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Abstract
The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The

development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as

well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possi-

bility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena

on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the

continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic

thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We

discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological

theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The

resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very

localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an

averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distri-

bution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure

scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we

find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory.
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Introduction
The main challenge for establishing an ab initio multiscale

simulation approach for batteries or electrochemical storage

devices in general is the extremely complex chemical context in

which those devices are operated [1]. There is no commercial

battery which is produced from pure active materials for the

electrodes and from a pure mixture of salt and solvent for the
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electrolyte alone. Usually, it is necessary to add soot to the

slurry for electrode production in order to counteract the poor

electronic conductivity of the active materials of negative elec-

trodes. The active material is not used as one block (except in

thin film batteries) but is ground into a powder or artificially

designed into complex nanostructures in order to increase the

available surface for insertion or conversion reactions. To

ensure the mechanical stability of the electrode, binder has to be

added, which in turn is not without consequences for the elec-

trochemical properties of the batteries. Therefore the nano- and

micrometer-scale structure of the battery is as important as the

material itself to obtain a “good” electrode, where “good” is

defined with respect to the envisioned application and not with

respect to the materials properties. Analogous modifications are

necessary to obtain a good conducting electrolyte that is stable

under high voltages and chemical compatible with the chosen

electrode materials. Thus, additives are used in order to enhance

the ionic conductivity and to improve the chemical compati-

bility. Also the properties of the solid electrolyte interphase

(SEI) on the negative electrodes, which is essential for the long

time stability of a battery [2], are strongly influenced by the

composition of the electrolyte. Therefore it would not be

possible to design with simulations an optimal electrolyte

without considering, e.g., the impact of the electrolyte on the

electrochemical reaction kinetics at the interface of electrolyte

and active particles or the complex chemical reactions leading

to the growth of the SEI, plating and electrochemical reactions

initiated in the bulk of the electrolyte at high potentials.

A successful strategy for the development of predictive theo-

ries and simulation tools has therefore to guarantee that the

theoretical concepts on the different spatial scales from atom-

istic to cell scale have sufficient overlap to ensure the possi-

bility of a systematic upscaling procedure. This argument

addresses the problem of identifying a representative volume

element, which is small enough for being able to use the simula-

tion techniques on the fine scale but big enough for the results

to be usable on the large scale. This necessary condition

requires the development of systematic rigorous theories on

each scale from quantum chemistry for the atomistic scale, over

particle-based models utilizing classical force fields to

continuum theories. But even within continuum theories it is for

practical reasons important to distinguish between microstruc-

ture-resolved and porous-electrode theories to develop consis-

tent theories for both scales.

The knowledge of the material parameters and their depen-

dency on composition or atomistic structure is the starting point

for a rational design of energy storage materials [3]. Density

functional theory with all its approximations [4,5] if combined

with statistical mechanics methods is in this context the most

successful method to simulate material properties of electro-

chemically active materials [3,6]. The combination with statis-

tical methods is important to bridge the gap between zero-

temperature DFT simulations in vacuum and the properties of

the studied materials at finite temperatures in contact with

different phases. Standard DFT simulations usually concentrate

on individual electronic processes without considering the inter-

play with the environment or competing electronic processes,

which might be statistically and thus macroscopically much

more significant [7]. In ab initio thermodynamics, DFT is

combined with ideas from statistical mechanics in order to

obtain the Gibbs free energy of bulk and interfaces at finite

temperatures. Especially for the calculation of differences of

Gibbs free energies, which are relevant for the determination of

stable equilibrium configurations, the accuracy is higher than

might be expected from the absolute accuracy of the DFT simu-

lation, which usually contain many simplification and assump-

tions on the structure of the solution [4,5]. By using cluster

expansions [8] it is possible to combine DFT with kinetic

Monte Carlo (KMC) simulations to obtain collective diffusion

coefficients for lithium ions at concentrations beyond the dilute

limit [9]. To obtain the collective diffusion coefficient is crucial

since there is a difference between the self-diffusion coeffi-

cients and the collective diffusion coefficient [10]. As will be

shown below, it is the collective diffusion coefficient that is

relevant for the transport of lithium ions in the solid active

particle as well as in the liquid electrolyte. The collective diffu-

sion coefficient can be written as a product of a thermodynamic

factor, which can be obtained from the chemical potential, and a

kinetic coefficient, which is a measure of the energy barriers

caused by the local environment of the Li ions. They may

depend in solids on vacancy distributions as well as on the local

lithium-ion concentration itself [9,11-13]. The diffusion coeffi-

cients for liquid electrolytes might more easily obtained from

molecular dynamics (MD) simulations once the force fields for

the interaction between the molecules are known [14,15].

Information on interface properties can be obtained from MD

simulations and from DFT simulations [15]. MD simulations

are especially relevant to study the solvation properties of the

ions [15-17], which are important to understand contribution of

solvation forces to the intercalation kinetics. The actual barriers

for intercalation can be addressed by DFT simulations [18].

The change in mechanical properties upon intercalation is very

important to understand degradation phenomena in batteries.

Usually the change in the behavior of cells can be simulated by

using macroscopic continuum models [19-21]. But knowledge

of the change in the specific volume of the material as function

of Li concentration and the change in the elastic constants is

necessary to parameterize the continuum models. This informa-
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tion can be extracted from DFT simulations [22,23]. Phase

changes, initiated by the intercalation of lithium ions, require

additional information on the stability of phases [24] and inter-

face properties. The evolution of electrochemical active inter-

faces can be described by phasefield theories [25,26], which

provide an approximate continuous description of the dynamics

of interfaces [27]. They need as input the interface free ener-

gies between the phases. This interface free energy is acces-

sible to DFT simulations [28,29]. On the basis of this informa-

tion the intercalation properties of phase separating materials

can be modeled [30]. Also, predictions for the stress [31]

induced by the phase front and its influence on the intercalation

dynamics [32] are possible. It should be mentioned that there

are still many unsolved issues and not completely consistent

predictions for the intercalation properties of phase-changing

many-particle electrodes [33-37].

The production of heat in batteries is a very important informa-

tion for the proper prediction of degradation phenomenon.

Since heat is a thermodynamic concept it has to be dealt with on

the macroscopic scale. From atomistic simulations the

determination of Gibbs free energies, entropies and insertion

properties (e.g., kinetic barriers, chemical potential of adsorbed

species, solvation energies) are obtained. The relation of these

quantities to the actual heat production has to be derived from

systematic thermodynamic theories [38-41]. Most of the litera-

ture on heat transport in lithium ion batteries uses phenomeno-

logical porous electrode theories [42-49], which are not based

on a systematically derived thermodynamic consistent theory.

In [45], the porous electrode theory is derived with the help of

volume averaging applied to the phenomenological pore scale

model. Full 3D simulations of thermal effects in electrode

microstructures do, to the best of our knowledge, not exist;

except for [50] in which the heat sources in a microstructure of

a LiCoO2 cathode are obtained with the help of phenomenolog-

ical expressions for the heat sources and the current distribution

in the electrode [51].

