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Abstract—With data provided by modern meter-resolution syn-
thetic aperture radar (SAR) sensors and advanced multipass
interferometric techniques such as tomographic SAR inversion
(TomoSAR), it is now possible to reconstruct the shape and mon-
itor the undergoing motion of urban infrastructures on the scale
of centimeters or even millimeters from space in very high level of
details. The retrieval of rich information allows us to take a step
further toward generation of 4-D (or even higher dimensional)
dynamic city models, i.e., city models that can incorporate tempo-
ral (motion) behavior along with the 3-D information. Motivated
by these opportunities, the authors proposed an approach that
first attempts to reconstruct facades from this class of data. The
approach works well for small areas containing only a couple
of buildings. However, towards automatic reconstruction for the
whole city area, a more robust and fully automatic approach is
needed. In this paper, we present a complete extended approach
for automatic (parametric) reconstruction of building facades from
4-D TomoSAR point cloud data and put particular focus on robust
reconstruction of large areas. The proposed approach is illustrated
and validated by examples using TomoSAR point clouds generated
from a stack of TerraSAR-X high-resolution spotlight images from
ascending orbit covering an approximately 2-km2 high-rise area in
the city of Las Vegas.

Index Terms—Clustering, facade reconstruction, point density,
TerraSAR-X, tomographic SAR (TomoSAR) inversion, 4-D point
cloud.

I. INTRODUCTION

AUTOMATIC detection and reconstruction of buildings
has been an active research area for at least two decades.

Despite an extensive research effort, the topic is still of great
interest due to ever increasing growth of urban population
which gives rise to a wide range of potential applications
in various fields. For instance, building footprints (i.e., 2-D
building outline/shape) can be used for urban landscape devel-
opment [1], urban planning [2], damage assessment [3], disaster
management [4], navigation purposes [5], etc. Additionally,
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2-D footprint data in combination with height information
can generate 3-D building models. Such models are essential
for virtual city modeling [6] and 3-D GIS applications (e.g.,
commercial software such as Google Earth, Apple Maps, etc.).
Other possible usages may include analyzing solar potential
over building roofs [7], placing and installing telecommunica-
tion antenna towers [8], Web-based mapping [9], tourism [6],
architecture [10], augmented reality applications [5], [11], and
many more.

Spaceborne synthetic aperture radar (SAR) sensors are able
to provide day/night global coverage in virtually all weather
conditions. Moreover, due to coherent imaging nature, by using
acquisitions taken at different times, it is also uniquely capable
of imaging the dynamics of the illuminated area in the scale of
centimeters or even millimeters. These benefits have motivated
many researchers, and therefore, several methods have been
developed, which use very high resolution (VHR) spaceborne
SAR imagery for detection and reconstruction of man-made
structures in particular buildings. For instance, single-aspect
SAR-image-based approaches for building reconstruction are
proposed in [12]–[14]. Due to the fact that only single SAR
images are used, these approaches predominantly perform well
mostly only for isolated buildings but not for dense urban areas
where the buildings are densely packed and smaller buildings
are often occluded by the higher ones [15]. To resolve this,
interferometric SAR (InSAR) data, SAR image pairs taken
from slightly different viewing angles, are used, e.g., a modified
machine vision approach is proposed in [16] to detect and ex-
tract buildings. The algorithm is based on local approximation
of best fitting planes in the segmented regions of interest. Simi-
larly, Thiele et al. [17] also developed a model-based approach
to detect and reconstruct building footprints using orthogonal
InSAR images. Another automatic approach based on modeling
building objects as cuboids using multiaspect polarimetric SAR
images is presented in [18]. In data fusion context, the use of
optical imagery has also been exploited along with SAR [19]
and InSAR [15] datasets, respectively. Despite of the active
ongoing research in the area, the problem of building recon-
struction still remains challenging due to inherent characteris-
tics with SAR images such as geometrical projection caused
by the side-looking geometry [20]. Moreover, complex build-
ing structures and high variability of objects appearing in the
images make automatic building detection and reconstruction
a challenging task. For example, problems posed by occlusion
of smaller buildings/objects from the higher ones render diffi-
culties in large area extension. Therefore, prior knowledge is
often incorporated with certain regularization (geometric) con-
straints for realistic and automatic reconstruction. For instance,
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facades are often assumed to be vertical [19], building footprint
as regular parallelepipeds [14], roofs as polyhedral structures
[21], etc.

Modern spaceborne SAR sensors such as TerraSAR-X/
TanDEM-X [22] and COSMO-SkyMed [23] can deliver VHR
resolution data that fit well to the inherent spatial scales of
buildings. Hence, these VHR data are particularly suited for
detailed urban mapping [24]–[33]. However, 2-D SAR imaging
projects the 3-D scene onto a 2-D image, making it “noninjec-
tive” in urban scenarios due to the presence of vertical struc-
tures (e.g., building facades or other man-made objects) [25].
The unwelcoming effects such as layover and foreshortening
seriously handicap the interpretation of SAR images. Advanced
interferometric techniques, such as persistent scatterer interfer-
ometry (PSI) and SAR tomography (TomoSAR), aim at SAR
imaging in 3-D or even higher dimensions. Among them, PSI
exploits the coherent pixels, i.e., the bright long-term stable
objects (persistent scatterers) [30]. However, it assumes single
scatterers in one azimuth-range pixel and therefore does not re-
solve the layover problem. TomoSAR, on the other hand, aims
at real and unambiguous 3-D SAR imaging [25], [34]–[36]. By
exploiting multipass SAR images taken from slightly different
positions, like PSI does, it builds up a synthetic aperture in the
elevation direction that enables retrieval of precise 3-D position
of dominant scatterers via spectral analysis within one azimuth-
range SAR image pixel [25]. Multiple layovered objects in any
pixel are therefore separated from the reconstructed reflectivity
profile in elevation direction [36]. Moreover, exploiting the
fact that different acquisitions are taken at different times,
the synthetic aperture can also be extended in the temporal
domain to enable 4-D (space-time) focusing of SAR images.
The technique is referred to as D-TomoSAR, which combines
the strengths of both TomoSAR and PSI [26], [27], [37]–[40]. It
is capable of retrieving elevation and deformation information
(linear, seasonal, etc.) even of multiple scatterers inside a single
SAR image pixel [25], [29]. Retrieval of rich scatterer informa-
tion from VHR D-TomoSAR enables generation of 4-D (space-
time) point cloud of the illuminated area with point (scatterer)
density that is comparable to LiDAR, e.g., experiments using
TerraSAR-X high-resolution spotlight data stacks show that the
scatterer density retrieved using TomoSAR is on the order of
1 million points/km2 [28].

