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Diego Sastre Garcı́a ESCROW ACCOUNT AND MORAL HAZARD

Abstract
This paper investigates the optimal strategies for traders whom invest in the mar-

ket on behalf of banks introducing the definition of the escrow account and its conse-
quences on traders’ strategies by solving the Exponential Utility Maximization Problem
with Hamilton-Jacobi-Belmann equation. Setting the model on the usual filtered proba-
bilistic space in continuous time with a risky asset driven by an exponential Brownian
Motion. This paper considers as well the option to trading on a Fraud Asset, which is a
jump process, in order to maximize their expected utility function, i.e., their satisfaction
given by their earnings. This aforementioned Fraud Asset could mean their dismissal from
the bank. We find that there exists an equilibrium between their strategies in which each
trader decides or not to invest in such an asset and will keep that strategy afterwards.





Introduction

On 19 June 2015, the Council agreed its negotiating stance on structural measures to
improve the resilience of EU credit institutions in order to avoid bankruptcy from poten-
tially risky trading activities as their magnitude could have devastating consequences for
the community. This potential risk is included in the definition of Operational Risk. The
Basel Committee for Banking Supervision (BIS) defines Operational Risk as “the risk of
losses resulting from inadequate or failed internal processes, people and systems or from
external events”. Banks have many reasons to have this risk into account. For instance,
in the past, banks hired traders to invest on their behalf. Banks would pay the traders by
giving them bonuses based on profit they make, and assume the losses they incur. This
led to an aggressive strategy with some traders becoming rogue. They could earn a higher
amount of money but if they lost the investment, they could just quit and leave the bank
with all the losses. An excellent example for the case is the role of Nick Leeson in the col-
lapse of Barings Bank in 1995, hiding poor speculative investments until the accumulated
debt was over £800M .

Power (2005), [15], explains that Basel 2, the latest regulation for the banking sector
introduces operational account measures under the label of Operational Risk. Under this
label there are risks coming from IT, business disruption, fraud and legal liabilities among
others. However there are still many critics to these attempts of regulating Operational
Risks. For example, Gillet, Hübner & Plunus (2010), [2], propose that Operational Risk
should account “the difference between the market value loss and the announced loss
amount of the firm. This adjustment allows us to isolate the pure reputational effect of the
operational loss event on market returns”.

Banks are not the only financial institutions caring about Operational Risks, the EU in-
troduced Solvency II, known as the Basel of the insurance sector. Mittnik (2011), [12],
Vukovic (2015), [16], and Wang (2013), [17], says that Solvency II focuses in three pillars
and one of them is the Operational Risk and focuses on the Solvency Capital Requirement,
SCR, which represents the amount of own funds that would potentially be consumed by
unexpected loss events and should be the sum of the Basic Solvency Capital Requirement,
BSCR, the adjustment for the risk absorbing effect of technical provisions and deferred
taxes, Adj, and finally the Capital Requirement of Operational Risk, SCRop. Therefore,
it is clear that after the crisis of 2009 all the financial sectors are devoting increased effort
and resources to managing Operational Risk.
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One of the most important reasons to introduce Operational Risk is the existence of rogue
traders. For example, the famous incident in which Jerome Kerviel, a junior trader, had
lost over $7 billion on unauthorized trades in equities and equity index futures, becoming
the largest rogue trader in history in January 2008. Krawiec (2000), [8], defines a rogue
trader as

“a market professional who engages in unauthorized purchases or sales of securities,
commodities or derivatives, often for a financial institution’s proprietary trading

account”.

Krawiec (2009), [9], argues whether self-regulatory controls will successfully manage
Operational Risk, and Wexler (2010), [18], attempts to explain why rogue traders exist
arguing that

“financial edgework, social psychological study of voluntary risk, to speculative trading,
demonstrates how why rogue trading is a result of the security industry’s pursuit of and

desire to capitalize upon yet not publicize an occupational culture stressing a
“risk-and-win” ethos”.

Brown, Goetzmann, Liang & Schwarz (2008), [1], considers that within the Mandatory
Disclosures (regulatory tool intended to allow market participants to assess Operational
Risk) some market participants, such as equity fund investors and prime brokers extending
credit, are able to distinguish problem from non-problem funds, i.e., traders are aware of
their actions.

Moodie (2009), [13], suggests additional measures to control rogue traders. Likewise,
banks have recently been restricting trader’s profits to minimize the risk on the strate-
gies of rogue traders. But still one trader or even a group traders could find an equilib-
rium among themselves in which everyone would be willing to invest in fraudulent assets
to satisfy their eagerness of maximizing their returns even though they risk their jobs.
So, rather than paying bonuses as before, they hold the trader’s proportion of the wealth
earned or lost (for example, the day traders of a company) placing it in an escrow account
(an account in which the trader can take money to trade but cannot take it for her own
consumption) and letting the trader take only a proportion of the money held for her own
consumption at a time. As an immediate outcome, this time investors would lose liquidity
if they lost the investment and also they would have limited access to liquidity.

However, in this scenario, multiple traders could secretly invest in fraudulent assets to
maximize their earnings in order to deal with this new handicap imposed by the banks.
Investing in fraudulent assets gives them a much higher returns increasing their wealth
in the escrow account and hence they receive greater wealth for their consumption even
though this behaviour could mean their dismissal.

Considering a simpler scenario, if just one trader is hired with the possibility to trade one
risk-free asset and one risky asset driven by a drifted geometric Brownian Motion, i.e., a
stochastic asset which price fluctuates randomly up and down, then the real earnings that
the trader can make for herself are a proportion of the wealth held in the escrow account as
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mentioned above. Thus, the trader would like to maximize her expected Utility Function,
i.e., maximize her own satisfaction given by trading in this scenario. The best strategy
she could have is not affected by the proportion fixed by the bank, i.e., she knows the
money will come so she will be patient and consistent with this. In the real world, traders
would react to this parameter as the cash flow, which goes from the escrow account to her
private account, decreases. Hereafter, we consider the exponential Utility Function due to
its indifference of the amount of wealth which reflects somehow the freedom of a trader
using bank’s wealth and not being affected. CARA utilities have been widely use for last
decades. For instance, they are used in Frei and Schewizer (2008) for indifference pricing
of contingent claims. However, exponential utility function leads to a feasible negative
consumption s it is exposed in Muraviev and Wüthrich (2012) who says:

“ An essential drawback challenging the classical paradigm of exponential utility is
the fact that negative consumption policies are included in the set of feasible controls.
[...] Economically, this is a vague assumption which cannot be reasonably justified, but is
rather made to allow a simplified framework”.

Another example is explained in Caballero (1990) :

“This paper specializes to this type of preferences (exponential) in spite of some of
its unpleasant features like the possibility of negative consumption”.

As a conclusion, we could set that consumption should be non-negative for t ≥ 0 but
this would lead to the impossibility of finding tractable solutions. Therefore, let us ac-
knowledge this fact, accepting negative consumption and define the utility maximization
problem for this special case.

Suppose that the trader has a new asset, called the Fraud Asset, which works as follows:
the more an investor trades on it, the more likely a jump occurs (“picking up pennies in
front of a steam roller”). The economist John Kay describes this behaviour as the “Taleb
Distribution” - a returns profile that appears at times deceptively low-risk with steady
returns, but experiences periodically catastrophic drawdowns. He gives many examples
like Hedge Funds in [7]:

“We find Taleb distributions not only on the road and in financial institutions. Hedge
funds make them accessible to a general public. Business people learnt centuries ago that
you can water the milk again and again and again. Until Taleb strikes back: people notice
and take their custom elsewhere. Marks and Spencer, the UK retailer, pushed to the limit
of what its customers could stand until it discovered that it had crossed that limit”.

Going back to our case, the aforementioned Fraud Asset is represented by a jump pro-
cess driven by a Poisson Process. If the jump occurs then it would be reflected on the
escrow account and therefore the bank would realize that the trader is cheating. With the
Fraud Asset, the trader has the possibility to make more profit so that she could earn more
but this asset would risk her job, i.e., she could be fired. Guegan & Hassani (2009). [4],
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explains that there two kinds of distributions to model the events that are associated to
Operational Risks: the discrete distribution functions such as Poisson, Binomial or Nega-
tive Binomial distributions for modelling the frequency of rare events and their intensity
and the continuous distributions such as the Brownian Motion which model the non-rogue
trading.

In a scenario such as this one, the trader could think that they could earn so much from
the Fraud Asset that even if she is fired, she could live better from the money taken until
the jump happens. If the trader chooses her optimal strategy she would avoid trading in
such an asset and, as a result, would retain her position in the long term, as opposed to
making money in the short term but lose her job. And again, the proportion fixed by the
bank is not relevant at all.

Consider the case in which the bank hire more than one trader with different initial wealth
and proportions given by the bank. Both have the possibility to either trade the Fraud Asset
or not trade at all. If they both trade the Fraud Asset the intensity of their investment
would combine to affect the frequency of the jump (again the Taleb Distribution with
more participants), and therefore, the bank would quickly recognize their behaviour. One
strategy could depend on the others’ strategy. For example, if one trader had little money
with respect to the other, i.e. the former would be close to bankruptcy, one logical reaction
would be that the former would invest more than the latter as she has nothing to lose and
would incur more risk to gain wealth quicker.

In addition, traders could invest the money from the investment pool, i.e., if the jump hap-
pens, this jump would be reflected on the pool leading bankruptcy and therefore everyone
would be fired.

In this scenario, one trader would invest depending on her initial wealth and the wealth of
the other trader. For example, if one trader has less initial wealth than the other, she would
be willing to trade more on the fraud asset than the other and viceversa.

While the jump has not occurred yet and one trader invests more than other, then the
former would earn more than the latter and therefore, the difference between initial wealth
decreases. This new initial wealth would presumably make them want to change their
optimal strategy, i.e., one trader decides to invest in the fraud asset, since this would
modify the initial conditions for the second trader, the latter could decide to change her
previous decision and invest in the fraud asset differently, suited accordingly to the new
scenario. This new change of the settings would modify the initial conditions of the former
trader and she could change again depending on how much she could invest and so on.

