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We present a new approach for the synthesis of robust fault detection filters for the
model based diagnosis of actuator faults. The underlying synthesis model is a linear pa-
rameter varying (LPV) description obtained using a combination of analytic and numerical
parameter fitting techniques. The actuator LPV model contains uncertain parameters
which are partly measurable, thus can be used for gain scheduling, and partly not measur-
able, for which robustness must be ensured. The detector synthesis approach is basically
a parametric nullspace method combined with min-max parameter fitting. The synthesis
technique is applied to the diagnosis of two classes of actuator faults for a civil aircraft:
elevator runaway and elevator jamming at null position.

I. Introduction

The synthesis of fault detection filters to diagnose flight actuator faults is a challenging task in the presence
of various uncertainties in the current flight conditions and aircraft parameters. Although the underlying
actuator models are in general nonlinear, frequently linear parameter varying (LPV) approximations can be
used to describe the actuator dynamics in a continuum of equilibrium points. These models can serve as
basis for the synthesis of residual generators for fault detection, which are aimed to be robust against both
measurable and unmeasurable uncertainties.

In this paper we describe firstly a methodology for the modelling of flight control actuators as LPV
models depending on both known (measurable) parameters like speed, altitude and surface deflection, but
also on unknown (uncertain) aircraft parameters like mass or position of center of gravity. A quasi-LPV
representation for a detailed nonlinear actuator model, which is partly based on black-box models is derived.
For several grid-points in the flight envelope and the weight and balance domain of the aircraft, the coefficients
of the quasi-LPV model are identified using time histories of the detailed nonlinear simulation model. Finally,
a multivariable polynomial fitting is applied to the grid-point models to obtain a globally valid quasi-LPV
model of the actuator that is of high accuracy and based on a simple structure such that it can be easily
implemented in the flight control computer.

In the second part, we use the developed LPV models to synthesize residual generation filters to serve
for actuator fault detection purposes. These filters are designed to be robust against both measurable and
unmeasurable parameters using recently developed robust synthesis methods relying on a combination of
symbolic and numerical methods. Two challenging fault detection examples are considered to illustrate the
proposed approach for a civil aircraft: the detection of elevator runaway and jamming at null position.
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II. LPV model generation for the nonlinear actuator model

In this section, we describe the development of an LPV model for a system formed from an actuator and
the associated elevator control surface which is part of the ADDSAFE benchmark modela. The resulting
elevator actuator model has a first order LPV-system representation of the form

ẋ = −k(ρ)x+ k(ρ)u,

y = x,
(1)

where x and y are the rod position and u is the commanded position. The gain k(ρ) generally depends
on both measurable and unmeasurable parameters contained in a vector ρ. Typical values of the gain are
around k = 14.

The aim of LPV model generation is to determine, starting from a high fidelity nonlinear actuator model,
the corresponding LPV-approximation of the form (1), with an explicit parametric expression of k(ρ). This
model will then serve for synthesis purposes of robust fault detection filters to detect several categories of
actuator faults.

A. Detailed actuator model

The detailed actuator model represents a simplified, nonlinear first order equation of an hydraulic servo
controlled actuator1 which is widely used in today’s aircraft. The equations are of the form

ẋ = KciKp(u− x)

√√√√∆P (x)− Faero(p,x,ẋ)
S

∆Pref + Ka(x)ẋ2

S

, (2)

where Kp is the servo control gain, Kci is a gain to convert an estimated current to a corresponding rod
speed, ∆P is the hydraulic pressure delivered to the actuator, ∆Pref is a differential pressure for a fully
opened servo-valve (maximum rod speed), Faero represents the aerodynamic forces at the control surface,
Ka(x)ẋ2 represents the estimated servo-control load of the adjacent actuator in damping mode and S is the
actuator piston surface area. p = (Vcas, h,m,Xcg) is a vector of aircraft and flight condition parameters
including the calibrated airspeed Vcas, the aircraft altitude h, the aircraft mass m and the position of the
center of gravity Xcg along the x-axis.

B. Quasi-LPV approximation of the detailed actuator model

In order to get a simple quasi-LPV model approximating (2) with good accuracy, the idea is to cover the
parameter varying dynamic behavior in a simple function K(p, x, ẋ), which is then used in a first order
actuator model as given in (1).

1. Physical considerations for derivation of model structure

From various investigations it was obvious that the variations in the dynamic behavior (variation of K)
mainly come from the aerodynamic force Faero that acts on the control surface, where Faero itself usually
depends on the aircraft parameters p, the actuator position x and the sign of the actuator position rate
ẋ. The influence of x and sign(ẋ) can be explained by investigating the actuator dynamics for different
control surface positions and signs of deflection rate (see Figure 1). Assuming, that for a deflection angle of
zero of the control surface (middle part of Figure 1) the force Faero is also zero, then for small deflections
the dynamics of the actuator may be accurately described by the constant gain K = K1, independent of
deflecting the control surface up- or downwards. In case of an upward deflected control surface (upper part
of Figure 1) we assume that Faero is not zero and typically this force will try to push the control surface
back to a deflection angle of zero. Hence, if a small additional upward deflection is commanded, the actuator
has to work against the disturbing force Faero and therefore the dynamics will be slower compared to a
small downward deflection where Faero supports the actuator in deflecting the control surface towards zero.
Therefore for each situation (zero or upward initial deflection combined with additional up- or downward

aADDSAFE is the acronym of the European research project Advanced Fault Diagnosis for Safer Flight Guidance and
Control – AAT-2008-RTD-233815 (2009-2012).
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K = K4

K = K5

K = K1

K = K1

K = K2

K = K3

Figure 1. Actuator gains for different deflections angles and signs of deflection rate

perturbation) one may derive different LTI models by linearization of (2). For the detailed actuator model
under investigation we obtained the result that K3 < K1 < K2, which exactly follows the interpretation
above. In addition, if Faero is symmetric to a deflection angle of zero we may obtain that K5 ≈ K3 and
K4 ≈ K2.

Following the above discussion and assuming that the aircraft parameters p are fixed, a suitable descrip-
tion for K was derived as

K(x, sign(ẋ)) = C0 + C1sign(ẋ)(x+ C2), (3)

where C0 may be interpreted as the nominal gain, C1 describes the influence of the deflection angle x on K
and sign(ẋ) allows to distinguish between upward and downward movements of the control surface. C2 may
be interpreted as a position offset, as the assumption that Faero is zero at zero deflection angle is not true
in reality.

