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A Comparative Study of Bag-of-Words and
Bag-of-Topics Models of EO Image Patches
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Abstract—The large volume of detailed land cover features,
provided by high resolution Earth Observation (EO) images, has
attracted considerable interest in the discovery of these features
by learning systems. In this paper, we perform Latent Dirichlet
Allocation (LDA) on the Bag-of-Words (BoW) representation of
collections of EO image patches to discover their semantic level
features, the so-called topics. To assess the discovered topics,
the images are represented based on the occurrence of different
topics, called Bag-of-Topics (BoT). The value added by BoT to the
BoW model of image patches is then measured based on existing
human annotations of the data. In our experiments, we compare
the classification accuracy results of BoT and BoW representa-
tions of two different remote sensing image datasets, a multi-
spectral optical dataset and a Synthetic Aperture Radar (SAR)
dataset. Experimental results demonstrate that BoT can provide
a compact and semantically meaningful representation of data;
it either causes no significant reduction in the classification
accuracy or increases the accuracy by a sufficient number of
topics.

Index Terms—Bag-of-Words, Earth Observation, Latent
Dirichlet Allocation, SAR images.

I. INTRODUCTION

H IGH spatial resolution Earth Observation (EO) images
represent land cover in much detail. This allows a

better understanding of the contents of images by distin-
guishing more object categories (e.g. grass, buildings, roads).
Exploring the full amount of detailed information requires
the development of efficient learning systems which are able
to provide relevant results to the users’ understanding of the
data. Although users understand images by recognizing their
semantic level contents (objects or their parts), most of the
current learning systems are based on a primitive representa-
tion of images. Recently, Bag-of-Words (BoW), a simplifying
method used in natural language processing, has been shown
to provide promising compact representations of images [1]. In
BoW, primitive image features (e.g., color, texture, shape) are
extracted for every local region using various feature extraction
methods, such as rgbHist [2], Gabor [3], and Scale-Invariant
Feature Transform (SIFT) [4]. Then, the distribution of the
primitive features in the entire image collection is modeled
by a dictionary of visual words. The visual words are usually
generated by applying a clustering method (e.g., k-means) on a
sample set of the primitive feature descriptors. Assuming each
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cluster center as a visual word, the feature descriptors are then
assigned to their nearest cluster center. Finally, each image is
represented by a histogram of its visual words. BoW has been
successfully modified and applied to EO images, too ([5], [6],
[7]). Representing images using BoW models does not provide
good estimate of image semantics due to disregarding the
statistical relations between the visual words. However, it has
been shown in previous works ([8], [9], [10], [11]) that these
relations can result in the discovery of objects and their parts
in images. These works have used generative models such
as probabilistic Latent Semantic Analysis (pLSA) [12] and
Latent Dirichlet Allocation (LDA) [13] for the unsupervised
discovery of object parts, so-called topics. The concepts behind
the images are then represented by mixtures of the discovered
topics. The authors of [8] investigate pLSA and LDA for
object categorization and localization. They demonstrated the
possibility of recognizing and localizing object categories by
learning from unlabeled image collections. In [9], the authors
used the topics obtained by pLSA in combination with a near-
est neighbor classifier for scene classification. They showed
that the statistical model discovered by pLSA is appropriate
for the classification of datasets with multiple object categories
in each image. In [10], it has been shown that pLSA-based
image representation improves the retrieval performance on
large-scale datasets due to the compact descriptions of the
contents of images. Inspired by [14], the authors of [11]
verified that the topics discovered by LDA outperform the
ones obtained by pLSA in large-scale retrieval tasks owing
to the completely generative probabilistic model provided by
LDA. Various extensions of LDA have then been introduced
for scene classification and segmentation ([15], [16]).

The high resolution of EO images has shifted the interest to
patch level image analysis in recent years [17]. Conventionally,
image patches are described by primitive features and a
BoW model that represents the contents of the data at the
signal level. In this paper, we study the discrimination of
EO image patches using their semantic level representations,
which we name Bag-of-Topics (BoT), obtained from the BoW
image models. To this end, EO image patches are represented
using feature description methods such as Mean and Variance
(MV) [7] and Gabor descriptors. Then LDA is applied to the
BoW representation of the patches in order to discover the
existing topics in the dataset. Finally, the contents of each
image patch are represented as a mixture of the topics (BoT).

