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Abstract

For image fusion in remote sensing applications the georeferencing accuracy using position, attitude, and camera calibration mea-
surements can be insufficient. Thus, image processing techniques should be employed for precise coregistration of images. In
this article a method for multimodal object-based image coregistration refinement between hyperspectral images (HSI) and digital
surface models (DSM) is presented. The method is divided in three parts: object outline detection in HSI and DSM, matching, and
determination of transformation parameters. The novelty of our proposed coregistration refinement method is the use of material
properties and height information of urban objects from HSI and DSM, respectively. We refer to urban objects as objects which are
typical in urban environments and focus on buildings by describing them with 2D outlines. Furthermore, the geometric accuracy of
these detected building outlines is taken into account in the matching step and for the determination of transformation parameters.
Hence, a stochastic model is introduced to compute optimal transformation parameters. The feasibility of the method is shown by
testing it on two aerial HSI of different spatial and spectral resolution, and two DSM of different spatial resolution. The evaluation is
carried out by comparing the accuracies of the transformations parameters to the reference parameters, determined by considering
object outlines at much higher resolution, and also by computing the correctness and the quality rate of the extracted outlines before
and after coregistration refinement. Results indicate that using outlines of objects instead of only line segments is advantageous
for coregistration of HSI and DSM. The extraction of building outlines in comparison to the line cue extraction provides a larger
amount of assigned lines between the images and is more robust to outliers, i.e. false matches.
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1. Introduction

3D city models are incorporated into many applications, e.g.
urban planning, micro climate analysis, vizualisation, disaster
management, indoor navigation, and many more (Rottensteiner
et al., 2014; Brédif et al., 2013). The importance of the city
models shows in the efforts on their standardisation. The Open
Geospatial Consortium (OGC) developed and is constantly im-
proving the City Geography Markup Language (CityGML), an
international standard for representation, storage, and exchange
of 3D city models (Gröger et al., 2012). Moreover, the Euro-
pean Union has been dealing with data specifications on build-
ings in the INSPIRE (Infrastructure for Spatial Information in
Europe) framework (INSPIRE TWG BU, 2013). For 3D build-
ing models, both CityGML and INSPIRE framework define the
3D geometry at different levels of detail, semantics, and mate-
rial attributes of building façades and roofs (Gröger and Plümer,
2012; INSPIRE TWG BU, 2013). Data from remote sensing
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sensors can be used to derive city models with increased per-
formance, when evaluated in a combined framework.

Remote sensing sensors are constantly undergoing devel-
opments to improve their performance. Along with the in-
crease in spatial resolution, new technologies are emerging, e.g.
hyperspectral imaging (HSI) sensors are progressively replac-
ing multispectral (MSI) ones. HSI sensors are able to mea-
sure reflectance in hundreds of narrow spectral bands with in-
creased spectral resolution in comaprison to multispectral sen-
sors, which rely on few bands (e.g. ≤12) of larger bandwidth,
and gaps between them (Keshava, 2003). Furthermore, images
acquired with various techniques have per se different char-
acteristics even if observed in the same portion of the spec-
trum. For instance, hyperspectral data allow differentiating be-
tween materials on the basis of their rich spectral information,
whereas light detection and ranging (LiDAR) measurements
provide highly accurate surface models. To gain more informa-
tion about the observed objects multimodal images, images ac-
quired by different imaging techniques featuring different char-
acteristics can be fused.

Image and data fusion are important procedures for the in-
tegration and analysis of many data sets in photogrammetry,
remote sensing and computer vision. Fusion becomes no-
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tably challenging when integrating data from different sensors,
mounted on different platforms, and collected at different times.
Usually, the acquired data are georeferenced, but often the ac-
curacy of the georeferencing is not sufficient to achieve the best
possible fit between all the data sets. These geometric inaccu-
racies can lead to difficult or even impossible interpretation of
the results of the fusion process. Consequently, refined coreg-
istration of all data sets has to be carried out prior to the fusion
process even though both datasets are georeferenced.

Remote sensing provides images and methods for: (a) au-
tomatic building model extraction, where building modeling
methods are often based on digital surface models (DSM), de-
rived from optical stereo images or LiDAR point clouds, and
(b) information about surface materials, where HSI enable the
distinction between different materials. DSM and HSI have
obviously different and complementary characteristics, due to
their different acquisition techniques. Thus, the accurate coreg-
istration between HSI and DSM is a step towards the envisaged
automatic extraction of roofing materials for building models
using remote sensing imagery.

In the present article, we propose an original method for
object-based coregistration refinement of DSM and HSI images
and compare it to the line-based coregistration. Focusing on
urban areas, we base the image-to-image coregistration on spa-
tial features of buildings objects, which are described by out-
lines. For line-based coregistration, line segments are extracted
independently of each other, whereas for object-based coregis-
tration these are extracted using knowledge about the topology
and regularities within approaches dealing with (entire) build-
ing outlines. Thus, building outlines represent an object and
extend line-based approaches by incorporating topology knowl-
edge (Avbelj, 2012). Furthermore, the geometric accuracy of
the detected line segments of building outlines is taken into ac-
count. A stochastic model is introduced to compute optimal
transformation parameters between the HSI and the DSM. The
coregistration problem is formulated using homogeneous coor-
dinates, as points and lines have the same representation. The
method enables registration of HSI and DSM of different spec-
tral and spatial resolution.

1.1. Related work
Coregistration of images requires detecting common objects

or common features in the images. Zitova and Flusser (2003)
compiled an extensive overview of registration methods, divid-
ing them in feature- and area-based methods. Feature-based
methods use extracted image cues, such as points (0D) and
lines (1D) for matching, while area-based methods use image
intensity values extracted from image patches (2D). Both types
of image registration methods can be carried out in the image
space or in the feature space. Area-based methods for multi-
modal image registration, using e.g. mutual information, have
shown success in remote sensing and medical imaging (Suri
and Reinartz, 2010; Pluim et al., 2003). Considering feature-
based methods, the features detected in the multimodal data
set with different characteristics do not always correspond to
the objects of interest in space. Blaschke (2010) discussed the
improvements of object-based over per-pixel image analysis.