A general overview about multiscale modeling and simulation

strategy, including an overview about available software

concepts in the context of electrochemical storage and conver-

sion devices is given in [52].

We will concentrate in our article on the systematic derivation

of fully coupled transport equations for ion, charge and heat

transport in lithium ion batteries on the nano- and micrometer-

scale as well as on the cell scale . The cell-level equations will

be obtained from an analytical upscaling procedure to ensure

the consistency with pore-resolved theory. Where possible, we

will point out the necessary input from ab initio atomistic scale

theories. The microscopic as well as the cell-level theory are

simulated for a virtual microstructure and its homogenized

effective porous electrode description . The comparison of the

averaged results of the microscopic simulation exhibit remark-

able agreement with the simulation of the porous electrode

theory, but we find very strong fluctuations around the average.

Especially for the prediction of degradation phenomena these

fluctuations might be crucial.

Non-equilibrium thermodynamics
To make contact with theories on atomistic scales, it is neces-

sary to formulate the continuum theories in terms of quantities

that have a well defined physical meaning and can either be

obtained by simulations on atomistic scales or from inde-

pendent experiments. Even if information about energy barriers

and reaction rates can be obtained from density functional

theory for the system under investigation, additional modeling

steps are necessary to obtain the relevant parameters for the

kinetic models used in mesoscopic reaction–transport theories

[53,54]. Especially the formalism of ab initio atomistic thermo-

dynamics, which combines DFT simulations with strategies

from statistical mechanics [3,6,7], allows one in principle to

determine Gibbs free energies, reaction rates and relevant trans-

port coefficients for materials used in electrochemical applica-

tions. The transport equations on the continuum scale have to be

based on the same quantities. Only then, the information

obtained from the quantum scale can be transferred to the

continuum scale. Very often continuum scale equations are not

derived, but formulated on phenomenological grounds. This ap-

proach leads to “effect driven” theories, which try to include the

known phenomena (e.g., diffusion, electroosmosis, Peltier

effect, double layer properties [53]) without considering the

possible existence of an underlying coherent theoretical struc-

ture. Such a structure may require relations between transport

coefficients in order to ensure positive entropy production and

may reveal information about the nature of the considered

continuum fields, which are essential to make contact to atom-

istic scale simulations and to experiment or influence the form

of the charge distribution in the double layer [27]. Only a

rigorous derivation within a systematic theoretical framework

can reveal such a structure. In order to demonstrate the impact

of the chosen continuum fields on the structure of a continuum

theory we re-derive the equations for coupled transport of ions,

charge and heat in a lithium ion battery by using the framework

of rational thermodynamics [39,40]. This derivation recovers

the equation in [41,55] and shows in the isothermal case the

equivalence with the seemingly different theory of [27]. The

theory is valid for transport on pore-scale-resolved battery

structures. The cell-level equations, which are consistent with

the derived microstructure theory are then derived by using

systematic volume averaging. It is shown that some of the re-

versible heat sources of the bulk and the interfaces cancel each
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other in the averaged macroporous theory. The cancelation is

also demonstrated by explicitly simulating the coupled trans-

port on the microscale and analyzing all heat sources in the bulk

and the interfaces. Since heat sources lead to thermal stress,

there are possible sources for degradation on the microscale that

cannot be detected on the macroporous scale. The cancelation

also demonstrates the importance of a consistent formulation of

interface condition and transport equations. The usual “effect

driven” procedure, in which bulk equations and interface condi-

tions are formulated completely independent of each other, may

easily miss such cancelation effects. A generic starting point for

the derivation of the transport equations is a mixture of a posi-

tively charged and a negatively charged species, and a neutral

component. This mixture is able to represent an electrolyte

consisting of a salt, dissolved in a solvent as well as transport of

Li ions and electrons in an active particles consisting of a

neutral host lattice. Different derivations are necessary for ionic

liquids (mixture of positive and negative charges only) and

solid electrolytes (ionic conductors). In a liquid electrolyte these

are positive cations, negative anions and a neutral solvent. In

conventional Li ion batteries under normal operating conditions,

mass convection can be excluded as transport mechanism, but

will always be a possibility in a systematic theory. Especially, if

there are side reactions leading to film growth or convective gas

transport after electrolyte degradation, convective transport

might be initiated as a consequence. In general, it is sufficient to

consider transport driven by electric fields and gradients in

concentration, temperature and stress. In our derivation, we

follow closely the notations used in [40] and neglect stress

gradients for simplicity.

Transport theory
First, the general transport theory for a bulk system consisting

of three interacting species (negative, positive and neutral

species) in a electric field will be derived, before we discuss the

boundary conditions at the interfaces between different chem-

ical environments (electrolyte and active particles). Starting

point of the derivation are the conservation equations for the

three mass densities ρα, the momentum g and the energy density

ε of the system in an electric field. Although we will set the

barycentric velocity v to zero at the end of the derivation, it is

necessary to include at least a stationary velocity field, in order

to obtain the coupling to electro-mechanical stresses. The mass

conservation of the species can be written in the form

(1)

Nα is the molecular flux and Mα the molar density (kg/mol) of

the species α. The convective or total time derivative  for

some variable A is in the usual form given by

(2)

where At is the partial derivative ∂A/∂t Since the total density

 is conserved, i.e., , the requirement

(3)

has to be fulfilled. The equation for the momentum density has

the very general form

(4)

Here b is an external force density, σ is the stress tensor and

 (the Einstein summation convention for the

repeating index is used). The equation for the energy density ε

is given by

(5)

 is the local heat production, q is the heat flux, and  and 

are the Galilei invariant electrical and magnetic fields,

(6)

(7)

which couple the electric field and magnetic field with the

dielectric displacement D and the magnetic induction B. We

may eliminate the force b from Equation 5 by using Equation 4

and obtain

(8)

where κij = ∂vi/∂xj is the (non-symmetrized) strain rate tensor

and . The Maxwell equations in the Galilei

invariant approximation can be written as

(9)

(10)

(11)

(12)
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(13)

(14)

We introduced the Galilei invariant current , the

magnetization  and the flux derivative

. The free charge density ρF is related

to the molar density nα by , with zα being the

charge number (i.e., the multiples of positive or negative

elementary charges) and F the Faraday number. P is the polariz-

ation due to bound charges.

In order to derive constitutive equations, we make use of the

inequality for total change of the entropy density

(15)

Here R is the yet unknown entropy production and μα is the

chemical potential of species α. An expression for μα will be

derived shortly. By eliminating the heat production  from

Equation 15 and some reformulations of  we obtain

(16)

Here φH is the specific free energy density (with respect to the

total mass) and the electromechanical stress tensor is given by

(neglecting all contributions from magnetic fields)

(17)

The electromagnetic specific (Helmholtz) free energy, φH, is

given by

(18)

The constitutive equations follow from Equation 16 and the

form of the material law for the free energy φH. The influence

of magnetic fields on batteries is usually neglected. For the

purpose of this article, we are also not interested in the calcula-

tion of mechanical strain of active particles. Therefore, the free

energy density can be written as

(19)

If phase-changing materials are described, this free energy may

also be interpreted as free energy functional. For instance, in the

case that the free energy also depends on the spatial derivatives

of the densities as in phase-field theories for batteries [30,56].

