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Abstract In this paper we compare state-of-the-art fluid motion estimation algorithms with respect to the
application to opaque flow images, such as Particle Image Velocimetry (PIV), Optical Flow and specialized
variants of these. In order to compare the outcome of the algorithms we perform turbulent jet experiments
with different Reynolds numbers to generate opaque images with a known average flow field as a reference to
estimate the errors. Thereafter the algorithms are used to estimate the velocity of a submerged oil/gas plume
that was recorded by an observation camera. We will show that the estimates strongly depend on the choice
of algorithm, especially for field test images where cloud-like image structures are the only information to
retrieve the motion.

1. Introduction
Todays image motion algorithms in fluid dynamics are highly developed and accurate down to veloc-
ities of fractions of a pixel per frame. This is due to the fact that the algorithms are extremely tuned
to deal with a certain type of images that are provided by fluid experimentalists. Especially Particle
Image Velocimetry (PIV) and the corresponding images (Okamoto et al, 2000) are strongly coupled in
a way that the algorithm produces less accurate results when it is applied to “non-ideal” images like
opaque images with large and mostly smooth intensity structures. In field test situation it is usually
not possible to set up the visualization in such a way that it suits the motion estimation algorithm.
Examples are satellite images of cloud motion (Corpetti et al, 2002) or the motion of people around
obstacles (Corpetti and Courty, 2007). But also in many laboratory or field measurement setups it is
sometimes hard to visualize the flow in order to be properly processed by motion estimators. Since
mostly particles are used to render the flow visible, investigators run into troubles if the measurement
section is too large because the particle size is fixed (Bosbach et al, 2009). On the other hand, if the
area of interest is too small (micro fluidic), the particles might interfere with the flow characteristics
and other tracers have to be used Garbe et al (2008).
The deficiency of not knowing which motion algorithm performs best on what images became evident
after the oil rig accident in the Gulf of Mexico in April 2010 which led to the loss of the Deepwater
Horizon rig and severed the drill pipe at the sea floor. In the weeks following the incident streaming
video sequences of the failure site was provided by subsea remotely operated vehicles (ROV) and sub-
sequently analyzed by numerous investigators in an effort to estimate oil release rates. It turned out
that this is by far a more difficult task then previously expected since standard motion estimation tech-
niques have difficulties to yield trustworthy results. Several researchers came up with estimates, that
differ extremely and also had large confidence intervals (Flow Rate Technical Group, 2010; Crone,
2010). The aim of the present work is to compare the most prominent motion algorithms with respect
to their accuracy and deficiencies on fluid motion images similar to the oil spill images.
In order to be able quantitatively compare the motion algorithms a reference data set with known
flow properties is required. Plenty of such data sets exist visualizing the motion with particles but
very few with image structures resembling those of the oil/gas mixture issuing from the failed oil rig
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site (Figure 1). Measurements by Crone et al (2008) and Savaş (2011) provide comparable images
but do not match our requirements in terms of spatial resolution, temporal resolution and existence of
distinctly traceable flow structures. Therefore a laboratory experiment satisfying these conditions was
conducted to provide long image sequences of a known flow field. The experimental setup and execu-
tion is described in the following section. The image sequences are then processed by an assortment
of motion algorithms that are briefly explained in the section 3. Since the flow characteristics of the
experiment are known, the accuracy of the respective algorithms can be estimated. To demonstrate
the suitability of these algorithms for flow estimation in a real-world situation the second part of this
paper presents results obtained by processing an image sequence of a subsea oil/gas plume provided
by an ROV.

