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Abstract: A relative motion model for a Client and a Servicer spacecraft in near geostationary
orbit is developed taking into account various gravitational and non-gravitational forces. In
particular, differential perturbations due to Earth’s oblateness, solar radiation pressure and third-
body gravitational pull are studied, quantified and modeled. The relative motion model is validated
using one typical far range approach test scenario against a reference generated by numerical
propagation of two absolute orbits.
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1. Introduction

The relative motion of two close spacecraft in Low Earth Orbit (LEO) was characterized in [1] with a
focus on the secular perturbations due to Earth’s oblateness as well as the differential air drag. It has
been employed at the German Space Operations Center (GSOC) in various LEO formation-flying
experiments, e.g. [2]. However, for two close satellites in the geostationary ring, the differential
perturbations induced by the Earth’s oblateness, addressed in section 3.2., are negligible, and,
obviously, no air drag modeling is required. On the other hand, some effects that might be secondary
in LEO can play a significant role at GEO altitude. The present research aims at extending the
available relative motion model to include the perturbations of the relative motion due to the solar
radiation pressure (SRP) and the third-body gravitational pull.

The effects of SRP are particularly important for communication satellites equipped with large solar
arrays. The key factor driving the differential SRP perturbations in the relative orbit is the difference
in area-to-mass ratio of the two spacecraft. If the objective is to provide services to various Client
spacecraft within a wide range of area-to-mass ratio, SRP perturbations become an important factor
in approach trajectory design and relative orbit prediction.

The lunisolar secular, long- and medium-period gravity perturbations of the relative orbit were
investigated using the formulations of Kozai from [3] for absolute orbits. The theory of Kozai
delivers a disturbing function which is averaged over the satellites revolution period only. Thus,
the obtained perturbations depend on the actual position of the perturbing body and therefore give
insight into the medium-term behavior of the satellite formation.

The relative motion model developed in [1] utilizes the following set of relative orbital elements
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(ROE)

δα =


δa
δλ
δex
δey
δix
δiy

 =


(as − ac) /as

(us − uc) + (Ωs − Ωc) cos is
ex,s − ex,c
ey,s − ey,c
is − ic

(Ωs − Ωc) sin is

 , (1)

where the non-singular elements

κ =


a
u
ex
ey
i
Ω

 =


a

ω +M
e cosω
e sinω
i
Ω

 (2)

parametrize the absolute orbit of a single satellite. Here a, e, i, Ω, ω, M are the classical Keplerian
elements, and the subscripts s and c refer to the Servicer and the Client. Vectors δe = (δex, δey)

T

and δi = (δix, δiy)
T are called the relative eccentricity and the relative inclination vectors with

magnitudes denoted by δe and δi, respectively.

Along with the parametrization Eq. 1 another set of relative elements

δκ =


δa
δu
δex
δey
δi
δΩ

 =


(as − ac) /as
us − uc
ex,s − ex,c
ey,s − ey,c
is − ic

Ωs − Ωc

 , (3)

is used in the following for auxiliary computations. The relations between δα and δκ are straight-
forward

δλ = δu+ δΩ cos i

δix = δi

δiy = δΩ sin i.

(4)

All the absolute orbital elements that appear in the following refer to those of the Servicer satellite,
therefore the subscript s is dropped whenever it does not cause confusion.

The ultimate goal of this research is a high-fidelity relative motion model, which allows to predict
the relative position at epoch t+ ∆t taking into account SRP as well as third-body perturbations.
All calculations are based on the Servicer’s absolute orbital elements, obtained e.g. through orbit
determination using ground station tracking data. The calculations require information on the
previous relative orbital state at epoch t. Perturbations related to the Sun and the Moon depend
as well on the geocentric position of the perturbing body. The absolute elements of the Client
spacecraft are not required for the relative orbit prediction, and therefore this approach can be
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Table 1. Spacecraft parameters
CR [-] AR [m2] Mass [kg]

Servicer 1.0 40.0 2000
Client 1.0 40.0 1000

used in design of guidance profiles towards uncooperative targets as well as on-board a Servicer
spacecraft for approach strategies with high level of autonomy.

