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Abstract: Information content and compression are tightly related concepts that can be 
addressed through both classical and algorithmic information theories, on the basis of 
Shannon entropy and Kolmogorov complexity, respectively. The definition of several 
entities in Kolmogorov’s framework relies upon ideas from classical information theory, 
and these two approaches share many common traits. In this work, we expand the relations 
between these two frameworks by introducing algorithmic cross-complexity and relative 
complexity, counterparts of the cross-entropy and relative entropy (or Kullback-Leibler 
divergence) found in Shannon’s framework. We define the cross-complexity of an object x
with respect to another object y as the amount of computational resources needed to 
specify x in terms of y, and the complexity of x related to y as the compression power 
which is lost when adopting such a description for x, compared to the shortest 
representation of x. Properties of analogous quantities in classical information theory hold 
for these new concepts. As these notions are incomputable, a suitable approximation based 
upon data compression is derived to enable the application to real data, yielding a 
divergence measure applicable to any pair of strings. Example applications are outlined, 
involving authorship attribution and satellite image classification, as well as a comparison 
to similar established techniques. 
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1. Introduction 

Both classical and algorithmic information theory aim at quantifying the information contained 
within an object. Classical Shannon’s information theory [1] has a probabilistic approach. As it is 
based on the uncertainty of the outcomes of random variables, it cannot describe the information 
content of an isolated object, if no a priori knowledge is available. The primary concept of algorithmic 
information theory is instead the information content of an individual object, which is a measure of 
how difficult it is to specify how to construct or calculate that object. This notion is also known as 
Kolmogorov complexity [2]. This area of study allowed formal definitions of concepts which were 
previously vague, such as randomness, Occam’s razor, simplicity and complexity. The theoretical 
frameworks of classical and algorithmic information theory are similar, and many concepts exist in 
both, sharing various properties (a detailed overview is to be found in [2]).  

In this paper we introduce the concepts of cross-complexity and relative complexity, the 
algorithmic versions of cross-entropy and relative entropy (also known as Kullback-Leibler 
divergence). These are defined between any two strings x and y respectively as the computational 
resources needed to specify x only in terms of y, and the compression power which is lost when using 
such a representation for x instead of its most compact one, which has length equal to its 
Kolmogorov complexity. 

As the introduced concepts are incomputable, we rely on previous work which approximates the 
complexity of an object with the size of its compressed version, so as to quantify the shared 
information between two objects [3]. We derive a similarity measure from the concept of relative 
complexity that can be applied between any two strings. 

Previously, a correspondence between relative entropy and compression-based similarity measures 
was considered in [4] for static encoders, directly related to the probability distributions of random 
variables. Additionally, methods to compute the relative entropy between any two strings have been 
proposed by Ziv and Merham [5] and Benedetto et al. [6]. The concept of relative complexity 
introduced in this work may be regarded as an expansion of [4], and experiments on authorship 
attribution contained in [6] are repeated in this paper using the proposed distance with better results. 

This paper is organized as follows. We recall basic concepts of Shannon entropy and Kolmogorov 
complexity in Section 2, focusing on their shared properties and their relation with data compression. 
Section 3 introduces the algorithmic cross-complexity and relative complexity, while in Section 4 we 
define their computable approximations using compression-based techniques. Practical applications 
and comparisons with similar methods are reported in Section 5. We conclude in Section 6.