These are significant when the objects under consideration are
much larger than the pixel size.

Buildings and other man-made objects are mainly described
by linear structures. Therefore, for description and coregistra-
tion of data acquired in urban areas, many authors propose lines
or line segments. Stilla (1995) used linear structures to inter-
pret airborne images by creating an image-description graph
derived from 2D maps. Habbecke and Kobbelt (2010) coreg-
istered 2D cadastral maps with oblique aerial images in three
stages using vanishing points, endpoints of vertical line seg-
ments, RANSAC (Fischler and Bolles, 1981) and a bundle-
adjustment-like global optimization over all camera parameters.
Iwaszczuk et al. (2012) matched thermal oblique images with
3D models for texture extraction. Other authors used linear
structures for 3D reconstruction of urban areas (Debevec et al.,
1996; Schmid and Zisserman, 2000; Schenk, 2004; Ok et al.,
2012).

Brook et al. (2010) already proposed a method using linear
features around urban objects for HSI and LiDAR registration.
However, their registration is based on tie points, where the de-
tected lines are only indirectly incorporated into image registra-
tion. In Brook and Ben-Dor (2011) the outlines of buildings and
roads are used for coregistration, carried out through weighting
for point-to-point matching.

The coregistration refinement of georeferenced and orthorec-
tified HSI with a DSM can be simplified by a 2D transforma-
tion, for instance an affine transformation or its variations (e.g.
2D motion transformation). Hartley and Zisserman (2004) cal-
culated an affine transformation from line correspondences us-
ing the direct linear transformation method (DLT). Zeng et al.
(2008) presented conditioning of the line parameters in order to
stabilize the solution numerically. However, they did not take
into account the geometric accuracy of these features, which
depends on the data and detection method used. This accuracy
should also be taken into consideration for coregistration.

1.2. Overview
This article extends the coregistration refinement method for

HSI and DSM in urban areas by Avbelj et al. (2013). The
flowchart describing the proposed object-based coregistration
method is shown in Fig. 1. The main novelty of the method
is the combined use of material and height properties of urban
objects for coregistration refinement. Besides, the line-to-line
matching is carried out through an accumulator using statisti-
cal tests. Another novelty is the introduction of the geometric
accuracy for the extracted features, which are used for the pa-
rameter transformation estimation step. Finally, the evaluation
is carried out by comparing the computed inner accuracies of
the transformation parameters with the reference parameters,
defined by using building outlines of much higher resolution.

The structure of the article is as follows. In Section 2 we de-
scribe the material map extraction from HSI and the building
outline detection from HSI and DSM. To demonstrate the im-
portance of object-based coregistration, we also independently
extract line segments from both data sets. Then, in Section 3 we
propose the weighted line segment matching and transforma-
tion parameter calculation. Feasibility and applicability of the
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Figure 1: Workflow for theproposed object-based coregistration refinement of
HSI and DSM.

proposed method is demonstrated by performing experiments
on two DSM with different spatial resolution and two aerial
HSI with different spatial and spectral resolution (Sec. 4). The
results are presented, discussed and the accuracy of the coreg-
istration is evaluated (Subsec. 4.3). Finally, we conclude and
discuss future work in Sec. 5.

2. Building extraction and description

In this section we present the principle of building outline
detection from two data sets with different characteristics, HSI
and DSM. DSM are regarded as 2.5 dimensional data and rep-
resented as images, where intensity values indicate heights.
The radiometric calibration, i.e. the transformation of digital
numbers into a radiometric unit of measure, is a prerequisite
for multi-source and multi-temporal image harmonization and
interoperability (Schaepman-Strub et al., 2006; GEO/CEOSS,
2010). Skipping the radiometric calibration would negatively

affect the transferability of a physical model-based image pro-
cessing system. Therefore, the HSI in the present paper are first
calibrated into at-sensor radiance values. Then, spectral signa-
tures of building roofing materials are used to calculate mate-
rial maps by unmixing the pixels of HSI (Subsec. 2.1). Finally,
building outlines and line cues (Subsec. 2.2) are extracted from
material maps and DSM, and independently used for matching
and to estimate the transformation parameters as described in
Section 3.

2.1. Material detection from hyperspectral images

Every material is uniquely described by a spectral signature,
and can be compared to the spectra in the HSI characterized by
n spectral bands. Some of the pixels in the HSI consist of more
than just one material and are called mixed pixels. If a complete
collection of m materials with spectral signatures or endmem-
bers S ∈ Rn×m is known, then the fractions or abundances of
materials a ∈ Rm can be computed for every pixel x ∈ Rn in the
HSI (Fig. 2).

A common procedure to decompose each measured pixel
into the constituent spectra is spectral unmixing. We assume a
linear mixing model where: (a) the surface consists of distinct
materials, (b) each surface features a Lambertian reflectance
(Keshava, 2003; Schaepman-Strub et al., 2006), and (c) the
number of endmembers is smaller than the number of channels:
m ≤ n. Then a pixel x ∈ Rn from a HSI is expressed as

x =

m∑
i=1

aisi + w = Sa + w (1)

where ai is the fraction of the i-th material (abundance), si ∈ Rn

is the spectral signature of i-th material (endmember), and w ∈
Rn is the residual vector. The abundance vector a is computed
by solving Eq. 1 with the least squares method. The expression
for one HSI pixel (Eq. 1) can be generalized for the complete
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Figure 2: Spectral signature. An optical hyperspectral image consists of many
spectral bands with wavelengths typically ranging from 0.4 to 2.5 µm. Each
pixel in a HSI can be viewed as a function of the wavelengths and represents
spectral signature.
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image X ∈ Rn×k, X = SA+W, where columns of X are k pixels
from HSI, S ∈ Rn×m, A ∈ Rm×k and W ∈ Rn×k. The solution
of the HSI unmixing is a set of abundance maps, one for each
material (Fig. 3).

