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Abstract—Recent advances in very high resolution tomographic
synthetic aperture radar inversion (TomoSAR) using multiple
data stacks from different viewing angles enables us to gener-
ate 4-D (space-time) point clouds of the illuminated area from
space with a point density comparable to LiDAR. They can be
potentially used for facade reconstruction and deformation mon-
itoring in urban environment. In this paper, we present the first
attempt to reconstruct facades from this class of data: First, the
facade region is extracted using the density estimates of the points
projected to the ground plane, the extracted facade points are
then clustered into individual facades by means of orientation
analysis, surface (flat or curved) model parameters of the seg-
mented building facades are further estimated, and the geometric
primitives such as intersection points of the adjacent facades are
determined to complete the reconstruction process. The proposed
approach is illustrated and validated by examples using TomoSAR
point clouds generated from stacks of TerraSAR-X high-resolution
spotlight images from two viewing angles, i.e., both ascending and
descending orbits. The performance of the proposed approach
is systematically analyzed. To explore the possible applications,
we refine the elevation estimate of each raw TomoSAR point by
using its more accurate azimuth and range coordinates and the
corresponding reconstructed building facade model. Compared to
the raw TomoSAR point clouds, significantly improved elevation
positioning accuracy is achieved. Finally, a first example of the
reconstructed 4-D city model is presented.

Index Terms—Facade reconstruction, point cloud, TerraSAR-X,
tomographic synthetic aperture radar (SAR) inversion (To-
moSAR), 4-D city model.

I. INTRODUCTION

THE automatic detection and reconstruction of buildings
and other man-made structures from space is becoming

increasingly important with the growing number of population
in urban areas. Reconstructed models can serve as a major
component in the realization and generation of 4-D (space-
time) or even higher dimensional dynamic city models. Urban
planning and management [1], tourism [2], architecture [3],
damage assessment [4], and disaster management [5] are few
among their various potential application areas.
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Recent advances in very high resolution synthetic aperture
radar (SAR) imagery and its key attributes—self-illumination
and all-weather capability—have attracted the attention of
many remote sensing analysts in the characterization of urban
environments. Various techniques have been developed that
make use of SAR imagery for building detection and recon-
struction. Complex building shapes surrounded by roads and
other structures make building detection a challenging problem.
One possible solution is to discriminate buildings from other
objects using the building height and width measurements
extracted from SAR imagery [6]. The key issue is then the
building height retrieval. For this purpose, various methods
have been developed, including using sound electromagnetic
models [7], layover [8] or shadow analysis [9] and simulation-
based methods [10]. In [11], an approach particularly suited
for the detection and extraction of large buildings based on
information acquired from interferometric SAR (InSAR) data is
proposed. Stochastic model-based and low level feature-based
approaches for extracting and reconstructing buildings from a
single SAR intensity image are presented in [12] and [13],
respectively. Wang et al. [14] presented an approach for build-
ing extraction from high-resolution single-aspect polarimetric
SAR data. Since, in urban areas, the structures are densely
packed, the appearance of one particular building is dependent
on the viewing angle of the sensor. Using a single-view SAR
image, it is difficult to detect buildings that have no orientation
component in the sensor’s azimuth direction [15]. To overcome
this limit, multiview SAR acquisitions are required. In [16],
an approach for estimating building dimensions using multi-
view SAR images is presented. Bolter and Leberl [17] and
Thiele et al. [18] proposed methods for building reconstruction
based on multiview InSAR data. Building reconstruction in
context to stereoscopic SAR radargrammetric and multiview
polarimetric SAR acquisitions has also been used in [19] and
[20], respectively.

