
A Modular Architecture for an Interactive Real-Time Simulation and Training
Environment for Satellite On-Orbit Servicing

Robin Wolff*, Carsten Preusche§ and Andreas Gerndt*

*Simulation and Software Technology
German Aerospace Center (DLR), Braunschweig, Germany

robin.wolff@dlr.de, andreas.gerndt@dlr.de
§Institute of Robotics and Mechatronics

German Aerospace Center (DLR), Oberpfaffenhofen-Wessling, Germany
carsten.preusche@dlr.de

Abstract - This paper outlines the development of a
real-time interactive application for the analysis, training
and programming of on-orbit servicing tasks within a
virtual reality environment. The main challenges put on
the system are the real-time simulation of the realistic
dynamic and kinematic behavior of satellite components
and additionally integrate interaction through a
bimanual haptic interface, as well as enable tele-
operation of a robot. We give an overview of the
application, describe the real-time challenges and
outline our approach and proposed system structure.

Keywords - Real-time Applications; Virtual Reality;

Physics Simulation; Haptics; Tele-robotics;

1. Introduction
On-orbit servicing (OOS) is an interdisciplinary field

with increasing importance for the space industry. Although
engineers take extensive care when designing and launching
satellites, failures do happen. A survey by Ellery et al. [2]
showed that most failures occur during orbit injection or in
the first year of operation, for example when folding out the
solar panel. As space systems are costly, any failure is
damaging, not only for commercial operators, but also for
research missions. Today, almost no satellite is launched
without insurance to cover for failure. However, not only
failure, but also a limited lifetime and an increasing amount
of space debris are motivations for on-orbit servicing. With
a growing number of satellites orbiting Earth, there is a need
for innovative methods to repair failures, to refuel a satellite
to extend its lifetime, or to remove disabled and adrift
satellites and other unused parts from orbit in a controlled
and cost-effective way.

One of the most famous example of on-orbit servicing is
probably the series of NASA Hubble Space Telescope repair
missions starting in 1993, where astronauts fixed and
replaced parts in several EVAs (extra vehicle activity).

Manned missions like this, however, are both expensive and
put a high risk to the astronauts working outside the
spacecraft. Robotic servicing constitutes an attractive
alternative. The Canada arm has demonstrated successful
operation [5]. Ongoing projects and concepts for robotic
OOS studies include the Deutsche Orbitale Servicing
Mission (DEOS) [23] with the goal to demonstrate the
capturing of an uncooperative spacecraft; and the Orbital
Life Extension Vehicle (OLEV) [24], a commercial project
with the aim to dock on communication satellites and take
over the attitude and orbit control system (AOCS) extending
the satellite’s lifetime. Some service robots work in
automatic operation modes, either pre-programmed or
(semi)-autonomous. In complex maintenance tasks,
however, or in situations where the cause of the failure is
unknown and an investigation is required, the actions cannot
be pre-programmed. In such cases, it is necessary to operate
the service robot manually via a tele-operation interface. The
German Aerospace Center (DLR) already started in 1993 to
study ways and the effects of operating a robot in space from
a ground station in the Robot Technology Experiment
(ROTEX) [10], and later in the Robotic Components
Verification on the ISS (ROKVISS) project [15]. In
ROKVISS, for the first time a force-feedback joystick has
been integrated

Controlling a robot in complex scenarios is not trivial and
usually requires a robot expert or a well trained person.
Analyzing and repairing a failure in a satellite, however, can
only be done by a satellite expert. Hence, for planning and
performing appropriate repair tasks both satellite and robot
experts have to work closely hand in hand. DLR developed a
human-scale bimanual haptic interface [12], enabling natural
robot control with the user’s arms. This interface can be
used to operate a humanoid servicing robot [19] in a way
where the user is able to control the robot’s head and hands
with his/her own head and hands, while seeing the same
view as the robot sees through a head-mounted display
(HMD), displaying the live video of the stereo-camera built
into the robot’s head. The combination of the bimanual
haptic interface and the humanoid servicing robot creates a
tele-presence interface, with which a satellite expert can

2011 15th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications

1550-6525/11 $26.00 © 2011 IEEE

DOI 10.1109/DS-RT.2011.23

72

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/30998507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

control a robot and intuitively perform servicing tasks
without the (direct) help of a robot expert. The setup was
used at the International Aerospace Exhibition - ILA 2010 in
Berlin to demonstrate tele-operation of a service robot in a
number of servicing tasks using a physical test satellite
mock-up, see Fig. 1.

