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Accuracy of incoherent Speckle Tracking for

circular Gaussian Signals
Francesco De Zan

Abstract—This paper provides a formula for the accuracy
of incoherent speckle tracking (intensity cross-correlation) of
homogeneous patches. The result is based on the determination
of the curvature of the cross-correlation function and the noise
which affects its first derivative.

Index Terms—Synthetic Aperture Radar, SAR interferometry,
delay estimation, coherent cross-correlation, speckle tracking

I. INTRODUCTION

The availability of SAR data with high resolution justifies

the interest in non-interferometric methods for estimating

relative shifts between images. These methods are often based

on the cross-correlation of images. Examples of application

are found in the area of deformation monitoring, especially for

motions in the along-track direction, to which interferometry

is blind. Moreover, cross-correlation methods are also used as

tools to fine co-register images for interferometry or to assist

phase unwrapping.

In theory, the best estimator for the shifts is the maximiza-

tion of the coherent cross-correlation, but in some cases there

are limitations caused by the need to compensate the interfer-

ometric phases prior to cross-correlation. An alternative is to

use methods based on spectral diversity [1], [2], which achieve

very high efficiency [3], or to cross-correlate intensities, i.e.

the squared magnitudes of the focused signals. In this last case

the phases become completely irrelevant. It is usual to refer

to this technique as “incoherent speckle tracking” or simply

“speckle tracking”. This paper derives the theoretical accuracy

of speckle tracking, assuming homogeneous patches and an

arbitrary coherence level.

The performance for coherent cross-correlation has been

given in [4], [3], [5] and is reported in this paper for compar-

ison. The coherent multi-image case has been treated in [6]:

the equivalent for the incoherent case is still missing. This

paper deals with the case of two images and incoherent cross-

correlation.

II. MODEL AND PERFORMANCE

A. Circular Gaussian signals

Homogeneous patches of fully-developed speckle are mod-

eled as independent circular Gaussian samples. The master

image samples will be indicated with xn and the slave samples

with yn. It is supposed that the original complex images are

critically sampled. Since the intensities necessitate a doubled

spectral support, the complex images have to be oversampled
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with a factor two before computing the intensities. The inter-

polated samples will carry semi-integer indices: for example

the new sample between x0 and x1 will be called x1/2.

The function c(ξ) will be the cross-correlation of master

and slave image intensities, with the following definition

c(ξ) =
∑

2n∈S

|xn|2|yn(ξ)|2 (1)

with S = Z ∩ (−N,N ].

The summation is performed over integer and semi-integer

n’s. The total number of independent samples (for the original

complex images) is N , but the sum has 2N terms. The yn(ξ)
is a delayed version of the slave, i.e. a resampling:

yn(ξ) =
∑

k∈Z

yk sinc(n + ξ − k) (2)

this time summing only over integer k’s. The delay ξ, a real

variable, shifts the entire sequence yn.

The sampling interval is normalized to 1 and all the results

will have to be scaled to the system resolution. The signals

are also normalized to have unitary power

E[|xn|2] = E[|yn|2] = 1, (3)

so that the expected value of xnȳn is simply the coherence:

E[xnȳn] = γ (z̄ indicates the complex-conjugate of z). The

coherence is considered to be real in the following, with no

substantial consequences.

B. The accuracy of correlation maximization

The estimation of the delay is obtained by maximizing the

correlation, i.e. finding the delay ξ for which the correlation (1)

attains its maximum:

ξ̂ = arg max
ξ

{c(ξ)} , (4)

that is also a point where the first derivative c′(ξ) annihilates.

Without loss of generality, in the rest of the paper the true

value of the delay is assumed to be zero.

The accuracy of the determination of the delay depends on

the curvature of the correlation peak, i.e. the average slope of

c′(ξ) at zero, and on the variance of c′(ξ) at the same point [4].

The estimation uncertainty is given by

σ2

I = Var[ξ̂] =
Var[c′(0)]

E[c′′(0)]2
, (5)

which can be understood as the variance of the zero-crossing

position of c′(ξ).
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With the definition in (1) the expected value of the correla-

tion is found to be

E[c(ξ)] = 2N E[|xn|2|yn(ξ)|2]
= 2N (E[xnx̄n] · E[yn(ξ)ȳn(ξ)]

+ E[xnȳn(ξ)] · E[yn(ξ)x̄n])

= 2N(1 + γ2 sinc2(ξ)). (6)

This derivation is an application of Reed’s theorem [7]. The

first and second derivatives follow easily:

E[c′(ξ)] = 4Nγ2 sinc(ξ) sinc′(ξ) (7)

E[c′′(ξ)] = 4Nγ2(sinc(ξ) sinc′′(ξ) + sinc′2(ξ)). (8)

Thanks to linearity, expected values and derivatives can be

interchanged, so that (8) represents also the average slope of

the first derivative and the slope of the average first derivative.

