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Abstract Dynamic stall on a helicopter rotor blade
comprises a series of complex aerodynamic phenomena
in response to the unsteady change of the blade’s an-

gle of attack. It is accompanied by a lift overshoot and
delayed massive flow separation with respect to static
stall. The classical hallmark of the dynamic stall phe-
nomenon is the dynamic stall vortex. The flow over

an oscillating OA209 airfoil under dynamic stall con-
ditions was investigated by means of unsteady surface
pressure measurements and time–resolved particle im-

age velocimetry. The characteristic features of the un-
steady flow field were identified and analysed utilising
different coherent structure identification methods. An
Eulerian and a Lagrangian procedure were adopted to

locate the axes of vortices and the edges of Lagrangian
coherent structures, respectively; a proper orthogonal
decomposition of the velocity field revealed the energet-

ically dominant coherent flow patterns and their tem-
poral evolution. Based on the complementary informa-
tion obtained by these methods the dynamics and in-

teraction of vortical structures were analysed within a
single dynamic stall life cycle leading to a classification
of the unsteady flow development into five successive
stages: the attached flow stage; the stall development

stage; stall onset ; the stalled stage; and flow reattach-
ment. The onset of dynamic stall was specified here
based on a characteristic mode of the proper orthog-

onal decomposition of the velocity field. Variations in
the flow field topology that accompany the stall on-
set were verified by the Lagrangian coherent structure
analysis. The instantaneous effective unsteadiness was
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German Aerospace Center (DLR),
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defined as a single representative parameter to describe
the influence of the motion parameters. Dynamic stall
onset was found to be promoted by increasing unsteadi-

ness. The mechanism that results in the detachment of
the dynamic stall vortex from the airfoil was identified
as vortex induced separation caused by strong viscous
interactions. Finally, a revised criterion to discern be-

tween light and deep dynamic stall was formulated.

Keywords dynamic stall · time–resolved PIV ·
coherent structure analysis · unsteady separation

List of Symbols
ai i-th temporal eigenmode of the POD
c chord length

Cl lift coefficient
Cm pitching moment coefficient
Cp pressure coefficient

fosc oscillation frequency
k reduced frequency
Ma Mach number
M number of grid points

n probability density
N number of PIV velocity fields
n unit normal vector

req reduced pitch rate
Re Reynolds number
S two-dimensional area

tn discrete time stamp
tss time at which static stall angle is exceeded
T period of oscillation
u = (u, v, w) local velocity

U∞ free steam velocity
x = (x, y, z) spatial coordinates
α angle of attack

α0 mean incidence
α1 oscillation amplitudeA
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αds dynamic stall angle of attack
αmax maximum angle of attack
αss static stall angle of attack
α̇ss instantaneous effective unsteadiness

Γ scalar function
∆tds dynamic stall delay
λi i-th eigenvalue of the POD

θ velocity orientation angle
ω vorticity
ψi i-th spatial eigenmode of the POD

↗ during upstroke
↘ during downstroke
O order of magnitude

1 Introduction

The dynamic stall process of the flow over a constantly

pitching airfoil, a classic example of unsteady separa-
tion, comprises a series of complex aerodynamic phe-
nomena. It features a lift overshoot and a delay in the

onset of massive flow separation with respect to static
stall. The salient feature of the unsteady separating
flow is the formation and convection of a large–scale

coherent structure referred to as the dynamic stall vor-
tex. The most prominent example can be observed on
the retreating blades of a helicopter rotor in forward
flight. Although the dynamic stall delay and the re-

lated increase of the maximum lift are convenient in
some applications, the large excursions of the aerody-
namic loads during vortex break down are adverse to

helicopter rotors as strong vibrations and potentially
fatal structural loads are introduced which are poten-
tially fatal for a helicopter rotor. Due to the incessant
interest in improving the manoeuvrability and perfor-

mance of rotary–wing aircraft and rapidly manoeuvring
aircraft, dynamic stall has been the subject of numer-
ous investigations during past decades (McAlister et al

1978; McCroskey 1981; Carr 1988).
The analysis of dynamic stall events on an oscillat-

ing airfoil by Carr et al (1977) revealed that the promi-

nent features within a full cycle of oscillation are consec-
utively the emergence and spreading of flow reversal on
the airfoil’s suction side, the formation and convection
of a large–scale leading edge vortex, massive flow sepa-

ration, and flow reattachment. Analogously, Shih et al
(1992) classified the unsteady flow development over an
airfoil pitching up at constant rate into four successive

stages: a vortex formation stage, a vortex convection
stage, stall onset, and a stalled stage. Both descriptions
show that the flow over either a constantly pitching or
oscillating airfoil is qualitatively described by the same

characteristic features, being the initiation, growth and

shedding of a leading edge vortex and the associated

lift overshoot. For both types of motion the process of
vortex formation and convection result in a delay of
massive flow separation to angles of attack beyond the

static stall angle. During this delay the lift continues
to increase with increasing angle of attack yielding the
characteristic lift overshoot. The inception of stall is
generally accompanied by a loss of lift and an increase

of the negative pitching moment and marks the begin-
ning of the stalled stage. This stage is recognised by
large–scale vortex shedding and associated large fluc-

tuations of the lift, drag and pitching moment. When
the airfoil motion is oscillatory the airloads show large
hysteresis.