2. Derivation of model coefficients using optimization

The coefficients C0, C1 and C2 are obtained by solving

min
C0,C1,C2

(
1

n− 1

n∑
i=1

(xr(ti)− xLPV (ti))
2

) 1
2

, (4)

where xr(ti) denotes the output of the detailed nonlinear actuator model (2) at time ti, xLPV (ti) is the
output of the quasi-LPV model (1) at time ti with K given as (3) and n is the number of equidistant time
steps of a simulation with various input commands u(t).

3. Derivation of globally valid model using affine polynomial fitting

As Faero strongly depends on the actual position in the flight envelope and the aircraft condition, we will
obtain different values for C0, C1 and C2 for different parameters p. To include also the dependency on p in
the quasi-LPV model, we generated optimal values for C0, C1 and C2 by solving (4) for a grid of parameter
values p as given in Table 1. In order to get a globally valid model, an affine polynomial fitting of the optimal
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Grid Point m[t] Xcg[%] h[ft] Vcas[kts]

1 120 21 0 154.6

2 120 21 0 275

3 120 21 37000 176.1

4 120 21 37000 275

5 120 38 0 154.6

6 120 38 0 275

7 120 38 37000 176.1

8 120 38 37000 275

9 200 21 0 190.5

10 200 21 0 275

11 200 21 37000 229.6

12 200 21 37000 275

13 200 38 0 190.5

14 200 38 0 275

15 200 38 37000 229.6

16 200 38 37000 275

Table 1. Grid point values of parameters

grid-point coefficients was applied using the methods from,3 resulting in a polynomial description of the form

Ci = Ci(p) = Ci,0 + Ci,mm+ Ci,XcgXcg + Ci,hh+ Ci,VcasVcas, i = 0, . . . , 2. (5)

A simulative validation of the model at the grid point flight parameters has shown that the simple affine
polynomial approximation of the optimal grid point values allowed to have a good model accuracy. Hence,
no higher order approximations were generated. In all cases we could even neglect some of the coefficients
in (5) as they had almost no influence. An investigation of the derived polynomial coefficients revealed that
Vcas has a strong influence on the actuator dynamics as Faero significantly depends on this variable.

Finally, a quasi-LPV model of the form (1), with K = k(ρ) and ρ = (x, sign(ẋ), p) was derived, which is
suitable for fault diagnosis applications and simple enough to be implemented in the aircraft flight control
computer.

4. Simulation results

In Figures 2-3 some simulation results are shown, where xr is the actuator position of the detailed nonlinear
model, xLPV the actuator position of the quasi-LPV model, xc the actuator position of a simple actuator
model with fixed K = 1/0.07. eLPV = xr − xLPV and ec = xr − xc are the corresponding position errors.
Simulations with small and large control surface deflections are shown and in both cases a remarkable
reduction of the position error can be seen when using the quasi-LPV model instead of the simple model
with constant gain K.
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Figure 2. Simulation: elevator, grid point 9, small deflection
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Figure 3. Simulation: elevator, grid point 3, large deflection
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III. LPV Detector Synthesis

A. The robust actuator fault detection problem

In what follows we will assume that the parameters are constant. Thus, we can alternatively use an input-
output representation of the actuator fault model in the form

y(s) = Gu(s, ρ)u(s) +Gu(s, ρ)f(s), (6)

where y(s), u(s), and f(s) are the Laplace-transformed quantities of y(t), u(t), and f(t), respectively, and
Gu(s, ρ) is the parameter dependent transfer function from the control input to output as well as from the
fault input to output. Gu(s, ρ) corresponding to (1) is given by

Gu(s, ρ) =
k(ρ)

s+ k(ρ)
(7)

Regarding the unknown parameter vector ρ, generally we can assume that it has two components: ρ1 ∈
Π1, which is not measurable, and ρ2 ∈ Π2, which is measurable, and thus ρ ∈ Π := Π1 × Π2. In the
case of the elevator actuator model ρ1 = (m,Xcg), while ρ2 = (x, sign(ẋ), Vcas, h). The synthesis problem
formulated bellow attempts to solve basically a robust fault detection problem with respect to ρ1, while
taking advantage of the availability of ρ2 by attempting to achieve robustness using an LPV gain scheduling
approach.

A linear residual generator (or fault detection filter) processes the measurable system outputs y(t) and
control inputs u(t) and generates the residual signals r(t) which serve for decision making on the presence
or absence of faults. We use a parameter dependent filter of the form

r(s) = Q(s, ρ2)

[
y(s)

u(s)

]
, (8)

where Q(s, ρ2) is the 1× 2 transfer-function matrix of the filter, which explicitly depends on the measurable
parameter ρ2 (e.g., via an equivalent state-space realization of the filter). For a physically realizable filter,
Q(s, ρ2) must be proper with respect to s (i.e., only with finite poles) and robustly stable (i.e., only with
poles having negative real parts for all values of ρ2).

The residual signal r(t) in (8) generally depends via the system outputs y(t) on all system inputs u(t)
and f(t). The residual generation system, obtained by replacing in (8) y(s) by its expression in (6), is given
by

r(s) = Ru(s, ρ)u(s) +Rf (s, ρ)f(s) (9)

where
[Ru(s, ρ) |Rf (s, ρ) ] := Q(s, ρ2)Ge(s, ρ) (10)

with

Ge(s, ρ) :=

[
Gu(s, ρ) Gu(s, ρ)

1 0

]
(11)

For a successfully designed filter Q(s, ρ2), the corresponding residual generation system is proper with respect
to variable s, robustly stable and achieves specific fault detection requirements (e.g., exact or approximate
decoupling of control inputs from the residuals).

