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The paper at hand presents the new generic framework for automated planning and 
scheduling in future mission planning systems developed at GSOC (German Space 
Operations Center). It evolved from the experiences made in past and current projects and 
the evaluation of internal and external requirements for upcoming projects. In customary 
systems such as the one used within GSOC’s TerraSAR-X/TanDEM-X mission, succeeding 
planning runs to combine all collected input to a consistent, conflict-free command timeline 
take place at fix, dedicated points in time, e.g. twice a day. In contrast and as a main 
difference, with the new system each new input is processed immediately and so a consistent 
up-to-date timeline is maintained at all times. We show that this approach provides a set of 
important advantages and new possibilities for spacecraft commanding and user 
satisfaction. For example, uplink schedules can be flexibly modified due to short-term 
notifications, or up-to-date, extensive information about the planning state is always 
available, which means that conflicts can be seen before finally submitting a new request 
and, if applicable, can be resolved by selecting a suggested solution scenario. The presented 
system constitutes a generic tool suite which is scalable in performance critical areas, which 
is configurable to various mission scenarios and which defines a dedicated set of interfaces, 
specifying the functionality that remains to be implemented by each individual project. The 
declared goal is that all upcoming GSOC missions will benefit from using the Incremental 
Planning framework in terms of cost reduction, implementation duration and system 
robustness.  

I. Introduction 
N order to serve the TerraSAR-X and TanDEM-X missions, the Mission Planning team at GSOC has set up a 
fully automated mission planning system, which is in operation since launch of the TerraSAR-X satellite in 2007 

resp., with adaptations, the start of the TanDEM-X mission in 2010. Based upon the experiences gathered since, 
including further desires of the end users and the flight operations team which emerged during operations, we have 
recently developed our next generation framework for planning and scheduling, called “Incremental Planning 
System”, which shall be presented in this paper. 

A. Disadvantages of Customary Mission Planning Systems 
Although e.g. the complex, fully automated TerraSAR-X/TanDEM-X Mission Planning System1,2,3,4,5 is running 

smoothly and further projects can be served well using GSOC’s existing planning tools, we identified several 
restrictions we intend to overcome, in addition to the fundamental goal of software engineering to identify generic 
functionalities and to factor them out from project-specific implementations in order to increase stability and reduce 
costs of future mission planning systems. 

In detail, here are some of the disadvantages found in customary mission planning approaches, in which 
scheduling is based upon a time schedule: 
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• The plan currently visible for the user is based on outdated information, i.e. the one available at the 
generation time of the latest timeline. 

• The consequences of incoming information (new planning requests, updated constraining conditions such as 
ground station availabilities, etc.) will be not visible before the upcoming planning run has finished. 
Unforeseen and undesired side-effects thus cannot be avoided, e.g. the deallocation of other requests. 

• The user has to wait for the response from the planning system until he knows whether a request can be 
scheduled or not before he can consider the ordering of alternative requests. Also the allocation of additional 
resources such as additional downlink opportunities that would resolve conflicts and avoid the rejection of 
requests which compete for one or more of these restricting resources then is likely to be too late.  

• The last opportunity for submitting new input to be considered (i.e. the order deadline for planning requests 
or the reception of updates for constraining conditions), has to be significantly before the command uplink 
time, since all information which accumulated since the last planning run has to be considered in this 
planning run. 

• The system detects changed planning information first during the planning run. In particular, it is unable to 
prepone the upcoming planning run on short notice, since it is suspended until then. Thus, all circumstances 
that affect the planning rhythm have to be kept stable at least until the time of the upcoming planning run. For 
instance, the system cannot automatically cope with a disturbance of the uplink schedule: Consider the 
situation to have a planning run at 6 am for an uplink at 8 am and with the knowledge that the next but one 
uplink will be at 7 pm. Then the system sleeps until about 5 pm to trigger the next planning run. In case at 10 
am a ground station for uplink at 1 pm would announce availability, the system would not be able to start the 
planning run at 11 am autonomously. Thus possible support for unforeseen emergency situations with the 
help of spacecraft data acquired in the afternoon cannot be performed. 

 
Further improvements of the proposed mission planning framework are related to the commanding, where real-

term reactions to uplink-failures in combination with in-pass command execution or telemetry feedback inclusion 
are required. For this purpose the Incremental Planning framework also provides the basis for a sophisticated 
solution which is described under the topic “Robust Commanding” (see 6 and further explanations in chapter II.A.7). 

