution to a stochastic model, i.e. the corresponding singular covariance matrix of the unknown vector.

Time-variant spatial transformation – establishment of a user-defined coordinate system

The time-variant spatial transformation represents a tool for combining several solutions of a geodetic network into a unique, combined coordinate system. The results of a geodetic network are represented by estimated coordinates of geodetic points with their velocity vectors and the corresponding covariance matrix (results of a previous step). The aim of this step is to determine the reference coordinates of geodetic points and velocity vectors with their covariance matrix, and the transformation parameters between the individual solution of a geodetic network and the final reference coordinates with their velocity vectors. The analysis of a mathematical model has shown a singularity in both the functional model and the stochastic model. The singularity of a functional model indicates an inability of the model to estimate one set of transformation parameters between the final results (coordinates and velocity vectors) and one of the solutions of a geodetic network, since only transformation parameters between individual solutions of a geodetic network can be determined. The singularity of a stochastic model is a consequence of a singularity hold by the covariance matrices of the solutions of the geodetic network. In case of a regular stochastic model, the system of normal equation would be singular with a rank deficiency of 14, which represents one set of transformation parameters with their temporal changes. However, if the singularity of a stochastic model is correctly considered, the rank deficiency is increased, where a rank deficiency of every individual solution to a geodetic network is added to a value of 14. The mathematical model can, for this reason, estimate solely those transformation parameters whose information is held by the input covariance matrix. In the case of the ITRS coordinate system, this issue is resolved with the regularization of all input covariance matrices. Regularization is performed with a set of constraining equations that are added to each covariance matrix and do not interfere with the network geometry nor with the final results. The time-variant spatial transformation gives a possibility to establish a user-defined coordinate system, i.e. estimated reference coordinates, velocity vectors, and corresponding covariance matrix in an arbitrary coordinate system.

Optimal interpolation of velocity vectors on geodetic points

The geodynamic activity of a selected territory is described by the estimated velocity vectors on geodetic points. The displacement of every point in the area may be determined on the basis of appropriate interpolation methods. Two interpolation methods are analysed in this thesis, namely the least-squares collocation and the membrane method. Both are based on the least-squares method and do not require any knowledge of functional form of displacement values (velocity vectors) in geodetic points. We analysed the least-squares collocation and showed the equivalence of the functional and the stochastic model. The covariance function describes the statistical properties of observations and the signal, and is a crucial factor in the least-squares collocation. The second interpolation method is the membrane method, which is also based on the least-squares method. We defined the method throughout the affine transformation as well as throughout the small deformation tensor, but in both cases with the characteristic function that defined the least possible changes in the scale and changes in the right angles of the triangles set up at the geodetic points. The analysis of the membrane method revealed an inferiority compared to the least-squares method due to the singularity of the functional model determined with the characteristic function.

Reference coordinate frame of Slovenia

The total number of geodetic points, where campaign-like GPS surveys were performed, is 75; however, the GPS observations from 69 permanent stations, 16 of them in the territory of Slovenia, were also included in the processing. The GPS campaigns were performed already in 1994 so that the period of the available GPS data is almost 20 years. The total number of all daily RINEX files is more than 150,000 and is represented by the table 7.1.

The PPP method was used for GPS observations from permanent stations after 2000 only. The results are represented in section 7.2.1 in the form of time series where the linear trend was removed. The presented time series from Figure 7.6 and Appendix C clearly show the presence of a bias with a period of one year. The level of coordinate repeatability has been determined as 5 mm, 6 mm and 11 mm for coordinate components N, E and U, respectively (see Table 7.3). The GPS observations from all points and stations have been additionally processed also using the BSW5.0 software, while the results are presented in section 7.2.2 and Appendix E. The results are given in the form of time series with the linear trend removed as well. They indicate a high level of precision with the coordinate repeatability determined at approximately 2–3 mm for the horizontal coordinates and 5 mm in height.

The estimated and biased PPP coordinates were transformed into a global coordinate system on a daily basis with a spatial transformation. The global coordinate system was realized with the high quality coordinates and velocity vectors of 12 reference IGb08 permanent stations. The transformation was done in four different manners, as represented in section 7.3. Firstly, a 3-parameter transformation (t_x, t_y, t_z) , secondly a 4-parameter transformation (t_x, t_y, t_z, m) , thirdly a 6-parameter transformation $(t_x, t_y, t_z, \omega_x, \omega_y, \omega_z)$ and lastly a 7-parameter transformation $(t_x, t_y, t_z, \omega_x, \omega_y, \omega_z, m)$ were performed. We demonstrated that a mere 3-parameter transformation removed the majority of differences between the estimated PPP coordinates and the global coordinate system. The newly determined repeatability values of the transformed coordinates were approximately 3 mm, 4 mm and 7 mm for N, E and U, respectively. An equivalent level of repeatability values for the transformed PPP coordinates compared to the BSW5.0 values was obtained. The results are equivalent also from the analytical point of view, since for each day a singular transformed covariance matrix of the transformed PPP coordinates is obtained where the rank deficiency is determined at 3 and is equal to the rank deficiency of the BSW5.0 results.

The estimated coordinates of geodetic points and stations that are congruent with the IGb08 unique global coordinate system are the basis for determining the coordinates in a reference epoch $t_0 = 2005, 0$ with the corresponding velocity vectors, as shown in section 7.4. A comparison of the obtained coordinates and velocity vectors is represented in Table 7.8, where three comparisons are shown, namely the comparison of PPP and the fixed (reference) values of IGS coordinates and velocity vectors, the comparison of BSW5.0 and the fixed values and, finally, the comparison of the PPP and BSW5.0 results. It is evident that the level of congruency between the PPP and BSW5.0 results compared to the fixed values is at a few millimetre level for the coordinates and a few tenth of a millimetre per year for velocities. The comparison between both sets of results (PPP and BSW5.0) is found to be at a lower level, i.e. worse by approximately a factor of 2, however the results still show a high level of accuracy and precision.

The coordinates are affected by high temporal changes in the IGb08 coordinate system, i.e. approximately 3 cm per year, and for this reason we established a new coordinate system. The establishment of a new coordinate system is presented in section 7.5 and is based on the time-variant spatial transformation. Three different variants of the new coordinate system were determined and all three were compared to the official national coordinate system. In the first variant an official version of the ETRS89 was established, while in the second and third variants two coordinate systems were established, both of them with the highest level of congruency with the national coordinate system D96. We firstly sought the congruency at a passive network and secondly at a network of SIGNAL permanent stations. We showed that the national coordinate system D96 was congruent with ETRS89 at a centimetre level for a relatively short period around the EUREF surveys, whereas in the present time its congruency with ETRS89 is merely at a 5 cm level. As far as the congruency for second and third variants is concerned, the results show a high level of congruency for the period around EUREF surveys (year 1995) in the passive network and for a period around the computation (year 2007) for SIGNAL stations, in both cases at approximately 5 mm level. Presently (2015), the accuracy of the coordinates of the passive network is at a few centimetre level, whereas it is still at a centimetre level for SIGNAL stations. The analysis of congruency has also exposed that the maximum validity of the established coordinate system with an accuracy level of one centimetre is 5 years in the territory of Slovenia. The section 7.6 additionally represents the results of velocity vector interpolation in a new coordinate system.

The empirical results of the GPS observation processing from a longer time period clearly

show that the coordinate system, defined as static, is completely out-of-date, and a new definition and realization of the coordinate system is necessary. The new definition and realization must incorporate temporal changes of coordinates in order for the coordinate system to correctly represent space for a longer time period. The information of temporal changes of coordinates is possible to obtain only on the basis of repeated GNSS observations that are performed at as many geodetic points as possible, and with the highest level of survey repetitions. Therefore, a key role in the future will be to have stations within the permanent network of SIGNAL that continuously record the signal from the GNSS satellites.

LITERATURA IN VIRI

- Abdel-tawwab Abdel-salam, M. 2005. Precise Point Positioning Using Un-Differenced Code and Carrier Phase Observations. Doktorska disertacija. Calgary, Alberta, Kanada, Univerza Calgary (samozaložba: M. Abdel-tawwab Abdel-salam): 206 str.
- Čadež, P. 2010. Analiza metod geodetske GNSS izmere. Diplomska naloga. Ljubljana, Slovenija, Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo (samozaložba: P. Čadež): 119 str.
- Albertz, J., Kreiling, W. 1989. Photogrammetrisches Taschenbuch. Karlsruhe, Herbert Wichmann Verlag: 292 str.
- Altamimi, Z. 2009. The International Terrestrial Reference Frame (ITRF2005). V: Drewes, H. (ur.). Geodetic Reference Frames. International Association of Geodesy, Symposia 134. Berlin Heidelberg, Springer: str. 81-82. doi: 10.1007/978-3-642-00860-3_12. URL: http://dx.doi.org/10.1007/978-3-642-00860-3_12.
- Altamimi, Z., Collilieux, X. 2009. IGS contribution to the ITRF. Journal of Geodesy 83, 3-4: 375-383. ISSN 0949-7714. doi: 10.1007/s00190-008-0294-x. URL: http://dx.doi.org/10.1007/s00190-008-0294-x.
- Altamimi, Z., Sillard, P., Boucher, C. 2002. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research: Solid Earth 107, B10: (ETG 2-1)-(ETG 2-19). ISSN 2156-2202. doi: 10.1029/2001JB000561. URL: http://dx.doi.org/10.1029/2001JB000561.
- Altamimi, Z., Sillard, P., Boucher, C. 2004. CATREF Software : Combination and Analysis of Terrestrial Reference Frames. URL: http://grgs.obs-mip.fr/en/content/download/303/2351/file/CATREF-1.pdf (Pridobljeno 26. 3. 2015).
- Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., Boucher, C. 2007. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. Journal of Geophysical Research: Solid Earth 112, B9: n/a-n/a. ISSN 2156-2202. doi: 10.1029/2007JB004949.
 URL: http://dx.doi.org/10.1029/2007JB004949.
- Altamimi, Z., Collilieux, X., Boucher, C. 2009. Strengthes and Limitations of the ITRF: ITRF2005 and Beyond. V: Drewes, H. (ur.). Geodetic Reference Frames. International Association of Geodesy, Symposia 134. Berlin Heidelberg, Springer: str. 73-79. doi: 10.1007/978-3-642-00860-3_11.

URL: http://dx.doi.org/10.1007/978-3-642-00860-3_11.

Altamimi, Z., Collilieux, X., Métivier, L. 2011. ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy 85, 8: 457–473. ISSN 0949-7714. doi: 10.1007/s00190-011-0444-4.

URL: http://dx.doi.org/10.1007/s00190-011-0444-4.

Altamimi, Z., Métivier, L., Collilieux, X. 2012. ITRF2008 plate motion model. Journal of Geophysical Research: Solid Earth 117, B7: n/a-n/a. ISSN 2156-2202. doi: 10.1029/2011JB008930.

URL: http://dx.doi.org/10.1029/2011JB008930.

- Amiri-Simkooei, A., Teunissen, P. J. G., Tiberius, C. 2009. Application of Least-Squares Variance Component Estimation to GPS Observables. Journal of Surveying Engineering 135, 4: 149– 160. doi: 10.1061/(ASCE)0733-9453(2009)135:4(149).
 URL: http://dx.doi.org/10.1061/(ASCE)0733-9453(2009)135:4(149).
- Amiri-Simkooei, A. R., Tiberius, C. C. J. M., Teunissen, P. J. G. 2007. Assessment of noise in GPS coordinate time series: Methodology and results. Journal of Geophysical Research: Solid Earth 112, B7: n/a-n/a. ISSN 2156-2202. doi: 10.1029/2006JB004913.
 URL: http://dx.doi.org/10.1029/2006JB004913.
- Anquela, A., Martín, A., Berné, J., Padín, J. 2013. GPS and GLONASS Static and Kinematic PPP Results. Journal of Surveying Engineering 139, 1: 47–58. doi: 10.1061/(ASCE)SU. 1943-5428.0000091.

URL: http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000091.

- Argentiero, P., Lowrey, B. 1977. On estimating gravity anomalies -— A comparison of least squares collocation with conventional least squares techniques. Bulletin Géodésique 51, 2: 119-126. ISSN 0007-4632. doi: 10.1007/BF02522281.
 URL: http://dx.doi.org/10.1007/BF02522281.
- Argentiero, P. D. 1978. On Least Squares Collocation. NASA tehnični memorandum, 79575. Greenbelt, ML, ZDA, NASA, Goddard Space Flight Center: 16 str. URL: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780022934.pdf.
- Ashby, N. 2003. Relativity in the Global Positioning System. Living Reviews in Relativity 6, 1. doi: 10.12942/lrr-2003-1. URL: http://www.livingreviews.org/lrr-2003-1.
- Ashby, N., Spilker Jr., J. J. 1996. Introduction to Relativistic Effects on the Global Positioning System. V: Parkinson, B. W. (ur.), Spilker Jr., J. J. (ur.). Global Positioning System: The-

ory and Applications. Volume I. Washington, ZDA, American Institute of Aeronautics and Astronautics: str. 623–698.

- Baarda, W. 1981. S-transformations and criterion matrices. Second revised edition 1981. Delft, Nizozemska, Rijkscommissie voor Geodesie: 168 str.
- Bähr, H., Altamimi, Z., Heck, B. 2007. Variance Component Estimation for Combination of Terrestrial Reference Frames.
 URL: http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/49779 (Pridobljeno 26. 3. 2015).
- Bar-Sever, Y. E., Kröger, P. M., Borjesson, J. A. 1998. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. Journal of Geophysical Research: Solid Earth 103, B3: 5019-5035. ISSN 2156-2202. doi: 10.1029/97JB03534. URL: http://dx.doi.org/10.1029/97JB03534.
- Berk, S., Komadina, Ž., Marjanović, M., Radovan, D., Stopar, B. 2003. Kombinirani izračun EUREF GPS-kampanj na območju Slovenije. Geodetski vestnik 47, 4: 414–422. ISSN 0351-0271.
- Berk, S., Kozmus, K., Radovan, D., Stopar, B. 2006. Planning and realization of the Slovenian permanent GPS network. Allgemeine Vermessungs-Nachrichten 113, 11–12: 383–387. ISSN 0002-5968.
- Beutler, G., Rothacher, M., Schaer, S., Springer, T. A., Kouba, J., Neilan, R. E. 1999. The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences. Advances in Space Research 23, 4: 631–653. doi: http://dx.doi.org/10.1016/S0273-1177(99) 00160-X.

URL: http://www.sciencedirect.com/science/article/pii/S027311779900160X.

Bisnath, S., Gao, Y. 2009. Current State of Precise Point Positioning and Future Prospects and Limitations. V: Sideris, M. G. (ur.). Observing our Changing Earth. International Association of Geodesy Symposia. Berlin Heidelberg, Nemčija, Springer: str. 615–623. doi: 10.1007/ 978-3-540-85426-5_71.

URL: http://dx.doi.org/10.1007/978-3-540-85426-5_71.

Bisnath, S. B. 2000. Efficient, Automated Cycle-Slip Correction Of Dual-Frequency Kinematic GPS Data. V: Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, ZDA, 19–22 September 2000. Manassas, VA, ZDA, The Institute of Navigation: str. 145–154.

URL: http://gauss.gge.unb.ca/papers.pdf/iongps2000.bisnath.pdf.

- Björk, Å. 1996. Numerical Methods for Least Squares Problems. Filadelfija, PA, Society for Industrial and Applied Mathematics: 407 str.
- Blewitt, G. 1990. An Automatic Editing Algorithm for GPS data. Geophysical Research Letters 17, 3: 199-202. ISSN 1944-8007. doi: 10.1029/GL017i003p00199.
 URL: http://dx.doi.org/10.1029/GL017i003p00199.
- Blewitt, G. 1998. GPS Data Processing Methodology. V: Kleusberg, A. (ur.), Teunissen, P. J. G. (ur.). GPS for Geodesy. Berlin Heidelberg New York, Springer: str. 231–270.
- Blewitt, G., Bock, Y., Kouba, J. 1994. Constructing the IGS Polyhedron by Distributed Processing. V: Zumberge, J. F. (ur.), Liu, R. (ur.). Densification of the IERS Terrestrial Reference Frame through regional GPS networks. IGS Workshop Proceedings, Pasadena, California USA. Pasadena, CA, ZDA, California Institute of Technology: str. 21–38.
- Blewitt, G., Argus, D., Bennett, R., Bock, Y., Calais, E., Craymer, M., Davis, J., Dixon, T., Freymueller, J., Herring, T., Johnson, D., Larson, K., Miller, M., Sella, G., Snay, R., Tamisiea, M. 2005. Stable North American Reference Frame (SNARF): First Release. V: Joint UNAVCO/IRIS Workshop 2005, Stevenson, WA, ZDA, 9–11 Junij 2005.
- Bock, Y. 1998. Reference Systems. V: Kleusberg, A. (ur.), Teunissen, P. J. G. (ur.). GPS for Geodesy. Berlin Heidelberg New York, Springer: str. 1–42.
- Boehm, J., Niell, A., Tregoning, P., Schuh, H. 2006. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters 33, 7: n/a-n/a. ISSN 1944-8007. doi: 10.1029/2005GL025546.
 URL: http://dx.doi.org/10.1029/2005GL025546.
- Boehm, J., Werl, B., Schuh, H. 2006. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth 111, B2: n/a-n/a. ISSN 2156-2202. doi: 10.1029/2005JB003629.

URL: http://dx.doi.org/10.1029/2005JB003629.

Bosy, J. 2013. Global, Regional and National Geodetic Reference Frames for Geodesy and Geodynamics. Pure and Applied Geophysics 171, 6: 783–808. ISSN 0033-4553. doi: 10.1007/ s00024-013-0676-8.

URL: http://dx.doi.org/10.1007/s00024-013-0676-8.

Boucher, C. 1990. Definition and realization of terrestrial reference systems for monitoring Earth rotation. V: McCarthy, D. D. (ur.), Carter, W. E. (ur.). Variations in Earth Rotation, Geophysical Monograph 59, IUGG Volume 9. Washington, NW, ZDA, American Geophysical Union: str. 197-202. doi: 10.1029/GM059p0197. URL: http://dx.doi.org/10.1029/GM059p0197.

- Boucher, C., Altamimi, Z. 1992. The EUREF Terrestrial Reference System and its First Realizations. V: EUREF simpozij 1992, Bern, Švica, 4–6 Marec 1992.
- Boucher, C., Altamimi, Z. 1993. Development of a Conventional Terrestrial Reference Frame.
 V: Smith, D. E. (ur.), Turcotte, D. L. (ur.). Contributions of Space Geodesy to Geodynamics:
 Earth Dynamics, Geodynamic Series, Volume 24. Washington, NW, ZDA, American Geophysical Union: str. 89–97. doi: 10.1029/GD024p0089.
 URL: http://dx.doi.org/10.1029/GD024p0089.
- Boucher, C., Altamimi, Z. 2011. Memo: Specifications for Reference Frame Fixing in the Analysis of a EUREF GPS Campaign. URL: http://etrs89.ensg.ign.fr/memo-V8.pdf (Pridobljeno 24. 4. 2014).
- Brockmann, E. 1996. Combination of Solutions for Geodetic and Geodynamic Applications of the Global Positioning System (GPS). Doktorska disertacija. Bern, Švica, Univerza v Bernu, Astronomski inštitut Univerze v Bernu (samozaložba: E. Brockmann): 230 str.
- Brockmann, E. 2009. Monitoring of official national ETRF coordinates on EPN web, project by the EUREF TWG. V: EUREF simpozij 2009, Firence, Italija, 26–30 Maj 2009.
- Bronštejn, I. N., Semendjajev, K. A., Musiol, G., Mühlig, H. 1997. Matematični priročnik. Ljubljana, Tehniška založba Slovenije: 967 str.
- Bruyninx, C., Baire, Q., Legrand, J., Roosbeek, F. 2011. The EUREF Permanent Network (EPN): Recent Developments and Key Issues. V: EUREF simpozij 2011, Chisinau, Moldavija, 25-28 Maj 2011.

URL: http://www.epncb.oma.be/_documentation/papers/eurefsymposium2011/euref_ permanent_network_recent_developments_and_key_issues.

- Cai, C. 2009. Precise Point Positioning Using Dual-Frequency GPS and GLONASS Measurements. Doktorska disertacija. Calgary, Alberta, Kanada, Univerza Calgary (samozaložba: C. Cai): 139 str.
- Cai, C., Gao, Y. 2007. Precise Point Positioning Using Combined GPS and GLONASS Observations. Journal of Global Positioning Systems 6, 1: 13-22. URL: http://www.scirp.org/journal/PaperInformation.aspx?paperID=348&# reference.

Cai, C., Gao, Y. 2013. GLONASS-based precise point positioning and performance analysis. Advances in Space Research 51, 3: 514–524. ISSN 0273-1177. doi: http://dx.doi.org/10.1016/ j.asr.2012.08.004.

URL: http://www.sciencedirect.com/science/article/pii/S0273117712005285.

- Cai, C., Gao, Y. 2013. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions 17, 2: 223-236. ISSN 1080-5370. doi: 10.1007/s10291-012-0273-9. URL: http://dx.doi.org/10.1007/s10291-012-0273-9.
- Caporali, A. 2003. Average strain rate in the Italian crust inferred from a permanent GPS network
 I. statistical analysis of the time-series of permanent GPS stations. Geophysical Journal International 155, 1: 241-253. ISSN 1365-246X. doi: 10.1046/j.1365-246X.2003.02034.x.
 URL: http://dx.doi.org/10.1046/j.1365-246X.2003.02034.x.
- Caporali, A., Aichhorn, C., Barlik, M., Becker, M., Fejes, I., Gerhatova, L., Ghitau, D., Grenerczy, G., Hefty, J., Krauss, S., Medak, D., Milev, G., Mojzes, M., Mulic, M., Nardo, A., Pesec, P., Rus, T., Simek, J., Sledzinski, J., Solaric, M., Stangl, G., Stopar, B., Vespe, F., Virag, G. 2009. Surface kinematics in the Alpine–Carpathian–Dinaric and Balkan region inferred from a new multi-network GPS combination solution. Tectonophysics 474, 1–2: 295–321. ISSN 0040-1951. doi: 10.1016/j.tecto.2009.04.035.

URL: http://www.sciencedirect.com/science/article/pii/S0040195109002509.

Čeh, M., Lisec, A., Ferlan, M., Šumrada, R. 2011. Geodetsko podprta prenova grafičnega dela zemljiškega katastra. Geodetski vestnik 55, 2: 257–268. doi: 10.15292/geodetski-vestnik.2011. 02.257-268.

URL: http://www.geodetski-vestnik.com/55/2/gv55-2_257-268.pdf.

Čeh, M., Šumrada, R., Ferlan, M., Švab, B. Lisec, A. 2012. Application of membrane homogenization method on Slovenian cadastral index map. V: FIG Working Week, Rim, Italija, 6–10 Maj 2012.

URL: http://www.fig.net/pub/fig2012/papers/ts03i/TS03I_sumrada_lisec_et_al_ 5794.pdf.

- Chen, G., Herring, T. A. 1997. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. Journal of Geophysical Research: Solid Earth 102, B9: 20489-20502. ISSN 2156-2202. doi: 10.1029/97JB01739.
 URL: http://dx.doi.org/10.1029/97JB01739.
- Chen, Y. 1983. Analysis of Deformation Surveys A Generalized Method. Doktorska disertacija. Fredericton, New Brunswick, Kanada, Univerza New Brunswick (samozaložba: Y. Chen): 262 str.

Collins, J. P., Langley, R. B. 1999. Possible Weighting Schemes for GPS Carrier Phase Observations in the presence of Multipath. United States Army Corps of Engineers Topographic Engineering Center str. 1–40.
 UDL https://www.phase.com/parameters/par

URL: http://gauss2.gge.unb.ca/papers.pdf/acereport99.pdf.

