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Efficient and robust algorithms for solution of the adjoint
compressible Navier–Stokes equations with applications
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SUMMARY

The complete discrete adjoint equations for an unstructured finite volume compressible Navier–Stokes
solver are discussed with respect to the memory and time efficient evaluation of their residuals, and their
solution. It is seen that application of existing iteration methods for the non-linear equation—suitably
adjointed—has a property of guaranteed convergence provided that the non-linear iteration is well behaved.
For situations where this is not the case, in particular for strongly separated flows, a stabilization technique
based on the Recursive Projection Method is developed. This method additionally provides the dominant
eigenmodes of the problem, allowing identification of flow regions that are unstable under the basic
iteration. These are found to be regions of separated flow. Finally, an adjoint-based optimization with
96 design variables is performed on a wing–body configuration. The initial flow has large regions of
separation, which are significantly diminished in the optimized configuration. Copyright q 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Adjoint equations are increasingly growing in importance in the field of computational aero-
dynamics, as emphasis shifts from the modelling of physical phenomena to their control and
optimization. These applications introduce a class of minimization problems to the field, where
the extremal value of some functional of the flow solution in some parameter space is desired. The
parameterization of three-dimensional aircraft geometries can involve many hundreds of design
parameters however [1], and all efficient solution approaches therefore rely on gradients of the
functional in the design space. The gradients themselves can be most efficiently evaluated using
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366 R. P. DWIGHT AND J. BREZILLON

adjoint methods [2], that provide the gradient of a single functional with respect to a large number
of parameters with a cost only very weakly proportional to the number of the parameters.

The first use of this kind of sensitivity analysis in fluid dynamics was in 1973 and it was
due to Pironneau for the Stokes equations [3, 4]. However, it was not until 1988 that Jameson
extended the procedure to inviscid compressible flows, enabling the optimization of transonic
aerofoil profiles [5]. The discrete adjoint approach, where the discretized rather than the continuous
equations are linearized, was first performed for the compressible Euler equations by Elbanna and
Carlson [6], followed by Taylor et al. [7] and Baysal and Eleshaky [8]. A review of aerodynamic
shape optimization techniques may be found in [9] and of sensitivity analysis and optimization
for complex configurations in [10]. We also note a recent collection of literature on aerodynamic
design [11].

However, the adjoint equations result directly from a linearization of the non-linear equations,
and their solution is hence a problem of comparable difficulty to the solution of the original
problem and—as will be seen—it is sometimes significantly more difficult. The first issue is the
evaluation of the discrete adjoint residual, which requires the transpose of the Jacobian of the
spatial discretization. Typically, it is not practical to store this matrix explicitly, due to its size, but
its inline evaluation for each residual would be too costly. In Section 2 a compromise is found
based on a particular factorization of second-order terms in the spatial discretization.

Although it is possible to apply the same iterative methods to the adjoint problem as used for the
non-linear problem as done in Section 4, often these do not converge due to the lack of asymptotic
convergence of the method as applied to the original problem. It then becomes necessary to apply
some stabilization technique to the iteration. The Recursive Projection Method (RPM) is one such
technique and is considered in Section 5. The RPM method provides the dominant eigenmodes
of the iteration as a side-effect, suggesting an eigensystem analysis of the original iteration with
the aim of isolating the cause of the instability. In Section 6 this is performed for a transonic
aerofoil with and without flow separation, and the separation is identified as the region in which
the iteration amplifies the error.

Adjoint solutions for such flows are essential in practice, as demonstrated in Section 7, where
drag minimization of wing–body aircraft geometry with a large region of corner and trailing-
edge separation are considered. The separation are the dominant source of removable drag in this
case, and after optimization with a gradient-based method, the area of detached flow is reduced
significantly.

We forego a detailed description of the compressible Navier–Stokes equations and their unstruc-
tured finite volume discretization in the DLR TAU-Code, referring the interested reader to [12–15],
and note only that the method uses the standard Jameson–Schmitt–Turkel (JST) flux with scalar
artificial dissipation [16] and the well-known one-equation Spalart–Allmaras turbulence model
with Edwards modification [17]. The resulting semi-discrete system is expressed as

dW

dt
+R(W,�)=0 (1)

where W is the vector of unknown flow variables, � is some arbitrary scalar parameter of the
flow problem or geometry, t is the time and R is the residual. Given this we are interested in
formulating and solving linear systems of the form

�R
�W

�=−�R
��

(2)
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for unknowns �, the primal equation, and more especially[
�R
�W

]T
�=−

[
�I
�W

]T
(3)

for unknowns � and scalar cost function I (W,�), the adjoint equation. We denote by �R/�W the
Jacobian and the term linear problem refers to either (2) or (3). Given the solution to one of these,
the derivative of I with respect to � may be expressed as

dI

d�
= �I

��
+

[
�I
�W

]T
�= �I

��
+�T �R

��
(4)

whereby evaluating this expression for m different � and n different I requires either m solutions
of (2) or n solutions of (3). For typical aerodynamic optimization problems m�n, as we are
concerned with a few output forces, and the parameterization of 3d geometries, and the adjoint
becomes significantly more efficient.