 

B. The Idea of Incremental Planning 
In order to address the above mentioned restrictions and improvement possibilities and meet foreseeable 

requirements of future missions, the decision was made to implement a new generic framework for upcoming 
mission planning systems, the “Incremental Planning System”.  

 
1. The Goals of the Development of the new Framework 
The first key requirement is to facilitate transparency and responsiveness of the planning process. It shall be 

possible to provide the customer (or the authorized entity) with best possible control over the timeline, which 
includes immediate response about the current planning state as well as previews for intended requests and even 
interaction during the conflict resolution process. 

Closely related is the requirement for a late order deadline: modifications of the timeline shall be accepted as late 
as possible. 

Another key requirement is the support of ground station schedule adaptations on short notice, including the 
adaptation of the uplink schedule. 

The last system specific requirement is robustness with respect to uplink-failures in combination with in-pass 
command execution or telemetry feedback inclusion etc. 

Furthermore the basic requirement for any good generic software framework shall apply: The new mission 
planning tool suite shall restrict itself to the generic workflows, defining distinct interfaces which describe in detail 
what the project-specific code has to implement. These interfaces shall be defined in a way such that as much 
functionality as possible remains within the Incremental Planning System, without restricting the project’s 
capabilities. Thereby, the Incremental Planning System shall reduce costs and increase the reusability and reliability 
of our future planning systems. For this purpose it is set up as a generic framework of multiple components, which 
allows tailoring the planning system to the specific requirements of the project. Furthermore there exist distinct 
plug-in interfaces for additional functions, which on the one hand allow invoking code covering unpredictable 
project-specific requirements and on the other hand exactly define which algorithms the project has to implement for 
making use of the generic functionalities. This way reuse of the Incremental Planning System is promoted and a 
standardized way of setting up new mission planning systems is provided. These can then serve fully as well as 
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semi-automated approaches, as well as different kinds of missions, from LEO to GEO spacecraft, from one single 
satellite to multiple satellites’ constellations. 

2. Incremental Planning vs. From-Scratch Planning
In favor of transparency and responsiveness, the scheduling engine is no longer started just in time before a new 

timeline is needed. Also the new plan is no longer created “from-scratch” every time, i.e. almost without 
consideration of the previous planning run’s result for the upcoming planning horizon. Instead the Incremental 
Planning tool suite is running constantly, incorporating all input immediately after reception into its persisting 
timeline, the so-called “master timeline”. For illustration, see Figure 1. 

Figure 1. From-scratch vs. Incremental Planning approach.  

 Having a look at other publications, it could be seen that the term “incremental planning” is already used and 
well-known for the description of planning approaches, but mostly with a different meaning. For instance, compare 
the definitions and descriptions in 7,8,9,10.  

Whereas in other environments “incremental planning” refers to either a break-down of planning problems into 
smaller entities with a later composition of sub-plans, or a stepwise refinement of plans by accepting approximations 
first and incorporating more and more precise information later on or doing repair steps, our idea is to have one 
correct, consistent plan at every point in time. Of course this plan can change over time until it is finally released for 
execution in a certain time frame, but not necessarily because there had been simplifications assumed in the first 
calculations, but simply because new, additional input has been received. The only exception from this is the latest 
orbit information and re-calculated events resulting from it, such as the exact ground station visibilities, of course. 
Here indeed a refinement takes place. However in general, each new increment of the plan is a fully consistent, not 
approximated solution of the overall planning problem, of which snapshots of the next upcoming timeline parts can 
be used for export without further scheduling adaptations. Instead of time-consuming planning runs, only a short 
final timeline preparation in terms of generating spacecraft commands is to be performed then. 

A similar meaning of the term “incremental planning” however has been found in 11,12, referring to a continuous 
adaptation of an existing, consistent plan. In the onboard environment presented therein, as new inputs that influence 
the plan by triggering a re-scheduling, updated telemetry values are primarily mentioned. The idea of continuous 
planning interleaved with execution and failure repair has furthermore been detected in 13.   

II. Overview of the Incremental Planning System
An overview of the components of the Incremental Planning System and how they are embedded in a missions’ 

ground segment with their external interface partners can be found in Figure 2. The components marked in green are 
the core generic tools of the Incremental Planning framework, the ones in blue are optional and depending on the 
external interface partners and project needs, but have been newly or re-designed with the new approach of mission 
planning, too. The grey boxes with rounded edges show functions or collections of algorithms whose detailed 
functionalities are more or less developed and/or composed project-specifically. Nevertheless their role is very 
important for the whole planning, scheduling and commanding duty of the system on the one hand and very clearly 
defined on the other hand in order to enable reuse and a fast re-configuration possibility for new projects or changed 
requirements in one ongoing project.   
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Figure 2. Overview of the Incremental Planning System components and their interfaces.  

