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Real tides do not exactly behave as equilibrium tides because: 
 
Tidal waves are shallow water waves, whose propagation velocity is 
 
For H=4000 m (average depth of the global ocean) the propagation speed is 
 
 
 
Assuming the moon over the equator, the linear  velocity of the earth surface relative to the 
moon is given by:  
                                                                                 R( radius of the earth) =6370km 
                                                                                 dm (lunar day)=24h50min=89400 s. 
 
At such speed the “bulge” of the equilibrium tide would remain constantly under the moon, at 
the sublunar point (and at its antipode), BUT,In order to have a shallow water wave propagating  
at such speed, the ocean depth should be 
 
 
 
 
Clearly an equilibrium tide at the equator is not possible. 

Equilibrium tide vs. :”real” tide”  
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Real tides do not exactly behave as equilibrium tides because: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The linear velocity of the earth surface decrease with latitude and becomes comparable with the  
shallow water wave propagation speed (computed at h=4000m) only above 60°N or S. 
 
Then an equilibrium wave is not possible because of depth or because earth linear velocity (with 
respect to moon) over a very large part of the ocean. 

Equilibrium tide vs. :”real” tide”  
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Real tides do not exactly behave as equilibrium tides because: 
 
 
Earth rotate on its axis too rapidly for either the inertia of water  mass, or the frictional forces at 
the seabed to be overcome  fast enough to allow for an equilibrium tide. 
 
There is an inevitable time lag in the ocean response to the TGF  
Usually HT arrive some hours after the passage of the moon.  
The tidal lag decrease with latitude :  
6 hr at the equator  
0 at 65°   N/S 
 
The presence of land masses prevent tidal bulges to circumnavigate the planet 
(possible only in the circumpolar current region around antarctica. 
 
Last but not least…. 
 
The Coriolis force deflects water movements including tidal currrents. 

Equilibrium tide vs. :”real” tide”  



Understanding tides by considering how depth basins shape, rotation inertia and friction 
influence the behaviour of fluids under the action of the moon/sun TGF. 
 
Complex theory with complicated solutions of the equations. Currently relying strongly on 
numerical computation. 
 
The combined constraint of ocean basin geometry and the influence of the Coriolis force results 
in the development of amphidromic systems, where the crest of a tidal wave circulate around 
the amphidromic point once over a tidal period. At the amphidromic point the tidal range is zero.    

Dynamic theory of tides  
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For each amphidromic systems (of a specific tidal 
constituent) the theory define  
“co-tidal lines” (red lines)  
radiating from the amphidromic point, indicating the 
timing of HT in hours after the passage of the moon 
over the Greenwich meridian, and marking the 
rotation of the tidal wave around the amphidromic 
point. 
 
 
The  
“co-range” lines” (blue lines)  
cutting the co-tidal lines at (almost) 90° indicates the 
location characterised by the same tidal range. 
More or less concentric circles around the 
amphidromic point.  

Dynamic theory of tides  



The equation of motion under the hydrostatic and Boussinesq approximation can be written as: 
 
 
 
 
 
 
 
 
 
 
 
                                                                                         pa=atmospheric pressure 
Fx and Fy indicate the components of  force (per unit mass) other that the pressure force. 
To the above equations must be (obviously) added the continuity equation. 

Equation of motion for tidal analysis  
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Under constant pa and under barotropic conditions: 
 
 
 
 
 
 
 
 
 
 

Equation of motion for tidal analysis  
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                                             Fx and Fy include (as usual) the vertical frictional stresses in the           
                                                   water (horizontal stress are disregarded)              
                                                     
 
 
 
                                                   but now also the the TGF 
            
                                                                                                     since                                                                                                                    
 
 we have:  
 
 
Where (from now on)  ηT indicates the elevation in the equilibrium tide       

Equation of motion for tidal analysis  
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The equation system therefore becomes: 
 
 
 
 
 
 
 
 
 
 
 

Equation of motion for tidal analysis  
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And after linearisation……… 
 
 
 
 
 
 
 
 
 
 
 

Equation of motion for tidal analysis  
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Posing:  
 
 
 
 
So that         and       are the vertically averaged components of the velocity field. 
 