Despite extensive analytical, numerical and experi-
mental efforts, the phenomenology of dynamic stall is
not yet fully understood and characterised. In partic-

ular, the process that leads to the formation of the
primary stall vortex and the mechanism that causes
the vortex to detach are still controversial. Additional

investigations are required to provide a reliable assess-
ment of the dynamic stall onset, which is mandatory for
successful dynamic stall modelling and prediction. Pos-
sible indicators of stall onset are summarised by Sheng

et al (2006) and include the point at which the pitch-
ing moment coefficient breaks, a deviation in the lift or
the drag coefficient occurs, and the maximum or critical

leading edge suction is achieved (Wilby 2001; Leishman
and Beddoes 1989). These criteria are all based on the
examination of airloads and a direct correlation with
coherent or vortical structures in the flow field is still

pending. A new method to identify stall onset based
directly on the flow field is required.

Accurate knowledge of the flow field during dynamic
stall is strongly tied to a fundamental understanding of
the development and interaction of coherent structures.

Only recently time–resolved particle image velocimetry
(TR-PIV) became applicable which allows for analy-
sis of the spatiotemporal evolution of the velocity field
in general and coherent structures in particular. How-

ever, experimental investigation of vortex dynamics and
interactions remains challenging due to the lack of a
universally accepted definition of a vortex. Several def-

initions have been proposed hitherto (see e. g. Lugt
1979; Robinson 1991; Haller 2005), but no consensus
has been reached yet. As a direct consequence, unam-
biguous vortex detection remains elusive and various

Eulerian and Lagrangian criteria have been introduced
whose adequateness depends on the specific problem at
hand (Cucitore et al 1999; Chakraborty et al 2005).

Within the scope of this study, the conspicuous fea-
tures of the experimentally investigated flow over a si-

nusoidally oscillating airfoil in a uniform flow are iden-A
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tified and analysed utilising a combination of an Eule-
rian vortex centre allocation procedure (Michard et al
1997), a Lagrangian approach based on the Lyapunov
exponent (Haller 2001), and a proper orthogonal de-

composition (POD) of the velocity field (Sirovich 1987).
Whereas past experimental investigations generally in-
volve phase–locked measurements, the present study

provides time–resolved velocity field information in ad-
dition to unsteady surface pressure distributions. This
allows for the examination of the chronology of events

during a single cycle of oscillation. The main objective
is to combine the different vortex identification proce-
dures to analyse the spatiotemporal evolution of vorti-
cal structures within the dynamic stall life cycle and to

specify directly the onset of dynamic stall.
The paper is organised as follows. Prior to the de-

scription of the applied coherent structure identification

procedures, the experimental methods will be specified.
Subsequently, the experimental results are presented
and discussed covering the examination of the chronol-
ogy of events during an entire dynamic stall life cycle

and a detailed analysis of the onset of dynamic stall.
The discussion is concluded by a short summary of the
most important findings and by suggesting further av-

enues of investigation.

2 Experimental Set-up

Wind tunnel experiments were conducted to investi-
gate the dynamic stall life cycle on a constantly pitch-
ing airfoil in a uniform flow at a free stream Reynolds

number Re = 9.2× 105 based on the chord length c
(Mach number Ma = 0.14). A two-dimensional air-
foil model with an OA209 profile was subjected to a
sinusoidally oscillating motion about its quarter chord

axis with a mean incidence α0, an amplitude α1, and
an oscillation frequency fosc. The latter is preferably
written in dimensionless form as the reduced frequency

k = π fosc c/U∞, where U∞ is the free steam velocity.
The mean incidence, amplitude and reduced frequency
were varied such that α0 ∈ {18°, 20°, 22°}, α1 ∈ {6°, 8°},
and k ∈ {0.050, 0.075, 0.10}.

Stereoscopic TR-PIV was conducted in the cross–
sectional plane at model mid–span. The width of the
field of view covered the entire chord for the relevant

angle of attack range. Time series of 6144 frames at full
camera resolution (i. e. 1024 px× 1024 px) were recorded
at 3000 Hz, corresponding to an acquisition rate of

1500 Hz for the velocity fields. After mapping the views
of both cameras, the dimensions of the PIV measure-
ment window were 335 mm× 165 mm with a spatial res-
olution of 5.0 px/mm. The PIV images were processed

using an interrogation window size of 32 px× 32 px and

an overlap of approximately 80 % yielding a grid spac-

ing of 6 px or 1.2 mm which is less then 0.005 c. The
interrogation window size was minimised ensuring an
acceptable signal–to–noise ratio. The window overlap

on the other hand was maximised to avoid artificial
smoothing of velocity gradients (Richard et al 2006).
By doing so the spatial resolution of the results of the
vortex detection algorithms was improved. Prior to the

coherent structure analysis, the velocity fields were ro-
tated into the airfoil reference system with the x-axis
along the chord, the y-axis along the span and the z-axis

upward perpendicular to the chord, while the origin co-
incides with the rotation axis, i. e. the airfoil’s quarter
chord axis, at model mid-span. Simultaneously to the
TR-PIV, the surface pressure distribution at the model

mid-span was scanned at approximately 6 kHz for about
15 s. The data acquisition was synchronised with the
recording of the PIV images allowing for straightfor-

ward assignment of the instantaneous pressure distri-
butions to each of the acquired velocity fields.

