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A compensation of atmospheric effects is essential for mm-sensitivity in differential interferometric syn-
thetic aperture radar (DInSAR) techniques. Numerical weather predictions are used to compensate these
disturbances allowing a reduction in the number of required radar scenes. Practically, predictions are
solutions of partial differential equations which never can be precise due to model or initialisation uncer-
tainties. In order to deal with the chaotic nature of the solutions, ensembles of predictions are computed.
From a stochastic point of view, the ensemble mean is the expected prediction, if all ensemble members
are equally likely. This corresponds to the typical assumption that all ensemble members are physically
correct solutions of the set of partial differential equations. DInSAR allows adding to this knowledge.
Observations of refractivity can now be utilised to check the likelihood of a solution and to weight the
respective ensemble member to estimate a better expected prediction.
The objective of the paper is to show the synergy between ensemble weather predictions and differen-

tial interferometric atmospheric correction. We demonstrate a newmethod first to compensate better for
the atmospheric effect in DInSAR and second to estimate an improved numerical weather prediction
(NWP) ensemble mean. Practically, a least squares fit of predicted atmospheric effects with respect to
a differential interferogram is computed. The coefficients of this fit are interpreted as likelihoods and
used as weights for the weighted ensemble mean. Finally, the derived weighted prediction has minimal
expected quadratic errors which is a better solution compared to the straightforward best-fitting ensem-
ble member. Furthermore, we propose an extension of the algorithm which avoids the systematic bias
caused by deformations. It makes this technique suitable for time series analysis, e.g. persistent scatterer
interferometry (PSI). We validate the algorithm using the well known Netherlands-DInSAR test case and
first show that the atmospheric compensation improves by nearly 40% compared to the straightforward
technique. Second, we compare our results with independent sea level pressure data. In our test case, the
mean squared error is reduced by 29% compared to the averaged ensemble members with equal weights.
An application demonstration using actual Sentinel-1 data and a typical test site with significant subsi-
dence (Mexico City) completes the paper.
� 2015 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).
1. Introduction

Synthetic aperture radar (SAR) is a popular remote sensing
technique to observe the topography of the earth and its millime-
tre displacements. The strength of a signal which is scattered back
is independent of the actual weather condition. However, the wave
propagation velocity depends on water vapour, pressure and tem-
perature (see Smith and Weintraub, 1953).
Differential interferometric synthetic aperture radar (DInSAR)
images are subtracted phase information of two SAR acquisitions,
corrected for topography, and are therefore affected by atmo-
sphere. In order to allow precise interferometric measurements,
the atmospheric effect needs to be compensated and is known as
atmospheric phase screen (APS). Currently, the time series analysis
using large stacks of SAR data is well established. Essentially, it is
based on the uncorrelated atmosphere with respect to time requir-
ing a long time series (see Ferretti et al., 2001). Different authors
have successfully demonstrated the mitigation of the APS using
NWP, for example (Holley et al., 2007; Jung et al., 2014; Nico
et al., 2011; Adam, 2013; Pierdicca et al., 2011; Perissin et al.,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2015.09.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.isprsjprs.2015.09.004
http://creativecommons.org/licenses/by/4.0/
mailto:Franz-Georg.Ulmer@dlr.de
mailto:Nico.Adam@dlr.de
http://dx.doi.org/10.1016/j.isprsjprs.2015.09.004
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


F.-G. Ulmer, N. Adam / ISPRS Journal of Photogrammetry and Remote Sensing 109 (2015) 98–107 99
2011). These papers show that the hydrostatic component can be
estimated using NWP models. However in practice, the wet-delay
is more difficult to reproduce using numerical weather prediction
(NWP) due to its turbulent nature. For the second application, i.e.
improved numerical weather prediction (Pichelli et al., 2015) have
demonstrated a better forecast for weak to moderate precipitation.

NWP implements a set of partial differential equations (PDEs).
The solution can never be precise due to model or initialisation
uncertainties. In practice, the initial atmosphere state data are spa-
tially undersampled and affected by measurement errors. Addi-
tionally, different options (e.g. resolution, size of simulated area,
physics options and integration time step length) result in different
valid (i.e. physically correct) solutions of the PDEs (Liu et al., 2011).
Another effect results from error propagation. Imprecise convec-
tion strength causes timing deviations. As a result, humidity is dis-
located with time of day.