If they continue this process, they achieve an optimal equilibrium for any initial condi-
tions they could start from, i.e., there is a moment when both traders are happy with their
decisions given the other trader’s decision. This would satisfy what is called a Nash equi-
librium for a mixed strategy game. Therefore, in this scenario, the traders could agree to
trade on the Fraud Asset taking risk together increasing the possibility of being fired.
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Chapter 1

Single Trader and Moral Hazard

1.1 The general framework
Let us define the model under the probabilistic space (Ω,F, {Ft)}t≥0,P) within an infinite
time horizon in which we assume that the filtration satisfies the usual conditions. Let
us define a Standard Brownian Motion which will represent our risky asset. A Standard
Brownian Motion is a stochastic process,W = {Wt ∈ R : t ∈ (0,∞)}with the following
properties:

• W0 = 0, P a.s.

• W has Gaussian increments: Wt+s−Ws is normally distributed with null mean and
variance t, N(0, t).

• W has independent increments: for 0 ≤ t < s ≤ u < v, Wt −Ws and Wv −Wu

are independent.

• W has continuous paths P a.s.

This aforementioned risky asset will be based on the Black-Scholes model, i.e., a market
where prices follow a geometric Brownian Motion:

dSt
St

= µdt+ σdWt, (1.1)

where µ (returns) and σ (volatility) are constants (σ 6= 0).

Let us include another risky asset which will be used below in order to simulate the
repercussion of a fraudulent asset. This fraudulent asset will express the following, if an
investor desires to invest in such an asset, she will increase her income by taking the risk
of being caught and get fired. Moreover, if this investor decided to invest a higher amount
of wealth, the consequence will be that the probability of being caught will increase as
well. To represent this phenomena, this fraudulent asset is driven by a Poisson Process,
Nt, with intensity ϕt ≥ 0, i.e., a stochastic control which reflects the investor eagerness
on the fraud asset. Then,

dFt
Ft

= ϕtdt− dNt. (1.2)
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Thus, we should consider the definition of a “stopping time”, τ , which specifies the mo-
ment in which the jump happens. A “stopping time” is a random variable, τ : Ω → R

+,
if {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft for all t ≥ 0. The probability that jump does not happen is

P[τ > t] = e−
∫ t
0 ϕsds; (1.3)

Let us emphasize that the aforementioned consequence of increasing the intensity of in-
vestment on the fraud asset as well as increasing the probability of being fired is reflected
on the definition of stopping time. We could also argue whether the size of the jump is
relevant or not for firing the trader. The model could include another different scenario: if
the loss is smaller than the reserve in the pool, traders could keep investing but with less
margin; if losses are far greater than wealth reserved, then the bank would fire the trader.
Nevertheless, as we consider this jump process as a vehicle of moral hazard, let us assume
that in case of a jump, regardless the size, our trader will be fired.

Suppose now that a bank hires a trader. This trader will have access to the bank pool
for investments in which the investor’s transactions will take place. On the other hand, her
salary will be composed by a fixed periodic amount and performance bonuses given by a
proportion of the wealth generated. In other words, this trader gains or loses a proportion
of the wealth invested at any time t. Hereafter this percentage will be represented by
δ ∈ [0, 1]. This percentage of earnings will be reflected in the pool so that the investor
could use it to trade. Hence, supposing the bank has only one trader with access to the
pool, (Xt)t≥0, defined by the following dynamics:

dXt = θtXt
dSt
St
− δXtdt+ rXtdt+ ϕtXtdt−XtdNt. (1.4)

where θt ∈ [0, 1] represents the pool’s wealth reserved for trading on the risky asset;
and r ∈ [0, 1] is the interest rate affecting the market. It is noted that the pool could
be negative. The peculiarity of the model resides in the following, instead of giving the
bonuses directly to her, the bank puts it in an escrow account, (Et)t≥0 , i.e., the trader
can take a proportion, λ ∈ [0, 1], of the savings from the account for her own savings
and consumption, i.e., the variable bonuses aforementioned. But to consume earnings,
trader should wait this new filter, λ, as earnings are first going to her escrow account and
thereafter to her actual savings account. In case of being fired, there are two different
points of views. For the bank’s perspective, it will depend on the difference between
the intensity of the jump, ϕt and the wealth held in the pool. Whereas the trader will
lose the access to the pool as well as to the escrow account. Therefore, all earned savings
accumulated in the escrow account would be lost. We would like to know whether traders’
behavior and strategy would change by this control on her winnings:

dEt = δXtdt+ rEtdt− λEtdt. (1.5)

Finally, let (Yt)t≥0 be the trader’s private wealth, i.e., the trader’s profit (or savings)
which satisfies the following diffusion:

dYt = (Y0 + λEt − ct + rYt)dt (1.6)
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where Y0 is the fixed periodic salary and ct ≥ 0 is her consumption. i.e., her savings are
composed of money from the escrow account, her fixed salary the trader’s consumption
and the interest rate.

The aim of the problem is to understand if a trader would have any moral hazard
in order to maximize her profit under these handicaps imposed by banks. Mathemati-
cally speaking, this objective is translated into an utility maximization problem for con-
sumption of the trader’s savings with respect to the triple stochastic optimal control
u = (c, θ, ϕ), i.e.,

V (Et, Yt) := max
u∈At

E
[∫ T∧τ

t

e−βsU(cs)ds+Wt′≥T∧τ |Ft
]
, (1.7)

where U(·) is the utility function in which β > 0 is the impatience parameter, i.e., how
important the time value of money is for the trader; and W (·) is the value function after
the jump occurs and the investor is fired. In other words, when the investor is fired, she
can only live with her savings thereafter.

Let us recall the definition of a control process, ut(ω) : [t, T ]× Ω→ Rm adapted to
the filtration {Ft)}t≥0 and the set of admissible controls is At,T .

1.2 One trader and no moral hazard
Due to the complexity of the model, let us consider a simpler scenario in which there

is a complete market with no possible option for a moral hazard. The only new handicap
that trader faces is the escrow account. For sake of simplicity, let us consider an escrow
account which has a dual function. In other words, in this simpler scenario, we have bank’s
pool and escrow account merged following just one dynamic:

dXt = δθtXt
dSt
St
− λXtdt+ rXtdt (1.8)

or equivalently,
Xt = X0e

(r−λ)t+δ
∫ t
0 θs(µ−

1
2
σ2δθs)ds+σδ

∫ t
0 θsdSs . (1.9)

This new assumption will let us simplify computations, as there will be just one term
Xt in all components as opposed of (1.5). The peculiarity of this diffusion with respect to
(1.5) is that appears δθtXtdSt which is the wealth corresponding to the trader and the rest,
(1− δ)θtXtdSt, belongs to the bank. Finally, let Yt be the trader’s private wealth remains
mostly the same, i,e., for simplicity consider that the salary of the trader is only composed
by bonuses. Hereafter, Y0 will be the initial private wealth of the trader. Therefore:

dYt = λXtdt− ctdt+ rYtdt. (1.10)

or equivalently,

Yt = ert
(∫ t

0

e−rs(λXs − cs)ds+ Y0

)
(1.11)
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where U(x) = − 1
α
e−αx, and the Value Function:

V (Xt, Yt) := max
u=(θ,c)∈At,T

E
[∫ ∞

t

e−βsU(cs)ds|Ft
]
, (1.12)

We assume as well that the strategy for consumption is admissible. Let as recall that an
y0-admissible strategy is a process (ct)t≥0 such that the stochastic integral Zt =

∫ t
0
csdSs

is defined, and satisfies Zt ≥ −y0 a.s. for all t > 0 where Zt is the portfolio process. For
this special case ct is assumed deterministic. Therefore:∫ ∞

0

e−rtctdt ≥ y0. (1.13)

The intuition behind is that we are not interested in what happens whether the trader gets
credit for her consumption or not but what is her behavior towards the company and the
market in order to increase her wealth. Hence, we assume the trader cannot consume
more than what she has and then she does not have such a possibility, so we introduce this
constraint.

1.2.1 Optimal Solution
Theorem 1. Let consider the exponential expected utility maximization problem defined
by (1.12). The optimal value function is given by:

V (Xt, Yt) =
−1

αr
e−(Xt+Yt)αr− 1

r
( µ

2

2σ2
+β−r), (1.14)

where the optimal consumption and investment are:

ct = (Xt + Yt)r +
1

αr

(
µ2

2σ2
+ β − r

)
(1.15)

πt =
µ

αrδσ2Xt

(1.16)

Proof. The proof is composed by two steps:

1. Solving the PDE given by the HJB equation for this particular value function done
below.

2. Proving that the solution which solves the HJB equation satisfies the hypothesis of
the Verification Theorem and therefore, the solution is optimal. We will not prove
the Verification Theorem as our goal is to find a more generic environment where
traders have response to λ.

The HJB equation for an infinite horizon and impatience β is given by

sup
c,θ

[U(ct) + LuV (Xt, Yt)] = 0. (1.17)

where Lu is the operator with respect to the stochastic control u = (c, θ) such that Lu· =
−β ·+E[d(·)]

dt
. The value function depends on the following diffusions
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dYt = (λXt − ct + rYt)dt (1.18)

dXt = δθtXt
dSt
St
− λXtdt+ rXtdt (1.19)

= (µδθtXt + (r − λ)Xt)dt+ σδθtXtdWt. (1.20)

On the other hand, V (Xt, Yt) is stochastic (the term Xt is stochastic as it is driven by the
Brownian Motion St) so by the Itô’s formula its derivative is the following :

dV = VxdXt + VydY +
1

2
(Vxxd〈X〉t + Vyyd〈Y 〉t + 2Vxyd〈X, Y 〉t) (1.21)

= Vx((µδθtXt + (r − λ)Xt)dt+ σδθtXtdWt) + Vy(λXt − ct + rYt)dt (1.22)

+
1

2
Vxx(σδθtXt)

2dt (1.23)

where d〈Y 〉t = d〈X, Y 〉t = 0 as Y is deterministic, i.e., has not a dW term. dV is still
stochastic so we need its expected value:

E [dV ]

dt
= Vx(µδθtXt + (r − λ)Xt) + Vy(λXt − ct + rYt) (1.24)

+
1

2
Vxx(σδθtXt)

2. (1.25)

Hence, the HJB equation is

sup
c

(
−ctVy −

1

α
e−αct

)
+ sup

θ

(
VxµδθtXt +

1

2
Vxx(σδθtXt)

2

)
(1.26)

+(Vy − Vx)λXt + r(VyYt + VxXt)− βV = 0 (1.27)

We shall find out when the HJB equation reaches the maximum with respect to the con-
sumption and the trading strategy, so we differentiate with respect to ct and θt and set the
derivative equal to 0. The expressions of ct and θ which maximize the PDE are

ct =
− log Vy

α
and θt = − Vxµ

Vxxδσ2Xt

Plugging ct and θt, the PDE is:

1

α
Vy log Vy −

1

α
eα log Vy/α − VxδµXt

Vxµ

Vxxδσ2Xt

+
1

2
Vxxδ

2σ2X2
t (

Vxµ

Vxxδσ2Xt

)2 (1.28)

+Vt + (Vy − Vx)λXt + r(VyYt + VxXt)− βV = 0 (1.29)

Equivalently,

1

α
(Vy log Vy − Vy) + VyλXt +

V 2
x

σ2Vxx

(
−1

2
µ2

)
− VxλXt + r(VyYt + VxXt)− βV = 0

(1.30)

9
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Thus, the final PDE to be solved is

1

α
Vy (log Vy − 1)− V 2

x µ
2

2σ2Vxx
+ (V y − Vx)λXt + r(VxXt + VyYt)− βV = 0 (1.31)

1. Before tackling the general problem let consider λ = 0 and r = 0. There are two
different solutions of V as is showing below, to find a solution of V , the introduction
of an interest rate is needed, i.e., r 6= 0.

