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Hybrid Jacobian Computation for Fast Optimal Trajectories 
Generation 

M. Sagliano1,S. Theil2 
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Robert Hooke Straße 7, Bremen, Germany, 28359 

Nowadays the new, increased capabilities of CPUs have constantly encouraged 
researchers and engineers towards the investigation of numerical optimization as an analysis 
and synthesis tool in order to generate optimal trajectories and the controls to track them. In 
particular, one of the most promising techniques is represented by direct collocation 
methods. Among these, Pseudospectral Methods are gaining popularity for their 
straightforward implementation and some useful properties, like the possibility to remove 
the Runge phenomenon present in traditional interpolation techniques and the “spectral” 
convergence observable in the case of smooth problems. Experience shows that the quality of 
the results and the computation time are strongly affected by the jacobian matrix describing 
the transcription of the optimal control problem as an NLP. In this paper, the structure of 
the Jacobian matrix is analyzed, taking advantage of the sparse nature of such matrices. 
Additionally, its systematic “hybridization” will be discussed and implemented in order to 
speed up the simulations. Two different problems will be then described and solved with this 
approach and the results will be shown. Finally, a quantitative analysis of the performances 
deriving from the use of the hybrid jacobian compared to a traditional numerical technique 
will be shown as well. 

Nomenclature 
CL = Lift Coefficient 
CD = Drag coefficient 
L = Lift Force 
D = Drag Force 
NLP = NonLinear Programming Problem 
 = Mayer term of cost function  
 = Lagrange term of cost function 
OCP = Optimal Control Problem 
CFD  =   Computational Fluid Dynamics 
RPM = Radau PseudoSpectral Method 
FRPM = Flipped Radau PseudoSpectral Method 
Jac = Jacobian 
INs = Ns   Ns Identity Matrix  
GPM = Gauss PseudoSpectral Method 
LPM = Lobatto PseudoSpectral Method 
LU =   Unitary Length 
Mcost,,t = Mayer Cost Function Dependency Matrix with respect to Time 
Mcost,,x = Mayer Cost Function Dependency Matrix with respect to State  
Mcost,,u = Mayer Cost Function Dependency Matrix with respect to Control 
Mcost,,t = Lagrange Cost Function Dependency Matrix with respect to Time 
Mcost,,x = Lagrange Cost Function Dependency Matrix with respect to State 
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Mcost,,u = Lagrange Cost Function Dependency Matrix with respect to Control 
Mdyn,t = Dynamics Function Dependency Matrix with respect to Time 
Mdyn,x = Dynamics Function Dependency Matrix with respect to State 
Mdyn,u = Dynamics Function Dependency Matrix with respect to Control 
Mcons,t = Constraints Function Dependency Matrix with respect to Time 
Mcons,x = Constraints Function Dependency Matrix with respect to State 
Mcons,u = Constraints Function Dependency Matrix with respect to Control 
MGD = Global Dependency Matrix  
OR = Logical Operator 
PS = PseudoSpectral  
Re = Real part 
Im = Imaginary part 
t = time 
 = normalized time 
t0 = initial time 
tF = final time 
g = gravity acceleration 
m = mass 
h = altitude 
 = longitude 
 = latitude 
V = speed 
 = flight-path angle 
 = velocity azimuth angle 
 = angle of attack 
 = bank angle 
 = air density 
q = heat rate 
 = canonical gravitational parameter 
r = radius 
 = azimuth angle 
Vr = radial speed 
Vt = tangential speed 
 = thrust angle 
SNOPT = Sparse Nonlinear Optimizer 
T = thrust magnitude 
TU =   Unitary Time 
XNLP = NLP state vector  
Xi = state variable in the i-th collocation node  
Ui = control variable in the i-th collocation node 
w.r.t. = with respect to 
 

