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Performance analysis of the micro gas turbine Turbec T100 with a new1

FLOX-combustion system for low calorific fuels2
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Abstract5

This paper presents the first combustion system, which has been designed for the use of biomass derived

product gases in micro gas turbines. The operating performance of the combustion system and of the micro

gas turbine Turbec T100 was analyzed experimentally with synthetically mixed fuel compositions. Reliable

start-up procedures and steady-state operation were observed. The Turbec T100 reached an electrical power

output of 50 to 100 kWel with a lower heating value of 5.0 MJ/kg. Compared to natural gas, the electrical

power output was noticeably higher at constant turbine speeds. Therefore, operation was limited by the

power electronic at low speeds, while a second limitation was compressor surging at high speeds. To avoid

surging, the turbine outlet temperature had to be reduced at turbine speeds between 64,400 rpm and its

maximum of 70,000 rpm. The pressure losses across the FLOX-combustion chamber remained below 4%,

which corresponds to a reduction of 30% compared to the Turbec combustion chamber fired with natural

gas. Low pollutant emissions, i.e. CO< 30 ppm, NOx< 6 ppm and unburnt hydrocarbons < 1 ppm, were

obtained over the whole operating range. Further optimization potential of the Turbec T100 was analyzed

numerically. Neglecting compressor surging and the limitations of the power electronic, the numerical

simulations predicted a maximum power output of 137 kWel. The ability of the micro gas turbine to run

with low calorific fuels is demonstrated and optimization potential is specified.

Keywords: Flameless Oxidation, CHP, Biomass Gasification, Experimental Investigation, Emissions6

∗Corresponding author. Tel.: +49 711 6862 323; fax.: +49 711 6862 578
Email address: timo.zornek@dlr.de (T.Zornek*)

Preprint submitted to Journal of LATEX Templates July 13, 2015



Highlights7

� A new FLOX-combustion system has been successfully tested in a micro gas turbine8

� The operating performance of the Turbec T100 with LCV fuels was characterized9

� Reliable start-up and steady-state operation from 50 to 100 kWel was observed10

� Low emissions over the whole operating range: CO< 30 ppm, NOx< 6 ppm, UHCs< 1 ppm11

� The pressure drop across the combustion system was below 4%12
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Nomenclature

A cross-section
c velocity
Lst stoichiometric air-to-fuel ratio
lst oxygen demand for complete oxidation
ṁ mass flow rate
ṁC corrected mass flow rate
N rotational speed
NC corrected rotational speed
p static pressure
pt total pressure
∆pt total pressure losses
Ri specific gas constant
T temperature
xi molar fraction
λ air number
ρ density

Abbreviations
CHP Combined heat and power
CIT Combustor inlet temperature
FLOX Flameless oxidation
LCV Low calorific value
LHV Lower heating value
MGT Micro gas turbine
NG Natural gas
PG Product gas
TOT Turbine outlet temperature
UHC Unburnt hydro carbons
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1. Introduction13

For decentralized combined heat and power (CHP) production, micro gas turbines (MGT) constitute14

a promising technology [1]. The stationary combustion of MGTs enables low pollutant emissions without15

exhaust gas aftertreatment and it facilitates firing of alternative fuels. As MGTs are considered to be fuel-16

flexible, there is a growing interest to use them in combination with biomass derived fuels [2]. For instance,17

using product gases from biomass gasification in efficient MGT-CHP plants offers a reduction of CO2-18

emissions and saves fossil resources. However, commercially available MGTs are designed for conventional19

fuels such as natural gas or diesel, which have a higher lower heating value (LHV). If fuels with lower LHVs20

are used, the fuel mass flow rate increases respectively. In case of a product gas with a LHV of 5.0 MJ/kg21

the fuel mass flow rate increases almost by the factor of ten compared to natural gas. Usually the fuel mass22

flow rate is limited by the size of the fuel valves, the flow cross-sections and the fuel pressure. Enlarging23

the fuel mass flow rate affects the impulse ratios inside the combustion chamber and as a consequence the24

flame stability. Furthermore, important combustion characteristics like flame speed and ignition delay time25

depend on the fuel composition. A completely new design of the combustion system is necessary if these26

characteristics are very different to the designated fuel. Nevertheless, only minor modifications of the original27

combustion system were conducted in all previous studies about the operating performance of MGTs with28

alternative fuels.29

To analyze the impact of biogas on the operating performance of the 100 kWel MGT Turbec T100,30

Nikpey et al. [3] diluted natural gas with carbon dioxide at various load points. They found that 15% CO231