The total derivative of the free energy (Equation 19) is given by

(20)

With this and the equation for the free energy, Equation 16 can

be transformed into

(21)

The requirement, that the entropy production R of Equation 21

has to be strictly positive leads to the relations

(22)

(23)

(24)

(25)

(26)

(27)
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Here p is the pressure and σ is obtained from Equation 17 and

the necessary condition τ + pI = 0 imposed by the positivity of

the entropy production R. We also introduced the purely diffu-

sive heat flux . If the velocity is allowed to

change in time it can also be shown that the momentum density

g is given by

(28)

The momentum equation (Equation 4) can be written (by using

Equation 4, Equation 25 and Equations 10–14) as

(29)

In most of the battery literature the momentum equation (Equa-

tion 29) is not used, although it implies, that large gradients in

the pressure are to be expected for strong electric fields. This,

for example, is the case in the double layer. Since the chemical

potentials of the ionic species and the solvent are, in general,

dependent on the pressure, they will in turn exhibit large gradi-

ents leading to a non-negligible contribution to the variation of

the ion concentration [27]. For incompressible systems, i.e.,

ρ = const, the chemical potential depends linearly on the pres-

sure and can be written as function of the pressure and mass or

particle fractions yα = nα/n [27] with  being the total

molar density:

(30)

The energy equation (Equation 8) leads to

(31)

Due to the constraint in Equation 3 there are only two inde-

pendent fluxes and since the total density ρ can be safely

considered to be constant, there are only two independent densi-

ties. The form of the constitutive equations depends on the

choice of independent variables. This freedom seems to lead to

different theories [27,55,57]. Our systematic derivation offers

the possibility to formulate the transformation rules between the

different set of independent fields, in order to analyze the simi-

larities and differences of the theories.

If we choose as independent densities the molar densities c+ and

c−, the corresponding fluxes are N+ and N−. The electric current

j is written as j = z+N+ + z−N− and the electric field as

. In addition, if we assume that there are no bulk heat

sources  (i.e., no side reactions in the bulk), the resulting

transport equations for v = 0 and the entropy production are

(32)

(33)

(34)

(35)

where  is the effective chemical poten-

tial for the ions and anions and  is the electro-

chemical potential. To guarantee the positivity of the entropy

production, R, the fluxes and heat current are written in a form

that gives R a strictly positive quadratic form. This can be

achieved by choosing

(36)

(37)

This is the form of constitutive equations used in [27,58] for

isothermal systems (i.e., ). Specifically we obtain the

well-known result that the fluxes are proportional to a combina-

tion of the electrochemical potentials and in addition to a term

proportional to the gradient of the temperature. Choosing the

mobility matrix to be a symmetric positive matrix guarantees

the positivity of the entropy production for every solution of the

transport equations. Specifically we get B++ > 0, B−− > 0 and

. In dilute solution theory, the mobility B+− is set

to zero, i.e., . If temperature variations are included

we obtain further conditions on the heat conductivity, λ (λ >0),

and the off-diagonal terms ν±. Very often the constitutive equa-

tions are formulated in terms of chemical potentials , elec-

trical or Galvani potentials Φ. This form can be easily obtained

from Equation 36 and Equation 37:

(38)

(39)

(40)
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The conductivity κ and the transference numbers are given by

the components of the mobility matrix

(41)

(42)

Note that t+ + t− = 1. The Seebeck coefficient β is defined by

(43)

It is related to the Peltier coefficient Π through Π = T·β.

Since the ionic fluxes N± and the (free) current j are not inde-

pendent of each other, Equation 38 can also be brought into a

more condensed form, obtained in [41,55] by using the defini-

tions in Equation 41 and Equation 42 for t± and κ and intro-

ducing the chemo-electrical potential of the positive ions

.

(44)

(45)

(46)

(47)

(48)

To use φ is the choice in most of the electrochemical literature,

naming it usually “electrical potential”. This might be consid-

ered as an unfortunate semantic inaccuracy but it has in fact

consequences for the relation to free electric charges. The latter

are determined by Φ through Equation 10 and not by φ.

It is possible to obtain the formulation in Equation 44 and Equa-

tion 45 directly from the entropy law by choosing the flux N+

and the electric current j together with the molar density c+ =

ρ+/M+ =: c and the free charge density ρF = F(z+c+ + z−c−) as

primary variables.

In this formulation it can be easily seen as well that the diffu-

sion coefficient D at vanishing current j is proportional to the

determinant  of the mobility matrix B.

The requirement of positive entropy production mentioned

above is therefore the equivalent of having a positive collective

diffusion coefficient.

The transport of the anions is ruled by the same diffusion coef-

ficient as the diffusion of cations, which can be easily seen from

Equation 44 and Equation 45 and N− = (j − z+N+)/z+. This

shows that the relevant diffusion coefficient for the transport of

ions in the electrolyte is not the self-diffusion coefficient, which

would be different from the diffusion coefficient of the anions,

but the unique collective inter-diffusion coefficient. It cannot be

determined directly by using, for example, nuclear magnetic

resonance (NMR) measurements. However, there are simple

approximations to determine the inter-diffusion coefficients

from the measured self-diffusion coefficients [10,59].

For the experimental determination of the diffusion coefficient

is is important to distinguish between the diffusion coefficient

at vanishing electrical current and at vanishing gradient of the

electrical potential. Only the coefficient at vanishing electrical

current, i.e., the one obtained from Equation 44 is experimen-

tally accessible. In DFT calculations the diffusion coefficient is

written as a product of a thermodynamic factor aT and a kinetic

coefficient [9,10]. The thermodynamic factor aT is the thermo-

dynamic derivative of the chemical potential with respect to

concentration aT = ∂μ/∂c and from the relation for the flux

(Equation 44), we see that the kinetic coefficient is related to

the determinant of the mobility matrix B.

By using the obtained expressions for the fluxes and the elec-

tric current we finally obtain the equation for the electric charge

ρF, the molar concentration of positive ions c := c+ and the

entropy density:

(49)

(50)

(51)

The electric charge density ρF is coupled to Coulomb’s law

(Equation 10) and to the pressure equation (Equation 29). The

entropy production is given by
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(52)

The different potentials Φ,  and φ have different physical

meanings. Only the potential Φ is relevant for the calculation of

electrical charges, e.g., in the double layer with the help of

Coulomb's law (Equation 10). The chemical potentials μ, 

and μα are defined through Equation 26, once the materials law

for the free energy density φH is defined.