- Craymer, M. 2006. The evolution of NAD83 in Canada. Geomatica 60, 2: 151–164.
- Craymer, M., Hilla, D. 1999. The GPS Toolbox. URL: https://www.ngs.noaa.gov/gps-toolbox/ (Pridobljeno 18. 4. 2014).
- Dach, R., Jean, Y. 2013. IGS Technical Report 2012. Tehnično poročilo, 2012. Bern, Švica, Univerza v Bernu, Astronomski inštitut Univerze v Bernu: 224 str.
 URL: ftp://igs.org/pub/resource/pubs/2012_techreport.pdf.
- Dach, R., Hugentobler, U., Fridez, P., Meindl, M. 2007. Bernese GPS Software, Version 5.0.
 Bern, Švica, Univerza v Bernu, Astronomski inštitut Univerze v Bernu: 612 str.
- Davis, J. L., Wernicke, B. P., Tamisiea, M. E. 2012. On seasonal signals in geodetic time series. Journal of Geophysical Research: Solid Earth 117, B1: n/a-n/a. ISSN 2156-2202. doi: 10.1029/2011JB008690.
 URL: http://dx.doi.org/10.1029/2011JB008690.
- Dawson, J., Woods, A. 2010. ITRF to GDA94 coordinate transformations. Journal of Applied Geodesy 4, 4: 189-199. doi: 10.1515/jag.2010.019.
 URL: http://dx.doi.org/10.1515/jag.2010.019.
- Defraigne, P., Baire, Q. 2011. Combining GPS and GLONASS for time and frequency transfer. Advances in Space Research 47, 2: 265–275. ISSN 0273-1177. doi: http://dx.doi.org/10.1016/ j.asr.2010.07.003.

URL: http://www.sciencedirect.com/science/article/pii/S0273117710004606.

- Dermanis, A. 1976. Probabilistic and Deterministic Aspects of Linear Estimation in Geodesy. Poročilo, 244. Columbus, OH, ZDA, The Ohio State University, Department of Geodetic Science: 167 str. URL: http://ntrs.nasa.gov/search.jsp?R=19770010708.
- Dow, J. M., Neilan, R. E., Rizos, C. 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83, 3-4: 191–198. ISSN 0949-7714. doi: 10.1007/s00190-008-0300-3.

URL: http://dx.doi.org/10.1007/s00190-008-0300-3.

Drewes, H. 2009. The Actual Plate Kinematic and Crustal Deformation Model APKIM2005 as Basis for a Non-Rotating ITRF. V: Drewes, H. (ur.). Geodetic Reference Frames. International Association of Geodesy, Symposia 134. Berlin Heidelberg, Springer: str. 95–99. doi: 10.1007/ 978-3-642-00860-3_15.

URL: http://dx.doi.org/10.1007/978-3-642-00860-3_15.

- Egli, R., Geiger, A., Wiget, A., Kahle, H.-G. 2007. A modified least-squares collocation method for the determination of crustal deformation: first results in the Swiss Alps. Geophysical Journal International 168, 1: 1-12. doi: 10.1111/j.1365-246X.2006.03138.x.
 URL: http://dx.doi.org/10.1111/j.1365-246X.2006.03138.x.
- EPN 2015. Spletna stran: EPN. URL: http://www.epncb.oma.be/ (Pridobljeno 14. 4. 2015).
- ESA 2011. Spletna stran: PPP Systems. URL: http://www.navipedia.net/index.php/PPP_Systems (Pridobljeno 18. 4. 2014).
- ESA 2014. Spletna stran: Satellite Eclipses. URL: http://www.navipedia.net/index.php/Satellite_Eclipses (Pridobljeno 16. 4. 2015).
- Eshagh, M. 2006. Scalar Risk functions as Criteria for datum Definition of Geodetic Networks.
 V: Geomatics 85 Conference & Exhibition at NCC of Iran, Teheran, Iran, Maj 2006.
 URL: http://www.ncc.org.ir/_DouranPortal/Documents/eshagh-m.pdf.
- Estey, L. H., Meertens, C. M. 1999. TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data. GPS Solutions 3, 1: 42-49. ISSN 1080-5370. doi: 10.1007/PL00012778.
 URL: http://dx.doi.org/10.1007/PL00012778.
- Even-Tzur, G. 2011. Deformation analysis by means of extended free network adjustment constraints. Journal of Surveying Engineering 137, 2: 47–52. doi: 10.1061/(ASCE)SU.1943-5428. 0000036.

URL: http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000036.

- Even-Tzur, G. 2012. Extraction of the deterministic ingredient of a dynamic geodetic control network. Journal of Geodetic Science 2, 1: 68-75. doi: 10.2478/v10156-011-0027-6.
 URL: http://dx.doi.org/10.2478/v10156-011-0027-6.
- Farrell, J. 2008. Aided Navigation: GPS with High Rate Sensors. McGraw-Hill Professional: 530 str.

Fosburgh, B., Peetz, B. 2004. Feature: GPS Modernization. Profesional Surveyor 24, 2: n/a-n/a.

URL: http://www.profsurv.com/magazine/article.aspx?i=1191.

- Fund, F., Perosanz, F., Testut, L., Loyer, S. 2013. An Integer Precise Point Positioning technique for sea surface observations using a GPS buoy. Advances in Space Research 51, 8: 1311-1322. ISSN 0273-1177. doi: http://dx.doi.org/10.1016/j.asr.2012.09.028. URL: http://www.sciencedirect.com/science/article/pii/S027311771200600X.
- Gakstatter, E. 2013. A Comparison of Free GPS Online Post-Processing Services. GPS World . URL: http://gpsworld.com/a-comparison-of-free-gps-online-post-processingservices/.
- Ge, M., Gendt, G., Rothacher, M., Shi, C., Liu, J. 2008. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy 82, 7: 389-399. ISSN 0949-7714. doi: 10.1007/s00190-007-0187-4.
 URL: http://dx.doi.org/10.1007/s00190-007-0187-4.
- Gelb, A. (ur.) 1974. Applied Optimal Estimation. Cambridge, MA, ZDA, The MIT Press: 348 str.
- Geng, J., Teferle, F. N., Meng, X., Dodson, A. H. 2011. Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Advances in Space Research 47, 10: 1664-1673. ISSN 0273-1177. doi: http://dx.doi.org/10.1016/j.asr.2010.03.030. URL: http://www.sciencedirect.com/science/article/pii/S0273117710002498.
- Gielsdorf, F. 2007. Ausgleichungsrechnung und raumbezogene Informationssysteme. Doktorska disertacija. München, Nemčija, Deutsche Geodätische Kommission: 91 str.
- Gielsdorf, F., Grundig, L. 1997. Nachbarschaftstreue Anpassung auf der Basis des Membranmodells. Zeitschrift für Vermessungwessen 122, 5: 208–217.
- Gielsdorf, F., Hillmann, T. 2012. Mathematics and statistics. V: Kresse, W. (ur.), Danko, D. M. (ur.). Springer Handbook of Geographic Information. Berlin Heidelberg, Springer: str. 19-60. doi: 10.1007/978-3-540-72680-7_2.
 URL: http://dx.doi.org/10.1007/978-3-540-72680-7_2.
- Gielsdorf, F., Gruendig, L., Aschoff, B. 2004. Positional Accuracy Improvement A Necessary Tool for Updating and Integrating of GIS Data. V: FIG Working Week, Atene, Grčija, 22—27 Maj 2004.

URL: http://www.fig.net/pub/athens/papers/ts02/ts02_2_gielsdorf_et_al.pdf.
GIS 2007. Izračun koordinat stalnih postaj omrežja SIGNAL — uskladitev s slovenskim geodetskim datumom D96. URL: http://www.gu-signal.si/sites/default/files/Obvestilo_MiniEUREF07_21_12_

2007.pdf (Pridobljeno 27. 4. 2015).

- Golub, G., Van Loan, C. F. 1989. Matrix Computations. Second Edition. Johns Hopkins Studies in the Mathematical Sciences. Baltimore, London, Johns Hopkins University Press: 642 str.
- Grafarend, E., Schaffrin, B. 1974. Unbiased Free Net Adjustment. Survey Review 22, 171: 200– 218. doi: 10.1179/sre.1974.22.171.200. URL: http://dx.doi.org/10.1179/sre.1974.22.171.200.
- Grant, D. B. 1988. Combination of terrestrial and GPS data for Earth deformation studies in New Zealand. Doktorska disertacija. Kensington, Sydney, Avstralija, Univerza New South Wales (samozaložba: D. B. Grant): 285 str.
- Gray, R. M., Davisson, L. D. 2004. An Introduction to Statistical Signal Processing. Cambridge, ML, ZDA, Cambridge University Press: 478 str.
- Grenerczy, G., Kenyeres, A., Fejes, I. 2000. Present crustal movement and strain distribution in Central Europe inferred from GPS measurements. Journal of Geophysical Research: Solid Earth 105, B9: 21835-21846. ISSN 2156-2202. doi: 10.1029/2000JB900127. URL: http://dx.doi.org/10.1029/2000JB900127.
- Grigillo, D., Stopar, B. 2003. Metode odkrivanja grobih pogreškov v geodetskih opazovanjih. Geodetski vestnik 47, 4: 387-403. URL: http://www.geodetski-vestnik.com/47/4/gv47-4_387-403.pdf.
- Guo, F., Zhang, X. 2014. Real-time clock jump compensation for precise point positioning. GPS Solutions 18, 1: 41-50. ISSN 1080-5370. doi: 10.1007/s10291-012-0307-3.
 URL: http://dx.doi.org/10.1007/s10291-012-0307-3.
- Hammond, W. C., Blewitt, G., Kreemer, C. 2011. Block modeling of crustal deformation of the northern walker lane and basin and range from GPS velocities. Journal of Geophysical Research: Solid Earth 116, B4: n/a-n/a. ISSN 2156-2202. doi: 10.1029/2010JB007817. URL: http://dx.doi.org/10.1029/2010JB007817.
- Han, J. Y. 2006. Time-Variant Transformations for Modern Terrestrial Reference Frames. Doktorska disertacija. West Lafayette, IN, ZDA, Purdue Univerza (samozaložba: J. Y. Han): 184 str.

- Han, J. Y., van Gelden, B. H. W. 2006. Stepwise parameter estimations in a time-variant similarity transformation. Journal of Surveying Engineering 132, 4: 141-148. doi: 10.1061/(ASCE)0733-9453(2006)132:4(141).
 URL: http://dx.doi.org/10.1061/(ASCE)0733-9453(2006)132:4(141).
- Han, J. Y., van Gelden, B. H. W., Soler, T., Snay, R. A. 2008. Geometric Combination of Multiple Terrestrial Network Solutions. Journal of Surveying Engineering 134, 4: 126-131. doi: 10.1061/(ASCE)0733-9453(2008)134:4(126).
 URL: http://dx.doi.org/10.1061/(ASCE)0733-9453(2008)134:4(126).
- Henderson, H. V., Searle, S. R. 1981. On deriving the inverse of a sum of matrices. SIAM Review 23, 1: 53-60. ISSN 00361445.
- Héroux, P., Kouba, J. 1995. GPS precise point positioning with a difference. V: Geomatics '95, Ottawa, Ontario, Kanada, 13–15 Junij 1995.
- Hofmann-Wellenhof, B., Moritz, H. 2006. Physical Geodesy. Second, corrected edition. Dunaj, Springer: 403 str.
- Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J. 2001. GPS Theory and Practice. Fifth Revised Edition. Dunaj, New York, Springer Verlag: 381 str.
- Höggerl, N., Imrek, E. 2007. Recent steps towards the introduction of ETRS89 in Austria. Geodetski vestnik 51, 4: 742–750. ISSN 0351-0271.
- Hoyer, M., Arcienagas, S. R., Pereira, K., Fagard, H., Maturana, R., Torchetti, R. A., Drewes, H., Kumar, M., Seeber, G. 1998. The Definition and Realization of the Reference System in the SIRGAS Project. V: Brunner, F. K. (ur.). Advances in Positioning and Reference Frames, International Association of Geodesy Symposia 118. Berlin Heidelberg, Springer: str. 168–173. doi: 10.1007/978-3-662-03714-0_27.

URL: http://dx.doi.org/10.1007/978-3-662-03714-0_27.

- IGS 2015. Spletna stran: IGS. URL: http://www.igs.org/ (Pridobljeno 14. 4. 2015).
- ITRF 2014. Spletna stran: ITRF. URL: http://itrf.ensg.ign.fr/ (Pridobljeno 24. 4. 2014).
- Jäger, R., Müller, T., Saler, H., Schwäble, R. 2005. Klassische und robuste Ausgleichungsverfahren. Ein Leitfaden für Ausbildung und Praxis von Geodäten und Geoinformatikern. Heidelberg, Nemčija, Herbert Wichmann Verlag: 340 str.

- Jelenc, B. 2006. Relativnostni vplivi na GPS opazovanja. Diplomska naloga. Ljubljana, Slovenija, Univerza v Ljubljani Fakulteta za Gradbeništvo in Geodezijo (samozaložba: B. Jelenc): 64 str.
- Kaplan, E. D. (ur.), Hegarty, C. J. (ur.) 2006. Understanding GPS. Principles and Applications. Second Edition. Norwood, Massachusetts, Artech House INC: 703 str.
- Kenyeres, A., Bruyninx, C. 2004. EPN coordinate time series monitoring for reference frame maintenance. GPS Solutions 8, 4: 200-209. ISSN 1080-5370. doi: 10.1007/s10291-004-0104-8. URL: http://dx.doi.org/10.1007/s10291-004-0104-8.
- Kierulf, H. P., Plag, H. P. 2006. Precise point positioning requires consistent global products. EUREF Publication No 14: 111–120.
- King, M. A., Watson, C. S. 2010. Long GPS coordinate time series: Multipath and geometry effects. Journal of Geophysical Research: Solid Earth 115, B4: n/a-n/a. ISSN 2156-2202. doi: 10.1029/2009JB006543. URL: http://dx.doi.org/10.1029/2009JB006543.
- Kleusberg, A., Teunissen, P. J. G. 1998. GPS Observation Equations and Positioning Concepts.V: Kleusberg, A. (ur.), Teunissen, P. J. G. (ur.). GPS for Geodesy. Berlin Heidelberg New

York, Springer: str. 187–230.

- Klobuchar, J. A. 1996. Ionospheric Effects on GPS. V: Parkinson, B. W. (ur.), Spilker Jr., J. J. (ur.). Global Positioning System: Theory and Applications. Volume I. Washington, ZDA, American Institute of Aeronautics and Astronautics: str. 485–516.
- Koch, K. 1999. Parameter Estimation and Hypothesis Testing in Linear Models. Second, Updated and Enlarged Edition. Berlin, Heidelberg, New York, Springer-Verlag: 333 str.
- Kotsakis, C. 2013. Anatomy of minimum constraints in geodetic network adjustment. V: Arabelos, D. N. (ur.), Kaltsikis, C. (ur.), Spatalas, S. (ur.), Tziavos, I. N. (ur.). Thales, in honor of Prof. Emeritus Michael E. Contadakis. Solun, Grčija, Aristotle University of Thessaloniki, Faculty of Rural and Surveying Engineering: str. 226–247.
- Kouba, J. 2002. The GPS Toolbox ITRF Transformations. GPS Solutions 5, 3: 88-90. ISSN 1080-5370. doi: 10.1007/PL00012903.
 URL: http://dx.doi.org/10.1007/PL00012903.
- Kouba, J. 2009. A guide to using International GNSS Service (IGS) products. URL: http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf (Pridobljeno 9. 4. 2015).

- Kouba, J. 2009. A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solutions 13, 1: 1-12. ISSN 1080-5370. doi: 10.1007/s10291-008-0092-1.
 URL: http://dx.doi.org/10.1007/s10291-008-0092-1.
- Kouba, J., Héroux, P. 2001. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions 5, 2: 12-28. ISSN 1080-5370. doi: 10.1007/PL00012883. URL: http://dx.doi.org/10.1007/PL00012883.
- Kounias, S., Chalikias, M. 2008. Estimability of parameters in a linear model and related characterizations. Stat Probabil Lett 78, 15: 2437-2439. ISSN 0167-7152. doi: 10.1016/j.spl.2008.02.019. URL: http://dx.doi.org/10.1016/j.spl.2008.02.019.
- Krakiwsky, E. J. 1975. A Synthesis of Recent Advances in the Method of Least Squares. Tehnično poročilo, 42. Fredericton, New Brunswick, Kanada, Univerza New Brunswick, Department of Geodesy and Geomatics Engineering: 125 str. URL: http://www2.unb.ca/gge/Pubs/LN42.pdf.
- Krakiwsky, E. J., Szabo, D. J., Vanicek, P., Craymer, M. R. 1999. Development and Testing of In-Context Confidence Regions for Geodetic Survey Networks. Tehnično poročilo, 198.
 Fredericton, New Brunswick, Kanada, Univerza New Brunswick, Department of Geodesy and Geomatics Engineering: 24 str.

URL: http://www2.unb.ca/gge/Pubs/TR198.pdf.

- Krarup, T. 2006. A contribution to the mathematical foundation of physical geodesy. V: Borre,K. (ur.). Mathematical Foundation of Geodesy. Berlin Heidelberg, Springer: str. 29-90.
- Križanič, F. 1993. Linearna algebra in linearna analiza. Ljubljana, Državna založba Slovenije: 543 str.
- Krüger, J. 1980. Numerische Behandlungs von Datums- und Konfigurationsdefekten. V: Pelzer, H. (ur.). Geodätische Netze in Landes- und Ingenieurvermessung. Stutgart, Nemčija, Konrad Wittwer: str. 257–275.
- Kuang, S. 1996. Geodetic network analysis and optimal design: concepts and applications. Chelsea, Michigan, Ann Arbor Press: 368 str.
- Lampret, V. 2013. Matematika 1. prvi del. Preslikave, števila in vektorski prostori. Univerzitetni učbenik. Ljubljana, Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo: 442 str.
- Langley, R. B. 1998. Propagation of the GPS signals. V: Kleusberg, A. (ur.), Teunissen, P. J. G. (ur.). GPS for Geodesy. Berlin Heidelberg New York, Springer: str. 111-149.

- Langley, R. B. 1998. GPS Receivers and Observables. V: Kleusberg, A. (ur.), Teunissen, P. J. G. (ur.). GPS for Geodesy. Berlin Heidelberg New York, Springer: str. 151–186.
- Larson, K. M. 2015. Pseudorange Bias of L1 Frequency. URL: http://xenon.colorado.edu/public_bias.html (Pridobljeno 9. 4. 2015).
- Leandro, R. F. 2009. Precise Point Positioning Using with GPS A new approach for positioning, atmospheric studies, and signal analysis. Doktorska disertacija. Fredericton, New Brunswick, Kanada, Univerza New Brunswick (samozaložba: R. F. Leandro): 232 str.
- Leick, A. 2004. GPS Satellite Surveying. 3rd Edition. New York, John Wiley & Sons, Inc.: 464 str.
- Liu, Z. 2011. A new automated cycle slip detection and repair method for a single dualfrequency GPS receiver. Journal of Geodesy 85, 3: 171–183. ISSN 0949-7714. doi: 10.1007/s00190-010-0426-y.

URL: http://dx.doi.org/10.1007/s00190-010-0426-y.

- Luo, X., Mayer, M., Heck, B. 2011. On the probability distribution of GNSS carrier phase observations. GPS Solutions 15, 4: 369-379. ISSN 1080-5370. doi: 10.1007/s10291-010-0196-2.
 URL: http://dx.doi.org/10.1007/s10291-010-0196-2.
- Mader, G. L. 1999. GPS Antenna Calibration at the National Geodetic Survey. GPS Solutions 3, 1: 50-58. ISSN 1080-5370. doi: 10.1007/PL00012780.
 URL: http://dx.doi.org/10.1007/PL00012780.
- Mao, A., Harrison, C. G. A., Dixon, T. H. 1999. Noise in GPS coordinate time series. Journal of Geophysical Research: Solid Earth 104, B2: 2797–2816. ISSN 2156-2202. doi: 10.1029/ 1998JB900033.

URL: http://dx.doi.org/10.1029/1998JB900033.

- Marjanović, M. 2009. Primjena GPS mjerenja za određivanje horizontalnih i vertikalnik pomaka Jadranske mikroploče. Doktorska disertacija. Zagreb, Hrvaška, Sveučilište u Zagrebu, Geodetski fakultet (samozaložba: M. Marjanović): 312 str.
- Marjetič, A., Stopar, B. 2007. Geodetski datum in S-transformacija. Geodetski vestnik 51, 3: 549-564. URL: http://www.geodetski-vestnik.com/51/3/gv51-3_549-564.pdf.
- McCarthy, D. D. 1996. IERS conventions (1996). IERS Tehnično poročilo, 21. IERS Convention Centre: 95 str.

URL: http://www.usno.navy.mil/USNO/earth-orientation/eo-info/general/conv-1996/.

McCarthy, D. D., Petit, G. 2003. IERS conventions (2003). IERS Tehnično poročilo, 32. IERS Convention Centre: 127 str.

URL: http://www.iers.org/iers/publications/tn/tn32/.

- Meindl, M., Schaer, S., Hugentobler, U., Beutler, G. 2004. Tropospheric Gradient Estimation at CODE: Results from Global Solutions. Journal of the Meteorological Society of Japan. Ser. II 82, 1B: 331-338. doi: 10.2151/jmsj.2004.331.
 URL: http://dx.doi.org/10.2151/jmsj.2004.331.
- Meindl, M., Dach, R., Jean, Y. 2012. IGS Technical Report 2011. Tehnično poročilo, 2011.
 Bern, Švica, Univerza v Bernu, Astronomski inštitut Univerze v Bernu: 220 str.
 URL: ftp://igs.org/pub/resource/pubs/2011_techreport.pdf.
- Mervart, L., Lukes, Z., Rocken, C., Iwabuchi, T. 2008. Precise Point Positioning with ambiguity resolution in real-time. V: Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, ZDA, 16-19 September 2008. Manassas, VA, ZDA, The Institute of Navigation: str. 397-405.
- Mervat, L. 1995. Ambiguity Resolution Techniques in Geodetic and Geodynamic Applications of the Global Positioning System. Doktorska disertacija. Bern, Švica, Univerza v Bernu, Astronomski inštitut Univerze v Bernu (samozaložba: L. Mervat): 176 str.
- Mikhail, E. M., Ackermann, F. E. 1976. Observations and least squares. New York, IEP–A Dun-Donnelley Publisher: 497 str.
- Mikhail, E. M., Bethel, J. S., McGlone, J. C. 2001. Introduction to modern photogrammetry. New York, John Wiley & Sons, Inc.: 496 str.
- Moritz, H. 1972. Advanced least-squares methods. Tehnično poročilo, 175. Columbus, OH, ZDA, The Ohio State University, Department of Geodetic Science: 129 str. URL: http://www.geology.osu.edu/~jekeli.1/OSUReports/report_175.pdf.
- Moritz, H. 1976. Covariance functions in least-squares collocation. Tehnično poročilo, 240. Columbus, OH, ZDA, The Ohio State University, Department of Geodetic Science: 79 str. URL: http://www.geology.osu.edu/~jekeli.1/OSUReports/report_240.pdf.
- Moritz, H. 1978. Least-squares collocation. Reviews of Geophysics 16, 3: 421–430. ISSN 1944-9208. doi: 10.1029/RG016i003p00421.

URL: http://dx.doi.org/10.1029/RG016i003p00421.

Moritz, H. 2000. Geodetic reference system 1980. Journal of Geodesy 74, 1: 128-133. doi: 10.1007/s001900050278. URL: http://dx.doi.org/10.1007/s001900050278.

Niell, A. E. 1996. Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research: Solid Earth 101: 3227-3246. doi: 10.1029/95JB03048. URL: http://dx.doi.org/10.1029/95JB03048.