Epstein (1969) proposed a stochastic dynamic model (i.e.
ensembles of PDEs solutions) to handle uncertainties produced
by the weather prediction model or the initialisation data. An
ensemble represents likely atmospheric states and it spreads the
uncertainties. It is a well established practice to use independent
atmosphere state observations e.g. sounding, lidar and weather
stations. Hence, ensemble members can be verified by such obser-
vations. A straightforward approach is to use only the most likely
(best fitting) ensemble member. Another method linearly combi-
nes the ensemble members. The second tactic allows a better fit
of the prediction to the practically observed data. However, this
improvement can only be ensured at the measurement location.
In other areas, over-fitting can occur. We demonstrate the use of
DInSAR data as independent atmosphere measurements avoiding
over-fitting. The improvement is based on the high resolution
and sensitivity as well as the large spatial coverage of the radar
data.

In particular, DInSAR data provide indirect measurements of
pressure, temperature and humidity which are projected into
SAR geometry and mapped into delay measurements physically
related to refractivity. For this reason, the ensemble members
can be assessed regarding their likelihood of occurrence. Instead
of the straightforward best-fitting ensemble member, the
weighted ensemble mean provides the final atmosphere hindcast.

For n ensemble members F ¼ ff 1; . . . ; f ng,
WEMðFÞ ¼

X
i2f1;...;ng

ai f i ð1Þ

the weighted ensemble mean (WEM) with weights (likelihoods)
ai 2 Rþ and

P
i2f1;...;ngai ¼ 1 equals the expected value. In addition,

the mass conservation can be relaxed to
P

i2f1;...;ngai � 1 (R. Bamler,
personal communication 4 May 2015). As a consequence, the esti-
mated prediction can be improved in case of biased (i.e. physically
incorrect) solutions.

The objective of the actual work is to present a framework
which produces synergy between ensemble weather predictions
and DInSAR measurements. It means both benefit from each other.
2. Methods

The APS (/0
a) is composed of a hydrostatic term corresponding

to (refractivity Nh) and a wet term corresponding to (refractivity
Nw). Both are influenced by temperature ðTÞ. The hydrostatic term
is additionally influenced by total pressure ðPÞ while the wet term
is influenced by water vapour ðeÞ. Based on physics, the range dis-
tance deviation is defined by

/0
a ¼ 10�6

Z ~s

~pði;jÞ
Nð~vÞd~v ð2Þ
where

N ¼ K1
P
T|ffl{zffl}

Nh

þK2
e
T
þ K3

e

T2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Nw

: ð3Þ

~pði;jÞ is the three dimensional location on Earth of the actual DInSAR
pixel and ~s is the position of the SAR-satellite. Eq. (3) models the
refractivity (N) and the coefficients (K1;K2;K3) are provided by
Rüeger (2002). Practically, for every pixel of the SAR-image, integra-
tion through the predicted three dimensional atmospheric state
produces an APS (/0

a) candidate. A differential interferogram is com-
posed of two SAR acquisitions. Of course, the corresponding APSs
are needed for both acquisition times (s1; s2). From ensemble mem-
bers and corresponding delays for both dates, candidates of APSs are
computed (/0

aðs1; �Þ;/0
aðs2; �Þ). A convex optimisation computes a

least norm fit of the NWP data matrix A with respect to the DInSAR
observation (/Iðs1; s2Þ) with r � c pixels:

minimise : jjrkjj2 ð4Þ

subject to:

rk ¼ Aa� /̂Iðs1; s2Þ
� �

k
for k 2 f1; . . . ; rcg ð5Þ

Xns1
k¼1

ak ¼ 1; ð6Þ

Xns1þns2

k¼ns1þ1

� ak ¼ 1; ð7Þ

Xrc
k¼1

Ak;i ¼ 0 for i 2 f1; . . . ;ns1 þ ns2g; ð8Þ

Xrc
k¼1

/̂Iðs1; s2Þ
� �

k
¼ 0: ð9Þ

where ns1 ; ns2 are the counts of ensemble candidates. The last two
constraints cope with the unknown interferometric phase offset.
Practically, coefficients (ai) of best-fitting linear combination are
interpreted as likelihoods. In doing so, the WEM equals the expec-
tation (Ef�g) definition in a stochastic meaning. Therefore, the
WEM equals the centre point of all predictions, such that the
expected quadratic error is minimal.