We can now formulate the following Robust Fault Detection Problem (RFDP): For the LPV-system (6),
determine a proper and stable linear residual generator (or fault detector) filter having the form (8) such
that for all ρ ∈ Π and a given γ > 0 there exists β > 0 such that

(i) ‖r(t)‖ ≤ γ‖u(t)‖ when f(t) = 0 and for all u(t);

(ii) ‖r(t)‖ ≥ β‖f‖ for u(t) = 0

(iii) r(t) is asymptotically bounded.
Here ‖ · ‖ denotes an appropriate signal norm. The gap defined as β/γ measures the sensitivity of detec-
tion task, where larger values guarantees the detection of smaller faults. The exact solution of the RFDP
corresponds to the case when we can choose γ = 0, and the corresponding gap is ∞.
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The fulfillment of requirement (ii) ensures that faults produce non-zero residual responses. When design-
ing fault detectors, this requirement for fault detectability is usually replaced by the stronger condition that
persistent (e.g., constant) faults produce asymptotically persistent residuals. This requirement is known as
strong fault detectability.

The requirements (i) and (ii) can be easily transcribed into equivalent synthesis conditions. The ap-
proximate decoupling condition (i) requires that Ru(s, ρ) has a small norm ∀ρ, and thus can be achieved by
minimizing the worst-case norm

max
ρ∈Π
‖Ru(s, ρ2)‖ (12)

With a suitable scaling of the detector, we can always achieve that this worst-case norm is equal to a given
γ. The (detectability) condition (ii) is equivalent to

β := min
ρ∈Π
‖Rf (s, ρ)‖ > 0. (13)

Additionally, the condition (iii) on the boundedness of the residual signal requires that Rf (s, ρ) as well as
Ru(s, ρ) are stable transfer functions for all ρ.

In the next subsection a synthesis procedure to solve the formulated RFDP is addressed using a combina-
tion of symbolic and numerical computational tools. In this paper, we specialize this procedure by providing
explicit analytical solutions of the RFDP for two categories of actuator faults.

B. Parametric nullspace method

Assume temporarily that ρ is measurable and let Q(s, ρ) be a detector which exactly solves the RFDP. Thus,
Q(s, ρ) is stable and proper and for all ρ ∈ Π satisfies

Q(s, ρ)G(s, ρ) = 0, (14)

where

G(s, ρ) =

[
Gu(s, ρ)

1

]
(15)

and
Rf (s, ρ) 6= 0. (16)

From (14) it appears that Q(s, ρ) is a left annihilator of G(s, ρ). The synthesis method proposed by
Varga5 determines Q(s, ρ) symbolically to serve for obtaining an approximation Q(s, ρ2) by minimizing, for
example, the worst-case error norm

max
ρ∈Π
‖Q(s, ρ)−Q(s, ρ2)‖ (17)

such that conditions (13) for Q(s, ρ) = Q(s, ρ2) jointly with the stability requirement on Ru(s, ρ) and Rf (s, ρ)
are fulfilled. Possible norms to be employed in (17) are the H2- or H∞-norms,6 or even the ν-gap norm.7

Alternatively, the weighted worst-case error norm

max
ρ∈Π
‖(Q(s, ρ)−Q(s, ρ2))Ge(s, ρ)‖ (18)

can be minimized to fulfill both conditions (12) and (13).
The result of the nullspace computation based approach is a parametric state-space realization for Q(s, ρ)

of the form

Q(s, ρ) =

[
AQ BQ(ρ)

CQ DQ(ρ)

]
, (19)

where AQ and CQ are constant matrices, and only BQ(ρ) and DQ(ρ) depend on ρ.
The realization of the transfer function from the fault to the residual Rf (s, ρ) can be also explicitly

obtained in the form

Rf (s, ρ) =

 AQ B̃f (ρ)

CQ D̃f (ρ)

 ,
thus sharing the constant matrices AQ and CQ.
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C. Computation of approximative detectors

In the case when ρ contains both non-measurable components ρ1 as well as measurable ones ρ2 we can
use the computed Q(s, ρ) := Q(s, ρ1, ρ2) to obtain a suitable approximation Q(s, ρ2) depending only of ρ2.
The solution of the approximation problems (17) or (18) can be addressed by exploiting the form of the
realization (19) by choosing Q(s, ρ2) to share the constant matrices AQ and CQ

Q(s, ρ2) =

 AQ BQ(ρ2)

CQ DQ(ρ2)

 (20)

There are several possibilities to robustly fit BQ(ρ2) and DQ(ρ2) to BQ(ρ1, ρ2) and DQ(ρ1, ρ2), respec-
tively. We mention a few of them in what follows:

Structure preserving fitting: This involves finding a value ρ1 of ρ1 which produces the best approxima-
tion BQ(ρ2) := BQ(ρ1, ρ2), by solving

ρ1 = arg min
z∈Π1

max
ρ∈Π
‖BQ(ρ1, ρ2)−BQ(z, ρ2)‖

Similar computation is performed for DQ(ρ2).

Parameter fitting: We can assume forBQ(ρ2) a certain parametric form B̃Q(ρ2, θ) (e.g., affine, polynomial,
rational, etc.) and fit the free parameters θ by solving

θ = arg min
θ

max
ρ∈Π
‖BQ(ρ)− B̃Q(ρ2, θ)‖

and define BQ(ρ2) := B̃Q(ρ2, θ) (and similarly for DQ(ρ2)).

Input-output fitting: The fitting is performed by globally minimizing a suitable worst-case system norm

max
ρ∈Π
‖Q(s, ρ)−Q(s, ρ2)‖

For BQ(ρ2) and DQ(ρ2) in (20) either a structure preserving form or a parametric form can be used.

Weighted input-output fitting: The fitting is performed by globally minimizing the worst-case weighted
system norm

max
ρ∈Π
‖(Q(s, ρ)−Q(s, ρ2))Ge(s, ρ)‖ (21)

For BQ(ρ2) and DQ(ρ2) in (20) either a structure preserving form or a parametric form can be used.

When using standard optimization tools to solve the above min-max parameter fitting problems, the
evaluation of the above criteria involves performing a worst-case optimization-based search. Thus, function
evaluations are potentially expensive, and therefore an alternative is to replace the semi-infinite optimiza-
tion problems by computationally tractable finite dimensional optimization problems. A frequently used
approximation method is to use instead the continuous domain Π only a discrete set of points ΠN =
{ ρ(1), ρ(2), . . . , ρ(N)}, obtained, for example, by parameter gridding. By using a sufficiently dense grid of
points, it is expected to obtain a satisfactory approximation of the continuous-case worst-case. One advan-
tage of the gridding based approach is the possibility to perform in parallel all function evaluations necessary
for the determination of worst-case maximum.

