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Spatiotemporal inferences for use in building detection using series of
very-high-resolution space-borne stereo images

Rongjun Qina*, Jiaojiao Tianb, and Peter Reinartzb

aFuture Cities Laboratory, Singapore-ETH Centre, 138602 Singapore; bGerman Aerospace Center
(DLR), Remote Sensing Technology Institute (IMF), 82234 Wessling, Germany

(Received 30 December 2014; accepted 15 June 2015)

Automatic building detection from very-high-resolution (VHR) satellite images is a
difficult task. The detection accuracy is usually limited by spectral ambiguities and the
uncertainties of the available height information. Feature extraction and training
sampling collection for supervised methods are other sources of uncertainty. Most
widely used VHR sensors have shorter revisit cycles (IKONOS/GeoEye-1/2, 3 days;
WorldView 1/2, 1.1 days) due to large off-nadir viewing angles and hence are able to
perform consistent acquisition of mono or stereo images. In this article, we investigate
the possibility of using high-temporal stereo VHR images to enhance remote-sensing
image interpretation under the context of building detection. Digital surface models,
which contain the height information, are generated for each date using semi-global
matching. Pre-classification is performed combining the height and spectral informa-
tion to obtain an initial building probability map. With a reference land cover map
available for one date, the training samples of the other dates are automatically derived
using a rule-based validating procedure. A spatiotemporal inference filter is developed
considering the spectral, spatial, and temporal aspects to enhance the building prob-
ability maps. This aims at homogenizing the building probability values of spectrally
similar pixels in the spatial domain and geometrically similar pixels in the temporal
domain, while being robust to the silhouette of the images and geometric discrepancies
of the multitemporal data. The effectiveness and robustness of the proposed method are
evaluated by performing three experiments on six stereo pairs of the same region over
a time period of five years (2006–2011). The area under curve (AUC) of the receiver
operating characteristic and kappa statistic (κ) are employed to assess the results. These
experiments show that spatiotemporal inference filtering largely improves the accuracy
of the building probability map (average AUC = 0.95) while facilitating building
extraction in snow-covered images. The resulting building probability maps can be
further used for other applications (e.g. building footprint updating).

1. Introduction

1.1. Background

Data interpretation of remote-sensing data is a major task for earth observation, and the
accurate identification and localization of buildings is essential for building analysis,
planning, and urban growth monitoring. The development of very-high-resolution
(VHR) optical images has paved a path to study building properties on a large scale
(Qin, Gong, and Fan 2010; Qin et al. 2013). In particular, space-borne platforms carrying
these sensors usually have a short revisit time (e.g. IKONOS, 3.5 days; WorldView,
1.1 days), giving them the potential to capture remote-sensing image time series.
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Moreover, advanced stereo matching algorithms (Gehrke et al. 2010; Gruen 2012;
Hirschmüller 2008) have driven the incremental availability of digital surface models
(DSMs) at relatively low cost, providing additional information for data interpretation,
and are particularly useful for the identification of buildings (Qin and Fang 2014).

Current building detection methods mainly work with data sets of one date, while
algorithms are designed under the scenarios that (1) only a single multispectral image is
available, (2) only the DSM is available, or (3) both image and DSM are available.
Though efforts have been made to improve building feature delineation, detection strate-
gies, and learning methods (Huang and Zhang 2011; Meng, Wang, and Currit 2009; Ok,
Senaras, and Yuksel 2013; Sirmacek and Unsalan 2011), algorithmic limitations have
been reached owning to the existence of uncertainties in DSMs and spectral ambiguities
between buildings and other impervious objects such as roads and ground. Artefacts occur
for data captured under different acquisitions: humid surfaces (e.g. after rain) can lead to
specular reflections and the snow coverage of a scene will significantly reduce the spectral
information of the images. Moreover, atmospheric and other unpredictable conditions
affect the images, sometimes substantially reducing the quality of the matched DSMs
(Hirschmüller and Scharstein 2009). However, current building detection algorithms are
not well enough advanced to interpret such complicated variations, which restricts their
optimal performance to certain conditions.

If time-intensive multitemporal data are available, their joint use via probability
inference may tackle such ‘case-specific’ limitations for current building detection algo-
rithms. Research on analysing low- to medium-resolution image sequences is mainly
aimed at pairwise change detection (Coppin et al. 2004) and visual analysis for indepen-
dently interpreted results, such as vegetation and urban growth (Kastens and Legates
2002). Correlations between different dates were analysed among the interpreted results,
whereas multitemporal images were not used for mutual support in a joint interpretation.
To the authors’ best knowledge, to date only a few studies have addressed the probability
inferences of VHR images with high temporal resolution for joint data interpretation. In
this article, we therefore propose a method to perform spatiotemporal inference on
building probability maps, adopting a three-dimensional (3D) bilateral filter to study the
possibility of enhancing data interpretation accuracy with time series of VHR stereo
images, including the derived DSMs.

1.2. Related works

This study investigates the performance improvement in regard to building detection
using multitemporal VHR stereo images, which has rarely been done before. Our study
is closely related to the general topic of building detection and multitemporal analysis, and
therefore it is necessary to introduce the state-of-the-art techniques applied in these areas.

