
Steps Towards Scalable and
Modularized Flight Software
for Unmanned Aircraft Systems

Regular Paper

Johann C. Dauer1,*, Lukas Goormann1 and Christoph Torens1

1 German Aerospace Center (DLR), Institute of Flight Systems, Braunschweig, Germany
* Corresponding author E-mail: johann.dauer@dlr.de

Received 31 Aug 2012; Accepted 12 Feb 2014

DOI: 10.5772/58363

© 2014 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Unmanned aircraft (UA) applications impose a
variety of computing tasks on the on-board computer
system. From a research perspective, it is often more
convenient to evaluate algorithms on bigger aircraft as
they are capable of lifting heavier loads and thus more
powerful computational units. On the other hand, smaller
systems are often less expensive and operation is less
restricted in many countries. This paper thus presents a
conceptual design for flight software that can be
evaluated on the UA of convenient size. The integration
effort required to transfer the algorithm to different sized
UA is significantly reduced. This scalability is achieved
by using exchangeable payload modules and a flexible
process distribution on different processing units. The
presented approach is discussed using the example of the
flight software of a 14 kg unmanned helicopter and an
equivalent of 1.5 kg. The proof of concept is shown by
means of flight performance in a hardware-in-the-loop
simulation.

Keywords UAV, UAS, Flight Control Software,
Unmanned Helicopter

List of Abbreviations

CORBA Common object request broker architecture
FC Flight computer
FHA Functional hazard assessment
GCS Ground control station
HIL Hardware-in-the-loop
MM Mission management
MTOW Maximum take-off weight
PTP Precision time protocol
ROS Robot operating system
SF Sensor fusion
UA Unmanned aircraft
UAS Unmanned aircraft system

1. Introduction

Typically, unmanned aircraft (UA) that are designed to
fly in urban settings have to cope with computationally
costly algorithms. The fusion of all sensors for state
estimation, flight control and mission management is
already complex although these are only the basic

1Johann C. Dauer, Lukas Goormann and Christoph Torens:
Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

ARTICLE

Int J Adv Robot Syst, 2014, 11:X | doi: 10.5772/58363

International Journal of Advanced Robotic Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31011301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

modules. Furthermore, obstacle sensing has to be included
and environmental mapping integrated, which creates a
model of the environment and its impact on the mission.
On-board path planning is necessary if the area of interest
could cause a deviation from the predefined flight path.

These UA are supposed to operate automatically even with a
temporary loss of the data link to the ground control station
(GCS). Thus, all these algorithms have to run on-board. This
conglomerate of on-board software components, which
include, among others, the flight controller, mission
management, sensor fusion, path planning and the required
middle ware, is what we refer to as flight software.

Even for UA at the scale of dozens of kilograms which
can carry multicore processors and gigabytes of RAM this
is still an integration challenge. For small UA which only
weigh around a few kilograms this task increases in
difficulty. On smaller platforms, a mission specific
rigging tackles the lack of lifting capability. This
rearrangement of the avionics, however, requires a
flexible and scalable software architecture.

Consider, for example, the development of certain
algorithms of obstacle detection or on-board path planning,
as presented in [1]. These algorithms are computationally
costly and thus evaluation is more convenient on bigger
systems as the code optimization is less extensive.

However, these algorithms gain in importance the smaller
the system becomes, as these systems fly at lower altitudes
and are thus more likely to actually come across obstacles.
Furthermore, smaller systems often underlay less restrictive
governmental regulations and can be operated with less
organizational effort. Additionally, the components of the
avionics and the test-bed itself are less expensive. Thus, both
approaches have advantages for research.

Figure 1. Mid-size helicopter, MTOW 14kg

This paper presents a software concept where algorithm
development can be done on a UA of a convenient size.
The fully integrated algorithm can be directly used on UA
of different size.

Globally, this scaling is limited by two aspects. First, the
guidance, navigation and control algorithms can only be
applied to vehicles of a scale where the algorithm’s

properties do not change fundamentally. Consider, for
example, a flight controller as presented in [2]. Here it has
been demonstrated that an adaptive control algorithm
can be applied to different aircraft, provided an identical
interface definition and a vehicle dependent control
allocation are used. Second, the availability of hardware
imposes restrictions due to limits in downsized
equipment including CPU or sensors.

For the implementation our proposed concept, the
interactions between different CPU architectures have to
be considered. As these aspects vary significantly
depending on the architecture chosen, they are not
discussed in detail here and are left for a careful analysis
during the implementation stage.

It is desirable for the smaller system to approach the
overall computational power of the bigger system as
closely as possible. Depending on the electronic
components available, this might only be possible if
multiple miniature processing units of reduced power are
introduced. The overall trade-off is therefore to balance the
number of units and the complexity implied by multiple
parallel processing units. As a result, the software has to be
distributable to different computational units optionally.