2. Preliminaries 

2.1. Shannon Entropy and Kolmogorov Complexity 

The Shannon entropy in classical information theory [1] is an ensemble concept; it is a measure of 
the degree of ignorance about the outcomes of a random variable X with a given a priori probability 
distribution p(x) = P(X = x): 

�−=
x

xpxpXH ))(log()()(  (1)
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This definition can be interpreted as the average length in bits needed to encode the outcomes of X, 
which can be obtained, for example, through the Shannon-Fano code, to achieve compression. An 
approach of this nature, with probabilistic assumptions, does not provide the informational content of 
individual objects and their possible regularity. Instead, the Kolmogorov complexity K(x), or 
algorithmic complexity, evaluates an intrinsic complexity for any isolated string x, independently of 
any description formalism. In this work we consider the “prefix” algorithmic complexity of a binary 
string x, which is the size in bits (binary digits) of the shortest self-delimiting program q used as input 
by a universal Turing machine to compute x and halt: 

qxK
Qxq∈

= min)(  (2)

with Qx being the set of instantaneous codes that generate x. One interpretation of K(x) is the quantity 
of information needed to recover x from scratch. The original formulation of this concept is 
independently due to Solomonoff [7], Kolmogorov [8], and Chaitin [9]. Strings exhibiting recurring 
patterns have low complexity, whereas the complexity of random strings is high and almost equals 
their own length. It is important to remark that K(x) is not a computable function of x. A formal link 
between entropy and algorithmic complexity has been established in the following theorem [2]. 

Theorem 1: The sum of the expected Kolmogorov complexities of all the code words x which are 
output of a random source X, weighted by their probabilities p(x), equals the statistical Shannon 
entropy H(X) of X, up to an additive constant. The following holds, if the set of outcomes of X is finite 
and each probability p(x) is computable: 

� ++≤≤
x

OpKXHxKxpXH )1()()()()()(  (3) 

where K(p) represents the complexity of the probability function itself. So for simple distributions the 
expected complexity approaches the entropy. 

2.2. Mutual Information and Other Correspondences 

The conditional complexity K(x|y) of x related to y quantifies the information needed to recover x if 
y is given as an auxiliary input to the computation. Note that if y carries information which is shared 
with x, K(x|y) will be considerably smaller than K(x). In the other case, if y gives no information at all 
about x, then K(x|y) = K(x) + O(1), and K(x,y) = K(x) + K(y), with the joint complexity K(x,y) being 
defined as the length of the shortest program which outputs x followed by y. For all these definitions, 
the desirable properties of analogous quantities in classical information theory related to random 
variables, i.e., the conditional entropy H(X|Y) of X given Y and the joint entropy of X and Y H(X,Y), 
hold [2]. 

An important issue of the information content analysis is the estimation of the amount of 
information shared by two objects. From Shannon’s probabilistic point of view, it occurs via the 
mutual information I(X,Y) between two random variables X and Y, defined in terms of entropy as:  

),()()()|()(),( YXHYHXHYXHXHYXI −+=−=  (4)
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It is possible to obtain a similar estimation of shared information in the Kolmogorov complexity 
framework by defining the algorithmic mutual information between two strings x and y as: 

),()()()|()():( yxKyKxKyxKxKyxI −+=−=  (5)

valid up to an additive term |)|(log xyO . This definition resembles (4) both in properties and 
nomenclature [2]: one important shared property is that if 0):( =yxI , then  

K(x,y) = K(x) + K(y) + O(1) (6)

and x and y are, by definition, algorithmically independent. 
What probably is the greatest success of these concepts is enabling the ultimate estimation of shared 

information between two objects: the Normalized Information Distance (NID) [3]. The NID is a 
similarity metric minimizing any admissible metric, proportional to the length of the shortest program 
that computes x given y, as well as computing y given x. The distance computed on the basis of these 
considerations is, after normalization: 

)1(
)}(),(max{

)}(),(min{),(
)}(),(max{

)}|(),|(max{),( O
yKxK

yKxKyxK
yKxK

yxKxyKyxNID +−==  (7)

where, in the right term of the equation, the relation between conditional and joint complexities 
)1()(),()|( OyKyxKyxK +−=  is used to substitute the terms in the dividend. The NID is a metric, so 

its result is a positive quantity r in the domain 0 ≤  r ≤1, with r = 0 iff the objects are identical and  
r = 1 representing maximum distance between them. 