I. Introduction 
 

owadays, the new increased capabilities of CPUs have constantly encouraged researchers and engineers 
towards the investigation of numerical optimization as an analysis and synthesis tool in order to generate 

optimal trajectories and the controls to track them. In particular, one of the most promising techniques is represented 
by direct collocation methods. Among these, Pseudospectral Methods are gaining popularity for their 
straightforward implementation and some interesting properties which are associated to their use; such as the 
possibility to remove the Runge phenomenon associated to the traditional interpolation techniques and the “spectral” 
convergence observable in case of smooth problems. This class of methods has been significantly explored in the 
last years, especially the GPM, LPM and RPM versions [4,6,7,10]. Experience shows that the computation time and, 
in some cases, the quality of the results are strongly affected by the Jacobian computation method. This paper starts 
with a short review of PseudoSpectral Methods, with an emphasis on the Radau PseudoSpectral Method and its 

N

D
ow

nl
oa

de
d 

by
 M

ar
co

 S
ag

lia
no

 o
n 

A
ug

us
t 2

1,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
45

54
 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



 
American Institute of Aeronautics and Astronautics 

 

 

3

flipped version FRPM. Then, a transcription process from a generic Optimal Control Problem to the Nonlinear 
Programming Problem using the FRPM is shown. Next, in a smiliar manner to what was done in [2], the Jacobian 
associated to the NLP is analysed in deeper way, in particular for the Flipped Radau Pseudospectral Method. In the 
first place, an analysis of the continuous functions representing the differential equations, the cost function and the 
constraints (if any) is performed in order to extract the dependency information needed for a smarter computation of 
the Jacobian. Additionally, it is possible to investigate the theoretical structure of the FRPM in order to exploit the 
“Pseudospectral” content of the Jacobian with no need of numerical techniques to compute it. Finally, in the case of 
unknown final time, the NLP will have an extra variable to take this information into account.  This results in a third 
contribution, whose knowledge is entirely contained in the continuous functions representing the differential 
equations to be solved. All these segments together will be then used as a basis to perform the “hybridization” of the 
Jacobian matrix given by the NLP which represents the initial Optimal Control Problem. Section II of this paper 
describes the main features of the PS methods, and how they can be used to transcribe optimal control  problems. 
Section III describes the procedure implemented for analysing the continuous functions describing the differential 
equations, the cost index and the constraints involved in the problems considered. Section IV focuses on the 
computation of the Jacobian while Section V shows the numerical results obtained. Finally, in Section VI the 
comparison in terms of cpu time between the hybrid and full numerical jacobian is reported for both the problems 
here analysed, using different number of nodes. In particular two well-known optimization problems, the Orbit 
Raising problem and the Space Shuttle Reentry Guidance, have been here considered. 
 

II. Pseudospectral Methods 
 
Pseudospectral Methods represent a particular area of interest in the frame of the wider class of direct methods, 
which is well known in the Computational Fluid Dynamics community [11].  The attention of the aerospace research 
community towards these techniques is becoming higher and higher during the last years [4,6,7,10]. The basic idea 
behind these methods is, as in the other direct methods, to collocate the differential equations, the cost function and 
the constraints (if any) in a finite number of points in order to treat them as a set of nonlinear algebraic constraints. 
In this way, the continuous Optimal Control Problem is reduced to a discrete NLP problem having finite dimensions 
(despite the continuous problem, which has “infinite” dimensions), which can then be efficiently solved with one of 
the well-known available software packages, e.g. SNOPT. The main difference with respect to many of the classical 
collocation methods shown in [1] resides in the choice of the discrete set of points (called collocation points) which 
are chosen as linear combinations of the roots of Legendre Polynomials or their derivatives. In particular, looking at 
the methods developed over the last years we can distinguish between two subcategories of Pseudospectral methods: 
the symmetrical methods, like the Gauss Pseudospectral Method (GPM) and the Lobatto PseudoSpectral Method 
(LPM) and the asymmetrical methods represented by the Radau Pseudospectral Method (RPM) in its direct and 
flipped form [4]. In this paper our attention is focused on the advantages deriving from the use of flipped version of 
the RPM: the Flipped Radau PseudoSpectral Method, which is based on the flipped distributions of points w.r.t. the  
classical RPM. In particular, it has been shown that for the FRPM, as well as for all the PS methods, the following 
properties are valid: 