Charge neutral systems
Most of the battery literature deals with locally charge-neutral

systems, i.e., ρF = 0. This assumption is based on the observa-

tion that in a battery, under normal operating conditions, the

potential differences required for charge separation exist only in

a very thin layer around the active particles in the form of a

double layer. To include the double layer, it is either necessary

to solve the equations derived above without further assump-

tions on charge neutrality [27], or specific models for the

double layer [60] or the form of the charge distributions around

the active particles [61] are necessary. On a scale above a few

nanometer one can safely assume, that the electrolyte is a

charge neutral system, i.e., ρF = 0 and c− = (z+/z−)c+. This also

applies to the active particles. The shielding is even more

effective due to the high mobility of the electrons in the active

particles. If we only deal with a binary salt, we have z+ = z− = 1,

i.e., c = c+ = c− at each point of the bulk of the electrolyte and

the active particles. As a consequence it follows from

Equation 26, that μ+ = μ−. The chemical potentials become a

function of the temperature, the electric potential and the Li ion

concentration, only. The pressure dependence can safely be

neglected since it is only relevant in the double layer [27]. Also

the possible dependence of the chemical potential on the elec-

trical potential is usually not considered, since it is assumed that

only short-ranged chemical forces are contributing to the chem-

ical potential. No assumptions of this kind are necessary within

the framework of rational thermodynamics. In the end,

the form of the chosen materials law for the free energy φH

(Equation 19) determines whether the chemical potential is

dependent on the electrical potential or not. For example the

chemical potential would depend on the electric field if the

contribution of the polarizability of the electrolyte or the active

particle to the free energy density depends not only on the elec-

tric field but also on ion concentrations. This would be the case

in ion-conducting solid electrolytes. Neglecting these effects we

may write

(53)

and introduce a new effective heat flux Q

(54)

to obtain the constitutive relations Equation 44 in the form

(55)

(56)

(57)

The diffusion coefficient D, the heat conductivity λ and the

Soret coefficient kT are given by

(58)

(59)

(60)

Using Equations 55–57, the expression for the entropy produc-

tion (Equation 52) simplifies to

(61)

From the requirement of a strictly positive entropy production

we can easily conclude that each term in Equation 61 has to be

positive and obtain the well-known fact that the transport coef-

ficients heat conductivity λ, electric conductivity κ and inter-

diffusion coefficient D have to be positive. The equations of

motion reduce to
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(62)

(63)

(64)

The equation for the temperature follows from the entropy

equation (Equation 64) by using

(65)

where cp is specific heat per unit mass. With the thermody-

namic relation

and the continuity equation (Equation 62) it was shown in [41]

that the equation for the temperature is given by

(66)

The Thomson coefficient μT is defined by the so called

Thomson relation . Terms of order 

are neglected. Temperature inhomogeneities are caused by four

different types of heat sources and equilibrated by thermal

conduction. The four heat sources are Joule’s heat, heat of

mixing, Thomson effect and the Soret effect (in the order of

their appearance in Equation 66). Since usually kT is very small

we can safely neglect its contribution in most applications and

obtain the approximated equation

(67)

Interface conditions
The equations derived above are valid in the electrolyte as well

as in the active particles. The value and the physical mecha-

nisms underlying the transport coefficients are different. Diffu-

sion mechanisms in solids are different from those in elec-

trolytes. Conduction in electrolytes is due to ion transport, but

mostly of electronic nature in the active particles. These differ-

ences require different atomistic simulation techniques for the

determination of the transport coefficients, but the form of the

macroscopic equations is not affected by these differences. To

couple the transport in the electrolyte and the active particles

the formulations of interface conditions sometimes also called

jump conditions are necessary. They are usually derived from

the transport equations and models for processes on the inter-

face, such as surface diffusion or electrochemical reactions on

the interface, by using a pill box argument [39]. In this argu-

ment the transport equations are integrated over a small volume

element, which includes the two sides of the interface. The

thickness of the volume element is reduced to zero after the

integration such that all volumetric contributions vanish

compared to the surface contributions from the fluxes across the

surfaces and the processes on the surface. To use the transport

equations for the derivation of the interface conditions also

guarantees that they are based on the same physical fields that

are also used in the transport theory. In our case we need inter-

face conditions that describe the intercalation and de-intercala-

tion of ions, as well as the heat produced during this process.

Interface conditions for ionic flux and electric current
For cell-scale simulations, it is very difficult, if possible at all,

to spatially resolve the processes involved in intercalation and

de-intercalation numerically. Therefore it is common to use

phenomenological global expressions for describing intercala-

tion, although in reality this is a complex process that involves

at least three steps: desolvation and adsorption on the external

surface of the active particle, transfer of the Li ion from the

external surface into the host material and shielding of the

charges by lattice deformations and reorganization of the elec-

tronic charge density distribution. These elementary steps were

identified experimentally [62,63] for the intercalation of Li in

graphite. In this still very simple model no distinction is made

between the various possible types of chemical bonds after

intercalation. For instance, in [63] three different bonding states

have been identified for the Li ions within various types of

graphite. These different types of Li–graphite bonds are

reflected by different chemical potentials and possibly different

transition states for the respective intercalation step. For the

actual intercalation step from the surface into the host material,

it is possible to derive a Butler–Volmer-type expression from

very general considerations by using only the mass action law

and assuming the existence of a transition state [56,64-66]. A

more realistic description of the intercalation will require the

incorporation of at least the desolvation–adsorption step

mentioned above. The extensions of the simple Butler–Volmer
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theory obtained through this can be easily incorporated in a

generalized interface condition. In [64] the current density

across the interface ise was derived from thermodynamic argu-

ments, and a Butler–Volmer equation with modified expres-

sions for the exchange current amplitude was obtained:

(68)

αa and αc with αa + αc = 1 are transfer coefficients, respectively.

They quantify the fraction of the overpotential to the anodic and

the cathodic charge transfer, respectively. It was shown in [64]

that the sum of the transfer coefficients has to be 1 as a conse-

quence of the law of mass action and requirement of positive

entropy production during the transition from electrolyte to

active particles. The overpotential is the difference between the

electrochemical potentials of active particle and electrolyte,

which vanishes in equilibrium:

(69)

The same interpretation of the overpotential is also obtained in

[56]. We can reformulate the overpotential (Equation 69) into

the more conventional form

(70)

where U0 is the half-cell open circuit potential of the respective

electrode relative to a Li metal electrode

(71)

Also the electrochemical potential of the electrolyte φe is

defined relative to the chemical potential of Li metal:

(72)

It is important to note, that as a consequence of introducing the

open circuit voltage U0, there appears the difference of the elec-

trical potential of the active particle and the electrochemical

potential of the electrolyte in the definition of the overpotential.

