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Abstract - This paper outlines the development of a 
real-time interactive application for the analysis, training 
and programming of on-orbit servicing tasks within a 
virtual reality environment. The main challenges put on 
the system are the real-time simulation of the realistic 
dynamic and kinematic behavior of satellite components 
and additionally integrate interaction through a 
bimanual haptic interface, as well as enable tele-
operation of a robot. We give an overview of the 
application,  describe the real-time challenges and 
outline our approach and proposed system structure. 

 
Keywords - Real-time Applications; Virtual Reality; 

Physics Simulation; Haptics; Tele-robotics; 

1. Introduction 
On-orbit servicing (OOS) is an interdisciplinary field 

with increasing importance for the space industry. Although 
engineers take extensive care when designing and launching 
satellites, failures do happen. A survey by Ellery et al. [2] 
showed that most failures occur during orbit injection or in 
the first year of operation, for example when folding out the 
solar panel. As space systems are costly, any failure is 
damaging, not only for commercial operators, but also for 
research missions. Today, almost no satellite is launched 
without insurance to cover for failure. However, not only 
failure, but also a limited lifetime and an increasing amount 
of space debris are motivations for on-orbit servicing. With 
a growing number of satellites orbiting Earth, there is a need 
for innovative methods to repair failures, to refuel a satellite 
to extend its lifetime, or to remove disabled and adrift 
satellites and other unused parts from orbit in a controlled 
and cost-effective way. 

One of the most famous example of on-orbit servicing is 
probably the series of NASA Hubble Space Telescope repair 
missions starting in 1993, where astronauts fixed and 
replaced parts in several EVAs (extra vehicle activity). 

Manned missions like this, however, are both expensive and 
put a high risk to the astronauts working outside the 
spacecraft. Robotic servicing constitutes an attractive 
alternative. The Canada arm has demonstrated successful 
operation [5]. Ongoing projects and concepts for robotic 
OOS studies include the Deutsche Orbitale Servicing 
Mission (DEOS) [23] with the goal to demonstrate the 
capturing of an uncooperative spacecraft; and the Orbital 
Life Extension Vehicle (OLEV) [24], a commercial project 
with the aim to dock on communication satellites and take 
over the attitude and orbit control system (AOCS) extending 
the satellite’s lifetime. Some service robots work in 
automatic operation modes, either pre-programmed or 
(semi)-autonomous. In complex maintenance tasks, 
however, or in situations where the cause of the failure is 
unknown and an investigation is required, the actions cannot 
be pre-programmed. In such cases, it is necessary to operate 
the service robot manually via a tele-operation interface. The 
German Aerospace Center (DLR) already started in 1993 to 
study ways and the effects of operating a robot in space from 
a ground station in the Robot Technology Experiment 
(ROTEX) [10], and later in the Robotic Components 
Verification on the ISS (ROKVISS) project [15]. In 
ROKVISS, for the first time a force-feedback joystick has 
been integrated  

Controlling a robot in complex scenarios is not trivial and 
usually requires a robot expert or a well trained person. 
Analyzing and repairing a failure in a satellite, however, can 
only be done by a satellite expert. Hence, for planning and 
performing appropriate repair tasks both satellite and robot 
experts have to work closely hand in hand. DLR developed a 
human-scale bimanual haptic interface [12], enabling natural 
robot control with the user’s arms. This interface can be 
used to operate a humanoid servicing robot [19] in a way 
where the user is able to control the robot’s head and hands 
with his/her own head and hands, while seeing the same 
view as the robot sees through a head-mounted display 
(HMD), displaying the live video of the stereo-camera built 
into the robot’s head. The combination of the bimanual 
haptic interface and the humanoid servicing robot creates a 
tele-presence interface, with which a satellite expert can 
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control a robot and intuitively perform servicing tasks 
without the (direct) help of a robot expert. The setup was 
used at the International Aerospace Exhibition - ILA 2010 in 
Berlin to demonstrate tele-operation of a service robot in a 
number of servicing tasks using a physical test satellite 
mock-up, see Fig. 1. 