Training, programming and testing the tele-operation of
robots for OOS tasks may be done in physically based test
beds, such as in [1]. This has the advantage that specific
hardware and control software to be used during the mission
can be integrated directly into the test environment. Certain
components or environmental effects, however, have to be
simulated, which can make the setup complex. Moreover,
testing in a physical environment induces the risk of damage
to equipment or even could harm humans. Additionally,
making changes to the mockup is often time consuming and
connected with costs. Virtual reality (VR) offers a cost-
effective alternative for simulation within a flexible and safe
environment, and has been used for simulation and training
in many application areas, such as surgery.

This paper presents VR-OOS, a virtual reality
environment for on-orbit servicing. Our goal is to provide a
multi-modal virtual environment that can be used as a
platform for the analysis, training and programming of on-
orbit servicing tasks, as well as to help to develop and
examine new designs of serviceable satellites and servicing
robots. The environment will be used to train astronauts in
manned servicing missions, as well as to program, and
eventually to remotely operate, service robots in space in
unmanned missions. The challenges are to provide the
accurate real-time simulation of the dynamics of the satellite
components under real conditions, combined with
photorealistic high-resolution rendering of detailed virtual
objects and environmental effects within an immersive,
haptics-enabled virtual environment. The paper presents
work in progress and our approach to implement the
underlying system of the interactive real-time simulation
environment using a distributed architecture.

The paper is organized as follows: the next section
outlines the selected servicing scenarios that will be used to
evaluate the system. Then, an overview of the system
components is given. Section 4 outlines the real-time
challenges put on the system and Section 5 describes the
proposed system architecture. Section 6 discusses
preliminary results and Section 7 closes the paper with a
conclusion.

2. On-Orbit Servicing Scenarios
The repair and maintenance of satellites usually consists

of a number of pre-defined sub-tasks that must be executed
in a certain order. The goal of the proposed simulation
environment is to train the procedure and correct sequence
of actions within various on-orbit servicing tasks. In order to
support the training of a wide range of possible servicing
scenarios, the system must provide a set of basic tasks that
often occur and can be combined to various servicing
scenarios. We selected a number of tasks that would occur in
most servicing scenarios based on common EVAs. These
will be used as benchmark for the future evaluation of our
system.

Remove MLI. As satellites are usually covered by a
multi-layer insulation (MLI) foil, the first action would be to
open the MLI in order to reach the satellite components
underneath. In most cases, the foil will have to be cut using
a knife, scissors or other tools and then pulled open. Some
satellites have their MLI foil attached by Velcro fasteners,
which can be opened and closed.

Loosen and tightening screws. Many parts, such as
modules and covers, are fixed with screws. Thus, a second
task is to loosen screws, and after the main work tighten
them again. This is usually done using a cordless
screwdriver.

Replace a module. A common task will be to replace
electronic parts by exchanging a module. This will be done
using a handle that is inserted into a module like a bayonet
catch. After rotating the inserted handle by 90 degrees, the
module can be pulled out. Inserting a module is done in the
same way.

Flick a switch. Before removing a module, a task will be
to switch off the electronics on the module, and after
inserting a new module to switch it on. This is done via a
normal lever switch.

Take measurements. Finally, a common task is to take
measurements at electronic parts. This task is represented
using a digital voltmeter and touching specific measurement
contacts with the measuring tip.

A milestone of the project is to demonstrate the execution
of these tasks within the virtual environment and compare it
to interacting with a physical mockup. For this evaluation,
the virtual mockup, as seen in Fig. 2 resembles the physical
mockup, seen in the foreground in the right image in Fig. 1,
in size and arrangement of objects.

The scenarios described above comprise the minimum set

Fig. 1. Demonstration of robotic on-orbit servicing using a
tele-presence interface (left) to control a humanoid robot and
manipulate a physical satellite mockup (right).

Fig. 2. Virtual satellite mockup.

73

Fig. 3. Block diagram of the system components and the information flow between them.

of tasks that are planned for the first prototype. The final
version, will have to allow the simulation of arbitrary tasks,
possibly involving the handling of much more complex
mechanisms, such as handling bayonet cable connectors, or
opening covers with lock-spring mechanisms.

3. System Overview
Fig. 3 shows a block diagram of the system components

and the flow of information between them. Fundamental
components are the physics simulation, visualization, as well
as interaction interfaces, which form the base of the virtual
environment. The components haptic control and the robot
control interface provide additional features for force-
feedback and tele-operation, respectively. The following
sections describe the components in more detail.

3.1. Physics Simulation
A key element of the application is the real-time

simulation of the kinematic and dynamic behavior of the
satellite components when manipulated by the user. In the
first stage of the project, we assume that the servicing robot
has already docked to the target satellite, so that the complex
flight dynamics of the flying body dynamics can be
neglected. For the moment, we only concentrate on the
simulation of rigid bodies that make up most of the virtual
satellite and robot components. We extend existing models
with methods and parameters to match our service scenarios.