The property of the presented software architecture
which enables its direct use on UA of different sizes, the
exchange of hardware units (processing unit and
periphery) and an optional distribution in different
processes is referred to as scalability in this paper. As will
be seen later, key elements are the communication, time-
synchronization modules and a “hardware equivalent”
implementation of the avionics.

The concept is illustrated by refactoring the flight software
of the 14 kg helicopter ARTIS (Autonomous Rotorcraft
Test-bed for Intelligent Systems) of the German Aerospace
Center shown in Figure 1. The software is transferred to a
small helicopter based on a T-Rex 450 platform with an
MTOW (maximum take-off weight) of around 1.5 kg, see
Figure 2. The description in this paper is limited to the
software environment. Changes needed to the guidance,
navigation and control algorithms themselves are not
outlined here as the concept is designed so as to be
independent from the specific algorithm implementation.

Figure 2. Small-size helicopter, MTOW 1.5kg

2 Int J Adv Robot Syst, 2014, 11:X | doi: 10.5772/58363

The next chapters are organized as follows: After a brief
overview of the related work, the general concept of the
flight software will be discussed. Afterwards, an avionics
concept is outlined for both helicopters. In the third
chapter the software implementation based on the
presented hardware design is briefly outlined. The
implementation is tested and evaluated in the final
chapter using a hardware-in-the-loop simulation which
includes the avionic systems in the loop.

2. Related Work

Flight software for UA has been the focus of research for the
past fifteen years. In many publications it has been shown
that it has similarities to both robotic and space applications.
A well-structured overview of related aspects of robotic and
space software is given in [3]. The following section shall
thus be confined to aspects of architectural representation
which affect the scaling problem of this paper.

Many papers present architectures as abstractions in
layers. One of the basic architectures is a three layer
abstraction [4] which became the basis of many
proceeding architectures. The layer called reactive
controller forms the basis which is overlaid by the plan
execution which coordinates the mission in a reactive
sense. The deliberative layer includes the third and less
frequent task imposing most of the computational costs.

Research has been published which specifies these layers
and adapts them according to several requirements.
Incorporating decision making as an explicit layer results
in a four layered architecture [5]. Within UA applications
there is often the need for a parallel process, which deals
with environmental awareness. Koo et al. presented a
multilayer description consisting of a strategic planner,
tactical planner and a controller supervised by a vision layer
in [6]. A conceptual extension with respect to requirements
of sensor data and which considers risk management is
presented in [3] and its application in collision avoidance is
proposed. Alternatively to segmentation into architectural
layers, these modules can also be categorized into cognition
layers (Perception, Cognition, and Action) from a situational
awareness perspective [7].

Further focus has been placed on the communication
between the modules as presented in [8], for example,
where inter process communication is modelled as peer-
to-peer pipes. Every process has one message queue. In
general, the modules responsible for this data exchange
are often included within the middleware. These aspects
have previously been addressed using middleware like
CORBA (Common Object Request Broker Architecture) in
[9]. In [10], also based on CORBA, the authors focused on
an avionics system divided into two parts – flight control
and vision payload.

Due to its platform, independent Interface Definition
Language, CORBA has advantages regarding communication
within systems of a hybrid nature in relation to platform and
programming language. This advantage comes at the cost of
an increased implementation effort and a more complex
system due to the translation workload in the multi-
language environment. In [7], ROS (Robot Operating
System) is chosen as middleware. However, ROS does not
support clock synchronization and imposes its own
architecture on all software modules. It is thus not suitable
for introduction of scaling in existing systems.

In [11] and [12], a hub-like communication management
is presented for the Berkely Plane UA. Here,
communication includes a state broadcast between
multiple UA. López et al. build a specific middleware for
UA avionics [13]. In their approach, the middleware
executes and manages the other modules. This approach
has the drawback that the middleware becomes
mandatory for each module. Based on that middleware, a
service-oriented architecture is described in [14] and [15].

Aspects of the software architecture in the sense of
intelligence abstraction shall not be discussed here, as
there is extensive literature as shown above. The modules
of the software presented in this paper can easily map to
some of the previously mentioned architectures.

A focus of this paper is the scalability in light up to
middle weight applications. To the knowledge of the
authors, there is no complete architecture representation
for the scalability and module interconnection from a
perspective for integration in UA of different scales.

3. Software Concept

The overall aim of an UA, such as the one presented in
the introduction, is automated flight. It flies through
areas with obstacles that are not necessarily known
exactly a priori and automatically accomplishes certain
missions within that area. Additionally, the vehicle is
equipped with mission-dependent payload.

The following gives a short overview of the smallest set
of mandatory higher level modules that have to be
integrated into the flight software. The four components
for the flight software are sensor fusion, flight controller,
trajectory generation and mission management.