3 Coherent Structure Analysis

The common goal of coherent structure identification

methods is to locate, extract, and visualise flow struc-
tures that are characterised by various spatial and tem-
poral scales.

3.1 Eulerian Method

A literature survey yields a considerable number of Eu-

lerian identification criteria. Eulerian structure detec-
tion usually deals with spatial concentrations of quan-
tities derived from the instantaneous velocity field and

its gradients. Comprehensive reviews of the diversity of
Eulerian vortex identification schemes and their appli-
cations are provided by Jeong and Hussain (1995) and
Wu et al (2006). Among the most commonly used Eule-

rian vortex detection criteria are the Q-criterion intro-
duced by Hunt et al (1988), the ∆-criterion of Chong
et al (1990), and the λ2-criterion proposed by Jeong and

Hussain (1995). In most flow situations these three cri-
teria yield similar structures which correctly represent
the topology and geometry of the vortex cores in the

Eulerian frame of reference. Nevertheless, they share
several disadvantages.

An important disadvantage of gradient-based crite-
ria is their susceptibility to measurement noise, ren-

dering them inadequate for application on experimen-
tal data, such as instantaneous velocity fields measured
with PIV. Due to numerical differentiation measure-

ment noise can severely contaminate the derivativesA
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Fig. 1 (a) The instantaneous velocity field at α = 26.8° on the upstroke (α0 = 20°, α1 = 8°, k = 0.050); Eulerian vortex detection: (b)
the corresponding zero contour lines of λ2 and (c) a combined representation of the scalar field Γ (colour-coded) and the zero contour
lines of λ2, the markers indicate the location of (•) clockwise and (•) anticlockwise rotating vortices determined by the Γ -criterion;
(d) Lagrangian coherent structures indicated by the ridges in the pFTLE and nFTLE fields.

yielding less reliable vortex core identification. This is

elucidated in figure 1 for the λ2-criterion; Jeong and
Hussain (1995) postulated that vortex cores are regions
where λ2 < 0. Hence, the presence and location of vor-
tical structures in the instantaneous velocity field de-

picted in figure 1(a) is revealed by the zero contour
lines of λ2 (figure 1(b)). Although the λ2-identification
scheme seems able to discern single structures in the

shear zone between the viscous separated flow region
and the inviscid external flow, it does neither allow to
pinpoint the individual vortex axes nor to determine

the geometry of the various vortex cores. This clearly
reveals the need for an alternative, preferably non-local,
Galilean invariant procedure which does not require
the computation of derivatives. The alternative solution

that was adopted here is based on a two-dimensional
form of the dimensionless scalar function Γ (introduced
by Michard et al 1997). The function is derived directly

from the two–dimensional in–plane velocity field and is

defined in discrete form as

Γ (xi) =
1

M

∑

xj ∈Si

[(xj − xi)× (uj − ũi)] · n
|xj − xi| · |uj − ũi|

=
1

M

∑

xj ∈Si

sin(θij) ,

(1)

with Si a two-dimensional area around xi, M the num-
ber of grid points xj inside Si with j 6= i, n the unit

normal vector, uj the velocity at xj, ũi the local mean
velocity around xi, and θij the angle formed by the vec-
tors xj−xi and uj−ũi. The local mean velocity is taken

into account in order for Γ to be Galilean invariant (cf.
Graftieaux et al (2001)).

According to its definition, Γ is a dimensionless

scalar function, with −1 ≤ Γ ≤ 1. The location of
possible vortex axes is indicated by the local extrema
of Γ and the sense of rotation is given by the sign of
the extrema. The distribution of Γ (x) is computed for

the instantaneous velocity field depicted in figure 1(a)
and is colour–coded in figure 1(c), where the markersA
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indicate the assessed vortex axes locations. The zero
contour line of λ2 allows for the validation of the de-
tected vortex centres.

Besides the detection of the location of the vortex

centres, their trajectories over a time series of flow fields
are traced. For this purpose, the convection velocity of
the individual identified vortex centres within the refer-

ence frame are used to predict their future position and
narrow the number of possible follow–up vortices. The
tracing of the trajectories allows for the investigation of
the spatiotemporal evolution of the vortical structures.

3.2 Lagrangian Approach

Alternatively to the routinely used Eulerian methods,
coherent structure identification algorithms that are La-

grangian in nature have been introduced recently into
the fluid dynamics community (Peacock and Dabiri 2010,
and references therein). The Lagrangian approach lever-

ages the properties of fluid particle trajectories for the
identification of coherent structures. Hence, Lagrang-
ian vortex detection methods are inherently objective,
they include information on the history of the flow, and

they have a clear physical interpretation. The most pop-
ular Lagrangian approach, which was adopted in the
present study, is based on finite–time Lyapunov expo-

nents (FTLE) (Haller 2001).