- Papo, H. B. 1986. Extended Free Net Adjustment Constraints. Tehnično poročilo, NOS 199 NGS 37. Rockville, ML, ZDA, US Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service: 16 str.
 URL: http://www.ngs.noaa.gov/PUBS_LIB/ExtendedFreeNetAdjustmentConstraints_TR_ NOS119_NGS37.pdf.
- Papo, H. B. 2003. Datum Accuracy and Its Dependence on Network Geometry*. V: Grafarend,
 E. W. (ur.), Krumm, F. W. (ur.), Schwarze, V. S. (ur.). Geodesy-The Challenge of the 3rd
 Millennium. Berlin Heidelberg, Springer: str. 379-386. doi: 10.1007/978-3-662-05296-9_39.
 URL: http://dx.doi.org/10.1007/978-3-662-05296-9_39.
- Papo, H. B., Perelmuter, A. 1993. Two-step analysis of dynamical networks. Manuscripta Geodaetica 18, 6: 422–430.
- Pavlovčič Prešeren, P., Stopar, B. 2004. Izračun položaja GPS-satelita iz podatkov oddanih efemerid. Geodetski vestnik 48, 2: 151-166. URL: http://www.geodetski-vestnik.com/48/2/gv48-2_151-167.pdf.
- Pavlovčič Prešeren, P., Stopar, B., Vrabec, M. 2005. Hitrosti premikov ob prelomih v vzhodni Sloveniji: opazovanja iz let 1996, 1999 in 2002. Geodetski vestnik 49, 3: 407-415.
 URL: www.geodetski-vestnik.com/49/3/gv49-3_407-415.pdf.
- Perez, J. A. S., Monico, J. F. G., Chaves, J. C. 2003. Velocity Field Estimation Using GPS Precise Point Positioning: The South American Plate Case. Journal of Global Positioning Systems 2, 2: 90-99.
- Petit, G., Luzum, B. 2010. IERS conventions (2003). IERS Tehnično poročilo, 36. IERS Convention Centre: 197 str. URL: http://www.iers.org/nn_11216/IERS/EN/Publications/TechnicalNotes/tn36. html.
- Poder, K. 1991. A note on the EUREF System. V: EUREF simpozij 1991, Dunaj, Avstrija, 14–16 Avgust 1991.

- Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. 2007. Numerical Recipes. The Art of Scientific Computing. 3rd Edition. Cambridge, MA, ZDA, Cambridge University Press: 1256 str.
- Rao, C. R., Mitra, S. K. 1971. Generalized Inverse of Matrices and its Applications. New York, London, Sydney, Toronto, John Wiley & Sons, Inc.: 240 str.
- Ray, J., Dong, D., Altamimi, Z. 2004. IGS reference frames: status and future improvements.
 GPS Solutions 8, 4: 251-266. ISSN 1080-5370. doi: 10.1007/s10291-004-0110-x.
 URL: http://dx.doi.org/10.1007/s10291-004-0110-x.
- Rebischung, P., Griffiths, J., Ray, J., Schmid, R., Collilieux, X., Garayt, B. 2012. IGS08: the IGS realization of ITRF2008. GPS Solut 16, 4: 483–494. ISSN 1080-5370. doi: 10.1007/ s10291-011-0248-2.

URL: http://dx.doi.org/10.1007/s10291-011-0248-2.

- Ren, Z., Li, L., Zhong, J., Zhao, M. 2012. Instantaneous Cycle-Slip Detection and Repair of GPS Data Based on Doppler Measurement. International Journal of Information and Electronics Engineering 2, 2: n/a-n/a.
- Santamaría-Gómez, A., Bouin, M.-N., Collilieux, X., Wöppelmann, G. 2011. Correlated errors in GPS position time series: Implications for velocity estimates. Journal of Geophysical Research: Solid Earth 116, B1: n/a-n/a. ISSN 2156-2202. doi: 10.1029/2010JB007701.
 URL: http://dx.doi.org/10.1029/2010JB007701.
- Schmid, R., Steigenberger, P., Gendt, G., Ge, M., Rothacher, M. 2007. Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. Journal of Geodesy 81, 12: 781-798. ISSN 0949-7714. doi: 10.1007/s00190-007-0148-y. URL: http://dx.doi.org/10.1007/s00190-007-0148-y.
- Schönemann, E., Becker, M., Springer, T. 2011. A new Approach for GNSS Analysis in a Multi-GNSS and Multi-Signal Environment. Journal of Geodetic Science 1, 3: 204–214. ISSN 2081-9943. doi: 10.2478/v10156-010-0023-2.

URL: http://versita.metapress.com/content/n78803j124226417/fulltext.pdf.

- Seeber, G. 2003. Satellite Geodesy. 2nd completely revised and extended edition. Berlin, New York, Walter de Gruyten: 589 str.
- Sella, G. F., Dixon, T. H., Mao, A. 2002. REVEL: A model for Recent plate velocities from space geodesy. Journal of Geophysical Research: Solid Earth 107, B4: ETG 11–1–ETG 11–30. doi: 10.1029/2000JB000033.

URL: http://dx.doi.org/10.1029/2000JB000033.

- Shaer, S. 1999. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System. Doktorska disertacija. Bern, Švica, Univerza v Bernu, Astronomski inštitut Univerze v Bernu (samozaložba: S. Shaer): 228 str.
- Sharma, S., Dashora, N., Galav, P., Pandey, R. 2011. Cycle slip detection, correction and phase leveling of RINEX formatted GPS observables. Current Science (00113891) 100, 2: 205–212.
- Shi, J. 2012. Precise Point Positioning Integer Ambiguity Resolution with Decoupled Clocks. Doktorska disertacija. Calgary, Alberta, Kanada, Univerza Calgary (samozaložba: J. Shi): 171 str.
- Shüler, T. 2001. On Ground-Based GPS Tropospheric Delay Estimation. Doktorska disertacija. München, Nemčija, Vojaška univerza München (samozaložba: T. Shüler): 364 str.
- Shumway, R. H., Stoffer, D. S. 2006. Time Series Analysis and Its Applications With R Examples Second Edition. New York, Springer: 575 str.
- SIGNAL 2015. Spletna stran: SIGNAL. URL: http://www.gu-signal.si/ (Pridobljeno 14. 4. 2015).
- Sillard, P., Boucher, C. 2001. A review of algebraic constraints in terrestrial reference frame datum definition. Journal of Geodesy 75, 2-3: 63-73. ISSN 0949-7714. doi: 10.1007/ s001900100166.

URL: http://dx.doi.org/10.1007/s001900100166.

- Soler, T., Snay, R. A. 2004. Transforming Positions and Velocities between the International Terrestrial Reference Frame of 2000 and North American Datum of 1983. Journal of Surveying Engineering 130, 2: 49-55. doi: 10.1061/(ASCE)0733-9453(2004)130:2(49).
 URL: http://dx.doi.org/10.1061/(ASCE)0733-9453(2004)130:2(49).
- Srpčič, S. 2003. Mehanika trdnih teles. Ljubljana, Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo: 651 str.
- Stanek, M., Turk, G. 1998. Osnove mehanike trdnih teles. Ljubljana, Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo: 254 str.
- Sterle, O. 2004. Zasnova koncepta GPS opazovanj za stalno spremljanje geodinamičnega dogajanja na širšem območju Premogovnika Velenje. Diplomska naloga. Ljubljana, Slovenija, Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo (samozaložba: O. Sterle): 115 str.
- Sterle, O. 2007. Združevanje klasičnih geodetskih in GNSS-opazovanj v geodinamičnih raziskavah. Magistrsko delo. Ljubljana, Slovenija, Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo (samozaložba: O. Sterle): 118 str.

- Sterle, O., Pavlovčič Prešeren, P., Kuhar, M., Stopar, B. 2009. Definicija, realizacija in vzdrževanje modernih koordinatnih sistemov. Geodetski vestnik 53, 4: 679–694. ISSN 0351-0271.
- Sterle, O., Stopar, B., Pavlovčič Prešeren, P. 2013. Modeliranje ionosferske refrakcije za izboljšavo absolutnega GNSS-položaja s kodnimi instrumenti: Priprava na 24. sončev cikel. Geodetski vestnik 57, 1: 9–24.

URL: http://geodetski-vestnik.com/cms/images/57/1/gv57-1_sterle.pdf.

- Stewart, M. P., Penna, N. T., Lichti, D. D. 2005. Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares. Journal of Geodesy 79, 8: 479-489. ISSN 0949-7714. doi: 10.1007/s00190-005-0478-6. URL: http://dx.doi.org/10.1007/s00190-005-0478-6.
- Strang, G., Borre, K. 1997. Linear Algebra, Geodesy, and GPS. Wellesley, MA, ZDA, Wellesley-Cambridge Press: 624 str.
- Takasu, T. 2013. RTKLIB: An Open Source Program Package for GNSS Positioning. URL: http://gpspp.sakura.ne.jp/rtklib/rtklib.htm/ (Pridobljeno 18. 4. 2014).
- Tapley, B. 1976. On the Interpretation of Least Squares Collocation. V: Szebehely, V. (ur.), Tapley, B. (ur.). Long-Time Predictions in Dynamics. Proceedings of the NATO Advanced Study Institute held in Cortina d'Ampezzo, Italy, August 3–16, 1975. Part II. NATO Advanced Study Institutes Series. Dordrecht, Nizozemska, Springer: str. 165–172. doi: 10.1007/978-94-010-1493-9_12.

URL: http://dx.doi.org/10.1007/978-94-010-1493-9_12.

- Teferle, F. N., Orliac, E. J., Bingley, R. M. 2007. An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities. GPS Solutions 11, 3: 205-213. ISSN 1080-5370. doi: 10.1007/s10291-006-0051-7. URL: http://dx.doi.org/10.1007/s10291-006-0051-7.
- Teunissen, P. J. G. 1985. Zero order design: Generalized inverses, adjustment, the datum problem and s-transformations. V: Grafarend, E. W. (ur.), Sanso, F. (ur.). Optimization and Design of Geodetic Networks. Berlin Heidelberg, Springer: str. 11–55. doi: 10.1007/978-3-642-70659-2_ 3.

URL: http://dx.doi.org/10.1007/978-3-642-70659-2_3.

- Teunissen, P. J. G. 2003. Adjustment Theory. An Introduction. Series on Mathematical Geodesy and Positioning. Delft, Nizozemska, VSSD: 193 str.
- Teunissen, P. J. G. 2006. Network Quality Control. Series on Mathematical Geodesy and Positioning. Delft, Nizozemska, VSSD: 241 str.

- Teunissen, P. J. G. 2006. Least-Squares Collocation With Integer Parameters. Artificial Satellites 41, 2: 59-66. doi: 10.2478/v10018-007-0006-4.
 URL: http://dx.doi.org/10.2478/v10018-007-0006-4.
- Teunissen, P. J. G., Jonkman, N. F., Tiberius, C. C. J. M. 1998. Weighting GPS Dual Frequency Observations: Bearing the Cross of Cross-Correlation. GPS Solutions 2, 2: 28-37. ISSN 1080-5370. doi: 10.1007/PL00000033.
 URL: http://dx.doi.org/10.1007/PL0000033.

Thaller, D. 2008. Inter-technique combination based on homogeneous normal equation systems including station coordinates, Earth orientation and troposphere parameters. Doktorska disertacija. München, Nemčija, Tehnična univerza München (samozaložba: D. Thaller): 136 str.

- Tolman, B., Harris, R. B., T., G., Munton, D., Little, J., Mach, R., Nelsen, S., Renfro, B. 2004. The GPS Toolkit: Open Source GPS Software. V: Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, CA, ZDA, 21-24 September 2004: str. 2044-2053. URL: http://www.gpstk.org/pub/Documentation/GPSTkPublications/ION-GNSS-2004paper.pdf.
- Tregoning, P., Herring, T. A. 2006. Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophysical Research Letters 33, 23: n/a-n/a. ISSN 1944-8007. doi: 10.1029/2006GL027706. URL: http://dx.doi.org/10.1029/2006GL027706.
- Tscherning, C. 1978. Collocation and least squares methods as a tool for handling gravity field dependent data obtained through space research techniques. Bulletin Géodésique 52, 3: 199-212. ISSN 0949-7714. doi: 10.1007/BF02521773.
 URL: http://dx.doi.org/10.1007/BF02521773.
- Tu, R., Ge, M., Zhang, H., Huang, G. 2013. The realization and convergence analysis of combined PPP based on raw observation. Advances in Space Research 52, 1: 211–221. ISSN 0273-1177. doi: 10.1016/j.asr.2013.03.005.

URL: http://www.sciencedirect.com/science/article/pii/S0273117713001415.

- van Mierlo, J. 1980. Free Network Adjustment and S-Transformation. Duetsche Geodätische Kommision Reihe B, Heft Nr. 252: 41–54.
- Vanicek, P., Wells, D. E. 1972. The Least Squares Approximation. Studijsko gradivo, 22. Fredericton, New Brunswick, Kanada, Universa New Brunswick, Department of Geodesy and

Geomatics Engineering: 69 str.

URL: http://www2.unb.ca/gge/Pubs/LN22.pdf.

Vezočnik, R., Ambrožič, T., Sterle, O., Bilban, G., Pfeifer, N., Stopar, B. 2009. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring. Sensors 9, 12: 9873-9895. ISSN 1424-8220. doi: 10.3390/s91209873.

URL: http://dx.doi.org/10.3390/s91209873.

Wang, J., Satirapod, C., Rizos, C. 2002. Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. Journal of Geodesy 76, 2: 95–104. ISSN 0949-7714. doi: 10.1007/s00190-001-0225-6.
UPL + http://dx.doi.org/10.1007/s00190.001.0225.6.

URL: http://dx.doi.org/10.1007/s00190-001-0225-6.

Weber, J., Vrabec, M., Pavlovčič-Prešeren, P., Dixon, T., Jiang, Y., Stopar, S. 2010. GPS-derived motion of the Adriatic microplate from Istria Peninsula and Po Plain sites, and geodynamic implications. Tectonophysics 483, 3–4: 214 – 222. ISSN 0040-1951. doi: 10.1016/j.tecto.2009. 09.001.

URL: http://dx.doi.org/10.1016/j.tecto.2009.09.001.

- Wieser, A., Brunner, F. K. 2000. An extended weight model for GPS phase observations. Earth Planets Space 52, 10: 777-782. URL: http://www.terrapub.co.jp/journals/EPS/pdf/5210/52100777.pdf.
- Witchayangkoon, B. 2000. Elements of GPS Precise Point Positioning. Doktorska disertacija. Orono, Maine, ZDA, Univerza Maine (samozaložba: B. Witchayangkoon): 265 str.
- Wonnacott, R. 2005. ARFER Background and Progress towards a Unified Reference Frame for Africa. V: FIG Working Week / GSDI-8 2005, Kairo, Egipt, 16–21 April 2005.
- Wonnacott, R. 2008. The African Reference Frame Project AFREF & South Africa's Trignet System. V: International Committee on GNSS, Pasadena, CA, ZDA, 9 December 2008.
- Xu, G. 2007. GPS: Theory, Algorithms and Applications. Berlin, Heidelberg, New York, Springer Verlag: 340 str.
- Yuan, X., Fu, J., Sun, H., Toth, C. 2009. The application of GPS precise point positioning technology in aerial triangulation. ISPRS Journal of Photogrammetry and Remote Sensing 64, 6: 541-550. ISSN 0924-2716. doi: http://dx.doi.org/10.1016/j.isprsjprs.2009.03.006. URL: http://www.sciencedirect.com/science/article/pii/S0924271609000471.
- Zhalilo, A. A. 2003. Carrier-Phase Cycle-Slip detection and repair of Dual-Frequency GPS data-New Technique using Correlation Filtering Principle. V: Proceedings of the 10th Saint

Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, Rusija, 26-28 Maj 2003: str. 273-276. URL: http://old.mao.kiev.ua/EOP/articles/kharkov_centre/zhalilo/zhalilo_17. pdf.

- Zuliani, D., Battaglia, M., Murray, M., Michelini, A., Burgmann, R., Marson, I. 2002. FReDNet: a Continuous GPS Geodetic Network Monitoring Crustal Deformation in NE Italy. AGU Fall Meeting Abstracts str. A958.
- Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., Webb, F. H. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth 102, B3: 5005-5017. ISSN 2156-2202. doi: 10.1029/ 96JB03860.

URL: http://dx.doi.org/10.1029/96JB03860.

A Seznam geodetskih točk GNSS v obdelavi

Točke omrežja IGS:

Točka	$\varphi_0[^o]$	$\lambda_0[^o]$	$h_0[m]$	Status
BOR1	52,27695	17,07345	124,35	Referenčna točka
CAGL	39,13591	8,97275	238,38	Referenčna točka
GRAS	43,75473	6,92057	1319,32	Referenčna točka
GRAZ	47,06712	15,49348	538,29	Referenčna točka
HFLK	47,31290	11,38609	2384,14	
JOZE	52,09727	21,03153	141,42	Referenčna točka
KOSG	52,17842	5,80964	96,84	Referenčna točka
MATE	40,64913	16,70445	535,67	Referenčna točka
MEDI	44,51995	11,64681	50,03	
METS	60,21747	24,39532	94,58	Referenčna točka
PADO	45,41115	11,89606	64,70	
PENC	47,78960	19,28152	291,72	Referenčna točka
POTS	52,37929	13,06609	144,40	
SOFI	42,55609	23,39473	1119,54	Referenčna točka
UPAD	45,40671	11,87793	84,04	
VILL	40,44359	-3,95197	647,36	Referenčna točka
WTZR	49,14419	12,87890	666,02	Referenčna točka
ZIMM	46,87709	7,46527	956,33	Referenčna točka

Točke omrežja EPN:

Točka	$\varphi_0[^o]$	$\lambda_0[^o]$	$h_0[m]$
GARI	44,67690	12,24943	47,75
DUBR	42,64998	18,11043	454,29
OSJE	45,56076	18,68048	153,89
SBG2	47,80342	13,11042	1323,41
SRJV	43,86785	18,41389	645,78

Točke omrežja SIGNAL:

Točka	$\varphi_0[^o]$	$\lambda_0[^o]$	$h_0[m]$
BODO	46,74075	16,09016	340,23
BOVE	46,33262	13,54209	485,85
BREZ	45,90429	15,59251	222,45
CELJ	46,24178	15,24159	295,14
CRNO	45,57863	15,19330	236,39
GSR1	46,04813	14,54371	351,66
ILIB	45,56715	14,24829	494,62
KOPE	45,54810	13,72455	52,70
MARI	46,56219	15,64872	342,94
NOVG	45,89634	13,62470	110,13
PTUJ	46,41650	15,88110	283,98
RADO	46,34378	14,17155	554,31
SLOG	46,51177	15,08002	471,88
TREB	45,90732	15,00814	331,71
VELP	46,57239	16,34566	218,93

Točke omrežja FReDNet:

Točka	$\varphi_0[^o]$	$\lambda_0[^o]$	$h_0[m]$
ACOM	46,54793	13,51489	1774,67
AFAL	46,52714	12,17451	2284,08
CANV	46,00829	12,43502	965,92
CODR	45,95853	12,97909	91,87
FUSE	46,41415	13,00114	581,91
JOAN	46,18396	13,41606	1190,45
MDEA	45,92446	13,43563	165,70
MPRA	46,24075	12,98768	808,57
NOVE	45,66843	12,58841	47,88
PAZO	45,80572	13,05255	50,08
TRIE	45,70975	13,76352	323,41
UDI1	46,03747	13,25301	149,29
UDIN	46,03715	13,25301	146,03
ZOUF	46,55722	12,97355	1946,50

$\lambda_0[^o]$ Točka $\varphi_0[^o]$ $h_0[m]$ 46,58968 14,79391 BLE2 537,87 46,58968 14,79391 537,88 BLEI DLBG 46,81351 15,21315 430,54 FLDB 46,95309 15,88252 348,26 46,60686 14,31934 500,30 KLA2 KLAG 46,60686 14,31934 500,31 46,63074 13,89280 583,07 LAN2 LANK 46,63074 13,89280 583,06

Točke omrežja APOS:

Ostale stalno delujoče postaje:

Točka	$\varphi_0[^o]$	$\lambda_0[^o]$	$h_0[m]$	Omrežje
KOPR	45,54916	13,72993	72,47	
ZAGR	45,75876	15,86610	174,45	CROPOS
ZALA	46,84204	16,84180	213,99	GNSSnet.hu

Točke pasivnega omrežja - geodinamične točke območja Slovenije:

Točka	$\varphi_0[^o]$	$\lambda_0[^o]$	$h_0[m]$
011A	46,36310	15,08129	539,03
012A	46,39844	15,10430	699,48
2S3A	46,37982	15,01144	711,81
BASO	45,64289	13,87502	446,22
BIZE	46,03905	15,68973	386,79
BJEL	45,27356	14,96117	1580,21
BLEG	46,16482	14,11351	1610,84
BORS	45,88454	15,55601	195,92
BOZI	46,27366	13,48511	1444,66
BRSK	45,57858	15,57023	268,96
BUKO	46,43442	15,61234	475,54
CAOP	45,79124	15,89491	192,50
CRNE	45,82753	15,45615	437,55

DAVC	46,18128	14,04901	906,27
DMIH	45,76110	18,16168	142,30
DOBE	46,13902	14,53131	545,78
DOLE	45,70208	15,25067	499,45
DONA	46,26271	15,74233	937,23
DRAG	45,62745	14,65826	795,22
FGG3	46,04581	14,49539	367,51
GRAD	45,15395	18,71168	146,09
GRMP	46,91732	13,37345	2380,37
GRMT	46,91756	13,37316	2378,95
ILIV	42,49886	18,38606	601,99
JAVO	46,06773	15,42836	1071,20
JEK1	45,93412	15,51555	200,59
JELO	45,50039	14,01092	710,32
JELS	45,49717	14,27343	546,20
JERU	46,48360	16,19585	348,84
KALN	46,13128	16,45466	688,80
KANI	46,35863	13,43780	2621,20
KMNK	46,22404	14,61619	623,71
KORA	46,06494	13,56060	858,84
KOSU	46,43725	14,34395	2139,55
KOVK	45,88806	13,96966	1005,15
KRGO	46,49323	13,72017	898,31
KRIM	45,93239	14,47223	1112,41
KRMJ	45,82337	13,59243	282,04
KRNK	46,24358	13,66514	1061,09
KUCE	45,99195	14,73886	800,32
LEND	46,56588	16,47690	385,15
LIBN	45,95150	15,52153	331,94
LOKA	46,69150	15,80689	449,17
LUCE	46,35030	14,69950	1552,62
MALJ	45,50378	13,64339	323,10
MANG	46,43920	13,65457	2722,02
MONT	45,25064	13,72711	320,32
MRVS	45,87315	15,58281	269,78
MRZL	46,18879	15,10972	1164,60
NOBR	45,59331	17,10055	230,23
ORLJ	46,07666	15,00053	942,80
PARA	46,09263	14,22331	1034,26
PLAN	45,95282	15,37755	402,62
PONK	46,30704	15,14590	463,37
PSTJ	45,77685	14,22855	783,05

PUGS	44,87692	13,84867	68,28
PULA	44,86549	13,84616	80,57
RADT	46,34088	14,18737	551,02
RIBN	45,70572	14,74703	546,42
ROVI	45,08402	13,62935	53,56
SEGO	46,11684	13,87352	715,17
SLIV	45,78885	14,40697	1134,77
SMKP	45,54818	13,72410	45,97
SNEZ	45,58848	14,44760	1844,95
SNZZ	45,58855	14,44761	1842,39
SOCE	45,58906	13,86665	465,57
SVIV	42,87378	17,45744	511,83
SVMO	45,98887	15,47631	434,06
UCKA	45,28494	14,20196	1446,39
URGO	46,48394	14,96431	1732,97
VEKO	46,50668	15,19806	1590,28
VIDM	45,96209	15,48780	205,76
VIVO	46,25742	14,81628	1556,56
ZGLA	45,91123	15,12986	598,61
ZULA	44,96938	15,06220	533,66