The sensor fusion gathers sensor information and
estimates the current state of the UA using estimation
algorithms like Kalman filters. A trajectory generator
calculates the time-wise evolution of the position and
attitude command of the UA, cf. [16]. The flight controller
is an implementation of the control algorithms which can
be arranged in a control cascade, consisting of rate,

3Johann C. Dauer, Lukas Goormann and Christoph Torens:
Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

Figure 3. Information flow of the flight software and ground control station

attitude, velocity and path control; cf. [17] or equivalent.
Finally, the mission management is responsible for the
coordination of mission elements. It receives the mission
from the GCS and generates commands for the flight
control system [18].

These components are dependent on the current
equipment and mission of the vehicle. The sensor fusion
incorporates all primary sensors, which might, in general,
not be exchanged regularly. However, if applicable, a
particular payload can be included as well. Vision can
support navigation and be included in the sensor fusion, as
presented in [7]. The controller might be dependent on a
certain payload as well, for example, with swing loads.

Additionally, modules for logging and health monitoring
are required. These modules ensure the supervision of the
safety of the.

All these components are introduced in Figure 3. The
figure shows the two aspects of what is often referred to
as an “unmanned aircraft system”, the (ground) control
station (GCS) and the UA itself. Both sides can be
distributed on different computers or computational
units. The GCS can be separated into UA operations and
the operation of the payload.

Especially for small scale UA, the on-board components
are distributed on different computational units, as will
be shown later. The figure hence categorizes modules as
being lumped or distributed. The lumped modules run
on one computational unit alone, while the distributed
work on different units, optionally requiring an
information exchange.

The communication flow shown in the figure illustrates
the concept of inter-module communication. There is one

uplink between the ground control station and the UA.
The reason is that on-board hardware interfaces and
weight resources are limited on small systems. However,
for bigger systems additional uplinks may be equipped
implying a dedicated management of suitable up- and
downlink channel selection. In that case, payload control
might directly communicate with payload components
on-board. For scalable systems, these links are optional
and therefore are not shown.

There are actually two different aspects of the
communication used for inter-module data exchange. A
subscription system analogous to a bulletin board and
direct data links. The communication might be
implemented using a suitable middleware as
highlighted in the related work section. However, in
this case, for three main reasons, the communication
was implemented from scratch. This was done in order
to fulfil the requirements for this particular application,
gain knowledge and, most importantly, make the
communication module as light as possible. As
communication and time synchronization are the major
aspects of the scalability they are described in more
detail below.

Generally, distribution across different computational
units can be carried out at any of the communication
pipes. However, some criteria have to be considered. Not
fulfilling these criteria also corresponds to the identified
hazards of a functional hazard analysis (FHA) [26] that
has to be performed for certification considerations
(Section 0). The criteria consist of the following items:

• Communication will cause additional delays to the
data. Software modules may only be separated
hardware wise if the connection ensures that the
client module receives the required data in time. In
the example shown below, the flight controller

4 Int J Adv Robot Syst, 2014, 11:X | doi: 10.5772/58363

receives the state data of the UA delayed by an
additional network channel. This requires the
controller to have a sufficient time-delay margin.

• The amount of data to be transferred is smaller than
the bandwidth of the hardware interconnection.

• The overhead introduced by the additional layers
that the data runs through does not cause too
extensive a computational burden.

On the other hand a separation has to be carried out:
• if the subset of modules would otherwise exceed the

capacity of one computational unit,
• if the amount of interfaces required for peripheral

components exceeds the number of those available.

Furthermore, separation can enhance the security of the
system because the core system can be separated from a
rather experimental payload. More sophisticated but
experimental algorithms might be separated from more
robust ones as a fall back solution, as was done for the
sensor fusion described in [19].

Logging shall not be discussed in more detail, as there are
numerous ways of completing the task, which are
strongly dependent on the platform in use. It has to be
kept in mind that logging can, however, place significant
loads on the system if the gathered data is extensive. If
debugging of a particular algorithm requires costly
logging, this might actually be one criterion for its
development on a bigger system with sufficient
computational power to handle the logging.

The remaining support modules needed for the presented
architecture are outlined in the following sections.

3.1 Scalability Aspect: Health Monitoring

Health monitoring is one support module of the flight
software. Figure 4 shows its concept. Callbacks can be
registered which define health data, states and
corresponding actions: A data callback is registered
which the health monitoring uses to gather the required
data at a specified frequency. A corresponding criterion is
registered which is used to determine the state of the
module based on the data just gathered. Finally, a number
of pairs is registered which consist of the possible states
and callback to their corresponding actions.

Figure 4. Health monitoring including its guard (UML semantic)

Using this approach, the monitoring remains
independent of the hardware, each piece of equipment
and desired module can register itself and will
automatically be included within the monitoring.