2.1. Model of atmospheric phase screen approximation and algorithm

The starting point is an absolute DInSAR phase / : N# Rr�c at
acquisition time s with r rows and c columns (see Kampes, 2006):

/ðsÞ ¼ /aðsÞ þ /dðsÞ þ /nðsÞ ð10Þ

/a; /d and /n : N # Rr�c are the phase delays caused by the atmo-
sphere, the deformation and noise, respectively.

An interferometric phase /I : N
2 # Rr�c is defined by:

/Iðs1; s2Þ ¼ /ðs1Þ � /ðs2Þ þ O ð11Þ
where O is a matrix (image) modelling the unknown interferomet-
ric phase offset. We assume that the atmosphere effect is statisti-
cally dominant compared to the deformation and the noise. Let
/0

aðs; kÞ : N2 # Rr�c be the k’th predicted APS candidate of a single
SAR acquisition. Similar to the weighted ensemble mean, the corre-
sponding APS candidates are weighted to approximate the SAR
acquisition’s atmosphere /aðsÞ.

/ðsÞ �
Xn

k¼1
asðkÞ/0

aðs; kÞ
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{�/aðsÞ

ð12Þ
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where 0 6 asðkÞ 6 1;
P

asðkÞ ¼ 1 and without loss of generality
/0

að�; �Þ are linearly independent.
Now, the observed DInSAR phase is approximated by

/Iðs1; s2Þ � O � ð13Þ

�
Xns1
k¼1

as1 ðkÞ/0
aðs1; kÞ �

Xns2
k¼1

as2 ðkÞ/0
aðs2; kÞ: ð14Þ

The constraints asðkÞ 2 Rþ and
P

k2f1;...;ngasðkÞ ¼ 1 allow interpreta-
tion of the coefficients as1 and as2 as likelihoods. In the following,
we derive a matrix notation to compute these likelihoods efficiently
and finally obtain the SAR acquisitions atmosphere.

Approximation (14) is rewritten to a constrained
(as1 ðkÞ; as2 ðkÞ P 0) set of linear equations. It consists of:

rði;jÞ ¼
Xns1
k¼1

as1 ðkÞ/0
aðs1;kÞþ

Xns1
k¼1

�as2 ðkÞ/0
aðs2;kÞþO�/Iðs1;s2Þ

 !
ði;jÞ

:

ð15Þ
where rði;jÞ is the residual of range-azimuth position (pixel) i; j. We

denote M̂ the column vector representation of any matrix M. For
practical reasons, this set of equations is minimised over the sum
of r2ði;jÞ which is written as

argminajjAa� /̂Iðs1; s2Þjj22; where ð16Þ

ai ¼
as1 ðiÞ; if 1 6 i 6 ns1
�as2 ði� ns1 Þ; if ns1 þ 1 6 i 6 ns1 þ ns2
arbitrary; for i ¼ ns1 þ ns2 þ 1

8><
>: ð17Þ

A�;i ¼
/̂0

aðs1; iÞ; if 1 6 i 6 ns1
/̂0

aðs2; i� ns1 Þ; if ns1 þ 1 6 i 6 ns1 þ ns2
1; for i ¼ ns1 þ ns2 þ 1

8><
>: ð18Þ

Xns1
k¼1

ak ¼ 1; ð19Þ

Xns1þns2

k¼ns1þ1

� ak ¼ 1; ð20Þ

0 6 ak 6 1;k 2 f1; . . . ;ns1g and � 1 6 ak 6 0;k 2 fns1 þ 1; . . . ;ns2g:
ð21Þ

Negative entries in a follow from the first minus in Eq. (15) and

ans1þns2þ1 corresponds to Ô.
This matrix description realised by Algorithm 1 allows us to

apply a practically available solver e.g. lsqlin from MATLAB to
obtain the solution.

