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Abstract: Inertial navigation systems use dead-reckoning to estimate the pedestrian’s
position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the
step-and-heading approach. Unlike the strapdown algorithm, which consists of the double
integration of the three orthogonal accelerometer readings, the step-and-heading approach
lacks the vertical displacement estimation. We propose the first step-and-heading approach
based on unaided inertial data solving 3D positioning. We present a step detector for steps
up and down and a novel vertical displacement estimator. Our navigation system uses the
sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The
proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed
our step detector and compared it with the state-of-the-art, as well as our already proposed
step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world
scenario. We found that our algorithms outperform the literature step and heading algorithms
and solve 3D positioning using unaided inertial data. Additionally, we found that with the
pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs
and walking down stairs. This information complements the pedestrian location and is of
interest for applications, such as elderly care.
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1. Introduction

The market for positioning applications has been growing in recent years for both mass market and
professional users. So far, most positioning applications are based on Global Navigation Satellite
Systems (GNSSs), in particular the American global positioning system. However, due to signal
blockage and strong multipath, the availability of GNSSs is degraded in certain scenarios, such as urban
canyons, underground or indoors. The inertial navigation is an appropriate self-contained system to
complement the GNSS in these challenging scenarios.

The inertial sensors, i.e., accelerometer and gyroscope, are applied widely for pedestrian navigation
and are continuously investigated due to the emergence of micro-electromechanical sensors (MEMS).
Thanks to this technology, it is possible to embed size-reduced and low-cost inertial sensors
in smartphones.

Inertial navigation systems use pedestrian dead-reckoning (PDR) to sequentially estimate the
pedestrian’s position. There are two types of PDR, the strapdown algorithm and the step-and-heading
approach. The strapdown algorithm consists of the double integration of the accelerometer readings.
The accumulated error in the position due to the integration of current MEMS inertial sensor readings
is prohibitively high. Therefore, the strapdown algorithm is so far only feasible using strong corrections,
such as zero velocity updates (ZUPT), thus for foot-mounted sensors.

This article describes algorithms for an inertial pocket navigation system. The sensor is located in
the front pocket of the pedestrian’s trousers. For the pocket location, the use of the step-and-heading
approach is most appropriate. The step-and-heading approach estimates sequentially the pedestrian’s
position based on the previous position for each detected step, the step length and the heading:

Xk = Xk−1 + Sk · cos(ψk)

Yk = Yk−1 + Sk · sin(ψk)
(1)

where X and Y represent the position in the x- and y-axis, S stands for the step length and ψ is the
pedestrian’s heading.

The step-and-heading approach, as Equation (1) reveals, consists of the estimation of the heading
and the estimation of the step length. Even if only the heading is required, estimating the complete
orientation is of high interest. The orientation is defined as the attitude angles roll (φ) and pitch (θ) and
the heading angle yaw (ψ). The complete orientation is of interest, among other reasons, because the
attitude angles can be used for the step length estimation part, although the vast majority of the literature
algorithms use only inertial raw measurements to this end.

This article is focused on the step length estimation part. Every step should be detected prior to
estimating the step length. The step length is defined as the distance measured in the heading’s direction
between two consecutive hits on the floor of the same foot. A stride length is the distance measured in
the heading’s direction between both feet. Therefore, the step length is twice the stride length, since the
walk of a standard pedestrian is considered symmetric between both legs.

For the step-and-heading approach, there are different step detectors and step length estimators in the
literature that will be analyzed in this article. However, as Equation (1) shows, there is still an important
and unsolved aspect so far: the displacement in the vertical direction or the z-position.
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This article aims at presenting the, from our knowledge, first step-and-heading approach based on
unaided inertial data solving 3D positioning. Previous works in the area have introduced the pedestrian’s
vertical displacement by means of extra sensors, such as barometer, GNSS, WiFi access points, etc., or
extra information, like maps. The present work adds great value to the state-of-the-art because it uses
only inertial data.

In Section 2, the most relevant related work in this area is gathered. Section 3 offers an overview of the
pocket navigation system. Section 4 explains the detection of steps for horizontal surfaces and for steps
up and down stairs. Additionally, the identification of five basic physical activities, i.e., standing, sitting,
walking, walking up stairs and walking down stairs, based on the pitch angle is detailed. Section 5
extends to different walking speeds the step length estimator already presented by the authors and
suggests a calibration procedure for the proposed model. Section 6 details the vertical displacement
estimator and the experimental set up that has been carried out in order to deduce a model based on the
pitch angle. Section 7 presents the experimental work carried out to assess the step detector, step length
estimator and the vertical displacement estimator. Finally, the conclusions and outlook are drawn in
Sections 8 and 9, respectively.

2. Related Work

There is a large amount of work in the area of PDR. In [1], a classification of different types of PDR
and a comparative study between algorithms proposed in the state-of-the-art can be found.

Particularly for the step-and-heading approach, a well-known approach to identify steps is to detect
changes in the vertical displacement of the pelvis. This idea has been developed in [2] with the sensor
attached to the belt. For other locations where the sensor is not close to the center of mass of the
pedestrian, like the pocket, or completely decoupled from the pedestrian’s motion, such as hand held or
wrist worn, detecting changes in the vertical displacement of the pelvis does not offer optimal results.