Training, programming and testing the tele-operation of 
robots for OOS tasks may be done in physically based test 
beds, such as in [1]. This has the advantage that specific 
hardware and control software to be used during the mission 
can be integrated directly into the test environment. Certain 
components or environmental effects, however, have to be 
simulated, which can make the setup complex. Moreover, 
testing in a physical environment induces the risk of damage 
to equipment or even could harm humans. Additionally, 
making changes to the mockup is often time consuming and 
connected with costs. Virtual reality (VR) offers a cost-
effective alternative for simulation within a flexible and safe 
environment, and has been used for simulation and training 
in many application areas, such as surgery.  

This paper presents VR-OOS, a virtual reality 
environment for on-orbit servicing. Our goal is to provide a 
multi-modal virtual environment that can be used as a 
platform for the analysis, training and programming of on-
orbit servicing tasks, as well as to help to develop and 
examine new designs of serviceable satellites and servicing 
robots. The environment will be used to train astronauts in 
manned servicing missions, as well as to program, and 
eventually to remotely operate, service robots in space in 
unmanned missions. The challenges are to provide the 
accurate real-time simulation of the dynamics of the satellite 
components under real conditions, combined with 
photorealistic high-resolution rendering of detailed virtual 
objects and environmental effects within an immersive, 
haptics-enabled virtual environment. The paper presents 
work in progress and our approach to implement the 
underlying system of the interactive real-time simulation 
environment using a distributed architecture. 

The paper is organized as follows: the next section 
outlines the selected servicing scenarios that will be used to 
evaluate the system. Then, an overview of the system 
components is given. Section 4 outlines the real-time 
challenges put on the system and Section 5 describes the 
proposed system architecture. Section 6 discusses 
preliminary results and Section 7 closes the paper with a 
conclusion. 

2. On-Orbit Servicing Scenarios 
The repair and maintenance of satellites usually consists 

of a number of pre-defined sub-tasks that must be executed 
in a certain order. The goal of the proposed simulation 
environment is to train the procedure and correct sequence 
of actions within various on-orbit servicing tasks. In order to 
support the training of a wide range of possible servicing 
scenarios, the system must provide a set of basic tasks that 
often occur and can be combined to various servicing 
scenarios. We selected a number of tasks that would occur in 
most servicing scenarios based on common EVAs. These 
will be used as benchmark for the future evaluation of our 
system. 

Remove MLI. As satellites are usually covered by a 
multi-layer insulation (MLI) foil, the first action would be to 
open the MLI in order to reach the satellite components 
underneath.  In most cases, the foil will have to be cut using 
a knife, scissors or other tools and then pulled open. Some 
satellites have their MLI foil attached by Velcro  fasteners, 
which can be opened and closed.  

Loosen and tightening screws. Many parts, such as 
modules and covers, are fixed with screws. Thus, a second 
task is to loosen screws, and after the main work tighten 
them again. This is usually done using a cordless 
screwdriver. 

Replace a module. A common task will be to replace 
electronic parts by exchanging a module. This will be done 
using a handle that is inserted into a module like a bayonet 
catch. After rotating the inserted handle by 90 degrees, the 
module can be pulled out. Inserting a module is done in the 
same way. 

Flick a switch. Before removing a module, a task will be 
to switch off the electronics on the module, and after 
inserting a new module to switch it on. This is done via a 
normal lever switch. 

Take measurements. Finally, a common task is to take 
measurements at electronic parts. This task is represented 
using a digital voltmeter and touching specific measurement 
contacts with the measuring tip. 

A milestone of the project is to demonstrate the execution 
of these tasks within the virtual environment and compare it 
to interacting with a physical mockup. For this evaluation, 
the virtual mockup, as seen in Fig. 2 resembles the physical 
mockup, seen in the foreground in the right image in Fig. 1, 
in size and arrangement of objects.  

The scenarios described above comprise the minimum set 

Fig.  1. Demonstration of robotic on-orbit servicing using a 
tele-presence interface (left) to control a humanoid robot and 
manipulate a physical satellite mockup (right). 