Apart from the multi body dynamics of the rigid
components of the satellite, an aspect is to simulate the
behavior of a foil for the scenario when opening the MLI.
This involves modeling the dynamics of bending, cutting or
tearing the MLI material.

3.2. Haptic Control
The haptic control component generates the necessary

data for providing haptic feedback to the user via a haptic
device. This includes the detection of collisions between the

haptic interaction point (HIP) and any objects within the
virtual scene, as well as the computation of the resulting
force and torque affecting the HIP. The haptic device
delivers the transformation of the end-effector held in the
hand of the user, which is used for collision detection. In
case the user grasps a virtual object, the complexity of
resolving the chain of forces between the interacting objects
(virtual scene, grasped object, HIP) can be reduced by
attaching the grasped objects with a constant offset to the
HIP and apply the resulting transformation based on the
HIP’s transformation. The resulting force and torque is used
to update manipulated objects in the physics simulation.

The force feedback device we use is a human-scale
bimanual haptic interface [12], similar to the one depicted in
Fig. 4. It is also based on light weight robot (LWR) [11]
arms mounted horizontally on a vertical column. It offers a
working area similar to human arms and matches that of the
humanoid robot “Justin”, described above. For software
development and experiments, we occasionally use a
Phantom Omni from SensAble, which provides only
translational force-feedback and no torque.

3.3. Robot Control
As mentioned above, we intend to simulate the humanoid

service robot “Justin” [19], shown in Fig. 5. It is based on
two LWR arms. These are designed similar to the human

Fig. 4. Bimanual haptic interface [12].

74

arm in its size and working area, aiming at an own weight to
payload ratio of at least 1:1. A robot arm has 7 revolute
joints, each with motor, gear unit, power supply, force and
torque sensors built in. It reaches 0.9 m when fully stretched,
weights 13.5 kg, while it can lift up to 15 kg. The robot
hands are made human-like too with 4 joints each and house
15 motors. The arms and hands are mounted to a torso, also
based on LWR technology, covering a workspace similar to
that of a human. The head accommodates a stereo camera, a
laser-stripe sensor and an inertial measurement unit.

The controller of the robot dynamics is currently
implemented in a number of Simulink modules. For the
simulation, these are accessed via a UDP communication
interface. The robot control reads transformations of either
the haptic device or that of the tracked user, in case
interaction is performed without force-feedback. As output,
it delivers the transformation of the robot parts in form of a
rotation angle of each robot joint, where the joints are
organized in a hierarchical tree and placed at relative
positions in the virtual environment. Alternatively, it can
deliver the absolute location and orientation of joints when
these are organized in a flat hierarchy or a list. This data is
used by the physics simulation to update the rigid bodies
resembling the robot parts.

Data from the robot’s force and torque sensors, as well as
data from the other sensors are fed into the control unit. In
the case where the robot is not connected for tele-operation
but is fully simulated, these sensors have to be simulated in
the form of virtual sensors. In this case, the inertial
measurement unit and the laser-stripe sensor are emulated
within the physics simulation, while the images of the
simulated stereo camera are generated within the
visualization component.

Fig. 5. Humanoid service robot "Justin" [19].

3.4. Visualization
Besides, from training the correct sequence of sub-tasks,

a goal of the simulation environment is to allow the user to
get an awareness of the appearance and arrangement of parts
and tools. Hence, the realistic and high-quality visualization
of the satellite components and the environment are
important factors for the success of a training simulation.
This does not only include the photorealistic rendering of
detailed virtual objects with correct shading and high-
resolution textures, but also the correct representation of the
environmental effects that exist in orbit, such as bright
sunlight and hard shadows.

Being a training and analysis tool, another research
aspect of the visualization component is to augment the
photorealistic visualization of the virtual scene with the
information-based, non-photorealistic visualization of
scientific data. Examples are the display of collisions
between the robot and satellite parts, or the visualization of
possible motion paths avoiding collisions. Additionally,
hints on the order of servicing sub-tasks or other instructions
could be overlaid on top of satellite parts.

3.5. Interaction
In the proposed simulation and training system, the user

interacts through a VR display, and optionally the haptic
device. In order to support the user’s feeling of presence in
training, the chosen display would preferably be an
immersive display, such as a HMD, large screen Powerwall,
or a CAVE-like surround projection-based display system.
Both, the haptic device and the VR display, track the
position and orientation of the user’s hands for two-hand
interaction. Finger tracking is provided either by using a
CyberGlove when interacting through the bimanual haptic
device, or using an optical finger tracking system.
Additionally, the user’s head is tracked. This is used to
render the view in the correct perspective based on the
user’s current viewpoint. Apart from the manipulation of
virtual objects, interaction includes the navigation within the
virtual environment, as well as the control and configuration
of the running simulation.