 
1) “Spectral” convergence in the case of a smooth problem 
2) The Runge phenomenon is avoided 
3) Straightforward implementation 
4) Sparse structure of the associated NLP problem 
5) Mapping between the discrete costates of the associated NLP and the continuous costates of the Optimal 

Control Problem (except for LPM) in virtue of the Pseudospectral Covector Mapping Theorem [6]. 
 

It can be then useful to have a look to the FRPM and how it can be conveniently employed to solve OCPs. 
 

II.A Discretization using RPM and FRPM 
As all the other PseudoSpectral Methods, the RPM and FRPM are based  on the transformation of a  physical 
domain of the independent variable (generally this is “time”) into a normalized independent variable .  
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  1,1     (1) 

  
This means, given a physical domain t,  
 

 0 , ft t t      (2) 

 
the mapping between the two domains can be performed using the following linear transformations 
 

 

0 0

0

0 0

2 2

2

f f

f

f f

t t t t
t

t t
t

t t t t





 
 


 

 

  (3) 

  
This change of domain is due to the fact that the Legendre Polynomials (a subset of more general Jacobi 
Polynomials) represent a set of orthogonal functions only in the domain [-1,1]. This property gives us the 
opportunity to approximate a generic continuous function F() as follows: 
 

 
0

( ) ( )
N

i i
i

F F P 


   (4) 

where 
 

 
0

( )
N

j
i

j i j
j i

P
 


 



 
    
   (5) 

 
and Fi are the values that the continuous function F assumes collocation points i.  
 
Specifically, in the FRPM the points  

 

  , 1,j j N    (6) 

 
are the roots of the combination of two different Legendre Polynomials of order  N and N-1: 

 
 

 1( ) ( ) ( )N N NP L L      (7) 

where, by definition,  
 

  21
( ) 1

2 !

N
N

N N N

d
L

N d
 


    

  (8) 

  
 

In particular, the asymmetrical nature of the RPM and the FRPM allow us to impose only one of the extreme points 
on the interval (2). In the FRPM only the initial point is specified, while no conditions could be traditionally 
imposed on the final point. This is partially true, as this information can be included in the transcription process in 
other ways [10]. 
 

II.B Transcription of the Optimal Control Problem as NLP 
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Let us consider the structure of the classical Bolza Optimal Control Problem we want to solve. The purpose is to 
minimize a cost function 
 

      
0

0 ,
Ft

F t
J x t t x d            (9) 

 
subject to the dynamics 
 

 ( ) ( , , )cx t f t x u   (10) 

 
with  

 
( )

( )
L U

L U

x x t x

u u t u

 
 

  (11) 

 
In some cases the solution must also satisfy some global constraints. 

   

 ( , , )L Ug g x t u g    (12) 

 
Since our attention will be given to the FRPM only the initial state can be explicitly specified, while the final state 
will be part of the solution of the NLP problem. The continuous states and controls can be substituted with 
polynomials which interpolate the values in the nodes. This means that the entire information related to the states 
and the controls is enclosed in their nodal values. In other words, 
 

 
 
 

( ) , 0,

( ) , 1,

i i

j j

x t X i N

u t U j N

 

 
  (13) 

 
Of course, the boundaries valid for the continuous form will also be applied to the discrete representation of the 
functions. 
 

 
 
 

, 0,

, 1,

L i U

L j U

x X x i N

u U u j N

  

  
  (14) 

 
The difference in the indexing in (13)  and (14) is due to the distinction between discretization and collocation. 
While the discretization includes (in the FRPM) the initial point, the collocation does not.  Hence, the controls will 
be approximated with a polynomial having a lower order and the NLP problem will not provide the initial values for 
the controls. These can in some cases be part of the initial set of known inputs, otherwise they can be extrapolated 
from the generated polynomial interpolating the N values of controls in the collocation nodes.  
 