Due to the complex urban scenes and inherent problems
of SAR images such as speckle effect and layover [21], the
previously presented approaches give solutions to building
reconstruction but only to some extent. Spaceborne meter res-
olution SAR data, together with multipass InSAR techniques,
including persistent scatterer interferometry (PSI) and tomo-
graphic SAR inversion (TomoSAR), allow us to reconstruct
the shape and the undergoing motion of individual buildings
and urban infrastructures [22]–[25]. PSI exploits bright and
long-term stable objects, i.e., the persistent scatterers (PSs).
However, it is restricted to single scatterers in an azimuth–range
pixel. TomoSAR, on the other hand, extends the synthetic
aperture principle into the elevation and temporal domain
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for 3-D and 4-D imaging [24]–[29]. It resolves the layover
problem by separating multiple scatterers along the elevation
direction [24]–[26], [28]. Without any preselection of pixels
as PSI does, TomoSAR offers tremendous improvement in
detailed reconstruction and monitoring of urban areas, par-
ticularly man-made infrastructures [24]. Experiments using
TerraSAR-X high-resolution spotlight data stacks show that
the scatterer density obtained from TomoSAR is on the order
of 600 000–1 000 000/km2 compared to a PS density on the
order of 40 000–100 000 PS/km2 [23], [24]. The rich scatterer
information retrieved by TomoSAR from multiple viewing
angles enables us for the first time to generate 3-D point clouds
of the illuminated area with a point density comparable to
LiDAR [23], [30]. These point clouds can be potentially used
for building facade reconstruction in urban environment from
space with the following considerations:

1) TomoSAR point clouds reconstructed from spaceborne
data have a moderate 3-D positioning accuracy on the
order of 1 m [31], while (airborne) LiDAR provides accu-
racy typically on the order of 0.1 m [32]. Due to limited
orbit spread and the small number of images, the location
error of TomoSAR points is highly anisotropic with an
elevation error typically one or two orders of magnitude
higher than in range and azimuth. Another peculiarity of
TomoSAR and PSI point clouds is that, due to multiple
scattering, ghost scatterers may be generated that appear
as outliers far away from a realistic 3-D position [33].

2) Due to the coherent imaging nature and side-looking
geometry, TomoSAR point clouds emphasize different
objects than LiDAR: 1) The side-looking SAR geometry
enables TomoSAR point clouds to possess rich facade in-
formation, and results using pixelwise TomoSAR for the
high-resolution reconstruction of a building complex with
very high level of detail from spaceborne SAR data are
presented in [34]; 2) temporarily incoherent objects, e.g.,
trees, cannot be reconstructed from multipass spaceborne
SAR image stacks; and 3) to obtain the full structure
of individual buildings from space, facade reconstruction
using TomoSAR point clouds from multiple viewing
angles is required [35], [36].

3) Complementary to LiDAR and optical sensors, SAR is so
far the only sensor capable of providing the fourth dimen-
sion information from space, i.e., temporal deformation
of the building complex [37], and microwave scattering
properties of the facade reflect geometrical and material
features.

However, in order to provide a high-quality spatiotemporal
4-D city model, object reconstruction from these TomoSAR
point clouds is emergent. Motivated by these chances and
needs, in this paper, we attempt to detect and reconstruct the
building facades from TomoSAR point clouds.

Three-dimensional object reconstruction techniques from
point clouds are widely employed using LiDAR data. They
mostly make use of the fact that man-made structures such
as buildings usually have parametric shapes. After selecting
local sets of coplanar points using 3-D Hough transform or
random sample consensus algorithms, 3-D objects are recon-

structed by surface fitting in the segmented building regions
[38]. Numerous methods are employed for building roof seg-
mentation and reconstruction such as unsupervised clustering
approaches [39], region growing algorithms [40], and graph-
based matching techniques [41]. These techniques, however,
cannot be directly applied to TomoSAR point clouds due to
different object contents captured by the side-looking SAR as
mentioned earlier.

In this paper, we present an approach for the detection
and reconstruction of building facades from these unstruc-
tured TomoSAR point clouds. It consists of three main steps,
including facade detection and extraction, segmentation, and
reconstruction: First, the facade region is extracted by ana-
lyzing the density of the point projected to the ground plane,
the extracted facade points are then clustered into segments
corresponding to individual facades by means of orientation
analysis, and surface (flat or curved) model parameters of the
segmented building facades are further estimated. Furthermore,
we refine the elevation estimate of each raw TomoSAR point by
using its more accurate azimuth and range coordinates and the
corresponding reconstructed surface model of the facade. The
proposed approach is illustrated and validated by examples us-
ing TomoSAR point clouds generated from stacks of TerraSAR-
X high-resolution spotlight images from two viewing angles,
i.e., both ascending and descending orbits.