The FTLE method reverts directly to the fluid par-
ticle trajectories which can be integrated forward and
backward in time yielding positive and negative finite–

time Lyapunov exponent (pFTLE and nFTLE) fields
(see e. g. Haller 2002; Shadden et al 2005; Garth et al
2007, for a comprehensive discussion of the general prop-

erties and basic concepts involved in the computation
of the FTLE).

The ridges in the pFTLE field reveal material lines
normal to which fluid particles are being stretched or re-

pelled, consequentially they are referred to as repelling
material lines or stable manifolds. Vice versa, ridges in
nFTLE fields visualise attracting materials or unsta-

ble manifolds, i. e. lines along which fluid particles are
being elongated, when integrating the trajectories in
backward time. The flow field around the intersection
of a repelling and an attracting material line resembles

that of a saddle point. Moreover, when attached to a
solid surface attracting material lines depict separation
lines while attachment lines are repelling material lines.

This FTLE method thus yields candidate material lines
and captures features of the flow that are familiar from
flow visualisation experiments. According to Shadden

et al (2005) the ridges in the FTLE fields delineate re-
gions that exhibit qualitatively different dynamical be-

haviour, hence indicated the boundaries of Lagrangian

coherent structures (LCSs).
The presence and form of the relevant LCSs corre-

sponding to the previously presented instantaneous ve-

locity field are indicated in figure 1(d) by the ridges in
the pFTLE and nFTLE fields that are blank for values
less than 30 % of the maximum of the field. The FTLE
fields presented and discussed in the course of this paper

have been computed based on the two-dimensional in-
plane velocity field utilising the software package Man-
Gen created by Lekien and Coulliette (2001-2002).

The FTLE-method is robust and relatively insensi-
tive to short term anomalies in the velocity data and is
particularly suited to analyse experimental data (Haller

2002). Applying the FTLE-method on the original set
of measured velocity fields yields a complex network
of LCSs and critical points, especially for fluid flows
of moderate and high Reynolds number. A low–order

POD reconstruction was adopted (Berkooz et al 1993)
to filter and smoothen the data set prior to the La-
grangian analysis. According to the basic properties of

the POD, the application of the FTLE method on a set
of low–order reconstructed fields allows to focus on the
dynamics and the topological signature of the large–
scale coherent structures that dominated the flow field.

The prominent critical points of the LCS topology are
revealed more clearly, and crucial events, such as vortex
interaction and detachment, can be detected at their

earliest stage. All FTLE fields depicted here have been
calculated based on the low–order POD reconstruction
of the velocity field retaining the first 10 modes. The

Eulerian method was applied directly on the measured
instantaneous velocity fields.

3.3 Proper Orthogonal Decomposition

A third approach to extract flow structures is based
on a POD of the flow field. The POD method denotes
a procedure for finding a basis of orthogonal spatial

and temporal functions for a modal bi–orthogonal de-
composition from an ensemble of spatiotemporal signals
(Aubry et al 1991). The fundamental idea is to repre-

sent the random spatiotemporal signal as a series of
the deterministic spatial functions with the temporal
functions as random coefficients such that the original
signal is approximated as accurate as possible based on

an energy–weighted measure.
With regard to the present investigation, the two–

dimensional in–plane velocity field u = (u,w) was de-

composed according to

u(x, z, tn) =
N∑

i=1

ai(tn) ψi(x, z) , (2)A
ut

ho
r’

s
ac

ce
pt

ed
M

an
us

cr
ip

t

M
u

lle
n

er
s

K
,

R
a

ff
el

M
(2

0
1

2
)

T
h

e
o

n
se

t
o

f
d

yn
a

m
ic

st
a

ll
re

vi
si

te
d

.
E

xp
F

lu
id

s
5

2
(3

):
7

7
9

—
7

9
3

.



6

where N is the number of instantaneous field realisa-
tions and tn is the discrete time stamp. According to
Lumley (1970), every spatial function or mode ψi(x, z)
can be associated with an instantaneous organised flow

pattern whose temporal evolution is described by the
corresponding temporal mode ai(t) and whose relative
contribution to the total energy is represented by the

corresponding eigenvalue λi. The eigenvalues are sorted
in decreasing order such that the corresponding first
modes represent the most dominant flow structures in

terms of energy content.

Thus, the POD yields a systematic mathematical
tool to define and identify coherent structures in a com-
plex flow system as well as to study their spatiotempo-

ral evolution. The discretised implementation is based
on the snapshot method introduced by Sirovich (1987).

4 Results and Discussion

Corroborated by the complementary information pro-
vided by the different coherent structures identification
methods, the unsteady flow development over an os-

cillation airfoil was divided into five different stages,
analogous to the classification of Shih et al (1992) with
regard to the flow over an airfoil pitching-up at constant

rate. With the starting point of a cycle taken at the min-
imum incidence angle, the flow will consecutively pass
through the following stages within each individual cy-

cle: 1) the attached flow stage; 2) the stall development
stage; 3) stall onset ; 4) the stalled stage; and 5) flow
reattachment.