The task of the health guard is to check the existence of
the health monitoring and in case of a crash to restart it. It
must therefore be informed of any registering process to
be able to recreate the health monitoring in its complete
state before a crash. Vice versa, the health monitoring
checks the existence of the health guard. The health
monitoring module offers a data structure for logging
and transferring to the GCS.

3.2 Scalability Aspect: Communication

The communication connects all the different modules
and processes on a UA. We decided to build a
communication module that manages the
communication between the UA and its ground control
station, between applications on distributed hardware
on-board and with other UA. The communication
module is designed so that it can easily be integrated
into existing modules and interfaces.

The communication module has to fulfil several
requirements. First of all it should be as fast and involve
as few computational overhead as possible, as avoiding
delays is crucial for many algorithms. On the other hand
it needs to be secure and reliable. As it also separates
different modules from each other, it may also be
regarded as a security layer in some cases.

A third requirement is that the communication structure
is sufficiently flexible. It shall be possible that
communication partners change over time. New
processes may be started or obsolete ones closed. None of
these dynamic changes in the communication structure
shall effect any other existing communication connection.
The communication itself can be divided into four
different types:

1. Bulletin board data: Periodically updated data which
might be used as an input to several modules: Usually
sent in small to mid-size packages, less than one kilobyte
in size. New values override old values. If one update
does not reach the receiver, sending the next update
without recovering the missed transfer will typically not
cause a failure. This data is published on a virtual bulletin
board and can be subscribed to by all interested
applications in the network.

2. Single-shot messages: Requests, commands or answers to
requests, sent to a dedicated module: These are usually
small packages, but are sent only once. Receiving these
messages is crucial.

5Johann C. Dauer, Lukas Goormann and Christoph Torens:
Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

3. Streamed data: Updates for larger data which might be
used as an input to several modules: In order to save
bandwidth only incremental updates are sent with each
step. It is critical that all messages reach the receiver in
the correct sequence to avoid inconsistent states.

4. File transfers: Data that is too large to send in one
package and need to be separated into several packages:
Usually the receiving algorithms are not designed to
interpret the data before they are completely and
correctly received.

These four types are supported by the communication
module. The implementation is based on so called topics.
A topic is specified by an identifier as shown in Figure 5,
which consists of three elements: One identifier for the
receiver, one identifier for the sender and one for the
transmitted data type and semantic.

The identifiers for the sender and receiver are composed of
an identifier for the hardware the application is running on
and an identifier for the instance of the application
unique on that hardware. The application identifier is
generated dynamically at the start of the process and not
predefined, e.g., during compile time. Thus, it is possible
to execute multiple instances of the same application with
unique identifiers on the same hardware.

So called slots are used to access the topics as sender or
receiver. Each application can assign slots to existing
topics. Typically, slots with the same topic identifier
should always – after some delay of communication –
hold the same data. Slots are divided into sending and
receiving slots. For each topic there should usually be just
one sending slot at the same time.

Figure 5. Topic Identifier

The sending slot determines if the connection needs to be
secure. This is the case for single-shot messages, streamed
data and file transfers. In that case the sending process is
asynchronous and the calling function can be notified if
any transmission error occurs. Furthermore, that slot can
also distribute large data into several packages
guaranteeing that the transmission will be done in
sequence and completely.

Receiving slots will hold an actual data package until a
new one is received. For the communication of streamed
data and commands, receiving slots can also trigger
events in order to notify connected algorithms of
incoming new data. It is guaranteed that all notified
algorithms may react to the event before the next data is
received. For bulletin board data, the receiver identifier of
one topic is set to “any interested entity” instead of a
specific receiver. The data is then distributed to any
receiving slot having the same topic ID. Behind the scenes
this is ensured by subscription the alternative, a
broadcast, would waste bandwidth.

A register of all known potential communication partners
and their application names is held in each process. One
process per hardware holds the so called “master”
application register. The master register exchanges his
knowledge of the actual network with all the other
master registers on different processing units. It shares all
news with the local registers.

Figure 6 shows an exemplary situation. The knowledge of
the complete network is distributed, so the application
register of Hardware Unit 1 and 2 will also be informed
of the existence of the application at Unit 4 although there
is no direct link. If the process holding the master register
is closed or aborted – such as Application 1 of Unit 2 –
any one of the other processes on the same hardware will
automatically take its role. However, all communication
will take place between reachable partners directly so that
a failure in any other module or master register will not
interrupt the communication.

Figure 6. Communication Handling: Local and Master
Application Register in different applications on distributed
hardware of one network

The communication module also abstracts the technical
implementation of the data links between the different
hardware. It can send the data packages over (wireless)
LAN as well as serial connection between two processing
units.

The communication module also collects information
about the communication taking place, such as the

6 Int J Adv Robot Syst, 2014, 11:X | doi: 10.5772/58363

frequency and bandwidth between communication
partners. That information can be used for routing as well
as for the health monitoring module.

