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ABSTRACT

The high and still increasing number of attacks by hazardous bioorganic materials makes enormous demands on
their detection. A very high detection sensitivity and differentiability are essential, as well as a rapid identification
with low false alarm rates. One single technology can hardly achieve this. Point sensors can collect and identify
materials, but finding an appropriate position is time consuming and involves several risks. Laser based standoff
detection, however, can immediately provide information on propagation and compound type of a released
hazardous material. The coupling of both methods may illustrate a solution to optimize the acquisition and
detection of hazardous substances.

At DLR Lampoldshausen, bioorganic substances are measured, based on laser induced fluorescence (LIF),
and subsequently classified. In this work, a procedure is presented, which utilizes lots of information (time-
dependent spectral data, local information) and predicts the presence of hazardous substances by statistical
data analysis. For that purpose, studies are carried out on a free transmission range at a distance of 22m
at two different excitation wavelengths alternating between 280 nm and 355 nm. Time-dependent fluorescence
spectra are recorded by a gated intensified CCD camera (iCCD). An automated signal processing allows fast and
deterministic data collection and a direct subsequent classification of the detected substances. The variation of
the substance parameters (physical state, concentration) is included within this method.

Keywords: Biological sensing and sensors; Fluorescence, laser-induced; Spectroscopy, ultraviolet; Standoff
detection; Hazardous material detection; Classification procedure

1. INTRODUCTION

An increasing amount of attacks in public of varying dimensions like e.g. the disposal of the neurotoxin sarin in
a subway in Tokyo 19951 or the transmission of anthrax to american government officials in 20012 show the need
for an effictive and fast solution to detect chemical and biological (CB) hazardous substances. Also unintended
releases of such material, caused by earthquakes, industrial accidents, or floods may lead to a high risk for the
public. A quick identification of the released material and the tracking of a potential aerosol cloud is essential to
initiate the right counteractions and to minimize the risk for the public and emergency services. The potential
risk of self-replication of bioorganic substances also demands a high sensitivity for low amounts of such aerosol
particles.

Laser based techniques are applicable for standoff detection of hazardous material from secure areas with a
target distance up to the kilometer range. Laser induced fluorescence (LIF) is one of the possible methods and
provides the ability to map and classify aerosol clouds. In the case LIF cannot identify the substance, the gained
cloud distribution parameters can be taken for an optimized positioning of point sensors, which may identify the
substance.

The LIF technique is based on the fluorescence behaviour of molecules after being excited by laserlight. Elec-
tromagnetic waves within specific wavelength ranges (in our case UV) excite the molecule to higher energy levels.
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As the molecule relaxes to lower energy states, fluorescence light is emitted in a broad spectral range with lower
photon energies than those of the excitation photons. The fluorescence lifetimes vary from a few Nanoseconds
up to the magnitude of 50 ns. The broad spectra can lead to ambiguous results because of the potential indis-
tinguishability of the spectra. Therefore, additional discrimination features like spectra optained from different
excitation wavelengths together with time-resolved measurements (fluorescence lifetime measurements) can be
applied.3–6

In order to operate a LIF system under real outdoor conditions several effects have to be taken into account,
such as natural surroundings like pollen, dust, and diesel, which can interfere with the substance to be inves-
tigated. Also different weather conditions (solar radiation, fog, rain) affect the measurements by affecting the
laser light propagation and interfering with the fluorescence light. The system has to be robust, compact and
eye-safe for operations within public areas (laser wavelength below 400 nm).7,8

To satisfy these requirements the LIF system is operated on a free space optical testrange which offers the
possibility to measure CBE substances at distances from 20 m up to 135 m under different weather conditions.3,9

Laser pulses with two eye-safe wavelengths at 280 nm and 355 nm are used to excite the target molecules. Time-
resolved spectra of different chemical and biological substances (in fluid and aerosol form) are captured by a gated
intensified CCD (iCCD) camera. After background correction further analysis is done by a pattern recognition
software which classifies the substances into discrete classes (chemical, oil, plant, biological). The following
work describes the technical details of the LIF system, discusses measured spectra and outlines the classification
process.

2. EXPERIMENTAL SETUP
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Figure 1: Schematic draft of the optical setup. Details are described in the text. The left side shows a picture
of the free laser transmission range with a view from the laser system in the direction of the target. The laser
transmission range has a total length of 135 m.

The standoff detection system is operated on an outdoor free transmission range at the German Aerospace
Center Lampoldshausen to simulate realistic conditions. Measurements can be performed from a distance of
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Figure 2: Schematic draft of the electronic setup. Details are described in the text.