B Količina opazovanj GNSS po posameznih točkah

Količina opazovanj GNSS točk omrežja EPN:

									_								_		_	_					_										_					_			_	_	
SRJV	٠	• •	• •	·	•	• •	• •	•	٠	·	• •	•	٠	•		·	٠	·	• •	• •	-				•	••		-	Þ	• •	•	٠	• •						_					-	·
SBG2	•	• •	• •	·	•		• •	•	٠	·	• •	•	٠	•	• •	·	٠	·	• •	• •	٠	·	·	• •	• •	·	•	• •	•	• •	•	٠	• •	-						_				-	•
OSJE	•	•	• •	·	•	• •	• •	•	·	·	• •	•	•	•		•	·	·	• •	• •	·	·	•	• •	• •	·	•	-	•	• •	•	•							-	• •	• •	·	• •	•	•
GARI	•	• •	• •	·	•		• •	•	٠	·	• •	•	٠	•	• •	·	٠	·	• •	• •	٠	·	·		• •	·	•	• •	٠	• •	•	٠	• •	• •	• •	-								•	•
DUBR	•	•	• •	•	•		• •	•	•	•		•	·	•		•	•	•	• •	• •	٠	•	·	• •	• •	•	•		•	• •	•	•	-		-	_			-	• •		٠		•	•
19	94			19	99	6	-		19	99	8	1	-	20	00)		- 2	20	02	,		2	20	04			2	00	6	1	1	20	08		2	01	0	1	2	201	2	-	,	20

Količina opazovanj GNSS točk omrežja SIGNAL:

Količina opazovanj GNSS točk omrežja FReDNet:

Količina opazovanj GNSS točk omrežja APOS:

Količina opazovanj GNSS točk ostalih omrežij:

	_	_				_				_						-		_		_	_						_			_						_								
KOPR	• •	•••	• •	• •	• •	·	•••	٠	• •	• •	·	• •	•	•	-		••	•	•																		• •	·	•	• •	•	·	٠	
ZALA	• •	• •	• •	•	• •	·	• •	·	• •	• •	·	• •	·	•	 ·	•	• •	•	·	• •	•	•	·	• •	·	·		·	•	•	-	•	•	·	•		•	·	•		•	·	•	ł
ZAGR	• •			•	• •	•		•	• •	• •	·	• •	•	·		•	• •	•	·	• •	•	•	•	• =	••	•		•	•	•	••	•	•	•	•		•	•	•		•	•	•	
19	94		1	990	5	'	1	99	8	,	2	20	00		20)0:	2		2	20	04		'	2	00	6			20	08	;	'	2	01	0			20	012	2	'		20	14

Količina opazovanj GNSS točk pasivnega omrežja:

ZULA										
UCKA	.				.					
SVIV	••••••									
ROVI		••••								
PULA	••••••			• • • • • • •		•••••				· ·
PUGS					• ••• • • • •	•••••				· · •
NOBR	••••••			• • • • • •		• • • • • •			• • • • • •	•••
MONT	• • • • • • • • • •		• • • • •	•••••	• • • • • • •	•••••	• • • • •		• • • • • •	•••
KALN	• • • • • • • • •	• • • • • •	• • • • •	•••••	• • • • • • •	• • • • • •	• • • • •	• • • • • • •	• • • • • •	•••
ILIV	••••••	• • • • • •		• • • • • •		• • • • • •	• • • • •	• • • • • • •	• • • • • • •	•••
GRMT	•••••	•••••			• • • • • • •	•••••	•••••			· ·
GRMP	• • • • • • • • •	• • • • • •								11
DMIH										
BRSK		• • • • • •	.							
BJEL										
ZGLA	•			• • • • • •		•••••				
VIVO	• • • • • • • • •				• • • • • • •					· · •
VIDM			• • • • •	• • • • • •		• • • • • •	• • • • •		• • • • • •	•••
VEKO	••••••		••••	••••		•••••			• • • • • •	•••
URGO	• • • • • • • •	• • • • • •	•••••	••••	• •• • • • •	• • • • • •	• • • • •	• • • • • • •	• • • • • •	•••
SVMO		• • • • • •	• • • • •	••••		•••••	••••		• • • • • •	· · •
SOCE		•••••			· · • • · · · ·					
SNZZ				• • • • • • • •	· •••• • • • • •	••••	•••••			
SMKP		•••••			.	•••••				. [
SLIV										
SEGO										
RIBN										
RADT	· · · · • · · · ·					••••••			• • • • • •	
PSTJ	• • • • • • • • •	· · · • •••		• • • • • •		••••				
PONK	•••••	• • • • • •	••••	•••••	• •• • • • •	• • • • • •	• • • • •	• • • • • • •	• • • • • •	•••
PLAN	• • • • • • • •	• • • • • •	• • • • •	• • • • • •		•••••	••••	• • • • • • •	• • • • • •	•••
PARA	· · · · • • · · · ·	•••••		•••••			• • • • •	•••••	• • • • • •	•••
ORLJ	• • • • • • • • • •					•••••				•••
MRZL	• • • •			• • • • • •	• • • • • • •	•••••	•••••	• ••• • • • •	• • • • • •	
MANG										111
MALL	••••••	•••••								
TVIT ILLS										
LUCE					🖕					
LUCE	· · · · • • · · •		•••••	• • • • • • • •	· · • • · · · · · ·	•••••	· · · · · ·	· · · · · · · ·	•••••	
LUCE LOKA	· · · · • • · · • • · ·	· · · · · · · · · · · · · · · · · · ·	· • · · · · · · · · · · •	• • • • • • • •	· · • • · · · · · · ·	•••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	••••••	· · · ·
LUCE LOKA LIBN	•••••••••	· · · · · · · · · · · · · · · · · · ·	•••••	• • • • • • • •	· · • • · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	••••••	· · · · · · · ·
LUCE LOKA LIBN LEND KUCE	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	••••	• • • • • • • • •	· · • • · · · · · · · · · · · · · · · ·	•••••	• • • • • •	· · · · · · · · ·	•••••	· · · · · · · · · · ·
LUCE LOKA LIBN LEND KUCE KRNK		· · · · · · · · · · · · · · · · · · ·	•••••	· · · · · · · · · · · · · · · · · · ·	· · • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • •	· · · · · · · · · · · · · · ·
LUCE LOKA LIBN LEND KUCE KRNK KRNJ		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	• • • • • •	· · · · · · · · · · · · · · · · · · ·	•••••	· · · · · · · · · · · · · · ·
LUCE LOKA LIBN LEND KUCE KRNK KRNK KRMJ		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		• • • • • •	· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
LUCE LOKA LIBN LEND KUCE KRNK KRMJ KRMJ KRIM							• • • • • •	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
LUCE LOKA LIBN LEND KUCE KRNK KRMJ KRM KRGO KOVK							• • • • • •			
LUCE LOKA LIBN LEND KUCE KRNK KRMJ KRMJ KRGO KOVK KOSU										 . .<
LUCE LOKA LIBN KUCE KRNK KRMJ KRGO KOVK KOSU KORA										 . .<
LUCE LOKA LIBN LEND KUCE KRNK KRMJ KRGO KOVK KOSU KOSU KORA KMNK KANI										 · · · · ·
LUCE LOKA LIBN LEND KUCE KRNK KRMM KRGO KOVK KOVK KOSU KORA KMNK KANI JERU										 · · · · ·
LUCE- LOKA LIBN LEND KUCE- KRNK KRMJ KRGO KOVK KORA KOVK KORA KORA KANI JERU JELS										 · · · · ·
LUCE- LOKA LIBN LEND KUCE- KRNK KRMJ KRGO KOVK KORA KOVK KORA KANI JERU JELS JELO										· · · · · · · · · · · · · · · · · · ·
LUCE LOKA LIBN LEND KUCE KRNK KRMJ KRGO KOVK KOVK KOVK KOVK KOVK KOVK KOVA JELS JELO JELS										· · · · · · · · · · · · · · · · · · ·
LUCE- LOKA LIBN LEND KUCE KRNK KRMM KRGO KOVK KOSU KORA KOVK KOSU KORA KOVK KOSU KORA KONK KOSU KORA LELS JELO JEKI JAVO										
LUCE- LOKA LIBN LEND KUCE- KRIMJ KRIM KRGO KOVK KOVK KOVK KOVK KOVK KOVK KOVK KO										
LUCE- LOKA LIBN LEND KUCE- KRNK KRMJ KRGO KOVK KOVA KOVA KOVA KOVA KOVA KOVA KOV										
LUCE- LOKA LIBN LEND KUCE- KRNK KRMJ KRGO KOVK KOVK KOVK KOVK KOVK KOVK KOVK KO										
LUCE- LOKA LIBN KUCE- KRMS KRMS KRMS KOSU KORA KOSA KONA JELS JELO JELS JELO JELS JELO JELS JELO JORA DONA DODE DODE										
LUCE- LOKA LIBN KEND KUCE- KRNK KRMN KRGO KOVK KORA KORA KORA KORA KORA KORA KORA KOR										
LUCE- LOKA LIBN KLEND KUCE- KRNM KRIM KRGO KOVK KORA KORA KORA KORA KORA KORA KORA KOR										
LUCE- LOKA LIBN LEND KUCE- KRNK KRMM KRGO KOVK KORA KOSA KOSA KOSA KOSA KOSA KOSA KANI JELO JEKI JAVO FGG3 DRAG DONA DOLE- DONA CRNE CAOP										
LUCE- LOKA LIBN LEND KUCE- KRNK KRMM KRGO KOVK KOVK KOVK KOVK KOVK KOVK KOVK KO										
LUCE- LOKA LIBN LEND KUCE- KRIM KRIM KRGO KOVK KOVK KOVK KOVK KOVK KOVK KOVK KO										
LUCE- LOKA LIBN LEND KUCE- KRNK KRMK KRMK KROV KORA KORA KORA KORA KORA KORA KORA KORA										
LUCE- LOKA LIBN KICE- KRNG KRMK KRGO KOVK KORA KORA KORA KORA KORA KORA KORA KOR										
LUCE- LOKA LIBN KLEND KUCE- KRNK KRMM KRGO KOVK KORA KORA KORA KORA KORA KORA KORA KOR										
LUCE- LOKA LIBN LEND KUCE- KRNK KRMM KRGO KOVK KORA KOSU KORA KANI JELO JELO JEKI JAVO FGG3 DCA FGG3 DCA CRNE CAOP BUZE BORS BLEG BIZE- BASO 2S3A										
LUCE- LOKA LIBN LEND KUCE- KRNK KRMM KRGO KOVK KOVK KOVK KOVK KOVK KOVK KOVK KO										
LUCE- LOKA LIBN LEND KUCE- KRNK KRMM KRGO KOVK KOVK KOVK KOVK KOVK KOVK KOVK KO										

Časovne vrste dnevnih rešitev metode PPP stalno С delujočih postaj

Casovne vrste tock of	mrezja 165:	
BOR1	100 CAGL	GRAS -
75 50 +90 [mm]	1	75 50 Atl50 (mm)
25		
	$ \begin{array}{c} 0 \\ \hline \Delta E \\ -25 \end{array} $	0 _25
-50 ΔN-50 [mm]	-50	-50 [ΔN-50 [mm]]
-75 2000 2004 2008 2012	2 -75 2000 2004 2008 2012	-75 2000 2004 2008 2012
100 GRAZ	- ¹⁰⁰ HFLK	JOZE
75 50 AU+50 mm	75 50 <u>AU-50[mm]</u>	75 50 <u>LU+50 [mm]</u>
-50 AN-50 [mm]	$= -35$ $= -50$ $= \frac{[\Delta N - 50 \text{ [mm]}]}{[\Delta N - 50 \text{ [mm]}]}$	3 -50 <u>(ΔN-50 [mm]</u>
2000 2004 2008 2012 100 KOSC	2 2000 2004 2008 2012	2000 2004 2008 2012 100 DUTEN
75 · · · · · · · · · · · · · · · · · · ·	- MATE 75	75 MEDI
		50 25 0
	$\begin{bmatrix} \Delta E \text{ [mm]} \\ -25 \end{bmatrix}$	ΔE [mm] -25
-50 ΔΝ-50 [mm]]	-50 [N-50 [mm]] -75	-50 [<u>N=50 (mm)</u> -75
2000 2004 2008 2012 100 METS	2 2000 2004 2008 2012	2000 2004 2008 2012 100 PENC
10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 1 100 1 100 1 1 100 1 10	75 50 <u>6</u> <u>0</u> -50 (mm) 25
		0 ΔΕ [mm] -25
-50 ΔΝ-50 [mm] -75	-50 <u>AN-50 [mm]</u>	$\begin{array}{c} -50 \\ \underline{\Delta N-50 \text{ (mm)}} \\ -75 \end{array}$
2000 2004 2008 2012 100 POTS	2 2000 2004 2008 2012	2000 2004 2008 2012 100 TIPAD
75 50 <u>(AU+50 mm]</u> 25		75 50 <u>AU-50 (mm)</u> 25
		0 <u>AE Imm</u> -25
-50	$ = -50 \frac{1}{\Delta N - 50 \text{ [mm]}} $	
-75 00 2004 2008 2012	2 -75 2000 2004 2008 2012	-75 2000 2004 2008 2012
VILL	WTZR	ZIMM
75 50 <u>AU+50 [mm]</u> 25	75 50 25 25	75 50 <u>AU-50 (mm)</u> 25
-50 ΔN-50 [mm]	-5050	-50 ΔN-50 [mm]
-75 1 2000 2004 2008 2012	2 -75 2000 2004 2008 2012	-75 ** 33 2000 2004 2008 2012

Časovne vrste točk omrežia IGS.

Časovne vrste točk omrežja FReDNet:

D Ponovljivost koordinat točk dobljenih z metodo PPP

Točka	σ_N	σ_E	σ_U
BOR1	5,92	9,42	11,52
CAGL	6,22	6,61	12,51
GRAS	5,64	6,76	11,36
GRAZ	6,03	6,26	10,94
HFLK	6,99	6,38	12,30
JOZE	5,78	6,47	12,18
KOSG	6,96	6,70	11,36
MATE	6,27	6,47	11,14
MEDI	6,22	7,39	11,48
METS	6,68	6,78	15,74
PADO	6,27	5,99	10,71
PENC	5,70	6,09	11,67
POTS	5,93	6,50	12,37
SOFI	6,22	6,78	12,48
UPAD	8,10	7,94	12,82
VILL	5,17	7,00	11,79
WTZR	5,67	6,07	10,31
ZIMM	5,99	5,88	10,46

Ponovljivost točk omrežja IGS (v mm):

Ponovljivost točk omrežja EPN (v mm):

Točka	σ_N	σ_E	σ_U
DUBR	6,24	7,36	9,90
GARI	3,33	4,43	9,96
OSJE	3,91	6,55	10,09
SBG2	3,62	3,95	8,65
SRJV	5,18	5,73	10,95

Ponovljivost točk omrežja SIGNAL (v mm):

Točka	σ_N	σ_E	σ_U
BODO	4,79	5,31	8,75
BOVE	6,08	5,88	11,87
BREZ	3,66	4,99	8,25
CELJ	4,42	5,96	10,14
CRNO	4,97	5,85	12,32
GSR1	4,36	5,92	11,55

ILIB	3,87	7,15	9,60
KOPE	4,08	5,84	9,11
MARI	5,32	6,19	12,22
NOVG	4,61	6,13	9,98
PTUJ	4,16	5,49	11,08
RADO	4,88	6,21	9,42
SLOG	3,86	5,73	9,56
TREB	3,72	5,68	9,35
VELP	3,88	5,93	9,91

Ponovljivost točk omrežja FReDNet (v mm):

Točka	σ_N	σ_E	σ_U
ACOM	4,09	5,23	8,66
AFAL	3,98	6,57	9,83
CANV	4,59	6,67	10,77
CODR	3,89	5,33	8,06
FUSE	3,15	4,77	8,03
JOAN	3,35	5,13	7,72
MDEA	4,47	6,30	10,31
MPRA	4,31	5,44	9,69
NOVE	3,32	4,19	8,58
PAZO	3,33	4,86	8,49
TRIE	4,71	5,77	9,03
UDI1	3,89	5,78	10,50
UDIN	6,75	6,85	13,25
ZOUF	4,67	6,33	9,49

Ponovljivost točk omrežja APOS (v mm):

Točka	σ_N	σ_E	σ_U
BLE2	3,63	4,50	10,38
BLEI	4,89	6,84	12,44
DLBG	5,02	5,72	11,05
FLDB	3,55	5,41	9,53
KLA2	4,24	4,62	9,75
KLAG	4,91	6,33	12,67
LAN2	3,82	4,65	9,04
LANK	4,92	5,98	11,86

Ponovljivost točk ostalih omrežij (v mm):

Točka σ_N σ_E σ_U

KOPR	6,17	6,81	21,28
ZAGR	2,64	2,81	5,34
ZALA	2,23	4,95	7,75

E Časovne vrste dnevnih rešitev pridobljene s programskim paketom BSW

C	asovne vrste tock omre	ez	a IGS:		
100	BORI	100	CAGL	100	GRAS
75		75		75	
		-	and the second		A State of the second second states
50	ΔU+50 [mm]	50	ΔU+50 [mm]	50	ΔU+50 [mm]
25		25		25	······································
0	1. S. S. S. S. M. S. Market Market and Market Strategy and	0			and the second
	ΔE [mm]		$\Delta E [mm]$		ΔE [mm]
-25		-25		-25	
-50		-50		-50	
	<u> </u>		<u>ΔN–50 [mm]</u>		$\Delta N = 50 \text{ [mm]}$
-75	1996 2000 2004 2008 2012	-75	1996 2000 2004 2008 2012	-75	1996 2000 2004 2008 2012
100	GRAZ	100	HFLK .	100	JOZE
75		75		75	and the second
50	C. U. J. L. T. L. Die Statistic franziscus (* 1986).	50		- 50	
	ΔU+50 [mm]		ΔU+50 [mm]		ΔU+50 [mm]
25		25		25	
0	S. Lever - and see any second s	0	the second s	0	A second s
25	AE [mm]	-	ΔE [mm]		<u>AE [mm]</u>
-2		-25	the second second second	25	a a second a
-50	AN-50 [mm]	-50	AN-50 [mm]	-50	AN-50 [mm]
-75		-75		-75	ler so fund
100	1996 2000 2004 2008 2012	100	1996 2000 2004 2008 2012	100	1996 2000 2004 2008 2012
	KUSG	-	MATH	t i	MEDI
75	and a stranger of the second	75	1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2	75	ter Extension of the state of the state of the
50		50		50	
	<u>AU+50 [mm]</u>		ΔU+50 [mm]		ΔU+50 [mm]
-23	1	23			
0	AE Immil	0	AF Immil	0	IAE Imml
-25		-25		-25	<u>er [mm]</u>
-	A COLOR AND A COLOR AND A COLOR AND A		a a construction and a construction of the second		the state of the second and the second
-50	ΔN-50 [mm]	-50	ΔN -50 [mm]	-50	ΔN-50 [mm]
75		75			
-75	1000	-15	1005 2000 2004 2000 2012	-75	
100	1996 2000 2004 2008 2012	100	1996 2000 2004 2008 2012	100	1996 2000 2004 2008 2012
100	1996 2000 2004 2008 2012 METS	100	1996 2000 2004 2008 2012 PADO	100	1996 2000 2004 2008 2012 PENC
100 75	1996 2000 2004 2008 2012 METS	-73 100 75	PADO	-/5 100 75	1996 2000 2004 2008 2012 PENC
-73 100 75 50	1996 2000 2004 2008 2012 METS	-73 100 75 50	1996 2000 2004 2008 2012 PADO	-75 100 75 50	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25	1996 2000 2004 2008 2012 METS LU-50 (mm)	-73 100 75 50 25	1996 2000 2004 2008 2012 PADO	-75 100 75 50	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25	1996 2000 2004 2008 2012 METS <u>AUI-50 (mm)</u>	-73 100 75 50 25	1996 2000 2004 2008 2012 PADO	-75 100 75 50 25	1996 2000 2004 2008 2012 PENC <u>AU50 (mm</u>)
73 100 75 50 25 0	1996 2000 2004 2008 2012 METS	-73 100 75 50 25	1996 2000 2004 2008 2012 PADO	-/5 100 75 50 25 0	1996 2000 2004 2008 2012 PENC <u>AU+50 [mm]</u>
-73 100 75 50 25 0 -25	1996 2000 2004 2008 2012 METS	-73 100 75 50 25 0 -25	1996 2000 2004 2008 2012 PADO	-75 100 75 50 25 0 -25	1996 2000 2004 2008 2012 PENC 4
-73 100 75 50 25 0 -25	1996 2000 2004 2008 2012 METS <u>LU-50 (nm)</u> <u>AE (nm)</u>	-73 100 75 50 25 0 -25	1996 2000 2004 2008 2012 PADO	-75 100 75 50 25 0 -25	1996 2000 2004 2008 2012 PENC <u>AU+50 [mm]</u>
-73 100 75 50 25 0 -25	1996 2000 2004 2008 2012 METS <u>ΔU-50 (mm)</u> <u>ΔE [mm]</u> <u>ΔN-50 (mm)</u>	-73 100 75 50 25 0 -25 -50	1996 2000 2004 2008 2012 PADO	-75 100 75 50 25 0 -25 -50	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 -50 -75	1996 2000 2004 2008 2012 METS	-73 100 75 50 25 0 -25 -50 -75	1996 2000 2004 2008 2012 PADO	-75 100 75 50 25 0 -25 -50 -75	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 -50 -50	1996 2000 2004 2008 2012 METS	-73 100 75 50 25 0 -25 -50 -75	1996 2000 2004 2008 2012 PADO	-75 100 75 50 25 0 -25 -50 -50 -75 100	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 -75 100 75	1996 2000 2004 2008 2012 METS	-73 100 75 50 25 -50 -75 100 75	1996 2000 2004 2008 2012 PADO	-75 100 75 50 25 -25 -25 -50 -75 100 75	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 -50 -75 100 75	1996 2000 2004 2008 2012 METS	-73 100 75 50 25 0 -25 -0 -75 100 75	1996 2000 2004 2008 2012 PADO	-75 100 50 25 -25 -50 -75 100 75	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 -50 -75 100 75 50	1996 2000 2004 2008 2012 METS	-73 100 75 50 25 0 25 -50 -75 100 75 50	1996 2000 2004 2008 2012 PADO	-/5 100 75 50 -/5 25 -50 -25 -50	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 -25 -50 -75 100 75 50 25	1996 2000 2004 2008 2012 METS	-73 100 75 50 25 -50 -75 100 75 50 25	1996 2000 2004 2008 2012 PADO	-/s 100 50 50 25 -50 -50 -50 -75 50 -50 -50 -50 -50 -50 -50 -50 -50 -50	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 -25 -50 -75 100 75 50 25 0 25 0 -25 -25 0 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 METS	-73 100 75 50 -25 -50 -75 100 75 50 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PADO	-/s 100 75 50 0 25 -50 -50 -50 -50 -50 -50 -50 -50 -50 -5	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 -50 -75 100 75 50 25 0 25 0	1996 2000 2004 2008 2012 METS	-73 100 75 50 -25 -50 -75 100 75 50 25 -50 -25 0 -25 0 -25 0 -25 -50 -05 -05 -05 -05 -05 -05 -0	1996 2000 2004 2008 2012 PADO	-/5 100 75 25 -25 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PENC
-73 100 75 50 -25 -50 -50 -75 50 25 0 -25 0 -25 0 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 METS	-73 100 75 50 -25 -50 -75 100 -75 50 25 -50 -75 0 -25 -50 -25 -25 -50 -25 -25 -50 -25 -25 -50 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PADO	-/5 100 75 50 25 -25 -25 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 -50 -50 75 50 -50 -50 -50 -50 -50 -50 -50	1996 2000 2004 2008 2012 METS	-73 100 75 50 -25 -0 -25 -50 -75 100 -75 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -50 -50 -50 -50 -50 -50 -5	1996 2000 2004 2008 2012 PADO	-/s 100 75 50 0 -50 -50 -50 0 -50 0 -50 -5	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 50 -75 100 75 50 25 0 -25 0 -25 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 METS	-73 100 75 50 -25 -0 -75 50 -75 50 -75 -50 -25 -0 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -75 -50 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 PADO	-/s 100 75 50 0 -25 -50 0 -75 50 -50 0 -25 -50 -75 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 100 75 50 25 0 -75 0 -25 0 -25 -50 -50 -75 100 -75 -50 -75 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 METS	-73 100 75 25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PADO	-75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 0 -25 -50 75 100 75 0 -25 -50 -25 -50 -75 100 -50 -75 100 -25 -50 -75 100 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 METS	-73 100 75 25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PADO	-75 100 75 50 -25 -50 -25 -50 -25 -50 -75 50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 PENC 1
73 75 50 25 -25 -25 -25 -75 0 -25 -75 0 -25 -75 0 -25 -75	1996 2000 2004 2008 2012 METS	-73 100 75 50 0 -25 -25 -0 -75 100 -75 -0 -75 	1996 2000 2004 2008 2012 PADO	-/s 1000 50 50 50 50 50 50 -50 -50 -	1996 2000 2004 2008 2012 PENC 1
-73 100 75 50 25 -25	1996 2000 2004 2008 2012 METS	-73 100 75 50 0 -25 -25 -0 -75 100 -75 50 0 -25 -50 -75 100 -75 50 0 -75 50 -75 50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 PADO	-/5 100 50 50 50 50 50 50 -50 -50 -5	1996 2000 2004 2008 2012 PENC
-73 100 75 50 -25 -50 -75 100 75 0 -25 -50 -75 100 75 50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -50 -75 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 METS	-73 100 75 50 25 50 -25 -50 -75 100 -25 -75 100 -75 50 -75 50 -75 50 -75 50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 PADO	-/s 1000 50 -25 -50 -50 -75 -75 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 -25 -50 -75 100 75 -25 -50 -75 100 75 25 25 -25 -50 -75 -50 -25 -50 -75 -50 -50 -50 -50 -50 -50 -50 -5	1996 2000 2004 2008 2012 METS	-73 100 75 50 25 50 -25 100 -50 -50 -75 100 -25 -50 -75 100 -25 -50 -75 50 -25 -75 -50 -25 -75 -50 -25 -50 -25 -75 -50 -25 -50 -25 -50 -25 -25 -50 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PADO	-75 1000 75 50 -25 -75 -50 -75	1996 2000 2004 2008 2012 PENC
-73 100 75 50 25 -50 -50 -50 -50 -50 -50 -50 -5	1996 2000 2004 2008 2012 METS	-73 100 75 50 -25 -50 -75 100 -25 -50 -75 100 -25 -50 -75 -50 -75 -50 -75 -50 -75 -50 -25 -50 -75 -50 -25 -50 -75 -50 -25 -50 -75 -75 -75 -75 -75 -75 -75 -75	1996 2000 2004 2008 2012 PADO	-/s 1000 25 50 25 50 0 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PENC 1
100	1996 2000 2004 2008 2012 METS		1996 2000 2004 2008 2012 PADO	-/5 100 225 50 225 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PENC
1/3 1/3 1/10 1/3 50 50 50 25 0 1/3 0 25 0 1/3 50 25 0 1/3 50 25 0 1/3 50 25 0 1/3 50 25 0 1/3 50 50 50 25 0 1/3 0 1/3 50 25 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0 1/3 0	1996 2000 2004 2008 2012 METS	-73 100 -75 50 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PADO	-25 -75 -25	1996 2000 2004 2008 2012 PENC
100 50 50 50 50 50 50 50 50 50	1996 2000 2004 2008 2012 METS	-/3 100 -75 50 -25 -25 -25 -25 -25 -25 -25 -25	1996 2000 2004 2008 2012 PADO	-75 75 50 25 -25 -75 -75 50 -75 50 -75 50 -75 50 -75 50 -75 50 -75 -7	1996 2000 2004 2008 2012 PENC