Section 2. describes a simple typical far range approach trajectory that is used as a test scenario to
validate the suggested algorithm and deals separately with the evolution of the relative eccentricity
and relative inclination vectors under the effects of differential SRP and third-body gravitational
perturbations. Section 3. provides details on the developed Relative Motion Model (RMM),
including subsections 3.2., 3.3. and 3.4. dedicated to the modeling of the differential perturbations
due to oblateness, differential SRP and third-body gravitational perturbations, respectively. Section
4. provides the results of comparison with respect to the numerical propagation of two absolute
orbits using full force model.

2. Basic far range approach as a test scenario

In this section a basic far range approach with a constant relative drift is simulated and illustrated in
terms of relative separations along the trajectory in the Radial-Tangential-Normal (RTN) reference
frame, which is formed by the coordinate axes pointing in nadir direction, along-track in-flight direc-
tion, and the direction orthogonal to the orbital frame. In this simulation, the relative trajectory as it
would be in a Keplerian two-body system is considered to be the ideal guidance approach trajectory.
Therefore, any perturbations arising from unequal accelerations due to various gravitational and
non-gravitational disturbing forces exerted on the Servicer and the Client spacecraft are considered
as deviations from the ideal guidance trajectory. To allow an efficient approach in terms of fuel
consumption and manpower involved in rendezvous operations, the expected deviations from the
ideal approach trajectory must be estimated beforehand and taken into account by the relative orbit
control strategy.

Table 1 provides the parameters adopted for the two hypothetical spacecraft. As the Servicer might
be carrying additional fuel and/or replacement units for the Client spacecraft, it was assumed that
the mass of the Servicer is the double of the Clients mass.

Lets us assume that we want to approach the Client with a constant along-track drift rate of about 280
meters per orbit starting from a far range hold point 3.5 kilometers away in anti-flight direction. As
the relative dynamics in a Keplerian two-body system suggests, building-up an offset of -30.0 meters
in the semi-major axis of the Servicer with respect to the Client would make it advance towards the
Client at the desirable rate so that by the end of the 10th day the mean relative along-track separation
from the Client is about 670 meters. For the sake of the formations’s safety, non-zero offsets in
eccentricity and inclination vectors can be selected so that the Servicer performs additionally a
Client-centered elliptical motion in the plane perpendicular to the flight direction. In the presence of
large along-track errors this so-called eccentricity/inclination vector separation prevents a collision
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Table 2. ROE of the initial formation geometry
aδa [m] aδλ [m] aδex [m] aδey [m] aδix [m] aδiy [m]

ROE -30.0 -3500.0 0.0 400.0 0.0 -100.0

risk. In a two body system the selected initial formation geometry summarized in Tab. 2 leads in to
a spiral-like approach trajectory, illustrated in terms of its projections onto the planes formed by the
RTN axes in Fig. 1.

Figure 1. Ideal approach trajectory: 3D view from above (left), projections onto the RTN coordinate
planes (right)

To estimate the deviations from the ideal approach trajectory that the perturbing forces might cause,
a numerical propagation with a full force model – Earth gravity field of degree and order 10, SRP,
Sun and Moon point mass gravitational potential – was performed for the absolute orbits of the
Client and the Servicer. The resulting relative trajectory is illustrated in Fig. 2 in terms of ROE
(to the left) and the projection of the relative position vector onto the planes formed by the RTN
axes (to the right). The first major feature of the perturbed approach trajectory is the significant
drift of the ex component, which implies also a change in the magnitude of the relative e-vector.
On the 4th day of the approach this results in zero radial separation. Provided that the along-track
separation is still sufficient, this would not normally lead to a collision risk. However, the ability to
predict such evolution of the relative eccentricity vector is essential for a controlled reduction of
the relative separation in the plane orthogonal to the flight direction. The second major issue arises
from the perturbations in the relative semi-major axis which indirectly lead to a faster along-track
drift towards the Client. Thus, the Servicer overtakes the Client already on the 5th day. By the
end of the 10th day, the mean along-track position of the Servicer is 1.2 kilometers away from
the Client in in-flight direction. In an operational context overtaking the Client means that it is
not possible to perform a v-bar approach, and the Servicer might have to perform an orbit raise
maneuver to allow itself fall behind the Client again. Under the point mass gravitational force of
the Earth, according to Eq. 6, the eccentricity and inclination vectors remain fixed at their initial
values. Unlike that, adding solar radiation pressure to the force model for numerical propagation,
introduces a long-term drift into the relative eccentricity vector. Depending on the time of the
year, the drifts in the eccentricity vector are pronounces mainly in aδex (around spring and autumn
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Figure 2. Perturbed approach trajectory (numerical integration of absolute orbits with full force
model): ROE (left), projections onto the RTN coordinate planes (right)