Another step detector algorithm in the literature uses the acceleration signal. The simplest approach
is finding peaks in the variance of acceleration in the z-axis of the navigation frame [3]. The peaks
correspond to the step occurrences, because they are generated by the vertical impact when the foot hits
the floor. This approach requires pre- and post-processing of the acceleration signal and a threshold to
avoid spurious detections from small peaks. A similar approach identifies peaks in the magnitude of the
complete acceleration [4–7]. The detection of these peaks requires also the use of thresholds to avoid
spurious detections.

A common disadvantage of the approaches based on acceleration is that the pattern of the acceleration
signal is greatly affected by the pedestrian’s walking speed. Therefore, the determination of the
thresholds for reliable step detection is challenging.

In [8], a step detector based on the pitch signal of a sensor mounted on the waist is presented. The
Fourier analysis of the fundamental frequency of the pitch is proposed to detect the pedestrian’s steps.

In [9], we presented a step detector also based on the pitch angle. This detector is optimized for
a sensor placed in the pocket of the trousers or attached at any point of the leg and will be described
for completeness and used in this article. The two advantages of our detector with respect to the
state-of-the-art are that the detection is less complex, because it does not require a Fourier analysis
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of the pitch signal, and easier, because the pitch does not contain spurious peaks, like the acceleration
signal. The threshold is fixed for all walking speeds, and the false detection and undetected steps rates
are lower than the state-of-the-art detectors.

For the special case of the sensor held in the hand while the pedestrian’s arm is swinging, the pitch
angle for detecting steps offers excellent results. Additionally, the step detection can be directly done
with the raw turn rate signals.

In [10], a classification of the smartphone motion modes between symmetrical and asymmetrical is
proposed. For the symmetrical modes, such as texting and phoning, the more adequate step detector uses
the acceleration signal. For the asymmetrical modes, such as swinging and front and back pocket of the
trousers, the use of the pitch is recommended.

In [9], the maximum of the pitch signal is detected, and [10] uses the zero-crossing for the
identification of steps. In [11], the zero-crossing of the pitch signal is also used to detect steps for a
rigid ankle-mounted sensor.

There is still a common problem for all step detectors, which is the false positive rejection. This
happens, for example, if the pedestrian is tapping on the smartphone and not actually moving. The peaks
in the acceleration due to the tapping may be confused with the peaks produced when walking. In [10],
a method is proposed to determine whether a step has actually been taken or not.

Regarding the step length estimation, the main current approaches can be classified depending on the
location of the sensor, as specified in the comparative studies [1,12,13].

If the sensor is attached to the body near the center of mass, a classic approach is to model the human
body as an inverted pendulum. The major constraint of this biomechanical model is the assumption
of a kneeless biped. The model needs a previous calibration to determine the scaling parameter K.
Additionally, the length of the pedestrians leg, L, is included in the model:

S = K ·
√

2Lh− h2 (2)

where S represents the estimated step length and h the vertical displacement of the pelvis for each step.
This method has been applied in [14]. In [12], a more complex model based on two pendulums is
analyzed. This model does not require previous calibration.

Another approach to estimate the step length makes use of the empirical relationship of the
acceleration measured in the z-axis of the navigation frame and the step length [2,4]. This relationship
was proposed by Weinberg in [15].

S = K · 4
√
amax − amin (3)

where S represents the estimated step length, K is a scaling parameter and amax and amin are the
maximum and minimum values of the acceleration measured in the z-axis of the navigation frame for
each step.

Therefore, the Weinberg approach requires a previous calibration to determine the scaling
parameter K, and the estimated step length offers similar results compared to the model of Equation (2).
However, the Weinberg approach’s advantage is that it uses raw data and does not require recursively
estimating the parameter h, whose computation may contain errors.
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If there are no restrictions on the sensor placement [5,6,16,17], a widespread approach uses the
relationship between step length and step frequency. This method also requires previous calibration
to fit the scaling parameter. A more sophisticated model includes also the height of the pedestrian.

In [9], we presented a step length estimator based on the relationship between the pitch angle and the
step length, which will be further described for completeness and used in this article. Our estimator is
optimized for a sensor placed in the pocket of the trousers or attached at any point of the leg.

Regarding the vertical displacement estimation of the pedestrian for the step-and-heading approach,
the barometer or altimeter is the most used sensor [18] to aid inertial systems. The barometer measures
the atmospheric pressure. The altimeter is essentially the same instrument, but it matches the atmospheric
pressure to the corresponding altitude. Both sensors, however, suffer from inherent dynamic influential
factors, such as temperature and environmental pressure.

The satellite-based systems offer complete 3D positioning; thus, a GNSS-aided inertial
step-and-heading approach could be a viable option. However, as mentioned in the Introduction, the
signal blockage and strong multipath in indoor environments drastically reduces the availability of
satellite-based positioning systems.

Having maps could help determining the z-axis position of the pedestrian making use of the floor
number, which could be recognized if the building layout is different between floors. Additionally, 3D
positioning is also possible with WiFi or ultra wideband points if a database or map of their position in
the building is available. However, maps are not always available.

If the strapdown algorithm is used, the double integration of the z-axis acceleration yields the z-axis
position of the pedestrian [19]. Future accurate sensors will allow the strapdown algorithm to be applied
if the sensor is located on an arbitrary part of the pedestrian’s body. With the current MEMS technology,
the strapdown algorithm can only be applied if strong corrections, like ZUPT, are possible, and this, as
previously mentioned, is only valid for foot-mounted sensors.