1.2.1. Building detection method

Building detection methods have previously been intensively studied, mainly focusing on
single images, DSMs, or combined ortho-images and DSMs. With the availability of
advanced stereo matching algorithms, the current trend is to use both ortho-images and
DSMs for building detection. Due to the availability of training procedures, these methods
can generally classified as either supervised or unsupervised.

As buildings are usually seen as one type of off-terrain object, height information is a
major indicator in assessing their probability. The normalized DSM (nDSM) is commonly
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used to derive off-terrain objects with height thresholds, and can be generated either by
subtracting a given digital terrain model (DTM) from the derived DSM or from the DSM
alone. For most unsupervised methods, spectral information is usually used for detecting
vegetation and sharpening the boundary of buildings. Chen et al. (2012) proposed a step-
wise method combining multispectral ortho-imagery and nDSM: the initial building
segments were obtained by truncating the nDSM and normalized difference vegetation
index (NDVI) with given thresholds, and the final building masks were generated with
rule-based consideration of the region size and relational constraints between buildings
and trees. Grigillo, Kosmatin Fras, and Petrovič (2011) generated the initial building
masks in the same manner, but eliminated tree masks using the homogeneity feature
(Zhang 1999) and NDVI. Qin and Fang (2014) proposed a hierarchical method to derive
building segments using morphological operations on DSM and NDVI, and they adopted
graph cut optimization to refine building boundaries using multispectral images. (Lu,
Trinder, and Kubik 2006) proposed using the Dempster–Shafer (Shafer 1976) algorithm
for fusing building probability values extracted from multispectral imagery and DSM.
Tian and Reinartz (2013) computed a building probability map based on random forests
(RF) classification, and they adopted panchromatic images to get sharper building
boundaries.

The advantage of unsupervised methods is their rapid computation and flexibility to
allow intuitive implementation of prior knowledge for building mask refinement.
However, threshold selection and parameter tuning may be based on a case-by-case
fashion. The supervised method can deal with this problem more efficiently, as prior
information is derived from the data per se. Methods involving binary classification
(building and non-building) or land-cover classification have been intensively studied
(Dópido et al. 2013; Lee, Shan, and Bethel 2003; Meng et al. 2012; Tuia et al. 2010;
Turlapaty et al. 2012), with most of attention drawn to improvement in feature extraction
and design of the classifier (Dópido et al. 2013; Qin 2014b). The resulting building class
was commonly used as the final output (Lu, Trinder, and Kubik 2006) or initial building
masks for further refinement (Rottensteiner et al. 2005). The recent trend in classification
involves the development of spatial features to improve their separability (Qin 2014b;
Zhang et al. 2006). Classification accuracy can be further improved by incorporating the
available height information (Huang, Zhang, and Gong 2011). Turker and San (2010)
adopted the support vector machine (SVM) classifier (Wang 2005) to classify pan-
sharpened images for building detection. Lee, Shan, and Bethel (2003) employed the
iterative self-organizing data analysis (ISODATA) techniques algorithm to classify
IKONOS multispectral images, and then approximated the building class using shape
elements. For classification methods such as SVM and RF (Breiman 2001), the con-
fidence in classification is usually provided for each class, which could be further used to
refine building detection.

1.2.2. Multitemporal image analysis

One of the major tasks in multitemporal analysis is to evaluate temporal evolution and
changes in the ground scene over time. Bitemporal data have usually been studied for
change detection (Akca et al. 2010; Qin 2014a; Tian, Cui, and Reinartz 2014), and
multitemporal time series images commonly used for studying urban or vegetation growth
at a coarse level (Coppin et al. 2004; Lu et al. 2004). Kastens and Legates (2002) used
low-spatial resolution time series as a means of assessing vegetation changes and high-
lighted sensitive areas for vegetation degradation. In their method, images in the time
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series are used independently to compute statistics such as circular variance, which are
computed for the data analysis. Petitjean, Inglada, and Gançarski (2012) proposed a
dynamic time warping (DTW) on high-temporal- but low-spatial-resolution images to
tackle the problem of irregular data sampling and pairwise comparison of time-series
sequences. Herold, Goldstein, and Clarke (2003) used a set of old aerial photographs and
some IKONOS images to model urban growth and change, under the scenario of model-
ling and studying the spatial constraints on urban growth.

One prominent inference model is Markov random field analysis (MRF) (Blake et al.,
2011), which posts similarity constraints on spatially and temporally neighbouring pixels/
objects to propagate their probability. The MRF inference model has been widely used for
change detection applications (Crispell, Mundy, and Taubin 2012; Qin and Gruen 2014;
Schindler and Dellaert 2010). Taneja, Ballan, and Pollefeys (2011) proposed a voxel-
based method to infer change probability through a MRF framework, which implicitly
adopted a multi-matching model for sensing geometric discrepancies among data from
different dates, and a similar method was described by Schindler and Dellaert (2010).
However, the MRF inference model is substantially a global optimization method, which
incurs the problem of high computation load for pixel-wise calculation. Due to the local
nature of the ground scene, it is more efficient to use non-global methods for inference.