The value of this similarity measure between two strings x and y is directly related to the 

algorithmic mutual information, with .1
)}(),(max{

):(),( =+
yKxK

yxIyxNID This can be shown, assuming 

the case )()( yKxK ≤  with the case )()( yKxK >  being symmetric and up to an additive constant 

O(1), as follows: .1
)(

),()()(
)(

)(),( =−++−
yK

yxKyKxK
yK

xKyxK  

Another Shannon-Kolmogorov correspondence is the one between rate-distortion theory [1] and 
Kolmogorov structure functions [10], which aim at separating the meaningful (structural) information 
contained in an object from its random part (its randomness deficiency), characterized by less 
meaningful details and noise. 

2.3. Compression-Based Approximations 

As the complexity K(x) is not a computable function of x, a suitable approximation is defined by Li 
and Vitányi by considering it as the size of the ultimate compressed version of x, and a lower bound 
for what a real compressor can achieve. This allows approximating K(x) with C(x) = K(x) + k, i.e., the 
length of the compressed version of x obtained with any off-the-shelf lossless compressor C, plus an 
unknown constant k: the presence of k is required by the fact that it is not possible to estimate how 
close to the lower bound represented by K(x) this approximation is. The conditional complexity K(x|y) 
can be also estimated through compression [11] while the joint complexity K(x,y) is approximated by 
compressing the concatenation of x and y. Equation (7) can then be estimated through the Normalized 
Compression Distance (NCD) as follows: 
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)}(),(max{
)}(),(min{),(),(

yCxC
yCxCyxCyxNCD −=  (8)

where C(x,y) represents the size of the file obtained by compressing the concatenation of x and y . The 
NCD can be explicitly computed between any two strings or files x and y and it represents how 
different they are. The conditions for NCD to be a metric hold under certain assumptions [12]: in 
practice the NCD is a non-negative number 0 � NCD � 1 + e, with the e in the upper bound due to 
imperfections in the compression algorithms, usually assuming a value below 0.1 for most standard 
compressors [4]. The NCD has a characteristic data-driven, parameter-free approach that allows 
performing clustering, classification and anomaly detection on diverse data types [12,13].  

3. Cross-Complexity and Relative Complexity 

3.1. Cross-Entropy and Cross-Complexity 

Let us start by recalling the definition of cross-entropy in Shannon’s framework: 

�−=⊕
i

YX ipipYXH )(log)()(  (9)

with )()( iXpipX ==  and )()( iYpipY == . The cross-entropy represents the expected number of 
bits needed to encode the outcomes of a variable X as if they were outcomes of another variable Y. 
Therefore, the set of outcomes of X is a subset of the outcomes of Y. This notion can be brought in the 
algorithmic framework to determine how to measure the computational resources needed to specify an 
object x in terms of another one y.

We introduce the cross-complexity )( yxK ⊕  of x given y as the shortest program which outputs x 
by reusing instructions from the shortest program generating y, as follows. Consider two binary strings 
x and y, and assume to have available an optimal code *y  which outputs y, such that | *y |=K(y). Let S 
be the set of all possible binary substrings of *y , with 2/|*|)1|*(||| yyS += . We use an oracle to 
determine which elements of S are self-delimiting programs which halt when fed to a reference 
universal prefix Turing Machine U [14], so that U halts with such a segment of *y as input. Let the set 
of these halting programs be Y, and let the set of outputs of Y be Z, with }:)({ YuuUZ ∈= , with 

uuUU =− ))((1 . If two different segments 1u  and 2u  give as output the same element of Z,  
i.e., )()( 21 uUuU = , then if |||| 21 uu < , or if |||| 21 uu =  and 1u  comes before 2u  in standard 
enumeration, 11