Both are measurable quantities, whereas the electrical potential

of the electrolyte is not directly measurable. The amplitude i0 in

Equation 68 deviates from the usual definition [67] due to ther-

modynamic reasons [64]

(73)

k is a reaction rate, which depends on the activation energy of

the transition state for the ionic transfer from the electrolyte to

the active particle. The full set of interface conditions for ionic

flux and electric current follows from the assumption of conti-

nuity of ionic flux and electric current and the fact that only

ions are transferred and, therefore, the whole electrical current

across the interface is carried by the lithium ions. Side reac-

tions leading to a degradation of the electrolyte [68] would lead

to an additional electrical current due to electron transfer

between active particles and electrolyte. With the normal n

pointing from the solid into the electrolyte we obtain

(74)

(75)

(76)

(77)

Thermal interface conditions
Under isothermal conditions, the values of the concentrations

and potentials of the electrolyte and the solid particle at the

interface can be determined from the interface conditions

(Equations 74–76). If heat flux is considered the value of the

temperature on the interface also has to be determined in order

to be able to calculate the gradient of the temperature on the

electrolyte side and solid side of the interface. The additional

interface conditions can be derived by applying the pill box

argument to the equations for the heat transport. We integrate

the entropy balance equation (Equation 64) over an infinites-

imal small volume element, which contains the whole thickness

of double layer and use the jump discontinuity of the chemical

potential and the electrical potential at the interface to obtain

with Equation 74 and Equation 76

(78)

In the limit of vanishing thickness of the pill box, the left hand

side of Equation 78 vanishes. If the weak temperature depend-

ence of the chemical potential of Li metal is neglected, we

finally obtain from Equation 57, Equation 71, and Equation 72

the expression in Equation 79.



Beilstein J. Nanotechnol. 2015, 6, 987–1007.

997

(79)

The transference number of Li ions in the active particle was set

to zero, since the whole electrical current in the active particles

is assumed to be given by the flux of electrons. Formulated

differently, the mobility of electrons is much larger than the

mobility of ions. With this condition for the jump in the gradi-

ents of the temperature, in addition to Equations 74–76, the

values of all concentrations and potentials, and the temperature

on the surface can be determined. On the right hand side of

Equation 79 are the interfacial irreversible and reversible heat

sources. The first is the irreversible interfacial Joule heating,

followed by the reversible Peltier effect and the reversible Soret

effect. The Peltier coefficient is defined by

(80)

In addition to the partial derivative of the open-circuit potential

[69] also the differences in the Seebeck coefficients of the two

phases and the thermal derivative of the chemical potential of

the electrolyte are contributing to the Peltier coefficient. It can

either be measured directly [70] or may be deduced from

measurements of the open-circuit potential, the Seebeck coeffi-

cients of the two phases [71] and the thermodynamic deriva-

tives of the chemical potential of the electrolyte.

Porous electrode theory: Volume aver-
aging
The microscopic equations derived above allow one to study the

spatial scale from about 10 nm up to a few hundred micrometer

and are therefore suitable to analyze transport processes in the

microstructure of a battery cell. The active particles and the

electrolyte are treated as geometrically separate domains within

this approach. Since the diameters of active particles range from

a few micrometers down to tens of a nanometer, computation-

ally resolving a cell of a few hundred micrometers thickness

and lateral dimensions in the range of tens of a centimeter

becomes very difficult, if possible at all. Therefore the preferred

approach for simulating whole cells is the porous electrode

theory, pioneered by Newman and coworkers [72-75]. A porous

electrode theory for materials with phase transitions was formu-

lated in [76]. To derive the porous electrode theory that corre-

sponds to a given microscopic theory several methods of

increasing complexity can be applied [77-79]. The most simple

and straightforward approach is volume averaging. In this ap-

proach, the microscopic transport equations are integrated over

a complex porous microstructure and the Gauss Theorem is

used to derive the equations for the separate domains and the

contribution of the interfaces to the transport [80]. This method

does not constitute an analytical proof that the averaged solu-

tion of the microscopic equations does converge in a strict

mathematical sense towards the solution of the averaged set of

equations. Here, further analytical work or numerical conver-

gence studies will be necessary.

If a quantity A is averaged over one phase, say the electrolyte

phase Ve, in a representative volume element (RVE) of volume

V = Vs + Ve, we obtain

(81)

Central is the following theorem for the average of divergence

terms, say :

(82)

where dA is an infinitesimal area element and  is the outward

surface normal.

The volume-averaging method for isothermal systems is

discussed in detail in [61,77,78]. For non-isothermal systems

volume averaging was used to homogenize heuristic micro-

scopic equations [45]. The terms proportional to  in the

ionic flux and electric current will give rise to a contribution of

the volume-averaged temperature gradient and of the jump of

the temperature gradients at the interfaces between electrolyte

and active particles. As will be shown below the contribution of
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these terms to the ionic fluxes and currents can be neglected

compared to the volume-averaged gradients of the electrochem-

ical potential and the jump of the electrochemical potentials at

the interface. We therefore concentrate on the derivation of the

volume-averaged temperature equation, consistent with the

microscopic equation, derived above:

(83)

where the terms correspond to heat conduction (I), Joule heating

(II), the Thomson effect (III), heat of mixing (IV) and

Soret–Dufour effect (V). The technical details can be found in

the Appendix. The final result for the volume averaged heat

equation is

(84)

Interestingly, all surface terms due to the coupling of heat and

ion transport (terms proportional to kT) from the Soret–Dufour

effect and due to heat–current coupling from the Thomson

effect cancel exactly with the corresponding terms from the

contribution of the heat conduction. What remains is the surface

Joule heating and the Peltier effect (last line of Equation 84).

Comparison of microscopic and meso-
scopic heat transport
There are many papers in literature, which present models and

simulations of thermal effects on cell-level based on experi-

mental investigations [44,49,81-84]. In this paper, we are not

interested in fitting parameters to experimental results. Instead,

we want to stress the intrinsic fundamental differences and

similarities of models on two different spatial scales. Specifi-

cally, we will show that there are important phenomena on the

microscopic scale which cannot be represented, in principle,

through homogenized theories, but which may be very impor-

tant for predictions of degradation phenomena.

In order to demonstrate these fundamental differences between

microscopic and homogenized models, mostly based on porous

electrode theory (we call it the mesoscopic approach), with

respect to thermal aspects, we performed numerical computer

simulations on a generic model system with two different micro

structures and compared the results to meso-scale simulations of

two corresponding setups.

Simulation details
In order to demonstrate the qualitative features of the micro-

scopic electrochemical model, no measured electrode structure

was used but rather a computer-generated random geometry

with typical properties. To simplify the geometry further both

electrodes have an identical structure. Two cases with different

base particles were considered: one with spherical active parti-

cles of radius 5 μm and one with prolate spheroids of random

orientation with half-axes of 5 μm and 16.8 μm. In both cases

the porosity ε was set to 0.5 such that the capacity of each elec-

trode is equal. The geometries are shown in Figure 1. The left

and the right electrode are the anode and the cathode, respect-

ively. They are connected to current collectors through which

electrons enter. Note that although electrodes are equal, their

interface area with electrolyte differs slightly since they are at-

tached to the collector plates on opposite sides. The simulation

was set up such that the virtual cell is almost empty and a

constant current was applied to charge the cell. Details on the

parametrization are summarized in Table 1. Note that no

temperature-dependence of the parameters was considered here.

In particular, there is no contribution of ∂U0/∂T in the Peltier

term (see Equation 80 and the last term of Equation 84), which

might underestimate the contribution of this term.