Therefore, it can be concluded that the state-of-the-art step-and-heading approach is able to offer 2D
positioning. The z-axis position, or the pedestrian vertical displacement estimation, can only be offered
by aiding the inertial sensors with extra sensors, such as a barometer, GNSS, WiFi access points, among
others, or by having extra information, such as maps. This article presents the, from our knowledge, first
unaided inertial step and heading navigation system solving 3D positioning.

3. System Overview

The pocket navigation system is divided into two subsystems, hardware and software. The hardware
subsystem, the left box in Figure 1, consists of a magnetic and inertial measurement unit (MIMU). All
of the experiments and the data provided in this article have been recorded with the MIMU Xsens MTw.

The navigation system described in this article offers the advantage that the MIMU can be located
in the front pocket of the trousers. No additional fastening is required unless the trousers are loose
enough that the movement of the MIMU in the pocket is completely decoupled from the movement of
the pedestrian’s leg. For these cases, the sensor can be directly attached to the leg.

The software subsystem refers to the source code programmed in a laptop/tablet, which is represented
in Figure 1 with the outer right box. It has two main parts, the orientation estimation algorithm
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and the position estimation algorithm. The inputs of the software subsystem are measurements
of accelerometers, gyroscopes and magnetometers at a rate of 100 Hz, and the output is the
pedestrian’s position.

acc, gyr,

mag

,

Step

detector

Step

length
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Orientation Estimator

Vertical

displ.

Position Estimator

MIMU

Figure 1. Overview of the structure of the inertial pocket navigation system.

The orientation estimator is the first algorithm of the software subsystem. It consists of an
unscented Kalman filter (UKF), whose states are the Euler angles roll, pitch and yaw and the biases
of the gyroscope. The UKF prediction stage integrates the turn rate measurements and applies an
auto-regressive model for the biases. The UKF update stage makes use of the accelerometer and
magnetometer measurements to correct the orientation estimation. In [20], a detailed explanation of
the orientation estimation is given.

The estimations of the pitch and yaw angles are transferred at a rate of 100 Hz to the position estimator,
as represented in Figure 1. The position estimator consists of three algorithms: the step detector, the step
length estimator and the vertical displacement estimator.

Unlike the orientation estimator, which follows a probabilistic approach using a UKF, the position
estimator is deterministic. Thus, the uncertainty of the position x, y and z is not taken into account.
In fact, the position uncertainty always increases with time due to the lack of additional information to
correct the position estimation.

The pocket navigation system uses the pitch angle to detect steps in horizontal surfaces, as well
as steps up and down in stairs. Additionally, five basic physical activities can also be identified with
the pitch angle, and this angle is used to estimate the step length and the vertical displacement of the
pedestrian. In the following sections, the three main algorithms of the position estimator, i.e., step
detector, step length estimator and vertical displacement estimator, will be detailed.

4. Step Detector

This section details the proposed step detector based on the pitch angle. In [9], the authors presented
this step detector for horizontal surfaces, which will be shortly presented for completeness. Then, the
proposed step detector is broadened to stairs adding a great value to the state-of-the-art, because stairs
are a challenging scenario where the literature step detectors have trouble detecting steps up and down.
Additionally, the identification of five basic physical activities based on the pitch angle will be proposed.
The physical activity complements the location and is of interest for applications, such as elderly care.
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4.1. Horizontal Surfaces

If the inertial sensor is introduced in the pocket of the trousers, the estimated pitch angle describes
the opening angle of the pedestrian’s leg. Knowing how the leg moves is valuable information.

Figure 2b shows the estimation of the pitch angle during a walk for seven steps. The maximum
elongation of the leg, when the foot is still in the air, is indicated as θHmax, and the second positive peak
occurs as a consequence of the foot hitting the floor. The lowest negative angle is indicated as θHmin.
Figure 2a shows that θHmax is much larger than θHmin. The reason for this difference is that the pedestrian
bends the knee of the rear leg considerably when walking.

The vertical dashed line represents a pitch angle equal to zero. Therefore, if the pedestrian is standing,
the legs are closed and the pitch angle is zero.
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Figure 2. Pitch angle representation in schema and estimated signal. (a) Representation of
the legs during a step. A step is completed every time the leg which has the sensor, in this
case the blue one, hits the floor; (b) The blue line represents the pitch angle estimation during
a walk. In this figure, seven steps are represented.

The amplitude of the opening angle of the leg or pitch amplitude is defined as:

∆θH = θHmax − θHmin. (4)

Our step detector consists of the identification of the maximum of the pitch angle, because each
maximum indicated as θHmax corresponds to a step. As Figure 2 shows, the pitch angle is ideal for
detecting steps, because its cyclic nature during the walk makes the maximum or the minimum occur
clearly only once per step. No varying thresholds with the pedestrian speed or post-processing of the
pitch signal are needed.

4.2. Stairs

This section aims at explaining the extension of the detection of steps in horizontal surfaces to steps
up and down in stairs. The detection of steps in stairs will be explained through the study of the position
and movement of the legs when walking up and down stairs.
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Figure 3a represents the movement of legs while walking up stairs and Figure 3b shows seven steps,
the first four occurred going up stairs and the following three walking on the landing zone of the staircase.
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Figure 3. (a) represents the legs position on stairs; (b) shows eight steps, the first two steps
the pedestrian walks on the landing zone of the staircase and the last five steps the pedestrian
walks up stairs.