1
2

1 ))(())(( uuUUuUU == −− . Finally, determine an integer n and the way to divide x in 

n subwords ni xxxxx ....21= , so that the sum � �
∈= ∉=

− ++
n

Zxj

n

Zxh
hj

j h

xsdxUn
,1 ,1

1 |)(||)(| is minimal, where 

)( ixsd  is the plain self-delimiting version of the string ix , with |)|(log|||)(| iii xOxxsd += . This way 

we can write x as a binary string preceded by a self-delimiting program of constant length c telling U 
how to interpret the next commands, followed by 1 )(1

ixU − for the ith segment ix of x= nxxx ...21 if ix  is 
replaced by YxU i ∈

− )(1 and by 0 )( ixsd  if this segment ix  is replaced by its self-delimiting 
version )( ixsd . 

This way, x is coded into some concatenation of subsegments of *y  expanding into segments of x, 
prefixed with 1, and the remaining segments of x in self-delimiting form prefixed with 0. The above 
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sum is prefixed by a c-bit program (self-delimiting), which depends on the Turing Machine adopted, 
that tells U how to compute x from the following commands. The total forms the code *)( yx⊕ , with 

)(|)*(| yxKyx ⊕=⊕ . 
The reference universal Turing machine U on input *)( yxsd , prefixed by an appropriate program, 

enumerates at first the sets S, Y, and Z. On their basis, U builds the code *)( yx⊕ , and finally halts if 
both x and y are finite. Moreover, U with *)( yx⊕  as input computes as output x and halts.Note that 
by definition of cross-complexity: 

|)|(log||)( xOxyxK +≤⊕  

)1()()( OyxKxK +⊕≤  

)1()()( OxKxxK +=⊕  

(10)

(11)

(12)

So, )( yxK ⊕  is lower bounded by the plain Kolmogorov complexity K(x) of x (10), and reaches its 

upper bound if the sum �
∈=

−
n

Zxj
j

j

xU
,1

1 |)(| , as in the above definition, is equal to 0 (11). For the case x=y, 

constructing the code *)( xx⊕  implies reusing the shortest code x* of length K(x) which outputs x, 
hence (12). The cross-complexity )( yxK ⊕  is different from the conditional complexity )|( yxK : in 
the former x is expressed in terms of a description tailored for y, whereas in the latter the object y is an 
auxiliary input that is given “for free” and does not count in the estimation of the computational 
resources needed to specify x. 

Key cross-entropy’s properties hold for this definition of algorithmic cross-complexity: 

1. The cross-entropy )( YXH ⊕  is lower bounded by the entropy )(XH , i.e., )()( XHYXH ≥⊕ , 
as the cross-complexity in (11). 

2. The identity YXifXHYXH ==⊕ ),()(  also holds up to an additive term (12). Note that the 
strongest YXiffXHYXH ==⊕ ),()( , does not hold in the algorithmic framework. Consider 
the case of x being a substring of y, with y* containing the shortest code x* to output x, then 

)( yxK ⊕ = )(xK  + O(1). 
3. The cross-entropy )( YXH ⊕ of X given Y and the entropy H(X) of X share the same upper 

bound log(N), where N is the number of possible outcomes of X, as algorithmic complexity and 
algorithmic cross-complexity. This property follows from the definition of algorithmic 
complexity and (10). 

3.2. Relative Entropy and Relative Complexity 

The definition of algorithmic relative complexity derives from the idea of relative entropy (or 
Kullback-Leibler divergence) related to two probability distributions X and Y. This divergence 
represents the expected difference in the number of bits required to code an outcome i of X when using 
an encoding based on Y, instead of X [15]: 

�=
i Y

X
X iP

iPiPYXD
)(
)(log)()||(  (13)

with ,0)||( ≥YXD  equality YXiff = , and )||()||( XYDYXD ≠ . )||( YXD  is not a metric, as it is 
not symmetric and the triangle inequality does not hold [16]. What is more meaningful for our 
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purposes is the definition of relative entropy expressed in terms of difference between cross-entropy 
and entropy: 