Tab. 1. Sample image from the ROV observation video pic-
turing the failure site with the oil spill

configuration 1 2 3

volume flow j [l/h] 250 300 400

exit velocity U0 [m/s] 1.28 1.54 2.05

Reynolds number Re [−] 10610 12733 16977

max. displacement dmax [mm] 0.64 0.77 1.027

max. displacement dmax [px] 6.50 7.79 10.39

Tab. 2. Configuration table of the measurements

2. Opaque flow image sequences
2.1 Previous experiments
Given that dye visualization sequences are difficult to process in comparison to particle based visual-
izations (e.g. PIV, particle tracking), little effort has been invested in the past in producing adequate
experimental images. To the knowledge of the authors there are only a few investigations dealing
with opaque plume or jet flows. Noteworthy is the work by Crone Crone et al (2008) who attempted
to estimate the outflow of black smokers which are hydrothermal vents found on the ocean seabed.
For this purpose he acquired image sequences of a buoyant jet experiment at Reynolds numbers
(2, 900 ≤ Re ≤ 6, 700). The visualization was done by graphite particles that were illuminated by
halogen lamps.
More recently, researchers paid attention to the task of estimating the volume outflow of the Deep-
water Horizon failure site. Crone applied his estimation technique to video sequences provided by
the ROVs (Crone et al, 2008). As part of the Deepwater Horizon incident investigation the Flow Rate
Technical Group (FRTG) was formed and assigned with the task of surveying numerous approaches
in assessing the oil discharge rates from the failure site (McNutt et al, 2011). In this context Savaş
performed several jet experiments that used dye to visualize the jet (32, 000 ≤ Re ≤ 223, 000) (Savaş,
2011). The dye was injected into the jet fluid and mixed homogeneously prior to discharge from the
jet nozzle. This led to the absence of distinctly visible dye structures within the flow as it exits the
nozzle. On the other hand it is sharply bounded towards the transparent fluid surrounding the jet. This
homogeneity limited the velocity estimation to tracking of the interface. Dye features in the jet were
tracked manually.
None of these two experimental data sets match the requirements of the present investigation be-
cause on the one side Crone’s data is of limited spatial resolution while Savaş’ data does not allow
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a dense velocity field estimation across the entire jet. Consequently, for our algorithmic comparison
we conducted specific laboratory experiments to produce adequate image sequences.

2.2 Laboratory experiment
A water jet was introduced vertically into a water basin using a nozzle of 8.3 mm diameter (Fig. 1).
The transparent acrylic glass water tank was sufficiently large (1.3m× 0.7m× 0.2m) to maintain an
undisturbed jet profile up to a downstream distance of 30D. The flow was visualized by injection of
a blue dye solution (Patent Blue V, 1.5 g/l) near the nozzle. This way the dye was not entirely mixed
prior to discharge from the nozzle which results in traceable dye structures throughout the entire jet
(Fig. 2). Three jet configurations were measured (see table 2).
Since the jet is highly turbulent with the flow structures evolving quite rapidly, images were acquired
with a high speed camera (PCO GmbH, DIMAX Color) at a frame rate of 2000 Hz and a spatial
resolution of 2016 × 1092 pixels. The lens was a Nikkor 90 mm which provided a sufficiently large
field of view. Another benefit of this camera is its high sensitivity and large dynamic range of 12
bits per color channel. Six halogen lamps and an optical diffuser were used to produce a uniform
background illumination. The lamps were operated with a constant current power source to avoid
intensity variations through 50 Hz AC line power.
A momentum diffuser was positioned in the lower part of the basin to enforce dissipation of turbulent
structures and prevent the onset of recirculation within the tank. The jet was operated in a continuous
fashion while the dye was added just prior to each measurement. The size of the water tank was
sufficient to measure 1 min before the dye circulated back to the nozzle. To achieve convergence of
higher order statistics the the camera was set to acquire a maximum number of images (11642) at the
selected resolution which corresponds to about 5.8 sec.
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Fig. 1. Scheme of the laboratory experiment Fig. 2. Image example from the recorded data

3. Methods
Prior to the brief description of the algorithms, we give account of our notation to avoid misconcep-
tions and to simplify the equations. In the following, Ω := {(xi, yi) | i = 1 . . .M} denotes the discrete
spatial domain of the image, which means it is the set that includes allM pixel positions of the image.
The images are functions defined on Ω and the discrete temporal domain T := {tj | j = 1 . . . N} that
map onto the real numbers R. For better readability we omit the temporal variable ti in the arguments
and indicate the time dependency by an index Ii(x, y) := I(x, y, ti). Using this notation, all algo-
rithms can be written rather simple. Since the aim is to determine the average flow field ū, we present
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algorithms that include the entire image sequence for the estimation. Since the velocity field ū equals
the displacement field d̄ up to the constant ∆t, we use d̄ as the desired solution in the algorithms to
avoid unnecessary confusion caused by additional variables.