This paper is structured as follows. Section II introduces the
facade surface model assumptions and describes the data set
used in this paper. In Section III, the proposed approach is pre-
sented, and the different processing steps are described in detail.
In Section IV, the results obtained on the test buildings using
TomoSAR point clouds generated from multiple viewing angles
are presented, and the performance of the proposed approach is
analyzed. Two application examples of the reconstructed facade
models are presented in Section IV. Finally, in Section V, some
conclusions are drawn, and future perspectives are outlined.

II. MODEL ASSUMPTION AND THE DATA SET

A. Model Hypotheses/Assumptions

Many existing approaches assume polyhedral building struc-
ture, i.e., roofs as planar surfaces and facades as vertical flat
planes. The building model is then described by vertex points
determined from intersections of ridges and boundary line
segments. In most cases, the building footprint is assumed to
be a rectangle polygon. As a consequence, boundary tracing
algorithms usually regularize the identified boundary points to
straight line segments such that the building footprints represent
a polygonal shape. In our work, we assume the facades to be
vertical but model their footprints by polynomial lines to allow
a wider variety of architecture.

B. Data Set

The data set used in this paper is TomoSAR point clouds
generated from two stacks (each comprising 25 images) of
TerraSAR-X high-resolution spotlight images from ascending
(36◦ incidence angle) and descending (31◦ incidence angle) or-
bits as reported in [34]. Due to the different scattering properties
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Fig. 1. Test buildings—Bellagio hotel, Las Vegas. (a) Optical image (Google). (b) Fused TomoSAR point clouds from both ascending and descending orbits in
UTM coordinates.

from different geometries, there is little chance to identify a
common reference point for both stacks. This problem results
in a shift in the elevation directions of both point clouds recon-
structed from these two stacks with different viewing angles.
To obtain the full structure of individual buildings from space,
the point clouds are first geodetically fused by determining
this shift in elevation direction [30], [42]. The proposed facade
reconstruction approach is then applied to the resulting fused
point clouds. Fig. 1(a) shows the optical image of our test
buildings, the Bellagio hotel complex in Las Vegas. Fig. 1(b)
gives an overview of the fused input TomoSAR point cloud in
universal transverse mercator (UTM) coordinates. The size of
the test area is about 520× 570 m2. The number of TomoSAR
points is approximately 0.4 million.

III. METHODOLOGY

As illustrated in Fig. 2, the proposed approach consists of
three main steps, including facades detection and extraction,
segmentation, and reconstruction.

A. Facade Detection and Extraction

Building facade detection and extraction is generally the first
and important step toward the reconstruction of 3-D building
models from point clouds generated from aerial or spaceborne
acquisitions. A common approach in LiDAR point cloud pro-
cessing is to first compute a (or use an already existing) digital
terrain model (DTM) by filtering techniques, e.g., morphologi-
cal filtering [43]–[45], gradient analysis [46], or iterative densi-
fication of triangular irregular network structure [47], [48], and
then use the DTM to extract nonground points [49], [50] from
the rasterized point cloud data. The rasterized nadir-looking
LiDAR point cloud gives a digital surface model (DSM). The
difference of DSM and DTM provides us a normalized DSM
that gives us the height variations among nonground points.
By exploiting geometrical features such as deviations from the
surface model [51], local height measures [32], [45], roughness
[45], and slope variations [43], [46], building points can be ex-
tracted out. Some methods support the building detection prob-
lem by explicitly using 2-D footprints [52], [53]. They help in
reducing the building detection problem by providing the build-
ing regions but can suffer from inaccurate positioning accuracy
[54] and artifacts introduced during data acquisition [38].

Fig. 2. Workflow of the proposed approach.

Our proposed approach for extracting building facades ex-
ploits the idea of orthogonally projecting the points onto the
2-D ground plane as presented in [38]. However, instead of
estimating local planes to refine the building outline, the 2-D
scatterer (point) density (SD) in the horizontal x–y (ground)
plane is used to extract facade points. The proposed method
works directly on the unstructured 3-D TomoSAR points. SD
is locally estimated for each grid point defined on the ground
plane by first accumulating the number of points within a local
window and then dividing by the window size. By exploiting
the fact that, for a side-looking instrument like SAR, the point
density is much higher for vertical structures (value depending
on the building height), the building facades are extracted.