Interaction within the environment should be intuitive
and easy to adapt for non-expert users. In order to train
realistic motion of actions, the interaction interface must be
as transparent to the user as possible. If the interaction
interface is too complex, for example, it could disturb and
hinder the training process, or even train wrong actions. In
order to aid the development of effective interaction
methods, the proposed system will act as a research platform
for studying novel interaction techniques and metaphors.

4. Real-Time Challenges
One of the main challenges of the interactive simulation

environment is the modeling and simulation of the dynamic
behavior of the satellite components and their interactions
with the user or the simulated robot in real-time. The
computed dynamics and their kinematic effects must reflect
the real conditions and behavior of servicing a satellite in
orbit. The 3D models used in the simulation environment
will be taken from CAD tools from the original construction
designs. These are often highly detailed, and not necessarily
optimized for use in a VR environment. Moreover, some
mechanical mechanisms of satellite components can be quite
complex, involving many individual parts. The latching
mechanisms of a bayonet cable connector may involve

75

threaded caps, rings, springs, several pins and holes, for
example, where all the linear and angular constraints and
friction have to be resolved every simulation cycle.
Computing the dynamics of several satellite components or
even the complete satellite in real-time is a high target.

The requirement to visually display the results of the
simulation in real-time is another challenge. The detailed
complex geometric models of the satellite and robot have to
be rendered in high resolution and photo-realistic quality at
rates of at least 30 Hz. Moreover, for immersive
visualization, high responsiveness to viewpoint changes is
crucial for the feeling of presence, and if too low can result
in motion sickness [18].

A further challenge is the integration of haptic feedback.
The haptic rendering of stiff surfaces typically requires
sampling rates in the order of 1 kHz to achieve sufficient
stability [16]. This puts high requirements on a fast collision
detection and force computation, as the geometry of the 3D
models in the scene is expected to be complex.

Finally, being an interactive simulation, any responses to
actions made by the user within the virtual environment
should be displayed with minimum delay. Acceptable end-
to-end delay in object-focused tasks is sought to be in the
area of 35 ms [7]. Informal experiments have shown that
latency for calculating collision responses should be below
25-30 ms, otherwise responses may feel unrealistic [17].

Logic

Manager Haptic
Device

5. System Architecture
There were two key aspects involved in designing the

system’s software architecture. Firstly, the system had to
fulfill the demanding computational needs for enabling the
real-time simulation of a complex dynamic environment.
Secondly, the system had to be flexible and extensible to be
able to explore and experiment with different approaches for
optimizations of algorithms and state-of-the-art high-
performance computing hard- and software, such as
supercomputers, PC-clusters, and multi-core and GPGPU
programming. Additionally, the system had to provide an
interface to add future subsystems. Therefore, the system is
implemented in a distributed architecture, where the physics
simulation, the haptic rendering and the visualization
processes are running as separate modules on dedicated
machines, as illustrated in Fig. 6.

In order to aid easy development of alternative module
implementations and extensions, the functional structure of a
module is made generic, shown in Fig. 7. Each module
consists of a communication and a simulation process. Both
are running in a separate thread and exchange data via the
producer-consumer pattern [8]. The simulation process is the
heart of a module. Specific modules implement their
individual functionality here. The communication process is
responsible for propagating updates between the modules.
The current system consists of physics simulation, haptic
control, visualization and a manager module. Other modules,
such as the robot control module for tele-operation and a
module to enable collaboration between remote sites across
the Internet within a shared simulation environment, are

added in the near future. The manager module is a central
component of the system that acts as server, while all other
modules are clients that connect to the master and can be
added and removed on demand, even at runtime.

Each module manages its own internal representation of
the scene. A scene consists of a hierarchy of objects, also
called nodes, each with a given state. Common state
parameters include at minimum a unique identification string
and a transformation matrix to describe the location of the
object within the scene. Other information, such as mass,
friction, or shading effects, that is specific to a particular
module implementation is added to the internal node’s state.
For example, a physics module would internally represent
the scene in a physics world via rigid bodies and constraints,
while the visualization module would represent the scene via
geometry nodes and shading materials in a scene graph.

All modules implement the same functional structure.
Within each processing cycle, a module
 first reads state updates received from other modules;
 interprets the messages and updates the internal scene

representation;
 steps the simulation or processes object behavior;
 gathers any state changes and communicates these and

any other necessary status messages to the other
modules.

Visualization

Switch

Physics
Simulation

Fig. 6. Hardware setup of the simulation environment (without
tele-operation module).

Fig. 7. Logical structure of the modularized system architecture
(without tele-operation module).