In the following the generic components are presented, with a brief description of their tasks and interaction. 

A. The Core Components of the Incremental Planning System 
1. MasterProcessor
The MasterProcessor is the central component of the planning system. It gets all input items and processes them 

one after the other by applying dedicated functions according to the type and content of the input, especially the 
project-specific scheduling and rescheduling algorithms (see “TimelineCorrectionScheduling” in chapter II.C.2). 
Instead of creating a completely new plan at several points in time after having received a bunch of inputs, each of 
the items is separately ingested. In order not to block the execution of important, urgent input, it is foreseen that such 
new input can lead to aborting the current processing, i.e. aborting of the calculation of the timeline modification for 
the previous input.  

2. Database
The Database is always kept in sync with the current state of the model and the master timeline by the 

MasterProcessor in order to be prepared for a breakdown and a re-start of the system. Apart from the 
TimelineManager, the MasterProcessor is the only component allowed to write to the database. 

3. InputManager
The InputManager receives all input items and forwards them to the MasterProcessor. In order to avoid that 

lower-priority but calculation-time-extensive input blocks input that might have been sent to the planning system 
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slightly afterwards but is more important, the InputManager sorts the input items according to their priority before 
forwarding them one after the other, such that the MasterProcessor always processes only one input at a time. 

Although most of the time all incoming input is expected to be forwarded to the core processing without any 
latency, the InputManager is required for peak situations in which a lot of input items reach the system almost in 
parallel. 

Therefore the InputManager is also able to take into account the temporal urgency of an input. For example, the 
request for a timeline export should have high priority, but nevertheless high-priority order requests might be 
allowed to be processed first, so that they can still be considered for the upcoming uplink. However when uplink 
time comes closer, the export will become even more critical in order not to be at risk at all. 

If necessary, the InputManager can interrupt the current calculations of the MasterProcessor in favor of 
processing a new input of higher priority and/or urgency without any delay. Therefore it has to monitor whether the 
MasterProcessor is currently busy, and, if yes, which item is currently processed by it, too. Then of course, it 
additionally has to take care that the items, whose processing was interrupted, have to be re-sent after having them 
queued again. 

The prioritization of the different input items and, if applicable, the decision whether to interrupt the 
MasterProcessor, are done via configurable rules that can be more or less complex and might also rely on the 
content of the respective input item. For instance only the different input types and sub-types could be differentiated 
according to simple agreements because their processing takes more or less time, or also the inner priority of 
planning requests among one another or their final execution time in comparison to the current time might have to 
be considered in systems with a high workload or very tight time dependencies resp. required response times. 

4. ModelProvider 
As stated above, there is no central database with competing common read and write access where all input 

information, processing results, timelineentries etc. are collected, read, and modified by the various components. 
Instead its content and therefore the current project (current model plus current timeline version) is almost 
exclusively available for the MasterProcessor. 

For this, a message-based approach has been chosen: All components which require access to the current state of 
the model, including the timeline, maintain a private copy of the current project. Whenever the MasterProcessor 
modifies it (e.g. a new order has been scheduled), the modification is reported to the ModelProvider via so-called 
changeSets (binary modification messages), which sends the update to all registered components.  

As indicated above, each component that needs the current model must register itself on startup within the 
ModelProvider, which initially supplies the component with the complete model. Afterwards, the ModelProvider 
only forwards incoming modification messages from the MasterProcessor to each of the registered instances. By 
applying these changeSets one after the other to the saved latest version of the project, the components keep their 
copy at any one time synchronized with each of the modifications performed by the MasterProcessor.  

This ingestion of the changeSets of course has to be done by the ModelProvider itself, too, in order to be 
prepared for the next request for the full serialized project of one of the other tools. So in the end, the ModelProvider 
is the only component which gets the serialized planning model and modification messages directly from the 
MasterProcessor and takes care of the consistent and fast distribution at each point in time. 

5. OrderIngestion 
This component serves the ingestion of input from customers and other users, “the outside world” of the Mission 

Planning System. The OrderIngestion in general receives planning, cancellation and update requests from the 
customers, which can be end-users themselves or intermediate coordinator users. It also checks them for 
consistency, and generates responses for the customer. Depending on the project’s or specific user’s needs and/or 
rights this response can vary from only a reception notification to a simple answer about the consistency to the more 
or less complex result of a test-planning feasibility check performed by a ConnectionScheduler (see II.B.1). 