Fig. 3(a) shows the SD map of the input TomoSAR point
cloud shown in Fig. 1(b). The grid spacing is set to 1× 1 m2.
The grid cells having a point density less than a specified
threshold TH are removed. A mask is then generated after
a morphological dilation which, in turn, is used for building
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Fig. 3. Facade (detection) extraction. (a) Scatterer density map in the ground plane on a 1× 1 m2 grid. (b) Extracted building facade points. The color bar
indicates the (a) number of points/m2. (b) Sea-level height in meters of each 3-D building facade point.

(facade) point extraction in each grid cell. Fig. 3(b) shows
the extracted points belonging to the facades of two different
buildings. The number of buildings in the scene is found by
analyzing the footprint in the generated mask (which is two in
our case).

B. Segmentation

To reconstruct individual facades, the segmentation of the
points belonging to the same facade is required. Most seg-
mentation approaches make use of unsupervised clustering
techniques. They typically search for local plane features and
then perform neighborhood analysis using the detected features
[38], [55]. Only considering the planar segments can be too re-
strictive as in the appearance of the curved surfaces that can be
better modeled using second-order or higher order polynomials.
Therefore, we search for both planar and curved surfaces and
further distinguish them by local footprint orientation analysis.

a) Local Orientation Estimation: Given the set of pixels
representing the building regions in the x–y plane, the local ori-
entation angle θ is estimated by weighted least squares (WLS)
adjustment. The corresponding weight of the facade pixels
within the estimation window is given by the corresponding
estimated SD. If there is no point inside the window other
than the considered point, that point is no longer considered as
part of any facade footprint and hence removed. The estimated
local orientation along the facade footprints for a 10× 10 m2

window size is shown in Fig. 4. The orientation change between
different facades is quite evident.

b) Feature Vector Selection: Extracted facade points from
the preceding step are further clustered into segments cor-
responding to individual facades. As mentioned earlier, the
orientation estimates of different facade footprints are used to
cluster the points. To distinguish grid pixels that are spatially
far apart but having similar orientation, spatial parameters are
also incorporated as features for clustering, i.e., a 3-D feature
space (x, y, θ) is adopted.

c) K-Means Clustering: The well-known K-means cluster-
ing algorithm is used here for segmentation with the aforemen-
tioned 3-D feature vector incorporating spatial features (x, y)
and orientation angle θ depicted in Fig. 4.

Fig. 4. Orientation estimates in degrees on each grid point of Fig. 3(a). The
color bar indicates the degree range [−90 ∼ 90].

A common problem related to k-means is to know the num-
ber of clusters (facades) k in advance that is not pragmatic in
our case. To overcome this limitation, an initial guess about the
number of clusters is first computed such that it underestimates
k. The points are then clustered with the initial guess using
k-means. Points within each resulting cluster that are spatially
disconnected are then further separated as smaller clusters.
Based on this more detailed clustering result, the points near
boundaries of adjacent facades that are normally far away from
the corresponding cluster center are further finely clustered.

Initial guess about number of clusters: To determine the
initial number of clusters, the within-cluster dispersion is de-
termined in successive clustering runs for varying numbers of
clusters.

Let us define Dr as the mean deviation of points in cluster r
from its respective center

Dr =

nr∑
i=1

di
nr

(1)

where nr is the number of points in cluster r and di is the
Euclidean distance of the ith point in r from its center. The
dispersion index Ik for k clusters can then be determined
as [55]

Ik =

k∑
r=1

Dr

k
. (2)
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A plot of such dispersion index against the number of clus-
ters gives us an indication on how to choose an appropriate
number of clusters [55]. The dispersion index Ik usually de-
creases significantly with increasing number of clusters and
becomes steady afterward. The location of the elbow point can
be considered as a good estimate of the number of clusters
[55], [56].

Separation of clusters Within clusters: With initially
guessed and underestimated k, it is common that facades hav-
ing similar orientation estimates and relatively small spatial
distances have been clustered into one group. It is therefore
necessary to extract and treat clusters within clusters that are
not spatially connected as separate clusters. For this reason,
we perform a connectivity analysis to determine the number of
contours and treat each contour as a separate cluster. However,
if the contour is very small, i.e., the number of pixels is less
than Tp, it is omitted.

Finer clustering: After separating clusters within clusters,
the following procedure is adopted for refinement.