2.2. Algorithm extension

The actual algorithm does not separate deformation and atmo-
sphere. As a consequence, NWP ensemble members which also fit
the deformation signal are favoured and the corresponding motion
signal leaks into the atmosphere. Of course, it results in a biased APS
and an underestimated deformation. Practically, this effect can be
mitigated and even eliminated. First, the mitigation is achieved
by using short temporally-separated SAR acquisitions. A small
deformation phase results, which is in practice below the precision
of the NWP.Wewould like to illustrate this situationwith numbers.
The typical deformation in PSI is up to 20 mm per year. For ERS and
a time separation of 35 days, the interferometric deformation signal
is about 0.4 rad. In contrast, the NWP hydrostatic component has a
standard deviation of 1

cos 21� 2.5 mm (for rT ¼ 1 K;rP ¼ 1 h Pa) (see
Adam, 2013) respective 1

cos 21� 0.56 rad which deteriorates consider-
ing also the wet component. Following this argument, sensors with
a short repeat cycle e.g. Sentinel-1 are predestined for this tech-
nique. Second, the bias can be eliminated for all SAR-acquisitions
except for two. For this purpose, the algorithm needs to be updated
for a stack of SAR acquisitions. We define

/Idðs1; s2Þ ¼ Tðs1; s2Þ/d ¼ /dðs1Þ � /dðs2Þ ð22Þ
where T : N2 # R is a known temporal dependent function which
models the deformation /d 2 Rr�c . A linear deformation model is
often sufficient, but a seasonal deformation is straightforward to
implement as well.

/Iðs1; s2Þ is now divided into a deformation related part and the
corresponding residuum

/Iðs1; s2Þ ¼ /Irðs1; s2Þ þ Tðs1; s2Þ/d: ð23Þ
Eq. (16) is rewritten to

argminajjAa� /̂Ir ðs1; s2Þ � Tðs1; s2Þ/̂djj22 ð24Þ
while constraints (17)–(21) are satisfied. A second interferogram
between times s2 and s3 (s1 < s2 < s3) is introduced and a second
optimisation is done simultaneously. Now, the optimisation of the
questioned NWP ensemble is supported by two DInSAR data sets
with alternating deformation signals. This second optimisation is
denoted by

argmina0 jjA0a0 � /̂Ir ðs3; s2Þ � Tðs3; s2Þ/̂djj22: ð25Þ
Of course, the coefficients of a and a0 related to time s2 need to be
equal in describing the same atmosphere. This is formalised by

argmina00 jjA00a00 � /Pr � /Pdjj22 ð26Þ
where

A00 ¼ A 0
0 A0

� �
; ð27Þ

/Pr ¼
/̂Ir ðs1; s2Þ
/̂Ir ðs3; s2Þ

 !
; ð28Þ

/Pd ¼ Tðs1; s2Þ/̂d

Tðs3; s2Þ/̂d

 !
; ð29Þ

a00 ¼ a
a0

� �
and that for each pair ð30Þ

ai 2 a; aj 2 a0 which are related to the ensemble index k /̂0
aðs2; kÞ

� �
ð31Þ

ai � aj ¼ 0: ð32Þ

Deformation /̂d affects the coefficients which are related to time s2
equally, if Tðs1; s2Þ ¼ �Tðs3; s2Þ. Consequently, these coefficients
are no longer biased by the deformation. Corresponding proof is
presented below. An equal deformation signal is obtained if the

interferograms are multiplied with jTðsi; sjÞj�1. Therefore, the APSs
are also amplified by this factor, such that constraints (19) and
(20) have to be modified. For the interferogram between times s1
and s2 substitute 1 by jTðs1; s2Þj�1 and for interferogram between

times s3 and s2 by jTðs3; s2Þj�1. Also, constraint (32) is modified to

jTðs1; s2Þj�1ai � jTðs3; s2Þj�1aj ¼ 0.
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For a series of interferograms between times s1 < � � � < sn, this
extension is applied recursively. Now, only coefficients related to
s1 and sn are affected by the deformation. To mitigate the influence
of the first and last scene’s deformation and atmosphere effects,
the interferograms should be generated with short time separation
and from winter scenes.