It is noticeable that θUmax is almost doubled compared to θHmax. This is caused by the pedestrian
raising his/her leg in order to reach the following step up of the staircase. In addition, |θUmin| is slightly
smaller than θHmin. It is convenient to use the absolute value because, depending on the height of the step
of the staircase, way of walking of every pedestrian, his/her tiredness, hurry, etc. θUmin oscillates around
0 degrees, i.e., it can be slightly positive or slightly negative.

Additionally, it is observable that the pitch amplitude by walking up stairs ∆θU, which is computed
as in Equation (4), is notably larger than ∆θH and the double maximum peak disappears appearing in
contrast a double minimum peak.

Figure 4a represents the movement of legs while walking down stairs and Figure 4b shows seven
steps, the first four occurred going down stairs and the following three walking on the landing zone of
the staircase.

It is noticeable that θDmin has a positive value in contrast to θHmin. This is caused by the pedestrian
moving his/her leg in order to reach the following step down of the staircase. In addition, θDmax is slightly
larger than θHmax.

Additionally it is observable that the pitch amplitude by walking down stairs ∆θD, which is computed
as in Equation (4), is notably smaller than ∆θH and the double maximum peak disappears appearing in
contrast a double minimum peak.

Our step detector, as previously explained, consists of the identification of the maximum of the pitch
angle because each maximum indicated as θUmax or θDmax corresponds to a step. As shown, the pitch
angle is adequate as well for detecting steps up and down in stairs.
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Figure 4. (a) represents the legs position on stairs; (b) shows seven steps, the first four steps
the pedestrian walks down stairs and the last three steps the pedestrian walks on the landing
zone of the staircase.

4.3. Physical Activities Identification

This section presents the potential of the pitch angle to distinguish between different physical
activities, particularly standing, walking, walking up stairs, walking down stairs and sitting.

Figure 5 shows the estimated pitch angle during a walk. In this walk, there are four clearly
differentiated physical activities: standing is indicated by the cyan line; walking is indicated by the
red line; walking up stairs is indicated by the green line; and lastly, walking down stairs is indicated by
the blue line.

In this walk, the pedestrian started standing, and then, she walked through the corridor to the stairs.
She walked up until the second floor of the building, and she walked until the end of the corridor and
came back to the staircase. She descended again to the ground floor and walked to the starting point.
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Figure 5. The blue line represents the estimation over time of the pitch angle, measured in
degrees, during a multi-storey walk of a pedestrian with the sensor in the pocket.
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This figure shows how intuitive it is to detect activities by simply tracking changes in the pitch
estimation. The algorithm for distinguishing walking on a horizontal surface, walking up stairs and
walking down stairs proposed in this work is based on three parameters of the pitch angle estimation:
θmin, θmax and ∆θ.

The parameters θHmin, θHmax and ∆θH are learned during the walk under the assumption that the
pedestrian starts walking on a horizontal surface. Therefore, these values are personalized for an optimal
performance and continuously adapted to the pedestrian’s mood, hurriedness, tiredness, etc.

In order to determine if the pedestrian is walking up stairs, down stairs or horizontally, the parameters
θmin, θmax and ∆θ are stepwise extracted and compared to the reference parameters θHmin, θHmax and
∆θH, which are the result of averaging the last horizontal steps:

if ∆θ » ∆θH && θmax » θHmax then
θUmax = θmax; θUmin = θmin; ∆θU = ∆θ;

end
else if ∆θ « ∆θH && θmin » θHmin then

θDmax = θmax; θDmin = θmin; ∆θD = ∆θ;
end
else

θHmax = θmax; θHmin = θmin; ∆θH = ∆θ;
end

The thresholds needed in order to determine if the pedestrian is walking up stairs or down stairs can
be universal or personalized. The more accurate option is to calibrate the system to correctly select them
adapted to each pedestrian.

Regarding the standing and sitting activities, their main characteristic is the value of the pitch, which
is almost constant. The pitch value lies around zero degrees when the pedestrian is standing and
around 45–90 degrees if the pedestrian is sitting.

Figure 6 shows the pitch estimation of a pedestrian doing the following activities: standing, walking,
sitting, walking and standing. Standing is indicated by the cyan line; walking is indicated by the red line
and sitting is indicated by the green line.
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Figure 6. Pitch angle estimation of a walk, including standing, walking and sitting.
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The activities standing and sitting are only checked when no steps are detected. Then, the distinction
between them only depends on the value of the pitch angle.

The identification of the physical activity distinguishes if the step taken was on a horizontal surface,
was a step up or a step down. This distinction is of high interest for aiding the navigation, being the
basis of the vertical displacement estimator that will be explained in Section 6. Furthermore, some
applications, such as monitoring patients in hospitals or elderly care, usually need the fusion of the
navigation and identification of physical activities.

5. Step Length Estimator

In [9], the step length estimator based on the pitch angle and the measurement campaign with
18 volunteers participating was already presented. Therefore, only the most important characteristics will
be explained in this section for completeness. Additionally, an overview of the step length estimator if the
pedestrian is running will be presented, and a calibration method for adapting the step length estimator
model to each pedestrian will be proposed. All data presented in this section have been extracted from
the aforementioned measurement campaign.

It was already assessed that a relationship between the pitch amplitude, ∆θ, and the step length, S,
exists. Figure 7 shows the pitch amplitude in degrees against the step length in meters for one volunteer.
In Figure 7a the pedestrian walks from 3 km/h until 6 km/h and Figure 7b shows the data of the pedestrian
running from 8 km/h until 12 km/h.