1.3. Proposed strategy

Despite previous work on low-to-medium resolution multitemporal analysis, particularly
under the context of change detection, little work has been done on the enhancement of
image interpretation using VHR stereo data. In regard to improving the interpretation
accuracy for each date, most existing methods focus on interpreting urban/vegetation
changes from multitemporal data with no investigation on how these could contribute to
each other. Therefore we aim to close this gap: we first adopt the RF classification method
(Breiman 2001) to derive the probability maps for data from each date, with the training
samples generated from a reference map of only one date. Then the resulting building
probability map of each date is updated using a 3D bilateral filter considering the spectral,
spatial, and temporal information.

2. Data preprocessing

To perform pixel-/object-wise processing of multitemporal stereo data, a key step is to
generate well co-registered DSM and ortho-images for all the dates. In this study we used
the ‘Catena’ system at DLR (German Aerospace Center) (Krauß et al. 2013), which
implicitly adopts a multi-image block adjustment for bias correction (Fraser and Hanley
2003) of rational polynomial coefficients and semi-global matching (SGM) (Hirschmüller
2005) for DSM generation. Bias correction was done using a large number of multi-
matching tie points to ensure accurate geometric alignment. SGM adopts a multi-path
dynamic programming to minimize cost function:

E Dð Þ ¼
X

p

C p;Dp

� �þ
X

q2Np

P1T jDp � Dqj ¼ 1
� �þ

X

q2Np

P2T jDp � Dqj>1
� �

; (1)

where D is the disparity map (a matrix) where the value of each pixel on this map grid
corresponds to the parallax in the epipolar images. Dp denotes the values of pixel p in map
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grid D, and Np is a set of pixels neighbouring point p that follows an eight/four
connectivity rule. The first of these terms denotes the matching cost of D, which is
usually computed using census or mutual information cost (Hirschmüller 2005). The
second and third terms are the smoothing terms for disparity jumps of neighbouring
pixels Np at one and more than one pixel, with P1 and P2 being the penalty. T �½ � is a
Boolean function that equals 1 when the expression holds true, and 0 otherwise. In our
experiment, P1 ¼ 300;P2 ¼ 1000 were set empirically. The reader will find a detailed
description of the algorithm and implementation in d'Angelo and Reinartz (2011) and
Hirschmüller (2005).

3. Methodology

In this study the building probability maps are first generated using supervised classification
with the multispectral ortho-image and DSM. The RF classifier is adopted to perform the
classification due to its low computational complexity and capability of handling large
volumes of data. For each test sample, it also provides a probability estimation of belonging
to a particular class (Breiman 2001), which is descriptive for delineating building pixels
numerically. With a land-cover reference map (hereafter referred as the reference map)
available for one date of the time series, it is possible to derive the training samples for the
other dates automatically. Our method is divided into three steps: (1) training sample
generation; (2) feature extraction and classification; and (3) spatiotemporal inference
using a 3D bilateral filter. The first two steps are used to generate the building probability
map, where we present a step-wise automatic method to select training samples for each
date. Our main contribution lies in the third step, where a 3D bilateral filter is proposed to
locally infer building probability values from the data of all dates.

3.1. Training sample generation

In most cases the land-cover reference map is usually available in the geo-database, where
the training samples for supervised classification are derived and with which the classi-
fication accuracy is assessed. However, the reference map may not be available for all
dates. Our method requires reference data for only one date to derive training samples.
Indeed, the reference map does not have to cover all the objects in the research region, but
must include typical ground objects for each class. Therefore, we propose to derive coarse
reference maps from the available data for training sample generation. As our main focus
in this study is buildings, we categorize the scene into the five following classes:
‘building’, ‘ground’, ‘road’, ‘tree’, and ‘shadow’. By checking the consistency of DSMs
and ortho-images, it is possible to verify existing and newly detected objects using change
detection techniques. It should be noted that this procedure is different from a normal
change detection process, as the verified and new objects do not need to be inclusive
providing the generated coarse reference map is representative. Our proposed reference
map generation procedure is shown in Figure 1.

As shown in Figure 1, the procedure of automatic reference generation is built on a
coarse change detection procedure, and thus effective change indicators are very important.
As shown in Figure 2, spectral variation due to seasonal differences can be very significant
and employing spectral differences as a change indicator may cause much unnecessary error.
Therefore, we use height difference as a robust measure and, being more specific, the
difference in nDSM, since that is inherently robust to small height shifts caused by data
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co-registration. Building change usually induces a height difference, with the ground object
being its dual class. Therefore, buildings with height change will be eliminated from the
reference map, as well as ground and roads. The nDSM in Figure 1 denotes an nDSM
truncated by NDVI, serving as a good indicator for buildings. One of the key characteristics
of shadow is its local luminance variance. We employ the morphological shadow index
(MSI) as proposed by Huang and Zhang (2012) and Huang, Zhang, and Zhu (2013), which
adopts grey-level top-hat reconstruction from the inverse of the brightness image. As the MSI
is linearly correlated to shadow, only a very small number of samples are needed for training.
Since top-hat reconstruction eliminates a zero-order shift between MSIs for different dates,
the new shadow pixels are extracted using a 5σ threshold, where σ is the standard deviation
of the MSI of the reference shadow segments. Segments whose MSI is different to the
shadow reference map by less than 5σ are kept as shadow candidates. Trees are jointly
determined by nDSM and NDVI with a certain threshold. In our experiment, in the reference
map generation procedure (Figure 1) we take T1 ¼ 1:5; T2 ¼ 3, and T3 ¼ 0:2 as empirical
values, these being determined by the DSM co-registration quality of multispectral informa-
tion. Training samples are randomly selected from the derived reference map for each date,
and only 200 pixels per class are used for training.