Proof. Rows of A00 are assumed to be linearly independent, which
is almost surely the case. A squared regular matrix C exists then,
such that rows of A00C are orthogonal. The Gram-Schmidt process
calculates such a linear transformation. Starting with the vector-

space related to s1 and s3 guaranties, that C�1a00 ¼ a00T
1 ;a00T

2

� �T and
A00C ¼ ðA00

1;A
00
2Þ can be reordered such that all coefficients which are

related to time s2 are exclusively within a00
2. The optimisation (26)

can be divided into two independent parts with respect to a00
1 and

a00
2 because of the linear transformation into an orthogonal space

(due to C).
The starting point is

argmina002
jjA00

2a
00
2 � /Pr þ /Pdjj22 ð33Þ

since the proof is exclusively related to coefficients within a00
2. Only

coefficients which are related to time s2 are within a00
2, such that A00

2

can be reordered again to

A00
2 ¼ B 0

0 B

� �
ð34Þ

while a00T
2 ¼ ðbT

; bTÞ according to constraint (32). For better readabil-

ity, we substitute /̂Ir ðs1; s2Þ ¼ R1, /̂Ir ðs3; s2Þ ¼ R2 and Tðs1; s2Þ/̂d ¼
�Tðs3; s2Þ/̂d ¼ D and the count of rows of B is now denoted by n.
Optimisation (33) is rewritten to

argminb

Xn
k

Bðk;�Þb� R1k þ Dk

� �2 þ Bðk;�Þb� R2k � Dk

� �2 ð35Þ

¼ argminb

Xn
k

Bðk;�Þbð2Bðk;�Þb� 2R1k � 2R2k Þþ ð36Þ

þ Dkð2Dk � 2R1k þ 2R2kÞ þ R2
1k
þ R2

2k
ð37Þ

¼ argminb

Xn
k

Bðk;�Þb 2Bðk;�Þb� 2R1k � 2R2k

� � ð38Þ

which does not depend on D ¼ Tð�; �Þ/̂d. h
3. Results

The presented method is applied to a real interferogram from
the well-known Netherlands DInSAR test site for a practical
demonstration and verification (see Figs. 1 and 2). Hanssen et al.
(1999) state that DInSARs are beneficial for forecasting and atmo-
spheric studies. One of the presented scenarios is repeated. First,
we show the mitigation of the APS in an interferogram (see
Fig. 3). Second, the two estimated weighted ensemble mean
weather hindcasts are compared with independent sea level pres-
sure data.

In the following, we describe the experiment setup. All NWPs
were computed by the weather research and forecast model
(WRF version 3.5) with ten different micro physics options
(mp_physics 2 f0; . . . ;9g). A complete description of WRF and the
mentioned options can be found in Skamarock et al. (2008). Dates
were chosen with respect to the DInSAR acquisition times on 3rd
and 4th October 1995. The corresponding interferogram was
derived from 1-day revisit acquisitions at 21:41 UTC of ERS 1/2
tandem mission. Three domains with 13,500 m, 2700 m and
900 m resolution were used while each domain has about
200� 200 grid cells. Initialisation time was 12:00 UTC and the
current state for the finest domain was written out every 10 min.
A four hour time window (�2 h) of possible delay is chosen, such
that in both cases 250 possible APSs were generated. The initialisa-
tion data are ERA-interim ECMWF with 0.75� resolution (see
European Centre for Medium-Range Weather Forecasts, 2009).

In doing so, we demonstrate that this technique is useful for APS
correction as well as for forecasting skills and atmospheric studies
as Hanssen et al. (1999) stated.
3.1. APS mitigation in DInSAR by ensembles hindcasts

The test site is characterised by dominant atmosphere effects.
Topography has a negligible effect on the interferometric phase
due to a baseline of 388 m and the very flat terrain. We first
demonstrate the APS compensation assuming the interferometric
phase corresponds completely to the atmosphere signal (see
Fig. 2). The short time separation of one day supports this assump-
tion. Second, we show that the presented algorithm is robust with
respect to typical geophysical deformation signals (see Fig. 4). For
this reason, we simulate a deformation phase in the real interfero-
gram. The criteria to measure the mitigation and to compare the
improvement is the RMSE of the atmosphere compensated inter-
ferogram (e.g. the residual of Figs. 3(b) and 5(b)). Table 1 provides
the measured residuals from six estimation scenarios on the two
experiments.