Object reconstruction from these high-quality TomoSAR
point clouds can greatly support the reconstruction of dynamic
city models that could potentially be used to monitor and
visualize the dynamics of urban infrastructure in very high level
of details. Such models would be immensely helpful to ensure
safety/security of growing urban population by monitoring of
urban infrastructures against potential threats of damage and
structural degradation caused by various factors, e.g., ground
subsidence or uplift, bad construction, natural disaster, etc.
Motivated by this, the very first results of building facade
reconstruction from single-view (ascending stack) and multi-
view (fused ascending and descending stacks) perspectives over
a small test building area (Bellagio hotel, Las Vegas) were
presented in [41] and [42], respectively.

In this paper, we present an approach that allows automatic
reconstruction of 3-D building facades using these unstruc-

tured TomoSAR point clouds only. The approach proposes new
methods as well as modifications to the previously introduced
idea in [42] aimed at finding a more general solution toward
automatic reconstruction of the whole city area. The basic idea
is to reconstruct 3-D building models via independent modeling
of each individual facade to build the overall 2-D shape of the
building footprint, followed by its representation in 3-D. The
following are the innovative contributions that are specific to
the approach proposed in this paper.

1) A robust M-estimator-based directional SD estimation
method is proposed, which provides much better es-
timates of facade regions compared to the grid-based
SD estimation proposed in [42] by incorporating the
facade geometry. Moreover, instead of rejecting non-
facade points via 2-D morphological operations used
in [42], robust 3-D surface normal information is uti-
lized. The use of additional-dimensional with the vertical
facade assumption helps in better rejecting nonfacade
points.

2) K-means clustering with a criterion for prior guessing the
number of clusters is used in previous works [41], [42].
This technique provides good results for single buildings,
but when it comes to larger areas, there are two major
concerns: 1) guessing the number of clusters is not always
trivial, and 2) a certain shape of clusters is not very
well recognized. For this reason, a three-step automatic
(unsupervised) clustering approach that combines both
the density-based clustering [43] and mean shift algo-
rithm [44], [45] is proposed in this paper. The proposed
segmentation approach is able to work directly on bigger
areas without requiring any prior knowledge about the
number of clusters.

3) Facades are modeled using general (first and second
order) polynomial equations to cater for a wide variety
of building footprint. A detailed methodological descrip-
tion of the modeling procedure is explained, which is
able to cater arbitrary (rotated) orientations of building
facades. The coefficients of the model are estimated using
weighted total least squares (WTLS) method to cope
for localization errors of TomoSAR points in both xy
directions.

4) During the reconstruction procedure, the presence of
smaller clustered segments occurring at facade transition
regions handicaps accurate determination of vertex points
from the adjacent facade pair and may cause the recon-
struction procedure to fail. To deal with this problem,
smaller “conflicting segments” are automatically identi-
fied and removed for accurate and robust reconstruction
of the adjacent facades.

5) Side-looking SAR geometry and complexity of the scene
in dense high-rise area of interest can cause occlusions
of lower height facades scattered around higher building
facade structures. As a consequence, a few or some-
times no data are available for the occluded region,
rendering incomplete reconstruction or breaking an in-
dividual facade into two or more segments. A partial
solution is also presented in this paper, which refines the
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reconstructed facade footprints via insertion (of addi-
tional segments) and extension operations.

6) Finally, this paper presents the first demonstration of
automatic large area reconstruction of building facades
from this class of data. Moreover, the developed methods
are not strictly applicable to TomoSAR point clouds only
but are also applicable to work on unstructured 3-D point
clouds generated from a different sensor with similar
configuration (i.e., oblique geometry) with both low and
high point densities.

The aforementioned contributions allow completely auto-
matic (but parametric) reconstruction of building facades from
TomoSAR point clouds in larger areas.

The remainder of this paper is structured as follows.
Section II presents a brief procedural overview of the exist-
ing techniques that use 3-D LiDAR point cloud for build-
ing reconstruction. Section III presents in detail the proposed
approach. In Section IV, the experimental results, obtained
from the TomoSAR point cloud generated from a TerraSAR-
X high-resolution spotlight data stack (ascending orbit only),
are presented and discussed. Finally, in Section V, a conclusion
about the proposed approach is drawn, and future perspectives
are discussed.

II. RELATED WORK

Most approaches employ airborne LiDAR data for automatic
3-D reconstruction of buildings. Methodologically, the problem
is tackled by subdividing the task into two sequential steps, i.e.,
detection/classification of building points followed by their 3-D
modeling and reconstruction.

Detection is generally carried out by first computing the
digital terrain model (DTM) by filtering techniques, e.g., mor-
phological filtering [46], gradient analysis [47], or iterative
densification of triangular irregular network structures [48].
Nadir-looking LiDAR points essentially give a digital surface
model (DSM). Subtracting DSM from the computed DTM
provides a normalized DSM (nDSM) which represents the
height variation of nonground points. Subsequently, building
points are extracted out from nDSM by exploiting geometrical
features such as deviations from the surface model, local height
measures, roughness, and slope variations. Methods based on
building boundary tracing from nDSM [49] or directly from
point clouds [50], [51] have also been employed for building
detection. With them, finer building boundaries are determined
by regularization of the coarsely traced boundaries. All points
that lie inside the boundary regions are considered as building
points. Building points can also be extracted out by explicitly
labeling every point in the data set. For labeling purposes,
local neighborhood features such as height, eigenvalue, and
plane features have been used in conjunction with supervised
[52], semisupervised [21], and unsupervised [53] classification
techniques.

Detected building regions or points are, in turn, used for
3-D modeling and reconstruction. Most methods make use of
the fact that man-made structures such as buildings usually
have either parametric shapes (model driven) or composed of

polyhedral structures only (data driven). The latter is, however,
more common in the literature, where local sets of coplanar
points are first determined using 3-D Hough transform or
RANSAC algorithms and then reconstruction is carried out by
surface fitting in the segmented building regions followed by
region growing procedure [53] or by building up an adjacency
graph [21], [54].

The aforementioned methods and the majority of other tech-
niques present in the literature that make use of 3-D LiDAR
data cannot be directly applied to TomoSAR point clouds due to
side-looking SAR geometry and different microwave scattering
properties of the objects appearing in the scene reflecting dif-
ferent geometrical and material features. Compared to LiDAR,
TomoSAR point clouds possess the following peculiarities that
should be taken into consideration.