 
Cost Function 
The cost function can be rewritten as  
 

 0

0 02

N N
F

i i i i
i i

t t
J v w

 


       (15) 

where 
 

  1 2, ,...,
T

Nv v v v   (16) 
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represents a vector having at least one unitary element (the first and/or the last) and all the other elements are zero, 
and 
 

  1 2, ,....,
T

Nw w w w   (17) 

 
are the Gaussian quadrature weigths associated to the Radau collocation nodes, which can be computed as 

 
 ( )w flip w    (18) 

 
 where 
 

 
   2

1

0

1
, 1...

1

2

j

j N

w j N
P

w
N

 

 




 


  (19) 

The operator flip simply multiplies the input by -1 and then sorts the results in increasing order.  and  are the 
respective Mayer and Lagrange terms evaluated in the considered set of collocation points.  
 
Dynamics 
The dynamics of the system can be rewritten in terms of residuals, i.e. in terms of algebraic nonlinear constraints 
evaluated in the collocation points, 

  

    0

, 2
0

( , , ) 0, 1, , 0,F

N
t t

i i j j C i i i
j

f D X f X U i N j N



        (20) 

  

where f  and Cf represent respectively the residuals associated to the collocated dynamics and the continuous 

functions describing the differential equations of the considered system. ijD  is the (i-th,j-th) element of the Radau 

discrete matrix acting as differential operator, which can be computed as 
 

 ˆ( )D reduce D  , (21) 

with 

 

 

 
 

0 0

,

,

0

ˆ , , 0,

NN

i m
k m

k j m j k

i j N

j k
k

k j

D i j N

 

 

 
 




 
  
   



 


  (22) 

 
The operator reduce will delete the last or the first row respectively if the method selected is the RPM or the FRPM. 
The resulting matrix will be a full-rank N-1N matrix.  
 
Constraints   
The global constraints can be simply treated as further algebraic constraints to be imposed in the collocation points 
 

  ( , , ) , 1,...,L i i i Ug g X U g i N     (23) 
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We have then completely defined a NLP having the cost function (15) to be minimized while satisfying the 
constraints defined in (14), (20), (23). 
 

III. Analysis of Continuous System 

III.A Perturbation of Continuous Functions 
Experience shows that, while for simple systems a more detailed analysis of Jacobian can be avoided, in complex 
problems like atmospheric reentry a solid knowledge of its structure is very helpful and significantly increases the 
speed of computation and in some cases the quality of the results. It is then convenient to look at the continuous 
functions representing the specific problem. The first step is to perform a systematic analysis of these functions in 
order to extract the information needed to compute the Jacobian in a more efficient way, as we will see in section 
IV. The idea is then to create a set of perturbation states and controls and evaluate the cost function, the dynamics of 
the system and the constraints. To do this, random values of the states and controls are generated using the initial 
guesses provided to the NLP solver. More specifically, assuming that no a priori knowledge of the solution is 
known, the initial guess along the trajectory can be computed as linear interpolation between the initial and final 
values (x0,u0) and (xF,uF). We can define their mean value as follows. 

 

0

0

2

2

F
m

F
m

x x
x

u u
u







  (24) 

 
Assuming that the states and the controls are bounded, the random values of the variables needed to evaluate the 
functions can simply be computed as normal distributions around these mean values. 
 

 

2

2

( , )

( , )
p m x

p m u

x N x

u N u







  (25) 

 
where x and u are the standard deviations assumed as proportional to the difference between the upper and lower 
boundaries of the variables. In this way a certain number of perturbation vectors can be generated. It is important to 
stress that here we are only interested in generating the output from the continuous functions, so it´s not important in 
this phase to have real states and controls data (i.e. data which satisfy our optimal control problem). 