3.2. Feature extraction and classification

Earlier works have demonstrated that the combined use of spectral and height information
can significantly improve data interpretation accuracy (Huang, Zhang, and Gong 2011).

Figure 1. Flow chart for reference map generation.

Figure 2. Examples of spectral changes across different seasons. Pan-sharpened IKONOS multi-
spectral images (centre coordinate: 125°44ʹ E, 39°48ʹ N) of part of North Korea in summer (a) and
in winter (b).
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Height information is particularly useful in interpreting building properties. The RF
classifier is adopted in our experiment, due to its low computational cost and high
classification accuracy (Breiman 2001). Like other popular classifiers, RF provides a
posteriori probability of the classification result belonging to a particular class, and the
class label is determined by selecting the one with maximal probability. As our intention is
to derive building probability values, we adopt pixel-wise classification rather than object-
based strategy, which avoids pixels being diffused by erroneous segments.

The following features are used for the classification task:

(1) Principal component analysis (PCA) transformation of multispectral bands
(2) Differential morphological profile (DMP) of the panchromatic images
(3) Morphological top hat by reconstruction (MTHR) of the DSM

PCA (Jolliffe 2005) is widely used for dimension reduction of high-dimensional features.
Due to its nature of maximizing variance in each dimension, it usually provides higher
separability of different classes than the direct use of spectral information (Zhang et al.
2006). MTHR is regarded as an efficient indicator for off-terrain objects (Qin 2014c; Qin
and Fang 2014), and exhibits a good capability to separate spectrally similar classes such
as buildings and impervious ground. The MTHR of a DSM J (with its dimension being
mJ � nJ) can be computed as

Te
J ¼ J� BJ;ε J;eð Þ; (2)

where e is a structural element (with dimensions me � me), with ε being the grey-level
erosion operator:

ε J; eð Þ i; jð Þ ¼minfJ p� a;q� bð Þj; e a;bð Þ ¼ 1;0 < a;b < me � 1;0 < p;q < mJ;nJg :
(3)

BJ;I is the grey-level morphology reconstruction of J from I, and in this case I is ε J; eð Þ.
For more details on the use of grey-level morphological operation, the reader may refer to
Vincent (1993).

DMP has been shown to be a valid spatial feature in improving classification accuracy
(Benediktsson, Pesaresi, and Amason 2003). It adopts geodesic opening and closing
operations at different scales to build DMPs in order to represent the image structural
information, denoted as

DMPJ;i ¼ BJ;ε J;eið Þ � BJ;ε J;ei�1ð Þ; (4)

where ei; i ¼ 1; 2; . . . ; n, are the structural elements with different dimensions and
DMPJ;i; i ¼ 1; 2; . . . ; n, is the DMP feature sequence of a raster grid J, computed using
the differentiations of grey-level morphological reconstruction with different structure
elements ei. In our experiment, we use a disk-shaped structural element of varying radius
to build the DMP sequence. The radius ranges from 3 to 30 pixels (with an interval of 3
pixels) to delineate ground objects.

We employ a simple vector-stacking method to fuse these features. To render each
component of the feature vector numerically equivalent for computation, the values of
each dimension are normalized to the range [0, 1]. RF is used to perform the training and
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classification, with 500 trees initialized for the decision tree construction and testing, and
the output of this approach is a probability map for each class.

3.3. Spatiotemporal inference using a 3D bilateral filter

The generated building probability maps vary with the data from different dates, due to their
spectral and height uncertainties. Therefore, for the building probability map of each date,
artefacts can frequently occur. For example, ground is likely to be identified as buildings
under snowfall, and the edge of the buildings might be noisy due to their highly similar
spectrum to the ground. The matching algorithm may fail for certain small buildings owing
to poor spectral quality, resulting in their incorrect identification. According to Pacifici,
Longbotham, and Emery (2014), the spectral response of the same object from different
acquisitions can vary considerably, leading to different separability between urban classes.
Our idea is to leverage the uncertainties by fusing building probability maps across all
temporal acquisitions using a simple and fast method, while avoiding the fusion process
diffused by data with large height discrepancies in the temporal direction.