)()()||( XHYXHYXD −⊕=  (14)

We define the relative complexity in terms of cross-entropy according to (14), replacing entropies 
by complexities. For two finite binary strings x and y the algorithmic relative complexity )||( yxK of x 
towards y is equal to the difference between the cross-complexity )( yxK ⊕  and the Kolmogorov 
complexity K(x): 

)()()||( xKyxKyxK −⊕=  (15)

The relative complexity between x and y represents the compression power lost when compressing 
x by describing it only in terms of y, instead of using its most compact representation. We  
may also regard )||( yxK , as for its counterpart in Shannon framework, as a quantification of the  
distance between x and y. It is desirable that the key properties of (13) hold also for (15). As in (13), 
the algorithmic relative complexity )||( yxK  of x given y is positively defined: 

|)|(log||)||(0 xOxyxK +≤≤ , yx,∀ , as a consequence of (10) and (12).  

4. Computable Approximations 

4.1. Computable Algorithmic Cross-Complexity 

The incomputability of algorithmic cross-complexity and relative complexity is a direct 
consequence of the incomputability of their Kolmogorov complexity components. We once again rely 
on data compression to approximate the relative complexity )( yxK ⊕  through )( yxC ⊕ , following 
the ideas contained in [12]. To encode a string x according to the description of another string y, one 
could first compress y and then use the patterns found in y to compress x. But with such an approach, it 
would be difficult to compare the cross-compression of x given y to the compression factor of x 
obtained through a standard compression algorithm. Consider compressors of the Lempel-Ziv family, 
which use dynamic dictionaries built on the fly as a string x is analyzed: it would not be fair to 
compare the compression of x achieved through such a dictionary to the cross-compression obtained 
by compressing x with the full, static dictionary extracted by y. To reach our goal we want instead to 
simulate the behaviour of a real compressor which processes in parallel x and y, exploiting on the fly 
the information and redundancies contained in y to compress x. Such cross-compressor would keep 
relative entropy’s key idea of encoding the outcomes of a variable X using a code which is optimal for 
another random variable Y, and is implemented as follows. 

Consider two strings x and y, with ny =|| . Suppose to have n available dictionaries Dic(y,i), with 
ni ...0= , extracted from n substrings iz of y of length i, so that ii yyyz ..10= . A representation 

*)( yxC ⊕  of x, of initial length |x|, is then computed as in the pseudo-code listed in Figure 1. Its 
length )( yxC ⊕  represents then the size of x compressed by the dictionary generated from y, if a 
parallel processing of x and y is simulated.  

It is possible to create a unique dictionary for a string y as a hash table containing couples  
(key, value), where key is the position of y in which the pattern occurs the first time, and value contains 
the full pattern. Then *)( yxC ⊕  can be computed by matching the patterns in x with the portions of 
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the dictionary of y with key < p, where p is the actual position in x. So, for two strings x and y with 
|||| yx < , only the first |x| elements of y will be considered.  

Figure 1. Pseudo-code to generate an approximation )( yxC ⊕  of the cross-complexity 
)( yxK ⊕  between two strings x and y. 

 
 

We report in Tables 1 and 2 a practical example. Consider two ASCII-coded strings 
A = {abcabcabcabc} and B = {abababababab}. By applying the LZW algorithm, we extract and use two 
dictionaries Dict(A) and Dict(B) to compress A and B into two strings *A and *B of length C(A) and 
C(B), respectively. By applying the pseudo-code in Figure 1 we compute *)( BA⊕  and *)( AB⊕ , of 
lengths )( BAC ⊕  and )( ABC ⊕ . 

Table 1. An example of cross-compression. Extracted dictionaries and compressed 
versions of A and B, plus cross-compressions between A and B, computed with the 
algorithm reported in Figure 1. 