III.B Dependency Matrices 
The functions are evaluated using the inputs expressed in (25). The objective is to generate the dependency matrices 
related to the cost function, the dynamics and the constraints. These matrices will have a column for each classical 
continuous variable, i.e. time, states and controls, and a row for each constraining function. The elements of the 
matrices are defined equal to 0 when no dependency is recognized and 1 when a dependency is recognized. 
 

 1variable  2variable  

1function  0 (no dependency) 1 (dependency) 

Table 1: Definition of Dependency Matrix  
 
 For example, assuming a system with two states and one control channel,  

 

 
3 2

1 1 2 1

2 1 1

( ) 2 3

( ) 5sin( ) 3

x t x x u

x t x u

  
 




  (26) 

 
the function describing the dynamics will have the following associated 2x4 dependency matrix.  
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 t  1x  2x  1u  

1x  0 1 1 1 

2x  0 1 0 1 

Table 2: Dynamics Dependency Matrix for 2-states system 
 
In case of Space Shuttle Reentry (as treated in section V) the dependency matrices are expressed in the tables (3-5) 
above. The Dependency Matrix for the cost function has dimensions 2x9. For clearity the Mayer and Lagrange 
contributions are treated in separate way. 
 

 t h   V    
JMAYER 0 0 0 1 0 0 0 0 0 

JLAGRANGE 0 0 0 0 0 0 0 0 0 
Table 3: Cost Function Dependency Matrix for Space Shuttle Reentry case 

 
 
The Dependency Matrix for the Dynamics has dimensions 6x9. 
 

 t h   V    

h  0 0 0 0 1 1 0 0 0 

  0 1 0 1 1 1 1 0 0 

  0 1 0 0 1 1 1 0 0 

V  0 1 0 0 1 1 0 1 0 

  0 1 0 0 1 1 0 1 1 

  0 1 0 1 1 1 1 1 1 

Table 4: Dynamics Dependency Matrix for Space Shuttle Reentry case 
  

 
 
The only constraint is represented by the heat rate, which has a 1x9 dependency matrix.  
 

 t h   V    
q 0 1 0 0 1 0 0 1 0 

Table 5: Constraint Dependency Matrix for Space Shuttle Reentry case 
 
This information can be rearranged in the matrices defined in (27), which will be used to compute the Jacobian in 
efficient way, as it will be shown in the next section. 
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 ,

1 0 0 1 0 0

1 0cons uM





  (27) 

 

IV. Hybridization of Jacobian 
 
Let us now consider the general structure of the Jacobian associated to the NLP problem deriving from the 
application of FRPM, and its specific application to the already cited case of Space Shuttle Guidance.  

IV.A General structure of Jacobian associated to the FRPM 
In the most general case, considering ns states, nc controls, ng constraints, n collocation points and unknown final 
time, the Jacobian associated to the transcription of an autonomous system of equations (as in the examples here 
treated) will be expressed as a matrix having the following dimensions and structure. 

D
ow

nl
oa

de
d 

by
 M

ar
co

 S
ag

lia
no

 o
n 

A
ug

us
t 2

1,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
45

54
 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



 
American Institute of Aeronautics and Astronautics 

 

 

10

 

    dim( ) 1 1 1s g s cJac n n n n n n n                 (28) 

 
While the dimensions of the Jacobian do not vary once the variables and the constraints are given, the kind of 
sparsity patterns which will appear in it depends on the ordering of the NLP state vector.  In order to take advantage 
of the information provided by the dependency matrices (as we will see in section IV.C) and to maintain a 
consistence between the states and the controls associated to each node, the following order for the NLP variable is 
proposed:  
 

  0 1 1 2 2| | | .. .. | |
T

NLP N N FX x x u x u x u t   (29) 

 
We can observe how the initial control u0 does not appear in (29). This is due to the choice of the FRPM as 
transcription method instead of the traditional RPM. The initial control indeed can be extrapolated once the NLP is 
solved. Since the Jacobian is by definition the matrix representing the partial derivatives of a given set of functions 
(i.e. our NLP constraints) w.r.t. their variables, this set and its order must be defined. We will then consider all the 
constraints defined during the transcription of the problem. The cost function is treated as another constraint, 
generally the first [5].  This is mathematically included in the Jacobian in order to generate a NLP Problem which is 
compatible with NLP solver SNOPT interface. 
 