To evaluate the semantic level features described by the
BoT model, a set of experiments are run on two annotated
remote sensing image datasets, a multi-spectral optical patch
collection and a Synthetic Aperture Radar (SAR) patch col-
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(a) Agricultural field (b) Airplanes (c) Baseball diamond

(d) Agricultural field (e) Highway (f) Urban area

Fig. 1. BoW and BoT representations of samples of multi-spectral (first row) and SAR (second row) EO images. For each sample, the first image is the
original image. The second and the third images are BoW and BoT representations of the image, respectively. The various colors depict the visual words (in
BoW) or the topics (in BoT). Dictionaries of 200 visual words generated from MV features are used. The BoT models of the images are made for 20 topics.

lection. In these experiments, a classification method (e.g.,
SVM1) is applied to the BoT and BoW representations of
images. The accuracies and the run-times of the classifications
are then compared for the two models. Experimental results
demonstrate that BoT provides a compact representation of
the data; however, it either causes no significant reduction, or
in many cases, even increases the classification performance.
While a compact representation improves the scalability of the
learning systems by decreasing the computational effort, the
semantic features (topics) are more discriminative.

The rest of the paper is organized as follows: Section II
introduces the statistical topic models and LDA. Section III
describes the semantic level representation of images. Ex-
perimental results and the efficiency of the BoT model are
discussed in Section IV. Finally, Section V concludes the
paper.

II. LATENT DIRICHLET ALLOCATION

Latent Dirichlet Allocation (LDA) is a statistical genera-
tive model which has been developed to discover the topics
occurring in text collections [13]. A topic is found by the
occurrence of the words related to that topic, through all given
text documents. This idea has been adapted to image analysis
by assuming images as mixtures of visual patterns (topics)
recurring through the entire corpus [18].

LDA is a three level directed graphical model. It assumes
each image d as a combination of Nd visual words, d =
{w1, w2, ..., wNd

} and each topic zj as a distribution over
a fixed dictionary of V visual words. In order to generate
the n-th word (wn) of the image d, a topic zj is selected
from the distribution p(zj |θd) over a set of K topics, Z =
{z1, z2, ..., zK}, where θd is K-dimensional Dirichlet random
variable corresponding to the image d. Then wn is drawn from
the multinomial distribution over the visual words in topic zj ,
p(wn|zj , β), where β is a matrix containing the distributions
over the words for each topic. Thus, the word wn is generated
for the image d as follows:

p(wn|α, β) =

∫
p(θd|α)

(
K∑
j=1

p(zj |θd)p(wn|zj , β)

)
dθd,

(1)

1http://www.csie.ntu.edu.tw/ cjlin/libsvm

where the parameters α and β determine the prior for Dirich-
let distributions, and for a symmetric Dirichlet distribution,
p(θd|α) is computed as:

p(θd|α) =
Γ(Kα)

ΓK(α)

K∏
j=1

θα−1
dj , (2)

where Γ(.) denotes the Gamma function.
In a learning phase, LDA finds the posterior distribution,

i.e., the topic distribution of the images in the corpus. Due to
the intractability of computing the posterior distribution, LDA
uses approximation inference algorithms such as variational
Expectation Maximization (EM) [13] to approximate it.

III. SEMANTIC LEVEL FEATURE REPRESENTATION

In this section, we explain the representation of the semantic
concepts of images using mixtures of topics. To this end,
the primitive features of the images are extracted by feature
extraction techniques such as MV and Gabor; each image is
modeled as a BoW. In order to discover the existing topics,
LDA is applied to the BoW models of the images. Then
each image is represented by a simplex of the discovered
topics, p(z|θd, α), as a vector in Euclidean space, where each
element shows the occurrence of a particular topic in the
image. We name this image representation a BoT model.
Since the number of topics is usually much smaller relative
to the number of visual words, BoT provides a more compact
description of the images to be used in learning tasks such
as classification. While the compact representation of the
images helps to increase the scalability of the learning methods
and reduces the computational time, semantically meaningful
features lead to results being more relevant to the human
understanding of the data. In this article, we evaluate the use
of the BoT model in classifications of remote sensing images.