For abundances to have a physical meaning, the linear mixing
model is subject to two constraints. First, the fraction ai of any
material in a HSI pixel can not be negative, leading to the non-
negativity constraint

ai ≤ 0. (2)

Second, the sum of the abundances for any HSI pixels must be
equal to one, leading to the full additivity constraint

m∑
i=1

ai = 1. (3)

If only an incomplete collection of endmembers of the scene
is available, the full additivity constrain causes over-fitting of
the least squares solution. One possibility to evade the over-
fitting in such cases is by using a linear mixing model subject
only to the non-negativity constraint, called also non-negative
least squares unmixing (NNLS). It is also noted that NNLS pro-
motes a sparse solution for the abundance vector. Alternative
possibilities are to generalize the full additivity constraint to
the partial additivity constraint

∑m
i=1 ai ≤ 1, or to use distance

metrics instead of unmixing. Distance metrics, such as spectral
angle distance (Kruse et al., 1993) or spectral information diver-
gence (Chang, 2000) compute the distance between the known
spectra si, i = 1, . . . ,m and the image spectra x. In contrast
to unmixing algorithms, the distance metrics consider known
spectra independently, so the distances are computed m times.
The benefit of unmixing algorithms is that all the known spectra
si, i = 1, . . . ,m and possible constraints are solved in a joined
system. In this work we test our method by using four spec-
tra, i.e. m = 4, of which three are related to roofing materials
(Subsec. 4.2, Fig. 3).

To detect the buildings in HSI, spectral signatures of roof-
ing materials present in the scene, such as metallic roofing and
ceramic tiles, are manually collected from the HSI. Then, the
abundances ai of the collected materials si are computed with
NNLS unmixing, resulting in m material (abundance) maps.
Each of these material maps shows the spatial distribution of a
roofing material and the fraction of the material. So, according
to the objects of interest, the corresponding set of material maps
is selected for further processing. For the unmixing process it
is recommendable to use all materials present in the scene, if
their spectral signatures are available. Otherwise, the unmixing
should be appropriately constrained.

2.2. Building description by outlines and lines

The correspondence between a HSI and a DSM is established
by detecting the same objects in both data sets. Building out-
lines are detected directly in the normalized DSM as above
ground objects, whereas in the HSI the building outlines are
detected from material maps of roofing materials (Fig. 3). To

test and evaluate the importance of object-based image coregis-
tration refinement, image cues are also extracted from the same
data. So, registration between each pair of HSI and DSM is
carried out twice, first by using the building object outlines,
and second by using the image cues. The majority of the build-
ing outlines can be described by straight line segments, so we
choose line segments as appropriate image cue. We summarize
the used building outline detection in Subsec. 2.2.1, and the line
cue detection in Subsec. 2.2.2, however other outline and line
extraction methods could be applied.

2.2.1. Building outline detection
Many building detection and modelling methods have been

proposed in the last decades, using DEM or LiDAR point
clouds (e.g., Maas and Vosselman, 1999; Lafarge et al., 2008),
or using additionally optical imagery (e.g., Sohn and Dowman,
2007; Awrangjeb et al., 2010). In this subsection, we summa-
rize the building outline detection method described in Avbelj
et al. (2013), but any other building outline detection could be
used. The method can be applied on a HSI and a DSM and is di-
vided in three steps: (a) building mask extraction, (b) building
model selection, and (c) boundary adjustment. The minimal
size for the buildings that can be extracted with the proposed
method is dependent mainly on the ground sampling distance
(GSD) of the image. From a mathematical point of view, this
method is applicable if all sides of a building are at least three
pixels long, i.e. three pixels are needed to estimate the line pa-
rameters and their accuracy. Furthermore, the sides of a build-
ing to be extracted should be at least five pixels long in order
for the (b) building model selection and (c) the boundary ad-
justment to be reliable. The two edge pixels, in which the line
segment begins and ends, are unreliable, because they span in
general cases only part of the pixels.

(a) The building masks are extracted from the HSI and the
DSM as an initial guess for building regions. A building mask
from the HSI (BMHS I,i) is defined by thresholding a material
map of every roofing material: BMHS I,m > threshold for
i = 1, . . . ,m. A building mask from the DSM (BMDS M) is
extracted by normalizing the DSM and setting a threshold defin-
ing the above-ground objects, and removing high vegetation.

(b) The rectilinear building outlines can be reconstructed by
hierarchically adding and subtracting rectangles (Gerke et al.,
2001). Thus a set of building outlines is built for every region
in the building mask. On each higher hierarchical level more
rectangles are needed to extract a building outline. A higher
cost is assigned to a more complex outline at the higher hier-
archical level. Before the model of higher level is created, the
boundaries are adjusted to the data as described in (c). Then,
the optimal building outline model is selected as a trade off be-
tween cost and adaption to the data.

(c) The line segments of the building outline are adjusted to
the image gradients using a gradient descent method. For ev-
ery line segment the direction of the gradient is computed from
the gradients of the pixels under the line segment. Then, the
line segment is moved iteratively in the gradient direction, un-
til a stopping criterion is satisfied, i.e. the change in the line
segment position is insignificant. In our case the gradients are
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(a) (b) (c) (d) (e)

Figure 3: Non-negative linear unmixing of HSI. Four image spectra were collected from the same radiometrically corrected HyMap HSI (a; Fig. 5). A HyMap HSI
(subset of 70x70 pixels) is shown as RGB composite (a), and four material maps: reed roof tiles (b), metallic roof (c), concrete (d), and vegetation (e). For the
material maps colour coding is from black to white, where white means the highest abundance.

computed from the material map of the corresponding roofing
material and the normalized DSM. Finally, the building outline
generalization is carried out by joining adjacent line segments
with an intersection angle smaller than 10◦.