In the most sophisticated version, the OrderIngestion sends a request to the ConnectionScheduler. In case the 
new order would require other, already scheduled orders to be moved or removed from the timeline, the 
ConnectionScheduler will answer this request with one or multiple solutions that are forwarded to the user by the 
OrderIngestion. In case the user selects one of these solutions, it is included in the request and forwarded to the 
InputManager. For more information see chapter II.B.1.  

The OrderIngestion component or its functionalities can either be standing alone, being invoked by or being 
directly embedded in an OrderingInterface, depending on whether such a communication and/or visualization 
interface exists for the mission, and then, furthermore depending on whether this is an external tool or web-service 
or GSOC’s own so-called Swath Preview and Ordering Tool (SPOT). 
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6. Timer 
The Timer takes care that certain activities are performed at the correct point in time. For example, it can signal 

that the time has come for exporting commands before an upcoming uplink session, or that some time before the 
earlier order deadline has been reached when some final preparations of the master timeline might have to take 
place. Furthermore, on request from the InputManager, the Timer has to provide a configurable list of upcoming 
events like the ones just mentioned in order to enable the InputManager to sort incoming input according to timing 
specifications and dependencies. 

For these functionalities the Timer has to have access to the current state of the project including the master 
timeline with the timelineentries of the respective events, which is kept up-to-date via the ModelProvider. Whereas 
the Timer in a customary fully autonomous mission planning system such as the TerraSAR-X/TanDEM-X system 
‘wakes up’ the other components at dedicated fix events, here it dynamically adapts its list of events and the times to 
trigger other components dynamically along with the modifications that are made on the master timeline by the 
MasterProcessor.  

In general, the Timer is the only component of the whole tool suite that has to/is allowed to have access to the 
system time. Additionally it supports a simulation-time mode for test purposes. 

7. TimelineManager and CommandExporter(s) 
Whenever the appropriate points in time for preparation of the next uplink session are reached the 

TimelimeManager is triggered by the MasterProcessor with a notification about the model and timeline version to 
export. Via the ModelProvider, it is or has already been provided with the desired state of the model and timeline. 
Furthermore it has access to the Database to read the latest commanded timeline, i.e. the one that has been 
successfully commanded to the spacecraft. From this information and with the help of a so-called 
TimelineCorrectionScheduling algorithm (see II.C.2) it prepares the so-called target timelines for the different 
possible uplink scenarios of the upcoming session. 

If the satellite supports commanding in a transactional manner and the proper repair algorithms are implemented, 
the different target timelines may prepare for all possible uplink failures in the best possible way. For each target 
timeline, the TimelineManager calls the CommandExporter with the target timeline and its expected commanded 
timeline. The CommandExporter derives the commands required to transform the onboard timeline from the 
expected commanded timeline into the target timeline. The generation of the according command sequences is again 
to be handled project-specifically, thus a plug-in mechanism assures that the overall functionality as well as the 
project-specific requirements are met.  

When the command sequences have been generated for all target timelines, they are stored in the Database, if 
configured, and are forwarded to the CommandingInterface, together with the information about in which case to 
apply which command sequence. 

For a detailed description of the functionality and complex possibilities with which the TimelineManager might 
serve a project, see the separate paper on “Robust Commanding”6, the novel commanding concept which also 
evolved from the Incremental Planning design discussions. 

B. Further Components that can/should belong to an Incremental Planning System 
The following components are optional enhancements for the Incremental Planning framework but are not 

necessary for the core functionality. However they make use of the opportunities provided by this scheduling 
approach in order to either provide the users or the spacecraft commanding with special services that are based on it. 

Especially the first two components play significant roles for achieving resp. utilization of the full range of 
advantages the functionality of Incremental Planning as described provides. 

 
1. ConnectionScheduler(s) 
Before or instead of forwarding a new planning or update request to the InputManager, if specified, the 

OrderIngestion can initiate a test-ordering to check the availability for or consequences of scheduling this request 
and provide the user with special interaction possibilities.  

In general, the specification whether the ConnectionScheduler shall be invoked for a request and – if yes – how 
it shall process it and what information the response shall contain, can be pre-configured or can be provided by the 
content of each input item, so that it has to be evaluated by the OrderIngestion and/or ConnectionScheduler. For 
instance, it can vary how the ConnectionScheduler shall be invoked or how the results of the ConnectionScheduler 
run shall be handled/forwarded/filtered by the OrderIngestion. Differences can be made either on the type and 
content of the request, or for/from which user (group) it comes, who can have different interaction and information 
access rights.  