20 m up to 135 m. The laser system is operated indoor whereas the target consists of a sprayed aerosol or a
solution in a cuvette and is positioned outside along the free transmission range.

2.1 Optics

Fig. 1 represents the schematic optical setup of the system. The picture in the left bottom shows a view from
the laser system in the direction of the target. 7 ns laser pulses are emitted by a Nd:YAG laser with a repetition
rate of 10 Hz, a pulse energy of about 10 mJ and a wavelength of 355 nm. Each second laser pulse is frequency
converted to 280 nm, so that each wavelength is emitted with an effective repetition rate of 5 Hz. The laser pulses
of both wavelengths are guided through a set of mirrors to the target placed at a distance of 22 m. The isotropic
emitted fluorescence light is collected by a Newton telescope with an optical diameter of 400 mm. The collected
light is spectrally filtered to supress the laser lines and splitted into two parts. One part is fiber-coupled into a
spectrometer with a resolution of 1 nm and a spectral range from 300 nm to 600 nm for the spectral analysis of
the fluorescence light. The spectrum is captured by a gated iCCD camera. The second part of the fluorescence
light is fiber-coupled into a photomultiplier tube (PMT) to get a wavelength-independent time signal of the
fluorescence pulse. Details of the data acquisition are described in Section 2.3.

2.2 Electronics

The electronics of the system is shown in Fig. 2 as a schematic draft. The laser acts as a master trigger for
the whole system. Each trigger pulse opens the capture gate of the iCCD camera for the response fluorescence
signal of the target. To be able to substract a background spectrum from each fluorescence spectrum a second
trigger pulse is generated (“trigger mod.”) approximatelly 50 ms after each laser pulse. The iCCD camera and
the spectromenter are controlled by a LabVIEW10 program via Gigabit ethernet and USB/RS232 respectively.
The time-resolved fluorescence signal which is captured by the PMT is analysed and integrated by a digital
oscilloscope (DRS11), which is connected to the LabVIEW PC via USB. For a proper timing of all signals a
microcontroller provides information about the currrent timestamp within the period between two laser pulses.
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Figure 3: Data acquired during a measurement. Spectra are captured with consecutive iCCD camera gates with
linear increasing gate delay. A dataset consists of N subsets containing a fluorescence spectrum, a background
spectrum and a fluorescence pulse integral.
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Figure 4: Measurement timing diagram. One measurement consists of n + 1 camera gate delays. Each delay
contains 2 · (m + 1) laser pulses and the respective fluorescence spectra. Because of a laser repetition rate of
10 Hz, each period between two laser pulses has a duration of 100 ms, which is splitted into two equally sized
parts: fluorescence spectrum and background spectrum acquisition.

It also monitors the current wavelength state of the laser system and controls a shutter which is only open during
the measurement to preserve the target sample from unnecessary bleaching effects due to laser irradiation. The
LabVIEW PC is conntected to the classifier software via Ethernet (TCP/IP) to be able to classify the substances
online and location-independent.

2.3 Acquired data and measurement timing

Fig. 3 shows the acquired data considered for later classification, whereas Fig. 4 represents the timing structure
of a measurement. Fluorescence spectra are captured in consecutive time shifted iCCD camera gates. This
additional time information (depending on the fluorescence lifetime of the substance) provides another important
feature for the substance discrimination. The first gate delay starts at an offset to the laser Q-switch, placed at



the fluorescence pulse leading edge. The offset depends on the propagation time of the light (target distance) and
the electronic signals. The following camera gate delays are shifted one by one by 2 ns to provide the fluorescence
lifetime feature. Parallel to the acquisition of the spectrum the complete fluorescence pulse is captured in time
and integrated, which represents the signal strength of each spectrum and can be used for a later normalization
of the spectra. The individual normalization with a time-independent value helps to reproduce signal strengths
depending on the camera gate delay. For each delay several (1 − 100) single spectra are captured to supress
statistical effects. Each single spectrum is linked to an individual background spectrum which is captured directly
after the corresponding spectrum acquisition and within the second half of the period between two laser pulses
which is 100 ms. The substraction of this directly following background spectrum makes each measurement
independent of the background radiation which - especially in free atmosphere - may fluctuate on time scales of
seconds.