Accuracy and Errors:
• TomoSAR point clouds deliver moderate 3-D positioning

accuracy on the order of 1 m [15] as compared to (air-
borne) LiDAR systems having an accuracy on the order of
0.1 m [21].

• Ghost scatterers [55] may be generated due to multiple
scattering that appears as outliers far away from a realistic
3-D position.

• A small number of images and limited orbit speed render
the location error of TomoSAR points highly anisotropic,
with an elevation error typically one or two orders of
magnitude higher than in range and azimuth [25].

Coherent Imaging:
• Due to coherent imaging nature, temporally incoherent ob-

jects such as trees cannot be reconstructed from multipass
spaceborne SAR image stacks.

Side-Looking Geometry:
• Separation of layover on vertical structures renders

geocoded TomoSAR point clouds to possess higher den-
sity of points on building facades.

• In order to obtain a full structure of individual buildings
from space, multiple views are required [42].

Higher Dimensional Imaging:
• In addition to 3-D spatial information, TomoSAR point

clouds also possess the fourth-dimensional information,
i.e., temporal or seasonal deformation estimates, making
them very attractive for dynamic city modeling.

III. PROCESSING STEPS FOR BUILDING

FACADE RECONSTRUCTION

Due to the side-looking SAR geometry, when projected, the
TomoSAR point clouds onto ground plane vertical facade re-
gions exhibit higher scatterer (point) density (SD) as compared
to nonfacade regions. It is mostly true due to the existence of
strong corner reflectors, e.g., window frames on the building
facades. Taking this fact into account, in [42], we proposed
to extract facade points by projecting all of the points onto
the xy grid for estimating SD (rastered image), followed by
thresholding and applying morphological dilation operation.
This approach works well for high-rise buildings having a much
higher point density but limits the extraction of facade points



SHAHZAD AND ZHU: ROBUST RECONSTRUCTION OF BUILDING FACADES FOR LARGE AREAS 755

Fig. 1. Block diagram of the proposed method.

from relatively lower buildings. The selection of a particular
threshold thus becomes crucial.

To resolve this issue, in this work, a more robust facade
extraction approach is proposed, which is based on the direc-
tional SD estimation procedure to locally estimate the SD for
each point while incorporating the facade geometry [56]. Later,
robust 3-D surface normal information is utilized to extract fa-
cade points. Automatic segmentation of extracted facade points
is obtained by first performing coarse clustering to cluster
points belonging to individual buildings. Then, each cluster
is further fine-clustered using Gaussian-map-based mean shift
clustering algorithm. After that, clusters within clusters are
spatially separated. Segmented facades are then classified as
flat or curved, and their model parameters are estimated. Sub-
sequently, the geometric primitives such as vertex points are
determined from the intersection of adjacent facade pair after
removing smaller conflicting segments occurring at transitional
regions. Finally, a refinement operation is carried out on the
reconstructed facades that remain either incomplete or broken
into two or more segments to complete the reconstruction
process.

Fig. 1 shows the block diagram of the processing steps in-
volved in the complete methodology. Next, we explain in detail
the procedures of the proposed approach in dedicated sections.

A. SD Estimation

For each 3-D TomoSAR point p, points within its local
neighborhood vc are used for SD estimation. vc includes all of
those points that lie inside a vertical cylinder centered at p. To
emphasize the building facades, we incorporate facade geome-
try in estimating SD, i.e., we estimate the direction of the local
neighborhood via line fitting using robust M-estimator. The
method iteratively reweights the points according to the resid-
uals and computes the so-called M-estimates as follows [57].

1) The initial estimates of the line parameters β (e.g., β1 =
slope and β2 = offset) are derived from ordinary least
squares.

2) The weights wpi
of each point pi ∈ vc are then computed

using a bisquare function [57], [58]

wpi
=

{
(1− u2)2 for abs (u) < 1

0 otherwise

where u =
|ypi

− xpi
β1 − β2|2

4.685σ̂
√
1− t

(1)

where t is the leverage computed using parameter esti-
mates β of the fitted line and σ̂ is the estimate for the
scale of the error term computed by σ̂ = 1.483 ∗ MAD,
where MAD is the median absolute deviation of the
residuals from their median. The term 1.483 is used to
make the estimate σ̂ consistent to the standard deviation
at Gaussian distribution [58], [59].

3) Updating β using weights wpi
by applying weighted least

squares to solve the following objective function:

argmin
β

∑
pi∈vc

wpi
(β) |ypi

− xpi
β1 − β2|2 (2)

where xpi
and ypi

represent the abscissa and ordinate
(i.e., ground coordinates) of the points within vc.

4) Iterating steps 2 and 3 until a fixed number of iterations.
The estimated line describes the main principal axis of the

cylindrical footprint of the local neighborhood. The orthogonal
distance for every point in vc is then calculated from the princi-
pal axis (shifted to the point p), and the points having distances
less than d are taken as “inliers” and used in SD estimation.
SD for each point is thus defined as the number of points

within a directional (cylindrical) neighborhood window divided
by the area of the window

SD =
number of points in vd

Area of vd
(3)

where vd ⊆ vc but includes only those points that lie close to
the principal axis of points in vc.

Fig. 2 shows the graphical representation of the SD estima-
tion procedure.

B. Facade Extraction

Based on the estimated SD, facade points can be extracted.
For a large area, both high and low buildings are present. A hard
threshold, i.e., removing points below a rather high SD value,
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Fig. 2. Illustration of SD estimation. (a) Three-dimensional view of the local
cylindrical neighborhood around the point of interest. (b) Top view of (a). The
coefficients of the dotted yellow regression line are estimated via M-estimation.
The black dotted line shows the shift of the yellow line to the point of interest.
The shaded area shows the region of vd within vc.

as used in [42], would lead to misdetection of facade points of
lower buildings whose SD estimates would be relatively low
with respect to high-rise buildings. To avoid such misdetection,
we extract facade points in a sequential way. First, we have
lowered the SD threshold to detect not only higher buildings
but also lower ones. However, a softer threshold would also
introduce false positives, i.e., roof points or ground points with
a local point density comparable to those of lower buildings.
Therefore, we introduce a second step which utilizes 3-D
surface normal information by incorporating prior knowledge
(i.e., facades are assumed to be vertical surfaces which separate
them from nonvertical ground plane and roofs) to eliminate
those false positives.