In this case, dYt does not depend onXt any longer and the terms Vx and Vxx vanish.
Moreover, there will be no trading dependence, θt, in the value function. Then, the
previous diffusion becomes:

dYt = −ctdt (1.32)

and with the same optimized ct, the HJB equation is:

1

α
Vy (log Vy − 1)− βV = 0 (1.33)

with solutions

V =
e∓
√

1+2αβ(x+y)+2C1

(
−1∓

√
1 + 2αβ(x+ y) + 2C1

)
αβ

(1.34)

which become just one (explained below):

V (y) :=
−1

αr
e−αry−

β−r
r . (1.35)

In this scenario, the constant C1 aforementioned would presumably cancel out the
square root outside the exponential.

2. Consider r 6= 0. To solve that problem, let us recall the assumption that trader
cannot consume more than all the wealth generated plus the initial wealth available,
i.e., the trader has to follow an admissible strategy for consumption. Again, as λ =
0, Xt does not have any affect on Yt so that it is a deterministic problem. There is
only one term more in Yt dynamics:

dYt = rYtdt− ctdt. (1.36)

Let us consider a different approach and define the Lagrange multipliers problem
for this case subject to the constraint (1.13):

V (y) = max
ct,η

{∫ ∞
0

e−βtU(ct)dt− η
(∫ ∞

0

e−rtctdt− y0

)}
. (1.37)
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1.2. ONE TRADER AND NO MORAL HAZARD

Finding the derivative with respect to ct and setting it equal to 0:

∂V

∂ct
=

∫ ∞
0

e−βt−αct+rt − ηdt = 0 (1.38)

e−βt−αct+rt − η = 0 (1.39)

ct = − 1

α
((β − r)t+ ln η) . (1.40)

We shall find η so that the constrain is satisfied∫ ∞
0

e−rtctdt = y0 (1.41)∫ ∞
0

e−rt
1

α
((β − r)t+ ln η) dt = −y0 (1.42)

(β − r)
∫ ∞

0

e−rttdt+ ln η

∫ ∞
0

e−rtdt = −αy0 (1.43)

(β − r) 1

r2
+ ln η

1

r
= −αy0 (1.44)

ln η = αr

(
−y0 − (β − r) 1

r2

)
(1.45)

η = e−y0αr−
α
r

(β−r). (1.46)

Then

ct = − 1

α

(
(β − r)t+ αr

(
−y0 − (β − r) 1

r2

))
(1.47)

= ry0 −
1

α

(
(β − r)(t− α

r
)
)

(1.48)

and finally the value function

V = − 1

α

∫ ∞
0

e−βt−α(ry0−
1
α((β−r)(t−α

r
)))dt (1.49)

V = − 1

α
e−αry0−

(β−r)α
r

(
e−rt

)∞
0

(1.50)

V =
−1

αr
e−αry0−

(β−r)α
r . (1.51)

3. If we consider µ = 0, we assume no expected returns from the market, so no one
would want to trade in such a market. Likewise, if δ = 0, even if there is an expected
return, the trader will not see any change in the escrow account. In both cases, trader
is able to consume both X0 and Y0. Thus, the diffusions become

dXt = δθtσStdWt + (r − λ)Xtdt and dYt = (λXt − ct + rYt)dt (1.52)
dXt = (r − λ)Xtdt and dYt = (λXt − ct + rYt)dt (1.53)
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CHAPTER 1. SINGLE TRADER AND MORAL HAZARD

with the very same PDE

1

α
Vy (log Vy − 1) + λXt(Vy − Vx) + r(VyYt + VxXt)− βV = 0 (1.54)

and ct = − log Vy/α and θt = 0 (since Vxxδ2σ2S2
t θt = 0) for ∀t ≥ 0.

Let V (x, y) = V (x + y) such that Vy = Vx = V ′(z) with z = x + y. Subbing the
new variable, we end up with the same PDE as before

1

α
V ′(z) (log(V ′(z))− 1) + rV ′(z)(x+ y)− βV = 0 (1.55)

1

α
V ′(z) (log(V ′(z)) + αrz − 1)− βV = 0. (1.56)

Therefore, the solution is

V (z) =
−1

αr
e−zαr−

(β−r)α
r (1.57)

V (x, y) =
−1

αr
e−(x+y)αr− (β−r)α

r and (1.58)

ct = − 1

α

(
(x+ y)αr − (β − r)α

r

)
(1.59)

= (x+ y)r +
β − r
r

(1.60)

General Case

We shall go back to the general case, i.e.

1

α
Vy (log Vy − 1)− V 2

x µ
2

2σ2Vxx
+ (V y − Vx)λXt + r(VxXt + VyYt)− βV = 0 (1.61)

We shall Plug the solution (1.58) found above times a constant, i.e:

V (x, y) =
−A
αr

e−(x+y)αr−α
r

(β−r) (1.62)

where

V ′(x) = V ′(y) = V ′(z) = −αrAV (z) (1.63)
V ′′(z) = (αr)2AV (z) (1.64)

12



1.3. SINGLE TRADER WITH MORAL HAZARD

Then

1

α
(−αr)AV (z)

(
logA− zαr − α

r
(β − r)− 1

)
− (AV (z)(−αr))2µ2

2σ2(αr)2AV (z)
(1.65)

−rzAV (z)αr − βAV (z) = 0 (1.66)

−r
(

logA− α

r
(β − r)− 1

)
− µ2

2σ2
− β = 0 (1.67)

1

r

(
− µ2

2σ2
+ α(β − r) + r − β

)
= logA (1.68)

(1.69)

then the constant A = e
1
r

(− µ2

2σ2
+(α−1)(β−r)) and finally the solution is

V (x, y) =
−1

αr
e−(x+y)αr− 1

r
( µ

2

2σ2
+β−r) (1.70)

ct = (x+ y)r +
1

αr

(
µ2

2σ2
+ β − r

)
(1.71)

θt =
µ

αrδσ2XtSt
(1.72)

This is the usual Merton’s problem, hence λ does not interfere into the trader’s behavior
which seems that traders are not affected by this retention of the money in the escrow
account. They would just wait for the money to come. The question now is if traders will
have any change of behaviour under a more general model, i.e., if there is another asset to
trade which would put their perpetuity in the bank under risk.

1.3 Single Trader with Moral Hazard
With the same setting as the previous subsection, suppose now that the investor has the
possibility to trade on other jump asset, Ft, driven by a Poisson Process,Nt, with intensity
ϕt -the more the investor trades on the asset, the higher probability to be fired is. Then,

dFt
Ft

= ϕtdt− dNt (1.73)

She should not trade at this risky asset, called the Fraud Asset, but this investor has the
possibility to trade this asset as long as the jump does not happen. When it does happen,
the bank will acknowledge immediately the investor’s behavior as there will be a “crash”
in the pool, or in this simple setting, in the escrow account, and fire her consequently.
Meanwhile, the trader can take a proportion, λ, of the money from the account for her
own savings and consumption as in the previous setting. When she is fired, they will have
no access to the escrow account any more and has to live with her savings gained up to
the moment of the dismissal.

Consider that the trader decides to invest πtSt at a time t , then their profit will be πtdSt
(number of shares times the change of the price). If πtdSt > 0 the bank puts in the escrow

13
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account πtdSt. If not, the bank takes πtdSt out from the escrow account. Simultaneously,
this investor trades dFt which as long as there is no jump will give cash flow return to her
account.

Thus, the cash in that escrow account should be

dXt

Xt

= πt
dSt
St

+
dFt
Ft
− λdt+ (1− π)rdt (1.74)

dXt

Xt

= rdt+ πµdt+ πσdBt + ϕtdt− dNt − λdt (1.75)

The trader’s private wealth, Yt, remains equal. When dFT = 0 for some T , then λdXT+t =
0 for all t ≥ 0.

The problem is again to maximize the long horizon expected exponential utility for
consumption of the traders savings where τ is the stopping time when the jump happens:

V (Xt, Yt) := max
ut∈At,T

E
[∫ T∧τ

t

e−βsU(cs)ds+W (Yt′>T∧τ )

]
, U(x) =

e−αx

−α
(1.76)

where W (Yt) is the value function of the trader once she has no access to the escrow ac-
count. It is clear the value of this function as it has been found within the proof of Theorem
1 for the case µ = 0 but with Xt = 0 for all t > τ ., i.e., W (Yt) = − 1

αr
e−αrYt+

β−r
r .

In conclusion,

Xt = X0e
rt+

∫ t
0 (µπs−σ

2

2
π2
s+ϕt)ds+

∫ t
0 σπsdBs1{t<τ} (1.77)

where the probability that jump does not happen is

P[τ > t] = e−
∫ t
0 ϕsds (1.78)

which makes Ft = e
∫ t
0 ϕtds1{t<τ} a martingale (i.e. E[Ft] = 1).