76

5.1. Haptics Module
The haptics module is responsible for controlling the haptic
device, as well as for the necessary collision detection and
force computation to provide force feedback. Discrete
collision detection and force computation is implemented
using an extension of the Voxmap-Point-Shell™ (VPS)
algorithm [21]. The algorithm utilizes two data structures,
voxel map and point shell, to represent the solid parts of
static objects by volume-based pixels (voxels) and the
surface of moving objects by a net of contact points each
with a normal pointing inwards, see Fig. 8, left image. This
allows to traverse the point shells efficiently to test for
intersections with voxels and thus detect collisions. The
penetration depth is obtained through the voxel value (Fig.
8, middle) The penetration and the point normal yield a
collision force (Fig. 8, right), which is then summed together
to compute force and torque. With this algorithm we are able
to compute collision responses within the boundary of 1 ms
and meet the required 1 kHz update-rate in highly complex
scenes.

The haptic module receives the transformations of
moving objects and updates the nodes in the internal
representation, before starting the collision detection and
force calculation in the simulation process. The
transformation of the haptic interaction point and the
calculated forces and torques of grasped objects are
propagated to other modules by the network process.

5.2. Physics Module
The simulation of rigid body physics is currently

implemented using the open source real-time physics engine
Bullet [3], as it provides better overall results compared to
other available real-time physics simulation systems [2].
Bullet offers discrete and continuous collision detection and
rigid body dynamics including various constraint solvers and
generic constraints with support for constraint limits and
motors. Soft body dynamics is supported via cloth, rope or
deformable object structures.

For accelerated collision detection, simple objects are
approximated through basic collision shapes, such as box,
sphere, or cylinder, which allow for optimized collision
detection. More complex objects are either decomposed into
a group of a number of base collision shapes, or their
triangle mesh is used directly. In the latter, the physics
engine utilizes the efficient Gilbert-Johnson-Keerthi (GJK)
algorithm to perform convex collision detection. In future
versions, we plan to exploit the collision detection of the
VPS algorithm, as used in the haptics module, offering high
performance and high accuracy of contacts (depending on
configured voxel size), even with very complex geometries.

The relationship between bodies that are part of a
mechanical system is defined via physical constraints. In
Bullet, constraints are described through joints, such as
hinge, slider or generic 6DoF joints. These can be combined
with a motor adding linear or angular force to simulate
springs. The mechanism of a lever switch, for example, is
approximated using two rigid bodies, the base and the

handle, connected via a hinge joint. An angular motor is
applied to keep the handle to one side. If the handle is
moved over its toggle threshold, the motor force is inverted
so that the handle snaps to the other side. Other mechanisms
are approximated in a similar manner. The use of simplified
rigid body dynamics and constraint management does
increase simulation speed on one side. However, on the
other side, the simulation accuracy will be compromised.
Thus, a balance has to be found between simulation speed
and fidelity. A solution may be the multi-rate simulation of
sub-systems with different performance requirements, as
proposed in [13].

The modular design of the system architecture allows us
to experiment with alternative implementations of the
physics simulation. In the near future, we plan to investigate
the suitability of other real-time physics engines, such as
PhysXTM and ODE, as well as interface to simulation systems
found in the engineering area, such as Simulink and
Modelica .

Fig. 8. Principle of the VPS™ algorithm.

5.3. Visualization Module
Visualization and interaction via VR displays is provided

by the visualization module. It is currently implemented
using the VR toolkit ViSTA [20], which offers support for a
wide range of VR interfaces and scalable to multi-display
technology. The scene is organized in a scenegraph (via
OpenSG) that is continuously synchronized with state
updates from the physics module and rendered during the
simulation process of the module. High-quality rendering is
managed through the use of advanced rendering techniques
utilizing shaders and high resolution textures.

5.4. Manager Module
The manager module hosts the central logic of the

system. While the physics module handles the dynamics and
kinematics of the individual parts in the simulation, the
manager handles the semantics. This includes, for example,
monitoring the on/off state of a switch, but also the
management of dynamic constraints. For example, in the
case of the lever switch, as mentioned above, this would be
the change of the angular motor to its inverse if the handle
crosses the toggle point. This semantic could of course be
implemented within the physics module directly. However,
as we wanted a platform to experiment with different
implementations of the physics and haptic control, we
wanted to remove most of the semantics from the modules in
order to simplify their development.

77

As the physics engine is expected to implement measures
for increasing stability, such as through spring and dampers,
the manager is responsible for the recognition and
management of inter-part geometric constraints between
colliding objects. It monitors the result of the physics engine
for allowable rigid body motion and intervenes if geometric
constraints or semantic states were detected.

Additionally, the manager module provides an interface
to the user to control the whole simulation system, such as
starting, stopping and resetting the simulation, as well as to
record simulation and training sessions for analysis and
evaluation.

5.5. Scene Description
Besides of importing geometric models from CAD tools,

the user needs to specify physics and haptics properties of
the virtual objects, as well as their location within the scene
and relationships to other objects. Ideally, all this
information would go into one central description of the
scene. In order to provide a flexible and accessible platform,
we need a mechanism for the user to be able to make
changes to the scene, load other 3D models and adjust
parameters easily, as well as to exchange data with other
sites. Hence, we were looking for a suitable file format.