3.3 Scalability Aspect: Time Synchronization

The decisions and actions of an UA are usually based on
the mission and the measurements of various sensors. To
fuse the datasets of different sources correctly and to
interpret them, it is essential to have consistent
timestamps. Furthermore, concurrent information and
commands can only be interpreted correctly if their
timestamps can be correlated to the local on-board clock.

There are various ways to achieve consistent timestamps
are mentioned in literature. If the delays in the data
acquisition are known or negligible and processing is
performed on the same computer, no further efforts are
required. Thus, some UAS collect the sensor data on one
processing unit connected to one clock before further
processing [12]. For the presented scalable flight software,
it is not necessarily known a priori how many
computational units are used. Furthermore, we explicitly
want to make time delay investigation possible where
needed.

Some UAS use network servers and clients to
synchronize the system clock of all the connected
hardware either to each other or to GPS time [7].
However, this method can have some drawbacks. First,
GPS might not be available as a reference all the time.
Second, adjusting the clock might invalidate old data,
time stamped before a time shift. Third, if the data
exchanging partners are not all connected to each other
constantly, as in cooperative UA scenarios, it might be
impossible to synchronize all the UA correctly. For
example, if two non-synchronized UA detect inconsistent
phenomena at different times and report to a third, it might
be impossible to determine the most recent.

If the time synchronization is done by a dedicated server,
as for the precision time protocol (PTP) concept [20], a
special handling should be used in cases where the server
is not available, e.g., due to software or hardware failures.

Römer suggests estimating one function to convert the
timestamps of different processing units for each pair of
communication partners instead of adjusting the on-
board clocks [21]. The estimation of the converting
function is done in two steps.

First, the communication delay is estimated. This is
achieved by sending the time difference between the local
time of a package and the sending time in the remote
package back to the sender. This is also done in the PTP,
the network time protocol and various other time
protocols [18, 20].

Second, timestamps of the remote system are collected, the
communication delay is eliminated and the conversion
function is estimated, for example, by linear regression.
Some methods for the estimation are presented in [23]. The
conversion functions are stored in each process and sorted
by the related hardware unit of the communication
partners, as shown in Figure 7. The first application on
Hardware Unit 3 is to communicate with the application
on Hardware Unit 1 and, therefore, to estimate the convert
function for that hardware timestamps. The application on
Hardware Unit 1 also communicates with an application
on Unit 2 and, therefore, needs to estimate two convert
functions, for Hardware Unit 2 and 3. Exchanged
estimated functions between the communication partners
can be used to determine initial values for the
synchronisation and plausibility checks.

The package headers of the communication protocol
already include a sending timestamp. Additionally, the
estimation of communication delays is also important for
the communication module, e.g., for route-selection.
Thus, the time synchronization can easily be integrated
into the communication module. Only an expansion of
the package header with two 32 bit values for the last
measured time difference between the sending time on
the remote hardware and the last local receiving time is
needed. If the communication traffic between two
processing units is frequent enough, no further packages
for time synchronization need to be sent.

Figure 7. Time synchronized applications on different hardware

4. Concept of the Avionics

The previous chapter showed the software concept.
This section outlines the avionic systems for both
helicopters. Afterwards, the implementation will
outline the specific aspects for these avionics.

The avionics system of the 14 kg helicopter is based on an
Ethernet interconnected PC104 system which is separated
into one Linux-based payload computer (FC 2) and a
QNX-based flight computer (FC 1), see Figure 8. Optional
wireless LAN connections to the GCS are not shown.

7Johann C. Dauer, Lukas Goormann and Christoph Torens:
Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

Figure 8. Interconnection block diagram of the small-scale
helicopter avionics based on Gumstix boards

The hardware concept of the miniaturized avionics is
shown in Figure 8. In order for it to be compatible with
the PC104 system, the hardware interconnection is
established using a miniaturized 100Mbit Ethernet
LAN switch. Three Gumstix form the computational
units. Gumsitx are small processor boards equipped
with ARM Cortex A8-based processors designed in an
open source hardware concept.

Gumstix 1 handles the communication with the
ground control station over a serial modem and is also
connected to the safety electronics which on the one
hand handles the actuator driving and on the other
hand does the switching between automatic and
manual mode for the safety pilot in case of failure.
From an algorithmic perspective, Gumstix 1 handles
all the loops of the flight control system and the
mission management.

Gumstix 2 calculates the state estimation based on the
sensors connected to this board. A Sonar is used to
detect the height above ground during landing and
take-off. It also uses a single or differential GPS. An
integrated inertial measurement unit (IMU) and
magnetometer (Mag) solution completes the basic
sensor equipment. These first two processor boards are
operated using QNX. The third Gumstix handles
vision applications based on a Linux derivate. It can
either be equipped with a small scale camera or a laser
scanner with a weight of less than 350g.