The key issue is then the local surface normal estimation for
each 3-D point. Commonly, they are estimated via fitting “best”
plane in least squares (LS) sense in the local neighborhood vc,
which is equivalent to performing principal component analysis
(PCA) of the points in vc [60]. This implies that the surface
normals can be directly estimated for each 3-D point via eigen-
value/eigenvector analysis of 3-D (i.e., 3 × 3) covariance matrix
Σvc

. There are two advantages in using eigenvalue/eigenvector
analysis of Σvc

for surface normal estimation.
1) First, the eigenvector associated to the smallest eigen-

value of the positive semidefinite matrix Σvc
is the di-

rect estimate of the local surface normal of the query
point [60].

2) Second, in addition to giving us the direct solution of
estimating local surface normal, it can also help us in
determining the dimensionality of each 3-D point [21]. To
elaborate, the eigenvectors of Σvc

essentially give the or-
thonormal basis for the local neighborhood vc, with their
corresponding eigenvalues representing the magnitude
(or variance) of expansion. Analyzing this magnitude
implicitly gives us an indication of the beneath surface,
e.g., eigenvalue analysis of Σvc

with all points lying on
the plane would ideally return only two nonzero eigen-
values. Similarly, all points lying on a 3-D line would
give only one nonzero eigenvalue. Eigenvalue analysis for
segmentation and classification of planar points has been
exploited in [21], [52], and [53].

Eigenvalue/eigenvector analysis via classical PCA may fail
to give precise estimate of the 3-D surface normal using

TomoSAR point cloud due to the presence of outliers and
localization errors (see Section II: accuracy and errors). Robust
estimation of the covariance matrix Σvc

is therefore needed.
To this end, we estimated Σvc

using robust minimum covari-
ance determinant (MCD) method [61]. The method finds a
subset (fraction) α of the data points pi ∈ vc whose covariance
matrix has the lowest determinant. The idea stems from the
concept of generalized variance (GV) which is defined to be
the determinant of the covariance matrix of any d-D (d > 1)
random variable [62]. For instance, in case of 2-D (x–y) points,
the GV provides a scalar value which measures the overall
variability of all points in both x and y dimensions. Points that
are clustered tightly together tend to have a smaller GV (i.e.,
lower determinant of their covariance matrix) as compared to
scattered ones. Thus, the subset α of the data points which
provides the lowest determinant is taken as the MCD estimate
of Σvc

. If the data points are assumed to have less than 25%
outliers, then an appropriate selection of α = 0.75 (also used
in this work) proposed in [63] provides a good compromise
between statistical efficiency and high breakdown value (α =
0.75 implies that 75% of the data points has been used in
covariance estimation).

The covariance matrix Σvc
estimated using the MCD method

from the local neighboring points pi ∈ vc around (in cylinder)
the point of interest po(xo, yo, zo) is then used to determine
the local 3-D surface normal at po. If we denote a plane which
robustly fits the neighboring points pi as nxx+ nyy + nzz +
ρ = 0, with ρ = −nxxo − nyyo − nzzo, then No(nx, ny, nz)
depicts the local 3-D surface normal at po. No is thus directly
estimated from Σvc

by computing the eigenvector associated to
the smallest eigenvalue of Σvc

(here, vc includes points in the
vicinity of po) i.e.,

if Σvc
.vj = λj .vj , j = 1, 2, 3 (descending order)

then surface normal of the underlying surface at point

po : No(nx, ny, nz) = v3. (4)

From (4), robust 3-D surface normals are computed for
each point that is obtained after SD thresholding. Ideally, the
direction of surface normal should be parallel to the ground for
points on the vertical facades which separate them from non-
vertical ground plane and roofs. Taking this fact into account,
facade points are extracted out by retaining only those points
having normals that are close to the horizontal axis (i.e., parallel
to ground for points belonging to a vertical surface). In this
manner, the proposed two-step approach allows us to robustly
extract facade points over a large area where both high and low
buildings are present.

Fig. 3 shows a comparison of the proposed approach with
the one presented in [42]. The selected area shown in Fig. 3(a)
contains relatively lower height buildings with low and incon-
sistent density of points on building facades. It can be seen that,
in comparison to the SD estimation results from the previous
approach depicted in Fig. 3(b), higher and complete density
values are obtained for facade regions using the SD estimation
method proposed in this paper, shown in Fig. 3(c).
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Fig. 3. Comparison of two SD estimation methods using TomoSAR points of an area in Las Vegas containing rectangular shaped buildings. (a) TomoSAR
points (top view) generated from ascending stack only. The axes are in UTM coordinates. The height (above sea level) of TomoSAR points is color-coded [unit:
meter]. (b) SD image estimated via [42]. (c) SD estimated via M-estimator-based directional filter proposed in this paper. Higher SD regions depict probable
facade points. SD is color-coded, with the colorbar representing points/m2. (b) and (c) share the same colorbar. Note that the SD estimated in (b) is the rastered
image obtained by projecting all points onto the xy grid as compared to (c) where SD is directly computed for each point.

Fig. 4. Extraction of facade regions/points using the SD estimation results from Fig. 3. (a) Building facades obtained by thresholding the rastered SD image
of Fig. 3(b) by the TH value. (b) Final extracted facade after 2-D morphological operation on (a) as proposed in [42]. (c) TomoSAR points whose SD estimated
in Fig. 3(c) is above TH . (d) Extracted facades from (c) by utilizing robust 3-D surface normal information. The threshold value TH used here is 2 points/m2

(empirically found to be optimum in [42]).

Moreover, later use of the third dimension in robust 3-D
surface normal estimation provides much better results of ex-
tracting facades by rejecting nonfacade points.

Fig. 4 presents the comparison of the facade extraction
results obtained using the SD estimates in Fig. 3. Taking the
facade point candidates extracted by thresholding SD [Fig. 3(a)
and (c)] as inputs, 2-D morphological operations (area opening
and dilation) as proposed in [42] and robust 3-D surface nor-
mal information as suggested in this paper are performed to
reject false positives. The final extracted facades are shown in
Fig. 4(b) and (d), respectively.

C. Segmentation of Individual Facades

The extracted facade points belong to different facades.
Clustering of points belonging to the same facade is therefore
needed. First, a coarse clustering is performed using density-
based clustering algorithm [43]. It involves the notion of den-
sity connectivity between the points. For example, two points
are directly density connected to each other if one is in the
neighborhood vicinity of the other point. If the two points
are not directly connected to each other, still they can be
density connected to each other if there is a chain of points
between them such that they all are directly density connected
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Fig. 5. Density-based clustering. Points a and b are directly density connected
to each other, whereas points a and c are density connected to each other since
there is a chain of points between them such that they all are directly density
connected to each other.

to each other. Two parameters that control the clustering process
include the neighborhood parameter ε, i.e., the radius in case of
sphere or cylindrical neighborhood, and the minimum number
of points MinPts in the ε-neighborhood for any particular point.
The resulting clusters Ki thus contain points such that all of the
points in any particular cluster are density connected to each
other but are not density connected to any other point belonging
to another cluster. Moreover, each point inside any particular
cluster Ki belongs to one of the three categories (Fig. 5) [43].