 

Fig. 2. Virtual satellite mockup.
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Fig. 3. Block diagram of the system components and the information flow between them. 

of tasks that are planned for the first prototype. The final 
version, will have to allow the simulation of arbitrary tasks, 
possibly involving the handling of much more complex 
mechanisms, such as handling bayonet cable connectors, or 
opening covers with lock-spring mechanisms. 

3. System Overview 
Fig. 3 shows a block diagram of the system components 

and the flow of information between them. Fundamental 
components are the physics simulation, visualization, as well 
as interaction interfaces, which form the base of the virtual 
environment. The components haptic control and the robot 
control interface provide additional features for force-
feedback and tele-operation, respectively. The following 
sections describe the components in more detail. 

3.1. Physics Simulation 
A key element of the application is the real-time 

simulation of the kinematic and dynamic behavior of the 
satellite components when manipulated by the user. In the 
first stage of the project, we assume that the servicing robot 
has already docked to the target satellite, so that the complex 
flight dynamics of the flying body dynamics can be 
neglected. For the moment, we only concentrate on the 
simulation of rigid bodies that make up most of the virtual 
satellite and robot components. We extend existing models 
with methods and parameters to match our service scenarios.   

Apart from the multi body dynamics of the rigid 
components of the satellite, an aspect is to simulate the 
behavior of a foil for the scenario when opening the MLI. 
This involves modeling the dynamics of bending, cutting or 
tearing the MLI material. 

3.2. Haptic Control 
The haptic control component generates the necessary 

data for providing haptic feedback to the user via a haptic 
device. This includes the detection of collisions between the 

haptic interaction point (HIP) and any objects within the 
virtual scene, as well as the computation of the resulting 
force and torque affecting the HIP. The haptic device 
delivers the transformation of the end-effector held in the 
hand of the user, which is used for collision detection. In 
case the user grasps a virtual object, the complexity of 
resolving the chain of forces between the interacting objects 
(virtual scene, grasped object, HIP) can be reduced by 
attaching the grasped objects with a constant offset to the 
HIP and apply the resulting transformation based on the 
HIP’s transformation. The resulting force and torque is used 
to update manipulated objects in the physics simulation. 

The force feedback device we use is a human-scale 
bimanual haptic interface [12], similar to the one depicted in 
Fig. 4. It is also based on light weight robot (LWR) [11]  
arms mounted horizontally on a vertical column. It offers a 
working area similar to human arms and matches that of the 
humanoid robot “Justin”, described above. For software 
development and experiments, we occasionally use a 
Phantom Omni from SensAble, which provides only 
translational force-feedback and no torque. 

3.3. Robot Control 
As mentioned above, we intend to simulate the humanoid 

service robot “Justin” [19], shown in Fig. 5. It is based on 
two LWR arms. These are designed similar to the human 

 
Fig. 4. Bimanual haptic interface [12]. 

74



arm in its size and working area, aiming at an own weight to 
payload ratio of at least 1:1. A robot arm has 7 revolute 
joints, each with motor, gear unit, power supply, force and 
torque sensors built in. It reaches 0.9 m when fully stretched, 
weights 13.5 kg, while it can lift up to 15 kg. The robot 
hands are made human-like too with 4 joints each and house 
15 motors. The arms and hands are mounted to a torso, also 
based on LWR technology, covering a workspace similar to 
that of a human. The head accommodates a stereo camera, a 
laser-stripe sensor and an inertial measurement unit. 

The controller of the robot dynamics is currently 
implemented in a number of Simulink  modules. For the 
simulation, these are accessed via a UDP communication 
interface. The robot control reads transformations of either 
the haptic device or that of the tracked user, in case 
interaction is performed without force-feedback. As output, 
it delivers the transformation of the robot parts in form of a 
rotation angle of each robot joint, where the joints are 
organized in a hierarchical tree and placed at relative 
positions in the virtual environment. Alternatively, it can 
deliver the absolute location and orientation of joints when 
these are organized in a flat hierarchy or a list. This data is 
used by the physics simulation to update the rigid bodies 
resembling the robot parts.  