3.1 Minimum Quadratic Difference (MQD)
The fundamental assumption of basic motion estimation on images is that pixel intensity changes are
only caused by their motion. Thus the image intensity can be considered a conserved quantity which
means that the accumulated pixel intensity over any two images Ii, Ij of the sequence is constant:∑

Ω
Ii =

∑
Ω
Ij . Therefore, the displacement field d(x) can be recovered by reversing the distortion

of the motion in the first place. We need a mathematical norm to quantify the degree of matching
between two images. Common metrics are the mean squared error (MSE) or the sum of squared
errors (SSE) that are frequently used in regression analysis. Due to noise and a simplistic dynamical
model, we can not expect to match both images perfectly by distorting one of them. Hence, we try to
find the displacement field d(x) that minimizes the SSE.

d̄MQD(x) =
1

N − 1

N−1∑
i=1

arg min
di

∑
Ω

ω(x) [Ii(x)− Ii+1(x− di)]2 (1)

This approach was introduced by Gui and Merzkirch (1996) for particle images in fluid dynamics,
but was named minimum quadratic differences (MQD). This parameter estimation problem cannot be
solved for each pixel since there are two unknowns (u, v) and only one equation (1) per pixel. The
problem can be solved uniquely by imposing a second constraint. Often, the assumption of identical
inherent motion in a local neighborhood is such a constraint that allows to pool the motion constraint.
This leads to an overdetermined system of equations. Practically, one motion estimate for a small
neighborhood around x is estimated. The neighborhood is defined by a windowing function ω. In the
simplest case ω is a boxcar function centered around x. More general it can be any positive function
with

∑
Ω
ω(x) = 1 (Astarita, 2007).

We want to point out, that this approach is the starting point of other motion estimation algorithms.
Cross correlation techniques can be derived by expanding the brackets and neglecting some terms.
Optical flow can be derived by performing a Taylor approximation around small displacements d(x).
The benefits of these other techniques are mainly for practical reasons, since they lead to efficient
algorithms to find the sought solution.

3.2 Cross correlation (CC)
The most commonly used algorithm in experimental fluid dynamics is based on cross correlation of
image patches. The foremost technique is Particle Image Velocimetry (PIV) (Raffel et al, 2007). It is
meant to deal with flows that are visualized by small particles whose motion can be used to deduce
the motion of the fluid flow. A unique matching of individual particles between frames is not possible.
Equivalent to MQD the average displacement field d̄ can be approximated by estimating the mean ve-
locity of a small local neighborhood using the weighting function ω which contains multiple particles
(Willert and Gharib, 1991). However, this corresponds to a spatial averaging and thus decreases the
spatial resolution. The displacement d(x) is found by searching for the best correlation with respect to
a certain shift of one image patch against the other. Fitting methods help to achieve spatial resolutions
up to fractions of a pixel.
There are several approaches to estimate an average velocity field (Meinhart et al, 2000). The most
common approach is to estimate the instantaneous motion from two consecutive images and to aver-
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age the velocity fields subsequently. This method can be formulated as follows:

d̄CC =
1

N − 1

N−1∑
i=1

arg max
di

∑
Ω ω(x)Ii(x)Ii+1(x− di)√∑

Ω ω(x)I2
i (x)

∑
Ω ω(x)I2

i+1(x− di)
(2)

It should be noted that for correlation based techniques, most often the Fourier transform is used to
reduce the computational effort. Another benefit is that the patches in both images can be equally
large. This transform is accompanied by a periodic repetition of the image itself beyond the borders.
As a consequence, both factors in the denominator are independent of di and are therefore constants
which can be easily calculated. A way to circumvent the induced errors is to perform direct correla-
tions (McKenna and McGillis, 2002) or use multiple Fourier transforms (Ronneberger et al, 1998).
This becomes especially apparent for small neighborhoods (| supp(w)| is small).
However, Meinhart et al (2000) showed that amongst the three averaging method they investigated,
vector field averaging is inferior with respect to accuracy and robustness. The next method describes
the averaging, that performed best according to them.