1) Appropriate polynomial models (first for flat and second
for curved) are fitted to estimate the cluster footprints.
Model parameters are estimated by L1 norm minimiza-
tion that is robust against outliers.

2) Accept points in each corresponding cluster that are
within the 2σ distance from the estimated facade, where
σ is the standard deviation of the residual.

3) Connectivity analysis is then carried out for the rejected
points. Three possible cases can exist.
a) The point is isolated. In this case, it is removed.
b) The point is connected to other discarded points. In

this case, the number of points is counted, and in
case the number is less than Tp, they are removed.
Otherwise, they are merged together to form a new
cluster.

c) The point belongs to another cluster. In this case, the
discarded point is assigned to another existing cluster.

By following the aforementioned procedure, extracted
facade points are clustered into segments.

C. Reconstruction

A facade is normally characterized by a flat or curved sur-
face, edges (facade boundary), and the corresponding vertices.
These features will be reconstructed in this section.

a) Model Identification (Flat or Curved Facade Surfaces):
The facade surfaces to be modeled are first classified to flat
and curved surfaces by analyzing derivatives of the local ori-
entation angle θ. The curved surfaces have gradually changing
orientations across their footprint compared to flat surfaces that
have ideally constant orientations. We first compute the first
derivatives θ′ of the orientation angle θ for each facade foot-
print. Since the locally estimated θ′ is usually noisy, second-
order polynomial fitting is applied for denoising. The decision
on whether an individual facade footprint is flat or curved is
based on the behavior of θ′. Facade footprints with too small
orientation variation are considered to be flat while facade
footprints with gradually changing orientation are considered
to be curved.

TABLE I
PROCEDURE TO FIND THE ADJACENT SEGMENTS

OF A PARTICULAR FACADE SEGMENT

b) Parameter Estimation: Finally, model parameters for
each segmented facade are estimated. Each extracted point
in Fig. 3(b) is assigned a weight corresponding to its SD
depicted in Fig. 3(a). Two-dimensional facade footprints are
then reconstructed by a WLS method. Polynomials are used to
model the facade footprints in the x–y plane

fp(x, y) =

p∑
q=1

aqx
iyj i+ j ≤ q (3)

where i and j are permuted accordingly, p is the order of the
polynomial, and the number of terms in the above polynomial
is equal to (p+ 1)(p+ 2)/2. Flat and curved surfaces are
modeled using first-order (p = 1) and second-order (p = 2)
polynomial coefficients, respectively. Higher order polynomials
could be used to model more complex building structures.

c) Vertex Determination: Once the facade model parameters
are estimated, the final step is to describe the overall shape
of the building footprint by further identifying adjacent facade
pairs and determining the intersection of their facade surfaces.

The adjacency of facades is described by an adjacency matrix
that is built up via connectivity analysis. Table I shows the
procedure that we propose to decide the adjacency of one
particular facade segment with other facade segments of the
building.

Identified adjacent facade segments are then used to deter-
mine the vertex points in 2-D (i.e., facade intersection lines
in 3-D). They are found by computing the intersection points
between any adjacent facade pair. Since polynomial models are
used for facade parameter estimation, the problem of finding
vertex points boils down to find the intersection point between
the two polynomials corresponding to the two adjacent facades.
Depending on flat or curved facades, two cases needed to be
discussed.

1) Adjacent facades are flat: In this case, there is only one
intersection point which is taken as the vertex point.

2) One of the two facades is curved, or both facades are
curved: There is more than one solution. In these cases,
mean Euclidean distances of the possible intersection
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Fig. 5. Completeness versus correctness with the varying TH and GA
parameters.

points to both adjacent facades are computed. The point
having the smaller mean distance to both facades is
considered as the vertex point.

The computed vertex points and the estimated model param-
eters are then used to finally reconstruct the 3-D model of the
building facades.

IV. EXPERIMENTAL RESULTS AND VALIDATION

In this section, we discuss and assess the overall performance
of the proposed method: The performance of the building
facade extraction is evaluated, clustering issues are discussed,
and the positioning accuracy of the facade models is further
assessed.

A. Performance Assessment of Facade Extraction

To evaluate the quality of our facade extraction procedure,
a pointwise comparison method is employed. Extracted facade
points are compared to the reference data, and the results are
analyzed for quantitative and qualitative evaluation.