1) Core points: A point is labeled core point if it contains,
within its ε-neighborhood, MinPts number of points.

2) Border points: A point is considered border point if it is
within ε-neighborhood of any core point but itself is not
a core point and does not have MinPts neighbors.

3) Outliers: A point neither core point nor border point is
termed as an outlier, i.e., any point which do not have den-
sity (points) greater than MinPts within its ε-neighborhood
and also is not the neighbor of any other point.

Density-connected clusters containing only core and boundary
points are used for further processing.

The aforementioned process, however, may merge points of
two or more adjacent facade segments into a single cluster.
To reconstruct individual facade segments, separation of these
segments is therefore necessary. It is done by mapping the
facade points in Gaussian image and then employing mean shift
clustering.

Let us assume that a coarsely clustered segment Ki consist
of one or more vertical adjacent facades Fj , j = 1, · · · J . An
image of a map M: F → F 2 that assigns each point in F to
its respective unit surface normal is known as Gaussian image
GI of F [64]. Flat F (i.e., planar surface) should ideally be
represented by a point in GI . Fig. 6 conceptually illustrates this
in an ideal scenario. In practice, surface normals are estimated
locally and may fluctuate from one point to another as practical
data often contain errors in 3-D positions. However, if the
estimation of normals is robust enough, a surface mapped to
GI should be represented as a dense cluster of points in GI .
The shape of clusters in GI corresponds to the geometry of
connected surfaces [44]. The number of clusters in GI tells the
number of surfaces in the spatial domain.

If we assume pr = 1, . . . ,m to be 3-D points and nr as their
corresponding 3-D unit normal vectors belonging to one of the

Fig. 6. Gaussian image of three connected planar surfaces. (a) Arrows indicate
surface normal vectors (nred, ngreen, nblue) to the respective surfaces. (b) All
points belonging to one particular surface are mapped to the same identical
point in GI (ideal scenario).

coarsely clustered segments Ki, then the density at any normal
point nq(q ∈ r) in GI (feature space) is defined as [44]

Dnq
=

c

mb3

m∑
r=1

g

(∥∥∥∥nq − nr

b

∥∥∥∥
2
)

(5)

where b is the bandwidth parameter and g(x) is a nonnegative,
nonincreasing, and piecewise continuous function with definite
integral, i.e.,

∫ ∞
0 g(x)dx < ∞. From the concept of kernels

[45], the function g(x) is defined as the profile of the radially
symmetric kernel G(x) satisfying G(x) = cg(‖x‖2), where c
is a normalization constant ensuring that G(x) integrates to 1.
Different kernels, such as the unit flat kernel and the Gaussian
kernel, can be used to define the density Dnq

. However, the
latter with the profile function exp(−‖(nq − nr)/b‖2) has been
used in this work.

Density Dnq
is higher for points that belong to planar or

parabolic surfaces and lower for points that lie at the transition
edges between the surfaces [44]. These higher density points in
the GI are identified and clustered using mean shift (MS) clus-
tering procedure. MS is a mode-seeking procedure and works
iteratively by shifting every data point toward the weighted
mean of points within its neighborhood. The shift vector m(nq)
always points toward the direction of the maximum increase in
the density Dnq

[65] and is computed as

m(nq) =

m∑
r=1

nr exp
(
−‖nq−nr‖2

b2

)
m∑
r=1

exp
(
−‖nq−nr‖2

b2

) − nq. (6)

Applying MS in GI produces clusters whose corresponding
points in spatial domain represent different facades. However,
it is also possible that spatial points corresponding to any one
particular normal cluster in GI may belong to two or more
different facades. This can happen if points of two or more fa-
cades that are “nearly” parallel to each other (i.e., having close
normal directions) are present in Ki. To resolve this, density-
based clustering is again performed in the resulting clusters for
spatial separation of parallel facade points clustered into one
group. Finally, clusters with very few points are removed from
further processing for robust reconstruction.
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Fig. 7. Illustration of orientation angle for flat and curved vertical footprints
(top view). (a) Arrows indicate pattern of change in orientation (azimuthal) an-
gles of ten points on each vertical surface. (b) Plots their respective orientation
angles.

D. Cluster Identification

Each cluster is further classified into flat or curved surface by
analyzing derivatives of the local orientation angle θ. θ for each
3-D point is equal to the azimuthal angle of the corresponding
computed surface normal

θ = arctan

(
λ3y

λ3x

)
(7)

where λ3x and λ3y represent the x and y components of the sur-
face normal λ3 of any 3-D point. Ideally, the flat surfaces should
have constant orientations, i.e., zero derivatives compared to the
curved surfaces that have gradually changing orientations (see
Fig. 7). We exploit this fact and compute the first derivative
θ′ of the orientation angle for each facade footprint. Since
the original orientation derivatives θ′ are usually noisy, all of
the points are first projected to the first principal axis, and
polynomial fitting is later applied for denoising. Based on the
behavior of θ′, facade footprints are classified as flat or curved.

E. Modeling of Facades

The identified facade clusters in xy plane are then modeled
using the following general polynomial equation [42]:

fp(x, y) =

p∑
q=1

aqx
iyj i+ j ≤ q (8)

where i and j are permuted accordingly, p is the order of the
polynomial, and the number of terms in the aforementioned
polynomial is equal to (p+ 1)(p+ 2)/2. Cross terms are in-
troduced in the model in case of the rotated local coordinate
system. To solve (8), we restrict ourselves to the first and
second orders (i.e., flat with max(i, j) = 1 and curved with
max(i, j) = 2). The coefficients aq are estimated using the
WTLS method, where the total least squares is utilized to
cope for localization errors of TomoSAR points in both xy
directions and the weight of each point is assigned equal to its
corresponding SD. The weighted polynomial fitting (residual)
error ferr is minimum for the case where we have the unrotated
local coordinate system reducing the right-hand side of (8) to∑p

i=0 aix
i (i.e., with no cross terms). In case of the rotated

local coordinate system (which is often the case), we perform

the following steps to obtain consistent parameter estimates of
all facades in a global coordinate system.

1) Rotate the points by rotation angle ω, and compute
the polynomial fitting error ferr by applying the WTLS
method.