This avionic system is mainly designed so as to be easily
extendible with further LAN capable hardware modules
as well as ease in exchange of different components. As
stated in [24], flight software for space applications is
tightly coupled due to limited recourses. This is true for
small scale aircraft too. However, by designing the
avionics as described here, flexibility in the sense of
exchangeable modules is created. Whole payload
modules can be added and exchanged, including the
dedicated computing unit and not only the sensor itself.
Only the compatibility of the software interfaces has to be
ensured. As both avionic systems are based on the same
concept, they are what we call hardware equivalent.

Figure 9. Interconnection block diagram of the mid-scale
helicopter based on two PC104 systems

Note that this particular assignment of tasks to processing
units is neither the optimal workload distribution nor
optimal from the perspective of the algorithm
requirements. Separating flight control system and sensor
fusion, for example, will cause additional delays to the
helicopter state data due to the helicopter state being
transmitted over LAN. The number of hardware
interfaces, however, demands a separation so that all the
sensors can be equipped to one board and thus the servo
driving board to another.

5. Implementation

In this chapter an implementation of the software concept
is outlined that eases the exchange of the modules
between different scales of avionics. The software runs in
separate processes on the PC104 avionics system and is
distributed to a set of processing units on the Gumstix
variant. A further subdivision into even more processes is
certainly possible. Nevertheless, this refactoring process
is meant to be continuous. Separation into sub-processes
will only occur if certain hardware requirements demand
it in order to maintain a complexity as low as possible.

Figure 10 presents the structure of the software. The
colouring is identical to Figure 3. Every process contains
instances of health monitoring and logging. The
interfaces symbolize the exchanged data transmitted
either over LAN or in shared memory between processes.
The flight control and mission management process is
also responsible for ground control communication. In
this role, it also coordinates the remaining processes
using the control and observer modules.

The control and observer modules make sure that every
command received from the ground station is correctly
transferred to the remaining processes (ctrl) and checks
for the correct reaction on the other process side. Health
data (hlth) is transferred to the management process as
well as sensor fusion data (sfd) and vision or payload
data (vd).

8 Int J Adv Robot Syst, 2014, 11:X | doi: 10.5772/58363

Figure 10. Implementation of the flight software for scaling between three processing units in the case of the Gumstix avionics and two
for the PC104 variant

The time synchronization of the different processor units
is implemented using a daemon-based implementation of
the PTP according to IEEE 1588 [20]. This implementation
does not enable time synchronization with the ground
station via the uplink and other cooperating UA. This will
be enabled as soon as time synchronization is fully
included within the communication framework as
previously presented in the time synchronization chapter.
The achievable synchronization accuracy is below 1 ms
according to the self-diagnostics of the synchronization
processes. Health monitoring of the communication and
estimation of the transfer delay is hence possible.

6. Proof of Concept

This chapter discusses results of a hardware-in-the-loop
(HIL) simulation as an example of the tests performed.
Figure 11 shows the general test setup of the HIL setup.
The complete avionic computational units are integrated
as they are in flight. The real time simulator measures the
servo signals of the helicopter, calculates the
corresponding flight mechanical responses and generates
sensor emulated signals based on these computations.
The protocols of the sensors are completely emulated and
are connected via the same hardware interfaces as the
real sensors would be.

From the computational units and the software
perspective, there is thus no difference compared to real
flight. To achieve identical flight behaviour, the flight
mechanical model of the 14kg midiARTIS helicopter is
used for both avionics. The flight mechanics consist of a
linear hover model with eight degrees of freedom.
Nonlinear extensions cover external forces. Furthermore,
flight test-based error models of the sensors as well as
identified actuator models are simulated.

Vehicle

Ser

Modem PWM

Ser

Real Time
Simulator

PWM

Ground Control
Station

Modem

Visualisation

LAN

LAN

Sensordata

Actuatorsignals

Commands + est. States Exact Vehicle State

Figure 11. Hardware-in-the-loop-simulation

This setup enables identical flights for the different
avionic and software architectures and real comparison of
the variants’ performance is possible. The vehicle is
operated using the ground control station, again identical
to a real flight scenario.

For the sake of brevity, we limit ourselves to one example
path shown in Figure 12. The reference implementation,
denoted by PC104 single, is the original implementation.
It contains guidance navigation and control algorithms
identical with the scalable version. It differs from Figure
10 by removing communication classes in a single process
implementation and missing time synchronization
components. The PC104 distributed version consists of
the scalable software architecture, where the sensor
fusion and flight control processes run on the flight
computer of the PC104 avionics. It is apparent that there
is no significant difference in flight performance
compared to the original implementation.