Finally the measurement dataset contains

N = 2 · (m + 1) · (n + 1) (1)

subsets, each consisting of a fluorescence spectrum, a background spectrum, the integral value of the fluorescence
pulse time signal and meta data like the current excitation wavelength, where n + 1 is the camera gate delay
count, m + 1 is the spectrum accumulation within each delay and the factor 2 represents the two different
excitation wavelengths. The duration of one measurement is

tmeas = N · 100 ms , (2)

or e.g. tmeas = 8 s for 4 camera gate delays and an accumulation of 10 spectra. An overhead of appoximately
2 s, caused by post-data processing, data communication and classification, has to be added to get the effective
classification time.

3. MEASUREMENTS
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Figure 5: Fluorescence spectra of yeast (solution with a concentration of 1 mg/ml) with an excitation wavelength
of 280 nm (a) and 355 nm (b). The different spectra in one plot represent different camera gate delays measured
relatively to the offset. The dip between 350 nm and 370 nm is caused by a notch filter which blocks the 355 nm
light from the laser. The 280 nm laser light is outside the bandwidth of the captured spectra (300 nm to 600 nm).

For training the system and building up a spectral database substances contained in the groups fungi, bacteria,
vitamins, enzymes and aromatic amino acids are measured in liquid solutions. To include interfering natural
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Figure 6: Fluorescence spectra of diesel (a) and dandelion (b) (solutions with a concentration of 2.5 µl/ml and
500 µg/ml respectively) excited by a wavelength of 355 nm. The spectra represent different camera gate delays
measured relatively to the offset. Plot (c) and (d) show the lifetime of diesel and dandelion respectively at
490 nm.

background substances different plants like dandelion or saffran are also measured. Oils like diesel or petrol
complete the set of substance groups as non-dangerous anthropogenic substances. As solvent deionized water is
used in different concentrations. Some substances are not (completely) soluble in water. To keep the solutions
homogeneous every substance is stirred during the measurements. For the database each measurement consists
of 100 spectrum accumulations to supress statistical effects. To check the reproducibility each sample of a
substance is measured three times. The following spectra are background-corrected but not unfolded from the
spectral properties of the optical parts of the system. So the real spectra of the substances may look significantly
different. For the substance classification and discrimination on this special apparatus this circumstance is
negligible.

Fig. 5 shows the fluorescence spectra of 1 mg/ml yeast in deionized water with the excitation wavelengths
280 nm (Fig. 5a) and 355 nm (Fig. 5b) and camera gate delays from offset + 0 ns to offset + 12 ns. The



different spectra of the different excitation wavelengths show the improvement of the ability to discriminate
different substances in contrast to the use of only one excitation wavelength. Fig. 6 shows an example of the
discimination of substances by their fluorescence lifetime. Diesel and dandelion do not have big differences in
their fluorescence spectrum shapes. But diesel (Fig. 6a and Fig. 6c) has a lifetime of about 20 ns whearas
dandelion (Fig. 6b and Fig. 6d) has a lifetime of about 6 ns which is a big difference. So lifetime - which may
also be dependent on the observed wavelength - can be a good feature to discriminate substances. The laser
pulse width is about 7 ns, which limits the lifetime method. So the real lifetime of dandelion at 490 nm differs
from the calculated value.

4. CLASSIFICATION AND RESULTS

The main objective of the spectral and temporal analysis is the creation of an algorithmic system which is able
to strongly discriminate substances into disjunct classes. Currently the system provides four classes: chemicals,
plants (natural surroundings), oil, and bacteria (living material). The last class represents potential hazardous
bioorganic material. There are different methods, which can be used for the classification. In our current system
we are using a structural extraction combined with statistical classification for the spectral data analysis. Another
method is the Principle Component Analysis (PCA) which has been e.g. implemented by the Swedish Defence
Research Agency (FOI).4

spike / noise filtration feature extraction
(spectral compression)

feature selection
(by importance)

classifier
training or

classification

Figure 7: Analysis/Classification process.

In Fig. 7 the analysis/classification process is shown. First of all artificial spikes and noise is filtered out
of the spectrum. The original spectrum contains 720 datapoints. This dimensionality (number of datapoints
or features) is redundant for an efficient classification process. Therefore a reduction of the dimensionality
to a few significant features is done by structural and statistical methods (called “feature extraction”).12–14

After this process the data is compressed down by a factor of ≈ 60. Each remaining feature can be seen as a
representative of a spectral region within the original spectrum. It is possible to reconstruct the original spectrum
from the compressed dataset with good accordance. An excellent performance of such a hyperspectral feature
exctraction was already demonstrated.15 Subsequently important features, which contribute significantly to the
discrimination process, are selected.