A common exchange format used by many product data
management systems in the mechanics and engineering field
is STEP [25]. It is also used in the aerospace industry. For
example, STEP is used as format for product data exchange
between ESA and NASA. However, being a format to cover
the complete product life cycle, it is heavy weight, spanning
several parts and sub-specifications. Additionally, STEP is
rarely supported by common VR toolkits.

COLLADA is a XML-based exchange format managed
by the Khronos Group [14]. Since introduced in 2004, it is
widely supported in the animation and creative media field
and increasingly (used/popular) in engineering and
mechanical simulation applications. These days, COLLADA
can be exported from many common CAD and 3D modeling
tools. The XML schema defines elements to describe 3D
asset data, such as mesh geometries, materials, shading
effects, animations, and physics properties [4]. We use
specification 1.4, as the newer specification 1.5 is not yet
fully adopted by most exporters of CAD or 3D modeling
tools.

Our COLLADA loader reads a document and stores all
data in an internal structured data representation. Each
module uses this to obtain the necessary information
required to setup their internal representation of the scene.
Additionally required information that cannot be described
following the COLLADA specification, such as parameters
for the haptic properties of nodes, is added via extension
nodes using the <extra> element.

5.6. Communication Layer
A disadvantage of using a distributed system architecture

is that the necessary network communication induces delay
and other negative effects due to network characteristics,

such as jitter and packet loss. As mentioned above, our
system adopts a client/server architecture. This means that
all state updates are mediated across the manager, rather
than sent directly to the target module. The reason for this
was the easier management of semantics across modules.
However, a consequence is that the delay between
interactions and their response is double that of a peer-to-
peer architecture. Although, our simulation environment
(excluding tele-operation) is generally situated within a local
area network (LAN), where round-trip-times of less than 1
ms are typical today, mechanisms to minimize delay should
be in place. Our system provides the following features and
mechanisms to minimize delay caused by communication:

Decoupled from simulation. In order to free the
simulation process from message transfer, the
communication is implemented in its own threaded network
handler. As mentioned above, both processes exchange data
via the producer-consumer pattern. The simulation process
pushes outgoing messages in a queue and reads pending
incoming messages from another queue. The communication
process uses these queues to process all pending messages in
parallel to the simulation cycle.

Managed queues. The majority of messages sent in our
system describe discrete updates of absolute force and/or
location, such as from rigid bodies. With a continuous
stream of such updates, it is preferable to communicate only
the latest update, rather than to ensure that every single
update is processed. Thus, the queues offer a sorting
mechanism to keep only the most recent update of an object.

Vital and non-vital message types. As a most-recent
sorting method cannot be applied to all types of messages,
the system divides them into vital and non-vital messages.
Vital messages include system commands or changes to
constraint parameters, for example, while non-vital
messages all continuous motion and force updates. These are
then sent using reliable and unreliable protocols,
respectively, via dedicated network channels.

Optional direct messages. The default method for
distributing a message is to broadcast it via the manager
module. In the case where no checks on semantics are
necessary, a module is allowed to send a message directly to
another module, without passing the manager.

Loose synchronization. In order to achieve highest
performance of the local simulations in the modules, our
architecture provides a loose synchronization mechanism,
enabling the simulations to asynchronously run at their full
rate without waiting for synchronization. This, however,
means that update messages are generated and consumed at
different rates. For example, the haptics module will
generate updates every millisecond, while the physics
module may be able to read them only every 16 ms. If
modules would communicate the updates at their local
processing rate, this may cause messages queuing up in the
network buffers and processing queues. To overcome this
problem, the system incorporates an update distribution rate
control, where update messages are sent depending on the
average simulation processing time of the receiving target

78

module and the estimated network delay. This allows a
module to adjust its rate of sending state changes to match
the average simulation rate at the target module.

Data reduction. A common measure to reduce traffic for
communicating state updates of continuous motion, such as
tracking data, is to employ spatial-temporal filtering [22].
Spatial filtering sets a threshold on differences in translation
and rotation data before issuing a new update message. This,
however, is not useful when subtle movements are
important. With temporal filtering, an update is only sent
after minimum time between distribution cycles has passed.
Our system implements a combined spatial-temporal
filtering mechanism on a per object basis. In order to reduce
the overhead induced by the communication layer for
processing single incoming and outgoing network packets,
as well as to increase synchronization, several updates of the
same simulation frame can be bundled into one message, as
long the resulting data fits into a single packet. Further
optimizations applied in tele-presence systems, such as
perception-based data reduction of transmitted haptic data
based on just noticeable differences [9], may be investigated
in future versions.