The bilateral filter is regarded as an edge-aware adaptive kernel filter that performs
spatial filtering, weighting each pixel according to its spatial and spectral proximity to the
centric pixel for filtering (Tomasi and Manduchi 1998). It filters an image raster I
(dimension mI � nI) as follows:

kI x; yð Þ ¼
X

i;j

�e
I x;yð Þ�I i;jð Þj jj j2

2σ2
1

þ x;y½ �� i;j½ �j jj j2
2σ2

2 I i; jð Þ; 0 � i; j < mI; nI; (5)

where kI is the filtered raster. σ1 and σ2 are the spectral and spatial bandwidths,
respectively, controlling the sensitivities of the spectral and spatial dissimilarities between
the centric and surrounding pixels. The spectral difference (I x; yð Þ � I i; jð Þ) is usually
computed as the Euclidean distance of the transformed colour space (e.g. CIELA; Joblove
and Greenberg 1978) or PCA). The filtering process assigns a large weight to spatially
close and spectrally similar pixels for filtering, while assigning a very small weight for
pixels of varying spectral value.

Considering the spatial correlation among pixels, a smoothness constraint can be
posted on neighbouring pixels having similar spectral responses, aiming promote the
homogeneity of building probability values for locally similar pixels. The height informa-
tion is robust in the temporal direction, so the homogeneity of the building probability
values can be correlated to the height similarity in the temporal direction (Tian et al.
2013). Based on these considerations, we further develop the 2D bilateral filter to a 3D
bilateral filter that implements the aforementioned constraints, and update the building
probability map of each date:

Pf x; y; tð Þ ¼ 1P
w x; y; tð Þ

Xm¼xþl

m¼x�l

Xn¼yþl

n¼y�l

Xh

k¼1

w m; n; kð ÞP m; n; tð Þ; (6)

where P m; n; tð Þ is the raw building probability map at time t, with Pf x; y; tð Þ being the
filtered results; l is the window length, which is usually the value of the spatial
bandwidth; h is the number of temporal data sets; and w m; n; kð Þ is the 3D adaptive
kernel used to compute the aggregated weight in the spatial and temporal directions:
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w m; n; kð Þ ¼ w1 m; n; tð Þw2 m; n; k; tð Þ; (7)

where

w1 m; n; tð Þ ¼ e
�L I x;y;tð Þð Þ�L I m;n;tð Þð Þ2

2σ2
1

þ�j x;y½ �� m;n½ �j jj2
2σ2

2

and

w2 m; n; k; tð Þ ¼ e
�j Ht m;nð Þ�Hk m;nð Þj jj2

2σ2
3 : (8)

w1 �ð Þ is the normal bilateral filter that considers the spatial smoothness; LðÞ represents
the colour transformation from RGB to CIELAB colour space; Hk represents the DSM
at time k; w2 �ð Þ is an extended part that constrains the height difference in the temporal
direction, with σ3 being the temporal bandwidth; and w2 �ð Þ assigns large weights for
DSMs on dates of similar height while assigning a low value to those with large height
differences. It should be noted w2 �ð Þ is constrained by weight w1 �ð Þ in the spatial
domain. The kernel value will be still small if the spectral value is different from that
of the centric one, even with a similar height in temporal direction. This means that only
spectrally similar pixels in the spatial domain and pixels of similar height in the
temporal domain will be used to contribute to the building probability values of the
centric pixels.

The bandwidth values of the 3D bilateral filter are usually determined empirically
through trial-and-error approaches. These values are linearly related to the visual effect of
the final results: a high σ1 usually results in more smooth but less informative results,
while a low value leads to sharper but noisier results. A high σ2 considers more pixels
among the spatial pixels, which also leads to more blurry boundaries; a low σ2 leads to
sharper boundaries but contributes less to the noise removal. σ3 should be carefully
determined according to the co-registration quality between DSMs: a very low value
results in zero contribution from the other temporal DSMs, and a high value might blur
areas where height changes occur.

The advantage of the 3D bilateral filter is its computational efficiency in comparison
with global methods such as MRF. MRF optimizes the probability of buildings by
considering all pixels in the spatial and temporal domains, which carries a high computa-
tional load. In fact, the correlations between building pixels only exist locally and pixels
far apart make little contribution to each other, since building objects do not span a large
area and are independent from each other. Moreover, the proposed 3D bilateral filter is
easy to implement and requires only polynomial computational time. In addition, it does
not place any constraints on the temporal order of the input data, which has the potential
for parallel processing of large volumes of multitemporal data.

4. Experiment

4.1. Data description

To evaluate the performance of the proposed method, data sets of the same regions from
six different dates are used. We selected an industrial area near Dong-an, North Korea, as
the test site due to data availability. Table 1 shows detailed information on the available
satellite stereo imagery. As listed, four data sets were captured in winter, including one
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featuring very heavy snow coverage. The other two data sets were captured in summer.
Among these six data sets, five are IKONOS stereo imagery with 1 m pixel size in the
panchromatic band and 4 m pixel size in the multispectral bands, and one is from
GeoEye-1 with 0.5 m pixel size (panchromatic) and 2 m pixel size (multispectral). The
widely used Gram–Schmidt pan-sharpening method implemented in ENVI software
(ENVI 2014) is applied to all multispectral channels for further interpretation. Since the
proposed method is pixel-based, all images are resampled to 1 m pixel size for pixel-wise
alignment.