The final implementation is the multi-process version,
compiled for the ARM Gumstix avionics presented in
Figure 9. The flown path is nearly the same as the
original. The slight difference from the reference

9Johann C. Dauer, Lukas Goormann and Christoph Torens:
Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

implementation is caused by the additional delay due to
the LAN interconnection between the sensor fusion and
flight control system. The delay was measured to remain
between 2 and 8 ms.

Figure 12. Example path flown with different avionics and
software combinations

6.1 Certification Considerations

ARTIS is an experimental vehicle, therefore, the
certification of its flight software using correspondent
standards [25, 26] is not the main focus here. Nonetheless,
a preliminary FHA [25] adds three main hazards to the
system, compared to the previously existing monolithic
system architecture. The hazards have been outlined in
Chapter 3 as required criteria: (1) too large a
communication delay is introduced, (2) communication
data exceed available bandwidth, (3) too large a
communication overhead is introduced. Additionally, the
scalable architecture alters the overall system design, but
the software level classification [26] of previously existing
modules is not affected.

With these FHA results in mind, the communication
module, as well as aspects of time synchronization, fall
into the DO-178C software level A [26], where a failure
might cause multiple fatalities with a loss of the aircraft.
Since safety considerations are not the core of this papers’
contribution, only a qualitative analysis will be provided
for the proof of concept. Further reading on recent
certification considerations of ARTIS can be found in [27].

Tests and analyses as well as HIL simulations showed the
communication delay to remain below 8 ms. Therefore,
the resulting flight path only differs marginally.
Measurements showed that the bandwidth used also
stays well below the hardware specification for the
network traffic. The overhead for managing the network
traffic has hence no impact on the flight performance.

The health module has no negative impact on the
certification aspects of the architecture used, since it

imposes no active action on other modules. However,
future work will elaborate on the beneficial aspects of
such a module.

7. Conclusion and Future Work

This paper presents a software concept for the flight of
unmanned aircraft. A focus of this architecture is an
application to vehicles of significantly different sizes. The
software is thus focused on scalability and the optional
distribution to different numbers of computers. Health
monitoring, communication framework and time
synchronization were outlined in depth.

It has been shown in a hardware-in-the-loop simulation
that this software concept achieves equivalent flight
performance compared to a monolithic implementation.
It could thus be shown that the presented software
concept is feasible for both scales of helicopter and will
make the validation of future unmanned aircraft research
significantly easier. Depending on the complexity and
organizational demands of algorithms, the most
convenient ones can be chosen. As soon as the algorithm
has been integrated into the system, it will immediately
work on the other variants as well, provided that the
computational units can manage the algorithm’s
complexity and the algorithm handles the different UA
flight properties.

Hardware concepts for two sizes of helicopter, a 14 kg
and a 1.5 kg version, are presented. The avionic systems
are based on x86 PC104 on the one hand and ARM Cortex
A8 on the other. The scalability of the implementation of
the presented software architecture is outlined in the
example of both avionic systems.

It remains for future investigation to examine how an
automatic priority setting of processes could relax
computational demands on the small scale systems
further. It is very possible that background and even
distributed tasks can further increase the capacity of the
small scale multiple computer system.

8. Acknowledgment

The authors gratefully acknowledge the help of the team
members of the unmanned aircraft department, especially
Jörg Dittrich, Sven Lorenz and Florian Adolf, who
provided support and helpful discussions.

9. References

[1] Muratet L, Doncieux S, Briere Y, Meyer JA (2005) A
contribution to vision based autonomous helicopter
flight in urban environments. Robotics and
Autonomous Systems, vol. 50, 195-229.

10 Int J Adv Robot Syst, 2014, 11:X | doi: 10.5772/58363

[2] Mühlegg M, Dauer J, Dittrich J, Holzapfel F (2013)
Adaptive Trajectory Controller for Generic Fixed-Wing
Unmanned Aircraft. Advances in Aerospace Guidance,
Navigation and Control, Springer Berlin Heidelberg.

[3] Narayan PP, Wu PP, Campbell DA, Walker RA
(March 20-21 2007) An intelligent control architecture
for unmanned aerial vehicles in the national airspace
system. 2nd Australasian Unmanned Air Vehicle
Systems Conference. Melbourne, Australia.

[4] Gat E (1998) Three Layer Architectures. In:
Kortenkamp D, Bonasso R.P, Mruphy R editors.
Artificial Intelligence and Mobile Robots. Cambridge:
AAAI Press/MIT Press. pp. 195-210.

[5] Boskovic JD, Prasanth R, Mehra RK (May 8-10 2002) A
Multi-Layer control Architecture for Unmanned Aerial
Vehicles. American Control Conference. Anchorage.

[6] Koo TJ, Sinopoli B, Sangiovanni-Vincentelli A, Sastry
S (Augsut 22-27 1999) A Formal Approach to
Reactive System Design: Unmanned Aerial Vehicle
Flight Management System Design Example.
International Symposium on Computer Aided
Control System Design. Hohala, Hawaii.