Data from the robot’s force and torque sensors, as well as 
data from the other sensors are fed into the control unit. In 
the case where the robot is not connected for tele-operation 
but is fully simulated, these sensors have to be simulated in 
the form of virtual sensors. In this case, the inertial 
measurement unit and the laser-stripe sensor are emulated 
within the physics simulation, while the images of the 
simulated stereo camera are generated within the 
visualization component. 

Fig. 5. Humanoid service robot "Justin" [19]. 

3.4. Visualization 
Besides, from training the correct sequence of sub-tasks, 

a goal of the simulation environment is to allow the user to 
get an awareness of the appearance and arrangement of parts 
and tools.  Hence, the realistic and high-quality visualization 
of the satellite components and the environment are 
important factors for the success of a training simulation. 
This does not only include the photorealistic rendering of 
detailed virtual objects with correct shading and high-
resolution textures, but also the correct representation of the 
environmental effects that exist in orbit, such as bright 
sunlight and hard shadows. 

Being a training and analysis tool, another research 
aspect of the visualization component is to augment the 
photorealistic visualization of the virtual scene with the 
information-based, non-photorealistic visualization of 
scientific data. Examples are the display of collisions 
between the robot and satellite parts, or the visualization of 
possible motion paths avoiding collisions. Additionally, 
hints on the order of servicing sub-tasks or other instructions 
could be overlaid on top of satellite parts.  

3.5. Interaction 
In the proposed simulation and training system, the user 

interacts through a VR display, and optionally the haptic 
device. In order to support the user’s feeling of presence in 
training, the chosen display would preferably be an 
immersive display, such as a HMD, large screen Powerwall, 
or a CAVE-like surround projection-based display system. 
Both, the haptic device and the VR display, track the 
position and orientation of the user’s hands for two-hand 
interaction. Finger tracking is provided either by using a 
CyberGlove  when interacting through the bimanual haptic 
device, or using an optical finger tracking system. 
Additionally, the user’s head is tracked. This is used to 
render the view in the correct perspective based on the 
user’s current viewpoint. Apart from the manipulation of 
virtual objects, interaction includes the navigation within the 
virtual environment, as well as the control and configuration 
of the running simulation. 

Interaction within the environment should be intuitive 
and easy to adapt for non-expert users. In order to train 
realistic motion of actions, the interaction interface must be 
as transparent to the user as possible. If the interaction 
interface is too complex, for example, it could disturb and 
hinder the training process, or even train wrong actions. In 
order to aid the development of effective interaction 
methods, the proposed system will act as a research platform 
for studying novel interaction techniques and metaphors. 

4. Real-Time Challenges 
One of the main challenges of the interactive simulation 

environment is the modeling and simulation of the dynamic 
behavior of the satellite components and their interactions 
with the user or the simulated robot in real-time. The 
computed dynamics and their kinematic effects must reflect 
the real conditions and behavior of servicing a satellite in 
orbit. The 3D models used in the simulation environment 
will be taken from CAD tools from the original construction 
designs. These are often highly detailed, and not necessarily 
optimized for use in a VR environment. Moreover, some 
mechanical mechanisms of satellite components can be quite 
complex, involving many individual parts. The latching 
mechanisms of a bayonet cable connector may involve 
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threaded caps, rings, springs, several pins and holes, for 
example, where all the linear and angular constraints and 
friction have to be resolved every simulation cycle. 
Computing the dynamics of several satellite components or 
even the complete satellite in real-time is a high target. 

The requirement to visually display the results of the 
simulation in real-time is another challenge. The detailed 
complex geometric models of the satellite and robot have to 
be rendered in high resolution and photo-realistic quality at 
rates of at least 30 Hz. Moreover, for immersive 
visualization, high responsiveness to viewpoint changes  is 
crucial for the feeling of presence, and if too low can result 
in motion sickness [18].  

A further challenge is the integration of haptic feedback. 
The haptic rendering of stiff surfaces typically requires 
sampling rates in the order of 1 kHz to achieve sufficient 
stability [16]. This puts high requirements on a fast collision 
detection and force computation, as the geometry of the 3D 
models in the scene is expected to be complex. 