At the point of interest ξ = 0 we have

E[c′(0)] = 0 (9)

E[c′′(0)] = −4Nγ2π2/3. (10)

Equation (10) provides the denominator of (5). Concerning

the numerator, the derivation of the variance of the first

derivative of c(ξ) is more complicated and is left for the

appendix. The result, valid for large N , is

Var[c′(0)] = E[|c′(0)|2] = N
8π2

15
(2 + 5γ2 − 7γ4). (11)

Finally, making use of (10) and (11) it is possible to write

a closed-form expression for the performance of the cross-

correlation of speckle intensities:

σI =

√

E[|c′(0)|2]
|E[c′′(0)]| (12)

=

√

3

10N

√

2 + 5γ2 − 7γ4

πγ2
. (13)

For comparison, this is the expression for the coherent cross-

correlation [3]:

σC =

√

3

2N

√

1 − γ2

πγ
. (14)

Both σI and σC are normalized to the resolution element;

the number of independent samples N refers to the original

critically-sampled complex signals.

III. SIMULATIONS, COMPARISONS, AND LIMITATIONS

Numerical simulations with a large number of samples

confirm the overall validity of expression (13). Figure 1 shows

the normalized accuracy of the shift estimation: the standard

deviation of the estimates is multiplied by the square root

of the number of samples. Formally this is equivalent to

setting N = 1 in (13).

The solid line shows the prediction according to (13) and

the stars represent the corresponding simulations. The dashed

line represents the coherent cross-correlation (14), the triangles

the simulations.

The same figure reports also the performance for the cross-

correlation of amplitude signals (only simulations). The per-

formance is worse than the intensity correlation for low co-

herences, but becomes almost indistinguishable for coherences

larger than 0.6. It is possible that the amplitude signal requires

even more oversampling, because of the non-linearity of the

square root.

Fig. 1. The normalized accuracy (σ
√

N ) of cross-correlation as a function
of coherence for complex signals, amplitudes and intensities.

A. Limitations

The result presented in this letter is valid in the case of

a large number of samples, similarly to a Cramér-Rao bound.

For practical purposes, it is interesting to analyze the behavior

for a finite number of samples.

The validity limitations come mostly from a typical thresh-

old effect which appears at low signal-to-noise ratio and small

number of samples. Analogous situations happen, e.g., in

frequency estimation [8] or in phase unwrapping and they

cannot be characterized studying only the local properties of

the maximum as it is done in this paper.

In the case of the cross-correlation, simulations indicate

that to have a performance within 1 dB from (13), one needs

roughly 1000 samples if the coherence is 0.3, 200 samples if

the coherence is 0.5, and 50 if it is 0.7. This can be understood

in terms of the probability of confusing the main lobe of the

cross-correlation function with a secondary lobe. Looking at

the denominator of (13), the condition for being within the

main peak with high probability is γ2
√

N ≫ 1. For coherent

cross-correlation less samples are required, since the same

condition leads to γ
√

N ≫ 1 (see also [4]). The total number

of independent samples counts for the threshold effect, even

if the estimation patch is extended in both azimuth and range

directions. It must be said that sometimes, in order to select

the correct peak, a-priori information can be used.

Another limitation affects high coherences and it is a border

effect. For γ = 1 the formula (13) yields σI = 0, but for

finite N the error is never zero. The problem can be almost

entirely avoided by normalizing the energy of the signals in

the correlation window for each delay (the estimator is then
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called normalized cross-correlation [9]). However, this effect is

not likely to show up in typical situations, in which incoherent

cross-correlation is used for medium to low coherences.

It is worth noting that the homogeneity hypothesis may lose

validity when the cross-correlation window grows too much.

It is difficult to provide figures for this additional limitation,

which will depend both on the intrinsic homogeneity of the

scene and the system resolution.

B. Comparison with coherent cross-correlation

In [4] it was observed, thanks to simulations, that the perfor-

mance of incoherent speckle tracking is about 2 times worse

(3dB) than the coherent cross-correlation for high coherences.

It is now possible to state more precisely that the performance

degradation σ2

I/σ2

C tends to 9/5 = 1.8 in the limit γ → 1.

As suggested by one reviewer, the slight difference could be

due to the increased robustness of the intensity signal to the

noise, compared to the real and imaginary parts alone. At high

coherences the noise is relevant only when the speckle is small,

but for the intensity signal to be small it is necessary that both

real and imaginary parts are small.