3.3 Cross correlation averaging (CCA) and Ensemble Minimum Quadratic Difference (EMQD)
An alternative method to estimate the average velocity is cross correlation averaging (CCA) (Mein-
hart et al, 2000) which averages the individual correlations before detecting the displacement as in-
dicated in equation 3. Merely the minimization and the summation over the images are switched,
which makes a big difference, since arg max is nonlinear. The advantage over the previous method
in equation 2 is that no information is discarded before the maximization. This way it is more robust
against erroneous estimates since entire correlation are averaged rather than just the positions of the
maximum.

d̄CCA = arg max
d

N−1∑
i=1

∑
Ω ω(x)Ii(x)Ii+1(x− d)√∑

Ω ω(x)I2
i (x)

∑
Ω ω(x)I2

i+1(x− d)
(3)

Instead of determining multiple displacement fields, this algorithm provides a single result which is
the best match to the entire sequence. In the same manner MQD can be transferred to an ensemble
averaging method (EMQD).

d̄EMQD(x) = arg min
d

N−1∑
i=1

∑
Ω

ω(x) [Ii(x)− Ii+1(x− d)]2 (4)

3.4 Pixel matching (PM)
This method is basically a two-point spatio-temporal correlation. In contrast to the two previous
methods, the averaging is not done in the spatial dimension but in the temporal dimension. The
advantage is that there is no loss of spatial resolution. Even though there might be no particle (or
distinct image feature) at all locations in the individual images at all time steps, the temporal averaging
can make up for this because once in a while particles will pass by.

d̄PM = arg max
d

∑N−1
i=1 Îi(x)Îi+1(x− d)√∑N−1

i=1 Î2
i (x)

∑N−1
i=1 Î2

i+1(x− d)
(5)

In order to simplify the equation we introduced Îi(x) := Ii(x)−
∑N−1

i=1
Ii(x) which is the temporal

intensity fluctuation of the pixel at location x. For correctness we have to mention, that the summation
for Îi+1(x) starts at i = 2 and ends at N . This way we deal with a normalized cross correlation and
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a value range between [−1, 1]. This approach was proposed by Delnoij et al (1999) and later referred
to as single pixel ensemble correlation by Westerweel et al (2004). The advantage of having a dense
motion estimation comes with the drawback of storing spatio-temporal dependencies for each pixel
with a set of neighboring pixels and also a slow brute-force algorithm to calculate it.

3.5 Time-Matching (TM)
This algorithm is the equivalent to pixel matching (PM) but in the temporal domain. The time series
of two pixels are cross correlated to obtain the average time lag δt. By setting the distance of two
pixels δx a priori and knowing the separation time ∆t between the image frames it is possible to
determine the average velocity.

d̄TM = δx∆t

[
arg max

δt

N−1∑
i=1

I(x, t)I(x+ δx, t+ δt)dt

]−1

(6)

This method is analogue to multiple hot-wire measurements, where the temporal signals are correlated
in order to determine the dependency.