Defining also 
 
 
 
 
The equation for the vertically averaged flow equations are obtained   (NOT transport 
equations)    
 
 
 
 
 
 
 

Equation of motion for tidal analysis  
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By the same procedure the continuity equation becomes: 
 
 
 
 
In the following the system is not forced by the wind stress                                    Then:  
                               

Equation of motion for tidal analysis  
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The bottom stress arise form a linear drag law 
 
with                                       amplitude of the depth averaged  current  
 
Assuming also   H<<η   the equations above become:          

Equation of motion for tidal analysis  
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The linearised equation may be solved for any particular harmonic tidal constituent (given the 
appropriate boundary conditions. The solution for each constituent may be superposed to give the 
resultant tide. 
The time varying resultant elevation at a given place can be written: 
i refers to the to the ith harmonic constituents considered  
N: total number of harmonic constituents 
Hi: amplitude of the constituent 
ωi: angular speed 
αi : phase of the constituent at t=0 in the equilibrium tide 
γi: phase lag of the constituent In the actual tide behind that of the same constitueni in the 
equilibrium tide  
 
 
It is useful in the study of the tides to regards them as being due to the superposition of  waves of 
various type generated by the TGF. Such waves are forced waves, but their amplitude is increased 
if there is a tendency to resonance between tidal forces and free waves. 
Useful insight into tidal movements may be  obtained by considering free waves in the ocean 

Equation of motion for tidal analysis  
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Progressive waves 
The linearised equations for free waves travelling in  an ocean of constant depth, without friction 
With ηT=0  are: 
 
                                         
                                        A particular solution may be obtained  for a progressive wave travelling 
                                        in the  x direction (v=0): 
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Progressive waves 

u can be eliminated by differentiating: 
 
 
with respect to x and 
 
 
 with respect to t, to obtain: 
 
                                                                          or 
 
 
 
 
By analogous procedure a similar equation can be obtained for u: 
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Progressive waves 

A wave of general form travelling in the x direction satisfying the above equations is: 
 
 
 
 
From                        it can be found:  
 
 with: A=constant and                          the barotropic deformation radius. 
 
 
The factor                              indicates that the wave amplitude decrease exponentially in the y 
direction.   
 
This type of motion is known as the Kelvin wave. 
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Kelvin Wave 

As a special case consider a wave of simple harmonic form of wavelength  λ by setting: 
 
 
 
The period is given by T=λ/c .Setting κ=2π/λ  and σ=2π/T
 The solution is  
 
 
These equations represents a Kelvin wave travelling in the x direction. 
Amplitude increase exponentially in the negative  y direction if f>0 Amplitude increase to the right 
of the propafation direction (n. Hemisphere 
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Having: H=4000 m we get c= 98 m s-1

For a M2 tidal wave (T=12h25min) the relation λ=ct gives λ =8850 
km . 
The rate of change of amplitude across the wave front depend on 
latitude: 
At 30°N f=7.29 10-5 s-1. then R=2720 km. The amplitude would then 
increase by a factor e in a distance of 2720 (to the right along the 
wavefront).  

Kelvin Wave 

Open ocean tidal waves amplitude (A) are at most 0.5 m s-1. then (cA)/H=2.5 cm s-1 a typical 
value for tidal current in the ocean.  
However, a wave with an indefinite growth in amplitude is not realistic. 
In fact a Kelvin wave is found travelling parallel to the coast with the coast at its right (N. 
Hemisphere), or along the equator (f=0) 



Amphidromic system development 

Consider the enclosed basin below 
The bent arrows show how water is moving in a 
flood and ebb tide and how Coriolis force deflects 
The currents (toward the “right”/”left” coast at flood/
ebb) . 
 
The deflection is constrained by the two coasts  
 
Water is then periodically piled up against the two 
coasts. 
 
The coastal constraints cause the tidal wave to 
behave as a Kelvin wave, rotating along the coast 
of the basin. 
 



The coastal constraints cause the tidal wave 
to behave as a Kelvin wave, rotating along 
the coast of the basin. 
 
An amphidromic system is then generated, 
With a kelvin wave running parallel to the 
coast around the amphidromic point 
(location where the Kelvin wave amplitude is 
Zero) 

Here co-tidal lines are 
“time-labelled” in twelwfth 
of the tidal period 
(for M2 12h25min)  

Amphidromic system development 