To solve the PDE system of the thermal micro-model

Equation 62, Equation 63 and Equation 66 for the unknown

quantities concentration c, potential Φ and temperature T the

finite-volume method [85] was employed. To this end the simu-

lation domain of Figure 1 is discretized into a regular grid of

cubic control volumes (CVs). In this discretization the unknown

quantities are only defined in the center points of the CVs.

Separate integration of the transport equations over the volume

of each CV i and application of the Gauss theorem turn the PDE

system into a large algebraic system that can be solved numeri-
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Figure 1: Geometry used for the microscopic simulation. It consists of an anode (blue), a cathode (red) and current collectors (brown). The space
between particles and electrodes is filled with electrolyte. Geometry (a) consists of spherical particles of radius 5 μm, geometry (b) of a prolate spher-
oids of half-axes with 5 μm and 16.8 μm. The thickness of each electrode is 100 μm, the separator region 40 μm and the cross section area 60 × 60
μm2.

Table 1: Summary of generic parameter set used for the microscopic simulations. Subscripts s, e, cc, A, and C denote solid, electrolyte, current
collector, anode, and cathode, respectively. For the thermal equation this study chooses identical parameters for all materials species. Quantities
marked with an asterisk differ in the meso-simulations. a,b

quantity / unit value quantity / unit value

Ds,A / cm2s−1 10−10 Ds,C / cm2s−1 10−10

σs,A / S/cm *10 σs,C / S/cm *0.38
σcc,A / S/cm *10 σcc,C / S/cm *0.38

k / A cm2.5 mol−1.5 0.002 k / A cm2.5 mol−1.5 0.2
cmax,A / mol/cm3 24681 · 10−6 cmax,C / mol/cm3 23671 · 10−6

c0,A / mol/cm3 2639 · 10−6 c0,C / mol/cm3 20574 · 10−6

c0,e / mol/cm3 1200 · 10−6 t+ / 1 0.39989
De / cm2s−1 *1.622 · 10−6 κe / S/cm *0.02
λ / W/(cm K) 0.006 cp / J/(kg K) 4180
ρ / kg/cm3 0.001 β / V/K 0.0002

kT / 1 1 T0 / K 298
iappl / A/cm2 0.00318

aU0,A(soc)/V = −0.132 + 1.41 × exp(−3.52 × soc)
bU0,C(soc)/V=4.06279 + 0.0677504 × tanh(−21.8502 × soc + 12.8268) − 0.105734 × ((1.00167 − soc)−0.379571 − 1.576) − 0.045 × exp(−71.69 × soc8)
+ 0.01 × exp(−200 × (soc − 0.19))

cally by a computer. Time evolution is discretized by using the

simple backward Euler scheme with a time step of 20 s. One

time step consists of the following three steps:

1. Due to the strong coupling between concentration and

potential the system Equation 62 and Equation 63 is

solved monolithically.

2. Solution of the temperature system Equation 66.

3. In order to improve accuracy and maintain conservation

properties step 1 is repeated with the new temperature.

Since the equations describe a nonlinear PDE-system a

nonlinear solver must be used for each of the above steps. We

employ a simple Newton algorithm in combination with the

algebraic multigrid solver SAMG [86] to deal with the nonlin-

earities. This approach is implemented in the software BEST

[87] (based on the CoRheoS framework [88]), which was

applied to perform the simulations.

The geometry used for the mesoscopic simulations is shown in

Figure 2. Except for the current collectors that have now a

thickness of 40 μm the thicknesses of electrodes and separator

are the same as in the case of the microscopic scale. The lateral

dimensions were increased to 260 μm but the applied current

was scaled proportionally. The parametrization was chosen such

that meso- and micro-simulations can be compared (Table 2).

To this end the effective transport properties required in the

meso-case instead of bulk values are computed from the micro-

structure by using the software GeoDict [89].

As described in the previous section, the meso-model used here

is a 3D + 1D model, i.e., three spatial dimensions for the
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Figure 2: Geometry for mesoscopic simulations with the porous-elec-
trode model.

Table 2: Parameters used for the mesoscopic simulations that differ
from the case of microscopic simulations (cf. Table 1). Due to the
different structures of spherical and ellipsoidal micro-geometries the
effective transport parameters are different. Subscripts e, s, AC and
Sep denote electrolyte, solid, anode/cathode and separator, respect-
ively.

quantity / unit value (sphere) value (ellipsoid)

De,AC / cm2s−1 0.474 · 10−6 0.438 · 10−6

De,Sep / cm2s−1 1.622 · 10−6 1.622 · 10−6

σs,A / S/cm 1.246 1.82
σs,C / S/cm 0.047 0.069
κe,AC / S/cm 0.00584 0.0054
κe,Sep / S/cm 0.02 0.02

rs / μm 4.89 5.93

unknown quantities electrolyte concentration, electrolyte poten-

tial, solid potential and temperature and, in each electrode CV,

another virtual dimension for the concentration within a

representative spherical particle (solid concentration) to mimic

the diffusion into the active material. As in the micro-model a

finite volume discretization is used for both the 3D cell geom-

etry and the 1D domain representing a microscopic particle.

Here, each 3D electrode voxel contains its extra dimension for

the representative particle which is spatially discretized into 10

control volumes. The solution process of each time step with

fixed step size of 15 s is as follows:

1. Solve the coupled system for the unknown quantities

electrolyte concentration, electrolyte potential, solid

potential in the 3D domain.

2. Solve the solid particle diffusion problems for the

unknown solid concentration in the 1D domain for each

electrode voxel individually.

3. Solve the temperature equation for T (in the 3D domain).

4. Repeat step 1 to improve accuracy and maintain conser-

vation properties.

Steps 1 and 3 are solved implicitly with a simple Newton

method and an algebraic multigrid solver [86] whereas step 2

uses an explicit forward Euler discretization based on the same

time step and is thus fast to solve. However, due to the time-

step limitations for explicit schemes the step size here can auto-

matically decrease based on the given parameters to ensure

stable convergence.

Despite the fact that on the microscale the basic particles are

spherical and ellipsoidal, the porous electrode theory mimics

the solid diffusion process always by a sphere of a certain

radius. This radius r is related to the specific interface area a

and the electrode porosity ε by a = 3ε/r. Here we chose the ap-

proach to determine a from the micro-geometry and compute

the corresponding radius r but we note that there are also other

reasonable approaches to fix r.