Pseudoreference data: The absence of exact reference
data representing the actual facade area restricts the accurate
evaluation of the facade point extraction procedure, but since
we are already incorporating prior knowledge (i.e., the fact
that higher point density areas represent vertical structures)
in estimating few facade parameters from a large number of
points belonging to an individual building facade, it is highly
probable that points closer to the reconstructed facade footprint
are indeed points belonging to the corresponding facades. We
therefore consider all points that are within 1.5σ of the esti-
mated facade footprints reported in Section IV-C to be true
facade points and use them to assess the performance of the
proposed facade extraction procedure.

Evaluation Metrics: To evaluate the performance of the
proposed building facade extraction procedure, all the points
in the input point cloud data are assumed to belong to one
of the two categories, i.e., facade or nonfacade points. Any
point detected as a facade point by the algorithm that also

TABLE II
OVERALL SUCCESS OF THE EXTRACTION PROCEDURE IN TERMS

OF QUALITY FOR SIX TH AND FIVE GA VALUES

corresponds to a facade in the reference data set is taken as true
positive (TP ). Similarly, a point labeled as a facade point but
is not actually a facade point in the reference data set is treated
as false positive (FP ). A false negative (FN) corresponds to a
point which belongs to the facade in the reference data set but is
wrongly labeled as a nonfacade point by the facade extraction
procedure. The performance of the (detection) extraction pro-
cedure is then assessed by employing the following evaluation
metrics [57], [58]:

Completeness (%) : comp = 100×
(

TP
TP+FN

)

Correctness (%) : corr = 100×
(

TP
TP+FP

)

Quality (%) : Q = comp×corr
comp+corr−comp×corr = TP

TP+FP+FN

⎫⎪⎪⎬
⎪⎪⎭

.

(4)

The metrics mentioned above assess the overall performance
of the extraction algorithm. Completeness tells up to what
percentage the algorithm has detected the facade points while
correctness provides a measure of correct classification. Among
them, completeness is particularly important in our application
in order to preserve intact facade footprints. The quality Q
is crucial when comparing the results obtained from different
algorithms [57].

Dependency on window size GA and thresholding param-
eter TH: Two parameters that influence the number of facade
points extracted by the algorithm are as follows: the threshold
TH and window size GA. In order to assess the effect of these
two parameters on the extraction procedure, the evaluation was
carried out using the following sequence of GAs and THs,
with GA = {1× 1, 2× 2, 3× 3, 4× 4, 5× 5} m2 and TH =
{1.0, 1.5, 2.0, 2.5, 3.0, 4.0} points/m2.

To characterize the performance of the extraction procedure,
the dependence of completeness and correctness metrics on
these two parameters is analyzed. A tradeoff between complete-
ness and correctness can then be chosen based on the adjustable
setting parameters. Fig. 5 depicts the completeness and cor-
rectness achieved with different TH and GA parameters. It is
obvious that a lower TH value results in higher completeness.
The higher the TH value, the less the false positives observed,
which results in higher correctness. This simply lies in the fact
that it is more probable that the grid point with higher SD
belongs to a facade. Table II gives us the overall success of the
extraction procedure in terms of quality (Q) for six TH and five
GA values defined earlier. The performance of the extraction
procedure is best under the following parameter settings: TH =
2 points/m2 and GA = 3× 3 m2. The overall quality of which
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Fig. 6. Segmentation results. (a) Dispersion plot with elbow point at k = 5. (b) Corresponding clustering with k = 5. (c) Clustered grid points in feature space,
i.e., orientation (in degrees) and spatial positions on the ground plane (in meters). (d) Corresponding clustered TomoSAR points.

is 95.94%. Generally better correctness and completeness can
also be observed from Fig. 5 with this parameter setting, i.e., a
completeness of 99.89% and a correctness of 96.04%.

Based on the aforementioned discussion, in our experiment,
we estimate the SD on the ground plane with a grid distance
of 1 m. The window size is set to be 3× 3 m2. A facade mask
on the ground plane is obtained based on the resulting SD map
by setting a threshold of 2 points/m2 that are finally used for
facade extraction. It is worth to mention that aforementioned
parameters are tuned to point clouds generated from TerraSAR-
X high-resolution spotlight data, i.e., a resolution of 1.1 m ×
0.6 m × 30 m, and the particular incidence angles. For other
configurations, the optimal GA will be different.