2. APPROXIMATION OF THE JACOBIAN

The convective terms within (1) are discretized using the JST scheme, the numerical flux across
a face {i j} with normal vector ni j being expressed as

f̂ ci j = 1
2 ( f

c(Wi )+ f c(Wj )) ·ni j
− 1

2 |�ci j |{ε(2)
i j (Wj −Wi )−ε

(4)
i j (L j (W )−Li (W ))} (5)

where f c is the exact convective flux, |�c| is the maximum local convective eigenvalue, ε(2,4)

control the switching between first- and third-order dissipation and

Li (W )= ∑
k∈N(i)

(Wk−Wi ) (6)

where N(i) is the set of all immediate neighbours of grid point i . A complete linearization of
this flux may be found in [13], and covers three full pages. More problematic than this is that its
stencil includes not only immediate, but also next-neighbouring points, and the Jacobian therefore
has next-neighbour fill-in.

In previous work in 2d [18] this Jacobian was stored explicitly. Restarted GMRES was applied
with an ILU(4) preconditioner as a solution method. This scheme provided an adjoint solution in
approximately 5% of the time required for the non-linear field, but required a factor of 11 times
more memory than the standard solver. This approach is no longer tenable in 3d as the memory
requirements given in Table I show. This table was generated empirically by running the sequential
codes for one 2d and one 3d turbulent test case with an LU-SGS smoothed 3W multigrid cycle.
The discrepancy between the two sets of results is due to the much increased number of faces in
3d. Notable is the memory usage of the original non-linear code; we believe 1.2 million points in
1GB of memory is unusually efficient for an unstructured solver. On the other hand, mere storage
of the full Jacobian in 3d (without the additional memory needed by ILU and GMRES) multiplies
the memory costs of the code by a factor of 13.5. Even though the approach reduces evaluation
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Table I. The memory requirements and run-time of the standard code and two linearized versions
of the code for representative 2d (hybrid 28k points) and 3d (hybrid 120k points) grids.

Standard TAU Full Jac.∗ Reduced Jac.∗

Memory (Bytes) 2d 12M 100M 44M
Factor increase 2d ×1.0 ×8.3 ×3.7
Points in 1GB 2d 2.3×106 280×103 640×103

Time res. eval 2d ×1.0 ×1.3 ×0.7
Time Jac. eval 2d — ×26.2 ×2.6

Memory (Bytes) 3d 100M 1350M 400M
Factor increase 3d ×1.0 ×13.5 ×4.0
Points in 1GB 3d 1.2×106 89×103 300×103

Time res. eval 3d ×1.0 ×1.7 ×0.6
Time Jac. eval 3d — ×28.0 ×3.0

∗Complete code, using same iterative procedure as standard TAU.

of the linear residual to a matrix–vector multiplication, this is a factor 1.7 times more expensive
to evaluate than the non-linear residual due to the memory bandwidth bottleneck.

To alleviate these deficiencies the following device is introduced: by making the assumption that
the ε and |�| are constant, a simplification of the adjoint residual is possible [18, 19]. Treat L as an
independent variable, so that the derivative and adjoint of (5) may be expressed, respectively, as

d f̂ c

dW
= � f̂ c

�W
+ � f̂ c

�L
�L
�W

(7)

[
d f̂ c

dW

]T

=
[

� f̂ c

�W

]T

+
[

�L
�W

]T[
� f̂ c

�L

]T

(8)

whereby all matrices on the RHS of these equations have immediate neighbour fill-in only. Further
� f̂ c/�L is a multiple of the identity at each grid face and �L/�W is trivial. If �L/�W is calculated
on-the-fly, memory requirements are only slightly greater than those required for a single Jacobian
with immediate neighbour fill-in.

In addition, the matrices may be stored very naturally on the edges and nodes of the grid
by which the adjoint residual may be evaluated in two loops over all edges by introducing an
intermediate variable �∗ as follows:

�∗ =
[

� f̂ c

�L

]T

� (9)

[
d f̂ c

dW

]T

�=
[

� f̂ c

�W

]T

�+
[

�L
�W

]T
�∗ (10)

Since viscous and turbulence diffusion fluxes are used, which involve only gradients normal to grid
faces (the so-called thin shear-layer discretization), the remaining terms of the Jacobian contain only
immediate neighbour information and may be formed exactly. The performance of the resulting

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:365–389
DOI: 10.1002/fld



COMPRESSIBLE NAVIER–STOKES EQUATIONS 369

method is given in the third column of Table I, the factor 4 increase in memory being of particular
importance, which is considered acceptable. If it happens to be unacceptable there remains the
option of computing the Jacobian on-the-fly, giving a code of similar memory requirements to the
original, but with a linear residual three times more expensive than the non-linear residual.

The assumption of constant dissipation coefficients necessarily affects the accuracy of the adjoint
solution; however, this error was systematically investigated in [18] together with several other
Jacobian approximations, and found to be insignificant for the purposes of gradient evaluation and
optimization. A theoretical rationale for this result was provided in [13]. Note also that—depending
on the form of the ε—by choosing suitable intermediate variables it may be possible to treat the
complete dissipation operator in a similar manner, so that no constant coefficient approximation
must be made. This step was considered unnecessary given the results of [18].