Figure 1 shows a comparison of BoW and BoT models
in representing the contents of multi-spectral and SAR image
patches. According to the samples, BoT can describe images
with a few but semantically understandable topics; however,
it is rather difficult to understand the semantics behind the
signal level contents represented by BoW. For example, in
Figure 1 (c), BoT describes the baseball diamond clearly
by meaningful topics such as grass and sand, while the
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Fig. 2. The UCMerced-LandUse dataset contains 2100 images grouped
into 21 land-use scenes: Agricultural, Airplane, Baseball Diamond, Beach,
Buildings, Chaparral, Dense Residential, Forest, Freeway, Golf Course, Har-
bor, Intersection, Medium Density Residential, Mobile-home Park, Overpass,
Parking Lots, River, Runway, Sparse Residential, Storage Tanks, Tennis Court.

semantics behind the visual words in the BoW model are
hard to understand. The second row in Figure 1 shows that
understanding the semantics behind the visual words is even
more difficult for SAR data. In Figure 1 (e), for example, the
BoW hardly represents any structure; however, a highway and
its neighboring areas can be recognized in the BoT.

IV. EXPERIMENTS AND DISCUSSION

In this section, we assess the semantic level descriptions of
the two selected types of EO images, namely multi-spectral
and SAR data. In order to analyze the images, we extract the
primitive features to be used in generating the BoW models
of the images. In the next step, LDA is applied to the BoWs
in order to discover the latent structure behind the images as
a set of topics (we use the LDA implementation of Blei2).
Each image is then represented by a mixture of topics (BoT).
Since the resulting topics are not unique, we run LDA three
times for each experiment and average over the final results
obtained by the three sets of topics. For evaluating the BoT
representation, we use an SVM for classification. In order to
generalize the task, we select randomly from every class 70
samples for training, 20 samples for parameter optimization,
and the remainder for testing. The results are cross-validated
by running 10 experiments and repeating each experiment 10
times. Finally, the accuracy and run-time are averaged over
the experiments.

A. Datasets

In our experiments, we assess BoT models of two EO
datasets. The first one is the UCMerced-LandUse dataset [6]
which is a collection of 2100 multi-spectral image patches
categorized into 21 classes of land-use scenes. Each class con-
tains 100 images of 256× 256 pixels from aerial cartography.
The second dataset is called 15 TerraSAR-X Image Classes
dataset [19]. It contains 3434 SAR image patches of 160×160
pixels manually grouped into 15 non-equal size classes. Each
class contains between 118 and 420 images. Figures 2 and 3
show some representative samples of these datasets.

B. Signal level image representation

For image analysis, their primitive features are extracted
locally using MV and Gabor feature extraction techniques.

2http://www.cs.princeton.edu/ blei/lda-c/

Fig. 3. Dataset of 3434 TerraSAR-X satellite images grouped into 15 classes.
Top to bottom, left to right, the first two classes are Agricultural Fields.
Then come Grass Fields, Water Surfaces, Forests, Mountains, Flooded Fields,
Highways, Industrial Areas, and the rest are different kinds of Urban Areas.

MV feature descriptors are obtained by computing the
mean (µ) and variance (v) of the pixel values in local neigh-
borhoods (non-overlapping windows of 3× 3 pixels) of every
image. Thus, the resulted feature vectors have two elements,
FMV = [µ v]. These descriptors have been shown to achieve
promising results in addition to their simple computation [17].

In a more complex scenario, Gabor descriptors are obtained
by filtering a given image using Gabor filters [3]. These
filters are linear band-pass filters generated by scaling and
rotating a mother wavelet filter whose impulse responses
are 2D modulated Gaussian functions. The Gabor feature
vectors are then built by computing means (µsr) and standard
deviations (σsr) of the response for S scales and R rotations,
FGabor = [µ11 σ11 µ12 σ12 ... µSR σSR]. These feature
vectors have been shown to achieve promising results in
texture analysis and EO tasks ([3], [19]). In our experiments,
the features are extracted from local windows of 32×32 pixels
with 50% overlap. The selection of S = 3 and R = 6 results
in feature vectors of 36 elements.

In the next step, each image is represented by a BoW
model of the primitive descriptors for various dictionary sizes
(50, 100, 200, 300). To generate the dictionaries, k-means
is applied to 10% of the feature vectors, selected randomly,
where the cluster centers are considered as visual words. Each
image is then modeled by a histogram of visual words obtained
by assigning the feature vectors to their nearest visual words.

C. Semantic level image representation

In this step, LDA is applied to the BoW model of the images
to discover the latent structure in each image collection. LDA
represents the image structure as a set of topics. The semantic
level of the topics is usually correlated to the number of
topics discovered by LDA. More precisely, a small number of
topics leads to general concepts (e.g., forest, urban area), while
a larger number of topics provides more detailed contents
(e.g., trees, buildings). Evaluating various numbers of topics
allows us to asses the effects of different semantic levels in
discriminating the image classes. Using the extracted topics,
images are represented by mixtures of topics (BoT).