Finally, being an interactive simulation, any responses to 
actions made by the user within the virtual environment 
should be displayed with minimum delay. Acceptable end-
to-end delay in object-focused tasks is sought to be in the 
area of 35 ms [7]. Informal experiments have shown that 
latency for calculating collision responses should be below 
25-30 ms, otherwise responses may feel unrealistic [17]. 

Logic

Manager Haptic 
Device

5. System Architecture 
There were two key aspects involved in designing the 

system’s software architecture. Firstly, the system had to 
fulfill the demanding computational needs for enabling the 
real-time simulation of a complex dynamic environment. 
Secondly, the system had to be flexible and extensible to be 
able to explore and experiment with different approaches for 
optimizations of algorithms and state-of-the-art high-
performance computing hard- and software, such as 
supercomputers, PC-clusters, and multi-core and GPGPU 
programming. Additionally, the system had to provide an 
interface to add future subsystems. Therefore, the system is 
implemented in a distributed architecture, where the physics 
simulation, the haptic rendering and the visualization 
processes are running as separate modules on dedicated 
machines, as illustrated in Fig. 6. 

In order to aid easy development of alternative module 
implementations and extensions, the functional structure of a 
module is made generic, shown in Fig. 7. Each module 
consists of a communication and a simulation process. Both 
are running in a separate thread and exchange data via the 
producer-consumer pattern [8]. The simulation process is the 
heart of a module. Specific modules implement their 
individual functionality here. The communication process is 
responsible for propagating updates between the modules. 
The current system consists of physics simulation, haptic 
control, visualization and a manager module. Other modules, 
such as the robot control module for tele-operation and a 
module to enable collaboration between remote sites across 
the Internet within a shared simulation environment, are 

added in the near future. The manager module is a central 
component of the system that acts as server, while all other 
modules are clients that connect to the master and can be 
added and removed on demand, even at runtime. 

Each module manages its own internal representation of 
the scene. A scene consists of a hierarchy of objects, also 
called nodes, each with a given state. Common state 
parameters include at minimum a unique identification string 
and a transformation matrix to describe the location of the 
object within the scene. Other information, such as mass, 
friction, or shading effects, that is specific to a particular 
module implementation is added to the internal node’s state. 
For example, a physics module would internally represent 
the scene in a physics world via rigid bodies and constraints, 
while the visualization module would represent the scene via 
geometry nodes and shading materials in a scene graph. 

All modules implement the same functional structure. 
Within each processing cycle, a module  
 first reads state updates received from other modules;  
 interprets the messages and updates the internal scene 

representation;  
 steps the simulation or processes object behavior;  
 gathers any state changes and communicates these and 

any other necessary status messages to the other 
modules.  

Visualization

Switch

Physics
Simulation

 
Fig. 6. Hardware setup of the simulation environment (without 
tele-operation module). 

 
Fig. 7. Logical structure of the modularized system architecture 
(without tele-operation module). 
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5.1. Haptics Module 
The haptics module is responsible for controlling the haptic 
device, as well as for the necessary collision detection and 
force computation to provide force feedback. Discrete 
collision detection and force computation is implemented 
using an extension of the Voxmap-Point-Shell™ (VPS) 
algorithm [21]. The algorithm utilizes two data structures, 
voxel map and point shell, to represent the solid parts of 
static objects by volume-based pixels (voxels) and the 
surface of moving objects by a net of contact points each 
with a normal pointing inwards, see Fig. 8, left image. This 
allows to traverse the point shells efficiently to test for 
intersections with voxels and thus detect collisions. The 
penetration depth is obtained through the voxel value (Fig. 
8, middle) The penetration and the point normal yield a 
collision force (Fig. 8, right), which is then summed together 
to compute force and torque. With this algorithm we are able 
to compute collision responses within the boundary of 1 ms 
and meet the required 1 kHz update-rate in highly complex 
scenes.  

The haptic module receives the transformations of 
moving objects and updates the nodes in the internal 
representation, before starting the collision detection and 
force calculation in the simulation process. The 
transformation of the haptic interaction point and the 
calculated forces and torques of grasped objects are 
propagated to other modules by the network process. 