 1 2 1( ) | | .. | .. |
T

NLP N NC X J f f f g g      (30) 

 
The Jacobian deriving from these definitions is the following: 
 

 

0 1 1 2 2

1 1 1 1 1 1 1 1

0 1 1 2 2

2 2 2 2 2 2 2 2

0 1 1 2 2

0 1

.. ..

.. ..

.. ..

.. .. .. .. .. .. .. .. .. ..

N N F

N N F

N N F

N N

J J J J J J J J
x x u x u x u t

f f f f f f f f

x x u x u x u t

f f f f f f f f

x x u x u x u t

f f f
NLP x x

C
Jac

X

       
       

       
       

       
       

  
 

 
   

1 2 2

1 1 1 1 1 1 1 1

0 1 1 2 2

0 1 1 2 2

.. ..

.. ..

.. .. .. .. .. .. .. .. .. ..

.. ..

N N N N N N

N N F

N N F

N N N N N N N N

N N F

f f f f f

u x u x u t

g g g g g g g g

x x u x u x u t

g g g g g g g g

x x u x u x u t

    
     

       
       

       
       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (31) 

 
This Jacobian matrix can be computed numerically in different ways (ex. with the classical finite differences scheme 
or using the complex-step derivative technique [3,12]). This is not the best approach since it does not consider the 
theoretical knowledge contained in the definition of the discrete operator D, nor does it take full advantage from the 
intrinsic sparsity associated to the use of Pseudospectral methods. Instead, the approach followed in [2] brings better 
results, and will be here particularized for the FRPM. On this purpose, let us then express the Jacobian as sum of 
three different contributions.  
 

 PseudoSpectral Numerical TheoreticalJac Jac Jac Jac     (32) 
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We can now analyse each of these terms and how to compute them. 
 

IV.B PseudoSpectral Jacobian 
This part of the Jacobian matrix is intrinsically related to the use of the FRPM. More specifically, it can be seen as 
the contribution to the Jacobian and to the constraints represented in (20) given by the use of the discrete differential 
matrix D. In the frame of the discretization of the dynamics, it represents  
 

 D x   (33) 

 
From a pure algebraic point of view, the differential operator can be seen as a set of linear combinations of the nodal 
values of each of the states. The PseudoSpectral Jacobian is entirely defined once the matrix D is computed. More 
explicitly, the Pseudospectral Jacobian Matrix can be defined as follows 
 

 

 

 

 

1 1 1

1,0 1,

1 1

,0 ,

1 1

.. ..

.. .. .. ..

.. ..

s c

s g

g s c

n n n n

n

n n nPseudoSpectral

n n n

n n n n n

O

D D

OJac

D D

O

       

     

       

 
 
 
 

  
 
 
 
 

 

 
  (34) 

 
 
where  

    , , , 1, , 0,
Si j i j nD D I i N j N      (35) 

 
and Ins is the identity matrix of dimension nS. The Pseudospectral Jacobian can then be entirely computed just once, 
before the beginning of the real optimization process. Moreover, the accuracy of its computation is a consequence of 
how good the estimate of the roots of the Legendre-Radau Polynomials is and not of the errors given by the 
approximation due to the use numerical differentiation techniques.  
 