3.6 Optical Flow (OF)
Optical flow is probably the most prominent gradient based method for motion estimation (Barron
et al, 1994)(Beauchemin and Barron, 1995). It originates from computer vision applications where
for instance the motion of cars or persons has to be estimated from surveillance sequences. More
recently it has found application in fluid dynamics (Quénot et al, 1998)(Corpetti et al, 2002)(Corpetti
et al, 2005). The most prominent optical flow algorithm was proposed by Horn and Schunck (1981).
Optical flow can be derived from the MQD cost functional by Taylor approximation which leads to a
differential conservation equation of the pixel intensity (brightness constancy constraint).

d̄OF =
∆t

N − 1

N−1∑
i=1

arg min
ui

{∑
Ω

[
uTi ∇Ii + ∂tIi

]2
+
α

2

∑
Ω

[∇ui]2
}

(7)

In order to render the problem solvable, Horn and Schunck (1981) added a regularizing term, which
controls the smoothness of the solution. The parameter α balances between the data and regulariz-
ing term. Consequently, large motion variations between neighboring pixels are penalized which is
reasonable for most fluid dynamics applications.

3.7 Ensemble Optical Flow (EOF)
Similar to cross correlation and cross correlation averaging it is possible to merge the temporal aver-
aging into the solution finding process. Instead of estimating many instantaneous velocity fields via
optical flow, the task is to find one velocity field that is the best fit to the entire image sequence. This
concept was already proposed by Staack and Garbe (2011) and is similar to the optical flow algorithm
by Lucas and Kanade (1981) with the difference that the temporal averaging does not reduce the
spatial resolution. It is very efficient to evaluate since only pairwise correlations of image gradients
(∇I, ∂tI) have to be calculated. Also, the algorithm allows parallelization since each pixel can be
treated independently (for α = 0).

d̄EOF = arg min
u

{∑
Ω

N−1∑
i=1

[
uT∇Ii + ∂tIi

]2
+
α

2

∑
Ω

[∇u]2
}

(8)

Comparable to Lucas and Kanade (1981), validation measures exist that mainly originate from matrix
analysis. They make it feasible to extract the quality of motion information in each pixel. This is a
benefit over optical flow which lacks a reliable confidence indicator.
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4. Results of jet flow
The main challenge of analyzing opaque flows is that the actual centerline velocity of the jet is oc-
cluded by vortical structures that appear randomly. The velocity of all visualized structures are inte-
grated over a pixel’s line of sight. As a consequence, average velocity algorithms as proposed above,
are not an adequate choice to determine the centerline velocity. In any case, the velocity will be un-
derestimated since the average optical penetration depth into the opaque jet is not the centerline but
somewhere off-axis. However, if the optical penetration depth would be known exactly, one could
connect this information through an optimization approach to theoretical jet models in order to es-
timate the centerline velocity. The most accurate estimate we achieve is where hardly any vortical
structures (Kelvin-Helmholtz instabilities) appear. The region close to the nozzle suits this require-
ment best. Therefore, we expect the algorithms to achieve their best estimate in the near-field of the
jet. This is precisely what becomes apparent throughout the results of all motion estimators.

4.1 Minimum Quadratic Difference and Ensemble Minimum Quadratic Difference
The two figures 3 and 4 show the extracted centerline velocity plot of both algorithms. It can be clearly
seen, that the interrogation window produces a smoothing at the nozzle which results in a decay of
the estimated velocity. EMQD on the other hand nicely reproduces the trend up to the orifice. The
same averaging effect is responsible for the lower maximal velocity (≈ 80%) for MQD compared
to EMQD (≈ 90%). The missing spatial averaging for EMQD is the reason for the rugged profile.
However, the normalized velocity profiles match nicely for both methods.
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Fig. 3. Centerline profiles of the streamline velocity esti-
mated by MQD for 16× 8 pixel interrogation window
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Fig. 4. Centerline profiles of the streamline velocity esti-
mated by EMQD for 16× 8 pixel interrogation window