The first scenario represents the uncompensated APS according
to the assumption that the DInSAR residual phase corresponds to
the atmosphere only. The second scenario (blind NWP) is the
straightforward NWP with mp physics option 8 at acquisition time
since it is the well-tested parametrisation of WRF (see chapter 5 in
the WRF user guide from Wang et al., 2013). The third scenario
corresponds to the unweighted ensemble mean. The fourth scenario
is an improvement because it selects from a set of hindcasts the
best-fitting one. In practice, the proposed algorithm provides this
solution by selecting the ensemble members with the largest
coefficients. The fifth scenario provides the weighted ensemble
mean (see Figs. 3 and 5). The last two scenarios demonstrate
further estimations with relaxations of the constraints (19) and
(20) which allow better fits, assuming biased hindcasts.
3.1.1. Without deformation
This experiment is summarised by the second column of Table 1.

In this table, large numbers correspond to uncompensated APS.
First of all, each NWP-based mitigation scenario improves the dif-
ferential interferogram. Straightforward mitigation techniques, i.e.
the unweighted ensemble and the blind NWP, improve the DInSAR
phase by 11–13%. Interestingly, the blind NWP outperforms the
unweighted ensemble mean. This result confirms the well-tested
physics parameters and supports the assumption of some non-
physical solutions in the ensemble. The mitigation performance
improves using techniques jointly using DInSAR and NWP data
(synergy). It is a result of data-adaptive estimation and of the
increased amount of additional data and information. In numbers,
the single best-fitting estimation improves the DInSAR phase by ca.
27% and the weighted ensemble estimations (see Fig. 3) even by ca.
45%. In summary, the proposed ensemble technique improves the
APS mitigation by a factor of four compared to the conventional
NWP mitigation and by a factor of two compared to the single
best-fitting technique.

Table 2 provides the estimated coefficients for this test case. For
the 3rd October, many small coefficients are estimated whereas for
the 4th October, three dominant coefficients are estimated. It
results from the fact that the later acquisition is affected by a squall
line (which is caused by a cold front, see Hanssen et al., 1999)



Fig. 1. Illustration of test site. The outer rectangle is the finest domain of NWP while the inner rectangles illustrate the SAR coverage of the acquisitions on 3rd and 4th
October 1995. Weather stations are illustrated by yellow pins. The DInSAR image corresponds to the intersection of inner rectangles.

Fig. 2. DInSAR of 3rd and 4th October 1995 at 21:41 UTC is shown (see Hanssen
et al., 1999 for a detailed description).
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which is a significant and large feature of the atmospheric state to
fit.
3.1.2. With deformation
In order to demonstrate the robustness of this approach with

respect to typical deformation, a subsidence signal is simulated
into the differential interferogram. Using these data, the test case
above is repeated. In column three of Table 1, the APS mitigation
improvement is always in the same order as the undisturbed
experiment. A deformation interferes with the optimal solution
since a best fit was computed including the deformation. The root
mean squared error increases only insignificantly, illustrated by
the difference between the two rows of Table 1. For completeness,
Table 2 provides the estimated coefficients within the ‘‘disturbed”
column. Practically, only very small changes of these coefficients
can be observed. The experiment data are visualised in Fig. 4.

The robustness of the estimation in the presence of deformation
improves, if exclusively the hydrostatic component is considered.
Evidently, the hydrostatic component has a different spatial char-
acteristic (much smoother) compared to the deformation signal.
In contrast, the characteristic of the wet component is of higher
spatial frequency and is consequently closer to the spatial fre-
quency of the deformation. We demonstrate this robustness with
an illustrative experiment. The starting points are the original /O

I

and with a deformation modified differential interferogram /M
I .

The APS is estimated for both (/0M
a ;/0O

a ) based on the total delay
and on only the hydrostatic delay. We assume the differential
phase is composed of deformation and atmosphere

/I ¼ /d þ /a ð39Þ
and the original interferogram is free of deformation. The simulated
deformation can now be recovered by

/d ¼ /M
I � /0M

a

� �� /O
I � /0O

a

� � ð40Þ
in cases where the deformation does not infer with the estimation
(/0O

a ¼ /0M
a ). The similarity with respect to the simulated deforma-

tion describes the robustness of the estimation. We provide the
recovered deformation phase /d for the estimation based on the
total delay (see Fig. 6(a)) and the estimation based on the hydro-
static delay (see Fig. 6(b)). A straightforward visual inspection
demonstrates the clear advantage with respect to robustness of
using only the hydrostatic delay.