4.1 Dynamic Stall Life Cycle

Attempting a general description of the characteristic
features of the dynamic stall life cycle, the velocity

field data and surface pressure distributions acquired
within a sole harmonic oscillation specified by α0 = 20°,
α1 = 8°, and k = 0.10 are discussed. The typical dy-
namic stall curves of the lift and pitching moment co-

efficients are depicted in figure 2. Additionally, the re-
sponse of the aerodynamic load coefficients in absence
of dynamic effects is presented, revealing a static stall

angle of attack αss = 21.4°. For selected phase angles
the instantaneous velocity fields and surface pressure
distributions are depicted in figure 3 together with the
locations of vortices determined by the Eulerian detec-

tion algorithm.

During the first part of the cycle, i. e. from the min-
imum incidence angle upstroke to the static stall an-

gle, the flow is attached to the airfoil’s surface and the

(a)
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m

Fig. 2 Static and dynamics airloads as a function of angle of
attack: (a) lift and (b) pitching moment coefficient (α0 = 20°,
α1 = 8°, k = 0.10). The error bars indicate the standard devia-
tion of the static load coefficients. The markers on the dynamic
hysteresis curves indicate selected points for which the instan-
taneous velocity fields and surface pressure distributions are de-
picted in figure 3.

surface pressure distribution exhibits an increasing suc-
tion peak near the leading edge. Furthermore, the lift
increases linearly with the angle of incidence at a rate
approximately equal to its static counterpart.

Increasing the angle of attack beyond the static stall
angle, an adverse pressure gradient builds up down-

stream of the leading edge eliciting the development of
recirculating flow on the airfoil’s suction side. Between
this region of flow reversal and the free stream flow a
shear layer forms. Shortly after its development, the

shear layer is subjected a primary instability (cf. Ho
and Huerre 1984) as a result of which the initially con-
tained vorticity is redistributed into individual lumped

vortices (figure 3(a)-(c)). At first, these small–scale reg-
ularly spaced shear layer vortices – which are all clock-
wise rotating – are convected downsteam by the ex-
ternal flow and interact only weakly with each other.

Meanwhile, the suction peak continues to rise; the lift
force increases steadily too, though more slowly than
below the static stall angle. The latter is due to the

reversing flow layer extending over a considerable part
of the airfoil’s chord. Hence, despite the occurrence ofA
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ut

ho
r’

s
ac

ce
pt

ed
M

an
us

cr
ip

t

M
u

lle
n

er
s

K
,

R
a

ff
el

M
(2

0
1

2
)

T
h

e
o

n
se

t
o

f
d

yn
a

m
ic

st
a

ll
re

vi
si

te
d

.
E

xp
F

lu
id

s
5

2
(3

):
7

7
9

—
7

9
3

.



8

 

 

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04

ωc/U∞

(g) α = 28.0° ↗

   |U∞|

0

0.1

0.2

0.3

0.4

0.5

z
/
c

0

5

10

-C
p

(h) α = 28.0° ↘

(i) α = 27.9° ↘

0

0.1

0.2

0.3

0.4

0.5

z
/
c

0

5

10

-C
p

(j) α = 27.7° ↘

(k) α = 27.5° ↘

−0.2 0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

x/c

z
/
c

0

5

10

-C
p

(l) α = 16.5° ↘

−0.2 0 0.2 0.4 0.6

x/c

Fig. 3 Instantaneous flow fields with detected vortex cores: (•) clockwise and (•) anticlockwise rotation; and the respective surface
pressure distribution for the states marked in figure 2 within a single oscillation (α0 = 20°, α1 = 8°, and k = 0.10). Only every sixth
velocity vector is shown for the sake of visibility and the dimensionless out–of–plane component of the vorticity is colour–coded.
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flow reversal, the external flow is only mildly deviated
while the aerodynamic lift keeps augmenting. This dif-
fers significantly from the static reference case, where
flow reversal elicits massive flow separation accompa-

nied by a dramatic decrease of the lift and pitching
moment.

The flow field in figure 3(c) is not stable; the viscous
interactions between the shear layer vortices rapidly in-
crease and lead to merging of the small–scale structures,

hence the occurrence of a secondary instability of the
shear layer (see figure 3(d)). This roll–up process even-
tually coalesces in the formation of one large–scale vor-
tical structure which is referred to as the primary dy-

namic stall vortex (figure 3(e)). This dynamic stall vor-
tex thus consists of a combination of the rolled–up shear
layer and the remnants of several vortices generated by

a primary instability of the shear layer. Its presence is
associated with a plateau in the surface pressure distri-
bution between approximately x = −0.1 c and x = 0.2 c
on the suction side (figure 3(e)-(f)).

While the dynamic stall vortex continues to take
up vorticity, counter–rotating vortices emerge near the

airfoil’s surface as a result of increasingly strong inter-
actions between the stall vortex and the reversing flow
(see figure 3(g)). The clockwise rotating primary stall

vortex pushes the anticlockwise rotating structures to-
wards the leading edge, thereby forcing itself to detach;
this is known as vortex induced separation (cf. Peridier
et al 1991; Obabko and Cassel 2002).