(in mole fraction) could be added until flame out occured at part load with a power output of 50 kWel. The32

possible amount of CO2 decreased to 10% at full load and 100 kWel. The LHV in their study varied between33

46 and 33 MJ/kg. In this range, no significant changes in performance were observed. D’Alessandro et al.34

[4] analyzed the part load performance (20-40 kWel) of the 80 kWel MGT from Elliot Energy systems with35

modified fuel nozzles. By diluting natural gas with nitrogen, the LHV was decreased down to 23 MJ/kg.36

No significant effect on the electrical efficiency was found, which is in accordance with [3]. Similar results37

were obtained by Kataoka et al. [5], who operated the Elliot MGT at full load with digester gas featuring38

a LHV of 17.5 MJ/kg. However, neither for LCV fuels with LHVs below 17.5 MJ/kg nor for fuels with39

a similar composition as product gases experimental data is available in literature. Some authors tried40

to predict the operating performance of MGTs for LCV fuels numerically. The simulations are based on41

models which are validated with experimental data obtained from natural gas operation. Prussi et al. [6]42

simulated the steady-state behavior of the Turbec T100 at full load for various blends of a representative43

4



biomass product gas and methane. The LHV ranged from 50 MJ/kg for pure methane down to less than44

4 MJ/kg for pure product gas. Considering the energy for fuel compression, they received a sharp decrease45

of the electrical power output and the electrical efficiency for blends with a LHV less than 10 MJ/kg. It46

is noteworthy that the operating points of the turbomachinery components remained in the stable range,47

even for the pure product gas. Bohn and Lepers [7] investigated the impact of the biogas composition on48

the full load perfomance of a 80 kWel MGT. Their results predict that the compressor remains inside the49

surge margin up to a methane content of only 15 Vol.-%, i.e. a LHV of 3 MJ/kg. As there are no further50

restrictions known, the last two studies suggest that the mentioned MGTs would tolerate low calorific fuels51

with a LHV of only 3 or 4 MJ/kg.52

To overcome the present limitation, the first LCV combustion system for MGTs has been developed in53

this work. It allowed an extensive characterization of the Turbec T100 with low calorific fuels featuring54

LHVs from 3.5 to 5.0 MJ/kg. These synthetically mixed fuels were similar in composition to product gases55

from fixed-bed gasifiers. In this way, further operational limitations of the MGT were identified. While56

compressor surging limited operation at full load, the power electronic turned out to be a restriction at part57

load. Additionally, a numerical model was validated with the experimental data obtained in this work. The58

model was used to analyze optimization potentials of the Turbec T100 for product gas operation. Finally,59

this work gives the first comprehensive investigation of operating the MGT Turbec T100 with product gases60

from biomass gasification.61

The developed combustion system was successfully implemented and tested in the Turbec T100. The62

design of the combustion system is based on the concept of flameless oxidation (FLOX) [8]. This technique63

is already applied in industrial furnaces and similar approaches are also known as MILD combustion [9],64

colorless distributed combustion (CDC) [10] or High Temperature Air Combustion (HiTAC)[11]. The FLOX-65

concept is an efficient and fuel-flexible combustion concept with low emissions of hazardous pollutants like66

NOx and CO [8, 9, 12–16]. It features a low risk of flashback as well as relative pressure losses across the67

combustor below 5% [15]. Concerning low calorific value gases, Danon et al. [17] obtained low pollutant68

emissions with a prototype FLOX combustor. For gas turbine application, these combustion concepts are69

still at the level of prototypes, which have been tested at combustor test rigs. Only Zanger et al. [18]70

reported the succesful operation of a FLOX-based combustion system (designed for natural gas) in a MGT.71
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Figure 1: Schematic of the micro gas turbine test rig at DLR

2. Experimental setup72

2.1. Micro gas turbine test rig73

The FLOX-combustion system presented in this work has been investigated in a micro gas turbine Turbec74

T100PH series 3, which features a nominal electrical power output of 100 kWel, an electrical efficiency of75

30%, a maximum turbine speed of 70,000 rpm and a thermal power output of 150 kWth. A schematic of76

the MGT test rig at DLR is illustrated in figure 1. The MGT itself consists of a compressor, a turbine, a77

generator, a combustion chamber and a recuperator. The radial compressor achieves a maximum pressure78

ratio of 4.5. The air is heated up by compression and by the additional recuperator. The latter enhances79

the electrical efficiency of the MGT. The exhaust gas expands through a radial turbine, which is driving80

the generator and the compressor. The exhaust gas heat exchanger behind the recuperator was removed for81

these measurements, because the thermal power output was not investigated.82

The power electronic provides the electrical power at 400 V and 50 Hz. Due to the voltage in the DC-link,83

the operation of the power electronic is limited. There is a maximum and minimum electrical power output84

at a certain turbine speed. Within this range the electrical power output can be varied by changing the85

amount of fuel and hence the turbine outlet temperature (TOT). At higher turbine speeds, the operating86

range of the DC-link becomes smaller. The overall range of the power electronic is optimized to match the87

operating range of the natural gas fired MGT.88

Within the original combustion system of the Turbec T100 the fuel is distributed into two stages, a pilot89

stage and a main stage. The fuel mass flow rate through the main stage is controlled in closed-loop to the90