IV. Fault detection and diagnosis system for fault identification

In this section we discuss the setup of a typical fault detection and diagnosis (FDD) system, used to
detect and identify different types of actuator faults. Such a FDD system is depicted in Fig. 4, where besides
the residual generator, blocks for residual evaluation, decision making and fault identification are present.
Fault identification involves the determination of the type of the fault signal f from the generated residual
signal r and the measured output y and controlled input u signals. Typical actuator faults to be identified
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Figure 4. FDD system structure for actuator fault identification

are jamming, runaway, oscillatory failure, etc. The determination of the fault characteristics is crucial for
triggering an adequate reconfiguration of the actuation systems (e.g., switching to a backup actuator) or
even of the flight control laws (e.g., by changing the control distribution strategy).

The FDD structure in Fig. 4 includes only a single residual generator for fault detection (or simply, a fault
detector), which processes the commanded actuator position u and the measured current actuator position y
and generates the scalar residual signal r. For the robust fault detection, a single LPV detector is sufficient,
where ρ2 is the scheduling variable as described in section III. For the identification of different types of
faults, individual post processing of the residual is performed, by taking into account the different possible
shapes of fault signals as well as the specific requirements on detection times. For nf different types of fault
signals to be detected, a multi-channel structure is used for the residual evaluation, decision making and fault
identification. For each fault type to be identified, a residual evaluation block and decision making block is
present, whose parameters are chosen to reflect the characteristics of the assumed fault signal. Thus, for the
j-th type of fault, an approximation θr,j of the residual norm ||r|| is computed in the evaluation block. Then,
this value is used in the threshold-based decision making block to generate the decision signal ij , which, if
nonzero, triggers a signal based fault identification process. Each identification block provides qualitative
and quantitative information of the faults by processing the input and output signals u and y of the actuator,
as well as the residual signal r. The output of this block is the fault classification signal cj , which can be
used to trigger specific control reconfiguration actions.

Within this paper we use a structure with only two channels, to generate the fault classification signals
for actuator jamming in null position (c1) and actuator runaway (c2). However, the structure can easily
be extended with additional channels for the detection of other actuator faults, as for example, actuator
jamming in nonzero position or oscillatory faults.

A. Residual generation filter synthesis

The synthesis method presented section III has been applied to address two fault scenarios of the ADDSAFE
Benchmark: the elevator runaway and elevator jamming at null position. Assuming all components of ρ
entering in the model (7) are measurable (i.e., ρ2 = ρ), both problems can be addressed using a first order
detector of the form

Q(s, ρ) =

[
a

k0

s+ k(ρ)

s+ a
− k(ρ)a

k0(s+ a)

]
, (22)

where a is an arbitrary positive value specifying the dynamics of the detector and k0 is a nominal value of
the gain k(ρ). This detector leads to an exact decoupling of control inputs in (10), thus Ru(s, ρ) = 0, and
to the fault-to-residual transfer function

Rf (s, ρ) =
k(ρ)

k0

a

s+ a

9 of 18

American Institute of Aeronautics and Astronautics

Page 9 of 18

http://mc.manuscriptcentral.com/aiaa-mgnc11

AIAA GNC/AFM/MST 2011 Conference



Thus, the residual signal provides a filtered estimation of the fault multiplied with k(ρ)
k0

, with the property

that limt→∞ r(t) = k(ρ)
k0

limt→∞ f(t). This allows to easily reconstruct the actuator fault signal f for further
use in fault identification.

The corresponding state-space realization of the residual generator has the matrices

AQ = −a, BQ(ρ) = a

[
k(ρ)− a

k0

k(ρ)

k0

]
, CQ = 1, DQ =

[
a

k0
0

]
The chosen form (22) of the detection filter leads to a state-space realization with a constant feed-through
matrix DQ. This has the major advantage to prevent all direct effects on r of the discontinuities in the
scheduling signal ρ2 (e.g., jumps due to the presence of the signum-function in (3)).

In the case when the uncertain components in ρ1 are present, we use a similar detector as in (22), but with

k(ρ) replaced by an approximation k̃(ρ2), determined such that the error δ = k(ρ1, ρ2)− k̃(ρ2) is minimized

over all ρ1 and ρ2 values. When employing k̃(ρ2), the resulting transfer functions from u to r and f to r can
be expressed as

Ru(s, ρ) =
asδ

k0(s+ a)(s+ k̃(ρ2) + δ)
, Rf (s, ρ) =

a(k̃(ρ2) + δ)(s+ k̃(ρ2))

k0(s+ a)(s+ k̃(ρ2) + δ)

It follows, that as long as δ is sufficiently small, a satisfactory decoupling of inputs can be achieved simulta-
neously with the detection of faults.

B. Residual evaluation and decision making

The evaluation of the residual signal often requires the computation of a measure of the residual signal
energy, for which the 2-norm of the signal is usually an appropriate choice. The so called Narendra signal
evaluation scheme can be used in the form

θr,j(t) = αr,j ||r(t)||2 + βr,j

∫ t

0

e−γr,j(t−τ)||r(τ)||2dτ, (23)

where θr,j(t) can be generated by the first order differential equation

ξ̇r,j(t) = −γr,jξr,j(t) + βr,j ||r(t)||2
θr,j(t) = ξr,j(t) + αr,j ||r(t)||2,

(24)

The filter parameters are αr,j ≥ 0 and βr,j ≥ 0 representing weights for instantaneous and long-term values,
respectively, and γr,j > 0 is the forgetting factor. The evaluation signal θr,j(t) is compared to a specific
threshold Jthr,j in the decision making process to determine the decision signal ij using the decision logic

θr,j(t) < Jthr,j ⇒ ij(t) = 0 ⇒ no fault

θr,j(t) ≥ Jthr,j ⇒ ij(t) = 1 ⇒ fault
(25)

The signal θr,j(t) is ideally equal to zero or sufficiently small in fault free situations, whereas it shall exceed
the threshold Jthr,j when a fault occurs in the system. Hence, the appropriate selection of the values of
the free parameters αr,j , βr,j or γr,j , together with an appropriate threshold Jthr,j essentially influences the
performance of the FDD system.