A )(ADict *A *)( BA⊕ B )(BDict *B *)( AB⊕
a    a    
b ab = <256> a a b ab = <256> A a 
c bc = <257> b b a ba = <257> B b 
a ca = <258> c c b    
b    a aba = <258> <256> <256> 
c abc = <259> <256> <256> b    
a   c a   <256> 
b cab = <260> <258>  b abab = <259> <258>  
c   <256> a   <256> 
a bca = <261> <257> c b bab = <260> <257>  
b    a   <256> 
c   <256> b    
  <259> c   <260> <256> 
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Table 2. Estimated complexities and cross-complexities for the sample strings A and B of 
Table 1. As A and B share common patterns, compression is achieved, and it is more 
effective when B is expressed in terms of A due to the fact that A contains all the relevant 
patterns within B. 

 Symbols Bits per Symbol Size in Bits 
A 12 8 96 
B 12 8 96 
*A  7 9 63 
*B  6 9 54 

*)( BA⊕  9 9 81 
*)( AB⊕  7 9 63 

 
Roughly, the computable cross-complexity )||( yxC  relates to the computable conditional 

complexity )|( yxC  by not including the items from the dictionary in the representation of x rather 
than by including them, and by considering only subsets of the dictionary extracted from y, gradually 
expanding into the full dictionary of y. 

4.2. Computable Algorithmic Relative Complexity 

The computable relative complexity of a string x towards another string y is the length of x 
represented through the dictionary of a set of substrings of y, minus the length of the compressed 
version of x. So it is the excess in length of representing x using y over just representing x: 

)()()||( xCyxCyxC −⊕=  (16)

with )( yxC ⊕ computed as described in the previous section and C(x) representing the length of x 
after being compressed by the LZW algorithm [17]. Finally, we introduce the approximated normalized 
relative complexity )||( yxC : 

)(||
)()()||(

xCx
xCyxCyxC

−
−⊕=  (17)

The distance (14) ranges from 0 to e+1 , representing respectively maximum and minimum 
similarity between x and y. The term of e is due to (10), as )( yxC ⊕ can be greater than |x|, and it is of 
the order of O(log|x|). 

4.3. Symmetric Relative Complexity 

Kullback and Leibler themselves define their distance in a symmetric way: 
),(),(),( XYDYXDYXDKL +=  [15]. We define a symmetric version of (17) as: 

)||(
2
1)||(

2
1)||( xyCyxCyxCS +=  (18)

In our normalized equation we divide both terms by 2 to keep the values between 0 and 1. For the 
strings A and B considered in Tables 1 and 2, we obtain the following estimations: 54.0)||( =BAC , 
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21.0)||( =ABC , 38.0)||( =BACS . So B can be better expressed in terms of A than vice versa, and overall 

the strings are similar. 

5. Applications 

Even if our main concern is not the performance of the introduced distance measures, we outline 
practical application examples in order to show the consistence of the introduced divergence, and 
compare it to similar existing methods. In the following experiments a preliminary step of dividing the 
strings into a set of words has been performed [18], on the basis of which the dictionary extractions 
have been more easily carried out.  

5.1. Application to Authorship Attribution 

The problem of automatically recognizing the author of a text is given. In the following experiment 
the same procedure used to test the relative entropy in [6], and a dataset as close as possible, have been 
adopted: the collection comprises 90 texts of 11 known Italian authors spanning the XIII-XXth 
centuries [19]. Each text iT  was used as an unknown text against the rest of the database, and assigned 
to the author of its closest object kT , for which )||( kis TTC  was minimal. Overall accuracy was then 
computed as the percentage of texts assigned to their correct authors. The results, reported in Table 3, 
show that the correct author )( iTA  for each iT  has been found in 97.8%, of the cases, with Table 4 
reporting a comparison with other compression-based methods. The relative complexity yields better 
results than the relative entropy by Benedetto et al., as (15) does not have any limitation on the size of 
the strings to be analyzed, and takes into account the full information content of the objects.  