In Section 3 the extracted outlines from both images are
matched and used to refine the coregistration, more precisely
the line segments that constitute the outlines are matched. Due
to the building outline method described above (a)-(c), these
line segments have some restrictions, e.g. the end point of a line
segment must be equal to the starting point of the subsequent
line segment. Furthermore, the assumption of orthogonality of
the subsequent outlines‘ edges given in (b) is taken into account
by a metric restriction to the building outlines. Hence, the line
segments of the building outlines implicitly introduce the topol-
ogy relations and some metric restrictions between subsequent
edges of the building outlines into the estimation of the trans-
formation parameters. These restrictions are not directly re-
quired for the transformation parameter estimation because all
the details of the building outlines or their details might not be
extractable from both of the data sets.

2.2.2. Line detection
Line segments are detected in the DSM and in the material

maps with a fast line segment detector (LSD) proposed by von
Gioi et al. (2010). It is a robust line segment detection algorithm
requiring no tuning of input parameters. The LSD partitions the
image into line-support regions according to proximity and gra-
dient angle. The regions are then approximated by rectangles
having as the centre of mass the central point and uisng first
inertia axis for rectangle orientation. The width and length of
rectangles are chosen so that they cover all the points in the
line-support region. All the line support regions are validated
before the line segments are defined from the rectangles.

3. Matching of building outlines from hyperspectral images
and DSM

Both object outline detection and line detection result in sets
of lines in both data sets, HSI and DSM. A mismatch between
the extracted line segments exists also because the accuracies
of the georeferencing and orthorectification are imperfect. Both

data sets (HSI and DSM) are represented as a projection onto
the same 2D plane. Thus, a 2D affine transformation can be es-
timated to refine the coregistration. With our approach we aim
to optimally reduce this mismatch by determining the transfor-
mation parameters between the data sets. For this purpose, the
corresponding lines from both data sets need to be found first.
We propose a method based on accumulating the possible line
correspondences, which is described in Section 3.1. Using the
corresponding line pairs, we estimate the transformation with
the Gauss-Helmert model, which is described in Section 3.2.

3.1. Line assignment

In this subsection, we propose a method which can be applied
also for data where the relative mismatch between the data sets
amounts to 20-30 image pixels or even larger.

In our automatic approach for finding line correspondences
we use a 3D accumulator. The 3D accumulator space is de-
fined by a two dimensional translation in the x- and y-directions
and a rotation. To fill the accumulator space we use one of
the data sets as master image and move line segments from the
second data set, i.e. slave image over the line segments from
the master image. For each position we check how many lines
correspond to each other and fill the accumulator with this num-
ber. At the same time we store the line correspondences for this
position. We repeat this procedure by rotating line segments
from the second data set by small angles in the range of few de-
grees. This algorithm results in a 3D accumulator space filled
with line correspondences for each cell of the accumulator. The
cell with maximal number of correspondences is selected and
these line correspondences assigned to this cell are used for the
transformation parameter calculation.

The correspondence between the lines for every cell of the
accumulator is determined using statistical tests in considera-
tion of the accuracy of the detected lines. We use homoge-
neous coordinates to formulate the problem. As shown in Heuel
(2002) we calculate the distance vector d and test the hypothe-
sis H0

H0 : d = U(e1)e2 = V(e2)e1 = 0 (4)

where e1 and e2 are entities and U and V define the relation
between e1 and e2. In this particular case, e1 and e2 are lines
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and we investigate their incidence. Further on, we calculate the
covariance matrix for the distance vector d

Σdd = U(e1)Σe2e2 UT(e2) + V(e1)Σe1e1 VT(e2), (5)

where Σe1e1 and Σe2e2 are the covariance matrices for line e1
from the first data set and line e2 from the second data set, re-
spectively. Then, we reject H0 with a significance level α if

t = dTΣ−1
ddd > εH = χ2

1−α;n (6)

where εH is a critical value such that the probability satisfies
equation P(t > εH |H0) defined by the hi-square distribution
χ2

1−α; n with n degrees of freedom. Statistical tests are done for
all the combinations between lines from the first data set with
lines from the second data set, and are therefore computation-
ally very expensive. To restrict possible line combinations and
reduce computational efforts we generate H0 only if the dis-
tance between the middle points of the line segments is smaller
than a defined threshold. This threshold, similarly to the size
of the accumulator, depends on the expected relative error of
coregistration between the data sets.

3.2. Determination of transformation parameters

Selected correspondences are used for the determination of
the transformation parameters. As mentioned in Section 3, HSI
and DSM are represented as a projection onto the same 2D
plane, therefore the coregistration refinement can be simplified
with a 2D transformation. In general, a mapping between two
planes for a 2D point x can be represented as

x’ = Hx (7)

where x’ is transformed x and H is the transformation matrix.
The vectors x and x’ are represented using homogeneous coor-
dinates. Basically, we want to map the line segments detected
in the HSI to the height data. In theory, we can transform the
end points of these line segments using (Eq. 7). Then, the cor-
responding end points of the line segments in the master image
would be represented by x’. However, in practice it is not pos-
sible to detect exactly identical line segments in both data sets.
Usually, a part of the segment is missing in one data set, or the
end points are not accurately determined. Therefore, we refor-
mulate (Eq. 7) so that we still search for H, but use lines as
observations:

m = H−Tl⇒ HTm = l (8)

where m represents a line indicated by a line segment from the
master image and l represents a line indicated by a line segment
from the slave image (see Hartley and Zisserman, 2004, pg. 36,
Eq. 2.6). We assume that m and l represent the same line and
use the condition for the identity relation as