TOT, while the pilot fuel mass flow rate is controlled accordingly to a preset map. This map defines the91

fuel mass flow rate through the pilot depending on turbine speed and TOT. The actual valve command is92
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then calculated depending on the lower heating value, the fuel pressure and a valve characteristic factor.93

For the new FLOX-combustion system, which also containes two stages, the preset map was modified. The94

high fuel mass flow rate of LCV gases required bigger fuel valves, which have been installed in the test95

rig analog to the valve unit of the standard unit. In contrast to the Turbec valve configuration, a Coriolis96

mass flow controller was used for pilot fuel regulation. In this case the valve command was independent of97

fuel pressure. An additional adjustable nozzle provided a constant pilot fuel mass flow rate, which was used98

for ignition and for flame stabilization during operation. The fuel mass flow rate through the nozzle was99

measured by a Coriolis mass flow meter.100

In order to run the MGT with a synthetic fuel composition corresponding to compositions obtained from101

fixed-bed concurrent gasifiers, a fuel supply system was built up. The system controlled the mass flow rates102

of hydrogen, carbon monoxide, natural gas, carbon dioxide and nitrogen by separate mass flow controllers.103

All components were mixed in a buffer volume with the required ratios. The overall fuel mass flow consumed104

by the MGT was obtained by the sum of the mass flow rate of the five fuel components. The main fuel105

mass flow rate was calculated by subtraction of the total pilot fuel (valve + nozzle) from the overall fuel106

mass flow. The behavior of the fuel supply system is demonstrated in figure 2, where turbine speed, fuel107

pressure and the percentage of each fuel component are plotted against time. Fuel composition as well as108

fuel pressure were stable, even during the start-up procedure. The graph proves the feasibility of the fuel109

system to supply the MGT with the required fuel composition. Furthermore, the graph shows that the110

MGT ran smoothly even during load changes.111
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Figure 2: Fuel composition, fuel pressure and turbine speed of the turbine during operation

At the test rig, the exhaust gas was analyzed with a system consisting of a paramagnetic oxygen sensor,112

an IR-photometer, an uv-photometer and a flame ionization detector sensor. Table 1 shows the accuracy for113

every device and the species measured. Emission data in the following text are presented as dry concentration114

and have been corrected to 15% oxygen content in the exhaust gas. To analyze the emissions, a fraction of115
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Table 1: Exhaust gas analysis devices from ABB and accuracy

Method Species Range Accuracy
Paramagn. O2 0...25 Vol% ±0.125%
IR- CO 0...50 ppm ± 0.5 ppm
photometer CO2 0...5 Vol% ±0.05 Vol%
UV- NO 0...10 ppm ±0.1 ppm
photometer NO2 0...10 ppm ±0.1 ppm
FID UHC 0...10 ppm ±0.1 ppm

the exhaust gas was separated by a multiple-hole probe behind the recuperator. At this point the gas outlet116

temperature was about 240 to 290°C. In order to avoid condensation, the sample pipe was heated up to 180°C.117

Besides the exhaust gas analysis device, the MGT test rig is equipped with various thermocouples (N- and118

K-type) and static as well as total pressure transducers. A more detailed description of the instrumentation119

of the MGT is given in [19]. Data from the exhaust gas analyzer as well as from the MGT have been recorded120

by a data acquisition system with a frequency of 2 Hz. In this work, the measured data are presented as the121

arithmetic average over 5 minutes.122

2.2. Combustion system123

The operating conditions in the combustion chamber of the Turbec T100 vary extensively depending124

on the load point. During the starting period, the inlet temperature of the air and the pressure inside the125

combustion chamber are close to ambient conditions. The thermal load is about 10 kWth during ignition,126

whereas during stationary operation it ranges between 170 to 350 kWth. The air is then heated up by127

compression and by the recuperator up to about 650°C. The pressure inside the combustion chamber varies128

from 2 bars at 75% to more than 4 bars at 100% turbine speed. For these different conditions stable and129

complete combustion must be assured.130

A common technology to achieve stable combustion over a wide operating range is to use fuel staging.131