Each cloud of points represents a different speed, and each point represents a step. This figure shows
the clear trend of the data obtained. It indicates that, the larger the pitch angle is, the larger the step
length will be. The figure also shows that the higher the pedestrian speed is, the larger the step length is
and, consequently, the larger the pitch angle will be. This can be noticed because the steps recorded at
each speed are sorted increasingly.
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Figure 7. The points represent the steps from one volunteer. Each cloud of points represents
a different speed. (a) when he was walking; (b) when he was running.

The shape of the pitch angle estimation is the same for walking and running as long as the surface is
horizontal for both activities (see Figure 2b). Therefore, it was expected that, by increasing the speed,
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both the step length and pitch amplitude also increase. However, the steps of Figure 7a,b together do not
lie in a single line, as expected. This is due to the running cycle, which has a stage when none of the feet
touch the floor. The different gait cycle modifies the opening angle of the legs, thus the pitch amplitude.

In any case, Figure 7a,b show the same trend; therefore, the step length for running and walking can
be modeled analogously. However, the running activity is out of the scope of this article; thus, from here
on, it will not be taken into account.

The vast set of steps recorded at different walking speeds by 18 volunteers of different ages, genders,
heights and weights yields the first linear step length model based on the pitch angle:

S = a ·∆θH + b (5)

where S is the estimated step length measured in meters taking into account the pitch amplitude on
horizontal surfaces, ∆θH, in degrees. The constants a and b are the parameters fitting the regression line
of each pedestrian.

5.1. Model Calibration

Fitting the data of the experiments with a regression line, as Equation (5) shows, is the simplest model
assumption. Having the correct parameters a and b for each pedestrian is of crucial importance, but no
calibration method has been proposed so far.

A closer investigation of the regression lines of different volunteers shows that the slope a is very
similar among them. Figure 8 shows the regression lines in different colors of five volunteers who
repeated the experiment without the running machine, walking directly on a horizontal surface.
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Figure 8. Regression lines of five volunteers walking at different speeds between 2.5 km/h
and 6.5 km/h.

The universal parameters are computed taking into account the complete set of steps of all volunteers.
In Figure 8, the universal regression line overlaps the yellow line. This figure shows an overview of
the error in the estimated step length for each volunteer if the universal parameters are used. The error
has a range from almost 0 cm per step for the volunteers whose regression line is represented in yellow
and blue to almost 14 cm per step for the volunteers whose regression lines are represented in green
and violet.
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From the experiments, it could not be concluded which pedestrian characteristics influence a and
b. Biomechanical studies show that at any given walking speed, it is possible to select different
combinations of step frequency and step length. However, individuals tend to constantly choose a
specific step length for each walking speed [21]. Optimizing energy costs primarily determines the
selection of a certain gait pattern.

A possible explanation of the similar slopes a of the regression lines is that all volunteers choose
his/her step length at each speed basically regulated by the minimization of energy costs. This pattern is
the same for all pedestrians.

There are, however, other characteristics, such as height, length of the legs, weight, gender, etc., that
cause differences between pedestrians. This is a possible explanation of the different offsets b.

Based on our results, we suggest a calibration method using the universal parameter a. Therefore,
the pedestrian only has to walk a known distance at his/her preferred comfortable speed to find the
personalized parameter b. This is a simple and quick calibration, which does not require additional
infrastructure or additional user information, such as height or length of the leg.

6. Vertical Displacement Estimator

This section aims at explaining the novel vertical displacement estimator algorithm, which is based
on the pitch angle. First, the experiments carried out in order to find a model will be detailed, and then,
the model derivation will be explained.

In order to estimate the vertical displacement with the information of the pitch angle, a set of
experiments has been carried out with the objective of finding a relationship between the pitch angle
and the height of the steps of the staircase.

6.1. Experimental Setup

The experiment consists of recording the pitch information of steps taken walking up and down stairs.
Almost 400 steps up and down have been recorded by one volunteer in order to study the relationship
between pitch amplitude and the height of the steps of a staircase.

A wooden structure of adjustable steps, which varies between a height of 15 and 25 cm, has been built
to carry out this experiment. The height of the steps has been chosen based on the document “Visual
Interpretation of the International Residential Code” [22]. It specifies that the maximum height for the
step of the staircase should be 19.7 cm, and for a spiral staircase, a maximum height of 24.1 cm is
recommended. The minimum depth of a step of the staircase is 25.4 cm.

Figure 9 shows that a relationship between the pitch amplitude and the height of the steps of the
staircase exists, indicating that the higher the step of the staircase is, the larger the pitch amplitude will
be. The same behaviour is observed when the pedestrian walks up and down stairs.
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Figure 9. In this figure the points represent the steps recorded when the volunteer was
walking up and down stairs on the adjustable wooden structure built for this experiment.
(a) Steps recorded walking up stairs; (b) Steps recorded walking down stairs.

The pitch angle has been measured using a precise fiber optic gyroscope (FOG), the DSP-1750 FOG
from KVH. It has been mounted externally in the pocket with the help of a solid wood base, because
the size of the FOG makes it impossible to introduce it in the pocket. The Allan variance analysis of
a 10 h’s turn rate recording reveals that the white noise of the fiber optic gyroscopes is two orders of
magnitude smaller than the MTw gyroscopes’ white noise. Additionally, the biases of the fiber optic
gyroscopes can be considered stable within the length of the aforementioned measurements. Therefore,
the pitch amplitude measured for this experiment will be considered the ground truth.