5.2. Physics Module 
The simulation of rigid body physics is currently 

implemented using the open source real-time physics engine 
Bullet [3], as it provides better overall results compared to 
other available real-time physics simulation systems [2]. 
Bullet offers discrete and continuous collision detection and 
rigid body dynamics including various constraint solvers and 
generic constraints with support for constraint limits and 
motors. Soft body dynamics is supported via cloth, rope or 
deformable object structures.  

For accelerated collision detection, simple objects are 
approximated through basic collision shapes, such as box, 
sphere, or cylinder, which allow for optimized collision 
detection. More complex objects are either decomposed into 
a group of a number of base collision shapes, or their 
triangle mesh is used directly. In the latter, the physics 
engine utilizes the efficient Gilbert-Johnson-Keerthi (GJK) 
algorithm to perform convex collision detection. In future 
versions, we plan to exploit the collision detection of the 
VPS algorithm, as used in the haptics module, offering high 
performance and high accuracy of contacts (depending on 
configured voxel size), even with very complex geometries. 

The relationship between bodies that are part of a 
mechanical system is defined via physical constraints. In 
Bullet, constraints are described through joints, such as 
hinge, slider or generic 6DoF joints. These can be combined 
with a motor adding linear or angular force to simulate 
springs. The mechanism of a lever switch, for example, is 
approximated using two rigid bodies, the base and the 

handle, connected via a hinge joint. An angular motor is 
applied to keep the handle to one side. If the handle is 
moved over its toggle threshold, the motor force is inverted 
so that the handle snaps to the other side. Other mechanisms 
are approximated in a similar manner. The use of simplified 
rigid body dynamics and constraint management does 
increase simulation speed on one side. However, on the 
other side, the simulation accuracy will be compromised. 
Thus, a balance has to be found between simulation speed 
and fidelity. A solution may be the multi-rate simulation of 
sub-systems with different performance requirements, as 
proposed in [13]. 

The modular design of the system architecture allows us 
to experiment with alternative implementations of the 
physics simulation. In the near future, we plan to investigate 
the suitability of other real-time physics engines, such as 
PhysXTM and ODE, as well as interface to simulation systems 
found in the engineering area, such as Simulink  and 
Modelica . 

Fig. 8. Principle of the VPS™ algorithm. 

5.3. Visualization Module 
Visualization and interaction via VR displays is provided 

by the visualization module. It is currently implemented 
using the VR toolkit ViSTA [20], which offers support for a 
wide range of VR interfaces and scalable to multi-display 
technology. The scene is organized in a scenegraph (via 
OpenSG) that is continuously synchronized with state 
updates from the physics module and rendered during the 
simulation process of the module. High-quality rendering is 
managed through the use of advanced rendering techniques 
utilizing shaders and high resolution textures. 

5.4. Manager Module 
The manager module hosts the central logic of the 

system. While the physics module handles the dynamics and 
kinematics of the individual parts in the simulation, the 
manager handles the semantics. This includes, for example, 
monitoring the on/off state of a switch, but also the 
management of dynamic constraints. For example, in the 
case of the lever switch, as mentioned above, this would be 
the change of the angular motor to its inverse if the handle 
crosses the toggle point. This semantic could of course be 
implemented within the physics module directly. However, 
as we wanted a platform to experiment with different 
implementations of the physics and haptic control, we 
wanted to remove most of the semantics from the modules in 
order to simplify their development. 
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As the physics engine is expected to implement measures 
for increasing stability, such as through spring and dampers, 
the manager is responsible for the recognition and 
management of inter-part geometric constraints between 
colliding objects. It monitors the result of the physics engine 
for allowable rigid body motion and intervenes if geometric 
constraints or semantic states were detected. 

Additionally, the manager module provides an interface 
to the user to control the whole simulation system, such as 
starting, stopping and resetting the simulation, as well as to 
record simulation and training sessions for analysis and 
evaluation. 