equinox), or mainly in aδey (around summer and winter solstice). Furthermore, SRP introduces
daily perturbations into the relative inclination vector. Including the Sun and the Moon point mass
gravity into the force model for numerical propagation, we observe additional long-term drifts in
both vectors. The overall deviations from the ideal values at the end of the 10th days amount to 620
meters in aδex, 1.4 kilometers in aδey, 50 meters in aδix, and 6 meters in aδiy, see Fig. 3.

3. Relative Motion Model

In the complete model of relative motion, the ”undisturbed” ROE aδαsphE(t+ ∆t) are obtained by
”propagating” the aδα(t) according to Eq. 6, and the perturbations are calculated and added to the
”undisturbed” ROE to obtain

aδαRMM(t+ ∆t) = aδαsphE(t+ ∆t)

+ aδδαJ2,sec(κ, δα(t),∆t)

+ aδδαJ2,sp(κ, δα(t),∆t)

+ aδδαSRP (κ, δα(t), rSun,∆t)

+ aδδαSun,sec+lp(κ, δα(t), rSun,∆t)

+ aδδαMoon,sec+lp(κ, δα(t), rMoon,∆t). (5)

As it will be discussed in the following, the perturbations with the subscript J2 can be omitted
without any noticeable loss of accuracy.

3.1. Unperturbed Relative Motion

In a Keplerian two-body system, the only relative element changing with time is the relative mean
longitude aδλ. If the semi-major axis offset aδa in not zero, the Servicer is drifting with respect to
the Client with a rate of -3πaδa per revolution. Thus, the evolution of ROE under the influence of
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Figure 3. Evolution of the perturbed e/i vectors (numerical integration of absolute orbits): relative
eccentricity vector (left), relative inclination vector (right)

the Earth’s central gravity field can be formulated as

δαi(t) = δαi0 −
3

2
(u(t) − u0)δα10δi2, (6)

where i = 1, . . . , 6 and δi2 is the Kronecker delta. A more detailed analysis of the unperturbed
motion can be found in [1].

Multiplied by the semi-major axis, the relative orbital elements (ROE) in Eq. 1 allow a convenient
representation of the ideal relative in-plane and out-of-plane motion. Namely, in a Keplerian two-
body system and under the assumption of a near-circular Servicer’s orbit, and spacecraft separations
which are small as compared to the orbital radius, the relative motion is bounded, if the offset in
the semi-major axes aδa is zero. In the orbital plane, the Servicer circumscribes with respect to
the Client an ellipse with semi-major axis 2aδe in along-track direction and semi-minor axis aδe in
radial direction, where aδe is the magnitude of the relative eccentricity vector. The ellipse is centered
along the tangential axis at distance aδλ to the Client, which is the relative mean longitude and
represents mean along-track separation between the spacecraft. On the other hand, the magnitude
of oscillation is the direction orthogonal to the orbital plane is equal to aδi, and the relative ellipse
in RN-plane is centered on the Client.
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3.2. Differential J2 Perturbations

Secular perturbations. Secular differential perturbations due to Earths oblateness term J2 for
near-circular close orbits can be linearly approximated as

δδα̇J2,sec =


0

−21
2
γn sin 2i δix

−3
2
γn (5 cos2 i− 1) δey

3
2
γn (5 cos2 i− 1) δex

0
3γn sin2 i δix

 , (7)

where γ = J2
2

(
RE

a

)2 1
(1−e2)2 and RE is the Earth’s equatorial radius, [1].