The result given by the ConnectionScheduler can vary from telling 
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• whether the new request can be scheduled under the current circumstances mapped in the current project 
without removing already planned competing requests, or 

• the reason why the new request is currently assumed to be not schedulable, e.g. the resource whose maximum 
value is reached, in case its priority is too small to oust other requests, up to 

• an enumeration of so-called “deconflicting solutions”, i.e. scenarios which would enable scheduling the new 
request without any conflict, at the expense of other requests. 

The last possibility means that a list of alternative deconflicting solutions is determined by the 
ConnectionScheduler based on the current project state. Each solution contains the information where the new 
timeline entries would be placed and what other timeline entries need to be removed or where they have to be 
moved so that the new request could be scheduled without conflict. In case of resource conflicts, multiple solutions 
may be calculated. The ConnectionScheduler will return a reasonable set of solutions to the OrderIngestion, which 
in turn may allow the user to select one of these solutions. According to a user’s wishes on the one hand and access 
rights on the other hand, the rules on which competing requests may be dismissed, the algorithm complexity for 
searching such solutions, and the number of solutions to be displayed, have to be configured. For simple models, 
configuring a generic algorithm may be sufficient (see 15), otherwise the implementation of a specialized, project-
specific algorithm might be necessary, see also chapter II.C. 

When the user has selected one of the suggested deconflicting solutions, it is added to the planning request and 
will be considered by the MasterProcessor when finally scheduling this input item later on. Note that then the 
complex scheduling task has been performed by the ConnectionScheduler and the MasterProcessor will be presented 
with a proper solution to ingest, so its only task is to follow the instructions of the solution and to re-propagate the 
resulting resource modifications. Besides, in order to enhance the responsiveness and shorten the response time, 
there can be more than one instance of the ConnectionScheduler component/service kept available and running in 
parallel and independently of one another. Due to the design of the ModelProvider, the number of 
ConnectionSchedulers can be increased by launching further instances within the running system. So the decision 
whether a further copy is needed can be made flexibly and on relatively short notice in a mission, e.g. for general 
speed-up reasons or to provide special services for a special user group via another configuration.  

Furthermore, the ConnectionScheduler(s) cannot only be used to supply the best possible user interaction. It can 
also be the core concept of scalability for the whole Incremental Planning System, because, even if no customer 
interaction is required and implemented, multiple ConnectionSchedulers can be in charge to find a proper solution 
for each planning request via pre-configured scheduling rules and algorithms before forwarding it to the 
InputManager. It is even possible to launch or shutdown ConnectionSchedulers within the running system, allowing 
to adapt the planning system to an increased workload and to replace the servers hosting the ConnectionSchedulers. 

Of course this concept suffers from the drawback that contemporaneous requests interact on a model which does 
not reflect the modifications the concurring requests might imply. However, no better possibility exists for such a 
case than optimistic concurrency. Also the users selecting a deconflicting solution always have to be aware that the 
basis for the given information and calculations and so their interaction decision might have already become 
outdated by contemporaneous ingestion of other input items into the master timeline. Exceptions could be made for 
the case of high-priority orders, e.g. to support emergencies. For these, the ConnectionScheduler can be bypassed, 
i.e. the MasterProcessor will be blocked until processing of the high-priority order has completed. 

2. StatusReporter 
The StatusReporter has access to the current project state via the ModelProvider. According to project-specific 

configuration, it filters the binary modification messages of the ModelProvider and sends relevant information to 
dedicated interface partners via xml files. For instance, it can notify the customers about every change of the 
planning state of their requests or can send information to the ground stations or processing facilities about when 
which data will be dumped.  

Here again, a parallelization of more than one instance of the StatusReporter, each with another configuration 
filtering for different modifications of the timeline or for modifications on different objects, would help reducing the 
system response time and would be easily practicable if becoming necessary sometime. 

3. FileIngestion 
This component allows the ingestion of further input from “the outside world”, i.e. project segments beyond the 

core Mission Planning System. While the OrderIngestion serves the reception of input items from payload data 
customers, the FileIngestion is used for the reception of ground segment internal input such as notifications about 
ground station availabilities, orbit information, maintenance and maneuver announcements, etc. The FileIngestion is 
needed to perform pre-configured consistency checks and the transformation of these input items into a common 
format, so that the forwarded content is included in a file readable by the InputManager (and MasterProcessor later 
on). 
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4. CommandingInterface 
The CommandingInterface is provided to the commanding system in order to enable sending the sequence of 

adequate, applicable command sequences in real-time according to the effective uplink scenario during the ground 
station contact(s), see also explanations in 6. 