Figure 9 shows that a relationship between the pitch amplitude and the height of the steps of the
staircase exists, indicating that the higher the step of the staircase is, the larger the pitch amplitude will
be. The same behavior is observed when the pedestrian walks up and down stairs.

For assessing the results of the experiment of the wooden adjustable structure, the same has been done
using the regular stairs of the DLR building office, whose height of the steps of the staircase is 17 cm.

Around 180 steps up and down have been recorded by the same volunteer walking on the five-floor
staircase. The value of the estimated pitch amplitude for this particular height of steps is 53.07 ◦ and
26.62 ◦ for up and down stairs, respectively. These values are used to assess the experiments carried out
with the wooden structure, whose results are shown in Figure 9.

6.2. Model Derivation

The simplest assumption for the behavior shown in Figure 9 is a linear model:

VU = e ·∆θU + g (6)

VD = h ·∆θD + j (7)

where VU and VD are the estimated vertical displacement measured in centimeters for up and down
stairs, respectively. ∆θU and ∆θD are the pitch amplitude measured in degrees for steps up and down,
respectively, and e, g, h and j are parameters, either personalized for each pedestrian or universal.
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It is important to note that the pitch amplitude walking up and down stairs is due to the vertical and
horizontal displacement of the pedestrian. If the stairs depth is larger than the standard, for example in
parks outdoors, the model parameters should be re-calibrated, even for the same pedestrian.

The presented model is valid to estimate the height of the steps up and down of the vast majority of
the staircases that can be found in every building, because it assumes a standard depth and focuses on
the height of the step. Thus, the horizontal displacement is assumed. This is a reasonable assumption,
because, as shown in [22], the staircases of any building are standardized and adapted to the length of
the human foot. Additionally, the most important characteristic of the stairs is their height, which allows
estimating the height between floors.

The algorithm gathers data when the pedestrian walks up and down stairs. There are small differences
in the pitch amplitude, as shown in Figure 9. However, the vertical displacement is the same, because
the height of the steps is the same for the whole staircase. The height of the steps of the staircase is
estimated as the average of the pitch amplitude of all steps up and down using the models presented in
Equations (6) and (7), respectively.

Even if the model of Equations (6) and (7) will be tested with different volunteers, an extension
of the experiment described in Section 6.1 to more volunteers of different ages, genders and heights
is desirable.

7. Experimental Results

This section gathers the most representative experiments that we have carried out in order to assess
the algorithms presented before. For these experiments, the sensor was always introduced directly in the
pocket without additional fastening.

7.1. Step Detector Assessment

To assess the performance of the proposed step detector, four different scenarios have been chosen.
The scenario Horizontal 1 describes a rectangle of 100 × 80 m walking at a constant comfortable speed
of 3.5 km/h. For the scenario Horizontal 2, the pedestrian walks the long rectangle side at a slow speed
and the short side at a speed of 4.8 km/h. The goal of scenarios Upstairs and Downstairs is to test the
detection of steps up and down in stairs, walking at a constant and comfortable speed. After 40 m of a
straight line, the pedestrian enters the staircase and walks four floors up and then down. Finally, after
leaving the staircase zone, the volunteer walks back to the starting point. The experiment log files and
more information of these walks is available online [23].

The methods under study are the norm of the complete acceleration and its low-pass filtered version.
The complete acceleration instead of the vertical acceleration is used to be robust to different sensor
orientations. Regarding the pitch signal, both methods are studied, the zero-crossing detection (Z-C) and
the method proposed in this article. The detection thresholds are adapted to the comfortable volunteer
walking speed. Therefore, these parameters are constant during the experiments, thus not adapted to
different scenarios. The results are shown in Table 1, where both the undetected steps (UD) and the false
detections (FD) are detailed.
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The comparison between the aforementioned algorithms is limited to the detection of steps, because
it is not possible with the literature step detectors under study to distinguish between horizontal steps
and steps up or down.

Table 1. Performance comparison of different step detectors.

Horizontal 1 Horizontal 2 Upstairs Downstairs
US [%] FD [%] US [%] FD [%] US [%] FD [%] US [%] FD [%]

‖Acc‖ 0.4 5 63 12 33 2.3 33 12
LPF ‖Acc‖ 0 0 65 3.6 36 0 23 0
Pitch (Z-C) 0 0 0 0 0 0 38 1

Pitch 0 0 0 0 0 0 0 0

The experiments summarized in this table show that it is possible to successfully detect steps at a
constant and comfortable speed, as shown in scenario Horizontal 1, with the four different algorithms
under study.

We have applied a low-pass filter of 15 samples to the norm of the acceleration signal to detect steps
with the second proposed method. The filter smoothing makes the signal contain less peaks that could
yield false step detections. Therefore, it is recommended to filter the norm of the acceleration to avoid
false detections. The smoothing helps in all scenarios.

Figure 10. Pitch angle estimation of the scenario Downstairs. The green dots represent the
truth of the taken steps. The upper colored line maps different zones of the walk: red for the
landing zone of the staircase, cyan for the stairs and magenta for the corridor.