3. PARALLELIZATION OF THE ADJOINT CODE

Parallelization of the adjoint residual code does not fit easily into the pattern established by
parallelization of the original code. This latter follows a domain decomposition approach; the
global grid is divided into n non-overlapping point sets K={K1,K2, . . . ,Kn}, each of which
is supplemented by all points that immediately neighbour a point in the set and are not in the set
themselves:

K̂m ={i ∈K\Km :∃ j ∈Km s.t. i ∈N( j)} (11)

to give domains Dm =(Km,K̂m). Variables defined at points in K̂m are copied from their native
domain after they have been updated there, and before they are needed inDm . This parallel copying
operation is the only parallel operation needed on variables defined at grid points. The variables
defined at K̂m are never modified within Dm .

To illustrate the difficulty with parallelization of adjoint consider the code sample

yi := x j −xi (12)

evaluated on domain Dm and (borrowing the notation of algorithmic differentiation, see e.g. [2])
its adjoint

x̄i :=−ȳi , x̄ j := ȳi (13)

If i, j ∈Km there is no difficulty, but if i ∈Km and j ∈K̂m ( j ∈Kl say), then the code requires
that a point in K̂m be updated. There are two possible approaches: either transfer the second
operation of (13) to Dl , or perform it within Dm and communicate the result ‘backwards’ to Dl . In
most circumstances the former is more natural, but in situations where the stencil is not symmetric,
e.g. where there is no corresponding y j := xi −x j to (12) above, the latter can be simpler. For the
second approach, it should also be carefully noted that a single point may receive contributions
from multiple neighbouring domains during one ‘backward’ communication. In any case, each
such occurrence must be explicitly handled if the parallelized code is to be correct.

As an example, in the present effort � f̂ c/�W is not transposed in memory as would be required
for evaluation of Radj

j :=[� f̂ ci /�Wj ]T�i local to Dl . Rather R
adj
j is evaluated on Dm and commu-

nicated. The complete resulting parallel adjoint code has negligibly more communication than the
original code and therefore scales similarly with number of processors.
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4. APPLICATION OF EXISTING FIXED-POINT ITERATIONS

Efficient solution methods for the non-linear problem (1) have been an important topic of research
for some time, and significant experience has been gained in this area. Most methods currently in
use employ some form of fixed-point iteration (FPI), a class of methods including Runge–Kutta,
multigrid and implicit schemes, which may all be written

M(Wn+1−Wn)=−R(Wn) (14)

for some preconditioning matrix M . Given the level of advancement of these techniques, it is worth
considering whether they can be applied to the solution of the corresponding linear equations. In
fact by rearranging (14), and linearizing about W̃ , where R(W̃ )=0, we have

Wn+1=(I −M−1A)Wn+g(W̃ )+O‖Wn−W̃‖2 (15)

where A is the Jacobian evaluated at the exact solution and g(·) is some function independent of n.
The relation to the linearized problem is immediately apparent, and informed by this we consider
the FPI

M(�n+1−�n)= �R
��

−A�n (16)

or rearranged:

�n+1=(I −M−1A)�n+M−1 �R
��

(17)

The coefficients of Wn and �n in these two iterations are identical, so we can conclude that—for a
sufficiently converged non-linear iteration—the errors reduce at the same rate; i.e. the asymptotic
convergence behaviour is identical. However, this is only true if A is the exactly formulated
Jacobian based on a highly converged non-linear solution. The rate of convergence itself is given
by the dominant eigenvalue of (I −M−1A).

To achieve the same for the adjoint equation consider the FPI

MT(�n+1−�n)=
[

�I
�W

]T
−AT�n (18)

so that

�n+1=(I −M−TAT)�n+M−T
[

�I
�W

]T
(19)

where M−T denotes the inverse transpose of M . Since any real matrix and its transpose have
identical eigenspectra, the asymptotic convergence rate of (19) will be the same as that of (17).

Further, by requiring that �0=�0=0, and expanding (17) and (19) to the N th iteration we
have, respectively,

�N+1=−
N∑

n=0
(I −M−1A)nM−1 �R

��
(20)

�N+1=−
N∑

n=0
(I −M−TAT)nM−T

[
�I
�W

]T
(21)
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given which it quickly follows that

[�N+1]T �R
��

=
[

�I
�W

]T
�N+1 (22)

i.e. that the primal and adjoint results for dI/d� will be identical not only after the equations have
fully converged, but also at every intermediate step.

These two properties identical asymptotic convergence, and a relation on the transient conver-
gence are very desirable. The first effectively provides a guarantee that, given convergence of the
non-linear problem, the linear problem will also converge. Ideally this would mean that the level
of intervention required from a user of the code to run the linear code subsequent to the non-linear
code is minimal; CFL numbers and such do not need to be adjusted. The second property, which
holds to working accuracy, aids development of the adjoint code considerably by providing a
means of verifying that the Jacobian and FPI have been correctly adjointed. For example this test
revealed that the Laplacian residual smoothing present in the Runge–Kutta algorithm was not quite
symmetric, as might have been expected.