5. OperationsFeedback 
The OperationsFeedback enables manual or autonomous ingestion of information about the past or future of the 

system, e.g. the success reports of commanding sessions or the notification about planned maintenance phases. 
6. DatabaseInquirer 
Depending on mission requirements, the DatabaseInquirer can provide the same information as the 

StatusReporter, but not autonomously as a reaction to changes in the current project, but as a response to requests 
from interface partners. Therefore it might also keep track of the current planning state and model content (informed 
via the ModelProvider). However, there can be further use cases such as the generation of reports and statistics 
which require not only the insight into the current project but into previous versions of the model and master 
timeline, too, so this component also needs read access to the Database for more complex queries. 

C. Interfaces to Project-Specific Code 
The Incremental Planning System constitutes a framework of tools that shall factor out the commonalities of 

mission planning systems. As already mentioned above, it therefore does not include explicit algorithms wherever 
these are dependent on the particular project and its current requirements. Instead it defines dedicated interfaces 
where the project-specific code shall be invoked. These interfaces specify which functionalities are expected to be 
implemented and therefore may be seen as a roadmap for each project when using the Incremental Planning System 
and shall allow full flexibility with respect to their implementation. 

 
1. CommandGeneration Algorithm(s) 
Given the currently commanded timeline and the desired timeline prepared on ground, the project-specific code 

invoked by the CommandExporter must generate a sequence of commands which converts the tele-commands on 
board of the to-be-commanded unit(s) into the desired state of tele-commands. 

2. Scheduling and TimelineCorrectionScheduling Algorithms 
The collection of scheduling rules and algorithms as well as the correspondent rescheduling algorithms that are 

applied by the different components are also tasks for the project-specific implementation.  
• SchedulingAlgorithm(s) of the ConnectionScheduler 

This algorithm is given a new planning request and, depending on the project’s requirements, it returns the 
information whether the new request can be scheduled, why it cannot be scheduled, what decisions would 
have to be made to schedule the request, or what deconflicting solutions can be presented to the user, see B.1. 

• SchedulingAlgorithm(s) of the MasterProcessor 
For each possible input item this algorithm has to adapt the project accordingly. Such input may be allowed 
to be rejected if unfeasible, i.e. not being schedulable without causing resource conflicts, e.g. planning 
requests with or without pre-selected deconflicting solution, or it may not be rejected at all, e.g. new orbit 
information. In this case, the algorithm must adapt the timeline to the reality by removing all conflicts. The 
project should be set up in a way that this is always possible. 
Of course, the more complex the scheduling rules, with a priority-based approach and a lot of constraining 
resources to be considered, the more extensive can be the re-scheduling necessities when trying to insert the 
next input. According to the respective project needs and/or timing demands, for instance optimization 
functions might have to be introduced, or algorithms might have to be found that avoid a cascading or 
alternating scheduling and re-scheduling of requests on the timeline. 

• TimelineCorrectionScheduling of the MasterProcessor 
This algorithm has to adapt the timeline according to the feedback about the previous uplink session. In the 
nominal case (all uplinks succeeded), this algorithm does not modify the timeline. Otherwise it has to repair it 
and remove conflicts according to what has been commanded or failed. For multi-satellite projects a 
complete deconflicting might not always be possible, however it has to assure the safety of the mission.  

• TimelineCorrectionScheduling of the TimelineManager 
This algorithm is given the source timeline, i.e. the one assumed to be already commanded, the master/target 
timeline and a time interval. It then has to calculate a modified version of the source timeline, which equals 
the target timeline during the time interval and possibly takes over further parts of the target timeline or other 
activities outside this time interval in order to keep the timeline conflict-free. The TimelineManager uses this 
interface in order to prepare the different uplink scenarios6, see also A.7. 
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As one can see, these interfaces impose remaining challenges when setting up a new project. However it can also 

be chosen not to implement all of these interfaces completely, but nevertheless these interfaces show what has to be 
considered, no matter whether a fully automated resolution shall be implemented or not. For example it might be 
preferred to use back-up uplink passages and consider the case of a failed uplink pass as a contingency. Then the 
TimelineCorrectionScheduling of the TimelineManager may be omitted, since by configuration it will not call this 
interface. 
 