The detachment of the primary stall vortex marks
the dynamic stall onset ; it is the end of the stall de-

velopment stage and the beginning of the stalled stage.
With the primary stall vortex living its life, additional
circulation accumulates upstream of it, leading to the
formation of a secondary stall vortex . These primary

originating vortices detach in close succession and are
simultaneously convected downstream. During the con-
vection process the flow can briefly follow the airfoil

contour again. The massive flow separation downstream
of approximately x = 0.1 c slows down the incoming
flow and thus the convection of vorticity from the lead-

ing edge. This results in the formation of a leading
edge recirculation region which is confined by a shear
layer containing the accumulated vorticity (figure 3(h)-
(k)). While this recirculation region grows and moves

slowly downstream the confining shear layer rolls up
to form anew a large–scale coherent structure. This
process of vortex formation and detachment is repeat-

edly observed during downstroke. The large–scale vor-
tex shedding and the associated large fluctuations of the
aerodynamic load coefficients characterise the stalled
stage. It continues until the flow reattaches close to the

end of the downstroke (figure 3(l)). Finally, flow reat-

tachment allows for the aerodynamic loads to return to

their initial un–stalled values.

The succession of events elucidated above, is quali-
tatively observed for the entire parameter span relevant

to this study. Hence, it is deemed to adequately cover
the prominent events of the dynamic stall process for
the prevailing flow conditions and chosen airfoil profile.

4.2 Dynamic Stall Onset

The prominent feature of the stall development stage
is the formation and growth of a large–scale dynamic
stall vortex which is pinched off from the airfoil’s sur-

face as a result of a vortex induced separation process.
The dynamic stall onset is defined here as the detach-
ment of the primary stall vortex which is determined

from the experimental data based on the POD of the
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Fig. 4 POD modes: (a) the first and (b) second spatial modes
ψi(x, z) and (c) the corresponding time development coefficient
ai(t) (α0 = 20°, α1 = 8°, k = 0.05). The airfoil’s oscillating
motion is drawn auxiliary for four oscillation periods T .A
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Table 1: Overview of the calcu-
lated dynamic stall quantities for
the different oscillation parameter
combinations considered.

α̇ss c/U∞ req
∗ αds [°] ∆tds U∞/c αds

§[°] ∆tds U∞/c§

8.44× 10−3 5.24× 10−3 24.008(6) 9.7(4) 23.8(1) 7.5(8)
9.97× 10−3 5.24× 10−3 25.51(9) 9.5(4) 24.828(2) 7.1(7)
1.02× 10−2 5.24× 10−3 26.2(1) 8.9(3) 25.17(6) 6.7(1)

1.24× 10−2 6.98× 10−3 25.69(6) 8.6(2) 25.1(1) 6.6(4)
1.35× 10−2 6.98× 10−3 26.5(1) 7.9(3) 25.59(6) 6.1(1)
1.37× 10−2 6.98× 10−3 26.99(7) 7.6(1) 25.77(6) 5.76(9)

1.53× 10−2 7.85× 10−3 25.96(2) 8.3(2) 25.3(1) 5.7(3)
2.02× 10−2 1.05× 10−2 25.87(6) 7.6(3) 25.65(9) 5.0(3)
2.08× 10−2 1.05× 10−2 27.58(7) 6.6(2) 26.47(9) 4.8(1)
2.08× 10−2 1.05× 10−2 27.4(1) 6.6(3) 26.4(1) 4.9(2)

2.52× 10−2 1.40× 10−2 25.77(5) 6.8(1) 25.78(5) 4.5(2)
2.74× 10−2 1.40× 10−2 27.88(4) 6.3(2) 26.9(1) 4.3(2)
2.78× 10−2 1.40× 10−2 28.9(1) 5.7(2) 27.4(1) 4.1(1)

The numbers in between the brackets indicate the standard deviation of the data.
∗ Equivalent reduced pitch rate as defined by Sheng et al (2008).
§ Stall onset determined as the point at which the maximum leading edge suction peak is

achieved.
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3
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Fig. 5 (a) The third spatial POD mode ψ3(x, z) and (b) the
corresponding time development coefficient a3(t) (α0 = 20°, α1 =
8°, k = 0.050).

two–component velocity field u = (u,w) (equation 2).
The spatial modes respective the velocity decomposi-
tion are denoted by ψi(x, z) and their temporal evolu-

tion and relative contribution are indicated by the time
development coefficients ai(t).

The first and second mode represent a fully attached
and a fully separated flow state respectively (see fig-

ure 4(a)-(b)). Within a dynamic stall life cycle the flow
generally evolves from attached to massively separated
during the upstroke and – accompanied by large hys-

teresis – to reattached again near the end of the down-
stroke. Hence, during most of the cycle, i. e. except for
the transient stages, the flow can be considered either

attached or separated and it is not surprising that the
– in a statistical sense – dominant modes of the POD
represent exactly these limiting states. The alternating
dominance and associated transfer of energy from one

limiting state into the other is clearly observable in fig-
ure 4(c) depicting the temporal evolution of the first
and second mode coefficient. However, the most inter-

esting mode with regard to the stall onset is the third
spatial mode (see figure 5(a)). This mode can be inter-
preted as a large–scale coherent structure or dynamic
stall vortex, an idea that is supported by the tempo-

ral development of the coefficient a3(t) (figure 5(b)).
During the first part of the cycle the flow is attached
and the magnitude of a3(t) is small and approximately

constant. Hence, the contribution of ψ3 to the decom-
position is inconsiderable and it only gains importance
near the end of the upstroke motion when the primary