4.2 Cross correlation and Cross correlation averaging
The jet images were processed by a state-of-the-art PIV software in order to estimate the average
velocity field. Standard iterative multigrid with implicit image deformation was applied to yield a
final interrogation window size of 32× 16. In this case the standard evaluation method is not capable
of properly estimating the outflow velocity (≈ 60 − 70%). The reason is a combination of spatial
averaging and temporal averaging which is not robust. Similar to figure 3 PIV exhibits the effect of
a decaying velocity towards the nozzle which also caused by the finite sized interrogation window.
Results for Cross correlation averaging (CCA) are not shown as it yielded very unreliable results
with strong pixel-locking artifacts. The reasons that are still being investigated especially on the
background that this technique yielded acceptable data for the oil plume sequence in section 5.
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4.3 Pixel matching
This method is actually a variant of single pixel ensemble correlation (Westerweel et al, 2004) and
should yield similar results to the cross correlation techniques (see figure 6). This algorithm can be
easily parallelized as it acts on every pixel individually without influence by the neighboring pixels.
This disadvantage is that the result is rather noisy but the trend is clearly visible. Subsequent spatial
smoothing (similar to the interrogation window) improves the result at the cost of reduced spatial
resolution (figure 7). The maximal estimated velocity is around 90% and due to the single-pixel
method there is no velocity decay towards the nozzle.

4.4 Time matching
If the pixels on the centerline are plotted against their temporal development (x-axis), all moving
structures generate specific patterns according to their velocity (see figure 8). The faster a structure
is, the steeper is the orientation of the patterns in this plot. Moving away from the nozzle, the slope
of these patterns decreases. The slope is directly related to the velocity of the structures moving in
the image. In order to determine the slope, we tested for different δx starting from neighboring pixel
rows to two rows with 29 rows in between. The two rows were cross correlated in order to determine
the best time lag. The data was upsampled by a factor of 10 to enforce a smooth maximum and a
successful Gaussian fit of the peak. For small δx ≤ 5 the maximum is too close to the border to
allow accurate fitting. Therefore, we selected δx = 15 to estimate the velocity. Since the velocity
profile is smooth the velocity estimate with such a large δx does not significantly affect the result in
the far-field. However, in the near-field the choice of δx is too small because the displacement dmax

is of the same order and the Gaussian fit is not working properly. Therefore, at the nozzle exit the
velocity is overestimated by 10% to 20%, depending on the exit velocity of the experiment.

4.5 Optical Flow
The most well-known optical flow method of Horn and Schunck (1981) was applied to determine
instantaneous velocity field for the first 5000 images of each measurement. The number of images
was reduced because convergence was already achieved but also to spare time and disk space. The
balancing parameter α has to be chosen in such a way that it renders the mathematical task uniquely
solvable but does not change the problem itself by much. We found α = 0.0002 an optimal choice and
the averaged velocity profiles are shown in figure 10. It can be clearly be seen that the exit velocity is
not reached at all. The maximal velocity at best reaches 60% of the reference velocity U0. The effect
of spatial regularization can be seen in the smoothly bent velocity profile close to the nozzle. The
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Fig. 5. Centerline profiles of the streamline velocity estimated by CC
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Fig. 6. Centerline profiles of the streamline velocity esti-
mated by PM
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Fig. 7. Centerline profiles of the streamline velocity es-
timated by PM smooth by a boxcar function with 16 × 8
pixel support

Fig. 8. Space-time plot of all pixels on the centerline axis
of the jet
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Fig. 9. Centerline profiles of the streamline velocity esti-
mated by TM with δx = 15 px

algorithm uses a smooth profile to connect zero velocity of the stationary nozzle with the maximal
velocity in the near-field of the jet.
The calculated instantaneous velocity fields were used to produce a velocity field of the maximal
velocities that appear in the entire sequence (Maximal Optical Flow, MOF). The top lines in figure 10
show the MOF results which are close to the expected theoretical velocity profile of a turbulent jet. A
constant potential core velocity (x = 0..5D) is followed by decaying profile (in theory ∝ 1/x). The
potential core velocity fits the exit velocity of the jet with a slight overshoot.