In the present work the approximately factored implicit LU-SGS scheme [13, 20] is adjointed.
Written

(D̃+ L̃)D̃−1(D̃+Ũ )x=b (23)

where D̃, L̃ and Ũ are the block diagonal, lower triangular and upper triangular parts, respec-
tively, of an approximate first-order Jacobian Ã. The LHS matrix clearly identifies with M . The
corresponding adjoint iteration is therefore

(D̃+Ũ )T D̃−T(D̃+ L̃)Tx=b (24)

where the order of the forward and backward sweeps has been reversed by the application of the
transpose. Similarly the adjoint of linear multigrid may be found by writing the iteration in matrix
notation and transposing. As a result, the transpose of the original interpolation operator becomes
the adjoint prolongation operator, and the transpose of the prolongation the adjoint interpolation.
Also if the relaxation steps are performed before the sweep in the original method, they are
performed after the sweep in the adjoint method. The adjointing of Runge–Kutta is somewhat
more involved [21], but follows the same basic pattern of writing the iteration in matrix notation
and transposing.

In all cases it is necessary to work in the same variables as the non-linear iteration (which is in
conservative flow variables), if the iterations are to be consistent. If the Jacobian is formulated in
terms of derivatives with respect to primitive variables it must first be transformed. The memory
and CPU requirements of the adjoint FPIs are identical to their primal counterparts. Also of interest
is that all the standard non-adjointed iterative methods perform very poorly on the adjoint problem.
For the untransposed Runge–Kutta method on a simple adjoint test case, it was necessary to reduce
the CFL number to 1

4 of its original value to achieve stability. This effect was not as significant
for multigrid, likely due to the similarity of the original and adjoint formulations.

A numerical demonstration of the two properties derived here is shown in Figure 1 using LU-
SGS and a 3W multigrid cycle for a transonic NACA0012 aerofoil. Plotted are the convergence
of the non-linear, linear and adjoint codes, together with the gradient dCD/d� from the primal and
adjoint (where here � is the angle-of-attack), as well as the difference between these two gradients.
Note that the asymptotic convergence of all codes is identical and the error in the two versions
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Figure 1. Convergence of non-linear, primal and adjoint codes for an NACA0012 test case.
Also shown are transients of dCD/d�.

of dCD/d� rests at the truncation error of the floating point arithmetic used. The monitoring of
such gradients is also a useful way for a user of the code to estimate the progress of convergence,
corresponding to monitoring of forces in the non-linear case.

5. THE RECURSIVE PROJECTION METHOD

Despite the guarantees regarding convergence provided by the theory of the previous section,
there are regularly situations in which it is possible to obtain a reasonably converged solution of
the non-linear equations, but not of the corresponding linear equations. This can occur for three
reasons, all of which violate the parity of (14) and (16). Either (a) the non-linear solution is not
sufficiently converged or (b) there is a discrepancy between the linear and non-linear problem due
to some approximation of the Jacobian or (c) the FPI applied to the non-linear problem does not
converge asymptotically itself.

All three cases appear regularly in practice. An engineer may reasonably consider a computation
converged when the integrated forces that interest her no longer vary significantly, though this
may occur prior to the asymptotic regime. With regard to (b), as already described, the Jacobian is
simplified to obtain a scheme with reasonable memory costs. Although the simplification is very
slight, it is not difficult to find a situation in which the non-linear problem converges and the linear
diverges, simply by increasing the CFL number until the iteration is right on its stability boundary
for the non-linear problem.

However, experience suggests the most significant is the third case—particularly for problems
involving complex geometries—where minor unsteady physical phenomena are almost always
present and reflected in the FPI due to the pseudo-time marching approach, leading to eventual
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stalling or limit cycles in the convergence. Treating these cases strictly correctly would require
an unsteady computation, which may be an order of magnitude more expensive than a stationary
calculation, and in practice the latter tends to converge to an acceptable level anyway. However,
the lack of true asymptotic convergence often leads to instability in the linear problem.

In an effort to understand and mitigate these phenomena, we consider the RPM, originally
developed by Schroff and Keller in 1993 for the purposes of bifurcation analysis and stabilization
of unstable procedures [22, 23]. Since then it has been applied in aerodynamics for convergence
acceleration [24, 25], and stabilization of linear frequency domain solvers [26].

The idea is to regard the transient solution of the linear problem as a sum of eigenvectors of
the relaxation operator �=(I −M−1A). The application of � to an approximate solution then
corresponds to a product of each eigenvector with its corresponding eigenvalue. Divergence of
the iteration implies that there is at least one eigenvalue of � with modulus greater than unity.
Assuming that the number of such eigenvalues is small, and that the space spanned by their
eigenvectors is known, call it P, then it must be possible to solve the projection of the problem
onto this low-dimensional subspace using some expensive but stable method, while solving the
projection onto the complimentary subspace Q using the original FPI iteration, which is known to
be stable there.

Newton–Raphson is typically used on P. The space of dominant eigenvectors is determined
as the calculation progresses by applying the principle that the difference between successive
applications of the FPI onQ form a power iteration on the dominant eigenvalues of� restricted toQ.