Časovne vrste točk omrežja IGS:

Časovne vrste točk omr	ežja FReDNet:	
75	75AFAL	75 CANV
50 <u>ΔU+50 [mm]</u> 25	50 ΔU+50 [mm] 25	50 <u>AU+50 [mm]</u> 25
0 ΔE [mm] 		0 <u>∆E [mm]</u> _25
-50 [ΔΝ-50 [mm]]	-50 [<u>MN-50 [mm]</u>	-50 [mm]
100 CODR 2000 2004 2008 2012	1096 2000 2004 2008 2012 100 FUSE	100 JOAN 2000 2004 2008 2012
75	75	75
25 ΔU+50 [mm] 25	25	ΔU+50 [mm]
0 ΔE [mm] -25	0 ΔE [mm] -25	Δ <u>E [mm]</u> -25
-50 ΔN-50 [mm]	-50 <u>AN-50 [mm]</u> -75	-50 [ΔΝ-50 [mm]] -75
1996 2000 2004 2008 2012 MDEA	100 MPRA	100 NOVE
75 50	75 50	75 50
ΔU+50 [mm] 25	25	25 25
0 ΔE [mm] -25	0 <u>AE [mm]</u> _25	0 <u>AE [mm]</u> _25
_50 ΔN-50 [mm]	_50 _ΔN-50 [mm]	50
100 PAZO 2000 2004 2008 2012	-13 1996 2000 2004 2008 2012 100 TRIE	100 UDII
75	75	75
50 <u>ΔU+50 [mm]</u> 25	⁵⁰ ΔU+50 [mm]	50 Δ <u>U+50 [mm]</u> 25
0 ΔΕ [mm]	0 ΔΕ [mm]	0 <u>AE [mm]</u>
-50 -50 (mm)	-50 [AN-50 [mm]]	
-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012 100 775 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012
75	75	
50 <u>ΔU+50 [mm]</u> 25	50 <u>ΔU+50 [mm]</u> 25	-
0 ΔE [mm] -25	0 <u>AE [mm]</u> _25	
_50 ΔN-50 [mm]	_50 ΔN-50 [mm]	
-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012	
Casovne vrste točk omr	ežja APOS:	
BLE2	75	75
50 ΔU+50 [mm] 25	50 <u>AU+50 [mm]</u>	50 <u>AU+50 [mm]</u>
0 <u>\[\Delta E [mm]]</u>	0 <u>AE [mm]</u>	α 0 ΔΕ [mm]
-25] -50 [AN-50 [rem]]	-25 -50	-25 -50
75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012
FLDB 75	75 KLA2	75 KLAG
50 ΔU+50 [mm] 25	50 <u>AU+50 [mm]</u> 25	50 <u>AU+50 [mm]</u> 25
0 ΔE [mm]	0 ΔΕ [mm]	0 <u>ΔΕ [mm]</u>
-25 -50 -50 [mm]	-25 -50 -50	-25 -50 [AN-50 [mm]]
-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012

100 LAN2	LANK	-
75	75	
50 	50 ΔU+50 [mm]	
25	25	
0 <u>∆E [mm]</u> −25		
-75 - 2000 - 2000 - 2000 - 2000	- <u>ΔN-50 [mm]</u> -75	
1996 2000 2004 2008 2012	1996 2000 2004 2008 2012	
Casovne vrste točk osta	lih omrežij:	
100 ZAGR	ZALA	KOPR
50	//>	75 50
25 - <u>AU+50 [mm]</u>	Δ <u>U+50 [mm]</u>	25 <u>AU+50 [mm]</u>
- 		0
-25		
-50 [AN-50 [mm]]	50 -ΔN-50 [mm]	
-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012
Čere e text	· · · · · ·	
Casovne vrste tock pasi	vnega omrezja:	
011A 75	012A 75	2S3A 75
50 AIL 50 (mm)		
25: · · · · · · · · · · · · · · · · · · ·	25:	
0 [AE [mm]]	0 φφφφ	
-25	-25	-25
-50	 ΔN-50 [mm]	
-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012 100 DIZE	-75 1996 2000 2004 2008 2012 100 DLFC
75 ····	75	75 ·····
50 	50 ΔU+50 [mm]	50 [AU+50 [mm]]
25	25:	25
0. - <u>AE [mm]</u>	0· 	ο ο <u>μ</u>
-25	-25	
-30 -ΔN-50 [mm] -75	-50 [mm] -75	-50 [<u>AN-50 [mm]</u> -75
1996 2000 2004 2008 2012 100 BORS	100 1996 2000 2004 2008 2012 100 BOZI	100 BUKO
75	75	75
50 - <u>AU+50 [mm]</u>	50 - ΔU+50 [mm]	50 - ΔU+50 [mm]
25]	25	25
0 - <u>∆E [mm]</u>	Δ <u>Ε [mm]</u>	ΔE [mm]
	-50	-50
_75	-ΔN-50 [mm] -75	- ΔN-50 [mm] -7575
100 CAOP	100 CRNE	100 DAVC
75	75.	75
50 <u>AU+50 [mm]</u>	ΔU+50 [mm]	50 ΔU+50 [mm]
ΔE [mm] -25	<u>∆E [mm]</u> _25	ΔE [mm] -25
-50	-50	
-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012
100 DOBE	DOLE	DONA
75	75	75
25 [<u>AU+50 [mm]</u> 25	25	25
	0	0 <u>1</u>
_25]	<u>[∆E [mm]]</u> _25]	
-50 AN-50 [mm]	-50 -50 ΔN-50 (mm)	-50
-75		

	DBAC	100 ECC2	
1	DRAG	FGG3	- JAVO
75		75	75
1	•		[] '
50	<u></u>	. <u>50 6</u>	50 <u></u>
-	ΔU+50 [mm]	ΔU+50 [mm]	ΔU+50 [mm]
25		25	25
1			
0	<u> 4</u>	0 	0 <u></u>
1	$\Delta E [mm]$	ΔE [mm]	$-\Delta E [mm]$
-25		-25	-25
-50	<u></u>	-50 -50	-50 -50
1	$\Delta N = 50 \text{ [mm]}$	ΔN-50 [mm]	$- \Delta N - 50 \text{ [mm]}$
-757		-75	-75
100	1996 2000 2004 2008 2012	1996 2000 2004 2008 2012	1996 2000 2004 2008 2012
	JEK1	JELO	JELS
75		75	75
50		50	50
	ΔU+50 [mm]	ΔU+50 [mm]	ΔU+50 [mm]
25		25	25
1			
0	<u></u>	0	0
-	ΔE [mm]	ΔE [mm]	$- \Delta E [mm]$
-25		-25	-25
-			
-50	AN 50 [mm]	-50	-50
_1	uniti oc-vici		
-757	1996 2000 2004 2008 2012	-/5 1996 2000 2004 2008 2012	-/5 1996 2000 2004 2008 2012
100 1		100 TKANI	
1	JEKU	- NANI	^{KMNK}
75		75	75
1			
50		50	50 50
1	ΔU+50 [mm]	ΔU+50 [mm]	Δ∪+50 [mm]
25		25	25
1		• • •	F 4 F
0	AE [mm]		
_ 1			
-25		-25	25
-50	AN-50 [mm]	-50 [mm]	-50 AN-50 [mm]
75		75	- 75 ⁻
-/5	1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012	1996 2000 2004 2008 2012
100	KORA	100 KOSU	
1	KOKA	KOSO	
75		75	75
		• • •	
50	AII+50 [mm]	50 AU+50 [mm]	50 AU+50 [mm]
25	Ho to [mm]	as as	and the final state of the stat
-23-		- 25	- 23-
0	9 .		[]
	ΔE [mm]	- ΔE [mm]	$-\Delta E [mm]$
-25		-25	-25
1			
-50	<u>•••••••••</u> •••••••••••••••••••••••••••	-50	-50 -50 -50 -50 -50 -50 -50 -50 -50 -50
	$\Delta N-50 \text{ [mm]}$	ΔN-50 [mm]	ΔN-50 [mm]
-75		-75	-75
100 •	1996 2000 2004 2008 2012	100	1998 2000 2004 2008 2012
	KRGO	KRIM	- KRMJ
75		75	75
1		•	
50	<u></u>	50 <u></u>	50
	ΔU+50 [mm]	ΔU+50 [mm]	ΔU+50 [mm]
25	•••••••••••••••••	25	25
1		• •	F 4 . F
0	ATT formal		
1	AE [mm]	Lat [mm]	
		-25	-25
-25		· •	F ~ 4 F
-25			
-25 -50	ΔN-50 (mm)	-50	-50 [mm]
-25	<u>ΔN–50 [mm]</u>	-50 [MN-50 [MM]	
-25 -50 -75	<u>AN-50 [mm]</u> 1996 2000 2004 2008 2012	-50 ΔN-50 [mm] -75 1996 2000 2004 2004 2008 2012	-50 <u>AN-50 [nm]</u> -75 1996 2000 2004 2008 2012
-25 -50 -75	AN-50 (mm) 1996 2000 2004 2008 2012 KRNK	-50 <u>4</u> -75 <u>1996</u> <u>2000</u> <u>2004</u> <u>2008</u> <u>2012</u> <u>2012</u>	-50 [<u>NN-50 [mm]</u> -75 1996 2000 2004 2008 2012
-25 -50 -75	<u>AN-50 [mm]</u> 1996 2000 2004 2008 2012 KRNK	-50 AN-50 [mm] -75 1996 2000 2004 2008 2012	-50 AN-50 [mm] -75 1996 2000 2004 2008 2012
-25 -50 -75 100 75	AN-50 [mm] 1996 2000 2004 2008 2012 KRNK	-75 -75 -75 -75 -75 -75 -75 -75	-50 <u>EN-50 [mm]</u> -75 1996 2000 2004 2008 2012 2008 2012 2012 2014 2018 2012 2014 2015
-25 -50 -75 100 75	<u>AN-50 [mm]</u> 1996 2000 2004 2008 2012 KRNK	-50 (M-50 (mm)) -75 (1996 2000 2004 2008 2012 (100 KUCE	-50 <u>AN-50 [mm]</u> -75 100 LEND 2000 2004 2008 2012 2012 2012 2012 2012
-25 -50 -75 100 75 50	AN-50 [mm] 1996 2000 2004 2008 2012 KRNK AU-50 (mm)	-50 [JM-50 [mm]] -75 1096 2000 2004 2008 2012 KUCE -75 50 [JM-50 [mm]]	-50 AN-50 [mm] -75 1996 2000 2004 2008 2012 100 LEND 75
-25 -50 -75 100 75 50	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK <u>AU+50 (mm)</u>	-50 ΔΔ-50 [mm] -75 1996 2000 2004 2008 2012 100 KUCE 75	-75 100 LEND 75 100 LEND 100 LEND 100 LEND 100 LEND 100 100 100 100 100 100 100 10
-25 -50 -75 100 75 50 25	AN-50 [mm] 1996 2000 2004 2008 2012 KRNK AU+50 [mm] • • •	-50 ΔN-50 [mm] -75 1996 2000 2004 2008 2012 100 KUCE 75	-50 <u>AN-50 [mm]</u> -75 100 <u>LEND</u> 200 <u>AN-50 [mm]</u> 200 2004 2008 2012 100 <u>LEND</u> 200 <u>AN-50 [mm]</u> 200 2004 2008 2012 100 <u>LEND</u>
-25 -50 -75 100 -75 -25	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK <u>AU-50 (mm)</u>	-50 AN-50 [mm] -75 1996 2000 2004 2008 2012 KUCE 75 AU-50 [mm] -0 AU-50 [mm] 0 AU-50 [mm]	
-25 -50 -75 100 50 -25	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK <u>AU+50 (mm)</u>	-50 ΔN-S0 (mm) -75 1996 2000 2004 2008 2012 100 KUCE 75 50 ΔU+S0 (mm) 2012 <td< td=""><td>-50 <u>AN-50 [mm]</u> -75 1996 2000 2004 2008 2012 100 <u>AN-50 [mm]</u> -75 -50 <u>AU-50 [mm]</u> 2004 2008 2012 2008 2012 2012</td></td<>	-50 <u>AN-50 [mm]</u> -75 1996 2000 2004 2008 2012 100 <u>AN-50 [mm]</u> -75 -50 <u>AU-50 [mm]</u> 2004 2008 2012 2008 2012 2012
-25 -50 -75 100 -75 -25 -25 -25	AN-50 [mm] 1996 2000 2004 2008 2012 KRNK	-50 AN-50 mm] -75 1996 2000 2004 2008 2012 KUCE 75 AU-50 mm] 25 AU-50 mm] 25 AU-50 mm] 25 AU-50 mm] 25 AU-50 mm] 25 AU-50 mm] 25 AU-50 mm] 26 AU-50 mm] 27 AU-50 mm] 27 AU-50 mm] 28 AU-50 mm] 29 AU-50 mm] 20 AU-5	-50 AN-50 (mm) -75 1996 2000 2004 2008 2012 100 LEND 75
-25 -50 -75 100 -75 -25 -25 -25	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK <u>AU+50 (mm)</u>	-50 ΔN-50 (mm) -75 1996 2000 2004 2008 2012 100 KUCE 75 50 ΔU+50 (mm) 25 20 2004 2008 2012 201	-50 -50 [<u>MN-50 [mm]</u> -75 100 LEND 50 <u>AU+50 [mm]</u> 25 0 <u>AE [mm]</u> -25
-25 -50 -75 100 -75 -25 -25 25 50	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK <u>AU-50 (mm)</u>	-50 ΔN-50 [mm] -75 1996 2000 2004 2008 2012 100 KUCE 75	-50 <u>AN-50 [mm]</u> -75 100 <u>LEND</u> -75 50 <u>AU-50 [mm]</u> -25 -50 <u>AU-50 [mm]</u> -5 -50 <u>AU-50 [mm]</u> -5 -50 -50 -50 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5
-25 -50 -75 100 75 25 0 -25 -50	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK <u>AU-50 (mm)</u>	-50 ΔM-50 [mm] -75 1996 2000 2004 2008 2012 100 KUCE 75 30 ΔU+50 [mm] 25 30 ΔU+50 [mm] 30 25 30 ΔU+50 [mm] 30 <	-50 -57 -75 100 LEND -75 -75 -50 <u>AU+50 (mm)</u> -25 -50 <u>AU+50 (mm)</u> -25 -50 -50 -50 -50 -50 -50 -50 -5
-25 -50 -75 100 -75 -50 -25 -50 50 75	<u>AN-50 (mm)</u> 2000 2004 2008 2012 KRNK	-50 <u>AN-50 (mm)</u> -75 1996 2000 2004 2008 2012 KUCE 75 50 <u>AU+50 (mm)</u> -25 -50 <u>AN-50 (mm)</u> -25 -70 -70 -70 -70 -70 -70 -70 -70	-50 <u>AN-50 [mm]</u> -75 1996 2000 2004 2008 2012 100 <u>AU+50 [mm]</u> -25 <u>AU+50 [mm]</u> -25 <u>AU+50 [mm]</u> -25 -25 -25 -25 -25 -2004 2008 2012 2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 2008 2017 -2004 -2008 -2008 -2008 -2008 -2008 -2008 -2008 -2008 -2017 -2008 -2008 -2008 -2008 -2017 -2008 -2008 -2008 -2017 -2008 -2008 -2017 -2008 -2008 -2008 -2008 -2017 -2008 -2008 -2017 -2008 -20
-25 -50 -75 100 -75 -25 -50 50 75	<u>AN-50 (mm)</u> 2000 2004 2008 2012 1996 2000 2004 2008 2012 <u>AL+50 (mm)</u>	-75 -75 -75 -75 -75 -75 -75 -75	
-25 -50 -75 100 -75 -25 -50 25 50 75	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 <u>KRNK</u> <u>AU-50 (mm)</u> <u>AN-50 (mm)</u> <u>AN-50 (mm)</u> <u>I996</u> 2000 2004 2008 2012	-50 <u>AN-S0 (mm)</u> -75 1996 2000 2004 2008 2012 KUCE 75 50 <u>AU+S0 (mm)</u> -25 -50 <u>AN-S0 (mm)</u> -75 -50 <u>AN-S0 (mm)</u> -75 -75 <u>AN-S0 (mm)</u> -75 -75 <u>AN-S0 (mm)</u> -75 <u>AN-S0 (mm)</u> <u>AN-S0 </u>	-50 -50 [<u>NN-50 [mm]</u> -75 100 LEND 50 <u>AU+50 [mm]</u> 251
-25 -50 -75 100 -75 -25 -50 25 75 100 -75	<u>AN-50 [mm]</u> 2000 2004 2008 2012 1996 2000 2004 2008 2012 <u>AL-50 [mm]</u>	-50 <u>IN-S0 (mm)</u> -75 1996 2000 2004 2008 2012 KUCE 75 0 <u>AU-50 (mm)</u> -25 -50 <u>AU-50 (mm)</u> -2000 2000 2000 2000 2000 2000 2000 200	-50 -57 -75 109 LEND -58 100 LEND -59 <u>100</u> LEND -59 <u>100</u> <u>100</u> LEND -59 <u>100</u> <u>100</u> LEND -59 <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>101</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u>
-25 -50 -75 100 75 -25 -75 -	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK	-50 IN-S0 (mm) -75 1996 2000 2004 2008 2012 100 KUCE 75 50 ΔU+S0 (mm) 2012 <td< td=""><td>-50 -51 -55 -55 -55 -55 -55 -55 -55</td></td<>	-50 -51 -55 -55 -55 -55 -55 -55 -55
-25 -50 -75 100 75 -25 -50 -25 -75 100 -75 -	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 <u>AN-50 (mm)</u> <u>AN-50 (mm)</u> <u>AN-50 (mm)</u> <u>IN-50 (mm)</u>	-50 <u>IN-S0 (mm)</u> -75 100 KUCE 75 50 <u>AU-S0 (mm)</u> 25 -0 <u>AU-S0 (mm)</u> 25 -0 <u>AU-S0 (mm)</u> -25 -0 <u>AU-S0 (mm)</u> -200 -2	-50 <u>AN-50 [mm]</u> -75 1996 2000 2004 2008 2012 100 <u>AU+50 [mm]</u> -25 -50 <u>AU+50 [mm]</u> -25 -50 <u>AU+50 [mm]</u> -75 1996 2000 2004 2008 2012 2008 2012 2012
-25 -50 -75 100 75 -75 -75 -25 -25 -75 -	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK	-50 ΔN-50 [mm] -75 1996 2000 2004 2008 2012 100 KUCE 75 3	-50 (N-50 [mm]) -75 1996 2000 2004 2008 2012 100 LEND
-25 -50 -75 100 75 -75 -75 -75 -25 -75 -	<u>AN-50 (mm)</u> 2000 2004 2008 2012 1996 2000 2004 2008 2012 <u>AU-50 (mm)</u>	-50 <u>AN-50 (mm)</u> -75 1996 2000 2004 2008 2012 KUCE 75 50 <u>AU+50 (mm)</u> -25 -50 <u>AN-50 (mm)</u> -50 -50 -50 -50 -50 -50 -50 -50	-50 <u>AN-50 [mm]</u> -75 1096 2000 2004 2008 2012 100 <u>LEND</u> -50 <u>AU+50 [mm]</u> -25 -50 <u>AU+50 [mm]</u> -25 -50 -50 -50 -50 -50 -50 -50 -5
-25 -50 -75 100 -75 -25 -75	<u>AN-50 (mm)</u> 2000 2004 2008 2012 1996 2000 2004 2008 2012 <u>KRNK</u>	-50 ΔN-S0 (mm) -75 1996 2000 2004 2008 2012 100 KUCE 75 50 ΔU+50 (mm)	-50 -51 -55 -55 -55 -50 <u>CU+50 (mm)</u> -25 -50 <u>CU+50 (mm)</u> -25 -50 <u>CU-50 (mm)</u> -50 -50 <u>CU-50 (mm)</u> -50 -50 <u>CU-50 (mm)</u> -50 <u>CU-50 (mm)</u> -50 <u>CU-50 (mm)</u> -50 -50 <u>CU-50 (mm)</u> -50 <u>CU-50 </u>
-25 -50 -75 100 -75 -25 -25 -75	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK	-50 ΔN-S0 (mm) -75 1996 2000 2004 2008 2012 100 KUCE 75 50 ΔL-S0 (mm) 2012 2012 75	-50 -75 1096 2000 2004 2008 2012 100 LEND 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LEND</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50 <u>LIDE</u> 50
-25 -50 -75 100 -75	<u>AN-50 (mm)</u> 2000 2004 2008 2012 <u>I996</u> 2000 2004 2008 2012 <u>AU-50 (mm)</u>	-50 <u>AN-S0 (mm)</u> -75 100 KUCE 75 0 <u>AU+S0 (mm)</u> -25 0 <u>AU+S0 (mm)</u> -25 0 <u>AU+S0 (mm)</u> -26 0 <u>AU+S0 (mm)</u> -26 0 <u>AU-S0 (mm)</u> -2004 2004 2008 2012 2004 2008 2012 2004 2008 2012 2004 2008 2012 2004 2008 2012 2004 2008 2012 2004 2008 2012 2012 2004 2012 2004 2008 2012 2012 2004 2012 2004 2008 2012 2012 2004 2012 2004 2008 2012 2004 2008 2012 2004 2008 2012 2012 2008 2012 2012 2008 2012 2 2 2 2 2 2 2 2 2 2 2 2 2	-50 (N-50 (mm)) 2000 2004 2008 2012 100 LEND
-25 -50 -75 100 -75 -25 -25 -75	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 KRNK	-50 AN-S0 (mm) -75 -75 -75 -75 -75 -75 -75 -75	-50 -57 -58 -59 -75 109 LÈND -59 -50 <u>AU+50 [mm]</u> -25 -50 <u>AU+50 [mm]</u> -25 -50 <u>AE [mm]</u> -25 -50 <u>AU+50 [mm]</u> -25 -50 -50 -50 -50 -50 -50 -50 -5
-25 -50 -75 100 75 -	<u>AN-50 (mm)</u> 1996 2000 2004 2008 2012 <u>AU-50 (mm)</u>	-50 AN-50 (mm) -75 1996 2000 2004 2008 2012 KUCE 75 50 AU-50 (mm) -25 -50 AU-50 (mm) -25 -50 -50 -50 -50 -50 -50 -50 -5	-50 <u>EN-50 [mm]</u> -75 1996 2000 2004 2008 2012 100 <u>END</u> -50 <u>AU+50 [mm]</u> -25 -50 <u>EN-50 [mm]</u> -25 -50 <u>EN-50 [mm]</u> -25 -50 <u>AU+50 [mm]</u> -50 -50 -50 -50 -50 -50 -50 -50
-25 -50 -75 100 75 -	<u>AN-50 (mm)</u> 2000 2004 2008 2012 1996 2000 2004 2008 2012 <u>AN-50 (mm)</u>	-50 ΔN-S0 (mm) -75 1996 1996 2004 200 2012 00 KUCE 75 ΔU-S0 (mm) 25 ΔU-S0 (mm) 25 ΔU-S0 (mm) 26 ΔU-S0 (mm) 27 ΔU-S0 (mm) 28 ΔU-S0 (mm) 29 ΔU-S0 (mm) 20 ΔU-S0 (mm) 25 ΔU-S0 (mm) 26 ΔU-S0 (mm) 27 ΔU-S0 (mm) 28 ΔU-S0 (mm) 29 ΔU-S0 (mm) 25 ΔU-S0 (mm) 26 ΔU-S0 (mm)	-50 (N-50 [mm]) -75 1996 2000 2004 2008 2012 100 LEND
100 MALJ	100 MANG		MRVS
---------------------------------------	---------------------	--	--
75	75		•
/5	/5		
50	50		
ΔU+50 [mm]	- ΔU+50 [mm]	· · ·	ΔU+50 [mm]
25	25		
	4	F 4	
	0	•••••••••••••••••••••••••••••••••••••••	ATT (
	25	[] [[]	
-23	-23	-23	
_50	_50		<u></u>
ΔN-50 [mm]	- ΔN-50 [mm]		ΔN-50 [mm]
-75	-75	-75	
1996 2000 2004 2008 2012	100 2000 2	004 2008 2012	1996 2000 2004 2008 2012
MRZL	ORLJ		PARA
75	75		
	-		
50 ALL 50 [mm]	50	50 50	ALL 50 [mm]
	20+50[mm]	- -	
23	25		
0 <u></u>	0. <u></u>		<u> </u>
- ΔE [mm]	- ΔE [mm]	F -14	ΔE [mm]
-25	-25	-25	
	1.	F -1	•
-50	-50 [-50	AN_50 [mm]
75	75		art so hinni
1996 2000 2004 2008 2012	1996 2000 2	004 2008 2012 -/3	1996 2000 2004 2008 2012
PLAN	PONK	100	PSTJ
75	75		
	1	t 3	•
50	50	50	<u> </u>
- ΔU+50 [mm]	-ΔU+50 [mm]	°• ⊦+12	ΔU+50 [mm]
25	25	25	
1		<u> </u>	
- ΔE [mm]	- ΔE [mm]	L°l	ΔE [mm]
-25	-25		
4	4	F 1	
-50 AN 50 [mm]	-50	-50 -50 -50 -50 -50 -50 -50 -50 -50 -50	AN 50 from
ZIN-50 [mm]	- Ziv-50 [mm]	F] ^E	are so [mm]
1996 2000 2004 2008 2012	1996 2000 2	004 2008 2012 -73	1996 2000 2004 2008 2012
100 RADT	100 RIBN	100 to 10	SEGO
75	75		
/5	/3		•
50	50	50	<u></u>
- ΔU+50 [mm]	ΔU+50 [mm]	t ju	ΔU+50 [mm]
25	25		
- ΔE [mm]	-ΔE [mm]		ΔE [mm]
-25	-25		
-			
-50	-50	-50	AN_50 [mm]
75	75	- 75	
1996 2000 2004 2008 2012	1996 2000 2	004 2008 2012	1996 2000 2004 2008 2012
SLIV	SMKP		SNEZ
75	75		
		[]	
50	50	50	
$[\Delta U+50 \text{ [mm]}]$	ΔU+50 [mm]	. t 1≝	ΔU+50 [mm]
²⁵	²³	25	••••••••••••••••••••••
.	J	t	••••••••••••••••••••••••••••••••••••••
$\Delta E [mm]$	- ΔE [mm]	· · · · · · · · · · · · · · · · · · ·	ΔE [mm]
-25	-25	-25	
1.			, , , , , , , , , , , , , , , , , , ,
-50	-50	••••••••••••••••••••••••••••••••••••••	AN-50 [mm]
-75	-75		
1996 2000 2004 2008 2012	1996 2000 2	004 2008 2012	1996 2000 2004 2008 2012
SNZZ	SOCE	100-15	SVMO
75	75		
	1.	. ["]	
50 ALL 50 [mm]	50	50	ATT 50 [mm]
	- <u>AU+30 [mm]</u>	t. 14	[hun] OCTOL
23	23	25	
<u></u>	o <u></u>		<u></u>
ΔE [mm]	$\Delta E [mm]$	- F - 12	ΔE [mm]
-25	-25	25	
50 ¹	50	<u>۱.</u> ۱	ł
-30 -ΔN-50 [mm]	-30 -ΔN-50 [mm]	■ -50-lg	ΔN-50 [mm]
-75	-75	-75	
1996 2000 2004 2008 2012	1996 2000 2	2008 2012	1996 2000 2004 2008 2012
URGO	VEKO	- 100	VIDM
75	75		
		. F-1	
50 ΔU+50 [mm]	-ΔU+50 [mm]	50	ΔU+50 [mm]
25	25		
· · · · · · · · · · · · · · · · · · ·	1	L 23	
0	0	····•	
	- AE [mm]	t 14	ac (mm)
-25	-25	-25	
-50	-50		<u></u>
- ΔN-50 [mm]	- ΔN-50 [mm]		ΔN-50 [mm]
-75	-75	-75	