Results and Discussion
The simulation yields a three-dimensional field of lithium ion

concentrations. Of interest is, for instance, the ion concentra-

tion in through-plane direction. A projection of the Li concen-

tration of the electrolyte phase onto this axis is shown in

Figure 3. The data from the microscopic simulations shows

considerable scatter reflecting the inhomogeneous, random

structure. There are even CVs that remain at their initial concen-

tration of 1.2 mol/L since they are surrounded completely by

active particles. Due to the electroneutrality condition they have

to stay at their initial concentration. The porous electrode ap-

proach treats the complete electrode region as homogeneous

effective medium. For this reason (and of course due to the

application of symmetric boundary conditions) the concentra-

tion profile does not show any scatter and agrees reasonably

well with the microscopic average. However, a quantitative

agreement is only obtained in the separator region for the

sphere-based micro-geometry. Especially in the electrodes far

away from the separator there is a deviation of about 5%. Since

the porous electrode model is in some sense a simplification of

the microscopic approach its results must be scrutinized more

carefully. The concentration within the electrolyte depends on

the effective parameters for diffusion and ionic conductivity. In

this study they were computed by performing a simplified trans-

port simulation in the same microstructure that was used for the

microscopic battery simulations. Due to the limited geometry

size that was used it is likely that the effective parameters are

not very exact. Furthermore, it is questionable whether the

meso-approach is justified at all here since we use it on a

similar scale. As pointed out in [79] the necessary condition of



Beilstein J. Nanotechnol. 2015, 6, 987–1007.

1001

Figure 3: Distribution of electrolyte concentration in dependence of position in through-plane direction at a capacity ratio of 0.42 for (a) spherical parti-
cles and (b) prolate spheroids. Each panel compares results of the micro-simulation with a corresponding meso-scale simulation.

Figure 4: (a) Comparison of cell potential during charging simulations on micro- and meso-scale for the two base particles considered here, sphere
and ellipsoid. (b) Comparison of heat production shown in a similar way as in (a).

scale separation for using homogenization is not fulfilled in real

lithium ion batteries. Very often electrodes have a thickness of

the order of only ten particle diameters, which is not sufficient

to justify the assumption of scale separation. Therefore it seems

reasonable that for the ellipsoidal base particles the concentra-

tion in the separator region does not match well because in this

case also the representative sphere of the meso-model is

different from the actual micro-particle (ellipsoid). Thus, it is

important to determine the effective properties as well as the

representative particle size with great care. This is very relevant,

for instance, for a prediction of the limiting current, at which

the electrolyte is locally depleted of ions.

The concentration distribution within the active material is indi-

rectly expressed through the cell potential (differences between

current collector potential at cathode and anode). For the four

simulation cases the cell-potential is shown in Figure 4a.

Comparing the microscopic cell potentials it is interesting to

note the higher voltage for the ellipsoidal geometry compared to

the spherical geometry. This is explained by the different inter-

face areas: While the ellipsoidal micro-geometry has an inter-

face area of 0.18 mm2, it is 0.22 mm2 for the one based on

spheres. Since in both cases the same current is applied a higher

overpotential (and therefore cell potential) is required for

smaller interface areas. Although the meso-simulation shows

the same behavior the corresponding micro and meso simula-

tions differ slightly. Since the lithium diffusion within active

particles is modeled in the meso-case only by single, represen-

tative particles, the exact influence of the actual interface shape

and connectivity between particles is neglected. Thus, it cannot

be expected that both methods show a better agreement without

more careful adjustment of parameters, in particular of the
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Figure 5: Cut through the ellipsoid-based micro-geometry showing heat production at a normalized capacity of 0.5 by (a) the interface Soret effect
and (b) the bulk Soret effect.

radius r in the meso-model. However, even then it is not clear

that this will lead to the same results also in other application

scenarios, e.g., with a different applied current.

Thermal effects are of particular interest in this model compari-

son. Because the meso-model neglects structural details the

current and the ion flow are very different compared to the

microscopic model. In the latter, the current can be strongly

localized due to the connective properties of the electrode struc-

ture. Thus, it is very surprising that a comparison of the total

heat power per volume is very similar for both simulation

approaches (see Figure 4b). Additionally, as before, we recog-

nize a difference of heat production between spherical and ellip-

soidal base particles. To understand this we need to analyze the

different sources of heat.

The microscopic model allows one to study the heat sources

with spatial resolution. As an example we show in Figure 5 the

heat production caused by the Soret effect in bulk and at the

interfaces. Since it is a reversible heat source, positive and

negative contributions dependent on the local current directions

are possible. It is clearly visible that heat sources can be

strongly localized depending on the micro-structure. This is true

also for other sources of heat. By computing the total power per

volume for the different heat sources their relative magnitudes

can be compared as function of state-of-charge during charging.

Figure 6 shows the result for the microscopic simulation with

ellipsoidal base particles. A very interesting feature is the time-

dependence of the Soret heat: Although it oscillates strongly

with a large magnitude and is very inhomogeneously distrib-

uted in space (cf. Figure 5) the total interface and bulk contribu-

tions cancel each other exactly such that the Soret effect is of no

importance for the total heat production in this case. Respon-

sible for the shape of the Soret curves is the derivative of the

open-circuit potential (OCV) (cf. last terms in Equation 57 and

Equation 79). After averaging those terms vanish for the meso-

scopic model (cf. second last term of Equation 84). What

remains is the divergence of the purely diffusive ion flux which

is very small in the separator and has opposite signs in the elec-

trodes. In a symmetric setup such as the one studied here with

sufficiently small temperature gradients these (the last terms in

Equation 57 and Equation 79) basically cancel. That is why the

Soret contribution in the meso-simulations is of the order of

10−5 mW/cm3.

Figure 6: Heat production for ellipsoid-based micro-structure due to
different heat sources. Thick lines show the results from the micro-
simulation while the thin black lines are the results of the corres-
ponding meso-simulation.

We realize from Figure 6 that the only significant contribution

to the total heat production comes from the irreversible Joule

heat created at the interface between active particle and elec-

trolyte, i.e., basically the product of overpotential and

Butler–Volmer current ηise (cf. last line of Equation 84). We

further note the good agreement between micro- and meso-scale

simulations. In particular the interface Joule heat as most rele-

vant heat source can be captured in the meso-model quite well,

although there is a deviation at the end of the charging process.

Similar to the cell potential (cf Figure 4) also the interface Joule

heat crucially depends on the overpotential. Therefore, the same

reason as discussed before explains the difference.



Beilstein J. Nanotechnol. 2015, 6, 987–1007.

1003

Figure 7: (a) Spatial distribution of the overpotential in through-plane direction for the ellipsoid-based microstructure at a capacity ratio of 0.42. Due to
the strong variation of the data in the microscopic simulations (grey), a running average (red) is compared to the overpotentials of the mesoscopic
simulations (black). (b) Similar as in (a) we compare the Joule heat at the interface between active particles and electrolyte.

From the above discussion one would expect that the overpo-

tentials of micro- and meso-model are the same. In Figure 7a

we study the overpotential at a fixed time as a function of the

position in the through-plane direction. Comparing the overpo-

tentials for each CV in the microscopic case (grey dots) a very

large scatter is observed that is larger for the anode (left). The

anode has a lower rate constant than the cathode and hence a

larger overpotential. The large scatter is of course an expres-

sion of the complex microstructure and for better comparability

we compute a running average of the data (red curve). In the

homogeneous mesoscopic simulation the overpotential curve is,

by construction, much smoother and it agrees well with the

microscopic data. Due to the strong relationship between the

interface Joule heating with the overpotential the same holds for

this heat source shown in Figure 7b. From both figures it can

thus be concluded that the meso-approach is capable of repro-

ducing the average or global heat power. However, one should

note that this is because it is the interface Joule heat that plays

the dominant role. So as long as the geometry is such that over-

potential and Butler–Volmer current density can be described

well on the mesoscopic scale the respective simulation can

compute the correct amount of heat. If other sources of heat that

rely on the actual distribution of current or ion flux become

more important, either due to different material parameter

combinations or geometric properties, it is unlikely that a meso-

simulation can reproduce the results of the full microscopic ap-

proach.