Theorem 2. The optimal expected utility function is the same as Theorem 1:

V (x, y) =
−1

αr
e−(x+y)αr− 1

r
( µ

2

2σ2
+β−r), (1.79)

where the optimal consumption and investment are the same:

ct = (x+ y)r +
1

αr

(
µ2

2σ2
+ β − r

)
(1.80)

θt =
µ

αrδσ2St
(1.81)

and the optimal amount of investment in the Fraud Asset is ϕt = 0 for ∀t ≥ 0.
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1.3. SINGLE TRADER WITH MORAL HAZARD

Proof. Now we shall use the HJB equation again but this time we need to introduce the
discontinuity forced by the jump at time τ like ([10]). We shall prove that this new HJB
will give us the same PDE as before. For the moment we know that PDE should be the
same as before up to time τ and thereafter the final function, W , by the intensity, i.e.

sup
c,π,ϕ

(U(ct) + LuV (Xt, Yt)) = 0 (1.82)

where

Lu = (ϕt + β) ·+ϕtW +
E[d(·)]
dt

(1.83)

U(ct) = − 1

α
e−αct (1.84)

E[dV ]

dt
= VxXt(r + πtµ+ ϕt − λ) + Vy(λXt − ct + rYt) + Vxx(πσXt)

2 (1.85)

Then

sup
c

(
−e−αx

α
− ctVy

)
+ sup

π

(
VxπtµXt +

1

2
Vxx(πtσXt)

2

)
(1.86)

+ sup
ϕ

(XtVxϕt − ϕtV + ϕtW )− βV + Vx(r − λ)Xt + Vy(λXt + rYt) = 0 (1.87)

Differentiating wrt ct, θt and ϕt and setting them equal to zero.

ct = − 1

α
ln(Vy) (1.88)

πt = − µ

σ2Xt

Vx
Vxx

(1.89)

0 = XtVx − V +W (1.90)

For ϕt is needed to consider the cases:

1. IfXtVx−V +W ≥ 0 then supϕ (XtVxϕt − ϕtV + ϕtW ) =∞. Therefore, ϕt =∞.

2. If XtVx − V +W ≤ 0 then supϕ (XtVxϕt − ϕtV + ϕtW ) = 0. Therefore, ϕt = 0.

But as V is concave XtVx − V +W ≤ 0 is always satisfied. Hence ϕt = 0 for ∀t ≥ 0.

Hence, the HJB equation becomes:

1

α
Vy(lnVy − 1)− µ2

2σ2

V 2
x

Vxx
− βV + Vx(r − λ)Xt + Vy(λXt + rYt) = 0 (1.91)

Plugging the change of variable V (x, y) = W (y)u(x) where W (y) = − 1
αr
e−αry then

−ru(lnu− 1)− µ2

2σ2

u′2

u′′
− βu+ u′(r − λ)x− αrλux = 0 (1.92)
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The solution is
u(x) = e−αrx−

1
r

( µ
2

2σ2
+β−r).

Then

V (x, y) = − 1

αr
e−αr(x+y)− 1

r
( µ

2

2σ2
+β−r) (1.93)

which again comes back to the previous result, i.e., the trader avoids the jump and per-
forms a similar strategy. Again traders are not affected by the proportion λ.

Consider that the trader is obliged to invest regularly on the Fraud Asset, i.e., ϕt = ϕ̄ 6= 0
fixed. Therefore the HJB equation becomes:

sup
c

(
−e−αx

α
− ctVy

)
+ sup

π

(
VxπtµXt +

1

2
Vxx(πtσXt)

2

)
+ ϕ̄ (XtVx − V +W )

(1.94)

−βV + Vx(r − λ)Xt + Vy(λXt + rYt) = 0
(1.95)

Plugging the same ct and πt

1

α
Vy(lnVy−1)− µ2

2σ2

V 2
x

Vxx
−βV +Vx(r−λ)Xt+Vy(λXt+rYt)+ϕ̄ (XtVx − V +W ) = 0

(1.96)
Substituting by V (x, y) = W (y)u(x) where W (y) = − 1

αr
e−αry then

−ru(lnu− 1)− µ2

2σ2

u′2

u′′
− βu+ u′(r − λ)x− αrλux+ ϕ̄ (xu′ − u+ 1) = 0 (1.97)

equivalently

−ru(lnu− 1)− µ2

2σ2

u′2

u′′
− (β + ϕ̄)u+ u′(r − λ+ ϕ̄)x− αrλux+ ϕ̄ = 0 (1.98)

Which we could not find a explicit solution for this ODE. Instead, we tried with the
logarithmic utility function, U(x) = log(x).

sup
c

(log(ct)− ctVy) + sup
π

(
VxπtµXt +

1

2
Vxx(πtσXt)

2

)
+ ϕ̄ (XtVx − V +W )

(1.99)

−βV + Vx(r − λ)Xt + Vy(λXt + rYt) = 0
(1.100)

Then we have

ct =
1

Vy
(1.101)

πt = − µ

σ2Xt

Vx
Vxx

(1.102)
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− lnVy − 1− µ2

2σ2

V 2
x

Vxx
− βV + Vx(r− λ)Xt + Vy(λXt + rYt) + ϕ̄ (XtVx − V +W ) = 0

(1.103)
And again we have not found a solution yet.

Simpler Attempt

As the previous problem seems tedious, let try to solve the simpler version without con-
sumption and the risky asset as these are the troublesome. Let just consider the following
setting:

dXt = ϕXtdt− λXtdt− dNt (1.104)
dYt = λXtdt (1.105)

where ϕ is the intensity of the Poisson and λ is the proportion of wealth which goes to the
saving account. Therefore the log-value function maximization problem, i.e.

V (x, y) = Ey[U(Yt)] (1.106)

where U(y) = log(y).
Consider what is

V (kx, ky) = Ey[U(kYt)] = Ey[U log(kYt)] (1.107)
= Ey[U log(Yt)] + Ey[U log(k)] (1.108)
= V (x, y) + log(k) (1.109)

Set k = 1
y

V (
1

y
x,

1

y
y) = V (x, y) + log(

1

y
) (1.110)

v(z) = V (z, 1) = V (x, y)− log(y) (1.111)

Where z = x
y
. When x = 0, v(0) = V (x, y) − log(y) = log(y) − log(y) = 0. The

HJB equation starts being:

−ϕV + ϕ log(y) + xVx(ϕ− λ) + xVyλ = 0 (1.112)

and becomes

−ϕv + zv′(ϕ− λ)− z2v′λ+ λz = 0 (1.113)

1. Case 1: λ = 0. Then dYt = 0. Therefore V depends on just YT = y Therefore

V (y) = Ey[U(Yt)] = Ey[U(y)] = log(y) (1.114)

2. Case 2: ϕ = 0.

+zv′(−λ)− z2v′λ+ λz = 0 (1.115)
v(z) = log |1 + z| (1.116)

17



CHAPTER 1. SINGLE TRADER AND MORAL HAZARD

3. Case 3: λ = ϕ

−λv − z2v′λ+ λz = 0 (1.117)

for λ > ϕ > 0:

v(z) = e
1
zExpIntegralEi[−(1/z)] = e

1
z

∫ ∞
1
z

e−t

t
dt (1.118)

4. and the general case: for λ > ϕ > 0:

v(z) = −
(

−zλ
λ+ zλ− ϕ

) −ϕ
λ−ϕ
∫ zλ

ϕ−λ

0

t
ϕ

λ−ϕ (1− t)
−λ
λ−ϕdt (1.119)

V (x, y) = −

(
−x
y
λ

λ+ x
y
λ− ϕ

) −ϕ
λ−ϕ ∫ x

y λ

ϕ−λ

0

t
ϕ

λ−ϕ (1− t)
−λ
λ−ϕdt+ log(y) (1.120)

or equivalently

V (x, y) = −

(
−x
y
λ

λ+ x
y
λ− ϕ

) −ϕ
λ−ϕ

Beta

[ x
y
λ

−λ+ ϕ
,

λ

λ− ϕ
,− ϕ

λ− ϕ

]
+ log(y)

(1.121)

These are the limits

lim
ϕ→0

V (x, y) = log(x+ y) (1.122)

lim
ϕ→∞

V (x, y) = log(y) (1.123)

lim
λ→0

V (x, y) = log(y) (1.124)

lim
λ→∞

V (x, y) = log(x+ y) (1.125)

If we define κ = ϕ
λ

v(z) = −
(

−z
1 + z − κ

) −κ
1−κ
∫ − z

1−κ

0

t
κ

1−κ (1− t)
−1
1−κdt (1.126)

As an illustration of how v(z) varies on κ. we plug v(z) for z > 0 with respect different
κ (κ = 0 equivalent as v(z) = log |1 + z|, κ = 1

2
and κ = 1 equivalent to v(z) =

e
1
z

∫∞
1
z

e−t

t
dt)
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Figure 1.1: v(z), z > 0

As a conclusion, it seems that the best choice for the trader to maximize her utility
function is not to trade with the fraud asset as the maximum value achieved is at ϕ = 0
because λ cannot be greater than 1, i.e., λ cannot go to infinity.

Risky asset back

We introduce back the asset:

dSt
St

= (r + µ)dt+ σdBt, (1.127)

So therefore

dXt

Xt

= rdt+ πµdt+ πσdBt + ϕtdt− dNt − λdt (1.128)

dYt = (λXt + rYt)dt (1.129)

Our initial value is just the same V (0, y) = log(y). The HJB becomes

sup
π

(
VxπtµXt +

1

2
Vxx(πtσXt)

2

)
+ ϕ̄ (XtVx − V + log(y)) (1.130)

−βV + Vx(r − λ)Xt + Vy(λXt + rYt) = 0 (1.131)

− µ2

2σ2

V 2
x

Vxx
−βV +Vx(r−λ)Xt+Vy(λXt+ rYt) + ϕ̄ (XtVx − V + log(y)) = 0 (1.132)

1. For λ = β = 0 the HJB becomes

VydYt + ϕ̄(log(y)− V ) = 0 (1.133)

With solution V (y) = log(y) + r
ϕ̄

.

2. For r = β = 0 and ϕ = λ

− µ2

2σ2

V 2
x

Vxx
+ VyλXt + ϕ̄ (−V + log(y)) = 0 (1.134)

19



CHAPTER 1. SINGLE TRADER AND MORAL HAZARD

And then using the same transformation V (x, y) = v(z) + log(y)

− µ2

2λσ2

v′2

v′′
− v′z2 + z − v = 0 (1.135)

Using dual method as ([6]) u(ξ) = supz (v(z)− zξ)

µ2

2λσ2
u′′ξ2 − ξu′2 − u′ − u+ u′ξ = 0 (1.136)

Again, we could not find an explicit solution.