Within the combustor a small fraction of fuel is injected through a pilot stage, while the rest is injected132

through the main stage. The pilot stage is used for ignition and stabilizes the main stage combustion during133

operation. It provides hot exhaust gases and combustion radicals to the main stage. In order to reduce134

pollutant emissions, the main stage is usually operated under lean conditions. Figure 3 shows a schematic of135

the employed FLOX-combustion system. The air comes from the recuperator and is split into combustion136

air and dilution air. The latter constitutes about 2/3 of the air and enters the combustion chamber behind137

the combustion zone. The dilution air limits the turbine inlet temperature to a maximum of 950°C, which138

is the maximum allowed inlet temperature of the turbine. The combustion air streams along the liner to139
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the combustor, where it turns around and is split into main stage and pilot stage.140
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Figure 3: Schematic of the developed FLOX-combustion system

Figure 4: DLR-combustion system for low calorific fuels (picture:DLR/FrankEppler)

In gas turbine combustors the most widespread type of pilot and main stages are swirl-stabilized com-141

bustors. One or more swirlers force the air and/or the fuel to rotate around the combustors axis. On the142

one hand the rotation mixes fuel with air and on the other hand it generates an inner recirculation zone143

if the swirl is strong enough [20]. The recirculation of hot exhaust gases as well as areas of reduced veloc-144

ity facilitate flame stabilization. One advantage of swirl combustors is the possibility of small combustion145

chambers with high power density. For this reason, a swirl combustor is used for the pilot stage of the146

presented combustion system. The pilot stage is recessed in the center of the combustor. Fuel and air are147

introduced through a swirler, where they are partially mixed before entering the combustion chamber of the148

pilot stage. The subsequent main stage contains ten annular air nozzles in which fuel is injected coaxially.149

The high momentum of the injected jets generates a central recirculation zone, which returns a high amount150

of exhaust gases to the exit of the jets. This leads to a strong mixing of fuel, air and exhaust gases before151

the chemical reaction takes place. Additionally, the hot exhaust gases from the pilot stage are entrained by152

the jets of the main stage. In this way the pilot stage assists the combustion inside the main stage.153
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2.3. Experiments154

Table 2 shows the compositions and the lower heating values of the investigated product gases. These are155

typical values for product gases from fixed-bed gasifiers, which are widely used in small scale applications.156

The product gases consist of mainly H2, CO, CO2, CH4, H2O and N2, whereby its lower heating value157

(LHV) varies between 3.5 and 5.0 MJ/kg [21]. Table 3 shows the operated steady-state load points. With a158

constant lower heating value of 5.0 MJ/kg the turbine speed was varied between 80% and 100%. Due to the159

limited operating range of each mass flow controller, the product gas composition had to be varied to cover160

the whole operating range of the MGT. In some operating points the TOT had to be reduced because of161

the power electronic or to avoid surging of the compressor. At 82.5% speed the TOT was varied from 645°C162

down to 360°C. Additionally, three different lower heating values were examined at the same speed with a163

TOT of 600°C. Under part load conditions, combustion occurs with high excess of oxygen. Considering it164

as worst conditions for combustion, 82.5% was chosen to vary the lower heating value. Furthermore, the165

power electronic offers a wide range for variation at part load.166

Table 2: Product gas (PG) compositions in Vol.-%, LHV in MJ/kg

H2 CO NG CO2 N2 LHV
PG1 18 22 2.25 12 45.75 5.0
PG2 15 17.6 5 12 50.4 5.0
PG3 16.8 18 2.1 12 51.1 4.3
PG4 16 12 2 12 65.2 3.5
PG5 17.2 15 5 12 50.8 5.0

Table 3: Steady-state load points

Speed (%) TOT (◦C) PG LHV (MJ/kg)
80-100 max. 1,2,5 5.0
82.5 360-645 1,2 5.0
82.5 600 1,3,4 3.5-5.0
80-100 max. NG 48

3. Numerical setup167

At DLR a numerical simulation program was developed to analyze the steady-state performance of the168