[7] Tomic T, Schmid K, Lutz P, Dömel A, et al. (2012) An
Extensible UAV Research Platform for Urban Search
and Rescue Missions. IEEE robotics and automation
magazine, special issue on aerial robotics and the
quadrotor platform.

[8] Reeves RE (October 10-12 2005) An Overview of the
Mars Exploration Rovers Flight Software. IEEE
International Conference on Systems, Man and
Cybernetics, Hawaii, USA.

[9] Doherty P, Haslum P, Heinzt F, Merz T, et al. (June 23-
25 2004) A Distributed Architecture for Autonomous
Unmanned Aerial Vehicle Experimentation.
Proceedings of the 7th International Symposium on
Distributed Autonomous Robotic Systems. Toulouse,
France.

[10] Paunicka J, Corman D, Mendel B (May 2-4 2001) A
CORBA-based middleware solution for UAVs.
Fourth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing.
Magdeburg, Germany.

[11] Ryan A, Xiao X, Rathinam S, Tisdale J, et al. (August
21-24 2006) A Modular Software Infrastructure for
Distributed Control of Collaborating UAVs.
Proceedings of the AIAA Conference on Guidance,
Navigation and Control, Ketstone, Colorado.

[12] Tisdale J, Ryan A, Zennaro M (October 2-6 2006) The
Software Architecture of the Berkeley UAV Platform.
International Conference on Control Applications.
Munich, Germany.

[13] López J, Royo P, Pastor E, Barrado C, et al.
(November 26-30 2007) A Middleware Architecture
for Unmanned Aircraft Avionics. Proceedings of the
2007 ACM/IFIP/USENIX international conference on
Middleware companion. Newport Beach, California:
ACM.

[14] Pastor E, Lopez J, Royo P (June 2007) UAV Payload
and Mission Control Hardware/Software
Architecture. IEEE Aerospace and Electronic Systems
Magazine, Vol.22, No.6. pp. 3-8.

[15] Pastor E, Barrado C, Royo P, Lopez J, et al. (2009 Jan)
An open architecture for the integration of UAV civil
applications. in T.M. Lam (Ed.), Aerial Vehicles.
InTech. pp. 511–536.

[16] Lorenz S, Adolf FM (2011) A Decoupled Approach
for Trajectory Generation for an Unmanned
Rotorcraft. In: Holzapfel F, Theil S (editors)
Advances in Aerospace Guidance, Navigation and
Control. Berlin: Springer-Verlag.

[17] Lorenz S (2011) Open-Loop Reference Systems for
Nonlinear Control Applied to Unmanned
Helicopters. Journal of Guidance, Control, and
Dynamics. Volume 35, No. 11, pp 259-269.

[18] Adolf F, Thielecke F (2007) A Sequence Control
System for Onboard Mission Management of an
Unmanned Helicopter. AIAA Infotech Aerospace
Conference. Sonamo, CA

[19] Coopmans C, Han Y (2009) AggieAir: An Integrated
and Effective Small Multi-UAV Command, Control
and Data Collection Architecture. Proceedings of the
2009 ASME/IEEE International Design Engineering
Technical Conferences & Computers and Information
in Engineering Conference, San Diego, CA.

[20] IEEE Std 1588-2008, IEEE Standard for a Precision
Clock Synchronization Protocol for Networked
Measurement and Control Systems,

[21] Römer K (October 2001) Time synchronization in ad
hoc networks. Proceedings of MobiHoc 2001, Long
Beach, California.

[22] Mills D L (October 1991). Internet time
synchronization: The network time protocol. IEEE
Transactions on Communications, 39(10):1482–1493.

[23] Römer K, Blum P, Meier L (2005) Time
synchronization and calibration in wireless sensor
networks. Handbook of Sensor Networks:
Algorithms and Architectures, I. Stojmenovic, Ed.
John Wiley & Sons, Hoboken, NJ, pp. 199-237.

[24] Dvorak D, Rasmussen R, Reeves G, Snacks A (March
25 2000) Software Architecture Themes in JPL’s
Mission Data System. Proceedings of IEEE Aerospace
2000 conference. Big Sky, Montana.

[25] RTCA Std DO-178C/ED-12C (2011) Software
Considerations in Airborne Systems and Equipment
Certification.

[26] SAE Std ARP4761 (1996) Guidelines and methods for
conducting the safety assessment process on civil
airborne systems and equipment.

[27] Torens C, Adolf FM (2013) Software Verification
Considerations for the ARTIS Unmanned Rotorcraft.
51st AIAA Aerospace Sciences Meeting. 1st Software
Challenges in Aerospace Workshop, Grapevine, TX,
USA. ISBN 978-1-62410-181-6.

11Johann C. Dauer, Lukas Goormann and Christoph Torens:
Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