For lower coherences the loss w.r.t the coherent case is

larger than 3dB: e.g. for γ = 0.5 we obtain σ2

I = 3σ2

C . In

this case the same mechanism mentioned above would work

against the signal: since the noise is comparable or larger

than the signal, the intensity ends up privileging noise over

signal. This discussion should only be taken as an intuitive

explanation for what has been observed.

IV. CONCLUSION

This letter has investigated the performance of shift estima-

tion based on intensity cross-correlation, in the case of ho-

mogeneous speckle patches. Simulations confirm the analytic

derivation and some practical validity limitations have been

discussed. Different from coherent cross-correlation, incoher-

ent cross-correlation is probably not the maximum-likelihood

estimator and the performance obtained in this paper is not a

Cramér-Rao bound.

APPENDIX

To compute the noise on the derivative one needs to evaluate

E[|c′(ξ)|2] at ξ = 0. One starts by writing explicitly the first

derivative (over-bars stand for complex-conjugate):

c′(0) =
d

dξ
c(ξ)

∣

∣

∣

∣

ξ=0

=
∑

2n∈S

|xn|2
d

dξ
|yn(ξ)|2

∣

∣

∣

∣

ξ=0

(15)

=
∑

2n∈S

|xn|2(yn∂ȳn + ȳn∂yn) (16)

with the shorthand notation

∂yn =
d

dξ
yn(ξ)

∣

∣

∣

∣

ξ=0

=
∑

k∈Z

yk
d

dξ
sinc(n + ξ − k)

∣

∣

∣

∣

ξ=0

(17)

=
∑

k∈Z

yk sinc′(n − k). (18)

The sum is over integer k’s but n can be semi-integer. The

squared derivative is then the double sum

|c′(0)|2 = (19)
∑

2n∈S

|xn|2(yn∂ȳn + ȳn∂yn) ·
∑

2k∈S

|xk|2(yk∂ȳk + ȳk∂yk)

which originates four terms:

T1(n, k) = |xn|2|xk|2ynyk∂ȳn∂ȳk (20)

T2(n, k) = |xn|2|xk|2ynȳk∂ȳn∂yk (21)

T3(n, k) = |xn|2|xk|2ȳnyk∂yn∂ȳk (22)

T4(n, k) = |xn|2|xk|2ȳnȳk∂yn∂yk. (23)

One can see immediately that T1(n, k) = T̄4(n, k) and

T2(n, k) = T̄3(n, k), but since they will be found to be real,

the equalities hold without the need to complex-conjugate.

The expected values are derived by applying Reed’s theo-

rem [7] on E[T1(n, k)] and E[T2(n, k)]. Each expected value

generates a sum of 4! = 24 terms, which correspond to

the possible permutations of the tuples (xn, xk, yn, yk) and

(xn, xk, yn, ∂yk). Each term is then the product of four

correlations. The permutations and the resulting terms are

listed in Tables I and II. The symbols

Ank = E[ynȳk] = E[xnx̄k] = sinc(n − k) (24)

Bnk = −E[yn∂ȳk] = E[yk∂ȳn] = sinc′(n − k) (25)

Cnk = E[∂yn∂ȳk] =
∑

m∈Z

sinc′(m) sinc′(m − (n − k))

= − sinc′′(n − k). (26)

are introduced for convenience. Asterisks replace irrelevant

factors: for instance, the first row of Table I represents the

computation of the term

E[xnx̄n] E[xkx̄k] E[yn∂ȳn] E[yk∂ȳk] = 1 · 1 · 0 · 0
but the first two factors can be ignored since they will be

anyway multiplied by zero. Many of the terms are indeed

zero and the final results of the sum are:

E[T1(n, k)] = −B2

nk(1 + A2

nk)(1 + 2γ2 + γ4) (27)

E[T2(n, k)] = (1 + 3γ2)AnkCnk + (1 + γ2)A3

nkCnk

− (γ2 + γ4)A2

nkB2

nk (28)

At this point it is possible to sum over n and k to obtain

the expected value of (19). The sums are for integer and semi-

integer values in the interval −N/2, N/2, however one of the

two sums can be extended between plus and minus infinity.