5.5. Scene Description 
Besides of importing geometric models from CAD tools, 

the user needs to specify physics and haptics properties of 
the virtual objects, as well as their location within the scene 
and relationships to other objects. Ideally, all this 
information would go into one central description of the 
scene. In order to provide a flexible and accessible platform, 
we need a mechanism for the user to be able to make 
changes to the scene, load other 3D models and adjust 
parameters easily, as well as to exchange data with other 
sites. Hence, we were looking for a suitable file format. 

A common exchange format used by many product data 
management systems in the mechanics and engineering field 
is STEP [25]. It is also used in the aerospace industry. For 
example, STEP is used as format for product data exchange 
between  ESA and NASA. However, being a format to cover 
the complete product life cycle, it is heavy weight, spanning 
several parts and sub-specifications. Additionally, STEP is 
rarely supported by common VR toolkits. 

COLLADA is a XML-based exchange format managed 
by the Khronos Group [14]. Since introduced in 2004, it is 
widely supported in the animation and creative media field 
and increasingly (used/popular) in engineering and 
mechanical simulation applications. These days, COLLADA 
can be exported from many common CAD and 3D modeling 
tools. The XML schema defines elements to describe 3D 
asset data, such as mesh geometries, materials, shading 
effects, animations, and physics properties [4]. We use 
specification 1.4, as the newer specification 1.5 is not yet 
fully adopted by most exporters of CAD or 3D modeling 
tools. 

Our COLLADA loader reads a document and stores all 
data in an internal structured data representation. Each 
module uses this to obtain the necessary information 
required to setup their internal representation of the scene. 
Additionally required information that cannot be described 
following the COLLADA specification, such as parameters 
for the haptic properties of nodes, is added via extension 
nodes using the <extra> element. 

5.6. Communication Layer 
A disadvantage of using a distributed system architecture 

is that the necessary network communication induces delay 
and other negative effects due to network characteristics, 

such as jitter and packet loss. As mentioned above, our 
system adopts a client/server architecture. This means that 
all state updates are mediated across the manager, rather 
than sent directly to the target module. The reason for this 
was the easier management of semantics across modules. 
However, a consequence is that the delay between 
interactions and their response is double that of a peer-to-
peer architecture. Although, our simulation environment 
(excluding tele-operation) is generally situated within a local 
area network (LAN), where round-trip-times of less than 1 
ms are typical today, mechanisms to minimize delay should 
be in place. Our system provides the following features and 
mechanisms to minimize delay caused by communication: 

Decoupled from simulation. In order to free the 
simulation process from message transfer, the 
communication is implemented in its own threaded network 
handler. As mentioned above, both processes exchange data 
via the producer-consumer pattern. The simulation process 
pushes outgoing messages in a  queue and reads pending 
incoming messages from another queue. The communication 
process uses these queues to process all pending messages in 
parallel to the simulation cycle. 

Managed queues. The majority of messages sent in our 
system describe discrete updates of absolute force and/or 
location, such as from rigid bodies. With a continuous 
stream of such updates, it is preferable to communicate only 
the latest update, rather than to ensure that every single 
update is processed. Thus, the queues offer a sorting 
mechanism to keep only the most recent update of an object.  

Vital and non-vital message types. As a most-recent 
sorting method cannot be applied to all types of messages, 
the system divides them into vital and non-vital messages. 
Vital messages include system commands or changes to 
constraint parameters, for example, while non-vital 
messages all continuous motion and force updates. These are 
then sent using reliable and unreliable protocols, 
respectively, via dedicated network channels. 

Optional direct messages. The default method for 
distributing a message is to broadcast it via the manager 
module. In the case where no checks on semantics  are 
necessary, a module is allowed to send a message directly to 
another module, without passing the manager. 

Loose synchronization. In order to achieve highest 
performance of the local simulations in the modules, our 
architecture provides a loose synchronization mechanism, 
enabling the simulations to asynchronously run at their full 
rate without waiting for synchronization. This, however, 
means that update messages are generated and consumed at 
different rates. For example, the haptics module will 
generate updates every millisecond, while the physics 
module may be able to read them only every 16 ms. If 
modules would communicate the updates at their local 
processing rate, this may cause messages queuing up in the 
network buffers and processing queues. To overcome this 
problem, the system incorporates an update distribution rate 
control, where update messages are sent  depending on the 
average simulation processing time of the receiving target 
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module and the estimated network delay. This allows a 
module to adjust its rate of sending state changes to match 
the average simulation rate at the target module. 