stall vortex is formed. This primary large–scale struc-
ture dominates the flow field until it is pinched off from
the separated boundary layer that provides its circula-
tion. Consequentely, the weight of the third mode at-

tains a local maximum shortly before the detachment
of the primary stall vortex, i. e. stall onset. The angle
of attack at this local maximum is referred to as the

dynamic stall onset angle of attack and is denoted by
αds.A
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Fig. 6 Flow field topology and vortex distribution shortly after dynamic stall onset: (a) sequence of instantaneous velocity fields and
the centres of (•) clockwise and (•) anticlockwise rotating vortices and (b) the corresponding Lagrangian coherent structures indicated
by the ridges in the pFTLE and nFTLE fields. The black circles mark the approximate position of the saddle point (α0 = 20°, α1 = 8°,
k = 0.05).

The fact that the POD based assignment of the
stall onset indeed corresponds to an invasive topological

change was verified by the Lagrangian coherent struc-
ture analysis. The LCSs for four instantaneous subse-
quent velocity fields shortly after dynamic stall onset
are depicted in figure 6. The flow field around the in-

tersection of a repelling and an attracting material line,
visualised by ridges in the pFTLE and nFTLE fields re-
spectively, resembles that of a saddle point. This saddle

point moves in time and indicates the detachment of
the vortex from the boundary layer, which marks the
end of the stall development stage. Furthermore, the

comparison of the trajectories of the detected vortices,
emerging before and after the assessed stall onset con-

firms that this is indeed a critical point. A clear change
can be recognised in the orientation of the trajectories
of the vortices that originate at the very leading edge
for angles of attack before and beyond αds (see figure 7).

Per se, POD modes are mathematical constructions;
associating them with coherent flow structures should
not be done without proper consideration. Neverthe-

less, due to the congruence with the Eulerian and La-
grangian picture, the POD method is found adequateA
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Fig. 7 Trajectories of positive vortices emerg-
ing before and after stall onset. The histogram
depicts the probability density functions of
the vertical location of the vortex centres re-
spective the different stages.
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and practical for defining the dynamic stall onset in

the present context. Moreover, it allows for pinpointing
the actual instant at which the dynamic stall vortex
separates. Per contra, stall angles determined based on

anomalies in the airloads correspond to points that ei-
ther indicate incipient stall or represent aftermath of
the vortex’ separation and its subsequent downsteam

convection (Wilby 2001). Here, for example, the stall
angle determined as the point at which the maximum
leading edge surface pressure peak is achieved is con-
sistently smaller than the stall angle specified based on

the flow field observations (see table 1). An accurate
characterisation of the different stages of the dynamic
stall process of an airfoil, in particular of the stall on-

set, is highly desirable for improving semi-empirical dy-
namic stall models which approximate the key features
of the process in a physically representative way, e.g.
the Beddoes-Leishman model (Leishman and Beddoes

1989; Beddoes 1993).

4.3 Dynamic Stall Delay

Dynamic stall of an airfoil is governed by many pa-
rameters. Besides flow parameters such as Mach and

Reynolds number, parameters describing the airfoil’s
motion also strongly influence the development of the
stalling process. For a oscillating airfoil in a uniform

flow at given Mach and Reynolds number, the predic-
tion of the stall onset is essentially a three-parameter
problem, with α0, α1, and k being interrelated. Since
the stall process is qualitatively similar for airfoils sub-

jected to oscillating or ramp-type motions (McCroskey
1981), we seek for a single parameter to described the
overall influence of the airfoil’s unsteadiness on the stall

onset.
Sheng et al (2008) introduced the equivalent re-

duced pitch rate req = α1k for oscillating motions to re-

duced the number of parameters. According to this con-
cept, stall onset is independent of α0 under deep stall

conditions and increases linearly with req. For the ex-

perimental configurations considered here the dynamic
stall onset and the corresponding time delay with re-
spect to static stall are apparently not independent of
α0 and a linear relationship between αds and req is not

confirmed (see table 1). Alternatively, we introduce the
instantaneous effective unsteadiness α̇ss as a single rep-
resentative parameter to describe the influence of the

airfoil’s oscillating motion on the stall onset. The in-
stantaneous effective unsteadiness is defined as the rate
of change of α at t = tss, which is the moment αss is

reached, and equals the reduced pitch rate for ramp-
type motions.

Considering the stall onset angle in function of
the normalised instantaneous effective unsteadiness, an
overall increase of αds with α̇ss is observed (figure 8).

The angle of attack increases nonlinearly during the
stall development stage and we should rather focus on
its time scale given by the dynamic stall delay ∆tds.
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Fig. 8 Dynamic stall angle and delay versus normalised instan-
taneous effective unsteadiness.A
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The stall delay decreases with increasing α̇ss and dy-
namic stall is actually promoted rather than delayed
by increasing unsteadiness.