B. Clustering

Extracted facade points from the previous step are further
clustered into segments corresponding to individual facades.
For a reasonable initial guess of the number of clusters, Fig. 6(a)
shows the plot of Ik by assuming different numbers of clusters
k = 2, . . . , 10. We can observe that the dispersion index Ik
decreases significantly with decreasing number of clusters with
k up to 5 and becomes steady afterward. The number of clusters
at this elbow point has been chosen as the initial number

of clusters. Fig. 6(b) shows the preliminary clustering results
with k = 5. It is evident that different facades having similar
orientation estimates and relatively small spatial distance have
been clustered in one group. Therefore, small clusters that are
not spatially connected are separated. Very small contours, i.e.,
the number of pixels is less than Tp (Tp = 10 in our case), are
omitted. By following the procedure of the final fine clustering,
the extracted points are clustered into ten segments. Fig. 6(c)
and (d) shows the color-coded clustering of grid points in fea-
ture space after refinement and their corresponding TomoSAR
points in UTM coordinates, respectively.

C. Three-Dimensional Facade Reconstruction

By analyzing the orientation derivatives as described in
Section III-C, the ten clustered facades in Fig. 6(d) are iden-
tified as five curved and five flat facades. Each extracted facade
footprint point in 2-D is assigned a weight corresponding to its
SD depicted in Fig. 3(a). Two-dimensional facade footprints are
then reconstructed using the WLS method.

Once the facade model parameters are estimated, the next
step is to find the intersection of these facade surfaces to
describe the overall shape of the building footprint. Following
the procedure depicted in Table I, the corresponding adjacency
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Fig. 7. Three-dimensional view of the reconstructed full building facade model in (a) vertical and (b) 3-D view.

TABLE III
ADJACENCY MATRIX OF THE FACADE SEGMENTS DEPICTED IN Fig. 7(a)

TABLE IV
STATISTICS AND ACCURACY OF THE RECONSTRUCTED FACADES

matrix for all the facade segments labeled in Fig. 7(a) is
depicted in Table III. The crosses indicate the mutual adjacent
facade pairs. The vertex points are found by computing the
intersection points between any adjacent facade pair.

Fig. 7 shows the final reconstructed building facade mod-
els using the estimated parameters and the determined vertex
points. Table IV depicts the statistics of the reconstructed
facades. It also assesses the accuracy of the estimated facade
models by computing the root-mean-square error (RMSE) of
all the points from their respective reconstructed facade. For
comparison, facade parameters are also estimated by assigning

Fig. 8. Basic principle for the elevation estimate refinement of the TomoSAR
points by using their more accurate azimuth and range coordinates and the
reconstructed facade surfaces.

uniform weights. Compared to facade parameters estimated by
assigning weights according to their SD, bigger mean RMSE is
observed.

V. APPLICATION EXAMPLES

In this section, the reconstructed model presented in
Section IV is used to refine the elevation estimates of the raw
TomoSAR point clouds, and an example of the reconstructed
4-D building model is presented.

A. Elevation Estimate Refinement

As briefly mentioned in Section I, due to the limited orbit
spread and the small number of images, the location error of
TomoSAR points is highly anisotropic with an elevation error
typically one to two orders of magnitude higher than in range
and azimuth. For TerraSAR-X high-resolution spotlight images
with typical parameters, the theoretical relative localization
precision of a PS is as follows [59]: 1.7–2.1 cm in range;
3.2–3.8 cm in azimuth, and 62–139 cm in elevation.

The elevation estimates of the TomoSAR points can be
refined by using their more accurate azimuth and range coordi-
nates and the identified and modeled facade surfaces as depicted
in Fig. 8. This sketch illustrates the refinement principle in
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Fig. 9. Elevation estimate refinement. (a) TerraSAR-X mean intensity map from ascending stacks (the red dots are the analyzed points) along with the projection
geometry. Height estimates of the analyzed points (b) before and (c) after refinement.

the range–elevation plane. The red points represent the raw
TomoSAR point locations at different heights along a facade.
The ellipse indicates the error ellipse of the TomoSAR estimate
in the range and elevation direction, i.e., much poorer accuracy
in elevation compared to range. The black line indicates the
reconstructed facade surface. We project the corresponding iso-
azimuth-range lines of each point along elevation (directions
are indicated by the arrows) to the identified and modeled
facade surface that it belongs to. The final refined 3-D position
is obtained by taking the elevation coordinate of the intersection
point. This is an approximation of an optimal linear estimate.
The green points represent the positions after elevation refine-
ment. In this way, we expect to achieve much better elevation
estimation accuracy that is on the order of several centimeters,
although it is still slightly worse than the ones in azimuth and
range due to error propagation.