Turbec T100 [22–24]. The program is based on models for each MGT component and on extensive experi-169

mental data collected at the DLR MGT test rig. Furthermore, the compressor map and the turbine map are170

embedded in the program. The limits of the power electronic are included and can be optionally turned on171

by the user. The input parameters are fuel composition and temperature, ambient air temperature, pressure172
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and relative humidity, rotational speed and a maximum allowed turbine outlet temperature. Additionally,173

the recuperator efficiency, heat losses, pressure losses and conversion losses from the generator and the174

power electronic are considered as well as miscellaneous losses coming from the auxiliary units and other175

components. The program calculates temperature, pressure, mass flow, gas composition and specific data176

for each component. It also permits to evaluate the performance of each component and of the complete177

system for various fuel compositions. In this paper, the program was used to investigate further potentials178

for optimization of the Turbec T100 with regard to operation with low calorific fuels. By using the obtained179

experimental data, the program has been validated analog to [24].180

4. Experimental results181

4.1. Start-up procedure182

The start-up procedure constitutes a critical maneuver because the MGT must be accelerated rapidly183

to avoid excitation of its resonant frequencies. As a consequence, the conditions in the combustion chamber184

change strongly and therefore, the risk of flame extinction is high. Figure 5 illustrates the start-up procedure185

of the Turbec T100 fired with product gas PG1 from cold conditions. Turbine speed, TOT and electrical186

power output Pel are plotted against time. At the beginning, the generator worked as an engine and187

accelerated the turbine up to 28% speed. Ignition occurred after a short period of ventilation. At this188

point, pilot fuel was controlled in closed loop with TOT in order to follow a specified ramp. The turbine189

accelerated rapidly to 75% after a TOT of 230°C and 35% turbine speed was reached. This is due to the190

resonant frequencies lying in this region. During ramp up the main stage was activated, which contributed191

in delivering the required thermal power. Main fuel was controlled in closed loop with TOT at 75% turbine192

speed, and pilot fuel was then controlled based on the pilot map, which was adjusted for product gas193

operation. The required speed was achieved after 400 seconds. After 1000 seconds the maximum TOT was194

reached and stabilized. The maximum electrical power output for the given speed was also obtained at195

this point. Finally, the graph shows smooth curves of speed and TOT. This indicates stable combustion196

during the start-up procedure. Similar results were observed for PG 2, 3 and 4. This shows that the FLOX-197

combustion system provides reliable start-up of the MGT with product gases from fixed-bed gasifiers.198

4.2. Steady state load points199

4.2.1. MGT performance200

The Turbec T100 has been analyzed by controlling and varying turbine speed at a maximum TOT of201

645°C in order to reach maximum electrical power output. Due to the limited capacity of the CO-mass202
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Figure 5: Start-up procedure of the Turbec T100 from cold conditions with a FLOX-combustion system and fired with product
gas (PG1)

Table 4: Ambient conditions during the experiments

fuel temp. rel.humidity pressure
(°C) (%) (bar)

product gas 6-7 64-68 0.95
natural gas 11-14 33-49 0.95

flow controller, the product gases PG1, 2 and 5 had to be operated to cover the whole range of turbine203

speed. Figure 6 presents the electrical power output Pel and the efficiency ηel versus turbine speed. The204

performance with the original Turbec combustion chamber and natural gas is also shown for comparison.205

The electrical power output Pel and the efficiency ηel are plotted versus turbine speed. Pel increased206

continuously with higher turbine speeds in case of natural gas. In cases with product gases, the electrical207

power output stagnated at about 100 kWel for turbine speeds higher than 92% and this was due to the208

TOT, which had to be reduced progressively in order to avoid surging of the compressor. The TOT was209

also reduced at 80% turbine speed due to the limitation of minimum voltage of the DC-link. In this case,210

the TOT is automatically reduced by decreasing the fuel mass flow rate. The maximum TOT was achieved211

from 82.5% to 92% turbine speed. Nevertheless, stable operation of the MGT was observed from 80% to212

100% turbine speed and the electrical power output ranged from 50 to 100 kWel. Compared to natural213

gas, i.e. 40 to 100 kWel this range is smaller, but the electrical power output was significantly higher at214

a fixed speed. The higher power output was partially caused by the ambient conditions, which strongly215

influence the electrical power output and the electrical efficiency [25, 26]. The ambient conditions during216

the experiments are listed in table 4. However, the differences of ambient conditions are too small to explain217

a 20 kWel higher electrical power output with product gases at a turbine speed of 90%.218

The electrical efficiency was higher for product gases except for strongly reduced TOT. The electrical219
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efficiency was defined as:220

ηel =
effective power output

LHV ∗ fuel mass flow
(1)

The energy needed for fuel compression was not considered in both cases because the fuel at the test rig221

is taken out of bundles. Similar to the power output, the efficiency increased with speed. A maximum222

ηel = 31.5% was reached with product gases at 92% turbine speed before it decreased due to the progressive223

reduction of TOT. The Turbec T100 on the other hand shows high efficiency although it is not optimized224

for product gas operation.225
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Figure 6: Steady-state operating performance of the Turbec T100 with two different combustion chambers and fuels