IV.C Numerical Jacobian 
The numerical Jacobian can be computed using the classical finite differences or the complex-step derivative 
methods [3,12]. In particular, the second technique is very interesting as it removes the cancellation errors which are 
a consequence of the use of the classical finite-differences scheme. This method is based on the hyphotesis of having 
continuous functions, and consequently the functions defining the OCP can be seen as real parts of complex 
functions. Under these premises, the Cauchy-Riemann conditions for the complex function ( )u iv f x iy    are 

valid. 

 
u v

x y

 


 
  (36) 

 
Then, by definition, the derivative of the real part of the function f  can be approximated as 

 

 
 Im ( )

Re
f x ihdf u v

dx x y h

         
  (37) 

Where h is the numerical step used to perturbate the functions, generally assumed very small. 
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This approach will be applied to all the elements of the Jacobian recognized by the dependency matrices. The 
chosen ordering for the state vector makes this operation quite intuitive as the nonzero elements of the dependency 
matrices will represent the patterns of computation for the numerical derivatives. We can hence express this 
contribution as  
 

  Numerical Continuous GDJac Jac M    (38) 

 

where ContinuousJac   is the Jacobian considering only the continuous functions defining the problem (i.e. considering 

the matrix D  equal to 0), excluding the last column, 
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 (39) 

 
MGD is a matrix having the same dimensions of the Jacobian, and defined as: 

 

     

 

, , , , , , , ,
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... ... ... ... ... ...
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u

x x u x u

ns

cons cons cons cons consM M M M M

 
 
 
 
 
 
 
 
 
 
 
  

 (40) 

 and the operator    represents the Hadamard product. 
 
It will then be possible to apply the knowledge acquired from the continuous functions to know which elements 
must be computed numerically (i.e. the nonzero elements of the matrix MGD). 
 

IV.D Theoretical Jacobian 
 
Finally, a third contribution, the Theoretical Jacobian, arises in case we deal with problems having an unknown final 
time. The NLP state vector will then have a further variable. In this case, the Jacobian associated to this term is 
proportional to the output of the continuous functions 

Cf  evaluated at all the collocation points, as it can be easily 

verified from (20). 
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1 1 1

,

1

0

1
..2

s g s c

g

C

C

Theoretical
n n n n n n n

C N

n n

f

f
Jac O

f

O

            

 

 
 
 
 
    
 
 
 
  

  (41) 

 
The hybridization of the Jacobian matrix has as consequence that only a small part (between 4.68% and 8.84%  in 
the cases analysed) of its elements need numerical computation techniques. Hence, significant CPU time is saved 
when solving the optimal control problem, or more specifically, the NLP problem representing it. In order to see 
which are the results, let´s see two significant examples.  
 

V. Numerical Examples 

V.A Orbit Raising Problem 
This problem, as stated by Conway [8], has been reproposed more than once in literature [13], and deals with the 
maximization of the energy of an orbit in a given fixed time. It can be expressed as follows: 
 
Maximize the specific energy  
 

  2 21 1
( ) 2 ( ) ( )

F r F t Fr tJ V t V t       (42) 

 
of an orbit subject to the following dynamics (expressed in canonical units) 
 

 

 

 

2

2
sin

cos

r

t

tr

t r t

dr
V

dt
Vd

dt r

VdV
T

dt r r
dV V V

T
dt r



 







  

  

  (43) 

 
where T is the specific force, assumed to be constant and equal to 0.01,  is the normalized gravitational parameter 
and  is the angle between the direction of the thrust and the tangential velocity. In this case the final time is equal to 
50 TU. The solution is generated using between 25 and 100 nodes. Since the final time is known, the Jacobian here 
will only consist of the pseudosepctral (in red) and the numerical contributions (in blue for the differential equations, 
in black for the cost function). All the figures showing states, controls and constraints are associated to the solutions 
obtained using 100 nodes, while the jacobian structure derive from a NLP having 5 nodes (chosen for a better 
visualization of the patterns). 
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Figure 1. Jacobian Matrix Sparsity Patterns for Orbit Raising Problem. 
 