In detail, consider the relaxation operator of (17) written

N (x)=(I −M−1A)x+M−1b (25)

where x and b are the unknown and RHS, respectively. Let V be an orthonormal basis of P,
then orthogonal projection operators onto P and Q may be written, respectively, P=VVT and
Q= I −VVT. Further define xP = Px , xQ =Qx . Then the RPM iteration may be written

xn+1
Q =QN (xn) (26)

xn+1
P = xnP +(I −P�P)−1[PN(xn)−xnP ] (27)

where

xn+1= xn+1
P +xn+1

Q (28)

The ‘derivative’ term in the Newton iteration (27) may be rearranged as follows:

(I −P�P)−1 = V (I −V T�V )−1V T (29)

= V (I −H)−1V T (30)

where H is a square matrix of size dimension of P, whose inversion is cheap if P is of low
dimension. The inversion is performed only once for each basis, using LU factorization [27]. Also
the term PN (xn) in the Newton iteration does not require an additional residual evaluation, as
N (xn) is already available from (26). The projection of this vector onto P is the only mesh-
size-dependant part of the Newton iteration (excluding the one-time evaluation of H ), which is
therefore extremely cheap.
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To determine the basis itself consider the sequence

K =[�xnQ,�xn−1
Q , . . . ,�xn−k+1

Q ] (31)

where �xnQ = xn+1
Q −xnQ are readily available from the iteration on Q. For a general non-linear N ,

a Taylor expansion of QN (xn) gives

xn+1
Q = QN (xn) (32)

= Q

(
N (xn−1)+ �N

�x
�xn+O(�xn)2

)
(33)

= Q(xn+��xn+O(�xn)2) (34)

= xnQ+Q�Q�xn+Q�P�xn+O(�xn)2 (35)

where Q�P≈0 because P is an approximately invariant subspace of �, so

�xnQ = xn+1
Q −xnQ (36)

= Q�Q�xn−1+O(�xnQ)2+O(�xnP)2 (37)

In our case N is linear, so all higher-order derivatives in the Taylor expansion vanish and
Q�P=0, so

�xnQ =Q�Q�xn−1 (38)

Therefore, K is the k dimensional Krylov space for Q�Q seeded with �x0Q . Asymptotically this
subspace will tend to contain the dominant k eigenvectors of Q�Q, as they are the components
of �x0Q most amplified by repeated application of the operator.

Via QR factorization an orthogonal basis Q̄ for K is obtained

K = Q̄ R̄ (39)

whereby column pivoting is used such that the sequence of diagonal elements |R̄ii | of the upper
triangular matrix R̄ is decreasing. Additional vectors for V are then chosen on the basis of the
Krylov Acceptance Ratio, �. For the largest i satisfying

|R̄ii |
|R̄i+1i+1|

>� (40)

the first i columns of Q̄ are added to V . Since these vectors lie in Q they are already orthogonal
to the existing V, and further orthogonalization is not necessary.

The user-defined constant � controls the accuracy, and indirectly the size, of the basis. If � is
very large the largest eigenmodes must dominate the others by a large margin. This corresponds
to many applications of the operator N , and hence many iterations, but also implies that the
power iteration will be more highly converged, and the resulting basis therefore more accurate.
Unfortunately � is highly problem dependant, as the convergence of the power iteration depends
on the distribution of the dominant eigenvectors. Based on our experience we choose � in the
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range 100–10 000. In practice it is seen that the stability and convergence of the RPM iteration is
quite sensitive to the choice of �. For this reason in future we intend to investigate a modification
of RPM that has already been used for non-linear problems, where the accuracy of each vector in
the basis is continually assessed during the course of the iteration, and vectors are removed when
their accuracy is deemed too low [24].

Note that eigenvalues of real matrices have either zero real part or occur in complex conjugate
pairs. If (40) is to be able to identify these pairs, which grow at identical rates, then the dimension k
of the Krylov subspace must be at least 3. Similarly if there are n eigenvalues of � of identical
modulus then k must be at least n+1. This latter situation has not been observed in practice
for n>2.

The storage of V and K dominates the memory requirements of the method, so it is advantageous
to keep k small. In practice the number of dominant eigenvalues treatable by the Newton method
is limited by the storage of V , rather than the CPU cost. In the following we set k=3 and place
an upper limit of 20 on the size of V .

Since P contains the dominant eigenvalues of � it is possible to solve an eigenvalue problem
on this low-dimensional subspace to obtain estimates for its eigenvalues and eigenvectors, which
may allow more detailed analysis of the FPI with respect to a specific problem on a specific grid.
The eigenvalues of � restricted to P are given by

P�P�̄= �̄�̄ (41)

Rearranging P�P as in (29) we have

H�=�� (42)

where� has k columns consisting of eigenvectors, and � is the diagonal k×k matrix of eigenvalues.
The sought dominant eigenvectors of � are then

�̄=V� (43)

A major advantage of the RPM is that its implementation requires no modification of the flow
solver, requiring as it does only application of solver FPI iterations to given input vectors. This
makes it possible to implement the entire algorithm in Matlab [25], calling the external flow solver
each time N (x) is required. In contrast to the use of GMRES as a stabilizer, RPM does not require
a priori knowledge of the size of the unstable subspace, which is expanded as necessary.

As for all Krylov methods, RPM does not offer grid-independent convergence, and is therefore
likely to scale well with problem size only in combination with a FPI containing multigrid. Further,
as problem complexity increases, the number of unstable modes is also likely to increase, resulting
in a larger basis with its associated costs.