For a better understanding of the limitation by compressor surging, figure 7 illustrates the operating226

map of the compressor, where the total pressure ratio Π is plotted against the corrected mass flow mC . In227

order to keep it independent from the inlet Temperature T0 and the inlet pressure p0, it is defined as [27]:228

ṁC =
ṁ1 ∗

√
T0

p0
(2)

Additionally, curves of constant speeds are plotted and corrected with respect to the inlet temperature as229

follows:230

NC =
N√
T0

(3)

The continuous line represents the surge limit of the compressor separated from the MGT while the dashed231

line represents the stability limit of the compressor within the MGT. The latter was measured at the test rig232

of DLR [27] and for that purpose an additional Coriolis mass flow meter was installed between compressor233

and recuperator. The deviation of both curves shows that at the DLR unit it is not possible to use the234
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complete operating range offered by the compressor. The restriction of the operating range could be caused235

by:236

� the modifications of the air piping at the test rig237

� the matching of turbine and compressor238

� manufacturing tolerances239

� deterioration of the compressor240

Due to the use of the Coriolis there was an additional pressure drop of 3.5%, which required a higher241

pressure ratio at the compressor. The flow field at the compressor outlet may have been affected and242

thus the stability limit. A change is indicated by the operating points obtained in this work, which were243

measured without Coriolis. Several operating points are located above the stability limit. Before removing244

the Coriolis, surging occured at 92% turbine speed which was in accordance to the dashed line. Without the245

Coriolis, stable operation was observed at this point. Comparing to natural gas, the use of product gases246

shifted the operating points towards the stability limit. Therefore, operation was limited at higher turbine247

speeds and as a consequence, the TOT had to be reduced to run the MGT with higher turbine speeds than248

92%. As mentioned above, the influences on the stability limit are manifold. The operating range might249

be larger with a new unit that doesn’t feature the modifications of the piping. Considering that the turbo250

components of the Turbec T100 are designed and optimized for natural gas, it still offers a wide operating251

range for the use of product gases. Compressor and turbine need a redesign to increase the operating range.252
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Figure 7: Operated steady-state load points of product gases (LHV = 5 MJ/kg) and natural gas (LHV = 48 MJ/kg) presented
in the compressor map

14



4.2.2. Combustion chamber pressure losses253

The function of the combustion chamber is to mix fuel and air as well as to ensure stable and efficient254

combustion. To achieve sufficient mixing and flame stabilization, a total pressure loss is inevitable. On the255

other hand, it is desirable to realize complete and low pollutant combustion with a minimized total pressure256

loss concerning the electrical efficiency of the MGT. In this work, the total pressure loss from the recuperator257

outlet 2 (see figure 1) to the turbine inlet 3 was defined as:258

∆pt2,3 =
pt2 − pt3
pt2

∗ 100 [%] (4)

where pt2 is the total pressure at the air-side recuperator outlet measured with a total pressure transducer.259

The pressure losses of the piping between recuperator and combustion chamber were included. At the inlet260

of the turbine, the total pressure was calculated from the measured static pressure and the dynamic pressure:261

pt3 = p3 +
1

2
ρexc

2 (5)

whereby the velocity c can be derived from:262

ṁ3 = ρexAc (6)

ṁ3 is the exhaust gas mass flow, which was calculated from the measured fuel mass flow and from the air263

mass flow. The latter was obtained via calculating the air number λ from exhaust gas analysis as described264

in the following subsection. A is the cross-section at the turbine inlet and ρex is the exhaust gas density,265

which was calculated from the ideal gas equation:266

p3 = ρ3RexT3 (7)

The average value from six thermocouples at the combustion chamber outlet has been taken for the tem-267

perature T3. For the measured exhaust gas composition, the specific gas constant Rex was calculated. The268

FLOX-combustion chamber produced a pressure loss of 3.9%. Compared to 5.6% of the Turbec combustion269

chamber fired with natural gas, this corresponds to a reduction of about 30%. The latter is a swirl stabilized270

combustor, which contains two counter-rotating swirlers in the main stage. They provide a high mixing rate271

of fuel and air as well as a short combustion zone, but its drawback is a high pressure loss. A reduction272
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of the pressure loss is beneficial because it leads to a lower pressure ratio at the compressor. Hence, the273

operating points move away from the stability limit, and the electrical efficiency of the MGT increases.274

4.2.3. Exhaust gas emissions275

Figure 8 presents the exhaust gas emissions of the Turbec T100 operated with the FLOX-combustion276

chamber and product gases. The emissions of CO, NOx and unburnt hydrocarbons (UHC) are plotted versus277

speed. Error bars are calculated from the standard deviation of the measured data and the propagation of278

uncertainty. In case of NOx and UHC the error bars are too small to be visible in the graph. Additionally,279

the global air number is presented as well as the combustor air inlet temperature (CIT). As the composition280

of fuel is known, it is possible to calculate the air number via carbon balancing from emission data as follows281