HTm × l = 0. (9)

The displacement between the data sets can be approximated
by an affine transformation. Therefore, H is defined as

H =

h1 h2 h3
h4 h5 h6
0 0 1

 . (10)

We calculate a line as the joining of two end points in the de-
tected line segments x1 and x2

l = x1 × x2 (11)

and normalize them spherically

N(l) =
l
|l|
. (12)

Finally we estimate the optimal affine transformation param-
eters using the Gauss-Helmert model by minimizing the cost
function

Ω =
1
2

v̂T
bΣ−1

bbv̂b + λTg(b̂, p̂) + νTc(b̂) (13)

subject to
g(b̂, p̂) = HTm × l = 0 (14)

and
c(b̂) = |l| − 1 = 0, (15)

where b̂ = [l̂, m̂]T are observations, Σbb = diag[Σll,Σmm] is
their covariance matrix, p̂ = [h1, h2, h3, h4, h5, h6]T are the
estimated parameters, v̂b = [v̂l, v̂m ]T are the corrections to line
parameters of (l, Σll) and (m, Σmm), and λ and ν are Lagrangian
multipliers. The function g(b̂, p̂) conditions the identity of the
line pairs, while the function c(b̂) constraints the spherical nor-
malization for each line. We estimate the parameters p̂ in a sim-
ilar way as described in Meidow et al. (2009), with the differ-
ence that we skip the restriction on the parameters. This restric-
tion on the parameters is not needed for modeling the problem
in the way presented in this paper.

4. Experiment

In this Section, we present our experiments carried out on
real data. First, the used data sets are described (Subsec. 4.1),
then the results of the proposed object-based coregistration re-
finement are presented and discussed (Subsec. 4.2). Finally,
the evaluation of the estimated transformation parameters ac-
cording to the ground truth, i.e. reference building footprints
provided by the city of Munich, Gemrany is carried out (Sub-
sec. 4.3).

4.1. Data description

The proposed object-based registration method is tested on
two HSIs of different spatial and spectral resolution, and two
DSMs of different spatial resolution (Tab. 1). All the data sets
are acquired over the same residential area of the city of Mu-
nich, Germany. In addition, building footprints from the munic-
ipal of Munich, Germany are used as a reference for evaluation.
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The two airborne hyperspectral data sets were acquired by
the airborne HySpex and HyMap sensors and have a spatial res-
olution of 2 and 4 m respectively. The first data set was acquired
by the HySpex hyperspectral system consisting of two sensors,
VNIR and SWIR camera, providing two HSIs. For the tests we
used only the VNIR image with 160 channels in the spectral
range 0.4-1.0 µm, and 3.7 nm sampling interval. Four channels
were removed before processing due to their high noise level.
The second hyperspectral data set was acquired by the HyMap
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Figure 4: Registration between master DSM and slave HSI. Eight registrations
are carried out: each DSM is registered with each HSI, once using detected
objects, and once using detected line segments. The relative size between the
grids corresponds to the spatial resolution of the data sets.
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Figure 5: Spectral signatures of four materials. Spectra collected from HyMap
(dashed lines) and HySpex (solid lines) for three roofing materials and veg-
etation. THe concrete spectral signature is not pure, due to the HSI spatial
resolution and to the presence of smaller objects on concrete roofs. The spec-
tral domain of the HySpex VNIR and the HyMap sensor is marked with boxes.
The HSI data sets are radiometrically corrected to at-sensor radiance.

Type of data set Image size [pix] GSD [m]
Hyperspectral

HySpex 279 x 370 2
HyMap 141 x 185 4
DSM
LiDAR 579 x 759 1

3K DSM 279 x 370 2

Table 1: List of tested data sets with ground sampling distance (GSD) and
image size. The size of the test area is approximately 0.76 x 0.58 km. The
number of extracted and matched outlines and lines from each of the data sets
is listed in Tab. 2.

sensor and has 125 channels in the spectral range 0.4-2.5 µm.
24 bands were removed due to the noise level, e.g. noise caused
by atmospheric absorption regions. Both HSIs are corrected to
at-sensor radiance, but no atmospheric correction was applied.

The two DSMs used as master images in the coregistration
process are the LiDAR DSM and the 3K DSM. The former,
with a spatial resolution of 1 m, is resampled from a LiDAR
point cloud with an average density of 1.69 points/m2. The
latter, with a spatial resolution of 2 m, is computed from multi-
view optical images using semi-global matching. The optical
images were acquired by the 3K-camera system, consisting of
three non-metric cameras, of which one is nadir looking and
two two are oblique sidewards looking. The airborne 3K system
was developed at DLR IMF (Kurz et al., 2012).

4.2. Results and discussion

The coregistration refinement of the HSI (slave image) to the
DSM (master image) is carried out for all four possible com-
binations between the data sets as plotted in Fig. 4. Further-
more, the coregistration for each pair consisting of a DSM and
a HSI is carried out twice: once on the basis of detected ob-
jects and once using detected line cues. So, altogether eight
coregistrations between the data sets of different spatial (1-4 m)
and spectral resolution are calculated. In addition, another 16
coregistrations between reference building footprints from the
city of Munich, Germany and all the detected building outlines
are computed for evaluation purposes (Subsec. 4.3).