In the present study, two sub-regions of this area are selected for the experiment with
two data sets of 1230 × 1303 and 1264 × 650 pixels, respectively. The reference building
footprints are manually extracted for all six temporal data sets. Since the selected regions
are located in a rapidly developing district, within the previous six years many new
buildings had been built. Therefore, for presentation convenience, we take the final data
set (no. 6) as the main example since it contains the most buildings.

The multispectral images and reference building footprints of the two selected regions,
which describe the building characters and distribution, are shown in Figure 3. The
selected regions contain mainly industrial buildings and a few residential houses, varying
in size and roofing materials. Special attention should be paid to very dense and small
buildings (e.g. red circles in Figure 3(a)), since these might represent potentially challen-
ging cases for building detection where the DSM generation algorithm may not produce
height jumps due to the limited resolution.

As described in Section 2, the DSMs of all dates are generated using the same method,
with block adjustment among all data sets. This approach theoretically guarantees sub-
pixel accuracy in planimetry, with height accuracy ranging from 1 to 2 m depending on
convergence angles between the respective viewing directions. The generated DSMs of
data set no. 6 are displayed in Figure 4. Although the quality check of the absolute
accuracy of the DSMs is important, for our particular purpose it is more crucial to evaluate
their relative difference. As shown in Figure 5, the profiles of the six DSMs along the
black line in Figure 4(b) are plotted. The red line represents the height values of the DSM
in the year 2006, before these buildings had been built. All other five DSMs clearly show
the cross-sections of four buildings approximately 12 m in height.

4.2. Experimental analysis

The aim of our experimental analysis is to investigate the effectiveness and robustness
of the proposed spatiotemporal inference method. For this purpose, three experiments

Table 1. Data description.

Data set Satellite Acquisition date

Resolution (m)

Approximate snow coverPAN MS

1 IKONOS 23 February 2006 1 4 4%
2 GeoEye-1 20 December 2009 0.5 2 3%
3 IKONOS 12 January 2010 1 4 85%
4 IKONOS 13 May 2010 1 4 No
5 IKONOS 7 January 2011 1 4 4%
6 IKONOS 2 May 2011 1 4 No

Note: PAN, panchromatic; MS, multispectral.
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were designed and carried out based on the data sets: (1) comparative analysis on
probability maps; (2) case analysis – performance of images with weak spectral
information; and (3) accuracy of analysis regarding building detection. In the first
experiment, we evaluate the differences between the raw probability map (generated
from the classification) and those inferred using the area under the curve (AUC) values
of the receiver operating characteristic (ROC) curve (Hand and Till 2001). This
provides qualitative and quantitative results on the performance of our method. In
the second experiment, we analyse the special case of 12 January 2010: besides heavy
shading effects, almost the whole test region was covered in snow, resulting in very
low spectral variability. Therefore, this experiment examines the performance of
the proposed method on multi-seasonal images. The third experiment is an

Figure 3. Ortho-rectified images for test regions 1 (a) and 2 (b), and the corresponding reference
maps (c) and (d); red circles denote small and dense houses.
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application-based analysis, aiming to prove that the improved probability maps can
provide a building footprint of good quality.

4.2.1. Experiment I

The proposed spatiotemporal inference filtering approach fuses raw building probability
maps from different dates. To provide a descriptive analysis on the incremental effect of
the proposed approach, we evaluate the accuracy improvement in building probability
maps by increasing the number of raw probability maps incorporated in the inference
process.

Figures 6 and 7 demonstrate the visual comparison of resulting probability maps of
data set no. 6. In each sub-figure, four probability maps are displayed. Some small
buildings in the raw probability map of test region 1 (Figure 6(a)) are not well high-
lighted. After spatial inference (with w m; n; tð Þ ¼ w1 m; n; tð Þ in Equation (7), which is a
standard bilateral filter) the ‘salt and pepper’ effect is effectively removed, but some roads

Figure 4. Generated DSMs for data set no. 6 in test regions 1 (a) and 2 (b).

Figure 5. DSM height value comparison along the black line in Figure 4(b).
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are still given a high probability of being buildings, as shown in Figure 6(b). As denoted
by the yellow circle, some hilly ground is assigned high building probability values, but
this situation is significantly improved after the spatiotemporal inference is applied
(shown in Figure 6(c)), and this is further enhanced after incorporating all six data sets
in the spatiotemporal inference (Figure 6(d)). In the region marked by white circles, roads
and hilly ground are assigned lower building probability values while the actual buildings
still show higher probability values. Another region, marked by a green circle, clearly
shows the improvement in the probably map. Figure 7 shows the results obtained in the
second test region, in which the probability map achieves a similar level of improvement
and which can be observed clearly in the region marked with yellow circles.