4.6 Ensemble Optical Flow
Rather than averaging instantaneous velocity fields, this method makes use of the entire images se-
quence in order to find an optimal velocity field that suits consecutive image pairs best. The algorithm
can produce estimates for α = 0 because of the temporal averaging. It is related to the Time-Matching
(TM) algorithm because it is based on the temporal aspect of intensity changes at every pixel. Con-
sequently, the results look similar to TM in figure 9. There is an overestimation of up to 20% close to
the nozzle. Measurement 2 is apparently different to the others because of the extremely noisy pro-
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Fig. 10. Centerline profiles of the streamline velocity esti-
mated by OF and MOF with α = 0.0002
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Fig. 11. Centerline profiles of the streamline velocity esti-
mated by EOF with α = 0

file. EOF has problems in reproducing the velocity in the far-field because of the poor signal to noise
ratio. The variations due to noise are of the same order as the gradients of the image structures. Here,
spatial averaging could overcome this deficiency but was not applied yet. The accuracy of this tech-
nique is highly dependent on the correlation length of the image structures. According to Staack and
Garbe (2011) one can determine the error by knowing the correlation length. Besides, the algorithm
is extremely fast because it treats all pixels individually and computes just statistical moments.

5. Results of oil plume analysis
5.1 Image stabilization
Prior to motion estimation processing image stabilization was necessary because the ROV was contin-
uously swaying due to the strong currents at the bottom of the ocean. For this purpose we used SIFT
(Lowe, 1999), an scale and translation-invariant algorithm that detects feature points in two images
and aligns them using image transformation. In particular we have chosen the corners of the nozzle
as feature points which allowed to stabilize the position and the scaling of 2 min of streaming video
(3000 frames). The effect can clearly be seen in figure 12, where the left image is the average im-
age without correction and the right image with SIFT correction. The fact that the image sequences
were acquired by a consumer grade camera in the POV and were made available as a compressed
image stream led to difficulties that the algorithms have to deal with. The images contain also motion
blur because of the long exposure time and the frame rate is also quite low, so that turbulent motion
changes the intensity structures rapidly.

5.2 Centerline velocity Uc
The presented algorithms were applied to estimate the streamwise velocity at the centerline of the
oil plume sequence. Figure 14 shows the results of all algorithms and figure 13 the velocity along
the center of the visible jet. Velocities of around 15 pixels per frame could be observed by simple
(visual) examination of the images but due to the complex upstream conditions the issuing flow is
fully turbulent with both high speed and low speed structures. Apparently the algorithms perform
very different for such difficult images. The exit velocity ranges from 4 px/frame to 10 px/frame depending
on the algorithm. However, there are some similarities in the pattern of the motion estimate. In many
cases there is high velocity estimated in the center and on both edges of the jet (14(a), 14(b), 14(f)
and 14(g) ) but for other algorithms this feature is not observable. Assuming MOF performs equally
well on these images as in the turbulent jet, we can determine the maximal velocity that appears at
each pixel (figure 14(i)). The velocity is quite constant at about 25 px/frame at the center of the jet.
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Fig. 12. Shown on the left is the uncorrected averaged
image of the entire sequence and on the right the SIFT
corrected average image.
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Fig. 13. Centerline velocity Uc of the oilspill jet deter-
mined by the presented algorithms

6. Discussion
The presented material shows that the estimation of velocity from opaque images is a challenging task.
Depending on the algorithm the results differ by up to a factor of 2 for the oil plume image sequence.
The general trend and shape of the velocity profile is comparable for all of the investigated methods
but the magnitude varies significantly. On the other hand the results of the laboratory experiment
are in better agreement with each other. In general, ensemble averaging methods perform better than
standard averaging methods which was already observed for particle images (Meinhart et al, 2000).
With respect to the laboratory experiment, the differences within these two groups are small. As a
conclusion we can state that in the context of non-standard fluid dynamics images, the result very
much depends on the choice of evaluation method. Any results and from such images have to be
interpreted with caution. It has to be kept in mind that all of the described techniques attempt to
capture the spatial and temporal motion of distinct structures within the image. For the turbulent jet
experiment this included the movement of the structures on the boundary as well as on the interior of
the jet. In contrast the oil/gas plume sequences mainly visualize the exterior motion of the oil/water
interface and occlude the interior of the jet. With assumptions on the jet profile it nonetheless is
possible to estimate the volume flow rate from the interface motion.
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