6. Preliminary Results
Work is currently in progress for implementing the

system architecture described above. So far, we have
implemented the mechanisms of three scenarios: flick a
switch, loosening and tightening screws, and removing a
module using a bayonet handle. First tests in a desktop
setting interacting with a Phantom Omni haptic device have
been conducted to evaluate the proposed system
architecture, Fig. 9.

In an informal experiment, we measured the end-to-end
delay for displaying haptic interaction. This is the time from
generating a message in the haptics module signaling a state
change in the position of the HIP until receiving a response
message at the visualization module. This includes the delay
induced by the manager module passing the message on to
the physics module, which is running a simulation cycle and
passes a new update message with resulting positions of the
rigid bodies to the manager, that forwards the message to the
visualization module. Fig. 10 shows the measurement result.

We find an average end-to-end delay of 28 ms. Thus, our
system performs within the bound of the required 35 ms.

Fig. 9. Evaluating the proposed system architecture with an
early prototype using a desktop haptic device (left image). The
user moves the endpoint of the LWR attached to a satellite to
grab the green object floating in space (right image).

Fig. 11 shows the number of update messages for
mediating the response to changes of the HIP through the
system. We measured an average throughput of 61 update
messages per second. This corresponds to the described
loose synchronization measure, which keeps the haptics
module from sending update messages faster than the
physics simulation rate. This was set to 60 Hz during the
measurements.

Fig. 10. End-to-end delay.

Fig. 11. Throughput.

7. Conclusion
This paper gave an overview of a real-time interactive

simulation and training environment used as a platform for
the analysis, training and programming of on-orbit servicing
tasks, as well as our work in progress developing the
underlying infrastructure. The aim is to allow performing
manual and robotic assembly and disassembly tasks within a
haptic-enabled immersive virtual environment. The main
challenges are the real-time simulation and rendering of the
correct dynamic behavior and the realistic appearance of
satellite components and their complex mechanisms
resembling the real conditions in space, as well as to
integrate interaction through a haptic device. The paper
proposes a distributed system architecture in order to utilize
dedicated computing resources to fulfill the real-time

79

constraints. The architecture divides the physics simulation,
visualization and haptic rendering into separate modules that
run in parallel on dedicated machines. A central manager
mediates the communication of state updates, while
managing the global semantics of object behaviors.
Preliminary results have shown that our system is able to
provide an end-to-end latency across the modules of 28ms
for sending updates from moving the haptic device to
displaying the visual response.

The modular design of the proposed architecture
facilitates the research and development of improvements
and extensions with focus on individual aspects of the
simulation environment. Future work will investigate
alternative real-time physics engines, develop optimizations
to the haptic rendering and explore two-handed interaction
techniques.

References
[1] J. Artigas, P. Kremer, C. Preusche, G. Hirzinger, “Testbed for

telepresent on-orbit satellite servicing”, In Proceedings of the
Human-Centered Robotic Systems Conference (HCRS),
Munich, Germany, 2006.

[2] A. Boening, T. Bräunl, “Evaluation of real-time physics
simulation systems”, In Proceedings of the 5th international
conference on Computer Graphics and Interactive Techniques
in Australia and Southeast Asia (GRAPHITE), pp. 281-288,
Perth, Australia, 2007.

[3] http://bulletphysics.org, 2011.
[4] E. Coumans, K. Victor, “COLLADA physics”, In Proceedings

of the 12th International Conference on 3D Web Technology,
pp. 104-105, 2007.

[5] N.J. Currie, B. Peackock, “International Space Station Robotic
Systems Operations - A Human Factors Perspective”, In
Proceedings of Human Factors and Ergonomics Society
Annual Meeting, Human Factors and Ergonomics Society, pp.
26-30(5), 2002.

[6] A. Ellery, J. Kreisel, B. Sommer, “The case for robotic on-
orbit servicing of spacecraft: Spacecraft reliability is a myth”,
Acta Astronautica 63, pp. 632 – 648, Elsevier, 2008.

[7] S. R. Ellis, M. J. Young, B. D. Adelstein, & S. M. Ehrlich,
“Discrimination of Changes of Latency During Voluntary
Hand Movement of Virtual Objects”, In Proceedings of the
Human Factors and Ergonomics Society, Houston, Texas,
1999.

[8] E. Gamma, R. Helm, R. Johnson, J.M. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley Professional, 1994.

[9] P. Hinterseer, S. Hirche, S. Chaudhuri, E. Steinbach, M. Buss,
“Perception-Based Data Reduction and Transmission of
Haptic Data in Telepresence and Teleaction Systems”, In
IEEE Trans. on Signal Processing, Vol. 56, Issue 2, pp.: 588-
597, 2008.