100 VIVO	100 ZGLA	
1100	ZOLA	- DJEL
75	75	75
	•	
50 - ΔU+50 [mm]	50 ΔU+50 [mm]	- ΔU+50 [mm]
25	25	25
0	0	0
ΔE [mm]	$\Delta E [mm]$	$\Delta E [mm]$
-25	-25	-25
-50	-50 [mm]	-50
75	75	75
1996 2000 2004 2008 2012	1996 2000 2004 2008 2012	1996 2000 2004 2008 2012
100 BRSK	¹⁰⁰ DMIH	100 GRAD
75	75	75
	13	75
50	50	50
- ΔU+50 [mm]	- ΔU+50 [mm]	ΔU+50 [mm]
25	25	25
Julius a geometric de la construcción de la constru		
$\Delta E [mm]$	ΔE [mm]	ΔE [mm]
_25	-25	-25
		[]
-50	-50 .	-50
ΔN-50 [mm]	$\Delta N-50 \text{ [mm]}$	ΔN-50 [mm]
-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012
100 CDMD	100 CDMT	100 100 2009 2009 2008 2012
GKMP	GKM1	
75	75	75
		tudi i kalendar kal Kalendar kalendar kale
$\Delta U + 50 \text{ [mm]}$	50 	$\Delta U + 50 \text{ [mm]}$
25	25	25
25	23	
0	0	0
$-\Delta E [mm]$	$-\Delta E [mm]$	ΔE [mm]
-25	-25	-25
4		t da a da d
-50	-50 AN-50 [mm]	-50
75	25 T	75
-73 1996 2000 2004 2008 2012	1996 2000 2004 2008 2012	1996 2000 2004 2008 2012
100 KALN	100 MONT	100 NOBR
/5	/5	/5
50	50	50 . .
ΔU+50 [mm]	- ΔU+50 [mm]	- ΔU+50 [mm]
25	25	25
AF [mm]	AE [mm]	0 AF [mm]
25	25	25
~		
-50	-50	-50
-ΔN-50 [mm]	- [ΔN-50 [mm]	- ΔN-50 [mm]
-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012	-75 1996 2000 2004 2008 2012
100 DUCS	100 DELLA	100 BOM
1005	PULA	KUVI
75	75	75
4 .		
²⁰ -ΔU+50 [mm]	-ΔU+50 [mm]	ΔU+50 [mm]
25	25	
1	447 B	25
0		25
AE [mm]		25 0 <u>AE [mm]</u>
_25		25 0 <u>AE [mm]</u>
<u>[AE [mm]]</u> -25]		25 0 <u>AE [mm]</u> -25
ΔX-50 [mm]	- 25 - 50 (mm) - 50 (mm)	25 0 <u>AE [mm]</u> -25 -50 AN-50 [mm]
- 425 [mm] 		25 0 <u>AE [mm]</u> -25 -50 <u>AN-50 [mm]</u>
-25 -50 <u>(∆N~50 [mm]</u> -75 1996 2000 2004 2008 2012		25 0 <u>AE (mm)</u> -25 -50 <u>AN-50 (mm)</u> 1996 2000 2004 2008 2012
-25 -50 -50 -50 -50 -75 -75 -75 -75 -75 -796 -7000 -7004 -7004 -7008 -7008 -7000 -7004 -7008 -7000 -7004 -7000 -7		25 0 <u>AE [mm]</u> -25 -50 <u>AN-50 [mm]</u> -75 <u>1996</u> 2000 2004 2008 2012
		25 0 <u>AE [mm]</u> -25 -50 <u>INV-50 [mm]</u> -75 1996 2000 2004 2008 2012 75
-25 		25 0 <u>AE [mm]</u> -25 -50 <u>AN-50 [mm]</u> -75 1996 2000 2004 2008 2012 100 ZULA 75
	-25 -25 -50 -25 -75 196 1096 2000 2004 2008 2012 100 UCKA 50	25 0 <u>AE [mm]</u> -25 -50 <u>AN-50 [mm]</u> 1996 2000 2004 2008 2012 100 ZULA 75 50 107 70 = -3
25		25 0 <u>AR</u> :[mm] -25 -50 <u>AN-50 [mm]</u> 2000 2004 2008 2012 ZULA 50 <u>AU+50 [mm]</u>
-25 -30 <u>AN-50 [mm]</u> -25 -30 <u>SVIV</u> -2000 -2004 -2008 -2012 -2		25 0 <u>AE (mm</u>) -25 -30 <u>AN-50 (mm</u>) 1996 2000 2004 2008 2012 100 ZULA 75 50 <u>AU+50 (mm</u>) 25
-50 -50 -50 -50 -50 -50 -50 -50		25 0 <u>AE [mm]</u> -25 -50 <u>AN-50 [mm]</u> 75 1096 2000 2004 2008 2012 20
-25 -30 <u>AN-50 [mm]</u> -75 1996 2000 2004 2008 2012 2		25 0 <u>AE [mm]</u> -25 -50 <u>AN-50 [mm]</u> -75 1996 2000 2004 2008 2012 2
25 50 1096 2000 2004 2008 2012 1096 2000 2004 2008 2008 2008 2008 2008 2008		25 0 <u>AE (mm)</u> -25 -30 <u>AN-50 (mm)</u> 1096 2000 2004 2008 2012 100 ZULA 75 50 <u>AU+50 (mm)</u> 25 0 <u>AU-50 (mm)</u> 25 -30 <u>AU-50 (mm)</u> 25 -30 <u>AU-50 (mm)</u> 25 -30 <u>AU-50 (mm)</u> 2004 2008 2012 -30 <u>AU-50 (mm)</u> 25 -30 <u>AU-50 (mm)</u> 25 -30 <u>AU-50 (mm)</u> 25 -30 <u>AU-50 (mm)</u> -35 -35 <u>AU-50 (mm)</u> -35 -35 <u>AU-50 (mm)</u> -35 <u>AU-50 </u>
25 -50 -51 -52 -53 -54 -55 -55 -50 -55 -50 -55 -55 -55		25 0 AE [mm] -25 -50 AN-30 [mm] -75 -75 -50 AU-30 [mm] -75 -50 AU-30 [mm] -25 -50 -50 -50 -50 -50 -50 -50 -5
-25 -30 <u>AN-50 [mm]</u> -75 1996 2000 2004 2008 2012 1996 2000 2004 2008 2012 50 <u>AV-50 [mm]</u> -25 -30 <u>AV-50 [mm]</u> -25 -30 <u>AV-50 [mm]</u>		25 0 <u>AE (mm</u>) -25 -50 <u>AN-50 (mm</u>) -75 1996 2000 2004 2008 2012 100 ZULA 75 -0 <u>AU+50 (mm</u>) -25 -0 <u>AE (mm</u>) -25 -0 <u>AU (mm)</u> -25 -0 <u>AU (mm)</u> -25 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
25 1996 2000 2004 2008 2012 50 1996 2000 2008 2008 2008 2008 2008 2008 200	□ □	25 0 ΔE [mm] -25 -50 ΔN-50 [mm] -75 1996 2000 2004 2008 2012 100 ZULA

F Ponovljivost koordinat točk dobljenih s programskim paketom BSW

Točka	σ_N	σ_E	σ_U
BOR1	3,24	2,77	5,34
CAGL	4,49	2,77	8,27
GRAS	3,10	3,33	5,90
GRAZ	2,34	2,52	4,83
HFLK	3,60	2,69	5,17
JOZE	3,20	3,65	7,47
KOSG	4,82	4,56	7,41
MATE	4,12	2,67	7,65
MEDI	3,22	4,95	5,29
METS	6,80	4,56	11,82
PADO	3,27	2,26	4,46
PENC	2,47	2,81	6,94
POTS	3,36	2,26	7,09
SOFI	3,82	4,96	10,03
UPAD	2,46	2,08	4,41
VILL	4,78	6,94	10,87
WTZR	2,30	2,37	4,56
ZIMM	2,45	3,10	5,30

Ponovljivost točk omrežja IGS (v mm):

Ponovljivost točk omrežja EPN (v mm):

σ_N	σ_E	σ_U
4,82	4,51	7,07
2,65	2,16	5,18
2,30	2,68	6,26
3,19	2,17	11,30
3,14	2,86	8,93
	σ_N 4,82 2,65 2,30 3,19 3,14	$\begin{array}{c c} \sigma_N & \sigma_E \\ \hline \\ 4,82 & 4,51 \\ 2,65 & 2,16 \\ 2,30 & 2,68 \\ 3,19 & 2,17 \\ 3,14 & 2,86 \end{array}$

Ponovljivost točk omrežja SIGNAL (v mm):

Točka	σ_N	σ_E	σ_U
BODO	2,66	2,20	4,50
BOVE	3,37	2,76	6,44
BREZ	2,05	2,17	4,77
CELJ	2,46	2,47	5,10

CRNO	2,29	2,42	7,11
GSR1	2,33	2,26	5,65
ILIB	2,34	3,27	4,89
KOPE	2,39	2,05	4,25
MARI	2,72	3,01	6,02
NOVG	2,31	2,12	6,23
PTUJ	2,01	2,26	5,76
RADO	2,62	2,44	5,14
SLOG	2,12	2,11	4,93
TREB	2,08	2,29	4,78
VELP	2,62	2,32	5,18

Ponovljivost točk omrežja FReDNet (v mm):

Točka	σ_N	σ_E	σ_U
ACOM	2,09	2,26	4,16
AFAL	2,12	4,16	4,09
CANV	3,52	2,96	4,14
CODR	2,43	1,95	5,40
FUSE	2,41	2,06	5,18
JOAN	2,22	2,05	4,71
MDEA	2,48	2,73	7,85
MPRA	2,38	2,09	4,03
NOVE	3,06	2,47	5,39
PAZO	2,80	2,09	4,69
TRIE	2,14	2,25	4,38
UDI1	2,12	2,04	5,65
UDIN	2,48	2,68	5,27
ZOUF	2,47	2,18	4,06

Ponovljivost točk omrežja APOS (v mm):

Točka	σ_N	σ_E	σ_U
BLE2	2,76	2,46	7,04
BLEI	2,81	2,42	8,25
DLBG	2,69	2,53	6,79
FLDB	2,86	2,66	5,73
KLA2	2,51	2,18	6,30
KLAG	2,43	2,35	8,42
LAN2	3,20	2,48	8,03
LANK	2,73	2,34	6,57

Ponovljivost točk ostalih omrežij (v mm):

Točka	σ_N	σ_E	σ_U
KOPR	3,48	6,61	20,69
ZAGR	1,46	1,95	4,80
ZALA	1,89	2,38	4,93

Ponovljivost točk pasivnega omrežja (v mm):

Točka	σ_N	σ_E	σ_U
011A	1,81	2,87	6,37
012A	3,56	2,07	4,35
2S3A	2,37	1,49	8,94
BASO	5,88	6,00	42,32
BIZE	3,90	2,36	7,06
BJEL	2,69	1,86	6,72
BLEG	4,47	4,28	7,39
BORS	2,66	4,16	6,29
BOZI	4,32	1,72	6,02
BRSK	4,14	4,95	10,36
BUKO	2,63	4,30	9,51
CAOP	2,11	1,87	4,69
CRNE	3,42	2,69	9,74
DAVC	1,53	2,42	8,10
DMIH	4,42	2,89	10,95
DOBE	1,60	2,10	7,74
DOLE	2,86	2,61	5,93
DONA	4,56	3,42	8,31
DRAG	5,56	1,61	5,23
FGG3	3,79	2,94	8,57
GRAD	4,17	5,26	6,92
GRMP	1,56	2,75	9,97
GRMT	3,08	2,24	8,54
ILIV	8,89	4,22	13,24
JAVO	2,87	3,05	9,27
JEK1	4,23	1,91	6,13
JELO	0,80	1,57	2,95
JELS	6,58	2,45	9,57
JERU	2,72	3,64	7,29
KALN	3,04	3,66	11,93
KANI	2,15	2,24	6,47
KMNK	3,85	4,59	11,44

KORA	4,04	3,11	6,13
KOSU	2,14	2,21	6,30
KOVK	2,89	2,52	5,55
KRGO	3,67	4,95	10,11
KRIM	2,56	3,15	10,04
KRMJ	2,15	2,10	6,77
KRNK	0,93	2,49	8,31
KUCE	4,63	2,97	6,84
LEND	15,19	11,46	9,31
LIBN	1,33	2,22	6,35
LOKA	2,50	4,09	7,40
LUCE	3,36	5,65	9,30
MALJ	5,68	3,82	5,64
MANG	2,38	2,42	5,75
MONT	3,54	3,94	66,35
MRVS	4,99	1,67	14,36
MRZL	4,61	4,59	6,84
NOBR	5,48	3,54	9,12
ORLJ	3,50	3,59	7,83
PARA	4,91	2,39	5,77
PLAN	3,77	3,33	9,00
PONK	3,17	4,23	7,99
PSTJ	3,39	2,52	7,80
PUGS	1,49	1,86	3,73
PULA	6,00	2,51	10,46
RADT	2,71	2,53	5,31
RIBN	6,72	9,04	9,06
ROVI	4,46	2,16	6,29
SEGO	3,92	4,57	8,64
SLIV	4,73	1,61	6,57
SMKP	5,11	2,57	12,44
SNEZ	3,41	3,17	19,96
SNZZ	2,10	2,90	9,39
SOCE	1,64	2,07	4,05
SVIV	8,50	5,17	8,12
SVMO	2,28	4,21	6,01
UCKA	3,37	6,78	8,11
URGO	4,70	2,73	11,83
VEKO	5,37	3,08	7,75
VIDM	1,39	2,69	6,54
VIVO	2,76	3,79	8,21
ZGLA	3,51	4,08	12,06

ZULA 1,63 2,70 4,09

G Časovne vrste dnevnih rešitev metode PPP stalno delujočih postaj, usklajene s koordinatnim sestavom ITRF

Časovne vrste točk omrežja EPN, vklopljene v globalni koordinatni sestav:

Časovne vrste točk omrežja SIGNAL, vklopljene v globalni koordinatni sestav:

BODO	BOVE	BREZ
75	75	75
a she had a		
- ΔU+50 [mm]	$-\Delta U+50 \text{ [mm]}$	- ΔU+50 [mm]
25	25	25
- Sec. advances	the state of the second states in the	
0 - ΔΕ [mm]	$\Delta E \text{ [mm]}$	$\Delta E \text{ [mm]}$
-25	-25	-25
-		
-50	-50	-50
-75	-75	-75
2000 2004 2008 2012	2000 2004 2008 2012	2000 2004 2008 2012
CELJ	CRNO	GSR1
75	75	75
- ΔU+50 [mm]	- ΔU+50 [mm]	- ³⁰ -ΔU+50 [mm]
25	25	25
The second se	The second second second second second	- Alexandra and Alexandra
- ΔE [mm]	$-\Delta E [mm]$	- ΔE [mm]
-25	-25	-25
	a second s	and a second
-50 - ΔN-50 [mm]	-50 $-\Delta N - 50 [mm]$	$^{-50}$ [ΔN - 50 [mm]
-75	-75	-75
2000 2004 2008 2012	2000 2004 2008 2012 100 two pp	2000 2004 2008 2012
ILIB	KOPE	MARI
75	75	75
50	50	50
- ΔU+50 [mm]	- ΔU+50 [mm]	- ΔU+50 [mm]
25	25	25
- <u>ΔE [mm]</u>	$\Delta E [mm]$	$\Delta E [mm]$
-25	-25	-25
_50 ⁻ · · · · · · · · · · · · · · · · · · ·	50	_50 · · · · · · · · · · · · · · · · · · ·
- ΔN-50 [mm]	ΔN-50 [mm]	$-\Delta N = 50 \text{ [mm]}$
-75 2000 2004 2008 2012	-75 2000 2004 2008 2012	-75 2000 2004 2008 2012
100 NOVG	100 PTIT	100 PADO
	70	76
1 Andrew Alexandre		13 Ale Sank
50	50	50
- <u>Δυ+50 [mm]</u>		- μmil oc+op [mmil oc+op]
	0	
	- <u>An [mm]</u>	
-25		-23
-50	-50	-50
ΔN-50 [mm]	$\Delta N = 50 \ [mm]$	$\Delta N = 50 \text{ [mm]}$
-/5 2000 2004 2008 2012	-/5 2000 2004 2008 2012	-/5 2000 2004 2008 2012
100_SLOG	100 TREB	100 VELP
75	75	75
- And a strate of	- Barris a s	to say the set
50	50	50
25	25	25
and the second second	ata sada	
	0	
-50 AN-50 [mm]	-50	-50
_75	-75	-75
	-13	-13 -