C. Signal based fault identification

The decision signals ij can be used to trigger the fault identification process which determines qualitative
and quantitative information of the occurred fault. In the case of an actuator jamming, this would be the
exact position where the actuator is stuck, while for the runaway fault the runaway rate is an important
parameter. In what follows we discuss two identification schemes: (1) for the actuator jamming in null
position, and (2) for an actuator runaway with different runaway speeds. In both cases, we consider the
important case of elevator actuator faults.
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1. Actuator jamming at null position

An elevator jamming in null position appears to be the case which is the most difficult to detect, as the
fault can be detected only if a nonzero input signal u acts. Hence, if the fault appears during a cruise or
level flight condition with y = 0 and u = 0, the residual signal will remain zero and such a fault can not be
detected. However, the jamming in null can be detected as soon as any flight maneuver begins, in which
case a nonzero residual r result for u 6= 0 and y = 0.

To identify the fault as actuator jamming in null position, a signal based analysis can be performed.
This will involve the evaluation signal θr,1(t) for the residual signal r using the Narendra signal evaluation
method, as well as similar evaluation signals θu(t) and θy(t) for the input and output signals, respectively.
The corresponding Narendra filters to generate θu(t) and θy(t) are

ξ̇y(t) = −γyξy(t) + βy||y(t)||2
θy(t) = ξy(t) + αy||y(t)||2,

(26)

and respectively

ξ̇u(t) = −γuξu(t) + βu||u(t)||2
θu(t) = ξu(t) + αu||u(t)||2,

(27)

Here, αy, βy and γy and αu, βu and γu are the corresponding weights and forgetting factors used in the
filters.

An actuator fault is detected if θr,1(t) exceeds the corresponding threshold Jthr,1 . In this case, an
actuator jamming in null position occurred provided θy(t) is sufficiently small, thus satisfies θy(t) < Jthy
for an appropriate threshold Jthy for zero signals, and simultaneously the signal θu(t) exceeds the threshold
Jthu for nonzero signals. We can combine the three conditions for r, y and u into a single condition for the
identification of an actuator stuck in null position, by defining the classification signal c1 as

c1 = 1 if (θr,1(t) > Jthr,1) ∧ (θu(t) > Jthu) ∧ (θy(t) < Jthy ) is true

c1 = 0 if (θr,1(t) > Jthr,1) ∧ (θu(t) > Jthu) ∧ (θy(t) < Jthy ) is false
(28)

2. Actuator runaway

An actuator runaway can usually appear with different velocities depending, for example, on the source of
the fault (e.g. hydraulic system, control loop) and the current aerodynamic forces acting on the control
surface. However usually it can be assumed that during the occurrence of the fault the runaway velocity
remains constant until the actuator reaches is deflection limit. Therefore, the variation rate ẏ of the actuator
output signal y will be nonzero during the occurrence of the runaway. For monitoring the magnitude of ẏ,
we use, similarly as for the other signals, a Narendra filter of the form

ξ̇ẏ(t) = −γẏξẏ(t) + βẏ||ẏ(t)||2
θẏ(t) = ξẏ(t) + αẏ||ẏ(t)||2,

(29)

can be used to approximate the norm of ẏ. For the identification of runaway, θẏ(t) is compared to the
threshold Jthẏ to decide if the actuator is moving, i.e. θẏ(t) > Jthÿ or not, i.e. θẏ(t) ≤ Jthẏ . Note that
the latter condition can be used to identify also a jammed actuator in an arbitrary nonzero position. As
the condition θẏ(t) > Jthÿ might also be true for other type of faults (e.g., oscillatory failure), an additional
check is required to identify actuator runaways. Assuming a constant velocity ẏ in the case of a runaway,
we can check that the variance σẏ of the actuator velocity ẏ is zero or sufficiently small. This variance is
monitored over a time window of length Tσẏ and, in the case of runaway, it must be below a threshold Jth,σẏ .
Note that this condition is also fulfilled during an actuator jamming.

We can combine the three conditions for r, ẏ and σy into a single condition for the identification of an
actuator runaway, by defining the classification signal c2 as

c2 = 1 if (θr,2(t) > Jthr,2) ∧ (θẏ(t) > Jthẏ ) ∧ (σẏ < Jth,σẏ ) is true

c2 = 0 if (θr,2(t) > Jthr,2) ∧ (θẏ(t) > Jthẏ ) ∧ (σẏ < Jth,σẏ ) is false
(30)

The main challenge in the case of runaway is the need for an early detection and identification of this fault,
to prevent significant movements of the corresponding control surface.
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V. FDD system assessment

We described in the previous sections a fault detection and identification approach for aircraft actuator
faults which is intended to be implemented for a component level actuator fault monitoring. In a real appli-
cation, several FDD systems as presented in Fig. 4 have to be used for monitoring different actuators/control
surfaces. Since the resulting overall FDD system operates jointly with the flight control system, its assess-
ment must be naturally performed employing the augmented nonlinear closed-loop aircraft model. This
augmented closed-loop aircraft structure includes the open-loop aircraft, actuators, sensors and a robust
stabilizing controller and can be modelled by a nonlinear state-space model description of the form

ẋcl(t) = F (xcl, up, d, f, ρ1)

ym(t) = G(xcl, up, d, f, ρ1)
(31)

where xcl is the state vector of the closed-loop system, up is the pilot input vector, ym denotes the measured
output vector, d is an unknown disturbance vector, f is a vector of actuator fault signals, and ρ1 is a constant
parameter vector (e.g., mass m and center of gravity Xcg). F and G are suitable nonlinear vector functions.
We will not further detail the structure of this system, but we will assume that the closed-loop system is
robustly stable over the whole flight domain and for all parameter values.

For the assessment of the performance of the fault monitoring, we consider a single FDD system as
in Fig. 4 for an elevator actuator. The residual generator has the LPV gain scheduling form (8), with a
realization of Q(s, ρ2) given in (20).

Two identification channels are setup to identify two types of fault signals fj ∈ Fj , for j = 1, 2, where
F1 is the class of fault signals leading to actuator jamming in null position, and F2 contains the fault signals
leading to actuator runaway. While F2 can be explicitly described to contain maximum amplitude step
signals with initial slopes ranging in a given interval of values, F1 is only implicitly defined by the condition
that the actuator output is stuck in null position.