Nevertheless, the optimal strategy is to not trade on the fraud asset at all, so what if the
bank hires a second agent whom could trade as the former trader with the only difference
is in the initial wealth and the proportion which she can take the wealth gained to her
private account? What if both traders would be able to invest in the fraud asset increasing
the probability that the bank acknowledge their portfolio? Would they invest now? Would
the poorer trader take advantage of the richer to earn quicker the money?
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Chapter 2

Multiple Traders and Moral Hazard

2.1 The new general Framework
Before we were considering just one trader using the pool to invest. However, this is
unrealistic. In the Nick Lesson’s case, it is clear that the consequences for the rest of the
traders in Barings Bank were devastating. Therefore, we could assume that one trader’s
strategy could significantly affect the others’ strategies. Even more, it could mean their
jobs.

Suppose that Trader 1 is investing fraudulently or just acting amorally and suppose as
well that Trader 2 does not know this and this person only can see the good performance
of Trader 1. Would this person trade on the Fraud Asset to achieve a similar results? If
Trader 2 knows what Trader 1 is doing, and assuming that Trader 2 warn the back, then
Trader 2 knows the existence of the risk of getting fired due to bankruptcy. Would Trader
2 start trading on the Fraud Asset and get benefit or would he keep avoiding such an
investment?
Let us considering the same general framework as before, but this time, including n
traders. Both traders have the same opportunities which means that they could trade on
the Fraud Asset. As a consquence, we could expect that the intensity of the jump pro-
cess would increase corresponding to the joined amount of wealth that both traders use.
Therefore, let us redefine the Fraud Asset:

dFt
Ft

=
n∑
i=1

ϕi,tdt− dNt. (2.1)

We can define now the diffusion of the pool:

dXt =
n∑
i=1

θi,tXt
dSt
St
−

n∑
i=1

δiXtdt+ rXtdt+
n∑
i=1

ϕi,tXtdt−XtdNt. (2.2)

Each trader uses the money of the pool to trader and from their investments and they
receive a proportion of the winnings or losses in their respective escrow account:

dEi,t = δiXtdt+ rEi,tdt− λiEi,tdt, (2.3)
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and they both can consum with their earnings hold in their private account:

dYi,t = (Yi,0 + λiEi,t − ci,t + rYi,t)dt. (2.4)

The goal is to maximize their respective value function as before.

2.2 Two Traders with Moral Hazard

Using the same approach as before, instead of having a pool and two escrow accounts,
we assume there is only two escrow accounts that jointly will act as the pool. We still
want to keep the condition that if the jump occurs everyone gets fired as a consequence of
bankruptcy. One possible way to do this is allowing both traders invest everyone’s money
and if the jump occurs, all money is lost, i.e., escrow accounts have no money left to trade
with. Given this assumption, the diffusions of the escrow accounts should be

dX1
t = π1

t (X
1
t +X2

t )
dSt
St

+ (1− π1
t )rX

1
t + ϕ1

t (X
1
t +X2

t )dt− λ1X
1
t dt− (X1

t +X2
t )dNt

(2.5)

dX2
t = rX2dt+ π2

t (X
1
t +X2

t )
dSt
St

+ ϕ2
t (X

1
t +X2

t )dt− λ2X
2
t dt− (X1

t +X2
t )dNt

(2.6)

where λ1 and λ2 are proportions of cash that traders are allowed to take at a time as in
the previous settings; r is a fixed interest rate so that current money increases with time at
the aforementioned rate; and the size of the jump, dNt, is equal to 1 when multiplied by
X1
t +X2

t , traders lose all their accumulated wealth.

Finally, the traders’ private wealth (or savings) are

dY 1
t = λ1X

1
t dt− c1

tdt+ rY 1
t dt (2.7)

dY 2
t = λ2X

2
t dt− c2

tdt+ rY 2
t dt (2.8)

where cit is their consumption. i.e., savings is composed of money from the escrow ac-
count, the trader’s consumption and the interest rate. When dFT = 0 for some T , then
λdXT+t = 0 for all t ≥ 0.

We want to maximize their respective long horizon expected exponential utility for
consumption of the traders savings as before. For the simpler case, where there is not a
risky asset St = 0; nor interest rate either, rt, nor consumption, ct = 0, the maximized
utility functions are

V1(X1, Y1) = eY1 (1 + C(X1 +X2)) (2.9)

V2(X2, Y2) = eY2 (1 + C(X1 +X2)) (2.10)

For the general case there is not an explicit solution.
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Proof. If St = rt = ct = 0 the previous diffusions become

dX1
t = ϕ1

t (X
1
t +X2

t )dt− λ1X
1
t dt (2.11)

dX2
t = ϕ2

t (X
1
t +X2

t )dt− λ2X
2
t dt (2.12)

dY 1
t = λ1X

1
t dt (2.13)

dY 2
t = λ2X

2
t dt (2.14)

Now we have two HJB equations. We want to maximize over ϕ1
t for trader 1 and over ϕ2

t

for trader 2:

sup
ϕ

(
−(ϕ1

t + ϕ2
t )V

1 + (ϕ1
t + ϕ2

t )W
1 +

E[dV 1]

dt

)
(2.15)

sup
ϕ

(
−(ϕ1

t + ϕ2
t )V

2 + (ϕ1
t + ϕ2

t )W
2 +

E[dV 2]

dt

)
(2.16)

W i is the function after the jump and the utility functions vanish as there is no consump-
tion. The derived PDEs for the first trader is

−ϕ2
tV

1 + ϕ2
tW

1 − V 1
x1
λ1X

1
t + V 1

y λ1X
1
t = 0 (2.17)

−V 1 +W 1 + V 1
x1

(X1
t +X2

t ) = 0 (2.18)

Let substitute Vi(~x, y) = u(~x)Wi(y) where W ′(y) = W (y) and u(~x) = u(x1, x2). The
four ODEs for both traders are

−ϕ2
tu+ ϕ2

t − ux1λ1X
1
t + uλ1X

1
t = 0 (2.19)

−u+ 1 + ux1(X
1
t +X2

t ) = 0 (2.20)
−ϕ1

tu+ ϕ1
t − ux2λ2X

2
t + uλ2X

2
t = 0 (2.21)

−u+ 1 + ux2(X
1
t +X2

t ) = 0 (2.22)

From the HJB ODEs, we can find the values for ϕ1 and ϕ2

ϕ1 =
λ2X2(ux2 − u)

1− u
(2.23)

ϕ2 =
λ1X1(ux1 − u)

1− u
(2.24)

(2.25)

and the first order conditions

−u+ 1 + ux1(X
1
t +X2

t ) = 0 (2.26)
−u+ 1 + ux2(X

1
t +X2

t ) = 0 (2.27)

which give the function joint

u(X1, X2) = 1 + C(X1 +X2)
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where C must be equal for both ODEs. Therefore

ϕ1 =
λ2X2

X1 +X2

1− C
C

+ λ1X2 (2.28)

ϕ2 =
λ1X1

X1 +X2

1− C
C

+ λ2X1 (2.29)

and the value functions are

V1(X1, Y1) = eY1 (1 + C(X1 +X2)) (2.30)

V2(X2, Y2) = eY2 (1 + C(X1 +X2)) (2.31)

Here we see that ϕi depends on the amount λi. If we introduce back the risky asset, the
HJB equation will not have an explicit solution since u(x) would need to be exponential,
and the first order condition with respect to ϕi needs u(x) to be linear. Now this result tells
us that a trader’s behavior towards the fraud asset depends on the other trader’s strategy
and the proportion which they get their wealth from their escrow account. So we wonder if
there is an equilibrium between both, i.e., if they would adapt their strategy until both are
satisfied. To study this special case, we set a simpler model but this time in the Discrete
Time.

2.3 Two Traders in Discrete Time

2.3.1 Definition of the model

Suppose now that a bank gives a sum of money, x1,0 and x2,0, to two traders. Instead
of giving the money directly to them, the bank puts it in an escrow account for each other
and the end of the 1-period, T . Both investors have the possibility to trade only on a jump
asset, Ft, driven by a Poisson process,Nt, with a combined intensity ϕ1,t+ϕ2,t (the first is
the intensity which trader 1 invests in the fraud asset and the second for the second trader)
-the more investors trades on the asset, the higher probability to be both fired is. Then,

dFt
Ft

= (ϕ1 + ϕ2)dt− dNt (2.32)

They should not trade at this risky asset, but these investor will trade this asset as
long as the jump does not happen. When it does happen, the bank will acknowledge the
investors’ behavior and consequently fire them.

Thus, the cash in that escrow account should be

ẋ1,t = ϕ1(x1,t + x2,t) (2.33)

ẋ2,t = ϕ2(x1,t + x2,t) (2.34)

and solving the ODEs one can obtain the solutions:
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x1,t = x1,0 +
ϕ1

ϕ1 + ϕ2

(x1,0 + x2,0)(e(ϕ1+ϕ2)t − 1) (2.35)

x2,t = x2,0 +
ϕ2

ϕ1 + ϕ2

(x1,0 + x2,0)(e(ϕ1+ϕ2)t − 1) (2.36)

Finally, the goal is to maximize their both Expected Utility, i.e.

Vi = E(U(xi,t)) = U(xi,t)e
−(ϕ1+ϕ2)t + U(0)(1− e−(ϕ1+ϕ2)t) (2.37)

where e−(ϕ1+ϕ2)t is the probability that the jump does not happen.