D. Results and discussion

In order to assess the value added by BoT to the BoW
model, the performance of SVM in the classification of
both representations of the EO datasets is measured. In our
experiments, two primitive feature descriptors, namely MV
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and Gabor, are used for BoW generation. The horizontal lines
plotted in Figures 4 and 5 depict the resulting classification
accuracies and run-times, where the columns represent the
results for various dictionary sizes. Then LDA is applied to
each BoW model for different numbers of topics to build BoT
models which are then used for classification; the results are
also plotted in Figures 4 and 5.

Since the number of topics is usually smaller than the
number of visual words, using BoT allows a compact rep-
resentation of the data; it either causes no significant re-
duction in the performance or increases the classification
accuracy by a sufficient number of topics. The BoT model
can increase the discriminability of the descriptors, because
concepts represented by topics are usually more descriptive
than the contents described by visual words, as mentioned in
Section III. For example, in Figure 4 (a), for 50 topics and for
MV feature descriptors, BoT outperforms BoW; with a similar
size of the BoW and BoT feature vectors, topics provide
a more discriminable representation of the data. Moreover,
BoT speeds up the classification by compacting the data
representation. In Figure 4 (d), for example, the BoT (with 60
topics) built using the BoW (with 300 visual words) of MV
feature descriptors obtains a higher accuracy than the BoW
model and it is 15 times faster. According to Figure 5, for
SAR data, BoT performs similarly to BoW; however, it is
much faster and, therefore, more efficient than BoW.

Furthermore, comparing the two primitive feature descrip-
tors indicates that the discriminability of the topics depends
on the informativeness of the BoW model built upon primitive
feature descriptors. For example, in Figures 4 and 5, since the
discovered topics from MV are more discriminable than the
Gabor topics, the BoW model of MV features results in higher
classification accuracies than that of the Gabor descriptor.

Figure 6 shows how the dictionary size affects the visual
words and the topics generated from the two datasets. It shows
the classification accuracies and run-times versus dictionary
size for the BoW model (the red solid curve) and the BoT
models for various numbers of topics. As the results show,
the performances usually improve sharply for small dictionary
sizes, but they decrease for larger sizes. Furthermore, increas-
ing the dictionary size brings about a higher dimensionality
of the BoW descriptors which causes the run-time to increase
dramatically. Since a larger number of visual words helps LDA
to discover more descriptive topics; as a result, this leads to
more discriminable descriptors, increasing the dictionary size
usually speeds up the classification using BoT.

V. CONCLUSION

In this paper, LDA is applied to the BoW representation
of two EO image patch collections to discover their semantic
level features, so-called topics. Then, the patches are described
as a mixture of the topics (BoT model). The BoT approach
can be used in various learning scenarios such as image
classification and retrieval. In this paper, it is evaluated in
image classification by applying SVM to the BoT models of
image patches. The results are then compared to the accuracies
achieved by the BoW model. Experimental results demonstrate
that semantic level features can provide comparable results

to that of the BoW model; the description of data is much
more compact in the BoT model. Consequently, BoT not
only increases the scalability of learning systems, but also
discriminates various image classes to a higher degree. In this
paper, we show the effects of different number of topics in
BoT on the classification performance. However, the selection
of an optimized number of topics still deserves more detailed
investigations.
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(d) Dictionary size = 300
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(f) Dictionary size = 100
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(g) Dictionary size = 200
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(h) Dictionary size = 300

40 50 60 70 80
Number of topics

BoW−MV BoW−Gabor BoT−MV BoT−Gabor

Fig. 4. Accuracy and run-time of the classification using BoW and BoT models for various dictionary sizes and different numbers of topics. In these
experiments, SVM is applied to the UCMerced-LandUse dataset.
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(f) Dictionary size = 100
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(h) Dictionary size = 300
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Fig. 5. Accuracy and run-time of the classification using BoW and BoT models for various dictionary sizes and different numbers of topics. In these
experiments, SVM is applied to the 15 TerraSAR-X Image Classes dataset.
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(a) MV and multi-spectral
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(d) Gabor and SAR
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Fig. 6. Assessing the dictionary size in the discriminability of the topics by comparing the classification accuracies and run-times for the UCMerced-LandUse
and the 15 TerraSAR-X Image Classes datasets.