Typical performance requirements used in the industry are expressed in terms of the false alarm rate
(FAR), the missed detection rate (MDR) or the detection time performance (DTP). Due to the presence of
unknown external signals (e.g., pilot inputs, wind disturbances) and parametric uncertainties these perfor-
mance criteria are hardly computationally tractable, because their computations rely on expensive simulation
runs and involve the solution of worst-case optimization problems with semi-infinite constraints. To overcome
this computational bottleneck, we propose in what follows an assessment approach which, when applicable,
provides suitable thresholds for decision making which completely avoid false alarms and missed detections.

A. Robustness assessment

To define computable approximations of the FAR and MDR criteria, simplifying assumptions are necessary.
Instead of arbitrary signals up and d, in practical applications it is sufficient to use bounded input signals in
a given finite class U and bounded disturbance signals in a finite class D. A false alarm bound for the fault
fj can be defined as

Jfth,j = sup
ρ ∈ Π

up ∈ U
d ∈ D
f = 0

max
t≤tfin

θr,j(t) (32)

Here, tfin is chosen in accordance with the duration of maneuvers. To avoid false alarms, the threshold

Jthr,j used in the decision blocks must be chosen such that Jthr,j > Jfth,j .
The minimization of MDR addresses the fault detectability condition (ii) of the RFDP and can be seen

equivalent to maximize the so-called detection bound defined as

Jdth,j = inf
ρ ∈ Π

up ∈ Uj
d = 0

f ∈ Fj

max
t≤tdetec

θr,j(t) (33)
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Here, Uj is the class of inputs used for a specific maneuver during which the fault fj ∈ Fj occurs and has to
be detected within a specified detection time tdetec. Note that the detection times for different fault signals
in Fj may be different.

As a robustness measure of the fault detection performance, the smallest detection gap Jdth,j − J
f
th,j can

be used, or alternatively the detection factor defined as

νj :=
Jfth,j
Jdth,j

(34)

If Jdth,j − J
f
th,j > 0 (or equivalently νj < 1), a constant threshold can be chosen to serve for fault detection,

ensuring no false alarms and no missed detections.
For the computation of Jfth,j and Jdth,j , solving global worst-case optimization problems to find the

worst-case parameter combinations appears to be the most adequate choice. However, less demanding
computational approaches can be used, as a gridding based worst-case search over the flight envelope and
parameter space, or Monte-Carlo simulations, to determine approximations of the upper bound Jfth,j and

lower bound Jdth,j .
The detection time of a fault fj can be determined as

td,j = min
t≤tfin

{ t | θr,j(t) > Jthr,j}. (35)

Since the required detection time tdetec,j may depend on the characteristics of the fault fj (e.g., magnitude
or rate), it is reasonable to use the detection time factor ϑj instead of the absolute detection time for a worst
case search:

ϑj = sup
ρ ∈ Π

u ∈ Uj
d ∈ D
fj ∈ Fj

td,j
tdetec,j

(36)

B. Decision thresholds

1. Threshold for residual signal

To avoid both false alarms and missed detections, the threshold Jth,j used in the decision block must be
chosen such that

Jfth,j ≤ Jthr,j < Jdth,j (37)

Such a choice is always possible by increasing the size of minimum amplitude of faults to be detected. A
choice of threshold as Jthr,j = Jfthr,j + εr,j , with a small positive gap εr,j , allows the reliable detection of
smallest detectable faults.

2. Thresholds for detecting actuator jamming

In the case of the actuator jamming in null position, the actuator output y is zero for all values of the
actuator input u. The detection of such a fault is only possible if simultaneously the actuator input signal
is significantly different of zero. Since the output evaluation signal θy(t) = 0 (or nearly zero), the choice
of a small threshold Jthy > 0 to check that θy(t) ≤ Jthy is straightforward. However, to simultaneously
check that u 6= 0 via θu(t) ≥ Jthu , the choice of an appropriate threshold Jthu is necessary, which takes into
consideration the least norm of the control signals during a turn maneuver in the absence of fault, over all
flight conditions and all parameter values. Therefore Jthu has to fulfill the conditions

0 < Jth,u ≤ inf
ρ ∈ Π

up ∈ U1
d ∈ D
f = 0

max
t<tfin

θu(t) (38)

where U1 is the class of pilot inputs used to perform the turn maneuver. Thus, the determination of Jthu
involves the solution of a worst-case global minimization problem to determine the upper bound in the
right-hand side of (38).
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3. Thresholds for detecting actuator runaway

In the case of an actuator runaway, the early detection and identification of the fault is required, before the
variation of the control surface deflection is bellow a certain acceptable value. Thus, the identification of the
runaway must occur during the output signal amplitude rise time and requires the checking of the conditions
ẏ 6= 0 and ẏ = constant. The latter condition tacitly assumes that the runaway occurs with a constant rate
of variation ẏ during the whole detection time. To check the condition ẏ 6= 0, a threshold Jthẏ is used to
verify that θẏ(t) ≥ Jthẏ . The value of the threshold Jthẏ must fulfill the condition

0 ≤ Jth,ẏ < inf
ρ ∈ Π

up = 0

d ∈ D
f ∈ F2

max
t≤tfin

θẏ(t) (39)

which ensures that the least effect of the runaway on θẏ is taken into account and also ẏ 6= 0 ( ẏ = 0
would indicate an actuator jamming). To check ẏ = constant, the variance σẏ of the actuator’s velocity ẏ
is monitored over a time window of length Tσẏ . The variation rate is constant, if σẏ ≤ Jth,σẏ , where the
threshold Jth,σẏ has to fulfill the condition

Jth,σẏ > sup
ρ ∈ Π

up ∈ U
d ∈ D
f ∈ F2

min
t≤tfin

σẏ(t). (40)

to account for the disturbances D and inputs U influencing σẏ.

VI. Application examples

In this section we describe the application of the proposed approach to a nonlinear model of a closed-
loop aircraft including a nonlinear control law ensuring robust stability over the whole flight envelope. The
aircraft model has been previously used in a flight control law clearance study and is described in 4 . The
bounds of the flight envelope (altitude, speed) and of the mass and center of gravity position are given in
Table 2.