In order to cope with the complex requirements, all the algorithms, command generation as well as scheduling 
and TimelineCorrectionScheduling algorithms resp. algorithm collections, will be designed and configured 
specifically for each project to be plugged in into the according MasterProcessor, ConnectionScheduler and 
TimelineManager component, where applicable and foreseen. 

However, even these algorithms will still be not implemented completely from scratch but by using the wide 
range of capabilities provided by GSOC’s generic Plato library for the problem description in its certain modelling 
language 14, as well as for composing and configuring the complex algorithms from an extensive, robustness-proven 
collection of variable, configurable basic algorithms and filters. The beginnings of the latter approach have been first 
described in 15. In the meantime this collection has been continuously extended, enhanced and made more flexible in 
order to handle a wide range of scheduling problems. 

Since customer wishes do not only differ from mission to mission, but very probably change during the life time 
of a mission, too, especially here the possibility to reconfigure and flexibly include another scheduling algorithm via 
a plug-and-play interface is very valuable. 

D. Interfaces to further Project-Specific Tools 
In addition to applying project-specific algorithms via the interfaces described in II.C, further project-specific 

tools can also be easily integrated to support special mission requirements. On the one hand, this can be done by 
using the functionalities of the ModelProvider whenever information about the current model and planning state 
shall be retrieved and included in further functionalities. On the other hand, in case additional input has to be 
considered for the timeline generation, either an additional direct interface to the InputManager can be set up, or the 
input items are sent to the system via the FileIngestion if consistency checks and/or a translation to the common 
input format have to be performed first. 

For instance, it is thus possible to include additional possibilities for user interaction into the Incremental 
Planning System by attaching a GUI which allows modifying the timeline manually. This will be implemented e.g. 
to support mission preparation phases, LEOPs or other special planning and scheduling problems that won’t be 
handled by fully-automated systems by inclusion of PINTA, GSOC’s Program for Interactive Timeline Analysis, as 
a user frontend. 

Another example is the ingestion of telemetry feedback from the spacecraft in a project with rather unpredictable 
onboard behavior. The consideration of information about what exactly happened onboard in the planning system 
might especially be desired in case of spacecraft mission planning and scheduling autonomy. With a concept such as 
described in 16,17,18, in which the decisions which actions to perform by one or more of the instruments of the satellite 
is partly made on-ground and partly made onboard embedded in the payload software according to telemetry 
measurements or triggered by dedicated detected events, a synchronization of the two information and decision 
branches from time to time can be beneficial and required. 

 

III. Summary of Design Ideas of the new Framework 
Besides the advantages for each mission that result from addressing and overcoming the whole set of drawbacks 

of customary mission planning systems as enumerated in chapter I.A, the described design provides the following 
positive aspects: 

A. Component Interaction and Interfaces 
In order to make the system scalable, responsive and thread-safe, it was decided to set up the Incremental 

Planning System as a distributed set of different components with a message-based communication in between. The 
interaction and distribution of information via messages has already been described and reasoned above.  
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Whereas the internal interfaces inside the Incremental Planning System have been strongly typed, the external 
interfaces have to be kept sufficiently flexible in order to allow an application to plug in into the Incremental 
Planning System without recompiling the generic tools on every change of an external interface.  

Nevertheless, there can be restricting project-specific interface needs (e.g. parameters of an acquisition request, 
notified events from flight dynamics, as well as to be reported information via status reports etc.). The consistency 
of the content of received/to be sent information then has to be ensured by project-specific configurations for the 
components that serve these external interfaces (e.g. Order- and FileIngestion, StatusReporter), e.g. by specifying an 
XML schema the input has to obey. 

B. Configurability and Reusability 
All of the different components of the Incremental Planning System provide a huge amount of configurability 

according to various project requirements. Based upon the knowledge of more than 20 years of mission planning at 
GSOC, the Incremental Planning tool suite aims to factor out the common functionalities of different mission 
planning scenarios. Although future missions may show that minor adaptations may still be required, we expect the 
Incremental Planning framework to evolve to a stable version very soon. Explicitly no project-specific versions of 
the tool suite shall be created then, but the goal is to perform such improvements on the generic components and 
enable more possibilities for configuration with every new, not yet considered/imagined challenge so that the whole 
product is stepwise enhanced and becomes applicable and sufficient for an increasing variety of projects and 
applications. This way not only implementation effort may be saved but also a roadmap for implementing new 
mission planning systems is defined, which will simplify system engineering, too. 

For the remaining, project-specific code, GSOC supplies a generic tool suite which integrates well into this 
framework and which should be sufficient for the requirements of a standard mission.  