Many processes, e.g., the intercalation rate or degradation

effects, depend on the local temperature. Having realized from

Figure 5 and Figure 7 that heat sources are inhomogeneously

distributed in the realistic microscopic geometry it is of interest

whether the resulting temperature exhibits a similar behavior.

Therefore Figure 8 shows the cell temperature as a function of

Figure 8: Spatial variation of temperature in through-plane direction for
the microscopic ellipsoid case.

the through-plane position for different times during the

charging. There is no spatial temperature variation visible (even

on changing the scale), only a global increase of T. This is not

surprising since the thermal diffusivity λ/cpρ = 0.0014 cm2/s

and the cell thickness of 0.00246 cm lead to thermal diffusion

time scale of less than 0.5 s. The energy produced in any point

inside the cell is thus spread out very quickly such that no

appreciable gradient can develop. This is particularly true for

the strongly localized interface Joule heat sources.

One finding of the presented numerical experiments is that it is

mainly the Joule heating at the interface between active ma-

terial and electrolyte that determines the amount of heat

production. However, we have to repeat in this context that a

temperature dependence of the parameters was not considered

here, which in particular affects the reversible Peltier term

(Equation 80). Some studies claim this term to be also of rele-

vant magnitude at least for low currents [50]. A reliable experi-
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mental determination of ∂U0/∂T is, therefore, an important

prerequisite for further computations including this effect, but

they are not trivial since U0 only very weakly depends on T.

In summary, we found that the mesoscopic simulation ap-

proach was able to quantitatively reproduce the amount of

energy produced during charging with a constant current from

the microscopic approach. Although this was at first surprising

since the scatter of concentrations, potentials or currents in the

meso-model is much weaker, this result could be explained by

the fact that there is only one dominant source of heat, namely

Joule heating at particle–electrolyte interface. This heat term

does only depend on overpotentials and intercalation currents

that are reproduced in this approach reasonably well. As long as

the solid-diffusion behavior, which influences the overpotential,

is captured correctly and as the interface Joule heating is the

dominant effect one can expect that the thermal results of the

meso-model are as trustworthy as a full microscopic simulation.

While the former was easily obtained in this study because the

basic particles were of very simple spherical or spheroidal

shape of equal size the latter might be different for other cases

(e.g., other materials with different parameters or geometries).

When the active particles exhibit a broad size and shape distrib-

ution, as in reality, more care is necessary to adjust their size

and the solid diffusion constant in the meso-model. That such

an adjustment would be sufficiently universal to allow for

predictive simulations for a wide range of application scenarios

(e.g., different load cases) can be doubted. Other studies state at

least that the mesoscopic simulation approach underestimates

the total amount of generated heat [50] when compared to the

micro-approach. The latter takes structural influences into

account and is thus less dependent on parameter adjustments or

data fitting. Therefore more realistic results can be expected

from the micro-approach. On the other hand, micro-scale simu-

lations are computationally much more expensive if a reason-

able realistic and representative micro-structure (e.g., from

measurements) is used.

Conclusion
Fully seamless multiscale simulations from atomistic to cell

scale are not yet possible nowadays. There are unresolved

issues on each scale, although tremendous progress for electro-

chemical storage applications have been achieved. In the main

part of our paper, we addressed the problem on how the

continuum scale, which stretches for battery cells from the

nanometer to the centimeter scale can be systematically be

brought in contact with the atomistic scale. We believe that

systematic methods from non-equilibrium or rational thermody-

namics may well be the tool to establish the connection with

MD and DFT simulations, if all these methods are combined

with methods from statistical mechanics to ensure the proper

averaging strategies for obtaining the transport coefficients and

thermodynamic derivatives [90]. In addition to giving a short

overview over the available atomistic scale simulation tools, we

concentrated on the problem of systematically deriving the

coupled equations for ion, charge and heat transport in inser-

tion batteries on the particle and pore resolved nano- and

microscales of electrodes and upscaling these equations to the

cell scale. In the derivation we presented a careful discussion on

how the resulting form of the transport equations is influenced

by the choice of the macroscopic fields and how the seemingly

different models in the literature can be transformed into each

other. The accuracy of the upscaling procedure was investi-

gated numerically by comparing a fully 3D microstructure

resolved model of a battery cell with the homogenized or

upscaled representation of this cell. For the chosen microstruc-

ture the numerically thermal and voltage behavior of the cell

under load was found to be astonishingly similar to the directly

simulated results of the analytically averaged equations. This

result cannot be considered to be true in general. We except that

the differences can be much bigger for less homogeneously

chosen microstructures. But even for the investigated homoge-

nous microstructures huge fluctuations (larger then 100%)

around the average for, e.g., overpotentials and Joule heating

terms are found. As a consequence we may conclude that the

probability for the occurence of degradation phenomena may be

hugely underestimated. For example the occurence of plating

depends on the local potential at the interface of the electrolyte

and active particles. Since overpotentials are strongly underesti-

mated, a porous electrode model cannot accurately detect the

sites in the battery cell where, e.g., plating is likely to occur,

that is where the total potential drops below the redox potential

of Li/Li+. The same is to be expected for the initiation for ther-

mally induced degradation of the electrolyte due to the underes-

timation of the local heat production. Although the temperature

is basically constant on the microstructural scale, it is, in add-

ition to the temperature, the locally available energy on very

short time scales, which is relevant for overcoming reaction

barriers of degradation mechanisms. Therefore, the local fluctu-

ations in the heat sources may be relevant for the identification

of critical structural properties of electrodes. For the design of

optimal cells a combination of cell-scale simulations with pore-

resolved simulations will be necessary to identify the best

global behavior as well as the optimal structure on the nano-and

micrometerscale, once the optimal material parameters have

been identified with DFT- and MD- simulations.

Appendix
To obtain the volume-averaged transport equation for heat

(Equation 84), the volume averaging technique is applied to

each term of Equation 83, where the convention is adopted that

the normals always point from solid to electrolyte phase.
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(89)

Heat conduction

(85)

In the last step the microscopic expression for the thermal inter-

face conditions was applied. Here and in the following a = A/V

denotes the specific surface area.

Joule heating

(86)

Thomson effect

(87)

Heat of mixing

(88)

In the first term on the right hand side the transference number

in the solid is zero.

Soret–Dufour effect
The mathemiatical expression for the Soret–Dufour effect is

given in Equation 89. Adding up all the contribution and

assuming that there is no direct inter-particle transport of ions,

i.e., , we obtain the volume-averaged heat equa-

tion (Equation 84).
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