6. INFLUENCE OF DETACHED FLOW ON LINEAR CONVERGENCE

To demonstrate the effect unsteady flow phenomena can have on the convergence of the adjoint
problem, and to evaluate RPM, we consider two cases: the RAE 2822 aerofoil Case 9 and Case 10
[28]. The only differences between these two cases are the Mach and Reynolds numbers, but
Case 9 is fully attached while Case 10 has a large region of shock-induced separation, and a small
separated region near the trailing edge. These physics can be seen in Figures 4 and 5, whereby a
negative skin friction coefficient indicates a region of reversed flow above the surface.
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Figure 2. Convergence of non-linear and adjoint problems for RAE Case 9. The adjoint problem is solved
once with a standard FPI alone, and once with RPM stabilization.

Convergence histories of the flow solutions are shown in Figures 2 and 3, respectively, where
LU-SGS with multigrid with exactly the same settings is used in both cases. The attached case
eventually reaches a region of asymptotic convergence, but Case 10 enters a limit cycle after
about 1000 iterations and converges no further. However, by this point the lift and drag are well
converged, and an engineer might reasonably be satisfied with these values. In fact the parameters
of LU-SGS were specially chosen such that this situation would occur, in an attempt to model a
circumstance that is common for complex geometries.

The cause of the limit cycle in such cases is not immediately clear and is difficult to establish with
any certainty. Most likely it is a result of physical unsteadiness of the detached flow being partially
modelled by the FPI, which is ultimately a pseudo time-stepping iteration. However, it could
equally be due to discretization problems, such as the limiter involved in the gradient evaluation
oscillating between two or more values at some point in the field, or any other non-smooth part
of the discretization oscillating.

At any rate, the lack of non-linear asymptotic convergence means that one sufficient condition
for convergence of the linear problem has not been met. Figures 2 and 3 also show the convergence
of the linear problem (without RPM), and as might be expected, the adjoint of Case 9 using the
same FPI converges and that of Case 10 diverges. The engineer who then wishes to optimize
Case 10 (perhaps to remove the separation) with an adjoint-based method cannot, even though she
can reliably obtain force coefficients. This is clearly an unacceptable situation.

Consider now the application of RPM to the two cases, also shown in the two figures, the
discontinuities in the residual history being the iterations at which the basis is extended. For
Case 9 the original iteration is stable, so the dominant eigenmodes identified by RPM are stable
modes with eigenvalues close to 1, which dominate the asymptotic convergence. Hence here RPM
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Figure 3. Convergence of non-linear and adjoint problems for RAE Case 10.
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Figure 4. Skin friction coefficient on surface for RAE Cases 9 and 10.

operates as a convergence acceleration algorithm. To emphasize this effect, � was set to a low
value (200), as a result of which a basis is found very quickly, but is fairly inaccurate. This can
be seen in the spike near the beginning of the convergence: initially the two curves are identical,
then RPM finds a first basis vector whose low accuracy causes divergence until a second improved
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RAE Case 9

RAE Case 10

Figure 5. Contours of Mach number for RAE Cases 9 and 10.

vector is found. RPM then recovers rapidly giving superlinear convergence. Depending on case
and the level of residual required RPM is typically 1.5–4 times faster than the original method in
terms of CPU time as well as multigrid cycles.

However, we are more concerned with robustness and problems that do not converge initially.
RPM with �=200 applied to the adjoint problem on Case 10 gives the convergence shown in
Figure 3. The problem is solved in a similar CPU time to the stable case.

Approximations to the eigenvalues of the FPI operator, as obtained via the power iteration of
RPM are plotted in Figures 6 and 7 for Cases 9 and 10, respectively. As must be the case—given
the linear convergence behaviour—all eigenvalues of Case 9 lie within the unit circle, and therefore
all modes converge. Four eigenvalues of Case 10 lie outside, and the eigenmodes corresponding
to these eigenvalues are amplified at each iteration of the scheme. Effectively, the diverging
components of the problem have been isolated.

Plotting the eigenvectors themselves allows identification of those regions of the flow responsible
for slow convergence and divergence, respectively. Each eigenvector has a similar structure to a
solution vector, with five complex components at each grid point; in Figures 8 and 9 the L2 norm
at each point is taken, representing the overall size of the vector in all components at that point.
The two eigenvectors shown correspond to the eigenvalues marked a and b in the previous figures,
and it should be noted that they therefore show different things: for Case 9 parts of the field that
are most slowly damped, for Case 10 parts of the field that are diverging.

From these eigenmodes much information may be obtained that is ordinarily unavailable. For
example, it becomes clear that in Case 9 the convergence rate of the iteration is limited by
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Figure 6. Approximate dominant eigenvalues of LU-SGS with multigrid applied to RAE
Case 9, determined with a power iteration.
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Figure 7. Approximate dominant eigenvalues of LU-SGS with multigrid applied to RAE Case 10.
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Figure 8. The dominant eigenvector of Case 9, corresponding to the eigenvalue marked a in Figure 6.
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Figure 9. The dominant eigenvector of Case 10, corresponding to the eigenvalue marked b in Figure 7.

the convergence of the flow in the regions of the shock and upper surface negative pressure
gradient. Devising an FPI that improves the convergence somewhere else, for example, near the
stagnation point, would therefore result in no overall improvement in the asymptotic convergence
rate. Similarly in Case 10 the cause of the non-linear limit cycle instability has been positively
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identified as the separation, in particular the largest recirculating region immediately behind the
shock. Any treatment of the instability, in either the non-linear or linear problem, must necessarily
consider the detachment. Additionally in both modes dark spots appear in the field under the
aerofoil where no special physical features are present, indicating mesh or discretization problems.