Fig. 3. (a) Estimated APS using the total delay. (b) Correspondingly corrected DInSAR from Fig. 2.

Fig. 4. (a) Modified DInSAR of Fig. 2. (b) Simulated deformation.

Table 1
Root mean squared error in [mm] of non-compensated APS.

Real
interferogram

Real
interferogram
+ deformation

Uncompensated APS 18.01
Blind NWP 15.72
Unweighted ensemble 16.04
Single best-fitting 13.09 13.09
Weighted ensemble 9.83 10.09
Weighted ensemble (relaxed to � 1) 9.04 9.36
Weighted ensemble (without constraint) 8.34 8.85
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3.2. Differential synthetic aperture radar interferogram correction
improves ensemble hindcasts

In this test case, the two estimated weighted ensemble mean
weather hindcasts are compared with independent sea level pres-
sure data and averaged ensemble members. At the time of acquisi-
tion, 11 meteorological stations are available (n = 11, see Fig. 1) in
this test site.

Surface pressure and temperature data are publicly accessible
(from the Integrated Surface Hourly Database) and have a temporal
resolution down to one hour. The time of SAR acquisitions is 21:41,
so the delay relative to the measurements is, in our case, only
19 min. This is small enough to validate the precision.

The estimation needs to be based on the hydrostatic component
for the following reasons. The most variability of the APS is within
the wet term and therefore dominates the hydrostatic term
(Hanssen et al., 1999). If the total delay of the ensemble members
is fitted, the likelihoods of the ensemble members with respect to
water vapour are estimated. By using only the hydrostatic term,



Fig. 5. (a) Estimated APS using the total delay and the modified DInSAR from Fig. 4. (b) Correspondingly corrected DInSAR from Fig. 4.

Table 2
Computed fitting coefficients of argmin (16) with respect to DInSAR (original) and to
DInSAR with deformation (disturbed).

Original Disturbed mp physics Acquisition time

October 3 0.16 0.17 2 22:30
0.13 0.17 2 22:40
0.06 0 3 23:40
0.09 0.01 5 23:30
0.15 0.11 7 22:20
0.09 0.12 7 23:10
0.06 0 7 23:00
0 0.04 7 23:30
0.08 0.10 8 22:20
0.08 0.04 9 23:10
0.07 0.11 9 23:20
0.03 0.13 9 23:30

October 4 0.52 0.46 0 23:40
0.21 0.28 1 19:40
0.21 0.22 1 21:00
0.06 0.04 8 19:40
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the likelihoods of the ensemble members with respect to pressure
are derived. This is a valid assumption since the hydrostatic delay
can be approximated just by the surface pressure (see Davis et al.,
1985).

The criteria to measure the improvement is the Forecast Skill
(see Murphy, 1988). The mean squared error of two forecasts
f ¼ f f 1; f 2g is defined by

MSEð f ; xÞ ¼ 1
2n

X2
i¼1

Xn
j¼1

f iðjÞ � xið jÞð Þ2 ð41Þ

where f iðjÞ and xið jÞ are the forecast and the observation at date i is
at position j. The skill factor is defined by

SSð f ; r; xÞ ¼ 1�MSEð f Þ
MSEðrÞ ð42Þ

where r ¼ fr1; r2g are the reference forecasts. If no additional data
are available, the average of the ensemble members are used in
practice. As a consequence, the reference forecast is the unweighted
mean

ri ¼ 1
10

X9
j¼0

ej ð43Þ

where ej is the ensemble member with mp physics option j at date i.
f i is the WEM at date i where the weights equal the fitting coeffi-
cients. In our test case, the skill factor is

SSð f ; r; xÞ ¼ 0:29 ð44Þ
which means, that the derived estimate has 29% lower MSE as the
reference.

Temperature-induced delay variations can be observed and are
straightforward to identify, as Hanssen et al. (1999) has already
mentioned (see diagonal pattern of Fig. 2). A rapid change of tem-
perature induces a rapid change in pressure through diabatic heat-
ing (compare Figs. 7 and 8). Therefore, the cold front effect within
the DInSAR is supportive for finding the best prediction with
respect to pressure.