[28]:282

λ =
21

79 ∗ 0.21 ∗ Lst
[
(COf

2 + COf + CxH
f
y ) ∗Nex

2

COex
2 + COex + CHex

4

−Nf
2 ] (8)

where Lst is the stoichiometric air-to-fuel ratio, superscript f indicates the volumetric concentration in the283

fuel while ex indicates the concentration in the exhaust gas. Due to the negligible concentration of unburnt284

hydrocarbons in the exhaust gas, CH4 was chosen to represent total hydrocarbons. The stoichiometric285

air-to-fuel ratio for a given product gas composition can be calculated by :286

Lst = 4.762 ∗ (lstCO ∗ xCO + lstH2 ∗ xH2 + lstNG ∗ xNG) (9)

here, xi is the molar fraction of component i and lsti is the oxygen demand for complete oxidation of287

i. lstNG has been calculated from the composition of the used natural gas, which was analyzed by gas288

chromatography. Figure 8 shows a low level of pollutant emissions without strong changes over the whole289

operating range. Looking more into detail, CO decreased with increasing turbine speed until a minimum of290

13 ppm was reached at 92%. With higher turbine speeds, the CO-concentration increased again to 17 ppm.291

The NOx-emissions showed an opposite behavior. In contrast to CO, NOx increased until a maximum of292

5 ppm was reached at 92% turbine speed.293

To explain this behavior of CO- and NOx-emissions, it is necessary to look at the CIT and the air number294

λ. Both of these parameters affect the combustion temperature and thus the formation of pollutants. The295

air number and the CO-emissions showed a minimum of 7.2 and of 15 ppm respectively at 92% turbine296

speed. The adiabatic flame temperature decreased with increasing air number. Hence, the adiabatic flame297

temperature was highest at 92% turbine speed because of the air number and the high CIT. Therefore, the298
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Figure 8: Pollutant emissions of the Turbec T100 operated with a FLOX-combustion system and product gases (LHV = 5
MJ/kg)

conditions for CO oxidation were best. Nevertheless, the formation of thermal NO [29] rises with increasing299

temperature. That is why NOX -emissions are highest at this point. As explained in 4.2.1, the maximum300

TOT was reached only between 82.5% and 92% turbine speed, while for other speeds the TOT had to be301

reduced. The reduction affected both the CIT and the air number. The CIT depends on TOT because302

the air is heated up in the recuperator by using the thermal energy of the exhaust gas. If TOT is reduced303

at a constant speed, the amount of fuel injected into the combustion chamber is reduced respectively. The304

pressure inside the combustion chamber decreases at the same time and therefore more air is delivered by305

the compressor. As a result the air number increases if TOT is reduced at a constant turbine speed. Due306

to higher air number and lower CIT, the combustion temperature falls and consequently NOx emissions307

decrease while CO-emissions increase. This behavior has been further analyzed by varying TOT at a fixed308

turbine speed of 82.5%. In figure 9 pollutant emissions are plotted against TOT and again the air number309

is calculated for the steady-state load points. A sharp increase of CO-emissions was observed below 500°C,310

where the large standard deviation represents the fluctuating behavior. Combustion became progressively311

incomplete and below 450°C the unburnt hydrocarbons increased additionally. Although combustion was312

poor at 360°C, the Turbec T100 operated stable. A CO-concentration of 76 ppm was measured at 550°C.313

This signifies that even if the maximum TOT is reduced about 100°C at part load, the emission limits of314

the german directive (80 ppm) [30] are met. The overall low level of pollutants over a wide operating range315

indicate complete and clean combustion. Thus the developed combustion system enables reliable firing of316

product gases in a MGT. Meeting emission regulations can be achieved even at part load and with partially317

reduced TOT.318
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Figure 9: Emission behavior with product gases (LHV = 5 MJ/kg) and reduced TOT at a constant turbine speed of 82.5%

4.2.4. Fuel flexibility319

Product gases from biomass gasification feature fluctuations regarding composition and lower heating320

value. Therefore, it is necessary that combustion systems assure stable combustion for a wide range of typical321

product gases. The impact of the lower heating value on the MGT perfomance and on pollutant emissions322

has been examined in this experiment. Table 5 shows the experimental data for three fuel compositions.323

The turbine speed chosen was 82.5% because this speed offered the largest range regarding power electronic,324

stability limit and fuel supply system. The power electronic limited the electrical power output for PG4.325