The next goal in the classification process is to generate many weak or “okay” classifiers, which can be
combined to one strong classifier.16 A classifier is created by growing a decision tree on a set of features. Each
node of a decision tree is a binary decision on the value of a feature. The leafs represent the substance classes
in which the analyzed spectrum is put depending on the decisions which are made on its feature values. To be
able to grow many decision trees (classifiers) substantially more sets of features are required than were provided
by the measured spectra. The so called “bootstrap aggregation” method (bagging17) helps to produce different
replicas from one feature set. Each set is generated by randomly picking N features from a set of the size N
with replacement. The strong classifier is now built by voting among all decission trees which are grown on the



substance concentration expected class correct classified correct and unique classified

NADH 30 µg/ml Bacteria 100 % 100 %
NADH 60 µg/ml Bacteria 100 % 100 %
NADH 125 µg/ml Bacteria 100 % 100 %

Tryptophan 30 µg/ml Bacteria 100 % 100 %
Tryptophan 60 µg/ml Bacteria 100 % 100 %
Tryptophan 125 µg/ml Bacteria 100 % 100 %

Yeast 250 µg/ml Bacteria 50 % 30 %
Yeast 500 µg/ml Bacteria 90 % 90 %
Yeast 1000 µg/ml Bacteria 70 % 70 %
DEET 0.5 µl/ml Chemical 70 % 60 %
DEET 1.0 µl/ml Chemical 90 % 80 %
DEET 2.5 µl/ml Chemical 90 % 90 %
RAID 1.0 µl/ml Chemical 100 % 90 %
RAID 5.0 µl/ml Chemical 100 % 100 %
Diesel 2.5 µl/ml Oil 100 % 100 %
Diesel 5.0 µl/ml Oil 100 % 100 %
Diesel 10.0 µl/ml Oil 100 % 100 %
Petrol pure Oil 100 % 100 %

Curcumin 2.1 µg/ml Plant 100 % 100 %
Curcumin 4.2 µg/ml Plant 100 % 100 %
Curcumin 8.3 µg/ml Plant 100 % 100 %
Dandelion 250 µg/ml Plant 90 % 70 %
Dandelion 500 µg/ml Plant 100 % 40 %

Saffran 30 µg/ml Plant 100 % 100 %
Saffran 60 µg/ml Plant 100 % 100 %
Saffran 125 µg/ml Plant 100 % 100 %

Mean (94 ± 12) % (89 ± 19) %

Table 1: Classification of some substances with different concentrations. Each sample was measured 10 times.
The percentage values show how often the sample was classified “correct” or “correct and unique”, respectively.

bootstraped datasets. The bagging method is implemented by the “Framework for Ensemble Learning” from
the “Matlab Statistics Toolbox”.18

In Tab. 1 classification results of some test samples are listed. Each sample was measured 10 times to get the
success rate (in percentage) of a correct classification. “correct classified” means a correct classification but the
result may be ambiguous, whereas “correct and unique classified” represents the rate of nonambiguous results.
The classification algorithm yields a classification confidence value for each measurement and class. Confidence
values can be in the interval [0, 1]. A sample is regarded as classified if the classification confidence value is larger
than the defined threshold value of 0.4. Most samples are classified correctly with an average rate of (94±12) %.
Yet, more improvements have to be done on the classification process to increase the overall success rate. For a
correct classification, confidence values have been found to be typically larger than 0.6.

5. CONCLUSION AND OUTLOOK

To be able to classify CB substances by using a laser based standoff technique a LIF system has been developed
which is optimized to operate under realistic outdoor conditions. A broad set of CB substances (soluted in
deionized water with different concentrations) are measured to build up a database for training the system’s
pattern recognition algorithm. For the excitation process the samples are repetitively illuminated by two different
eye-safe wavelengths at 280 nm and 355 nm. Time resolved measurements of the fluorescence spectra increase



the dimensionality of information for the substance discrimination. A pattern recognition software classifies the
material into four disjunct classes by applying binary decision trees on automatically selected important features
of the measurement data. First realistic evaluations show promising results and prove the qualification of the LIF
technique for the classification of (hazardous) CB substances. LIF can provide useful information for subsequent
identification techniques and counteractions.

As an outlook an extension of the substance portfolio is planned, which demands for a new training of the
pattern recognition algorithm. Furthermore with a larger database the granularity of the classes can be increased,
e.g. by splitting them up into different living organisms. Higher standoff distances are also aimed in the near
future.
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