2) Consider coefficients computed with ωmin that gives the
minimum polynomial fitting error ferr as polynomial
terms depicting unrotated points in the global coordinate
system. ωmin is computed by using an unconstrained
nonlinear optimization procedure to find the minimum of
the error function ferr by varying ω over 0−360◦ range
via the Nelder–Mead simplex algorithm [66].

3) Rotate the computed polynomial by replacing the unro-
tated (x−, y−) axis terms by their rotation counterparts
(x cosω + y sinω,−x sinω + y cosω) to yield polyno-
mial terms aq in global coordinates.

F. Removing Conflicting Segments

After estimation of model parameters, the next step is to
describe the overall shape of the building footprint by further
identifying adjacent facade pairs and determining the inter-
section of the facade surfaces. The adjacency of facades is
usually described by an adjacency matrix AM that is built up
via connectivity analysis [21], [42]. Identified adjacent facade
segments are used to determine the vertex points (i.e., facade
intersection lines in 3-D) by computing the intersection points
between any adjacent facade pair.

Determination of these intersection points can sometimes be-
come difficult if the transition points are segmented as isolated
small clusters (also referred to as conflicting segments) rather
than part of the corresponding adjacent facade segments. As
a consequence, it gets complicated to find a legitimate adjacent
facade pair from which intersection points should be computed.
To resolve this issue, conflicting segments must be removed
prior to vertex point computation. To illustrate how they are
removed in an automatic manner, an example is shown in Fig. 8.
The labeled line segments indicate the reconstructed facade
segments of two different buildings A and B. The endpoints of
each segment are denoted as “Δ” and “•.” AM represents the
built adjacency matrix, where “1” and “0” denote the adjacent
and nonadjacent conditions, respectively. Among the labeled
segments, segments [7 4 1 3 6] are “valid” facades, while
segments [2 5 8] are the conflicting segments.

The following steps are performed for automatic removal of
these conflicting segments.

1) The connected series matrix ConnSeg is determined from
AM such that rows of ConnSeg represent a set of distinct
series of adjacently connected segments, e.g., the ith
row of ConnSeg Segi = {sj | j = 1, . . . , n} represents n
segments (i.e., s1∼sn) that are adjacently connected. In
Fig. 8, since there exist only two series of adjacently con-
nected facade segments (i.e., belonging to two buildings),
ConnSeg therefore consists of two rows only, where the
first row contains facade segments Seg1 = [2 4 5 7] while
the second row comprises of segments Seg2 = [1 3 6 8].

2) For each segment, the largest segment that is connected
to each endpoint can be identified. Their indices are
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Fig. 8. Example illustrating the removal of conflicting segments.

TABLE I
PROCEDURE TO REMOVE CONFLICTING SEGMENTS

recorded in a two column matrix E that captures such an
“endpoint”–“largest segment” relationship, e.g., the “•”
endpoint of segment 1 shown in Fig. 8 is connected to
two segments 8 and 3. Since segment 3 has a larger length
than segment 8, therefore 3 is assigned to this endpoint of
segment 1 in E. The endpoint matrix E for both buildings
is depicted on the right side of Fig. 8. Zeros in E represent
the condition of no adjacent facade at that endpoint.

3) Applying union operation to all elements in E results in
a matrix RetainSeg whose elements contain all building
facades that should be retained. Conflicting facades, i.e.,
the ones that are not part of RetainSeg, are removed. For
the example shown in Fig. 8, the union of elements in E
gives the RetainSeg [1 3 4 6 7] (zeros are not considered).
Subsequently, the segments that are not part of RetainSeg,
namely, [2 5 8], are removed.

The pseudocode for the aforementioned procedure is given
in Table I.

After removing the conflicting segments, the vertex points
are computed from the intersection of valid adjacent segments
to complete the reconstruction process.

G. Refining Reconstructed Facades

Sometimes the reconstructed facades remain either incom-
plete or are broken into more than one segment due to the
following reasons: 1) Higher building structures present nearby
can partly (or fully) occlude the facades of lower buildings,
and 2) due to the geometrical shape, only very few points
are available at some parts of building facades. In order to
overcome this issue, in this section, we propose a procedure that
tries to refine the reconstructed facades by inserting additional
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Fig. 9. Vertices for refinement. Gray rectangles depict the 2-D building footprint from the top. (a) Shows the total of five vertices, out of which four are open
endpoint vertices and one is an intersection vertex computed from the intersection of segments 1 and 2. (b) Depicts the situation where ignoring condition C3
would yield false segment addition shown as a gray dotted line. The gray arrows indicate the local orientation angle θ at open vertices vo and v̂o. Two black
dotted lines represent the two correct inserted segments between vo and v̂o. (c) Depicts the recursive extension procedure of the open vertex vo. vp represents the
intermediate extension points, whereas v′

p denotes the final point. (d) Illustrates the direction of extension of the gray open vertex over the roof region. This can
happen if we only consider hmax and ignore the local standard deviation of height hσ .

segments between the broken regions and extend those facades
that remain incomplete.

Vertex points computed from the previous section are sep-
arated into two types: The first type consists of vertices that
are computed from the intersection of two adjacent facades,
while the second type consists of the other vertices representing
“open” endpoints. For each series Segi made up of n segments
(i.e., the ith updated row of the ConnSeg matrix after removing
conflicting segments), there exist two open vertices and (n− 1)
intersection vertices. Refinement operations including insertion
of additional segment to connect broken facades and extension
of incomplete facades are carried out only on the second type,
i.e., open endpoint vertices.

If we denote an open end vertex as vo and an intersection
vertex as vi [see Fig. 9(a)], then the refinement procedure for
any one particular adjacently connected series Segi having two
open vertices is described in Table II.

In Table II, steps 2–4 tries to cope with the broken facades,
while steps 5–7 deals with the incomplete facades. Conditions
C1 and C2 in step 4 imply that the two segments are considered
part of the same (broken) building facade if both segments are
not far enough from each other and at the same time possess
data points in between that have close maximum height values.
hmax is taken as the mean of at least ten maximum height
values (i.e., if there are less than ten points available, then hmax

is taken as the mean of all of those point). If conditions C1
and C2 in step 4 are met, the algorithm then checks condition
C3. If the two segments belong to the same facade, a segment
with vertices (vo, v̂o) is inserted, which fills the empty (i.e.,
broken) regions of the facade. On the contrary, if the open
vertex pair vov̂o is not part of the same facade but rather belongs
to two different facade segments (determined via the difference
in the local orientation angle > 45◦), then point of intersection
pvov̂o

is computed, and instead of inserting one segment, two
segments with vertices (vo, pvov̂o

) and (v̂o, pvov̂o
) are inserted.