ACOM AFAL 1m] ΔU+50 [1 ΔE [mm] ΔE [mm] ΔE [mm] N-50 [mm] ODI \U+50 [mm] E [mm] MDEA MPR/ ∆E [mm ΔE [mm] PAZO TRIF UDI ΔU+50 [mm] \U+50 [mm] ∆E [mm] ΔE [mm] N-50 [mm] AN-50 [N-50 [mm] Ċasovne 100_BLEI

Časovne vrste točk omrežja FReDNet, vklopljene v globalni koordinatni sestav:

sovne vrste točk omrež	ia APOS	vklonliene	v globalni	koordinatni	sestav

sU+50 [mm]	⁷⁵ 50 ΔU+50 [mm]	75 50 <u>AU+50 [mm]</u> 25
SE [mm]	0 <u>dE [mm]</u>	0 <u>AE [mm]</u>
IN-50 [mm]	-50	-50 ΔN-50 [mm]
2004 2008 2012 TLDB	2000 2004 2008 2012	2000 2004 2008 2012 100 KLAG
λU+50 [mm]	75 50 <u>(AU+50 [mm]</u> 25	75 50 <u>AU+50 [mm]</u> 25
<u>xE [mm]</u>	0 <u>∆E [mm]</u> -25	0
IN-50 [mm]	-50 <u>AN-50 [mm]</u>	-50 <u>ΔN-50 [mm]</u>
2004 2008 2012	2000 2004 2008 2012	2000 2004 2008 2012

H Ponovljivost koordinat točk dobljenih z metodo PPP, usklajenih s koordinatnim sestavom ITRF

Točka	σ_N	σ_E	σ_U
BOR1	3,18	8,46	6,79
CAGL	3,27	4,18	8,99
GRAS	2,83	4,68	7,27
GRAZ	2,82	3,96	6,08
HFLK	3,66	3,94	6,20
JOZE	3,00	5,02	9,32
KOSG	4,04	5,63	6,94
MATE	2,75	4,35	7,27
MEDI	2,86	5,73	6,63
METS	4,28	5,62	13,89
PADO	3,32	4,12	6,64
PENC	2,37	3,74	7,56
POTS	2,67	4,72	7,64
SOFI	3,49	4,74	8,61
UPAD	2,36	4,31	5,94
VILL	3,39	5,17	9,77
WTZR	2,44	4,21	5,31
ZIMM	2,52	3,74	5,46

Ponovljivost točk omrežja IGS (v mm):

Ponovljivost točk omrežja EPN (v mm):

Točka	σ_N	σ_E	σ_U
DUBR	4,78	5,91	7,11
GARI	2,35	2,98	5,50
OSJE	2,85	5,19	7,71
SBG2	2,80	3,12	5,11
SRJV	2,88	4,08	8,55

Ponovljivost točk omrežja SIGNAL (v mm):

Točka	σ_N	σ_E	σ_U
BODO	3,02	3,57	5,65
BOVE	4,48	4,07	7,47
BREZ	2,03	3,02	5,13
CELJ	2,74	3,91	6,55

CRNO	2,32	3,82	7,97
GSR1	2,73	4,07	6,93
ILIB	2,63	4,75	5,95
KOPE	2,59	3,83	5,44
MARI	2,79	4,06	7,43
NOVG	3,41	4,37	6,60
PTUJ	2,57	3,77	6,81
RADO	3,56	4,38	6,70
SLOG	2,20	3,63	5,70
TREB	2,36	3,38	5,83
VELP	2,80	3,52	6,30

Ponovljivost točk omrežja FReDNet (v mm):

Točka	σ_N	σ_E	σ_U
ACOM	1,96	3,38	4,27
AFAL	1,84	4,80	5,93
CANV	3,77	5,30	6,85
CODR	2,38	3,61	4,62
FUSE	2,02	3,34	5,80
JOAN	2,19	3,50	4,27
MDEA	2,94	4,71	7,46
MPRA	2,31	3,47	5,18
NOVE	2,66	3,74	4,70
PAZO	2,15	3,52	5,86
TRIE	2,62	4,05	4,68
UDI1	2,75	4,55	7,16
UDIN	2,89	5,00	8,03
ZOUF	2,46	4,29	5,86

Ponovljivost točk omrežja APOS (v mm):

Točka	σ_N	σ_E	σ_U
BLE2	3,18	3,83	8,04
BLEI	3,52	4,99	9,39
DLBG	3,15	3,80	7,30
FLDB	2,83	3,40	5,84
KLA2	3,37	4,34	7,58
KLAG	3,47	4,53	9,85
LAN2	2,91	3,60	6,98
LANK	2,86	3,52	6,89

Točka	σ_N	σ_E	σ_U
KOPR	4,79	4,55	19,67
ZAGR	2,15	2,41	5,48
ZALA	1,60	2,78	4,43

Ponovljivost točk ostalih omrežij (v mm):

I Ocenjene koordinate in vektorji hitrosti v globalnem koordinatnem sistemu

Ocenjene koordinate in vektorji hitrosti s programskim paketom BSW5.0 v globalnem koordinatnem sistemu IGb08 za trenutek 2005,0:

TC	Х	Y	Z	VX	VY	VZ
	[m]	[m]	[m]	[m/lt]	[m/lt]	[m/lt]
BOR1	3738358,4483	1148173,7064	5021815,7618	-0,0168	0,0158	0,0087
GRAS	4581690,9085	556114,8353	4389360,8033	-0,0133	0,0194	0,0119
GRAZ	4194423,8248	1162702,6931	4647245,4191	-0,0172	0,0177	0,0103
HFLK	4248505,0513	855575,7400	4667172,2922	-0,0148	0,0179	0,0118
JOZE	3664940,1576	1409153,8622	5009571,3763	-0,0177	0,0153	0,0088
MATE	4641949,5704	1393045,4278	4133287,4815	-0,0182	0,0186	0,0149
MEDI	4461400,7489	919593,5780	4449504,7769	-0,0173	0,0193	0,0114
PADO	4388882,0314	924567,4615	4519588,7421	-0,0160	0,0183	0,0115
PENC	4052449,4711	1417681,1236	4701407,1060	-0,0166	0,0176	0,0107
POTS	3800689,6293	882077,3835	5028791,3076	-0,0158	0,0159	0,0096
SOFI	4319372,0947	1868687,7816	4292063,9466	-0,0166	0,0185	0,0092
UPAD	4389531,1507	923253,7876	4519256,4566	-0,0152	0,0180	0,0136
WTZR	4075580,5518	931853,7960	4801568,1323	-0,0161	0,0173	0,0097
ZIMM	4331297,0676	567555,8784	4633133,9385	-0,0134	0,0181	0,0119
KOSG	3899225,1248	396731,9397	5015078,4199	-0,0140	0,0167	0,0095
METS	2892570,7769	1311843,4382	5512634,1071	-0,0168	0,0139	0,0087
VILL	4849833,7057	-335049,0228	4116014,9502	-0,0101	0,0197	0,0120
CAGL	4893378,8370	772649,7872	4004182,1821	-0,0132	0,0198	0,0123
BODO	4207416,2576	1213626,1931	4622309,4997	-0,0179	0,0182	0,0100
BOVE	4289323,8516	1033109,1180	4591205,0610	-0,0151	0,0192	0,0099
BREZ	4282493,0154	1195090,5603	4558011,6405	-0,0184	0,0190	0,0128
CELJ	4263712,8238	1161749,2713	4584088,9913	-0,0168	0,0185	0,0111
CRNO	4315743,7235	1172020,1405	4532759,4369	-0,0165	0,0183	0,0125
GSR1	4292609,5110	1113639,2262	4569215,6186	-0,0162	0,0180	0,0127
ILIB	4335545,1370	1100950,6898	4532050,5670	-0,0188	0,0171	0,0101
KOPE	4346595,1453	1061559,3959	4530252,9003	-0,0183	0,0205	0,0124
MARI	4230543,5826	1185068,4048	4608685,4129	-0,0170	0,0190	0,0098
NOVG	4321545,3173	1047464,7789	4557315,9897	-0,0192	0,0176	0,0107
PTUJ	4236960,9685	1205419,4367	4597492,1505	-0,0165	0,0179	0,0107
RADO	4276891,1169	1079960,5679	4592111,0499	-0,0168	0,0190	0,0125
SLOG	4246111,0198	1144101,0719	4604923,7495	-0,0165	0,0186	0,0110

TREB	4294299,0971	1151308,5202	4558324,1434	-0,0177	0,0179	0,0110
VELP	4214943,6844	1236183,2530	4609375,2765	-0,0187	0,0176	0,0108
ZAGR	4287866,9538	1218688,8915	4546705,7013	-0,0328	0,0148 -	-0,0049
ZALA	4183194,9245	1266312,2903	4629927,6772	-0,0160	0,0185	0,0238
KOPR	4346427,6036	1061950,8018	4530349,1484	-0,0139	0,0208	0,0176
BLEI	4245735,4144	1121289,5840	4610928,2896	-0,0166	0,0179	0,0113
DLBG	4219870,5617	1147553,9199	4627915,5496	-0,0156	0,0172	0,0105
FLDB	4195227,4875	1193658,3682	4638461,5813	-0,0162	0,0187	0,0121
KLAG	4253507,8226	1085735,0723	4612213,1120	-0,0157	0,0182	0,0117
LANK	4259654,4117	1053590,5266	4614096,9902	-0,0152	0,0184	0,0124
BLE2	4245735,4152	1121289,5861	4610928,2851	-0,0172	0,0174	0,0122
KLA2	4253507,8190	1085735,0687	4612213,1022	-0,0152	0,0190	0,0138
LAN2	4259654,4163	1053590,5275	4614096,9895	-0,0171	0,0182	0,0119
DUBR	4465940,0684	1460594,4669	4299291,4263	-0,0188	0,0196	0,0148
GARI	4439513,8330	963867,1059	4461921,5589	-0,0170	0,0178	0,0102
OSJE	4237753,2455	1432791,6989	4531310,2826	-0,0183	0,0182	0,0105
SBG2	4180930,9568	973735,4454	4703203,5200	-0,0199	0,0161	0,0080
SRJV	4370292,9837	1454980,1295	4397965,3369	-0,0172	0,0188	0,0115
ACOM	4273810,7561	1027226,6571	4608634,9871	-0,0151	0,0184	0,0123
AFAL	4298653,0079	927400,5198	4607414,3979	-0,0142	0,0174	0,0124
CANV	4334208,3691	955715,0902	4566582,8265	-0,0149	0,0189	0,0116
CODR	4328222,2902	997585,6175	4562110,5043	-0,0155	0,0180	0,0134
FUSE	4292558,7257	991105,6471	4597527,8890	-0,0154	0,0180	0,0121
JOAN	4303674,3191	1026554,7309	4580287,1098	-0,0158	0,0177	0,0127
MDEA	4322832,3483	1032685,6144	4559530,7266	-0,0168	0,0175	0,0125
MPRA	4306530,1958	993265,7259	4584380,5014	-0,0159	0,0176	0,0118
NOVE	4357459,3244	973082,6753	4539605,0712	-0,0174	0,0180	0,0108
PAZO	4338789,9121	1005881,0545	4550256,7863	-0,0161	0,0177	0,0126
TRIE	4333581,7325	1061504,5923	4543010,6366	-0,0167	0,0174	0,0127
UDI1	4317298,2220	1016828,9180	4568247,8658	-0,0157	0,0176	0,0134
UDIN	4317320,8748	1016834,2360	4568220,9008	-0,0203	0,0167	0,0088
ZOUF	4282710,0379	986659,4419	4609469,7963	-0,0147	0,0182	0,0126
011A	4257694,4733	1147322,7474	4593582,2799	-0,0171	0,0179	0,0115
012A	4254594,2378	1148320,5605	4596408,7296	-0,0166	0,0170	0,0102
2S3A	4257905,2680	1141813,6293	4594990,2330	-0,0178	0,0180	0,0102
BASO	4336752,6231	1071231,5264	4537905,8691	0,0144	0,0207	0,0448
BIZE	4270200,4074	1199473,5655	4568540,4867	-0,0158	0,0182	0,0117
BJEL	4344704,7113	1161005,0128	4509917,6526	-0,0148	0,0176	0,0139
BLEG	4292630,5559	1079310,3922	4579117,2204	-0,0169	0,0179	0,0125
BORS	4284754,1150	1192780,2035	4556464,8141	-0,0176	0,0167	0,0135
BOZI	4295601,9422	1030102,3173	4587369,8355	-0,0168	0,0167	0,0116
BRSK	4307965,7551	1200393,4341	4532778,9420	-0,0175	0,0183	0,0115

BUKO	4241305,8952	1185179,2059	4599003,9438	-0,0163	0,0180	0,0106
CAOP	4284777,4551	1220139,9858	4549236,6916	-0,0163	0,0186	0,0119
CRNE	4291371,5417	1186567,2635	4552224,7922	-0,0176	0,0171	0,0116
DAVC	4292089,0671	1074038,9032	4579875,8198	-0,0321	0,0153	0,0211
DMIH	4235413,0864	1389394,9372	4546864,3603	-0,0184	0,0175	0,0089
DOBE	4285934,5838	1110917,4493	4576361,8251	-0,0144	0,0176	0,0150
DOLE	4305280,2103	1173808,7760	4542541,3435	-0,0176	0,0174	0,0120
DONA	4252206,6539	1198632,2254	4586161,5132	-0,0163	0,0181	0,0108
DRAG	4323126,8790	1130786,2034	4536955,4436	-0,0157	0,0162	0,0118
FGG3	4293737,8051	1110067,9667	4569047,7911	-0,0168	0,0174	0,0121
GRAD	4267436,6302	1445417,9525	4499533,6882	-0,0154	0,0199	0,0128
GRMP	4247637,8909	1009850,5432	4637230,3232	-0,0139	0,0190	0,0131
GRMT	4247623,1063	1009824,1986	4637247,5406	-0,0140	0,0186	0,0131
ILIV	4469743,7532	1485678,6268	4287028,1231	-0,0183	0,0190	0,0122
JAVO	4273872,7789	1179497,3592	4571245,7967	-0,0163	0,0182	0,0115
JEK1	4281785,0926	1188695,9570	4560302,2164	-0,0181	0,0179	0,0121
JELO	4345353,7743	1084298,2331	4527006,6009	0,0222	0,0265	0,0528
JELS	4340476,2052	1104230,2547	4526638,6830	-0,0175	0,0167	0,0117
JERU	4225126,0442	1227181,4531	4602678,6959	-0,0148	0,0184	0,0131
KALN	4246924,3200	1254342,1502	4575869,1045	-0,0160	0,0183	0,0120
KANI	4290595,5743	1025156,1617	4594746,5940	-0,0159	0,0173	0,0122
KMNK	4277737,3386	1115558,3831	4582962,1000	-0,0181	0,0173	0,0110
KORA	4310119,4625	1039591,0465	4570877,3743	-0,0170	0,0175	0,0119
KOSU	4267391,4288	1091231,3097	4600426,8763	-0,0167	0,0186	0,0118
KOVK	4316406,4512	1073774,2755	4557317,9996	-0,0155	0,0174	0,0134
KRGO	4273804,4419	1043435,4496	4603814,2400	-0,0148	0,0181	0,0122
KRIM	4303467,3202	1110727,7118	4560823,5723	-0,0175	0,0172	0,0120
KRMJ	4327909,0752	1046426,2242	4551790,4881	-0,0156	0,0179	0,0131
KRNK	4294433,5959	1044102,5416	4584780,9482	-0,0153	0,0167	0,0129
KUCE	4293438,5601	1129475,7626	4565202,1405	-0,0156	0,0178	0,0127
LEND	4212714,4039	1246016,0952	4608998,6549	-0,0271	-0,0059	0,0229
LIBN	4280411,0620	1188795,7838	4561740,2109	-0,0176	0,0183	0,0116
LOKA	4217271,2217	1193915,8407	4618635,5770	-0,0143	0,0183	0,0125
LUCE	4266917,0467	1119365,6509	4593334,2181	-0,0161	0,0182	0,0114
MALJ	4351694,4415	1056274,9540	4526994,8080	-0,0180	0,0175	0,0110
MANG	4280449,0389	1039866,3308	4600998,5318	-0,0141	0,0158	0,0104
MONT	4369598,2180	1067383,9284	4507229,0943	-0,0059	0,0211	0,0241
MRVS	4285121,3361	1195041,8436	4555635,9488	-0,0153	0,0187	0,0144
MRZL	4271062,0468	1153198,9553	4580640,3676	-0,0171	0,0189	0,0110
NOBR	4273227,6660	1314662,1614	4533897,1838	-0,0122	0,0202	0,0174
ORLJ	4281784,4343	1147343,6010	4571841,8184	-0,0177	0,0175	0,0112
PARA	4295775,4845	1088858,3328	4573139,2267	-0,0172	0,0174	0,0119

PLAN	4283330,7395	1178020,4874	4561892,9556	-0,0177	0,0180	0,0106
PONK	4260698,4513	1153287,9263	4589225,2481	-0,0115	0,0186	0,0168
PSTJ	4319956,3132	1095408,1482	4548544,9885	-0,0163	0,0143	0,0119
PUGS	4395697,4256	1083646,9182	4477714,9542	-0,0189	0,0181	0,0109
PULA	4396623,7515	1083670,9513	4476823,1351	-0,0135	0,0188	0,0164
RADT	4276816,2923	1081198,0375	4591886,4738	-0,0154	0,0182	0,0130
RIBN	4315183,2763	1135854,3922	4542857,6438	-0,0172	0,0197	0,0142
ROVI	4383992,2454	1062977,0115	4493984,6168	-0,0176	0,0187	0,0121
SEGO	4300244,7097	1062094,7982	4574775,7355	-0,0162	0,0165	0,0121
SLIV	4315836,0750	1108678,6724	4549727,0510	-0,0179	0,0179	0,0123
SMKP	4346593,1742	1061522,9706	4530253,8313	-0,0170	0,0179	0,0122
SNEZ	4330964,2928	1115839,2754	4534674,7301	-0,0203	0,0174	0,0090
SNZZ	4330957,3407	1115838,1343	4534678,0285	-0,0077	0,0192	0,0221
SOCE	4341073,7284	1071626,2467	4533734,4796	-0,0159	0,0174	0,0135
SVIV	4466232,2821	1404551,2944	4317585,1263	-0,0189	0,0176	0,0132
SVMO	4278538,3509	1184638,8856	4564700,5653	-0,0190	0,0190	0,0115
UCKA	4358744,5776	1103091,2641	4510712,3172	-0,0176	0,0178	0,0120
URGO	4251420,1556	1136327,0623	4603708,2432	-0,0166	0,0182	0,0107
VEKO	4244884,2636	1153155,9284	4605345,3440	-0,0166	0,0185	0,0098
VIDM	4280210,5754	1186026,3859	4562467,4967	-0,0163	0,0185	0,0125
VIVO	4271848,0629	1129970,0296	4586202,4709	-0,0160	0,0176	0,0115
ZGLA	4291721,7161	1160395,5964	4558818,0745	-0,0170	0,0180	0,0118
ZULA	4365072,5891	1174698,4708	4485319,3680	-0,0208	0,0143	0,0134

Primerjava ocenjenih koordinat in vektorjev hitrosti med metodo PPP in programskim paketom BSW5.0:

PT		DN	DE	DU	DVN	DVE	DVU
		[mm]	[mm]	[mm]	[mm/leto]	[mm/leto]	[mm/leto]
ZIMM	*	-1,6	-0,3	4,9	-0,1	-0,1	-0,3
WTZR	*	-1,4	0,1	2,2	0,1	-0,4	-0,1
MATE	*	1,1	-1,2	6,6	-0,4	0,1	-0,8
GRAS	*	-1,1	-0,4	5,6	0,1	-0,3	-0,3
GRAZ	*	-1,4	0,6	3,2	0,0	-0,3	-0,2
POTS	*	-1,5	-1,4	5,3	-0,2	0,0	-0,3
SOFI	*	2,9	1,1	5,7	-0,6	-0,1	-0,2
PENC	*	-0,5	0,3	2,8	-0,0	0,0	-0,6
JOZE	*	-3,8	-3,7	5,4	-0,1	0,1	0,3

BOR1	*	-1,3	-2,8	4,1	-0,1	0,1	-0,2
MEDI	*	-0,9	0,2	6,6	-0,4	-0,4	-0,5
BLEI	*	4,6	3,9	-7,0	-0,1	-0,2	1,2
DLBG	*	-2,8	4,0	2,4	0,4	-0,2	-0,7
FLDB	*	0,4	-1,4	-0,1	-0,2	-0,1	-0,0
KLAG	*	2,0	-3,2	-4,4	-0,1	-0,0	0,6
LANK	*	7,2	-0,6	-7,2	-0,8	-0,2	0,4
BLE2		0,7	15,3	-23,4	0,0	-1,5	1,7
KLA2		-10,3	-1,2	-15,5	1,2	-0,3	1,2
LAN2	*	-6,3	2,9	7,0	0,6	-0,4	-1,6
BODO	*	1,5	2,8	-7,0	-0,0	-0,4	1,1
BOVE	*	-6,3	1,1	-20,0	1,0	0,0	-0,2
BREZ	*	-0,7	0,9	-8,8	0,1	0,1	1,2
CELJ	*	2,4	0,1	-8,9	-0,1	-0,2	1,1
CRNO	*	3,7	3,0	22,1	0,0	-0,4	-0,6
GSR1		2,6	1,3	25,5	-0,1	-0,2	-0,9
ILIB	*	0,2	0,5	-0,3	0,2	0,0	0,1
KOPE	*	-0,6	-0,9	-15,8	0,1	-0,3	0,9
MARI		5,0	3,1	29,2	-0,6	-0,3	-0,9
NOVG	*	1,3	-8,4	12,0	-0,0	0,5	1,3
PTUJ		10,7	12,1	-0,9	0,4	0,1	-2,0
RADO	*	-0,3	-2,1	-8,3	0,2	0,2	1,1
SLOG	*	0,0	0,7	-5,1	0,1	-0,1	0,4
TREB	*	0,5	3,6	-7,3	0,1	-0,3	0,9
VELP	*	-2,2	-2,1	11,2	0,3	0,0	-2,7
KOPR	*	7,0	7,8	7,4	-0,3	1,0	1,4
ACOM	*	2,1	-0,6	-2,4	-0,2	0,1	0,0
AFAL	*	1,5	-1,4	-1,9	-0,1	-0,0	-0,2
CANV	*	2,6	-4,3	-2,9	-0,3	0,5	0,1
CODR	*	1,9	-2,0	-18,1	-0,2	0,3	1,2
FUSE	*	-2,6	-2,6	-1,0	0,2	0,3	-0,2
JOAN	*	-1,0	-0,6	-2,6	0,1	-0,0	0,1
MDEA	*	0,1	0,5	0,3	-0,0	-0,1	-0,3
MPRA	*	1,6	1,3	-1,5	-0,1	-0,1	-0,1
NOVE	*	-4,2	-0,4	-12,1	0,3	0,1	1,0
PAZO	*	-2,1	-3,9	18,3	0,2	0,2	-2,4
TRIE	*	0,3	0,6	-3,3	0,0	-0,1	0,0
UDI1	*	-2,3	-1,3	-10,3	0,4	0,0	0,9
UDIN	*	3,8	5,7	-5,1	-0,3	-0,8	-0,7
ZOUF	*	3,0	1,6	-7,4	-0,2	-0,2	0,4
SRJV	*	-1,0	1,4	7,0	-0,1	0,0	-0,6
GARI		-18,9	-4,8	-19,8	-0,1	-0,1	0,8