One example for this are algorithms developed from the generic Plato library15 (see detailed explanation at the 
end of chapter II.C) which will be included for the core functionality of the according planning system. The set of 
algorithms, filters etc. there has also increased and been further developed and continuously extended during the 
implementation and support of various mission planning projects. As another example, the planning model, 
reflecting the tasks and resources and constraints to be scheduled, maintained and considered in the according 
project will be in GSOC’s generic planning language14 and will be mirrored in the Plato database on which the 
MasterProcessor will be operating.  

With customer wishes varying not only from mission to mission, but very probably also changing during the 
lifetime of one mission, especially the flexibility given by the plug-in interfaces for project-specific code will prove 
to be very valuable. 

C. Scalability 
Except for the core components, which should be part of any Incremental Planning application, the framework is 

designed such that Mission Planning Systems of various complexities can be served and built. 
Several of the described features that the Incremental Planning System can provide to a project can be omitted or 

switched off by configuration in order to simplify the workflows for a project or application with relatively simple, 
low-demands requirements. On the other hand, each of the more sophisticated features can be switched on during 
the operation time of a mission without complex recompiling and releasing new/changed software but only via 
changing the components’ configuration files or even by just adding the respective generic application to the 
project’s tool suite, for instance the StatusReporter or the ConnectionScheduler.  

Additionally, when a speed-up in one of the components or concurrent accesses of various users are required, 
copies of some of the interface-serving components can be started and used in parallel. With the features of the 
ModelProvider the synchronization is given then. For example, using a range of ConnectionSchedulers to do the 
time extensive calculations for preparing the scheduling solution for every incoming planning request prior to 
sending it to the core planning system minimizes the workload on the MasterProcessor, which is the time-critical 
bottleneck component, since it is not parallelizable itself. This scalability in terms of multiple copies of one of the 
components might be very important also during a mission’s lifetime. 

As another example, more than one StatusReporter might decrease the response time to inform about new states. 
With them being differently configured, they can send information to the different user groups in parallel and so 
very quickly instead of one after the other. The overall duration difference might be especially significant and useful 
when e.g. an orbit update has just been processed and leads to slight time shifts of almost all timelineentries for 
events about which the data recipients and/or ground station operators have to be notified. 
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D. Maintainability and Robustness 
The distribution of the Incremental Planning framework to several components that have been thoroughly 

designed leads to a high degree of maintainability and robustness. 
Instances of the various tools can be flexibly integrated and removed. Generic issues like the persistency of all 

collected data are secured by the Incremental Planning System’s setup. For most of the components this is provided 
via the functionalities of the ModelProvider, that enables a re-synchronization with a consistent project state at all 
times. Furthermore those interfaces are handled carefully by which non-recurring, not-yet-saved-in-the-model/ 
timeline information is transferred via the content of specific messages, e.g. a planning or cancellation request from 
the customer via the OrderIngestion to the InputManager and then to the MasterProcessor. Therefore a sophisticated 
system of data storage has been found and control mechanisms for the communication between the components 
have been included in their design, so that the whole system should even be able to cope with power breakdowns or 
hardware replacements and following restarts without any negative side-effects. 

 

IV. Conclusion and Outlook 
As pointed out in the last chapter, the presented “Incremental Planning System” provides a robust, scalable, 

generic framework with a lot of advantages for the mission planning support of future missions operated at GSOC. 
However, it will be interesting to see, which additional demands will be risen as soon as the users have become 

used to the new tool suite, how the project-specific configurations will have to be made in order to satisfy the 
respective customer’s requirements best, and whether the foreseen plug-in possibilities have been chosen well 
enough to integrate these specific demands into the system. Furthermore, especially the set-up of the scheduling and 
re-scheduling algorithm(s) will still impose some future challenges. For example, the necessity to balance the wish 
for optimally filled timelines and the following of strict priority rules on the one hand and the wish to avoid too 
frequent changes of once given information about previous planning states and to be able to interact in the decision 
making process on the other hand.  

Nevertheless we are convinced that the Incremental Planning framework with its sophisticated, thoroughly 
elaborate design, the scalability, configurability and therefore reusability and robustness will result in major benefits. 

Currently, the implementation is ongoing after the detailed design of the Incremental Planning System has been 
finished last year. The first mission which shall make use of it in full complexity will be EnMAP (an Earth 
observation mission with planned launch date 2016 19), but the usage of one or the other component might already 
take place earlier in other fully- or semi-automated planning applications. 
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