  
The Pseudospectral Solution to this problem is represented in the following figures: 
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Figure 2. States Evolution for Orbit Raising Problem 

 
 

 
Figure 3. Control Evolution for Orbit Raising Problem 
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Figure 4. Orbit Evolution 

 

V.B Space Shuttle Reentry 
 
In this case the Shuttle Reentry Guidance [1] is implemented and solved. The problem is stated as follows: 

 
Maximize the Cost Function  

 

 ( )FJ t   (44) 

subject to the dynamics 
 

 

 
1

cos( ) cos( )

sin( )

cos( )sin( ) / cos( )

cos( )cos( )

sin( )

cos( ) cos( )

sin( ) cos( )sin( )sin( )

V
r

V
r

D
m

gVL
mV r V

V
mV r

h V

V g

L 



   

  



  

    







  

  

 












  (45) 

where  
 

 

21
2

21
2

L

D

L V S C

D V S C





   

   
  (46) 

CL and CD are respectively linear and quadratic functions of the Angle of Attack,  
 
The initial conditions are 
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  (47) 

   
and the final time is unknown. In this case the Jacobian has all the three components (red for PseudoSpectral, blue,  
light blue and black for numerical contributions respectively of dynamics, constraints and cost function, and green 
for the analytical contributions) presented in the section IV. The patterns representing the Jacobian are shown in the 
following figures.  

 
Figure 5. Jacobian Matrix Sparsity Patterns for Space Shuttle Reentry Problem. 
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Figure 6. States Evolution for Space Shuttle Reentry Problem 

. 

    Figure 7. Controls Evolution for Space Shuttle Reentry Problem 
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Figure 8. Heat Rate Evolution for Space Shuttle Reentry Problem 

 
 

VI. Cpu Time Comparison 
 
Here a comparison between the CPU time required to compute the solution of the full nonlinear Jacobian NLP 
problems and the hybrid Jacobian problems is performed. In particular, in the following table, four cases for each of 
the problems considered are compared. All the simulations have been performed with a laptop having a i7M640 
CPU with a clock frequency of 2.80 GHz and 4 GB of RAM. All the examples considered do not have any 
meaningful initial guess from previous solutions. In other words all the problems were solved with cold start. 
 
 

Nodes CPU Time [s] (Full NLP) CPU Time [s] (Hybrid NLP) Offline Time (Common) [s] 
25 11.1512 0.4517 0.3726 
50 22.0853 1.5566 0.7162 
75 71.4989 2.6371 1.7659 

100 202.3225 12.2964 5.7351 
Table 6 CPU Time Required for Orbit Raising Problem  

 
 

Nodes CPU Time [s] (Full NLP) CPU Time [s] (Hybrid NLP) Offline Time (Common) [s] 
25 15.1166 0.8816 0.6147 
50 42.8415 4.5443 1.4301 
75 171.6521 18.2937 3.9240 

100 594.1716 50.5697 10.8373 
Table 7 CPU Time Required for Space Shuttle Reentry Problem 

 
 

VII. Conclusions 
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In this paper a deeper analysis of the Jacobian structure associated to the use of Pseudospectral Methods has been 
performed, and in particular on the use of Flipped Radau PseudoSpectral Method. This analysis separated the 
Jacobian into three different terms which have been exploited and derived in the frame of the method implemented, 
bringing as result a faster computation of the NLP problems representing their respective Optimal Control Problems 
(OCPs) described here, and which can be efficiently computed using the aforementioned hybridization approach. 
The improvements in terms of cpu time have been compared to the use of the traditional techniques to compute the 
Jacobian. This significant save in CPU time brings new perspectives in the use of the optimal control problems as 
part of wider analysis tools like MonteCarlo or Worst-Case analyses, with no need to use more expensive solutions 
for what concerns the CPU capabilities required with such a complex problems. Further efforts can be performed in 
terms of optimization of matlab-based offline-code, and in terms of real-time implementation of the techniques here 
shown for real flying missions. 
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