A maximum TOT of 600°C was achieved and consequently, the three fuel compositions were operated326

with the same conditions. The results show an increase of 54% in the fuel mass flow rate from PG1327

to PG4 caused by the reduced LHV. The electrical efficiency remained constant because the electrical328

power output and the thermal power input both increased similarly by 7%. The higher fuel mass flow rate329

increased the pressure inside the combustion chamber and hence, less air was delivered by the compressor.330

Its operating points moved towards to the stability limit with decreasing LHV, but they remained inside331

the stable region. Regarding pollutant emissions, there was no significant change observed. The results332

demonstrate the stability and fuel-flexibility of the FLOX-combustion chamber, which assured stable and333

complete combustion. It also shows the increasing limitation of the power electronic with decreasing LHV.334

The stability limit will additionally restrict operation with decreasing LHV at other speeds. In order to335

increase the operating range of the Turbec T100 for the use of low calorific fuels, the power electronic and336

the stability range require optimization.337
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Table 5: MGT and pollutant emission data with reduced LHV at a constant turbine speed of 82.5% and TOT = 600°

PG Pel ηel ṁfuel CO NOx UHC
kW % g/s ppm ppm ppm

1 57 26.8 43.3 25 2 < 1
3 59 26.8 51.0 22 1 < 1
4 61 26.8 66.6 30 < 1 < 1

5. Numerical results338

The operating performance of the MGT fired with product gases has been simulated with a Turbec T100339

steady-state simulation tool for two cases. While in the first case the limitation of the power electronic is340

neglected, this restriction is considered in the second case. In both cases it is assumed that the compressor341

behaves according to the compressor map without being limited by surging. The results are presented in342

figure 10 and compared to the experimental results. Electrical power output and electrical efficiency are343

plotted versus turbine speed analog to figure 6. The simulation shows good agreement with the experiments344

from 80% to 92% turbine speed. In this operating range, the TOT reached 645°C (except at 80%). Simulation345

and experiment differ increasingly at higher turbine speeds because in the experiments the TOT was reduced346

progressively with higher turbine speed. If the limitation by the power electronic is considered, the TOT347

is reduced at high loads not because of the stability limit, but due to maximum voltage. Therefore, the348

reduction is less than in the experiments. The first simulation shows an increase of the electrical power349

output from 50 kWel at 80% turbine speed to 137 kWel at 100%. Hence, the operating range from the350

Turbec T100 would be about 80% larger than in the experiments. Compared to the operation with natural351

gas, it is 50% larger as well. Without the limitations of compressor surging at the DLR unit and of the352

power electronic, the efficiency increases continuously with turbine speed. The maximum ηel is 33% and it is353

reached at 100% turbine speed. In the second case, the results show a maximum power output of 122 kWel354

with an efficiency of about 31% at 100% turbine speed. However, the first simulation identifies a promising355

potential to optimize the Turbec T100 for the operation with product gases.356

6. Conclusions357

The performance of the micro gas turbine Turbec T100 has been characterized for the use of product358

gases from biomass gasification in a laboratory test rig. To operate the Turbec T100 with product gases, a359

new FLOX-combustion system has been successfully developed and integrated. Low pollutant emissions are360

achieved over the whole operation range, i.e. CO-emissions are less than 30 ppm and NOx less than 6 ppm.361

Furthermore, no unburnt hydrocarbons have been detected. The FLOX-combustion system enables stable362
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Figure 10: Potential operating range of a Turbec T100 fired with product gases (LHV = 5 MJ/kg)

operation of the Turbec T100 in the range from 50 to 100 kWel as well as reliable starting behavior. The363

variation of the lower heating value from 3.5 to 5.0 MJ/kg at a speed of 82.5% showed stable operation as364

well while the efficiency remained constant. Comparing the MGT operation with a low calorific fuel to the365

operation with natural gas at constant turbine speeds, the electrical power output is significantly higher. This366

is due to a decreased air mass flow rate and a lower mechanical shaft power needed for compression. Hence,367

the MGT generates more electrical power from the increased residual mechanical shaft power. Especially at368

higher speeds, operation is limited by the power electronic and by compressor surging. An optimization of369

the micro gas turbine would offer an operating range of 50 to 137 kWel, which was indicated by the numerical370

steady-state simulation. In summary, the results of this work prove the feasibility to operate the Turbec371

T100 with LCV fuels and additionally, potentials for optimization are identified. The developed combustion372

system allows meeting emission limits over the whole operating range, i.e. from 80% to 100% turbine speed.373

This is an important fact as flexible operation is a requested target for future energy production.374
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