Let define an algorithm such that iterating the function defined by

P (ϕ1, ϕ2) : = (ϕ1, ϕ2)→ (ϕ̂1, ϕ̂2) (2.38)
ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) (2.39)
ϕ̂2 = argmaxϕ2V2(ϕ1, ϕ2) (2.40)

where there exists an equilibrium so that both traders are happy with their respective ϕ. To
find such equilibrium there should be a contraction at first. For the trader one, an optimal
ϕ1 should satisfy

∂

∂ϕ1

V1(ϕ̂1(ϕ2), ϕ2) = 0 (2.41)

Using implicit differentiation, differentiate with respect to ϕ2

∂2

∂ϕ2
1

V1(ϕ̂1(ϕ2), ϕ2)
∂(ϕ̂1(ϕ2))

∂ϕ2

+
∂2

∂ϕ1ϕ2

V1(ϕ̂1(ϕ2), ϕ2) = 0 (2.42)

Solve for ∂(ϕ̂1(ϕ2))
∂ϕ2

:

∂(ϕ̂1(ϕ2))

∂ϕ2

= −
∂2

∂ϕ1ϕ2
V1(ϕ̂1(ϕ2), ϕ2)

∂2

∂ϕ2
1
V1(ϕ̂1(ϕ2), ϕ2)

(2.43)

= −
U ′′(x) ∂x

∂ϕ1

∂x
∂ϕ2

+ U ′(x)
(

∂2x
∂ϕ1ϕ2

− ( ∂x
∂ϕ1

+ ∂x
∂ϕ2

)
)

+ U(x)− U(0)

U ′′(x)( ∂x
∂ϕ1

)2 + U ′(x)
(
∂2x
∂ϕ2

1
− 2 ∂x

∂ϕ1

)
+ U(x)− U(0)

(2.44)

This derivative means that given any change of ϕ2 the change that ϕ1 will have to be
smaller than the one for ϕ2. Sometimes during the proof of the theorem mentioned below,
instead of considering α, x10 and x20, let consider αx10 = ki and x20 = qx10 to reduce
one variable:

Vi = − 1

α
e
−α(xi,0+

ϕ1
ϕ1+ϕ2

(x1,0+x2,0)(e(ϕ1+ϕ2)t−1))
e−(ϕ1+ϕ2)t − 1

α
(1− e−(ϕ1+ϕ2)t) (2.45)

= − 1

α
e
−k(1+

ϕ1
ϕ1+ϕ2

(1+q−1i+1
)(e(ϕ1+ϕ2)t−1))

e−(ϕ1+ϕ2)t − 1

α
(1− e−(ϕ1+ϕ2)t) (2.46)
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2.3.2 Theorem

Theorem 3. Consider x10, x20, α1, α2 > 0 and the value functions:

V1 = U(x1)e−ϕ1−ϕ2 + U(0)
(
1− e−ϕ1−ϕ2

)
(2.47)

V2 = U(x2)e−ϕ1−ϕ2 + U(0)
(
1− e−ϕ1−ϕ2

)
(2.48)

1. Given a pair (ϕ1, ϕ2) ∈ R+2
then there exist a unique new pair, (ϕ̂1, ϕ̂2), such that

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) (2.49)
ϕ̂2 = argmaxϕ2V2(ϕ1, ϕ2) (2.50)

2. If (ϕ1, ϕ2) ∈ (R+)2, then ∣∣∣∣d(ϕi(ϕj))

d(ϕj)

∣∣∣∣ < 1. (2.51)

Proof

1. (a) Firstly, we want to check when the derivative is positive, negative or equal to
zero:

dV1 = U ′(x1)
∂x1

∂ϕ1

e−(ϕ1+ϕ2) − U(x1)e−(ϕ1+ϕ2) + U(0)e−(ϕ1+ϕ2) > 0 (2.52)

U ′(x1)
∂x1

∂ϕ1

− U(x1) + U(0) > 0 (2.53)

(2.54)

Hence, the derivative is null when

∂x1

∂ϕ1

=
U(x1)− U(0)

U ′(x1)
(2.55)

where U ′(x1) is positive since is an utility function. At the same time:

∂x1

∂ϕ1

= (x1,0 + x2,0)

(
ϕ2

(ϕ1 + ϕ2)2
e(ϕ1+ϕ2) +

ϕ1

ϕ1 + ϕ2

(e(ϕ1+ϕ2) − 1)

)
(2.56)

U(x1)− U(0)

U ′(x1)
=
U(x1)− U(0)

−α1U(x1)
=
−1 + U−1(x1)

α1

=
−1 + eα1x1

α1

(2.57)
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Plugging the aforementioned results on the derivative:

(x1,0 + x2,0)

(
ϕ2

(ϕ1 + ϕ2)2
e(ϕ1+ϕ2) +

ϕ1

ϕ1 + ϕ2

(e(ϕ1+ϕ2)t − 1)

)
=
U(x1)− U(0)

U ′(x1)
(2.58)

(x1,0 + x2,0)

(
−ϕ2 + e(ϕ1+ϕ2)(ϕ2 + ϕ1(ϕ1 + ϕ2))

(ϕ1 + ϕ2)2

)
=
U(x1)− U(0)

U ′(x1)
(2.59)

(x1,0 + x2,0) =
U(x1)− U(0)

U ′(x1)

(ϕ1 + ϕ2)2

−ϕ2 + e(ϕ1+ϕ2)(ϕ2 + ϕ1(ϕ1 + ϕ2))
(2.60)

(x1,0 + x2,0) =
−1 + eα1x1

α1

(ϕ1 + ϕ2)2

−ϕ2 + e(ϕ1+ϕ2)(ϕ2 + ϕ1(ϕ1 + ϕ2))
(2.61)

(x1,0 + x2,0)
α1

−1 + eα1x1
=

(ϕ1 + ϕ2)2

−ϕ2 + e(ϕ1+ϕ2)(ϕ2 + ϕ1(ϕ1 + ϕ2))
(2.62)

(2.63)

If we call k1 := α1x1,0 and q := x2,0
x1,0

, then:

(1+q)
k1

−1 + e
k1(1+

ϕ1
ϕ1+ϕ2

(1+q)(e(ϕ1+ϕ2)t−1))
=

(ϕ1 + ϕ2)2

−ϕ2 + e(ϕ1+ϕ2)(ϕ2 + ϕ1(ϕ1 + ϕ2))
(2.64)

If the derivative is positive,

(1+q)
k1

−1 + e
k1(1+

ϕ1
ϕ1+ϕ2

(1+q)(e(ϕ1+ϕ2)t−1))
>

(ϕ1 + ϕ2)2

−ϕ2 + e(ϕ1+ϕ2)(ϕ2 + ϕ1(ϕ1 + ϕ2))
(2.65)

and if it is negative,

(1+q)
k1

−1 + e
k1(1+

ϕ1
ϕ1+ϕ2

(1+q)(e(ϕ1+ϕ2)t−1))
<

(ϕ1 + ϕ2)2

−ϕ2 + e(ϕ1+ϕ2)(ϕ2 + ϕ1(ϕ1 + ϕ2))
(2.66)

To prove that the new pair (ϕ̂1, ϕ̂2) is unique the steps are the following:

i. Let

M(ϕ1) := (1 + q)
k1

−1 + e
k1(1+

ϕ1
ϕ1+ϕ2

(1+q)(e(ϕ1+ϕ2)t−1))
(2.67)

and

m(ϕ1) :=
(ϕ1 + ϕ2)2

−ϕ2 + e(ϕ1+ϕ2)(ϕ2 + ϕ1(ϕ1 + ϕ2))
(2.68)

are continuous and always decreasing with respect to ϕ1, respectively,
which is true since they are a composition of continuous functions and
their derivatives are always negative.
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ii. Bounded by above at ϕ1 = 0 by (1 + q) k1
−1+ek1

and ϕ2

−1+eϕ2
, respectively.

In the worse case scenario when k → 0 and ϕ2 → 0 the limit is (1 + q)
and 1. As q is finite then both are bounded by above. This is only for
proposition (4) using a finite starting point at ϕ1 = 0.

iii. We apply proposition (4).
Therefore these functions can intersect at most once.

iv. Consider the four different scenarios.

A. (2.67) is always greater than (2.68).
Then dV > 0 for everyϕ1. But this scenario is not possible because in
such a scenario, V should increase, but V ≥ − 1

α
with limϕi Vi = − 1

α
,

so V has to decrease after some point.
B. (2.67) is greater than (2.68) at first.

There is a maximum at ϕ∗1
C. (2.68) is always greater than (2.67).

Then dV < 0 for every ϕ1. Therefore the maximum value is at ϕ∗1 =
0

D. (2.68) is greater than (2.67) at first.
There is a minimum at ϕ∗1. But this is again not possible because, af-
ter ϕ∗1, V should increase, but V ≥ − 1

α
with limϕi Vi = − 1

α
, so V

has to decrease after some point.

Therefore there is a unique ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2). For ϕ̂2 the proof
is analogous.

2. We want to prove that there exists a contraction. The steps are the following:

(a) We want to prove that the denominator of the contraction defined below is
negative:

∂(ϕ̂1(ϕ2))

∂ϕ2

= −
∂2

∂ϕ1ϕ2
V1(ϕ̂1(ϕ2), ϕ2)

∂2

∂ϕ2
1
V1(ϕ̂1(ϕ2), ϕ2)

(2.69)

= −
U ′′(x) ∂x

∂ϕ1

∂x
∂ϕ2

+ U ′(x)
(

∂2x
∂ϕ1ϕ2

− ( ∂x
∂ϕ1

+ ∂x
∂ϕ2

)
)

+ U(x)− U(0)

U ′′(x)( ∂x
∂ϕ1

)2 + U ′(x)
(
∂2x
∂ϕ2

1
− 2 ∂x

∂ϕ1

)
+ U(x)− U(0)

(2.70)

(b) If so then if we call

Num = −
(
U ′′(x)

∂x

∂ϕ1

∂x

∂ϕ2

+ U ′(x)

(
∂2x

∂ϕ1ϕ2

− (
∂x

∂ϕ1

+
∂x

∂ϕ2

)

))
(2.71)
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and

Dem = −
(
U ′′(x)(

∂x

∂ϕ1

)2 + U ′(x)

(
∂2x

∂ϕ2
1

− 2
∂x

∂ϕ1

))
, (2.72)

then we have
−Num+ U(x)− U(0)

−Dem+ U(x)− U(0)
< 1

if Dem > Num and we are done.

(a) The denominator is equal to

1

α
− 1

α
e
−α(x10+(x10+x20)(−1+eϕ1+ϕ2 )

ϕ1
ϕ1+ϕ2

) (2.73)

− 1

α
e
−α(x10+(x10+x20)(−1+eϕ1+ϕ2 )

ϕ1
ϕ1+ϕ2

) (2.74)

(x10 + x20)2α2(ϕ2 − eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))2

(ϕ1 + ϕ2)4
(2.75)

− 1

α
e
−α(x10+(x10+x20)(−1+eϕ1+ϕ2 )

ϕ1
ϕ1+ϕ2

) (2.76)

(x10 + x20)α(−2ϕ2(1 + ϕ1 + ϕ2) + eϕ1+ϕ2(2ϕ2 + ϕ1(ϕ1 + ϕ2)2))

(ϕ1 + ϕ2)3

(2.77)

Now 1 − e
−α(x10+(x10+x20)(−1+eϕ1+ϕ2 )

ϕ1
ϕ1+ϕ2

)
< 0 always. The first fraction is

always positive (as every element is to the power of an even number) and then,
by the exponential, negative. The second fraction is a bit trickier.

Consider only the numerator without as (x10 + x20)α is positive and the de-
nominator as well.