3.3. Application test case with Sentinel-1 data

A test case with Sentinel-1 data at Mexico City demonstrates
the practical benefit of the introduced technique on complex
topography and modern data. This city is characterised by subsi-
dence areas of 25 mm/month because of continuous water extrac-
tion (see Chaussard et al., 2014). This known strong continuous
subsidence allows us to validate the introduced method. Therefore,
two interferograms are considered and the respective APSs are
compensated similar to the Netherland test case using the
extended algorithm. The acquisition date of the master scene is
the 02-12-2014 and the dates of the slave scenes are 27-10-2014
and 26-12-2014. Similarly to PSI, linear deformation estimations
are derived by the linear regression technique. Therefore, interfer-
ograms with uncompensated and compensated APSs are assessed
and the results are compared in Fig. 9. Now, the advantage of the
introduced technique is illustrated with three arguments. First,
the Mexico City subsidence, highlighted by the black circle in
Fig. 9(b), of 25 mm/month is better estimated in 9(b) compared
to 9(a). Second, the vertical stratification effect, i.e. the APS
correlation with height is now completely mitigated (highlighted



Fig. 6. (a) Recovered deformation phase /d using (a) total delay and (b) hydrostatic delay.

Fig. 7. Surface pressure prediction at October 4th of (a) WEM (b) unweighted ensemble at 21:40 UTC.
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in Fig. 9(a)). Third, the standard deviations of the differential inter-
ferograms as a measure for uncompensated line of sight effects (i.e.
the digital elevation model update, the deformation and the APSs)
are reduced and provided in Table 3. The proposed method reduces
the APS caused standard deviations by about 33 and 46 percent.
4. Discussion

In this section, our results are generalised and the impact of the
algorithm on the PSI technique is illustrated. The basic estimation
of PSI can be traced back to a time series analysis. In principle, it is
a frequency estimation problem. For the error propagation assess-
ment, a linear regression of interferometric phase versus acquisi-
tion time ti can be used instead of a frequency estimation (see
Rocca, 2004). The precision of the velocity estimation rd depends
on the number of acquisitions (N) and the interferometric phase
noise ra:

rd ¼ ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N VarðtiÞ

s
: ð45Þ

Assuming persistent scatterers with a high signal to clutter ratio are
used, the APS dominates the interferometric phase noise and the
atmosphere mitigation directly reduces ra. Our algorithm reduces
the APS standard deviation by a factor of 0.55. Assuming a test case
with an estimation precision of 1 mm per year, the estimation pre-
cision improves using compensated differential interferograms to
about 0.55 mm per year. In cases where the processing objective
is to achieve a precision of 1 mm per year, the number of scenes
can be reduced by a factor of 0:552 i.e. by about 70%. Of course, it
directly maps into a data cost reduction of 70%.



Fig. 8. Temperature prediction at October 4th of (a) WEM (b) unweighted ensemble at 21:40 UTC.

Fig. 9. Linear deformation estimations of (a) uncompensated interferograms and (b) compensated interferograms.

Table 3
Standard deviation [mm] of interferograms.

Slave dates Uncompensated APS Compensated APS

2015-10-27 16.35 10.93
2015-12-26 21.95 11.72
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5. Conclusion

The objective of this paper is to show the synergy between
ensemble weather predictions and differential interferometric
atmosphere correction. The basis is the joined analysis of two inde-
pendent data sets (DInSAR and ECMWF) which both include the
information of the atmospheres refractivity. A practical framework
is presented which enables useful applications in differential inter-
ferometry and NWP. The differential interferometry and time ser-
ies techniques benefit by a reduction of the APS by 45%. This
achievement can be transformed into improved precision or into
a data cost reduction. The presented technique is robust with
respect to deformations. The NWP benefits from improved
precision which is demonstrated by the atmosphere pressure.
The test case shows 29% improvement.

The framework applications are demonstrated using the
Netherlands test site. Due to the existence of only nearly flat ter-
rain, the atmosphere mitigation in DInSAR is based on the wet
effect and the respective timing correction. In contrast, in the pres-
ence of strong topography, the atmosphere stratification is the
dominant effect and is typically straightforward to mitigate.
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Appendix A. Algorithm in pseudo-code notation

Algorithm 1. Algorithm to estimate the APS from the WEM and
the expected NWP
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