Entwicklung und Bewertung eines Verfahrenskonzeptes zur Herstellung flüssiger Kohlenwasserstoffe unter Nutzung von CO₂

Daniel H. König, Nadine Baucks, Gerard J. Kraaij, Antje Wörner

Wissen für Morgen

ProcessNet-Jahrestagung Aachen, 01. Oktober 2014

Inhalt

- Motivation
- Verfahrenskonzept "Power-to-Liquid"
- Prozessmodel
 - Sensitivitätsanalysen
 - Wärmeintegration
- Zusammenfassung

Motivation

Fluktuierend erzeugte erneuerbare Energien

- Saisonale Speicherung
- Geringe Speicherverluste

Flug-, Schiffs-, Schwerlastverkehr

- Längerfristig auf Kraftstoffe angewiesen
- Hohe Energiedichte
- Nutzung bereits vorhandener Infrastruktur

Synthetische flüssige Kohlenwasserstoffe

- Hohe volumetrische Energiedichte
- Infrastruktur ist vorhanden
- Einfache Lagerung und Transport
- Vielfältige Anwendungsmöglichkeiten (Verkehr, Energie, Industrie)

Verfahrenskonzept einer nachhaltigen "Power-to-Liquid" Technologie

Synthesegaserzeugung (RWGS)

• Reformierung von CO₂ mittels reversen Wasser-Gas-Shift Reaktion

$$CO_2 + H_2 \rightleftharpoons CO + H_2O \quad \Delta H_R^0 = 41 \ kJ/mol$$

Heterogen katalysierte Reaktion

Fischer-Tropsch-Synthese (FTS)

• Heterogen katalysierte Reaktion an Fe- oder Co-Katalysatoren

 $n \cdot CO + 2n \cdot H_2 \rightleftharpoons (-CH_2 -)_n + n \cdot H_2O \qquad \Delta H_R^0 = -152 \ kJ/mol$

- Betriebsbedingungen der Niedrigtemperatur-FTS
 - *T*~225°C, *p*~25 bar
- Erzeugung einer breiten Produktverteilung

Produktverteilung für verschiedene Katalysatoren

Anderson-Schulz-Flory-Verteilung (ASF) für Co-Katalysator

$$x_n = \alpha^{(n-1)} \cdot (1-\alpha)$$

3-Parameter-Verteilung* für Fe-Katalysatoren

Prozessfließbildes des Syntheseprozesses

Prozessbewertungsgrößen

- Chemischer Wirkungsgrad $\eta_E = \frac{\dot{m}_{KWS} \cdot LHV_{KWS}}{\dot{m}_{H_2} \cdot LHV_{H_2}}$
- Power-to-Liquid Wirkungsgrad $\eta_{PtL} = \frac{\dot{m}_{KWS} \cdot LHV_{KWS}}{P_{EL} + P_{Utilities}}$

• Stoffumsätze
$$\eta_C = \frac{\dot{n}_{C,KWS}}{\dot{n}_{C,in}}$$
 / $\eta_{H_2} = \frac{\dot{n}_{H_2,KWS}}{\dot{n}_{H_2,in}}$

- Recycleverhältnis $R = \frac{\dot{m}_{FEED} + \dot{m}_{RECYCLE}}{\dot{m}_{FEED}}$
- Einteilung der Produktfraktionen

	Gase	Benzin	Kerosin	Diesel	Wachse
C-Atome	C1-C4	C5-C9	C8-C16	C12-C20	C20+

Produktzusammensetzung für verschiedene Katalysatoren

- Einfluss von *α* auf Produktzusammensetzung
- Einfluss der Gasrezyklierung auf das Produkt
- Einfluss des Hydrocrackerdesign auf das Produkt

Stoffrecycle für verschiedene Katalysatoren

- Interner Recycle steigt mit der Kettenlänge
- Externer Recycle sinkt mit der Kettenlänge
- → Geringerer Gasanteil des Produktes
- → Geringere Gasmenge muss reformiert werden

Prozessperfomance für unterschiedliche Katalysatoren

	Benzin	Kerosin	Diesel
Co-FTS	27%	44%	29%
Fe-FTS1	40%	37%	23%
Fe-FTS2	26%	46%	28%

- Steigende Effizienz mit größerem α
- Für Kerosin- und Dieselproduktion große α von Vorteil

 $\eta_E=66\%-72\%$

• Spezifischer Energieverbrauch Elektrolysesystem 4.2 kWh/Nm³

 $\eta_{PtL} = 46\% - 50\% \qquad \eta_C = 70\% - 77\%$

Benchmark Verbrennung mit 100% O₂

- Temperaturniveau der Energiebereitstellung f
 ür die rWGS liegt bei T > 900°C
- 19% des erzeugten Sauerstoff werden eingesetzt
- Benötigte Brennstoffmenge sinkt um 29%
- → Flammtemperatur nicht mehr im technisch realisierbaren Bereich

Wärmeintegration des Prozesses ohne CO₂-Abscheidung Input: 100 MW H₂ (LHV)

- Kühlung Fischer-Tropsch durch Dampferzeugung (225°C, 25 bar)
- Wärmebedarf intern gedeckt
- Kältebedarf muss durch Utilities gedeckt werden

Wärmeintegration Sensitivitäten

Fall	HEX-Fläche	Kapital	Betrieb
Standard	100%	100%	100%
Min. Kühlwasser	160%	130%	90%
Min. Kühlleistung	109%	105%	95%

Wärmeintegration Optimierung

• Brennerabgasrestwärme (2.8 MW) verwendet für Luft-Vorwärmung

	Ohne LuVo	Mit LuVo	
η_E	67 %	70%	
η_{PtL}	47%	50%	
η_C	72%	76%	

Wärmeintegration des Prozesses mit CO₂-Abscheidung Input: 100 MW H₂ (LHV)

- CO₂-Abscheidung durch MEA-Abscheidung
- Wärmebedarf für die CO2-Abscheidung kann gedeckt werden
- Höherer Anteil an Niedrigtemperaturkühlung erforderlich

Zusammenfassung

• Power-to-Liquid Wirkungsgrad

$$\eta_{PtL} = 46\% - 50\%$$

• Kohlenstoffumsatz $\eta_c = 70\% - 77\%$

Größe	Wert		
H ₂	0.51 kg/kg _{KWS}		
CO ₂	3.59 kg/kg _{KWS}		
Kühlwasser	370 kg/kg _{KWS}		
Strom	27.55 kWh/kg _{KWS}		
O ₂	4.1 kg/kg _{KWS}		
Dampf (225°C, 25 bar)	13 MJ/kg _{KWS} 7.56 kg/kg _{KWS}		

Absolute Schätzung Energiebedarf

Leistung Windpark	Fläche Windpark	H ₂ Menge	CO ₂ Menge	KWS Menge	Vergleichsgröße (jährl. Verbrauch)
1 GW	116 km²	80 kt/a	560 kt/a	200 Mio. Liter/a	Deckung ca. 200.000 KFZ/a
27 GW	3.000 km²	2,1 Mt/a	14,7 Mt/a	5,4 Mrd. Liter/a	Deckung Kerosinverbrauch FRA
323 GW	37.500 km²	25,8 Mt/a	181 Mt/a	67,3 Mrd. Liter/a	Deckung Kraftstoffverbrauch Straßenverkehr D

Vielen Dank!

Daniel H. König

DLR Institut für Technische Thermodynamik

daniel.koenig@dlr.de www.dlr.de\TT

Helmholtz-Energie-Allianz "Synthetische flüssige Kohlenwasserstoffe – Speicher höchster Energiedichte"

Wissen für Morgen