Both HSI are unmixed with the NNLS method, using spectral
signatures collected directly from the image. Hence, four refer-
ence spectra are collected from the HyMap image and four ref-
erence spectra from the HySpex image. Results are four mate-
rial maps for HyMap and HySpex, one for vegetation and three
for roofing materials. For each reference spectral signature, ten
spectra are collected from the HSI and averaged to suppress
possible noise (Fig. 5). The reference spectral signatures from
HyMap (dashed lines) and HySpex (solid lines) HSIs are plot-
ted in Fig. 5. The boxes represent the spectral domain of each
sensor, with missing values indicating the removed noisy chan-
nels (Subsec. 4.1). The reference spectra for vegetation, con-
crete and red roofing tiles correspond to the expected spectral
signatures. However, the collected image spectra for metallic
roofing and concrete are most probably not pure pixels, because
of smaller objects on the roofs and the low spatial resolution
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(a) (b) (c)

(d) (e) (f)

Figure 6: Detected building outlines from two HSI (a, d) and two DSM (b, e), before (b, e) and after coregistration (c, f). True colour composites of a of HySpex (a;
100x100 pixels) and a HyMap (d; 50x50 pixels) subsets with overlaid detected building outlines (cyan). Two colors are used for extracted building outlines: cyan
and magenta for outlines extracted from the slave HSI, and magenta for the ones from the master DSM, respectively. If correspondence between two line segments
in master and slave image is found, the color of this line segment is highlighted, i.e. bright cyan and bright magenta.

of the HSI. Nevertheless, we keep all material maps for build-
ing outline extraction. Furthermore, if HSIs are radiometrically
and atmospherically corrected, the reference spectra could be
collected from only one HSI or taken from a spectral library.
However, no atmospheric correction was applied to HyMap and
HySpex HSIs, thus reference spectra are collected from each
image separately.

HySpex reference spectral signatures exhibit some sharp
edges, indicating not corrected systematic artefacts in the im-
age. However, noise is present in the whole HySpex image and
also in the reference spectral signatures collected from the same
image. Thus, it does not significantly influence the NNLS un-
mixing. On the contrary, using spectral library spectra or spec-
tra from HyMap would influence unmixing result of the HSI
with systematic errors.

The proposed building outline detection (Subsec. 2.2) pro-
vides a large enough number of approximate building out-
lines for line assignment and coregistration between all pairs
of HSI and DSM (Tab. 2). Two thresholds are set to obtain
the initial building mask from the HSIs and the DSMs. The

no. outlines LiDAR 3K DSM Reference footprints
(no. lines) 486 (543) 409 (348) 1534

HyMap
94 (88) 51 (30) 45 (22) 66 (28)

HySpex
278 (255) 187 (95) 147 (70) 208 (92)

Reference footprints
1534 524 (541) 239 (175) -

Table 2: Number of detected and matched lines and outlines. Under each
data set (bold) is a number of line segments of detected building outlines (no.
outlines) and in brackets a number of detected lines (no. line). Numbers of
matched lines and outlines between pairs of data sets are in the fields of the
table. Each outline consists of several line segments, so the number of outlines
in this Table is counted as the total number of line segments of all the building
outlines.
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(a) (b)

Figure 7: Detected building outlines in LiDAR DSM and HySpex HSI, before (a) and after coregistration (b) overlaid on LiDAR DSM of 579x759 pixels. Outlines
detected in the LiDAR DSM are in magenta, while and outlines detected in the HySpex HSI are in cyan. Matching lines are highlighted (bright magenta for HSI,
bright cyan for DSM), analogue to the description under Fig. 6.

threshold for material maps from HyMap and HySpex is set
to BMHS I,i > 0.7, i = 1, . . . , 3, for three roofing materials,
and the threshold for normalized 3K DSM and LiDAR DSM
is set to BMDS M > 2 m. The threshold for the initial build-
ing mask BMHS I,i > 0.7 means that at least 70% of pixel’s
area is covered by the roofing material. This threshold is based
on heuristics and does not change building outline estimation
when it is in a range 0.7 ± 0.1. The abundance maps and the
normalized DSMs are used to estimate the building outlines,
whereas the thresholded material maps and thresholded normal-
ized DSM are used only for an initial guess for building regions
(Subsec. 2.2.1). For a majority of the building outlines the au-
tomatically selected building model fits the data, and is detailed
enough to represent different building shapes. In data sets with
different spatial resolutions a building can be estimated with a
model of different complexity levels. For example, in Fig. 6 the
same observed area with detected building outlines in HySpex
(a) and HyMap (d) is shown with GSD of 2 m and 4 m, re-
spectively. Some of the same buildings in the scene are ap-
proximated with different building outline models in different
datatets. Thus, for the building outlines in the HyMap with
lower GSD, simpler building models, e.g. rectangle, are chosen
than in the HySpex with higher GSD, e.g. L-shape. However,
in all four used data sets some buildings only partialy present
in the image are badly estimated or not estimated at all (Fig. 7).
Some of the buildings in HSI are not extracted, because only
three roof materials were considered. This can be observed
by comparing the number of extracted building line segments
in 3K DSM (409) and HySpex (278), with both sensors hav-
ing the same GSD (Tab. 2). The average runtime for the given
data sets is about 1.1 s per building (using not optimized pro-
totype software on a computer with a 2.4GHz dual core pro-
cessor). The runtime approximately linearly depends on the

number of rectangles required for representing a building out-
line. To increase the completeness of building extraction, all
building materials in the given scene should be collected. Next
to the detected outlines, also line cues are extracted with LSD
algorithm (Subsec. 2.2.2). We use pre-defined parameters and a
suggested Gaussian smoothing of the image with standard de-
viation σ = 0.8.

Correspondences between the data sets were found using the
accumulator approach. The movement of the reference point
was set to ±25 pixels in each direction and small rotation angles
to ±0.5◦. The significance level for the statistical test (Eq. 6)
was set to α = 0.08. Then, the number of selected correspon-
dences were counted and presented in Tab. 2. In this table, the
number of line segments extracted during the outline detection
is presented below the data description. The number of line
cues detected with LSD (Subsubsec. 2.2.2) is specified in brack-
ets. The runtime of the accumulator for matching, e.g. LiDAR
outlines and HyMap outlines, is about 16 s (using not optimized
prototype software on a computer with a 3.1GHz dual core pro-
cessor). The runtime is approximately lineary dependant on the
number of cells in the accumulator and on the number of tested
hypothesis.