(−2ϕ2(1 + ϕ1 + ϕ2) + eϕ1+ϕ2(2ϕ2 + ϕ1(ϕ1 + ϕ2)2)) (2.78)

Its first derivative with respect to ϕ1 is

2ϕ2(−1 + eϕ1+ϕ2) + eϕ1+ϕ2((ϕ1 + ϕ2)(ϕ2 + ϕ1(3 + ϕ1 + ϕ))) (2.79)

which is always positive therefore

−2ϕ2(1+ϕ1+ϕ2)+eϕ1+ϕ2(2ϕ2+ϕ1(ϕ1+ϕ2)2) > 2ϕ2(−1+eϕ2)+eϕ2ϕ2
2 > 0
(2.80)

Hence the denominator is always negative.
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(b) We want to prove that Dem > Num. If we call

A :=
∂x

∂ϕ1

∂x

∂ϕ2

(2.81)

A′ := (
∂x

∂ϕ1

)2 (2.82)

B :=

(
∂2x

∂ϕ1ϕ2

− (
∂x

∂ϕ1

+
∂x

∂ϕ2

)

)
(2.83)

B′ :=

(
∂2x

∂ϕ2
1

− 2
∂x

∂ϕ1

)
(2.84)

or equivalently,

A := (x10 + x20)2ϕ1 (2.85)
(1 + eϕ1+ϕ2(−1 + ϕ1 + ϕ2))(−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))

(ϕ1 + ϕ2)4
(2.86)

A′ := (x10 + x20)2 (−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))2

(ϕ1 + ϕ2)4
(2.87)

B := (x10 + x20) (2.88)
(−ϕ1 − ϕ2

1 + ϕ2 + ϕ2
2 − eϕ1+ϕ2(ϕ2 + ϕ1(−1 + ϕ1 + ϕ2)(1 + ϕ1 + ϕ2)))

(ϕ1 + ϕ2)3

(2.89)

B′ := (x10 + x20)
(2ϕ2(1 + ϕ1 + ϕ2)− eϕ1+ϕ2(2ϕ2 + ϕ1(ϕ1 + ϕ2)2))

(ϕ1 + ϕ2)3

(2.90)

and if we prove that A′ ≥ A ≥ 0 and B′ ≤ B ≤ 0 then −Num =
U ′′(x)A + U ′(x)B and −Dem = U ′′(x)A′ + U ′(x)B′ are negative since we
know that the first derivative of the utility function, U(x), has to be positive
and the second negative. Therefore −Dem < −Num and we have finished.

i. A′ ≥ A ≥ 0: It is clear to see that A > 0 and A′ > 0. Now we want to
prove that A′ ≥ A ≥ 0, so we divide A by A′ to take out what is equal:

A

A′
=

ϕ1(1 + eϕ1+ϕ2(−1 + ϕ1 + ϕ2))

−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2))
(2.91)

and we take away the numerator from the denominator, if the result is
positive we are done.

− ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)) (2.92)

−
(
ϕ1(1 + eϕ1+ϕ2(−1 + ϕ1 + ϕ2))

)
(2.93)

= (−1 + eϕ1+ϕ2)(ϕ1 + ϕ2) > 0 (2.94)

Therefore A′ ≥ A ≥ 0.
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ii. B′ ≤ B ≤ 0: This part is a bit trickier. To see that B is always negative
we take derivatives to simplify the expression until one is always negative
and then go back. This works if all the derivatives are always negative.
Since (x10 + x20) 1

(ϕ1+ϕ2)3
is always positive, we will not consider it. We

now call the remaining part as D.

D := −ϕ1 − ϕ2
1 + ϕ2 + ϕ2

2 (2.95)
− eϕ1+ϕ2(ϕ2 + ϕ1(−1 + ϕ1 + ϕ2)(1 + ϕ1 + ϕ2)) (2.96)

D′ = −1− 2ϕ1 − eϕ1+ϕ2(−1 + ϕ1(−1 + ϕ1(3 + ϕ1))) (2.97)
− eϕ1+ϕ2(ϕ2 + 2ϕ1(2 + ϕ1)ϕ2 + (1 + ϕ1)ϕ2

2) (2.98)
D′′ = −2− eϕ1+ϕ2(−2 + ϕ1(1 + ϕ1)(5 + ϕ1)) (2.99)
− eϕ1+ϕ2(5ϕ2 + 2ϕ1(4 + ϕ1)ϕ2 + (2 + ϕ1)ϕ2

2) (2.100)
D′′′ = −eϕ1+ϕ2(3 + ϕ1(17 + ϕ1(9 + ϕ1))) (2.101)
− eϕ1+ϕ2(13ϕ2 + 2ϕ1(6 + ϕ1)ϕ2 + (3 + ϕ1)ϕ2

2) < 0 (2.102)

The third derivative is negative everywhere and then the second derivative
is less or equal than the second derivative evaluated at ϕ1 = 0, and so on
for the rest.

D′′ ≤ −2− eϕ2(−2 + 5ϕ2 + 2ϕ2
2) ≤ 0 (2.103)

D′ ≤ −1− eϕ2(−1 + ϕ2 + ϕ2
2) ≤ 0 (2.104)

D ≤ ϕ2(1 + ϕ2 − eϕ2) ≤ 0 (2.105)

the maximum value is at the origin so D ≤ 0 and finally B ≤ 0.
If we take the ratio, B

B′
, to take out the parts where B and B′ are equal as

before

B

B′
=
−ϕ1 − ϕ2

1 + ϕ2 + ϕ2
2 − eϕ1+ϕ2(ϕ2 + ϕ1(−1 + ϕ1 + ϕ2)(1 + ϕ1 + ϕ2))

2ϕ2(1 + ϕ1 + ϕ2)− eϕ1+ϕ2(2ϕ2 + ϕ1(ϕ1 + ϕ2)2)
(2.106)

and we take away the denominator from the numerator then it should give
us B −B′ > 0 to have B′ ≤ B ≤ 0.

− ϕ1 − ϕ2
1 + ϕ2 + ϕ2

2 − eϕ1+ϕ2(ϕ2 + ϕ1(−1 + ϕ1 + ϕ2)(1 + ϕ1 + ϕ2))
(2.107)

−
(
2ϕ2(1 + ϕ1 + ϕ2)− eϕ1+ϕ2(2ϕ2 + ϕ1(ϕ1 + ϕ2)2)

)
(2.108)

= (ϕ1 + ϕ2)(eϕ1+ϕ2 − (1 + ϕ1 + ϕ2)) > 0 (2.109)

Thus, the denominator of ∂(ϕ̂1(ϕ2))
∂ϕ2

is greater of equal than the numerator
and therefore

0 ≥ ∂(ϕ̂1(ϕ2))

∂ϕ2

≥ −1 (2.110)
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Looking for when the contraction is equal to one, we check again the fraction

U ′′(x) ∂x
∂ϕ1

∂x
∂ϕ2

+ U ′(x)
(

∂2x
∂ϕ1ϕ2

− ( ∂x
∂ϕ1

+ ∂x
∂ϕ2

)
)

+ U(x)− U(0)

U ′′(x)( ∂x
∂ϕ1

)2 + U ′(x)
(
∂2x
∂ϕ2

1
− 2 ∂x

∂ϕ1

)
+ U(x)− U(0)

(2.111)

and there are two options: the exponential utility function is equal to 0, so that when
any of the parameters α1, x10, x20, ϕ1 and ϕ2 is infinity; or when the coefficients
multiplying the exponential are equal (A = A′ and B = B′) and this is when
ϕ1 + ϕ2 = 0. Since ϕi cannot be negative then ϕ1 = ϕ2 = 0. Let consider when
A = A′:

(x10 + x20)2ϕ1 (2.112)
(1 + eϕ1+ϕ2(−1 + ϕ1 + ϕ2))(−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))

(ϕ1 + ϕ2)4
(2.113)

= (x10 + x20)2 (−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))2

(ϕ1 + ϕ2)4
(2.114)

ϕ1(1 + eϕ1+ϕ2(−1 + ϕ1 + ϕ2))(−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2))) (2.115)
= (−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))2 (2.116)
ϕ1(1 + eϕ1+ϕ2(−1 + ϕ1 + ϕ2)) = −ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)) (2.117)
ϕ1 + ϕ2 + eϕ1+ϕ2(−ϕ1 − ϕ2 + ϕ1e

ϕ1+ϕ2(ϕ1 + ϕ2)− ϕ1e
ϕ1+ϕ2(ϕ1 + ϕ2)) = 0

(2.118)

ϕ1 + ϕ2 − eϕ1+ϕ2(ϕ1 + ϕ2) = 0 (2.119)
1− eϕ1+ϕ2 = 0 (2.120)
ϕ1 + ϕ2 = 0 (2.121)

Now for B = B′, as done with A and A′, let only consider the numerators

− ϕ1 − ϕ2
1 + ϕ2 + ϕ2

2 − eϕ1+ϕ2(ϕ2 + ϕ1(−1 + ϕ1 + ϕ2)(1 + ϕ1 + ϕ2)) (2.122)
= 2ϕ2(1 + ϕ1 + ϕ2)− eϕ1+ϕ2(2ϕ2 + ϕ1(ϕ1 + ϕ2)2) (2.123)
− ϕ1 − ϕ2

1 − ϕ2 − ϕ2
2 − 2ϕ1ϕ2 (2.124)

= −eϕ1+ϕ2(−ϕ2 − ϕ1(−1 + (ϕ1 + ϕ2)2) + ϕ1(ϕ1 + ϕ2)2) (2.125)
− (ϕ1 + ϕ2)− (ϕ1 + ϕ2)2 = −eϕ1+ϕ2(−ϕ2 − ϕ1) (2.126)
1 + (ϕ1 + ϕ2) = −eϕ1+ϕ2 (2.127)
1 + (ϕ1 + ϕ2) + eϕ1+ϕ2 = 0 (2.128)
ϕ1 + ϕ2 = 0 (2.129)

Therefore the coefficients are equal only for ϕi = 0, and finally

0 ≥ ∂(ϕ̂1(ϕ2))

∂ϕ2

> −1 (2.130)
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or ∣∣∣∣d(ϕi(ϕj))

d(ϕj)

∣∣∣∣ < 1. (2.131)

when (ϕ1, ϕ2) ∈ (R+)2. The proof for the second trader is analogous.

2

Proposition 4. The functions (2.67) and (2.68) can intersect at most once.