Parameter Variable Minimum Maximum

Altitude (ft) h 0 41000

Calibrated airspeed (kts) Vcas 120 325

Mass (t) m 120 233

Center of gravity (%) Xcg 17 41

Table 2. Values of the envelope bounds

While the limits of the altitude h and the mass m in Table 2 are fixed, the limits of the center of gravity
Xcg depend on the actual mass, while the limits of the calibrated airspeed Vcas depend on the actual mass
and altitude. This leads to somewhat lower bounds for these parameters depending on the concrete flight
condition.

The nonlinear closed-loop aircraft model has been augmented with an FDD system as in Fig. 4, which
includes a LPV residual generator determined using the LPV actuator model presented in section II. Further
components of the FDD system are the blocks for residual evaluation, decision making and fault identification
of two actuator faults: jamming at null position and runaway.

The detection of actuator faults is an important issue for aircraft certification. Typical actuator faults to
be detected are jamming with the actuator stuck at a constant value, actuator runaway with different rates of
variations, or oscillations around the measured values. In this study the actuator stuck at null position and
the actuator runaway with different runaway rates are investigated. The exact fault specifications including
the required detections times are given in Table 3.
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Failure type Specification Detection time requirement

Jamming: (F1) at null position during a turn maneuver before turn maneuver is over

Runaway: (F2) with up to ±50deg/sec during level flight before elevator deflection exceeds ±2.5deg

Table 3. Definition of fault sets Fj for the actuator faults to be detected

A. Setup of an enhanced LPV detector

The implemented residual generator (22) provides a residual signal to serve for decision making on the
presence and absence of actuator faults. To allow a fast detection of the occurring faults, the dynamics of
the detector is specified with a = 10. The nominal gain is set to a mean value of k0 = 14. As the actual
nonlinear actuator includes physical rate and position limitations which are activated during certain aircraft
maneuvers, it is important to consider these limitations also in the setup of the residual generation filter.
Upper and lower position limitations umax and umin on the actuator input u(t) and a rate limitation u̇max
on the magnitude of u̇(t) are included in the residual filter, so that instead of u, the variable

ũ = R(u, umax, umin, u̇max) (41)

is the actual input applied via a nonlinear mapping R. The specific values of the limits are taken from the
nonlinear actuator model, where u̇max = 30 deg/s, umax = 15 deg and umin = −30 deg.

B. Setup of parameters of the FDD system

In the following, we discuss the setup of the parameters of the FDD system for the identification of two types
of elevator faults.

1. Elevator actuator jamming in null position

Common civil aircraft configurations employ two independent elevators, ensuring the aircraft’s maneuver-
ability even when the actuator of one elevator is jammed. The negative effects of jamming are well-known.
The increased drag leads to increased fuel consumption. A challenging case is an actuator jamming at small
deflections (e.g., in null position) as it may remain undetected for a long period of time. For example, during
a cruise phase, this fault is practically undetectable, due to the small inputs u used. Therefore, the detection
of actuator jamming in null position is addressed in what follows during a turn maneuver, where both the
altitude and the heading of the aircraft are changing.

To select an appropriate threshold Jthr,1 , the false alarm bound Jfth,1 and the detectability bound Jdth,1
have to be determined for a specific choice of the parameters of the evaluation filter (see Table 4). Jfth,1 is
determined for level flight and turn situations in the flight envelope, and additionally, for a finite set of typical
aircraft maneuvers U and typical disturbances D. The maneuvers U include, for example, piloted flights
with various pilot inputs (longitudinal/lateral stick doublets, pedal inputs, nose up/nose down demands)
or typical navigation maneuvers (level flight, flight path angle target mode, yaw angle target mode, speed
change, steady sideslip, coordinated turn, etc.). Typical disturbance inputs used to define D are random
wind speeds with given variances. The detectability bound Jdth,1 for the defined jamming is determined using
a worst-case global optimization relying on closed-loop simulations within the whole flight envelope. While
for the false alarm bound a value of Jfth,1 = 3.27 was determined, the lowest value of the detectability bound

was determined at Jdth,1 = 3.42, leading to a detection factor of ν1 = 0.96. Therefore a constant threshold
Jthr,1 can be selected, which allows a reliable detection of the jamming in null position in the whole flight
envelope without triggering false alarms. The threshold for the FDD system was chosen as Jthr,1 = 3.37,
which includes an additional gap of εr,2 = 0.1 added to the false alarm bound. The settings of the FDD
system parameters for the detection and identification of an actuator jamming are given in Table 4.

The instantaneous weight to determine the evaluation signals θr,1 is set to 0 so that the signal is not
occasionally increasing due to disturbances with greater magnitudes. The forgetting factor γr,1 has to be
set to a small value to ensure that the evaluation signal θr,1 exceeds the threshold in the required detection
time. The parameter setting for the fault identification is chosen in a way that a fast crossing of the defined
threshold is guaranteed so that the jamming of the actuator is detected before the turn maneuver is over
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Short term
Value

Long term
Value

Forgetting
Value Thresholds Value

weights weights factors

αr,1 0 βr,1 1 γr,1 0.001 Jthr,1 3.37

αu 0 βu 1 γu 0.01 Jthu 1

αy 0 βy 1 γy 0.9 Jthy 0.01

Table 4. FDD parameter setting for actuator jamming detection in null position

(to comply with the defined detection time requirements). The detection time factor ϑ1 was determined by
worst-case optimization with a value of ϑ1 = 0.96, indicating that the jamming can be detected in the whole
envelope in the required time.

2. Elevator actuator runaway

At signal level, the actuator runaway can be described as an output signal driven directly by the fault, i.e.,
y(t) = f(t), where the rate of variation ḟ(t) of the fault f(t) is constant and nonzero. We consider the case
when the magnitude |ḟ(t)| can take values in an interval [ 1, 50 ] deg/s, ranging from slow to very fast rates.
The runaway results in an undesired pitch maneuver and may significantly degrade the aircraft controllability.
In all cases, it will increase drag and thus the fuel consumption, and adds unnecessary workload to the pilot.
Hence, a fast detection of runaway is desirable. Typically, the detection of the runaway must be accomplished
before the elevator position exceeds ±2.5deg from its trimmed value. This aim results in a required detection
time tdetec depending on the actual fault rate ḟ . For setting the decision threshold, the values of the false
alarm bound Jfth,2 and detection bound Jdth,2 have been determined. For the specific choice of the parameters

of the evaluation filter (see Table 5), these values are Jfth,2 = 0.48 and Jdth,2 = 2.38, which lead to a very
satisfactory detection factor of ν2 = 0.19. This low value is mainly due to the highly dominant contribution
of the fault signal during the occurrence of the runaway, while the influences of the disturbances d ∈ D and
the inputs u ∈ U during a level flight in the envelope and the dedicated maneuvers are rather low. Based on
this result the threshold was set to Jthr,2 = 0.51, which includes an additional gap of εr,2 = 0.03 added to

the false alarm bound Jfth,2. The detailed values of the FDD system parameters for the runaway detection
are listed in Table 5, where the parameter setting for the fault identification is chosen in a way that a fast
crossing of the defined thresholds is guaranteed so that the fault detection is finished within the required
detection time.