Of course the eigenmodes depend on the FPI, and so the analysis relates to physical phenomena
only over the discretization. On the other hand this is a feature that makes the analysis useful in the
study of FPIs. Of particular interest is that, in all cases examined so far with no exceptions, those
with some area of detached flow required stabilization for solution of the linear problem, and those
without separation were stable under the FPI alone. Further investigations will concentrate on the
cause of this phenomenon. Also eigenmode analysis will be applied to attempt to systematically
categorize the behaviour of some common FPIs with respect to certain flow features, the goal
being to quantify the local influence of, for example different directional multigrid coarsening
algorithms. The wider use of Krylov methods also introduces the need for an FPI that is a good
Krylov preconditioner, though not necessarily a good multigrid smoother. Where previously Fourier
analysis was an essential tool for studying multigrid smoothers, we expect eigenmode analysis to
be useful for studying Krylov preconditioners.

7. GRADIENT-BASED OPTIMIZATION

The first application of the adjoint method in aerodynamics was to flow control [29, 30], and the
discrete adjoint method developed in the previous sections is applied here in a similar context.

7.1. Optimization of a transonic aerofoil

Consider drag reduction of a transonic RAE 2822 single element aerofoil at a Reynolds number of
6.5×106, and a Mach number of 0.730, whereby the lift must be held constant at a lift coefficient
of 0.8. The geometry is parameterized using 20 design variables that modify the camberline of the
aerofoil with Hicks–Henne bump functions [31]. The thickness of the aerofoil is not permitted to
change, and as a result no additional geometrical constraints are necessary. The baseline geometry
has a strong shock on the upper surface, which is the main source of pressure drag; the optimization
problem therefore substantially consists of the removal of the shock.

The lift constraint is enforced explicitly by varying the angle of attack during the evaluation
of the drag in the non-linear RANS solver, the so-called target-lift mode. Because we wish to
minimize the drag at the target lift C∗

L, rather than at the pre-existing lift CL, the objective function
must be modified to consider the lift constraint consistently [32]

I =CD− (�CD/��)

(�CL/��)
(CL−C∗

L) (44)

a consequence of which is that the accuracy of the gradients of lift is also important for the
optimization. The computation of the adjoint gradients also includes a finite difference component,
due to the dependence of R and I on the computational grid X , which introduces terms �R/�X and
�I/�X into (4). Since a explicit linearization of these terms is not presently available in the code,
they are also evaluated using central differencing, at a cost of two mesh deformations per design
variable. Hence increasing the number of design variables still incurs relatively minor additional
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costs, see for example [1]. The conjugate gradient (CG) method with line-searches, employing
gradients from the adjoint procedure is used to solve the minimization problem.

As a preliminary step the accuracy of the adjoint gradients is evaluated by comparison with
finite difference gradients, see Figure 10. Agreement with the pressure part of the drag is excellent,
the visible differences in the friction drag gradients are principally due to the error in the finite
difference approximation, which is large due to the small absolute value of the friction drag.

Having found the gradients to be satisfactory an optimization was performed, and the conver-
gence is shown in Figure 11, where the squares represent adjoint gradient evaluations. Requiring
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Figure 10. Gradients of total and viscous drag obtained using finite-differences and the discrete adjoint.
The 20 design variables parameterize the aerofoil camberline from the leading- to trailing-edge.
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Figure 12. Baseline and optimized geometries and pressure distributions for the RAE.

only about 30 flow solutions, the drag is reduced by 35%, and by examining the surface pressure
distribution, shown in Figure 12, the shock can be seen to have been removed completely. The
baseline and optimal geometries are also shown in Figure 12.

7.2. Optimization of the DLR-F6 wing–body configuration

The next problem considered is again drag minimization at constant lift of the DLR-F6 wing–body
configuration. We use a similar strategy to that already described in [18, 33]. The on-flow is at
Mach 0.75, at a relatively low Reynolds number of 3×106 and a lift coefficient of CL=0.5.
The sub-design Reynolds number causes the flow to become detached over a large portion of the
trailing edge, and there is additionally a region of separation on the upper surface of the wing
where it meets the fuselage.

The surface of the computational grid is shown in Figure 13 and is entirely structured, a
structured layer of constant thickness extends from this in order to resolve the boundary layer, the
stacks are then topped with pyramids and the remainder of the domain is filled with tetrahedra [34].
The final mesh is coarse, with a total of 120 thousand points; however, it captures well the large
regions of separated flow already mentioned. The memory requirements and relative performance
of the adjoint solver for this specific case are given in Table I.

For the adjoint problem on this geometry, adjointed LU-SGS with multigrid alone was uncon-
ditionally unstable (as was Runge–Kutta) as expected, so that the only recourse was to a stabilized
iteration. Figure 14 shows convergence of the RPM iteration with k=3 and �=1×103. The QR
factorization of the Krylov space was evaluated every 50 multigrid cycles to determine if a new
basis vector had been found. Convergence of the problem on the P and Q subspaces individually
is also shown, along with the dimension of P (without axis) revealing when the basis updates were
made. Owing to robustness problems, only the adjoint mean-flow equations were solved while the
eddy-viscosity was frozen, resulting in a discrepancy between the non-linear and linear problems.
The effect on the calculated gradients of this approximation was investigated in [18], and found
to be acceptable for the purposes of optimization.