A comparison of the number of matched outlines and lines
is made for all the data sets (Tab. 2), including the number
of reference building outlines, i.e. footprints. For all tested
data sets (Fig. 4) more assignments are found between the ex-
tracted building outlines than between extracted line cues with
LSD (Subsubsec. 2.2.2). Concerning the spatial resolution of
the data, images with higher spatial resolution include more
details, and so more outline segments are extracted. Conse-
quently, more matched line segments between the data sets with
higher GSD are found.

The initial registration accuracy of the LiDAR DSM and both
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HSIs was reduced to demonstrate the effectiveness of the accu-
mulator for matching (Fig. 7, Fig. 6, e, f). The initial registra-
tion for the 3K DSM and HySpex is about one pixel (Fig. 6).
For all tested data sets (Fig. 4) the estimated transformation ma-
trix Hest, i.e. the affine parameters h1 − h6 with standard devi-
ations (Eq. 10) are estimated. The covariance matrices for the
line parameters used in the adjustment were calculated by error
propagation from the covariance matrices of the end points.

Before estimating the transformation parameters, the obser-
vations were conditioned similar as shown in e.g. Heuel (2002),
Zeng et al. (2008). Using line parameters as observations the
conditioning of the observed parameters is more important as
for points (Zeng et al., 2008). While using the covariance ma-
trices for the adjustment, bad conditioning leads to numerical
problems and disables the adjustment procedure.

As expected, the highest impact on the transformation are
due to the translation parameters (h3, h6). The other parameters
vary insignificantly (in most cases < 0.005) from the standard
value (h1 = 1, h2 = 0, h4 = 0, h5 = 1). The standard deviation
for h1, h2, h4, h5 ranges from 0.0001 to 0.002, while for h3, h6
it ranges from 0.065 meters (LiDAR-HySpex) to 0.186 meters
(LiDAR-HyMap).

4.3. Evaluation
The evaluation of the proposed method can be done by inves-

tigating the computed inner accuracies of the estimated trans-
formation matrix Hest, i.e. standard deviations of elements.
Such an assessment however, does not provide the comparison
to the true transformation which has to be carried out to coreg-
ister both data sets. Hence, a reference transformation has to be
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Figure 8: Evaluation of the computed projection matrix H. The projection
matrix between DSM (master) and HSI (slave) H is compared to the Href =

H−1
2 H1. The projection matrices H1 and H2 project the objects respectively

from DSM and HSI to the auxiliary coordinate system of ground truth building
outlines.

determined and the absolute difference between the estimated
Hest transformation parameters and the reference Href parame-
ters has to be computed. Additionally, correctness and quality
rate of extracted building outlines before and after coregistra-
tion refinement is computed.

A manually selection of tie points from in the HSI is insuffi-
cient for computing a reference transformation matrix (Avbelj
et al., 2013). The position of a manually set tie point in a HSI
strongly depends on the contrast and selection of the channels
from the HSI. Our method for coregistration refinement is based
on correspondences between the object outlines from the slave
and the master images, but extracted outlines from both images
include some inaccuracies. So, to compute a reference trans-
formation matrix Href , we use the auxiliary data (building foot-
prints) with much higher accuracy than the extracted building
outlines (Fig. 8). For the reference building footprints the data
from the city of Munich, Germany are used.

If the affine matrix H1 projects points from the slave coor-
dinate system to the auxiliary coordinate system and the affine
matrix H2 projects points from master coordinate system to the
same auxiliary coordinate system, then Href = H−1

2 H1 should
be equal to the projection as observed directly from the slave
to the master coordinate system Hest (Fig. 8). The reference
footprints in the auxiliary coordinate system are assumed to be
error free, nevertheless the H1 and the H2 still include the inac-
curacies of the outline (line cue) extraction from the master or
the slave image. These inaccuracies are also result from the dif-
ferent GSDs of the images, where the GDS limits the smallest
extractable detail and the accuracy of the extracted line seg-
ments. Yet, matching extracted outlines to the reference foot-
prints excludes the uncertainty of the extracted line segments
in the auxiliary coordinate system. Moreover, some inaccurate
matches between the reference footprints and extracted outlines
(line clues) are avoided, because the errors in outline extraction
are only expected in the slave and the master images. Thus, the
Href = H−1

2 H1 is more reliable and accurate then Hest, where
both outlines from slave and master image introduce inaccura-
cies into the matching and estimation of transformation param-
eters.

In Fig. 9 the comparison between the elements of reference
Href and estimated Hest transformation matrices is represented.
Horizontal columns represent the absolute difference of six ele-
ments of reference and estimated projection matrix |Href −Hest|

for all the data sets, and for extracted outlines (dark grey) and
lines (light grey). Parameters h3 = dx and h6 = dy are the
translations in x and y direction in meters, the other h affine pa-
rameters are dimensionless quantities. The error bars on each
horizontal column are the computed standard deviations of Hest.
The differences between estimated and reference transforma-
tion matrix are larger for the data sets with lower GSD, i.e. 3K
DEM and HyMap. The estimated standard deviation of the pa-
rameters, i.e. inner accuracies of estimation are in most cases
too optimistic, compared to the difference between reference
and estimated transformation parameters.