Short term
Value

Long term
Value

Forgetting factors/
Value Thresholds Value

weights weights Observation window

αr,2 1 βr,2 0 γr,2 0 Jthr,2 0.51

αẏ 0 βẏ 1 γẏ 0.2 Jthẏ 1

Tσẏ 0.03 Jthσẏ 0.01

Table 5. FDD parameter setting for actuator runaway detection

The detection time analysis and the determination of the detection time factor results in a value of
ϑ2 = 0.8, so that even when the runaway appears at high velocities (i.e., near to ḟ = ±50 deg/s) the
detection is finished within the required time. For example, for ḟ = ±50 deg/s, this means that the absolute
detection time must be below 50ms, as at this time the elevator exceeds the deflection limit of ±2.5 deg given
by the detection time criteria.

3. Evaluation of worst-case search techniques

To demonstrate the effectiveness and reliability of the applied optimization-based worst-case search to de-
termine suitable values for the detection thresholds, we performed a comparison of this approach with the
Monte-Carlo simulation and gridding based search methods. We discuss here only the determination of the
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detectability bound Jdth,1 and the corresponding worst-case of the detection time factor ϑ1 for the actuator
jamming in null position. However, qualitatively similar results are to be expected for the false alarm bound
Jfth,1 as well. The optimization-based worst-case search has been performed using the optimization envi-

ronment MOPS (Multi-Objective Parameter Search) of DLR.2 Specifically, the differential evolution global
search method has been employed, which allows to perform many function evaluations in parallel. Thus,
parallel computations have been employed to alleviate the associated computational burden due to expen-
sive simulation runs. Table 6 shows the results for the computation of Jdth,1 and ϑ1 and the corresponding
required numbers of function evaluations (NFE). The optimization runs were performed on a Linux-cluster
consisting using 16 CPUs. An optimization run involving about 1000 function evaluations takes around 30
minutes.

Method Jdth,1 NFE ϑ1 NFE

Optimization-based search 3.43 1400 0.94 1000

Monte Carlo simulation 3.83 1400 0.70 1000

Gridding-based search 3.77 ≈ 1400 0.74 ≈ 1000

Table 6. Efficiency of different methods for detection bound and detection time determination

As it can be observed, the use of the Monte Carlo simulation with the same number of function evaluations
as performed with the optimization-based worst-case search (i.e., 1400), leads to a significantly larger value
of the estimated Jdth,1. In some cases, this could lead to missed detections when employing this larger value
of the bound for the determination of the decision threshold. Using a uniform grid in the 4-dimensional
parameter space corresponding to about 1400 points, leads to a comparable high value of the detection
bound. For this example, about 104 function evaluations were necessary for the Monte Carlo method to
determine a worst-case which nearly fits the value determined via optimization. However, this represents
an almost seven times larger computational effort. Interestingly, the grid-based search with 104 uniformly
generated grid points misses to find a better value than with 1400 grid points, which illustrates the potential
danger of discrete search based approaches in missing worst-case points lying between the grid points. It
appears, that the optimization-based worst-case search relying on global optimization techniques is the only
generally applicable method to reliably determine the false alarm and detection bounds.

C. Using a reduced set of scheduling variables

When the components of ρ1 = (m,Xcg) are not measurable, we have to employ k̃(ρ2) instead k(ρ). It appears

that for fault detection purposes, it is possible to determine a robust approximation k̃(ρ2) of k(ρ) in a simple
way by solving

{m∗, X∗cg} = arg min
m,Xcg

Jfthr,1 (42)

and setting k̃(ρ2) = k(ρ∗1, ρ2), where ρ∗1 = (m∗, X∗cg). The replacement of k(ρ) by k̃(ρ2) in the expression of
the fault detection filter (22) has practically no effects on the detection times. For example, for the detection
of the elevator actuator jamming in null position, the worst-case detection time becomes 48.85 sec when
using k̃(ρ2), instead of 48.8 sec when using k(ρ).

VII. Conclusion

In this paper we proposed a model-based methodology for the design of FDD systems for monitoring
aircraft actuator faults. The main elements of the proposed methodology are: (1) the development of
suitable LPV models of the underlying actuator, (2) the synthesis of LPV residual generators for robust
fault detection, (3) the setting up of the fault evaluation and decision making blocks, (4) the determination
of detection thresholds, and (5) the robustness assessment. While the synthesis of the LPV residual generator
relies on a fault monitoring approach at component (actuator) level, the tuning of the overall FDD system
parameters and the final robustness analysis involve the closed-loop aircraft. The assessment of the robustness
of the FDD system is supported by various optimization-based worst-case computations, as for example, the
determination of false alarm or detection bounds to serve for choosing suitable detection thresholds. The
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high computational burden involved by the parameter tuning via multi-objective optimization, and especially,
by the robustness assessment via global worst-case search, can be alleviated by extensively using parallel
computational techniques.

The proposed methodology has been applied for the design of an FDD system aiming the identification
of two types of elevator actuator faults: jamming in null position and runaway. This FDD system employs
a common residual generator designed using recently developed LPV synthesis techniques, and separate
signal based fault identification channels, one for each type of considered faults. The proposed FDD system
structure is generic, being able to cope with other types of fault, as jamming in an arbitrary position or
various oscillatory failures. The resulting FDD system has been set up to guarantee zero values of FAR
and MDR criteria. Also the requirements regarding the bounds on the fault detection times are completely
fulfilled in presence of parametric uncertainties over the whole range of values. Additional performance
improvements can be expected by performing an integrated tuning of all free parameters of the FDD system,
using an multi-objective optimization based approach. This aspect will be addressed in a future work.
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