The same experiment is carried out for all six data sets of the two test regions. The
building probability maps using 1one to five temporal reference data sets (named as
Prob_2, Prob_3, Prob_4, Prob_5, and Prob_6, respectively) are all calculated for a more

Figure 6. Comparison of building probability maps in test region 1. The significance of the circled
areas is explained in the main text. (a) Raw probability map. (b) Probability map computed using
only spatial inference; (c) probability map obtained using spatiotemporal inference on one reference
data set; (d) probability map obtained using spatiotemporal inference with five reference data sets.
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comprehensive comparison. Together with the raw probability map (Prob_0) and that
using only spatial inference (Prob_1), each data set has seven building probability maps
for evaluation. The performance of the spatiotemporal inference filtering is evaluated
through ROC curves (Hand and Till 2001) by comparing these probability maps to the
reference building footprint. The ROC curves of test region 1 are shown in Figure 8. All
six temporal data sets are involved in the evaluation procedure. For a numerical compar-
ison, the AUC values are reported in Table 2. A larger AUC indicates a higher accuracy.

From Table 2, we note that the AUCs of the raw probability map (Prob_0) vary
widely, this being influenced by the quality of the training data and seasonal disturbances.
However, after spatiotemporal inference, 11 recorded an AUC over 0.95 (Prob_6), which
is satisfactory for most building detection applications. A significant improvement in
accuracy can be found between Prob_1 and Prob_2, which proves the necessity of
temporal inference.

4.2.2. Experiment II

It is interesting to study the enhancement of our proposed method for some special
scenarios, as in the case of high snow coverage. As shown in Figure 9(a), the true colour
image of test region 1 captured on 12 January 2010 has very low spectral variability, with
notable errors in the raw probability map as shown in Figure 9(c). Such errors can simply
be linked to other similar cases (e.g. low spectral information for panchromatic images,
high-specular reflecting impervious surfaces after rain).

A sub-region for further analysis is denoted by the red rectangle in Figure 9(a). The
lack of texture may affect the quality of the DSM. As can be seen in Figure 9(b), the
separability of the low buildings in the hilly area (denoted by a white ellipse) is not clearly
observable. Moreover, the height of some buildings, as denoted by a yellow circle, may
fail to record accurately. Since the training data used in this study are automatically

Figure 7. Comparison of building probability maps in the second test region. The significance of
the circled area is explained in the main text. (a) Raw probability map; (b) probability map
computed only for spatial inference; (c) probability map using spatiotemporal inference on one
reference data set; (d) probability map using spatiotemporal inference with five reference data sets.
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Figure 8. ROC comparisons of test region 1 for (a) 23 February 2006, (b) 20 December 2009,
(c) 12 January 2010, (d) 13 May 2010, (e) 7 January 2011, and (f) 2 May 2011.

Table 2. Performance results for the two test regions.

Dates Prob_0 Prob_1 Prob_2 Prob_3 Prob_4 Prob_5 Prob_6

Test region 1 23 February 2006 0.9304 0.9484 0.9593 0.9579 0.9593 0.9611 0.9612
20 December 2009 0.9177 0.9365 0.9497 0.9493 0.9518 0.9538 0.9536
12 January 2010 0.8713 0.8994 0.9359 0.9409 0.9468 0.9521 0.9558
13 May 2010 0.9390 0.9521 0.9546 0.9551 0.9556 0.9583 0.9583
7 January 2011 0.8848 0.9024 0.9334 0.9367 0.9384 0.9414 0.9410
2 May 2011 0.9302 0.9463 0.9515 0.9521 0.9524 0.9524 0.9523

Test region 2 23 February 2006 0.9537 0.9681 0.9740 0.9726 0.9729 0.9736 0.9754
20 December 2009 0.8989 0.9309 0.9515 0.9489 0.9542 0.9567 0.9581
12 January 2010 0.8837 0.9235 0.9549 0.9553 0.9574 0.9588 0.9626
13 May 2010 0.9567 0.9661 0.9723 0.9698 0.9698 0.9708 0.9722
7 January 2011 0.8667 0.9026 0.9337 0.9421 0.9432 0.9462 0.9474
2 May 2011 0.9175 0.9424 0.9479 0.9465 0.9469 0.9492 0.9504
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generated by reference to an outdated land-cover map, inaccurate building height will
directly reduce the quality of the training data and further affect classification accuracy.
For instance, if these buildings with lower height values are included in the training data,
many snow-covered ground areas would be wrongly classified as buildings.

In addition to DSM quality, the high percentage of snow cover is another main reason
for the less accurate results shown in Figure 9(c). The original spectral and texture of land-
cover characters are hidden by the snow, severing the relationship between spectral
features and land cover. After applying the proposed spatiotemporal inference, the quality
of the building probability map is largely improved. As shown in Figure 9(d), the detected
buildings are well separated from each other since these are assigned significantly higher
values than ground.

4.2.3. Experiment III

We perform additional experiments to further analyse the robustness of the proposed
method. As one important aspect of building detection is to obtain a precisely updated
building footprint, probability maps of higher quality are capable of providing greater
accuracy. Therefore, in this experiment a series of thresholds are manually selected to
truncate these probability maps. The obtained building footprint is compared to the
reference building footprint, and the similarity between them is measured using κ. In
this step, three probability maps are selected for each data set for comparison, including
the original map, one with spatial inference, and the final spatiotemporal inference
probability map with all the data sets.