Figure 10 shows the pitch angle estimation for the scenario Downstairs. The green dots represent
the truth of the taken steps. The pedestrian starts walking on the landing zone of the stairs of the upper
floor. Then, the pedestrian takes the stairs to reach the ground floor. In the figure, the landing zones
of the stairs are highlighted with a red line, and the stairs are highlighted with a cyan line. Finally, the
pedestrian walks approximately 40 m in a straight line through the corridor. This is marked in the figure
with a magenta line.
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The zero-crossing-based pitch detector performs similarly to our algorithm; however, it is not able to
detect all steps on the stairs, because zero-crossing does not occur, as shown in Figure 10 for the scenario
Downstairs. The zero-crossing for walking up stairs, however, depends on the pedestrian, his/her mood,
tiredness, etc. Therefore, the minimum of the pitch signal by walking up stairs can be slightly positive or
slightly negative, as mentioned in Section 4.2. For the scenario Upstairs, the minimum pitch particularly
for the volunteer has a slightly negative value; thus, the zero-crossing detects every step up.

As Figure 10 shows, the pedestrian walking speed is lower in the landing zones than in the corridor;
therefore, the pitch amplitude is smaller, and the steps take more time. The vast majority of the steps
taken in the landing zones are not detectable with the acceleration-based algorithms. The same problem
appears in the scenario Horizontal 2, where the pedestrian was asked to walk the long rectangle side at a
slow speed and the short side at a higher speed.

Pedestrians naturally adapt their walking speed and step length to the scenario or to their
circumstances. Therefore, the changes of speed during the same walk represent a realistic scenario.
In order to avoid losing steps in such situations, a possible solution consists of an adaptable threshold.
Such an adaptable threshold, however, is not necessary with the detection based on the pitch angle. This
is one of the greatest advantages of the pitch-based step detection.

Our step detector based on the pitch angle successfully detects every step of the presented scenarios
and does not incur the false detections that are likely to happen, for example, when the pedestrian opens
or closes doors, as Figure 10 shows for Second 185.

7.2. Step Length Estimator Assessment

In [9], an assessment of the proposed step length estimator based on the pitch angle was shown.
Additionally, in this article, a comparison between our step length estimator and the well-known step
length estimator based on the step frequency is analyzed.

To better and fairly compare the frequency step length model, its regression line has been extracted
from the same data of the experiments with the running machine described in [9]. Figure 11 shows the
steps from the same pedestrian shown in Figure 7a represented against the step frequency instead of the
pitch amplitude. The shape of the clouds of points of each walking speed results from the restriction of
the constant speed imposed by the running machine.

For this model, the following equation will be used:

S = c · F + d (8)

where S is the estimated step length measured in meters taking into account the step
frequency (F ) measured in Hertz. In order to fairly compare these methods, the constants c and d

will be personalized parameters.
We have chosen to use the horizontal scenario described in Section 7.1, because the step length

estimator based on the frequency does not cope with the vertical displacement of the pedestrian.
The scenarios Horizontals 1 and 2 have been evaluated in this section. The scenario Horizontal
3 simulates a walk in a museum where the pedestrian walks slowly, at approximately 2 km/h. The
step detector for this evaluation is the one proposed in this article, and it is used with both step
length estimators.



Sensors 2015, 15 9173

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Frequency [Hz]

S
te

p
 L

e
n

g
th

 [
m

]

3 km/h

4 km/h

5 km/h

6 km/h

Figure 11. The points represent the steps from data gathered for one volunteer and each
cloud of points represents a different speed.

Table 2 presents the errors of each method for the proposed scenarios. The parameters for both
step length estimators are personalized for the volunteer and constant for all scenarios, thus not
adapted to different waking speeds. The experiment log files and more information of these walks is
available online [23].

Table 2. Performance comparison of different step length estimators.

Horizontal 1 [%] Horizontal 2 [%] Horizontal 3 [%]
Frequency 0.19 6.25 9.63

Pitch 0.18 3.24 1.15

The results in Table 2 for the scenario Horizontal 1 show that both methods perform similarly at a
constant comfortable speed, 3.5 km/h. Such an accurate estimation of the length of the trajectory, with
errors below 1%, is possible because the sensor is attached to the pedestrian’s body. This is a clear
advantage of the pocket location: the movements of the sensor are fully coupled with the movements of
the pedestrian. This is, for example, not the case when the sensor is held in the hand.

The scenario Horizontal 2 shows less accurate results, which are caused by the change of walking
speed. The speed changes are clearly the worst case for any step length estimator, because these
algorithms are usually adapted to work optimally at a comfortable and quasi-constant walking speed.

The scenario Horizontal 3 represents an extreme situation for both step length estimators under study,
because the walking speed is 2 km/h and the walk includes some stops. This speed is far from the optimal
working zone of the regression line for both step length estimator models. The results show however
higher error for the step length estimator based on the step frequency. A possible explanation is that
the frequency was computed as the inverse of the time between steps. A more sophisticated approach
uses the Fourier transform to find out the pedestrian walking frequency. However, this method requires
periodicity, which is broken by the changes of speed by turning or stopping.
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The above analyzed experiments show the benefits of using the proposed step length estimator when
the sensor is in the pocket. The optimal working zone of the regression line of the pitch-based model is
larger than the one based on the step frequency. Thus, the proposed model can cope with a wider range
of walking speeds.

Additionally, it is interesting to study the results using a more complex model than a regression line.
The representation of the step length against the pitch amplitude for a set of steps recorded at speeds,
from 1 km/h to 10 km/h for one volunteer, is available online [23]. Such a wide range of speeds requires
two different models, as mentioned in Section 5: walking and running.

7.3. Vertical Displacement Estimator Assessment

In order to assess the vertical displacement estimator, we have tested the inertial pocket navigation
system with a multi-story walk in a real-world scenario.