To validate this improvement, we selected a row of bright
points from the intensity image belonging to a facade portion
of constant height as shown in Fig. 9(a). Fig. 9(b) and (c)
compares the height estimates of the analyzed points before
and after the refinement. It is obvious that their height estimates
are improved significantly. The standard deviations before and
after the refinement are 190 and 5.5 cm, respectively, an im-

provement by a factor of 35 which corresponds quite nicely to
the ratio of inherent resolutions in elevation (on the order of
30–50 m) and range (1.1 m).

B. 4-D Building Model

To better monitor the detailed structures of individual build-
ings, an example of the reconstructed 4-D building model is
presented in Figs. 10–12. In Fig. 10, the fused point clouds
with refined elevation are visualized by overplotting them onto
the reconstructed facade model. The height of the points is
color coded. The corresponding estimated motion parameter (in
this case, the amplitude of seasonal motion caused by thermal
dilation) is illustrated in Fig. 11. This information can be used
for developing dynamic building models from spaceborne SAR
data that can help to monitor individual buildings and even the
whole city. Fig. 12 shows the reconstructed 3-D SAR image,
i.e., the reflectivity map overlaid on the facade model. Such an
image visualizes in detail how the Bellagio hotel would look
like in X-band for our eyes, if they could sense microwaves,
from the position of the SAR satellite. Such visualizations may
lead to a better understanding of the nature of scattering.
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Fig. 10. Point clouds with refined elevation overplotted on the reconstructed facade model. The height of the points is color coded (unit: meters).

Fig. 11. Reconstructed 4-D building facade model. The amplitude of seasonal motion is color coded (unit: millimeters).

VI. OUTLOOK AND CONCLUSION

TomoSAR point clouds are very attractive for dynamic city
model generation. As the first attempt, a facade reconstruction
approach tailored to this class of data is proposed in this paper.
It consists of three main steps: facade extraction, segmentation,
and reconstruction. The proposed approach is illustrated by
using fused TomoSAR point clouds from two stacks (ascend-
ing and descending) of TerraSAR-X high-resolution spotlight
data. We use the reconstructed facade model to refine the

TomoSAR elevation estimates. Compared to the raw TomoSAR
point clouds, significantly improved elevation positioning ac-
curacy on the order of several centimeters is achieved. A
first example of the reconstructed 4D building model is also
presented.

There are several aspects of the proposed reconstruction
procedure that can be improved in the future. Among them, the
proposed approach is based on the assumption that facades are
vertical and the footprint of each segment can be represented by
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Fig. 12. Reconstructed 3-D SAR image overplotted on the reconstructed
facade model. Note that this is not only a projection of the SAR image onto the
building models. Rather, the lay-overed brightness contributions from facade
and ground have been separated in the tomographic reconstruction step.

a set of polynomial coefficients. The fact that facade parameters
are estimated from the segmented points makes the recon-
struction performance strongly dependent on the quality of the
segmentation. In our experiment, we rely on the assumption
of having a high number of scatterers on the building facades
and hence used the SD as the basis for various operations,
including segmentation, orientation parameter estimation, and
facade parameter estimation. In most cases, the assumption is
valid because of the existence of strong corner reflectors, e.g.,
window frames, on the building facades. However, there are
exceptional cases: 1) the facade structure is smooth, i.e., only
very few scatterers can be detected on the facades, and 2) the
building is low. In these cases, SD might not be the optimum
choice. Alternatively, we can use other scatterer characteristics
such as intensity and SNR for extraction and reconstruction
purposes.

In the future, we will also concentrate on object-based To-
moSAR point cloud fusion, building roof reconstruction, and
automatic object reconstruction for large areas.
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