For each probability map, 18 building footprints are generated by assigning a series of
thresholds T (T = 0.1, 0.15, 0.2, . . ., 0.95). The evaluation results of these building
footprints are reported in Figures 10 and 11, respectively. In all 12 data sets (two test

Figure 9. Building probability map for a snow-covered data set: (a) a data set in the first test
region with heavy snow cover; the area bounded by the red rectangle indicates an enlarged region,
shown in (b)–(d); (b) DSM of the selected region; (c) original building probability map of the
selected region; (d) final probability map of the selected region.
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regions with six data sets), the probability maps obtained by spatiotemporal inference
recorded the highest κ for the generated building footprint with finely tuned thresholds.
Spatial inference also has a positive contribution to the accuracy of the obtained building
footprint. The results confirm the effectiveness of the proposed spatiotemporal inference
method.

Moreover, it may be noted that there is a distinct improvement between the probability
map of spatial inference over that of the spatiotemporal inference in Figure 10(c), which
was obtained for the snow-covered data set. This further proves that the proposed method
has the potential to recover data interpretation on data sets of poor spectral quality.

Table 3 presents the commission (false-positive) and omission errors (false-negative)
of these two experiments when κ reaches its maximum value. It will be seen that
commission errors are minimal when spatiotemporal inference is adopted: on average,

Figure 10. Plot of κ for the first test region of the data set captured on (a) 23 February 2006, (b) 20
December 2009, (c) 12 January 2010, (d) 13 May 2010, (e) 7 January 2011, and (f) 2 May 2011.

Figure 11. Plot of κ for the second test region of the data set captured on (a) 23 February 2006, (b)
20 December 2009, (c) 12 January 2010, (d) 13 May 2010, (e) 7 January 2011, (f) 2 May 2011.
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30–40% of commission errors are reduced by comparing the original and spatially
inferred building probability maps. Only a very small increase in false-negatives is
observed. This is expected, as the spatiotemporal inference process is aimed at reducing
uncertainty that could eliminate the pixels of some very small buildings.

5. Conclusion

In this study we proposed a 3D bilateral filter to investigate the possibility of enhancing
building detection accuracy with multitemporal stereo images. First, DSMs are generated
from stereo imagery using the SGM algorithm. Based on a given reference map of one
date, coarse reference maps are generated through a rule-based method and then the
training samples are derived randomly for classification with a RF classifier. The building
probability map of each date is enhanced via a fast spatiotemporal 3D bilateral filtering
which considers both spatial and temporal correlation of the multitemporal ortho-images
and DSMs.

The proposed approach was successfully validated using six pairs of stereo satellite
images captured over an industrial area over a time span of five years (2006–2011). The
average AUC value of the resulting building probability maps is better than 0.95, which is
a promising result for high-accuracy building detection. A prominent AUC improvement
is obtained for data sets with very low texture information (e.g. data with a high snow
cover rate). In this data set, the accuracy of the probability map of the two test regions
improved from 0.8713 to 0.9558 and 0.8837 to 0.9626, respectively. The resulting
building probability map is further tested with the reference building footprint, which
demonstrates its effectiveness in providing useful input for city management.

It should be noted that the supervised method for raw building probability map
generation might not be optimal, but this component can always be substituted with the
most advanced algorithms to produce better results. The selection of the bandwidth
parameter σ3 is dependent on the DSM and the co-registration quality, which still needs
to be optimized for robustness. Moreover, this study presents the possibility of enhancing

Table 3. Commission and omission errors for the two test regions.

Dates

Test region 1 Test region 2

O S ST O S ST

Commission error
(false-positive rate)

23 February 2006 0.5867 0.4954 0.3911 0.5355 0.4537 0.3189
20 December 2009 0.5752 0.4771 0.1714 0.3158 0.1837 0.1268
12 January 2010 0.5012 0.4332 0.3322 0.3857 0.2955 0.2003
13 May 2010 0.6106 0.5015 0.4256 0.4485 0.3079 0.1975
7 January 2011 0.4627 0.4112 0.3226 0.4442 0.3807 0.3254
2 May 2011 0.5176 0.3965 0.3429 0.4440 0.3278 0.2076

Omission error
(false-negative rate)

23 February 2006 0.0174 0.0191 0.0219 0.0109 0.0125 0.0206
20 December 2009 0.0369 0.0431 0.0519 0.0304 0.0355 0.0347
12 January 2010 0.0244 0.0266 0.0294 0.0244 0.0284 0.0285
13 May 2010 0.0248 0.0263 0.0263 0.0353 0.0403 0.0367
7 January 2011 0.0242 0.0262 0.0325 0.0167 0.0185 0.0230
2 May 2011 0.0237 0.0243 0.0266 0.0258 0.0313 0.0285

Note: O, original building probability; S, spatial inferred building probability; ST, spatiotemporal inferred
probability.
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building probability maps with multitemporal stereo images and their derived DSMs. It is
straightforward to extend this method to other urban classes such as trees, ground, and
roads. In addition, our 3D spatiotemporal bilateral filter provides a probabilistic output
and it would also be interesting to investigate further how this process might facilitate
deterministic methods such as class labelling. Therefore, our future work will analyse the
performance of the proposed method for other urban classes and focus on adaptive
parameter selection for the bandwidth, as well as develop the spatiotemporal inference
for deterministic problems.
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