Examining closely the multiplication factors, we expect that the highest perturbation will be
observed in the eccentricity vector, since the perturbations in δλ and δiy contain small quantities
sin 2i and sin2 i. Moreover, factor γ is about 37 times lower than in LEO orbit of e.g. 500 km.
Taking into account that also the mean motion n is about 15 times smaller that in LEO orbit, we can
already assume that the secular perturbations due to J2 are very small in magnitude. More precisely,
considering the initial aδex = 0m, and aδey = 400m, the secular drift is −2.2 · 10−6 m/s in aδex
and 0 m/s in aδey. After 10 days the deviation in aδex from the initial ideal value is merely 1.9
meters. Comparing this value with the magnitude of third-body perturbations analyzed in section
3.4., we conclude that the secular perturbation due to J2 are by two orders of magnitude lower, and
therefore can be omitted from the relative motion model.

Short-period perturbations. A short quantification analysis of the short-period perturbations
can be performed based on the analytical developments for orbits of small eccentricities listed by
Eckstein in [4]:

δa =
3a

2λ′
G20 sin2 i cos 2u δu =

3

4λ′
G20

(
4 sin2 i− 1

)
sin 2u

δex =
3

2λ′
G20

[(
1 −

5

4
sin2 i

)
cosu+

7

12
sin2 i cos 3u

]

δey =
3

2λ′
G20

[(
1 −

7

4
sin2 i

)
sinu+

7

12
sin2 i sin 3u

]

δi =
3

8λ′
G20 sin 2i cos 2u δΩ =

3

4λ′
G20 cos i sin 2u,

(8)

where

λ′ = 1 +
3

2
G20(3 − 4 sin2 i), G20 = J2

(
RE

a

)2

, J2 = 1.082 · 10−3.

This formulation of the perturbations in the absolute orbital elements of a single satellite can be
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used to approximate linearly the perturbations of the relative orbital elements by introducing small
variations of δκ and building the Jacobian matrix of the non-linear system in Eq. 8. Note that the
factor G20 contains a term 1

a2
, which makes it 36 times smaller than the corresponding factor for

LEO. Again, this allows us to neglect in the relative motion model the short-period perturbations
due to Earth oblateness.

3.3. Differential SRP Perturbations

To take SRP into account the simplest cannonball model can be used according to which the absolute
acceleration due to SRP is

δr̈ = −P�CR

AR

m

r�

r3�
AU2, (9)

where P� is the constant of the solar radiation pressure, and r� is the relative position vector of
the spacecraft with respect to the Sun. Note that the symbol δ in front of r̈ implies here that this
acceleration is of perturbational character, yet absolute.

Given the large distance to the sun as compared to the distance between the satellites it suffices to
assume that the distance to the sun and the unit direction-to-the-sun vector are the same for both
spacecraft. In such way the differential SRP coefficient

DBSRP = CRs

ARs

ms

− CRc

ARc

mc

is the only parameter of influence, and the differential perturbational acceleration can be approxi-
mated as

δδr̈ = −P�DBSRP
r�

r3�
AU2. (10)

The differential acceleration in Earth-centered inertial system delivered by Eq. 10 can be integrated
assuming that it remains constant during the integration time ∆t. Obtained perturbations in the
relative velocity and position vectors can be transformed to the orbital RTN reference frame using
the orbital information of the Servicer. After that the linear relations from [1] between ROE and
relative Cartesian state can be used to approximate the perturbations in ROE. To conclude the
description of the SRP part od the relative motion model, it should be mentioned that during the
spring and autumn eclipse periods, satellites in near-geostationary orbit pass once per day through
the Earth’s shadow, which is included into the model through a shadow function ν as described in
[5].

3.4. Differential Third-Body Perturbations

This section analyzes secular and long-period lunisolar perturbations in ROE based on linearizing
the equations for the differential perturbations in terms of the variations of the absolute relative
elements. For that, the Lagrange equations are used relating the rates of the non-singular absolute
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elements κ to the partial derivatives of the disturbing potential with respect to κ:

da

dt
=

2

na

∂R

∂u

dex

dt
=

η

na2

(
∂R

∂ey
+

ex

1 + η

∂R

∂u

)
+
ey cot i

na2η

∂R

∂i

dey

dt
=

η

na2

(
∂R

∂ex
−

ey

1 + η

∂R

∂u

)
−
ex cot i

na2η

∂R

∂i

di

dt
=

cot i

na2η

(
ex
∂R

∂ey
− ey

∂R

∂ex
+
∂R

∂u

)
−

csc i

na2η

∂R

∂Ω

dΩ

dt
=

csc i

na2η

∂R

∂i

du

dt
= n−

2

na

∂R

∂a
+

η

1 + η

1

na2

(
ey
∂R

∂ey
+ ex

∂R

∂ex

)
−

cot i

na2η

∂R

∂i
,

(11)

where η =
√

1 − e2x − e2y and R is the so-called disturbing function or perturbing potential such

that F =
µ

2a
+R, where F is the total force function, i.e

F = V +R− T =
µ

r
+R−

v2

2
=

µ

2a
+R,

V and T being the undisturbed potential and the kinetic energy respectively. Taking into account
that κ(i) = κ0(i) + ntδi2 + δκ, where i = 1, . . . , 6 and δi2 is the Kronecker delta which introduces
a secular change in u, the same Lagrange equations are valid for the perturbations δκ with the
difference that the term n disappears from the equation for u̇.

In the following, the Lagrange equations will be used for δκ. Note that here δκ refers to the
perturbations in the absolute orbital elements in Eq. 2, and not to the relative orbital elements from
Eq. 3.

In the following, the theory developed in [3] by Y. Kozai for single satellites in near-geostationary
orbit will be applied. In [3], the disturbing function for lunar and solar gravity perturbations was
expressed as a function of the Keplerian elements of the satellite and the polar coordinates of the Sun
and the Moon. To obtain the secular and long-period terms, the disturbing function was averaged
with respect to the mean anomaly of the satellite.

To use the disturbing function from [3] for our analysis, we need to re-write it in terms of the
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non-singular elements from Eq. 2. This leads to the formulation

R = n′2a2

(
a′

r′

)3

β ·

{
1

16

(
3 cos2 δ(2 − sin2 i) + 6 sin2 i sin2 δ − 4 − 6 sin i sin 2δ sin(Ω − α)

+ 3 sin2 i cos2 δ cos 2(Ω − α)
)
·
(
2 + 3e2x + 3e2y

)
+

15

8

(
cos2 δ

[(
e2x − e2y

)
cos 2(Ω − α)

− 2exey sin 2(Ω − α)] + sin i sin 2δ
[(
e2x − e2y

)
sin(Ω − α) + 2exey cos(Ω − α)

])
−

15

32

(
a

a′

)(
a′

r′

)(
2 cos δ

(
5 cos2 δ − 4

)
[ex cos(Ω − α) − ey sin(Ω − α)]

+ 4sin i sin δ
(
5 cos2 δ − 2

)
ey − 5 sin i sin 2δ cos δ [ex sin 2(Ω − α) + ey cos 2(Ω − α)]

)
+

3

64

(
a

a′

)2(
a′

r′

)2 (
35 cos4 δ − 40 cos2 δ + 8 − 10 sin i sin 2δ

(
7 cos2 δ − 4

)
sin(Ω − α)

)
−

105

128

(
a

a′

)3(
a′

r′

)3 (
21 cos4 δ − 28 cos2 δ + 8

)
cos δ (ex cos(Ω − α) − ey sin(Ω − α))

}
,

where the motion of the Sun or the Moon is parametrized by the geocentric distance r′, right
ascension α, and declination δ. These parameters can be found from geocentric rectangular
coordinates

x′ = r′ cos δ cosα

y′ = r′ cos δ sinα

z′ = r′ sin δ.

In the development of R, primed quantities n′ and a′ denote the mean motion and the semi-major
axis of the perturbing body, while

β =

{
1 for the Sun

m′

m+m′ for the Moon
,

where m is the mass of the Earth and m′ is the mass of the Moon.

Expressing the Lagrange equations for perturbations and the disturbing function R in terms of the
orbital elements κ, Eq. 11 delivers the rates of the perturbations in the absolute orbital elements as
non-linear functions of κ

δκ̇ = F (κ) . (12)

Provided that F is differentiable at point κ and assuming that the separation between the satellites
is small, we can approximate linearly the rates of the differential perturbations as

δδκ̇ = JF · δκ, (13)
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where JF is the Jacobian matrix of the system of equations in Eq. 12, i.e.