Fig. 9(b) graphically depicts such a situation where the gray
open vertices of segments 4 and 5 are (assumed to be) within
2ε distance but have a difference in the local orientation angle
of 90◦. The gray dotted line shows the addition of new segment
without checking condition C3. When C3 is taken into account,
two segments shown in black dotted line are inserted.

In contrast, if any of the conditions C1 or C2 fail, then the
algorithm tries to extend the open vertex point vo by imposing
constraints C4 and C5 present in step 7. Similar to C2, the
condition C4 ensures that the extended point has the closer

maximum height value. The condition C5 ensures that the local
3-D points have certain standard deviation. It is necessary to
make sure that the extension is not carried out in the direc-
tion that deviates from the facade footprint, i.e., it avoids the
extension if the local 3-D points around vp belong to other
nonfacade objects, e.g., roofs, etc. The problem is illustrated
in Fig. 9(d), where the gray open vertex can potentially extend
over the roof region if the condition C5 in step 7 is ignored.
Thus, imposing this constraint helps in limiting this false
extension.

Finally, the computed vertex points (i.e., the intersection
vertices and the open vertices before and after refinement) along
with their estimated model parameters are used to reconstruct
the 3-D model of the building facades.

IV. EXPERIMENTAL RESULTS AND VALIDATION

A. Data Set

To validate our approach, we tested the algorithm on To-
moSAR point clouds generated from a stack of 25 TerraSAR-
X high spotlight images from ascending orbit only using the
Tomo-GENESIS software developed at the German Aerospace
Center [67]. The test area covers approximately 2 km2 in
the high-rise part of the city of Las Vegas. The number of
TomoSAR points in the area of interest is about 1.2 million.
Fig. 10(a) shows the optical image of our test area, while
Fig. 10(b) shows the corresponding TomoSAR point cloud in
Universal Transverse Mercator (UTM) coordinates.

B. Results—Extraction of Facade Points

The result of applying the SD estimation procedure is il-
lustrated in Fig. 11(a). The two parameters r (radius of the
neighborhood cylinder) and d are empirically set to 5 and 0.9 m,
respectively, according to the point density of the data set.
One can observe that the TH value influences the number of
extracted facade points. A lower TH value results in higher
completeness but lower correctness. In [42], we showed the
results of estimating SD with varying area sizes and found
that a kernel window of size 3× 3 m2 and threshold TH
value of about 2 points/m2 results in the best tradeoff in
terms of completeness and correctness with this class of data.
Here, 2 points/m2 works well for high-rise buildings but might
ignore relatively smaller facades. Therefore, to extract lower
facades (and also to automate the procedure), we set the TH
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TABLE II
REFINEMENT PROCEDURE

to the maximum of SD histogram value. This, as described in
Section III, includes not only the facade points but additionally
also some nonfacade points with relatively high SD, e.g., roof
points. To reject these points from the set of extracted points
after SD thresholding, surface normal information is utilized.
Fig. 11(b) shows the extracted facade points by retaining only
those points having normals between ±15◦ from the horizontal
axis (or equivalently ±90◦ from the vertical axis).

C. Results—Automatic Clustering of Extracted Facade Points

Once the facade points are extracted out, the next step is to
cluster them into segments, where each segment corresponds to
an individual facade. For this, we apply the clustering procedure
using the cylindrical neighborhood definition and cluster all of

the points with parameter settings: ε = r = 5 m and MinPts =
2. Here, an important point to notice is that two buildings are
considered distinct only in a case when points belonging to
facades of two different buildings are separated by ε. Setting
ε too small can cause points belonging to a single cluster (i.e.,
corresponding to an individual facade) to break into more than
one cluster. On the other hand, larger values of ε tend to merge
points of the nearby facades into one cluster. The value of ε is
therefore empirically chosen according to the length and dis-
tance among the buildings in the area of interest and implicitly
indicates the assumption that two individual facades that be-
long to different buildings are farther apart than the 5-m radius.

Setting parameter MinPts equal to 2 implies that points are
connected to one cluster even if there is a single neighboring
point among them. This parameter helps in removing outliers
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Fig. 10. Dataset. (a) Optical image of the test area in Las Vegas. Copyright Google. (b) TomoSAR points in UTM coordinates of the corresponding test image.
The height of TomoSAR points is color-coded [unit: meter].

Fig. 11. Facade point extraction. (a) Scatterer (point) density with radius r = 5 m and inliers d = 0.9 m. (b) Extracted building facade points. Colobar indicates
SD and height in meters in (a) and (b), respectively.

Fig. 12. Fine clustering results after applying mean shift clustering using Gaussian kernel with bandwidth b = 0.4 to the coarsely clustered segments in their
normal feature space (in GI domain). (a) TomoSAR points of one particular density-connected cluster (top view). The colorbar indicates height in meters.
(b) Corresponding orientation angle in degrees. (c) Nonclustered (top) and clustered (bottom) points in the Gaussian image of points in (a). (d) Resulting clustered
points in 3-D.

that do not have any neighboring point and produce clusters
similar to the clusters obtained from the dendogram cut at ε
in case of hierarchical clustering using single link metric [43].

Increasing MinPts can help in retaining more stable core points
but, on the other hand, can also break the clusters into two or
more clusters. This property is sometimes useful in cases when
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Fig. 13. Removal of conflicting segments and vertex point computation. (a) Shows the case of five clustered point segments belonging to one particular building.
At the transitional regions, there are conflicting (smaller) clusters, shown in gray dotted circle, that behave as noisy segments and should be removed before
computing the vertex points. (b) Shows the retained segments and their corresponding vertices after removing conflicting segments.

different clusters are merged together by a thin line of points.
Estimating the exact value of MinPts is, however, very much
dependent on the data set, and certain heuristics based on the
“thinnest” cluster in the data set, e.g., k-distance graph, can be
employed [43].

In order to reconstruct individual facades, these density-
based coarse clusters need to be further clustered. To this end,
mean shift clustering has been applied to the coarsely clus-
tered segments in their normal feature space (in GI domain).
Fig. 12(b) shows the estimated orientation angle θ for extracted
facade points from a single building shown in Fig. 12(a). The
variation in orientation angle is quite evident and allows mean
shift to cluster points having similar orientations together. Fur-
ther separation of points in the spatial domain is also required
in some cases where the spatially separated points are clustered
into one segment. This happens when these points belonging to
different facades have similar normals and are spatially closer.
Density-based clustering is therefore again applied for spatial
separation of the clusters within clusters.