SBG2	0,9	3,3	15,3	0,4	-0,9	-4,4
DUBR *	-5,5	-5,0	-1,6	1,4	1,0	0,9
OSJE *	0,3	2,4	7,6	0,1	-0,4	-1,6
KOSG *	-0,1	1,1	6,2	-0,3	0,1	-0,8
METS	-3,2	-1,7	1,0	-0,2	0,0	1,6
VILL *	0,9	-1,8	3,6	0,2	-0,5	0,1
CAGL *	-0,7	-0,8	4,7	-0,2	-0,4	-0,7
HFLK *	-1,3	-0,2	1,4	-0,2	0,2	-0,3
UPAD *	-1,3	7,4	7,2	-0,3	2,3	0,7
PADO *	1,6	-2,3	-0,4	-0,1	-0,0	-0,1
RMS	2,8	2,9	8,3	0,3	0,5	0,9
[* Vezna	točka v pro	ostorski	transforma	ciji}		

J Različne variante referenčnega koordinatnega sestava Slovenije

Razlika med ETRF89 koordinatami (EPN) in uradnimi koordinatami v D96

EPH:	1	.993,0	1	1	995,80	1	19	99,40		20	15,00	1
PT	 DN	DE	DU	D N	 DE	DU	DN	DE	DU	 DN	DE	DU
I	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
·	10 2	16 7	 محمد	 05 1	12 0	-	 22 0			717	12 7	17 5
BUNE	10,5	18.4	16 6	1 0	13 0	11 0	17 A	7,9 8 0	-27,01	84.6	-15,7	20 3
	-10,1	10,4	-10,0	I,9 50 0	10,9	-11,9	17,4 50.0	14 5	16 0	55 D	-10,4	5 6
CELL	14 7	18 7	26 3	21 A	15 1	21 6	30,0	10 5	15 7	67 5	-10,0	10 01
CELJ	11,1 05 1	10,7	-20,31	21,1	7 0	7 6	35 A	10,5	-10,71 5 01	60 5	-9,0	5 01
CCP1	20,1	10,4	- 3, 3	30 6	7,8 2 1	0 6	36 1		0.01	60 1	-3,4	7 0
TITE	20,5	4,9 1 G	-1,0	30,0 26 /	0.7	-0,01	JU,I	0,9	41 0	60,1	-0,7	7,2 07 2
ILID	JZ,J	1,0	-09,1	30,4 40 E	27 0	-50,0	41,3	-0,4	-41,0	02,0 ED D	-0,2	21,3
MADT		40,0 04 0	20,01	40,5	10 0	-17,01	42,0 01 E	10 0	15 0	70 0	-29,0	20,31
NOVC	20 7	24,Z	-30,9	9,5	10,9	-24,01	21,5	12,2	20.0	72,0 50.0	-17,0	22,91
	0,1	۲ ۲ , ۲	-57,1	40,5	9,1	-40,4	42,0 D6 E	5,9	-30,2	52,9	-0,4	1/ 2
	22 0	0,4	-21,0	26 0	10,5	10 7	20,5	+, 1 10 0	-11,5	62 0	-0,1	14,31
SIUC	15 5	17 5	-15,01	30,0 23 0	13 7	-12,7	30 7	8 9	-9,0 15 8	74.2	-10,0	2,1 7 0
TRER	10,0 20 5	11 2	44 21	20,0 34 A	8.8	37 0	40 5	5,5	27 8	67.3	-12,2	10 3
DIEC	10 6	2 7	1 0	12 7	1 7	-57,01	17 9	0,0	-27,01	35.0	-0,2	26 4
	10,0	3,1	2 1	13 0	1,7	1 4	24.0	-0,0	3,01 7 3	71 3	-12,0	20,41
DONAL	+,5 6 6	0,0	-3,1	14 0	1.0	0.4	24,0	-1,4	7,3 / 9	71,5	-12,4	52,01
ECC3	73	0,9	-4,0	14,9	-1,2	1 0	20,0 16 /	-4,0	+,0 6 9	71,5 20 E	-10,9	27,01
	7,3 5 0	0,0 35	-1,9	12 0	0,2	0.6	20.8	-0,4	33	58 Q	-3,3	20,01
IFRII	6.0	3,3 2 4	5 7	13 1	0.5	1 8	20,0 203	-1,0	3 3	61 5	10 3	20,01
KANT	6 1	2, 1 0.2	3 7	11 0	0,0	6 2	17 7	-1,0	-0,0 0 3	46.2	1 6	-20,± 03 1
KWNK	37	-0,2	8 8 1	7 0	1.6	0,21	11 7	0,4	10 1	τ0,2 31 Δ	7 1	56 4
KUBV	6.0	1.6	_4 3	97	0.7	0,01	14 A	-0.5	75	35 0	-7,1	36 4
KUSII	67	3.0	0.81	11 9	_0 9	4 3	18 7	-5 9	8 7	48 0	-27 5	28 2
KUNK	84	0,0	5.81	12 2	0,0	5.0	17 0	1 5	4 0	38.2	4 0	_0 3
KBGO	6.8	0 1	0 7	14 5	-1 1	0.5	24 4	-2.8	0.2	67 5	-10 1	-1 2
KRIM	99	07	541	12 6	0.3	10 9	16 1	-0.2	18 0	31 2	-2 6	48 8
KUCE	7.6	1.9	2.1	13.0	1.1	2.2	20.0	0.2	2.2	50.3	-3.8	2.2
LEND	58.4	-33.9	-17.4	8.8	19.7	-5.6	-55.0	88.6	9.6	-332.0	387.3	75.4
LOKA	3.1	1.6	5.3	12.2	0.2	1.8	23.7	-1.6	-2.7	73.9	-9.2	-22.0
LUCE	6.2	10.7	5.3	13.4	8.3	8.5	22.5	5.3	12.6	62.4	-7.7	30.2
MALJ	8.1	1.5	-9.8	11.7	0.3	-0.6	16.5	-1.4	11.3	36.5	-8.7	62.7
MANG	2.3	-4.5	1.3	13.8	0.9	4.5	28.6	7.9	8.7	92.6	38.4	26.6
MRZL	-,° 3.1	12.7	-14.7	9.6	7.8	-9.4	18.0	1.6	-2.6	54.2	-25.5	27.0
ORI.I	7.8	3.6	-4.1	12.0	2.2	2.9	17.4	0.3	11.7	40.8	_7.9	50.01
PARA	2.7	0.8	-1.8	6.2	0.0	3.3	10.7	-1.0	10.0	30.0	-5.5	38.6
RADT	2 ,7 5.4	2.9	9.1	10.6	1.0	8.1	17.4	-1.3	6.8	46.6	-11.8	1.2
RTRN	14 0	12 6	ン, エー つ つ ー	14 4	-, ° 5 7	1 5	14 9	-3 1	0.6	16 9	_41 4	_3 4
SEGO	3.0	4.3	2.8	7.5	6.6	6.3	13.3	9.6	10.8	38.2	22.4	30.2
SMKP	8.0	6.0	7.3	11.4	4.3	11.9	15.7	2.0	17.9	34.7	-7.7	43.8
1	-,-	-,-	.,-1	,-	-,-	.,- 1	-,.	-,,	.,-1	-, ·	.,.	-,-1

SNEZ	8,0	2,6	-17,1	11,3	-0,1	-0,1	15,5	-3,6	21,7	33,9	-18,8	116,5
URGO	4,9	4,5	-4,8	12,6	1,8	0,5	22,3	-1,8	7,2	64,7	-17,0	36,3
VEKO	4,4	3,4	-4,2	14,0	-0,1	2,5	26,3	-4,8	11,3	79,7	-24,6	48,7
VIVO	3,4	3,8	-3,4	10,2	3,2	-0,4	19,1	2,5	3,6	57,5	-0,8	20,6
ZGLA	7,0	2,8	-2,3	11,7	0,6	1,9	17,7	-2,3	7,2	43,9	-14,7	30,3

Vektorji hitrosti geodetskih točk GPS Slovenije v koordinatnem sestavu ETRF89:

PT	VN	VE	VU	GROBI
	[mm/leto]	[mm/leto]	[mm/leto]	POGREŠEK
GRAZ		0.76	-2.38	
BODO	-2.42	1.38	-2.89	
BOVE	-4.31	1.58	-1.68	
BREZ	-0.27	2.14	-1.39	
CELJ	-2.40	1.29	-1.65	
CRNO	-1.61	0.90	-0.65	
GSR1	-1.53	0.62	-0.41	
ILIB	-1.37	0.30	-4.38	
KOPE	-0.61	3.46	-1.97	
MARI	-3.30	1.87	-2.45	
NOVG	-0.65	0.91	-4.21	
PTUJ	-2.85	0.65	-1.64	
RADO	-1.37	1.79	-0.80	
SLOG	-2.67	1.35	-1.48	
TREB	-1.72	0.88	-2.57	
VELP	-1.24	1.01	-2.92	
BLEI	-2.22	0.72	-1.51	
DLBG	-3.38	-0.18	-1.39	
FLDB	-2.24	1.43	-0.15	
KLAG	-2.57	0.79	-0.68	
LANK	-2.42	0.87	0.09	
BLE2	-1.09	0.39	-1.34	
KLA2	-1.62	1.44	1.31	
LAN2	-1.39	1.14	-1.57	
ACOM	-2.51	0.84	-0.03	
AFAL	-2.75	-0.30	0.16	
CANV	-3.07	1.21	-0.73	
CODR	-1.33	0.45	0.15	
FUSE	-2.30	0.51	-0.60	
JOAN	-1.61	0.26	-0.44	

J2

Dokt.	dis.	Ljubljana, UI	FGG,	doktorski	študijski	program	III.	$\operatorname{stopnje}$	Grajeno	o okolj
MDEA		-1.03		0.25	- 1	35				
MPRA		-2.09		0.20	- 1					
NOVE		-1.77		0.82	-3	8.18				
PAZO		-1.43		0.27	-C).90				
TRIE		-0.99		0.10	- 1	13				
UDI1		-1.16		0.12	C	0.04				
UDIN		-0.98		0.30	-6	5.52				
ZOUF		-2.48		0.57	C	.29				
011A		-1.78		0.81	- 1	68				
012A		-2.86		-0.19	-2	2.43				
2S3A		-2.19		1.08	-3	3.08				
BIZE		-2.69		0.69	-C).53				
BJEL		-1.65		-0.27	1	23				
BLEG		-1.11		0.71	- 1	12				
BORS		0.11		-0.30	-C	0.80				
BOZI		-1.51		-0.46	-2	2.03				
BUKO		-3.04		0.70	- 1	63				
CRNE		-1.28		0.08	-2	2.13				
DAVC		15.95		1.88	-5	5.57 *	**			
DMIH		-3.02		0.73	-3	8.83				
DOBE		-1.12		-0.21	2	2.41				
DOLE		-1.04		0.34	- 1	87				
DONA		-2.95		0.76	- 1					
DRAG		-2.20		-1.33	- 1					
FGG3		-1.42		0.19	- 1	36				
JAVO		-2.45		0.83	- 1	07				
JEK1		-0.74		1.00	- 1	91				
JELO		-1.41		-0.53	55	5.47 *	**			
JELS		-1.08		-0.42	-2	2.44				
JERU		-2.52		0.67	1	42				
KALN		-2.46		0.84	- C	0.21				
KANI		-1.83		-0.08	- C	0.88				
KMNK		-1.26		0.45	-2	2.97				

KORA

KOSU KOVK

KRGO

KRIM

KRMJ

KRNK KUCE

LEND

-1.32

-1.88

-1.36

-2.77

-0.97

-1.54

-1.69

-1.94

17.75

0.33

1.39

-0.16

0.46

0.15

0.34

-0.82

0.26

-19.14

-1.85

-1.24

0.28

0.09

-1.97 -0.03

-0.04

-0.00

-4.22

LIBN	-1.51	1.26	-1.86	
LOKA	-3.21	0.49	1.24	
LUCE	-2.55	0.83	-1.13	
MALJ	-1.29	0.47	-3.30	
MANG	-4.10	-1.95	-1.15	
MRVS	-1.24	1.01	1.77	
MRZL	-2.32	1.74	-1.89	
ORLJ	-1.50	0.52	-2.46	
PARA	-1.24	0.29	-1.83	
PLAN	-2.06	0.99	-2.73	
PONK	-2.17	0.01	6.02	
PSTJ	-1.33	-2.99	-1.83	
RADT	-1.87	0.67	0.36	
RIBN	-0.13	2.45	0.26	
SEGO	-1.60	-0.82	-1.24	
SLIV	-0.60	0.90	-1.96	
SMKP	-1.21	0.63	-1.66	
SNEZ	-1.18	0.98	-6.08	
SNZZ	-1.05	-0.42	12.13	***
SOCE	-1.00	-0.11	-0.02	
SVIV	0.27	0.51	-2.06	
SVMO	-0.74	2.31	-2.74	
URGO	-2.72	0.98	-1.87	
VEKO	-3.42	1.28	-2.40	
VIDM	-1.82	1.10	-0.31	
VIVO	-2.46	0.21	-1.09	
ZGLA	-1.68	0.80	-1.48	

Ocenjene koordinate in vektorji hitrosti s programskim paketom BSW5.0 v globalnem koordinatnem sistemu IGb08 za trenutek 2005,0:

REFERE	NČNA EPOHA: 20	15,00				
TC	Х	Y	Z	VX	VY	VZ
	[m]	[m]	[m]	[m/lt]	[m/lt]	[m/lt]
GRAZ	4194424,1155	1162702,4557	4647245,1869	0,0005	0,0006	0,0004
BODO	4207416,5420	1213625,9631	4622309,2613	0,0011	-0,0002	0,0008
BOVE	4289324,1612	1033108,8836	4591204,8164	-0,0022	0,0000	0,0013
BREZ	4282493,2944	1195090,3339	4558011,4211	0,0011	-0,0009	-0,0015
CELJ	4263713,1184	1161749,0387	4584088,7583	-0,0004	-0,0002	0,0000
CRNO	4315744,0211	1172019,9042	4532759,2109	-0,0010	-0,0001	-0,0010

GSR1	4292609,8108	1113638,9845	4569215,3993	-0,0011	0,0006	-0,0014
ILIB	4335545,4106	1100950,4364	4532050,3166	0,0012	0,0016	0,0015
KOPE	4346595,4232	1061559,1736	4530252,6725	0,0006	-0,0015	-0,0008
MARI	4230543,8756	1185068,1801	4608685,1704	0,0001	-0,0009	0,0011
NOVG	4321545,5860	1047464,5279	4557315,7486	0,0017	0,0015	0,0007
PORE	4303467,7883	1110727,2892	4560823,2187	-0,0174	0,0186	0,0113
PTUJ	4236961,2667	1205419,2019	4597491,9156	-0,0005	0,0001	0,0003
RADO	4276891,4103	1079960,3349	4592110,8316	-0,0004	-0,0001	-0,0014
SLOG	4246111,3172	1144100,8401	4604923,5183	-0,0005	-0,0002	0,0000
TREB	4294299,3825	1151308,2796	4558323,9058	0,0004	0,0005	0,0003
VELP	4214943,9611	1236183,0180	4609375,0444	0,0019	0,0002	0,0001
ACOM	4273811,0657	1027226,4151	4608634,7688	-0,0021	0,0008	-0,0012
AFAL	4298653,3248	927400,2607	4607414,1802	-0,0032	0,0025	-0,0012
CANV	4334208,6793	955714,8462	4566582,5954	-0,0027	0,0008	-0,0002
CODR	4328222,5951	997585,3672	4562110,2907	-0,0021	0,0014	-0,0020
FUSE	4292559,0316	991105,3981	4597527,6672	-0,0019	0,0015	-0,0009
JOAN	4303674,6216	1026554,4805	4580286,8917	-0,0016	0,0015	-0,0014
MDEA	4322832,6408	1032685,3615	4559530,5037	-0,0007	0,0017	-0,0011
MPRA	4306530,4967	993265,4724	4584380,2748	-0,0015	0,0019	-0,0005
NOVE	4357459,6098	973082,4222	4539604,8285	-0,0003	0,0016	0,0008
PAZO	4338790,2111	1005880,8013	4550256,5631	-0,0015	0,0016	-0,0011
TRIE	4333582,0264	1061504,3396	4543010,4135	-0,0009	0,0016	-0,0012
UDI1	4317298,5252	1016828,6654	4568247,6531	-0,0018	0,0017	-0,0020
UDIN	4317321,1320	1016833,9744	4568220,6421	0,0028	0,0026	0,0026
ZOUF	4282710,3509	986659,1951	4609469,5810	-0,0026	0,0013	-0,0015
011A	4257694,7647	1147322,5082	4593582,0521	0,0000	0,0005	-0,0004
012A	4254594,5343	1148320,3125	4596408,4892	-0,0005	0,0014	0,0009
2S3A	4257905,5524	1141813,3908	4594989,9924	0,0007	0,0004	0,0009
BIZE	4270200,7125	1199473,3319	4568540,2577	-0,0014	-0,0002	-0,0005
BJEL	4344705,0258	1161004,7676	4509917,4373	-0,0029	0,0007	-0,0022
BLEG	4292630,8483	1079310,1475	4579117,0002	-0,0004	0,0010	-0,0013
BORS	4284754,4020	1192779,9538	4556464,6015	0,0003	0,0014	-0,0022
BOZI	4295602,2348	1030102,0575	4587369,6073	-0,0006	0,0025	-0,0004
BUKO	4241306,1952	1185178,9707	4599003,7080	-0,0007	0,0001	0,0004
CRNE	4291371,8286	1186567,0172	4552224,5599	0,0003	0,0010	-0,0003
DAVC	4292089,2074	1074038,6321	4579875,6858	0,0148	0,0036	-0,0099
DMIH	4235413,3679	1389394,7093	4546864,1017	0,0014	-0,0008	0,0023
DOBE	4285934,9016	1110917,2037	4576361,6298	-0,0029	0,0010	-0,0038
DOLE	4305280,4970	1173808,5313	4542541,1138	0,0002	0,0008	-0,0006
DONA	4252206,9541	1198631,9915	4586161,2776	-0,0008	-0,0001	0,0003
DRAG	4323127,1841	1130785,9433	4536955,2109	-0,0018	0,0023	-0,0003
FGG3	4293738,0989	1110067,7187	4569047,5658	-0,0005	0,0012	-0,0008

JAVO	4273873,0788	1179497,1242	4571245,5659	-0,0009	0,0000 -0,0003
JEK1	4281785,3745	1188695,7192	4560301,9903	0,0008	0,0002 -0,0008
JELO	4345354,4576	1084298,0723	4527006,7767	-0,0399	-0,0077 -0,0412
JELS	4340476,4918	1104229,9973	4526638,4478	-0,0001	0,0020 -0,0001
JERU	4225126,3598	1227181,2251	4602678,4858	-0,0021	-0,0005 -0,0022
KALN	4246924,6239	1254341,9219	4575868,8798	-0,0010	-0,0006 -0,0009
KANI	4290595,8760	1025155,9078	4594746,3727	-0,0014	0,0019 -0,0010
KMNK	4277737,6195	1115558,1352	4582961,8656	0,0009	0,0013 0,0002
KORA	4310119,7532	1039590,7946	4570877,1469	-0,0004	0,0016 -0,0006
KOSU	4267391,7235	1091231,0738	4600426,6520	-0,0005	0,0002 -0,0007
KOVK	4316406,7574	1073774,0243	4557317,7855	-0,0020	0,0015 -0,0020
KRGO	4273804,7547	1043435,2055	4603814,0202	-0,0024	0,0010 -0,0011
KRIM	4303467,6071	1110727,4614	4560823,3448	0,0001	0,0014 -0,0007
KRMJ	4327909,3799	1046425,9759	4551790,2702	-0,0020	0,0012 -0,0016
KRNK	4294433,9037	1044102,2827	4584780,7327	-0,0020	0,0024 -0,0017
KUCE	4293438,8662	1129475,5198	4565201,9207	-0,0017	0,0007 -0,0014
LEND	4212714,5967	1246015,6259	4608998,5438	0,0103	0,0236 -0,0120
LIBN	4280411,3490	1188795,5501	4561739,9799	0,0003	-0,0002 -0,0003
LOKA	4217271,5418	1193915,6101	4618635,3629	-0,0026	-0,0002 -0,0017
LUCE	4266917,3478	1119365,4127	4593333,9890	-0,0011	0,0004 -0,0003
MALJ	4351694,7223	1056274,7012	4526994,5657	0,0003	0,0015 0,0006
MANG	4280449,3588	1039866,0633	4600998,2934	-0,0032	0,0033 0,0007
MRVS	4285121,6461	1195041,6140	4555635,7450	-0,0020	-0,0007 -0,0031
MRZL	4271062,3384	1153198,7259	4580640,1330	-0,0001	-0,0005 0,0002
ORLJ	4281784,7197	1147343,3568	4571841,5846	0,0004	0,0009 0,0000
PARA	4295775,7740	1088858,0835	4573138,9998	-0,0002	0,0014 -0,0006
PLAN	4283331,0253	1178020,2499	4561892,7146	0,0004	0,0002 0,0007
PONK	4260698,7988	1153287,6944	4589225,0727	-0,0056	-0,0002 -0,0057
PSTJ	4319956,6117	1095407,8672	4548544,7583	-0,0012	0,0044 -0,0004
RADT	4276816,5997	1081197,7966	4591886,2605	-0,0018	0,0007 -0,0019
RIBN	4315183,5664	1135854,1678	4542857,4360	-0,0003	-0,0013 -0,0027
SEGO	4300245,0088	1062094,5381	4574775,5107	-0,0012	0,0025 -0,0008
SLIV	4315836,3578	1108678,4283	4549726,8249	0,0004	0,0007 -0,0009
SMKP	4346593,4651	1061522,7223	4530253,6015	-0,0007	0,0011 -0,0006
SNEZ	4330964,5517	1115839,0261	4534674,4689	0,0027	0,0012 0,0025
SNZZ	4330957,7256	1115837,9030	4534677,8983	-0,0099	-0,0006 -0,0106
SOCE	4341074,0305	1071625,9943	4533734,2633	-0,0017	0,0015 -0,0019
SVIV	4466232,5577	1404551,0579	4317584,8801	0,0005	-0,0011 -0,0003
SVMO	4278538,6238	1184638,6587	4564700,3337	0,0018	-0,0009 -0,0002
URGO	4251420,4520	1136326,8258	4603708,0086	-0,0005	0,0003 0,0003
VEKO	4244884,5602	1153155,6962	4605345,1007	-0,0004	-0,0001 0,0012
VIDM	4280210,8753	1186026,1540	4562467,2748	-0,0010	-0,0004 -0,0012

VIV0 4271848,3651 1129969,7858 4586202,2419 -0,0012 0,0009 -0,0004 ZGLA 4291722,0087 1160395,3575 4558817,8450 -0,0003 0,0003 -0,0005