JF =



∂δȧ

∂a

∂δȧ

∂u
. . .

∂δȧ

∂Ω
∂δu̇

∂a

∂δu̇

∂u
. . .

∂δu̇

∂Ω...
... . . . ...

∂δΩ̇

∂a

∂δΩ̇

∂u
. . .

∂δΩ̇

∂Ω


. (14)

Since the disturbing function R has been averaged over the satellite’s revolution period, the first
line as well as the second column in JF contain only zeros. Also the first column contains values by
a factor of order of 1

a
smaller than the values in the columns 3 to 6.

Calculating the first and the second partial derivatives of R and substituting them into Eq. 13 we
can estimate the change in ROE due to lunisolar gravitational force assuming that κ is constant
during the propagation time step.

4. Results and Conclusion

Figure 4. Propagation errors of different RMM configurations (against the numerical reference):
radial (left), tangential (right), normal (bottom)

Figure 4 shows the errors of various Relative Motion Model (RMM) configurations in relative
separations in radial, along-track and normal directions. Moreover, Fig. 5 illustrates in vector form
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Figure 5. Propagation errors of different RMM configurations (against the numerical reference):
relative eccentricity vector (left), relative inclination vector (right)

the errors of the intermediate and final RMM in estimation of the relative eccentricity and inclination
vectors, respectively.

Unperturbed RMM. The amplitudes of the errors of the initial simplest RMM following Eq. 6
under the assumption of an ideal two-body Keplerian system are increasing with time both in radial
and along-track directions. This is due to the growing magnitude of the difference between the
ideal and the perturbed aδe, which translates directly into the amplitude of the error oscillations
in the radial direction, and with a factor of 2 is directly proportional to the amplitude of the error
oscillations in the along-track direction. The errors in the tangential component show an additional
growing bias due to the growing error in the mean along-track distance aδλ itself (see Fig. 2 to
the left). However, the amplitude of 15 meters of the oscillations in the direction orthogonal to
the orbital plane, stays constant, since the magnitude of perturbed aδi, apart from the periodic
perturbations due to SRP, exhibits no secular perturbations from the third-body gravity fields. The
third-body perturbations result solely in a rotation of aδi without changing its magnitude (see Fig.
3 to the right).

Intermediate and final RMM. Adding SRP perturbations to the relative motion model as described
in section 3.3. (intermediate RMM) allows to reduce the growth of the amplitude of the error
oscillations in all components and also remove the growing bias in the along-track direction.
Introduction of the third-body perturbations as described in section 3.4. reduces by half the
remaining errors in the radial and the along-track components. However, in the direction orthogonal
to the orbital plane, due to the merely rotational effect of the third-body perturbation exerted on the
relative inclination vector, there is no improvement as compared to the result of the intermediate
RMM. To evaluate properly the performance of the complete RMM, we should have a look at the
component-wise errors in the inclination vector. Figure 5, indeed, demonstrates the absence of any
long-term error drifts in aδi. Also the long-term error drifts in the components of aδe result mostly
eliminated. The remaining error in the estimated aδe is less than 45 meters during the 10 days of
the simulated approach, while the error in aδi stays always less than 2 meters.
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Conclusions. The presented relative motion model addresses perturbations in the relative orbit due
to solar radiation pressure and the gravitational potential of the Sun and the Moon. A numerical
quantification analysis performed for a sample far range approach scenario demonstrates that, indeed,
if not taken into account, such perturbations might pose challenges for time- and safety-critical
on-orbit-servicing operations for future missions in near-geostationary orbit. A comparison with
a numerically generated reference proves that the suggested model allows to eliminate long-term
error drifts, as well as the most significant periodic error oscillations. The performed simulation
shows that an accurate relative orbit prediction on the basis of the Servicer orbital information
alone is possible up to 10 days in advance. Therefore, given sufficient computational resources, the
suggested algorithm can be incorporated into automatic guidance, navigation and control algorithms
on-board the Servicer spacecraft to allow fuel-efficient autonomous approaches to uncooperative
targets in near-geostationary orbit.
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