4.4 Light and Deep Dynamic Stall

With regard to the separation behaviour of the sub-
sonic flow around an oscillating airfoil two distinct stall
regimes can be differentiated. According to the nomen-

clature of McCroskey, light and deep dynamic stall refer
to the different stall regimes whose distinguishing at-
tributes are summarised in figure 9. This classification

is based on the degree and extent of the flow separation
without specifying the underlying physical mechanisms.
However, this information is essential in order to pre-
dict whether a particular oscillation will provoke light

or deep dynamic stall. Attempting to address this issue,
we consider the following parameter combinations:

(i) α0 = 18°, α1 = 6°, and k = 0.10;
(ii) α0 = 20°, α1 = 6°, and k = 0.10.

where the former is a example of a light stall case and
the latter is representative for a deep stall case based
on observations of the flow field and the mean lift coef-

ficient hysteresis curves (figure 10).

The discrepancy in the extent of the separation re-
gion for both cases can be clearly observed in figure 11
where the trajectories of all positive vortices emerging

within different parts of the oscillation cycle, at the end
of the upstroke and at the beginning of the downstroke,

(a)

viscous layer = O (airfoil thickness)

α

U∞

separated flow

far wake
turbulent flow

laminar flow

(b)

viscous layer = O (airfoil chord)

α

U∞

Fig. 9 Topology of a (a) light and (b) deep stall configuration
(from McCroskey and Pucci (1982)).

12 14 16 18 20 22 24 26

0.5

0.7

0.9

1.1

α [°]

C
l

light stall

deep stall

Fig. 10 Average lift coefficient hysteresis for a light stall (α0 =
18°, α1 = 6°, k = 0.10) and a deep stall configuration (α0 = 20°,
α1 = 6°, k = 0.10). Error bars indicate the standard deviation.

are depicted together with the vertical distribution of

the vortex positions.

For the deep stall case with maximum angle of at-
tack αmax = 26°, the dynamic stall onset angle of at-
tack is determined to be αds = 25.8(1)° during upstroke.

Massive flow separation is initiated on the upstroke giv-
ing rise to a large separated region whose vertical extent
is of the order of the airfoil chord (figure 11(b) left and
histogram).

For the light stall case on the other hand, the max-

imum angle of attack is lower (αmax = 24°) and the
primary stall vortex is not yet fully developed before
the downstroke motion is initiated. The oscillation di-

rection is changed before the dynamic stall onset angle
is reached and the primary stall vortex is not pinched
off and ejected away as a result of viscous interactions

but is forced to separate by the reversing oscillation
direction. Due do downward entrainment – as a result
of the airfoil’s downstroke motion – the vortical struc-
tures emerging near the airfoil’s surface tend to follow

the contour briefly before detaching yielding a smaller
separation region, whose height is of the order of the
airfoil thickness, congruent with the light stall regime.

Furthermore, the vortex formation process of the pri-
mary stall vortex is prematurely terminated and sepa-
ration is enforced yielding a weaker vortex. As a con-
sequence, the fluctuations of the lift coefficient in the

light stall case are less pronounced (cf. figure 10). The
phase angle of the oscillation at which the dynamic stall
onset is observed, fundamentally influences the extent

and duration of the separation phenomenon.

Reverting to these observations, an endorsement of
McCroskey’s classification of dynamic stall regimes is
proposed here. The idea is to distinguish between light

or deep stall based on the onset of dynamic stall. More
precisely, a particular parameter combination yields aA
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Fig. 11 Trajectories of positive vortices emerging for a light and deep stall configuration within different parts of the oscillation cycle:
(a) at the near of the upstroke and (b) at the beginning of the downstroke. The histograms depict the probability density functions of
the vertical location of the vortex centres for the different phase intervals.

dynamic stall regime that is referred to as light dynamic
stall when the downstroke motion is set in before the
stall development is completed and the separation of

the primary stall vortex is forced to occur at the top
of the cycle. Vice versa, a deep dynamic stall regime
is encountered when dynamic stall onset occurs during

the upstroke part of the airfoil’s motion.

5 Conclusion and Perspectives

The characteristic features of the unsteady flow field
were identified and analysed utilising various coherent
structure identification methods. The combination of
time–resolved imaging and an extensive coherent struc-

ture analysis allowed for analysis of the dynamics and
interaction of vortical structures. The unsteady flow de-
velopment within a single dynamic stall life cycle was

classified into five successive stages. The dynamic stall
onset was identified as a result of a vortex induced sepa-
ration and was specified directly from the velocity field.
A representative description of the influence of the air-

foil’s motion on the stall onset was found in terms of
the rate of change of the angles of attack at the moment
when the static stall angle is exceeded, denoted by the

instantaneous effective unsteadiness. Dynamic stall on-
set was found to be promoted by increasing unsteadi-

ness. When the onset of dynamic stall on an oscillating
airfoil occurred before reaching the maximum angle of
attack was reached, the flow was found to share the

general features of deep dynamic stall. A light dynamic
stall regime on the other hand was encountered when
the oscillation direction was inverted before the stall
onset angle of attack was reached.

Due to the inherent unsteady nature of the dynamic
stall process, the time–resolved approach is preferential.
In continuation, future research will focus on: charac-

terising the shear layer development within the stall
development stage; correlating the passage of coherent
structures in the separated flow region and fluctuations

of the aerodynamic load coefficients; and identifying the
differences and resemblances of the dynamic and static
stall development. Based on the new stall onset speci-

fication, a modification of empirical stall models is en-
visaged.
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