Figure 12 shows the 3D view of the estimated odometry of a 10 min’s walk at the Deutsches Museum,
which is a well-attended and well-known museum in Munich, Germany. The video, the experiment log
files and more information is available online [23].

This odometry was estimated following the diagram of Figure 1, but using only a three-axis
accelerometer and a three-axis gyroscope. We did not use the magnetometer in order to have unaided
inertial positioning. No aid from other sensors, such as a barometer, WiFi access points, GNSSs,
maps, etc., was used.

The step detector used is the one proposed in Section 4, and the step length estimator used is the one
proposed in Section 5 with the universal parameter a and the personalized parameter b for the volunteer.
The drift in the heading has been compensated in order to evaluate only the influence in the odometry of
the errors in the pitch angle that may cause errors in the step detector, step length estimator and vertical
displacement estimator and the errors of the proposed algorithms themselves.

Based on the definition of a step (see Figure 2a), a step is counted between consecutive hits on the
floor of the same foot. Therefore, the depth of each step of the stairs shown in Figure 12 has a length of
0.52 m, twice the standard depth of 0.26 m.

0 20 40 60 80 100 120

-20
0

20

0

5

10

Distance [m]
Distance [m]

H
e

ig
h

t 
[m

]

Figure 12. 3D view of the odometry estimation of a 10-min’s walk at the Deutsches
Museum, Munich (Germany).



Sensors 2015, 15 9175

The main part of the trajectory is on the ground floor and is depicted in blue, dark blue for the initial
part starting at (0,0,0) and light blue for the final part for walking back to the starting point. This area of
the museum is filled with real ships and aircraft. The stairs are depicted in green.

First, the pedestrian visited the mezzanine, which is a narrow area depicted in magenta. The pedestrian
went around it and took the stairs again to go up to the first floor, which is depicted in red. She walked
around for a few minutes, repeating part of the trajectory, and finally, she again took the stairs to go back
to the ground floor again. The way back to the main entrance, i.e., the selected starting point of the walk,
is depicted in light blue. On the way back, she did not choose to repeat the previous trajectory, but she
surrounded two big ships, which are located between 10 and 50 m in the main exhibition hall.

Figure 13 shows the vertical displacement estimation of the pedestrian over time for the
aforementioned walk. For clarity, the color code is the same as Figure 12.
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Figure 13. Height estimation of the walk shown in Figure 12 recorded at the Deutsches
Museum, Munich (Germany).

This figure assesses that the vast majority of steps up and down are detected. However, the fact that
the steps of the staircase are detected in pairs causes that, if a single step up or down is taken with the
leg that does not have the sensor in the pocket, it may not be detected. This happens with the platform
situated in the ground floor. The detector only detected the step down for Second 150, but not the step
up. This platform was, however, correctly detected on the way back, as the light blue line represents.
One extra step up is falsely detected in the first part of the staircase due to the same reason. The correct
step up and down detection depends on the number of steps of the staircase (odd or even) and on the foot
the pedestrian starts walking on for the stairs.

The estimation of the height of the steps of the staircase based on the amplitude of the pitch angle for
up and down stairs is summarized in Table 3.

Table 3. Deutsches museum step height estimation.

Estimated Height [cm] Real Height [cm] Error [%]

VU 33.1
33.2

0.3
VD 32.9 0.9
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The error of VU and VD corresponding to the vertical displacement up stairs and down stairs,
respectively, is below 1%. This implies an error of one meter every 100 m of vertical displacement
of the pedestrian. We consider that the error is not acceptable if a confusion between consecutive floors
is possible. Considering a separation of floors of three meters, an error of 1% in the vertical displacement
implies that the pedestrian has to walk 300 m up or down in order to mistake one floor, and this is highly
unlikely to happen.

Therefore, we conclude that it is possible and recommended to use the pitch angle, not only for
detecting steps and estimating the step length, but also for estimating the height of the steps of the
staircase and, consequently, the height between floors.

8. Conclusions

This article aims at extending the step-and-heading approach to 3D positioning. Algorithms for
a pocket-mounted sensor are proposed, which do not require the use of additional sensors, such as
barometers, or additional information, such as maps. This novel idea exploits the use of the pitch angle,
information usually ignored in most of the navigation systems.

The proposed step detector offers several characteristics that outperform the state-of-the-art step
detectors. First, the undetected and the falsely detected step statistics are better than the standard
step detector based on the acceleration. Additionally, our detector does not require speed-dependent
thresholds and detects also steps up and down in stairs. We also demonstrated that with the pitch angle,
it is possible to identify five basic physical activities.

We compared our step length estimator based on the pitch angle in different scenarios with the
well-known state-of-the-art step length estimator based on the step frequency. The results of the
experiments show that our estimator is more robust for slow and high walking speeds and stops during
the walk.

We presented a novel model that estimates the vertical displacement of the pedestrian based on the
pitch angle. The results of our experiments show that, with the information of steps up and down in stairs,
it is possible to use the proposed model to estimate the height of the stairs, thus solving 3D positioning
with unaided inertial data.

9. Outlook

The presented algorithms based on the pitch angle are accurate and robust for real-world scenarios.
However, this technique requires an accurate orientation estimation, because the position estimation is
directly affected by the pitch and yaw angles. It is necessary to count with a refined orientation estimation
algorithm in order to avoid errors.

The versatility of the pitch angle makes it possible to solve 3D positioning for the unaided inertial
step-and-heading approach. Even if the stairs are the most common way to vertically move among
different floors in buildings, lifts and mechanical stairs are not covered yet.
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