Table 3. Authorship attribution on the basis of the relative complexity between texts. 
Overall accuracy is 97.8%. The authors’ names: Dante Alighieri, Gabriele D’Annunzio, 
Grazia Deledda, Antonio Fogazzaro, Francesco Guicciardini, Niccoló Machiavelli, 
Alessandro Manzoni, Luigi Pirandello, Emilio Salgari, Italo Svevo, Giovanni Verga. 

Author Texts Successes 
Dante Alighieri 8 8 

D’Annunzio 4 4 
Deledda 15 15 

Fogazzaro 5 3 
Guicciardini 6 6 
Machiavelli 12 12 

Manzoni 4 4 
Pirandello 11 11 

Salgari 11 11 
Svevo 5 5 
Verga 9 9 

TOTAL 90 88 



Entropy 2011, 13              
 

 

912

Table 4. Authorship attribution. Comparison with other compression-based methods. 

Method Accuracy (%) 
)||( yxC s  97.8

Relative Entropy 93.3 
NCD (zlib) 94.4 

NCD (bzip2) 93.3 
NCD (blocksort) 96.7 

Ziv-Merhav 95.4 
 
The NCD tested with three different compressors gave slightly inferior results, along with the  

Ziv-Merhav method to estimate the relative entropy between two strings [20]. Only two texts by 
Antonio Fogazzaro are incorrectly assigned to Grazia Deledda. These errors may be anyhow justified, 
as Deledda’s strongest influences are Fogazzaro and Giovanni Verga [21]. According to the 
classification results, Fogazzaro seems to have had a stronger influence on Deledda than Verga.  

5.2. Satellite Images Classification 

In a second experiment we classified a labelled satellite images dataset, containing 600 optical 
image subsets of 64 × 64 size acquired by the SPOT 5 satellite. The dataset has been divided into six 
classes (clouds, sea, desert, city, forest and fields) and split into 200 training images and 400 test 
images. As a first step, the images have been encoded into strings, as in [18], by traversing them in 
raster order; then all distances between training and test images have been computed by applying (17); 
finally, each subset was assigned to the class from which the average distance was minimal. Results 
reported in Table 5 show an overall satisfactory performance, achieved considering only the horizontal 
information within the image subsets. The use of NCD with an image compressor (JPEG2000), and to 
a minor degree with linear compression (zlib), yields superior results anyway [22].  

Table 5. Accuracy for satellite images classification (%) using the relative complexity as 
distance measure, and comparison to NCD using both a general and a specialized 
compressor. A good performance is reached for all classes except for the class fields, 
confused with city and desert. 

Class )||( yxC NCD(zlib) NCD(Jpg2000) 
Clouds 97 95 90.9 

Sea 89.5 90 92.6 
Desert 85 87 88 
City 97 98.5 100 

Forest 100 100 97 
Fields 44.5 71.3 91 

Average 85.5 90.3 93.3 

6. Conclusions

Two new concepts in algorithmic information theory have been introduced: cross-complexity and 
relative complexity, both defined for any two arbitrary finite strings. Key properties of the classical 
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information theory concepts of cross-entropy and relative entropy hold for these definitions. Due to 
their incomputability, suitable approximations through data compression have been derived, enabling 
tests on real data, performed and against similar existing methods. The computable relative complexity 
can be considered as an expansion of the relation illustrated in [4] between relative entropy and static 
encoders, extended to dynamic encoding for the general case of two isolated objects. 

The introduced approximation, in its actual implementation, exhibits some drawbacks. Firstly, it 
requires greater computational resources and cannot be computed by simply compressing a file, as 
with the NCD. Secondly, it needs a preceding first step of encoding the data into strings, whereas 
distance measures as the NCD may be applied directly using any compressor. This work does not aim 
then at outperforming existing methods in the field, but at expanding the relations between classical 
and algorithmic information theory. 
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