D. Results—Reconstructing Facades

Prior to reconstruction, the segmented facades are first clas-
sified to flat and curved surfaces by analyzing the derivatives of
the local orientation angle θ. A slope value θ′ of 0.3 (≈ 17◦)
is set by empirically testing the computed orientation angles of
all of the buildings in the area of interest to distinguish flat and
curved surfaces.

After identification, appropriate model parameters are esti-
mated from the core points of the individual clusters. Vertex
points are then determined by computing intersections of the
adjacent segment pairs. However, in doing so, smaller clusters
occurring at facade transition regions behave as noisy segments
in the reconstruction procedure. A practical example of these
so-called conflicting segments is shown in Fig. 13(a). Following
the procedure explained in Table I (see Section III-F), the con-
flicting (reconstructed) segments occurring at the transitional
regions of individual buildings are removed prior to the vertex
point computation as exemplified in Fig. 13(b).

Once these transitional clusters are removed, the intersection
vertices are determined by computing the intersection point of
the two adjacent facades. Refinement operation is then carried
out on the open vertices to insert additional segments between
the broken facade regions followed by extension of incomplete
reconstructed facades.

Fig. 14(a) and (b) depicts the reconstructed facade models
of the area of interest before and after refinement, respec-
tively. Green lines show reconstructed facade footprint before
refinement. The blue lines indicate additional segments that are
added between the vertices of those broken facades that meet
the conditions present in step 4 in Section III-G, while the red
lines are subsequent extensions of the open vertices after filling
the break regions.

E. Results—Validation

The actual ground truth data are missing for exact qualitative
evaluation of the approach. In order to provide some quan-
titative measures of the algorithm performance, we manually
counted the actual number of facades that were to be recon-
structed. A total of 141 facades are present in the data set, out
of which 7 are curved facades and the remaining 134 are flat.
Prior to the refinement operation, the algorithm reconstructed
a total of 176 facades, i.e., higher than the actual facades
present in the data set. As already stated in Section III-G, this is
because some individual facades have been broken down into
two or more segments due to discontinuity in the number of
points available in the data set. After refinement, 29 insertion
segments (27 single and 2 double based on the condition C3 in
Table II) are added between the broken facade regions, whereas
43 facades have been extended. In the final reconstruction,
we obtain 147 reconstructed facades, i.e., all 141 facades are
successfully reconstructed; among them, five facades remain
broken (counted as additional five facades), and there is one
case of false alarm which will be explained later. Besides the
five cases, we also find seven facades that are not extended
and therefore remain incomplete. This is, however, due to the
inadequate number of points available in the data.
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Fig. 14. Reconstructed facades. (a) Two-dimensional view of the facade footprints overlaid onto the optical image prior to refinement. (b) Two-dimensional view
of the facade footprints overlaid onto the optical image after refining with parameter settings Th = 5 m and Tσ = 2.5 m.

As mentioned earlier, there is also one case, shown in
Fig. 15, which is considered as false positive (i.e., a facade
not actually present but reconstructed by the algorithm). As can

be seen in Fig. 15(c), the reconstructed segment is actually a
bridge for pedestrian crossing. Higher number of scatterers is
retrieved over the bridge due to its apparently metallic structure.
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Fig. 15. Case depicting wrong reconstruction of a pedestrian bridge. (a) Optical image of the bridge. (b) Overlays the reconstructed segment in green onto the
optical image of (a). (c) Side view of the bridge (copyright Google Street View).

Fig. 16. Reconstructed facades on the left. Their 3-D view on the right (copyright Google Earth).

Moreover, the bridge is also covered from the top, and there-
fore, scatterers are obtained at the top and bottom and on the
metallic rods connecting the upper and lower surfaces of the
bridge. The estimated surface normal of these scatterers thus
gives a higher horizontal component, and as a consequent, these
scatterers are wrongly classified as facade points by satisfying

both extraction constraints: higher SD and higher horizontal
component of the surface normals.

It is also interesting here to mention that, in Fig. 14, some
small vertical structures on roofs of the buildings or on ground
are very well reconstructed. Fig. 16 shows some examples of
such objects that might visually appear (or interpreted) as false
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Fig. 17. Three-dimensional view of the final facade reconstruction. The axis is in meter range and has been translated to the origin for better metric clarity by
subtracting the UTM easting and northing values by their respective minimum values present in the reconstructed vertices.

reconstructions in Fig. 14 but are actually vertical structures
(e.g., advertisement boards, monuments, etc.).

Finally, in Fig. 17, we present the final reconstructed fa-
cades in 3-D. As depicted in [42], the shown reconstructed
facade model can be used to refine the elevation estimates of
the raw TomoSAR points. Moreover, with known deformation
estimates of the scatterers, such a model can also lead to the
reconstruction of dynamic city models that could potentially be
used to monitor and visualize the dynamics of urban infrastruc-
ture in very high level of details.

V. OUTLOOK AND CONCLUSION

In this paper, we have presented an automatic (parametric)
approach for robust facade reconstruction for large areas using
TomoSAR point clouds. The approach is modular and works
directly on unstructured 3-D points. It allows for a robust re-
construction of both higher facades and lower height structures,
and hence, it is well suited for urban monitoring of larger areas
from space. A few points, however, need to be addressed.

1) During SD estimation, the continuity of an individual
facade can be broken due to a limited number of available
points. This may result into two or more segments of the
same facade. We attempted to cope with this problem by
refining the reconstructed facade footprints via insertion
and extension operations. Still, the lack of measurements
prevents the complete resolution of this problem. The use
of 2-D ground plans or cadastral maps can be helpful in
this case.

2) Since the satellite orbits are bound to pass close to the
poles of Earth, we may fail to reconstruct building facades
facing North or South due to the missing of measure-
ments. One way to rectify this is by using fused point
clouds (i.e., both ascending and descending) and/or in-
serting new segments by simply connecting the endpoints
of the missing facades if they match a certain criteria to
get the complete shape of the building footprint.

3) The presented approach is a much better option to detect
the shape of the building when dense points on the fa-
cades are available. However, in cases (usually for lower
height buildings) when no or few facade points are avail-

able, one can try to extract roof points and reconstruct the
2-D footprint. This could help in resolving the problems
related to the visibility of facades mainly pointing toward
the azimuth direction.

In the future, we will work over these considerations and
will extend the algorithm toward object-based TomoSAR point
cloud fusion and automatic building roof reconstruction.
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