Data reduction. A common measure to reduce traffic for 
communicating state updates of continuous motion, such as 
tracking data, is to employ spatial-temporal filtering [22]. 
Spatial filtering sets a  threshold on differences in translation 
and rotation data before issuing a new update message. This, 
however, is not useful when subtle movements are 
important. With temporal filtering, an update is only sent 
after minimum time between distribution cycles has passed. 
Our system implements a combined spatial-temporal 
filtering mechanism on a per object basis. In order to reduce 
the overhead induced by the communication layer for 
processing single incoming and outgoing network packets, 
as well as to increase synchronization, several updates of the 
same simulation frame can be bundled into one message, as 
long the resulting data fits into a single packet. Further 
optimizations applied in tele-presence systems, such as 
perception-based data reduction of transmitted haptic data 
based on just noticeable differences [9], may be investigated 
in future versions. 

6. Preliminary Results 
Work is currently in progress for implementing the 

system architecture described above. So far, we have 
implemented the mechanisms of three scenarios: flick a 
switch, loosening and tightening screws, and removing a 
module using a bayonet handle. First tests in a desktop 
setting interacting with a Phantom Omni  haptic device have 
been conducted to evaluate the proposed system 
architecture, Fig. 9. 

In an informal experiment, we measured the end-to-end 
delay for displaying haptic interaction. This is the time from 
generating a message in the haptics module signaling a state 
change in the position of the HIP until receiving a response 
message at the visualization module. This includes the delay 
induced by the manager module passing the message on to 
the physics module, which is running a simulation cycle and 
passes a new update message with resulting positions of the 
rigid bodies to the manager, that forwards the message to the 
visualization module. Fig. 10 shows the measurement result. 

We find an average end-to-end delay of 28 ms. Thus, our 
system performs within the bound of the required 35 ms. 

 
Fig. 9. Evaluating the proposed system architecture with an 
early prototype using a desktop haptic device (left image). The 
user moves the endpoint of the LWR attached to a satellite to 
grab the green object floating in space (right image). 
 

Fig. 11 shows the number of update messages for 
mediating the response to changes of the HIP through the 
system. We measured an average throughput of 61 update 
messages per second. This corresponds to the described 
loose synchronization measure, which  keeps the haptics 
module from sending update messages faster than the 
physics simulation rate. This was set to 60 Hz during the 
measurements.  

 

 
Fig. 10. End-to-end delay. 

 
Fig. 11. Throughput. 

7. Conclusion 
This paper gave an overview of a real-time interactive 

simulation and training environment used as a platform for 
the analysis, training and programming of on-orbit servicing 
tasks, as well as our work in progress developing the 
underlying infrastructure. The aim is to allow performing 
manual and robotic assembly and disassembly tasks within a 
haptic-enabled immersive virtual environment. The main 
challenges are the real-time simulation and rendering of the 
correct dynamic behavior and the realistic appearance of 
satellite components and their complex mechanisms 
resembling the real conditions in space, as well as to 
integrate interaction through a haptic device. The paper 
proposes a distributed system architecture in order to utilize 
dedicated computing resources to fulfill the real-time 
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constraints. The architecture divides the physics simulation, 
visualization and haptic rendering into separate modules that 
run in parallel on dedicated machines. A central manager 
mediates the communication of state updates, while 
managing the global semantics of object behaviors. 
Preliminary results have shown that our system is able to 
provide an end-to-end latency across the modules of 28ms 
for sending updates from moving the haptic device to 
displaying the visual response. 

The modular design of the proposed architecture 
facilitates the research and development of improvements 
and extensions with focus on individual aspects of the 
simulation environment. Future work will investigate 
alternative real-time physics engines, develop optimizations 
to the haptic rendering and explore two-handed interaction 
techniques. 
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