Correctness and quality rate of extracted building outlines us-
ing initial georeferencing and after coregistration refinement for
all pairs of coregistrated images are given in Tab. 3 and Tab. 4,
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Figure 9: Evaluation of the estimated projection matrix Hest for all data sets. The estimated projection matrix Hest between DSM (master) and HSI (slave) is
compared to the reference projection matrix Href = H−1

2 H1. For each of the six elements in the projection matrix (eq. 10), the absolute difference between the
reference and the estimated value is computed (horizontal axis). This difference is represented with grey horizontal bars on the six charts. Dark grey bars represent
the values for matched outlines, and light grey for matched line cues (vertical axis). The error bars (horizontal lines on every bar) represent the inner accuracies of
the Hest and are computed as the standard deviations of the six elements of the Hest. The absolute differences of the translations are in meters, the other absolute
differences are dimensionless quantities.

Correctness LiDAR 3K DSM
Houtlines (Hlines)

HyMap Initial 0.54 0.62
Refined 0.63 (0.64) 0.77 (0.70)

HySpex Initial 0.31 0.77
Refined 0.64 (0.58) 0.79 (0.79)

Table 3: Correctness of extracted building outlines using initial georeferencing
(Initial), and after the coregistration refinement (Refined). Correctness is com-
puted as the ratio between the overlap area of extracted building footprints and
the total area of all extracted building footprints in slave (DSM) image. The
extracted building outlines are transformed using the estimated transformation
matrix (Hest), where two different Hest are used for each pair of master-slave
dataset. First, Hest is estimated from the extracted building outlines (Houtlines),
and second from the extracted line cues (Hlines). The rows denoted Refined
have two values of correctness for each pair of master-slave images, i.e. cor-
rectness of extracted building footprints transformed by Houtlines (value without
brackets) and by Hlines (value in brackets). The rows denoted Initial have a
correctness value using initial georeferencing.

Quality rate LiDAR 3K DSM
Houtlines (Hlines)

HyMap Initial 0.20 0.18
Refined 0.24 (0.24) 0.23 (0.21)

HySpex Initial 0.16 0.40
Refined 0.41 (0.36) 0.42 (0.42)

Table 4: Quality rate of extracted building outlines using initial georeferencing
(Initial), and after the coregistration refinement (Refined). Quality rate is com-
puted as the ratio between the overlap area of extracted building footprints and
the union of all areas of extracted and reference building footprints. The are
notation is analogue to the description under Tab. 3.

respectively. Correctness is computed as the ratio between the
overlapping area of extracted building footprints and the total
area of all extracted building outlines in the slave image. Qual-
ity rate is computed as the ratio between the overlapping area
of extracted building footprints and the union of the area of
all building outlines. The quality rate, in contrast to correct-
ness, accounts for the areas of building polygons that are not
extracted. Both, correctness and quality rate quantify with a
single value the quality of the building outline extraction and
the coregistration refinement.

According to the results shown in Fig. 9 and Tab. 3 using
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(a) (b)

(c) (d)

Figure 10: Building outlines detected in the slave HySpex HSI (cyan) after
coregistration, projected using a transformation matrix on the basis of matched
outlines (a, c) and lines (b, d) from master LiDAR DSM (magenta). Subfigures
c and d show the reference building outlines (yellow) and the detected building
outlines in HySpex (cyan). All outlines are overlaid on the detail of 120x100
pixels from the LiDAR DSM. Matching lines are highlighted analogue to the
description under Fig. 6.

outlines of objects instead of the image cues is advantageous
for coregistration for all the tested data sets, except for HyMap
and LiDAR DSM. This conclusion is based on jointly observ-
ing all values of the transformation matrix |Href −Hest| and cor-
rectness values of extracted building outlines. Comparison of
the standard deviations of the Hest (error bars, Fig. 9) to the
|Href −Hest| serves mainly as a plausibility check for the pro-
posed evaluation technique. Building outlines in HySpex DSM
projected with the transformation matrix computed from build-
ing outlines (Fig. 10, a), fit better to the image data, than pro-
jected with the transformation matrix computed from line cues
(Fig. 10, b). What is more, also the detected building outlines
in HySpex (cyan lines in Fig. 10) fit better to reference build-
ing outlines (magenta lines in Fig. 10, c, d, Tab. 3), when pro-
jected with the transformation matrix computed from building
outlines.

5. Conclusion and future work

We have proposed an object-based coregistration refinement
method for HSI and DSM using homogeneous coordinates for

line assignment and transformation parameter estimation. We
showed that the proposed method is applicable on multimodal
and multi-resolution data sets with different characteristics. We
have focused the coregistration on building outlines, however
other objects in the scene could be used if they can be extracted
on the basis of material properties and height information.

Detecting outlines of the building objects in HSI and DSM
implicitly incorporates topology relations and metric restric-
tions between the subsequent line segments of each building
outline. Estimating building outlines instead of line segments
provide a larger amount of assigned lines between the images
and is thus more reliable and also more robust for estimation
of transformation. The results indicate that additional topology
and metric relations of the outline of the observed objects is es-
pecially important for images with lower spatial resolution. The
method has its limitation when buildings to be extracted have
all sides smaller than three pixels. This finding is consistent
with the discussion of Blaschke (2010) about improvements of
object-based over per-pixel image analysis.

We have introduced geometric accuracy of detected line seg-
ments on building outlines for optimal transformation parame-
ter estimation. The used stochastic model provides results. So,
in the future investigations on the influence of line accuracies
on transformation parameters should be carried out. Moreover,
for fully operational coregistration refinement processing sys-
tems, the computational time, robustness to input parameters,
and economical aspects should be investigated and improved.

The correctness and quality rate values of extracted building
outlines after coregistration refinement are improved in com-
parison to the initial georeferencing. We have additionally pro-
posed an approach for the evaluation of coregistration refine-
ments, as the computed standard deviations of estimated trans-
formation parameters are not sufficient. The reference transfor-
mation parameters are computed by using a much better vector
description of the objects under consideration, in our case ref-
erence building outlines.
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