The corresponding eigenvalues, plotted in Figure 15, show that in total there were eight unstable
modes. Examining the associated eigenvectors shows that they are all large in the regions of
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Figure 13. Surface mesh and parameterization of the DLR F6 geometry.

Multigrid Cycles

R
es

id
u

al
s

dC
D

/ d
α

0 2000 4000 6000
10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

0

0.005

0.01

ρ-Residual (no RPM)
ρ-Residual
ρ-Residual on Q
ρ-Residual on P
Dimension of P
dCD /dα

Figure 14. Convergence of the adjoint problem with and without RPM. The residuals on the
subspaces P and Q are also shown.

separation, and particularly in the recirculating corner flow. The eigensystem analysis has therefore
allowed the conclusive identification of the adjoint convergence difficulties with the separation in
the flow.

The parameterization of the wing is shown in Figure 13, and is a combination of free-form
deformation for the shape, and a superimposed twist parameter set. The dark lines show the
position of the free-form deformation control box [35], the vertical positions of the 84 paired
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Figure 15. Dominant eigenvalues of LU-SGS smoothed multigrid applied to the F6
configuration, determined with RPM.

vertices marked with a black circle are the design variables. By locking the vertical movement
of each pair of vertices together, the thickness of the wing is held constant, and the tendency of
the optimizer to choose the thinnest possible wing (in the absence of structural information) is
countered. Note that since the bounding box passes inside the fuselage, the wing–body junction
also varies, and this is accounted for by the geometry and grid generation process. Twist of the
wing is parameterized separately using a spline with 12 degrees of freedom. These design variables
were chosen to be a good generic parameterization of the wing, without paying special attention
to the separation region. One effective means of eliminating the corner separation entirely would
be to allow deformation of the fuselage to allow fairing-like shapes, but this is not admitted in this
conceptual study. The lift constraint is again met by modifying the angle-of-attack in the target-lift
mode of the solver.

To examine the errors in the gradient produced due to the approximations of the Jacobian, the
gradients of CD with respect to a reduced set of eight design variables were computed using central
finite differences with various step sizes �, for the initial geometry. The adjoint gradients were
calculated similarly, using various step sizes for the evaluation of the mesh sensitivities �R/�X .
The results are shown in Figure 16 where it is apparent that the two sets of gradients agree well,
and that the adjoint gradients are less sensitive to the step size—as might be expected.

Given the successful gradient validation we proceed to the optimization, the convergence of
which is shown in Figure 17. The horizontal axis shows the number of calls to the flow solver
(both linear and non-linear), thereby approximately representing the computational effort required.
Symbols indicate gradient evaluations. As the scale of the design space is initially unknown the first
gradient is used to estimate the step in the design space necessary to produce a 1% reduction in CD.
After 32 solver calls the conjugate gradient algorithm was unable to reduce the drag further, giving
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a final reduction of about 10 drag counts. In contrast a similar optimization with 42 parameters
produced a reduction of only 8 counts on the same mesh (in a similar CPU time) [1], emphasizing
the need for a comprehensive parameterization.
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Figure 18. Effect of the optimization on the corner separation of the geometry.

The effect of the optimization was to reduce the region of corner separation considerably, which
can be seen in Figure 18. This was achieved principally through a reduction in the angle of
attack, with the associated loss of lift being compensated by an increase in wing twist. Though not
completely eliminating the separation, it is doubtful that this is possible within the design space
considered. A further optimization, using identical techniques but involving only a parameterization
of the fuselage was performed, and it was found that by this means the recirculation could be
completely removed.

8. CONCLUSIONS

Our immediate goal in the investigation of the discrete adjoint method was to develop a solver that
is at least as robust and efficient as the non-linear solver, as only then can it reliably be applied to
practical engineering problems in optimization and adaptation. The algorithms described in this
paper go a long way towards achieving this goal, in particular the memory requirements and time
per residual evaluation are acceptable. The adjoints of the non-linear solution algorithms allow
efficient convergence, at least in cases that behave well non-linearly. For the cases that behave
poorly RPM offers a means of increasing robustness and obtaining a solution, and is also efficient
in memory provided there are not more than 10–20 unstable modes in the problem. However, there
remain cases that are presently insoluble with reasonable computer resources. Some contain too
many unstable modes, others diverge before RPM has the chance to find a basis (for example,
with an apparent extremely large eigenvalue appearing in the turbulence equations). The tackling
of these problems represents the next challenge. It is envisaged that use of eigensystem analysis
will aid the design of FPIs especially suited as preconditioners to RPM and Krylov methods. The
parallelization of these algorithms is also necessary for practical applications.

To demonstrate the power of the resulting adjoint solver it was applied to the optimization of
a transport aircraft configuration with a large number of design variables, whereby a significant
reduction in drag was achieved via a reduction in the extent of separated flow. This calculation
would not have been possible without the developments in efficiency and robustness described in
this paper.
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