[10] G. Hirzinger, B. Brunner, K. Dietrich, J. Heindl, “ROTEX -
the first remotely controlled robot in space,” in IEEE Intl.
Conf. on Robotics and Automation, San Diego, CA, USA,
1994.

[11] G. Hirzinger, N. Sporer, A. Albu-Schäffer, R. Krenn, A.
Pascucci, and M. Schedl, “DLR’s torque-controlled light
weight robot III - are we reaching the technological limits
now?”, In IEEE Int. Conf. on Robotics and Automation
(ICRA2002), pp. 1710–1716, Washington, DC, USA, 2002.

[12] T. Hulin, M. Sagardia, J. Artigas, S. Schaetzle, P. Kremer, C.
Preusche, “Human-Scale Bimanual Haptic Interface”, In Proc
of the 5th International Conference on Enactive Interface,
Pisa, Italy, 2008.

[13] M. Karkee, B.L. Steward, A.G. Kelkar, Z.T. Kemp II.,
“Modeling and real-time simulation architectures for virtual
prototyping of off-road vehicles”, Virtual Reality, Springer-
Verlag London, UK, pp. 83-96, 2011.

[14] http://www.khronos.org/collada, 2011.
[15] K. Landzettel, A. Albu-Schäffer, B. Brunner, A. Beyer,

R.Gruber, E. Krämer, C. Preusche, D. Reintsema, J. Schott,
B.-M. Steinmetz, H.-J. Sedlmayr, G. Hirzinger, “ROKVISS
Verification of Advanced Light Weight Robotic Joints and
Tele-Presence Concepts for Future Space Missions”, In
Proceedings of the 9th ESA Workshop on Advanced Space
Technologies for Robotics and Automation (ASTRA), ESTEC,
Noordwijk, Netherlands, 2006.

[16] W.R. Mark, S.C. Randolph, M. Finch, J.M. Van Verth, and
R.M. Taylor, II. Adding force feedback to graphics systems:
Issues and solutions. In ACM SIGGRAPH Computer Graphics
and Interactive Techniques, pp. 447-452, New Orleans,
Louisiana, 1996.

[17] J. Marsh, M. Glencross, S. Pettifer, R. Hubbold, "A Network
Architecture Supporting Consistent Rich Behavior in
Collaborative Interactive Applications", In IEEE Trans. on
Visualization and Computer Graphics, Vol. 12, No. 3, pp. 405-
416, 2006.

[18] M. Meehan, S. Razzaque, M. Whitton, and J. Brooks, F.P.,
“Effect of latency on presence in stressful virtual
environments”, In Proceedings of IEEE Virtual Reality, pp.
141-148, 2003.

[19] C. Ott, O. Eiberger, W. Friedl, B. Bäuml, U. Hillenbrand, Ch.
Borst, A. Albu-Schäffer, B. Brunner, H. Hirschmüller, S.
Kielhöfer, R. Konietschke, M. Suppa, T. Wimböck, F.
Zacharias, and G. Hirzinger, "A Humanoid Two-Arm System
for Dexterous Manipulation", In Proceedings of IEEE-RAS
International Conference on Humanoid Robots, pp. 276-283,
Genova, Italy, 2006.

[20] T. van Reimersdahl, T. Kuhlen, A. Gerndt, J. Henrichs, C.
Bischof, “ViSTA: a multimodal, platform-independent VR-
Toolkit based on WTK, VTK, and MPI”, In Proceedings of
the 4th International Immersive Projection Technology
Workshop (IPT), Ames, Iowa, 2000.

[21] M. Renz, C. Preusche, M. Potke, H. Kriegel, G. Hirzinger,
“Stable haptic interaction with virtual environments using an
adapted voxmap-pointshell algorithm”, In Proceedings of the
Eurohaptics, pp. 149-154, Birmingham, UK, 2001.

[22] D. Roberts, D. Marshall, S. McLoone, D. Delaney, R. Aspin,
“Exploring the use of local inconsistency measures as
thresholds for dead reckoning update packet generation”, In
IEEE Distributed Simulation and Real-Time Applications, pp.
95-202, Montreal, Canada, 2005.

[23] T. Rupp, T. Boge, R. Kiehling, F. Sellmaier, “Flight Dynamics
Challenges of the German On-Orbit Servicing Mission
DEOS”, 21st International Symposium on Space Flight
Dynamics, Toulouse, France, 2009.

[24] F. Sellmaier, T. Boge, J. Spurmann, S. Gully, T. Rupp, F.
Huber, “On-Orbit Servicing Missions: Challenges and
Solutions for Spacecraft Operations”, SpaceOps 2010
Conference, American Institute of Aeronautics and
Astronautics, Huntsville, Alabama, USA, 2010.

[25] STEP, Standard for the Exchange of Product model data, ISO
10303.

80