In this way we avoid border effects and the formulas obtained

are valid for large N (sums over finite N do not yield nice

formulas, but allow us to study numerically the impact of N
on border effects). We compute preliminarily the following

series, summing over integer and semi-integer k:
∑

2k∈Z

A2

nkB2

nk = 2π2/15 (29)

∑

2k∈Z

B2

nk =
∑

2k∈Z

AnkCnk = 2π2/3 (30)

∑

2k∈Z

A3

nkCnk = 2π2/5. (31)
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x̄n x̄k ∂ȳn ∂ȳk

xn xk yn yk ∗ · ∗ · 0 · 0
xn xk yk yn 1 · 1 · Bnk · (−Bnk)
xn yn xk yk ∗ · ∗ · ∗ · 0
xn yn yk xk ∗ · ∗ · ∗ · 0
xn yk xk yn 1 · γ · γBnk · (−Bnk)
xn yk yn xk ∗ · ∗ · 0 · 0
xk xn yn yk ∗ · ∗ · 0 · 0
xk xn yk yn Ank · Ank · Bnk · (−Bnk)
xk yn xn yk ∗ · ∗ · 0 · 0
xk yn yk xn Ank · γAnk · Bnk · (−γBnk)
xk yk xn yn ∗ · ∗ · 0 · ∗
xk yk yn xn ∗ · ∗ · 0 · ∗
yn xn xk yk ∗ · ∗ · ∗ · 0
yn xn yk xk ∗ · ∗ · ∗ · 0
yn xk xn yk ∗ · ∗ · 0 · 0
yn xk yk xn γ · 1 · Bnk · (−γBnk)
yn yk xn xk ∗ · ∗ · 0 · 0
yn yk xk xn γ · γAnk · γBnk · (−γBnk)
yk xn xk yn γAnk · Ank · γBnk · (−Bnk)
yk xn yn xk ∗ · ∗ · 0 · 0
yk xk xn yn ∗ · ∗ · 0 · ∗
yk xk yn xn ∗ · ∗ · 0 · ∗
yk yn xn xk ∗ · ∗ · 0 · 0
yk yn xk xn γAnk · γAnk · γBnk · (−γBnk)

TABLE I
COMPUTATION OF E[T1(n, k)]. THE RESULT IS THE SUM OF THE TERMS

IN THE RIGHT COLUMN. ON THE LEFT, THE CORRESPONDING

PERMUTATIONS OF THE TUPLE (xn, xk, yn, yk).

x̄n x̄k ȳk ∂ȳn

xn xk yn ∂yk 1 · 1 · Ank · Cnk

xn xk ∂yk yn ∗ · ∗ · 0 · 0
xn yn xk ∂yk 1 · γAnk · γ · Cnk

xn yn ∂yk xk ∗ · ∗ · 0 · ∗
xn ∂yk xk yn ∗ · 0 · ∗ · 0
xn ∂yk yn xk ∗ · 0 · ∗ · ∗
xk xn yn ∂yk Ank · Ank · Ank · Cnk

xk xn ∂yk yn ∗ · ∗ · 0 · 0
xk yn xn ∂yk Ank · γAnk · γAnk · Cnk

xk yn ∂yk xn ∗ · ∗ · 0 · 0
xk ∂yk xn yn ∗ · 0 · ∗ · 0
xk ∂yk yn xn ∗ · 0 · ∗ · 0
yn xn xk ∂yk γ · Ank · γ · Cnk

yn xn ∂yk xk ∗ · ∗ · 0 · ∗
yn xk xn ∂yk γ · 1 · γAnk · Cnk

yn xk ∂yk xn ∗ · ∗ · 0 · 0
yn ∂yk xn xk ∗ · 0 · ∗ · ∗
yn ∂yk xk xn ∗ · 0 · ∗ · 0
∂yk xn xk yn ∗ · ∗ · ∗ · 0
∂yk xn yn xk −γBnk · Ank · Ank · γBnk

∂yk xk xn yn ∗ · ∗ · ∗ · 0
∂yk xk yn xn ∗ · ∗ · ∗ · 0
∂yk yn xn xk −γBnk · γAnk · γAnk · γBnk

∂yk yn xk xn ∗ · ∗ · ∗ · 0

TABLE II
COMPUTATION OF E[T2(n, k)]. THE RESULT IS THE SUM OF THE TERMS

IN THE RIGHT COLUMN. ON THE LEFT, THE CORRESPONDING

PERMUTATIONS OF THE TUPLE (xn, xk, yn, ∂yk).

Incidentally, thanks to the infinite sums, the dependence on n
vanishes too.

With the help of (27), (28) and (29)-(31) we finally obtain:

E[|c′(0)|2]

=
∑

2n∈S

{

∑

2k∈Z

2E[T1(n, k)] + 2E[T2(n, k)]

}

= 2
∑

2n∈S

{

− (1 + 2γ2 + γ4)(2π2/3 + 2π2/15)

+ (1 + 3γ2)2π2/3 + (1 + γ2)2π2/5

− (γ2 + γ4)2π2/15

}

= 2N · 22π2

15
(2 + 5γ2 − 7γ4), (32)

which is Eq. (11).
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