Proof. Consider the two possible scenarios:

1. If αx10 ≥ k1 since (2.67) is decreasing then

(1 + q)
αx10

−1 + e
αx10(1+(1+q)

ϕ1
ϕ1+ϕ2

(e(ϕ1+ϕ2)−1))
(2.132)

≤ (1 + q)
k1

−1 + e
k1(1+

ϕ1
ϕ1+ϕ2

(1+q)(e(ϕ1+ϕ2)−1))
(2.133)

=
(ϕ1 + ϕ2)2

−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2))
(2.134)

Therefore, if αx10 ≥ k1 then dV ≤ 0.

2. If αixi0 < ki(ϕj, q) we know that dV cannot be always dV > 0 as mentioned
above, although for ϕ1 = 0, dV > 0. And thus we prove that (2.67) and (2.68) can
intersect at most once.

∂V

∂ϕ1

(0) =
1

α1

e−ϕ2

(
−1 + e−α1x10(

(−1 + eϕ2)(1 + q)x10α

ϕ2

+ 1)

)
(2.135)

we use q + 1 = ϕ2

k
−1+ek

−1+eϕ2
or (q + 1)−1+eϕ2

ϕ2
= −1+ek

k

∂V

∂ϕ1

(0) =
1

α1

e−ϕ2

(
−1 + e−α1x10((−1 + ek)

x10α

k
+ 1)

)
(2.136)

=
1

α1

e−ϕ2

(
−1 + e−α1x10(−1 + ek)

x10α

k
+ e−α1x10

)
(2.137)

where the derivative with respect to k of (−1 + ek)x10α
k

is always positive (−1 +
ek)x10α

k
is greater than the minimal value, i.e., k = x10α1:

>
1

α1

e−ϕ2

(
−1 + e−α1x10(−1 + eα1x10)

x10α

α1x10

+ e−α1x10

)
(2.138)

=
1

α1

e−ϕ2
(
−1 + (−e−α1x10 + 1) + e−α1x10

)
= 0 (2.139)

We recall (2.67) and (2.68) and we check M(ϕ1)
m(ϕ1)

(it is well defined since both are
continuous and greater than zero), its first value at ϕ1 = 0 is larger than 1 asM(0) >
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m(0). Now if we check that ∂
∂ϕ1

(
M(ϕ1)
m(ϕ1)

)
< 0 for every ϕ1, therefore only hits 1

once, then we are done.

To do so, we find ∂
∂ϕ1

(
1

(1+q)k
M(ϕ1)
m(ϕ1)

)
equal to

=
eϕ1+ϕ2(−1 + e

k(1+(−1+eϕ1+ϕ2 )(1+q)
ϕ1

ϕ1+ϕ2
)
)(2 + ϕ1)(ϕ1 + ϕ2)2

(−1 + e
k(1+(−1+eϕ1+ϕ2 )(1+q)

ϕ1
ϕ1+ϕ2

)
)2(ϕ1 + ϕ2)3

(2.140)

−
e
k(1+(−1+eϕ1+ϕ2 )(1+q)

ϕ1
ϕ1+ϕ2

)
k(1+q)(ϕ2−eϕ1+ϕ2 (ϕ2+ϕ1(ϕ1+ϕ2))2)
(ϕ1+ϕ2)

(−1 + e
k(1+(−1+eϕ1+ϕ2 )(1+q)

ϕ1
ϕ1+ϕ2

)
)2(ϕ1 + ϕ2)3

(2.141)

−2(−1 + e
k(1+(−1+eϕ1+ϕ2 )(1+q)

ϕ1
ϕ1+ϕ2

)
)(−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2))))

(−1 + e
k(1+(−1+eϕ1+ϕ2 )(1+q)

ϕ1
ϕ1+ϕ2

)
)2(ϕ1 + ϕ2)3

(2.142)

We get rid of (1 + q)k as is a positive constant like the denominator,i.e, take the
numerator and derive by q.

−eϕ1+ϕ2(ϕ1 + ϕ2)(ϕ4
1 + 2ϕ1(−2 + ϕ2

1)ϕ2 + (−2 + ϕ2
1)ϕ2

2) (2.143)
−eϕ1+ϕ2(ϕ1 + ϕ2)2ϕ2(2ϕ1 + ϕ2)Cosh[ϕ1 + ϕ2] (2.144)
−(−1 + eϕ1+ϕ2)k(1 + q)ϕ1(ϕ2 − eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))2 (2.145)

Its derivative is always less than zero therefore the numerator is less than the nu-
merator evaluated at q = 0.

=
e
k(eϕ1+ϕ2ϕ1+ϕ2)

(ϕ1+ϕ2)

(ϕ1 + ϕ2)2
k(eϕ1+ϕ2(−1 + eϕ1+ϕ2)ϕ1(2 + ϕ1)(ϕ1 + ϕ2)3) (2.146)

−e
k(eϕ1+ϕ2ϕ1+ϕ2)

(ϕ1+ϕ2)

(ϕ1 + ϕ2)2
k2(−1 + eϕ1+ϕ2)ϕ1(ϕ2 − eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))2 (2.147)

−e
k(eϕ1+ϕ2ϕ1+ϕ2)

(ϕ1+ϕ2)

(ϕ1 + ϕ2)2
k(ϕ1 + ϕ2)(ϕ2 − eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))2 (2.148)

−e
k(eϕ1+ϕ2ϕ1+ϕ2)

(ϕ1+ϕ2)

(ϕ1 + ϕ2)
2k(−1 + eϕ1+ϕ2)ϕ1(−ϕ2 + eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))

(2.149)

Everything is multiplied by something positive 1
(ϕ1+ϕ2)2

e
(
k(eϕ1+ϕ2ϕ1+ϕ2)

(ϕ1+ϕ2) k, we take
the rest and derive by k now.

−(−1 + eϕ1+ϕ2)kϕ1(ϕ2 − eϕ1+ϕ2(ϕ2 + ϕ1(ϕ1 + ϕ2)))2 (2.150)

−eϕ1+ϕ2(ϕ1 + ϕ2)
(
ϕ4

1 + 2ϕ1(−2 + ϕ2
1)ϕ2 + (−2 + ϕ2

1)ϕ2
2

)
(2.151)

−eϕ1+ϕ22ϕ2(2ϕ1 + ϕ2)Cosh[ϕ1 + ϕ2] (2.152)
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Again the derivative is always negative therefore the numerator is less than itself
evaluated at k = 0

−e
ϕ1+ϕ2(ϕ4

1 + 2ϕ1(−2 + ϕ2
1)ϕ2 + (−2 + ϕ2

1)ϕ2
2 + 2ϕ2(2ϕ1 + ϕ2)Cosh[ϕ1 + ϕ2])

ϕ1 + ϕ2
(2.153)

which is less than 0 everywhere. Therefore, ∂
∂ϕ1

(
M(ϕ1)
m(ϕ1)

)
< 0 for every ϕ1.

2

As we can see, the proof corresponds with the two possible scenarios aforementioned.
The only thing lefy to see is what happens when if (ϕ1, ϕ2) = (0, 0)? The Value Function
for trader i which we would like to maximize is

Vi = − 1

α
e−α(xi,0+(x1,0+x2,0)(eϕi−1))e−ϕi − 1

α
(1− e−ϕi) (2.154)

which derivative

V ′i = − 1

α
e−α(xi,0+(x1,0+x2,0)(eϕi−1))e−ϕi (−α(x1,0 + x2,0)− 1)− 1

α
(e−ϕi) (2.155)

which is equal to zero when

−e−α(xi,0+(x1,0+x2,0)(eϕi−1)) (α(x1,0 + x2,0)eϕi + 1) + 1 = 0 (2.156)

or equivalently

e−α(xi,0+(x1,0+x2,0)(eϕi−1)) (α(x1,0 + x2,0)eϕi + 1) = 1 (2.157)

For any ϕi 6= 0, we already know that there is a contraction, so consider ϕi = 0

e−αxi,0 (α(x1,0 + x2,0) + 1) = 1 (2.158)

If we recall ki = αxi,0 and x1,0 = qx2,0 then

e−ki (k1(1 + q) + 1) = 1 (2.159)

1. This equation is satisfied at ki = 0 and q = ek

k
− 1. Therefore, dV = 0.

2. The derivative of this function with respect to q is always positive. Hence, If

q >
ek − 1

k
− 1 (2.160)

then dV > 0 at ϕi = 0 and there will be a maximum afterward, i.e., the maximum
is some ϕ∗i > 0 as the derivative dV should be negative at the end as explained
above.

3. If q < ek−1
k
− 1 then dV < 0 everywhere. Therefore the the optimal ϕi is equal to

0.

Therefore, if the initial pair is (0, 0) then there will be a maximum (ϕ∗1, ϕ
∗
2) greater or

equal than 0. So the algorithm works for all reals including 0.
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2.4 Conclusion
The obtained results can lead to interesting interpretations. Chapter 1 sets up a model
including moral hazard in investment and the result tells us that just one trader would not
be interested to risk her position trading fraudulently and become rogue while Chapter 2
gives us a glance of the possible dynamics between more traders. Moreover, Chapter 2
tells us that if one trader starts risking his portfolio, others could follow. This also leads
to open questions such as how traders could be coordinated to act fraudulently? In case of
more possible assets, how would they react? How can we model and therefore anticipate
these events? Could banks introduce indicators of such a strategy in advance?

Nevertheless, there is much to be researched on this direction like including constraints
to non- negative consumptions; studying the difference on the diffusions depending on
size of the Poisson Process or the impact of fixed salaries in moral hazard reactions. With
respect to the Discrete time process, one could still research the interactions between
traders and formalize it in continuous time.
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Chapter 3

Appendix

The algorithm can be written in two different ways. The first one, which is the one pre-
sented below, both traders react at the same time to the other trader strategy. The second
method, one trader makes her strategy and the other reacts consequently. The former is a
bit longer, since both traders reacts at the same time while the latter goes quicker since
the second trader is already reacting from the other’s strategy.

∗X[ϕ1 , ϕ2 , x10 , x20 ] := x10 + (x10 + x20)
ϕ1

ϕ1 + ϕ2
(eϕ1+ϕ2 − 1)

∗U [y , α ] := −(
1

α
)e−αy

∗V 1[ϕ1 , ϕ2 , x10 , x20 , α ] := U [X[ϕ1, ϕ2, x10, x20], α]e−(ϕ1+ϕ2) + U [0, α](1− e−(ϕ1+ϕ2))

∗V 2[ϕ1 , ϕ2 , x10 , x20 , α ] := U [X[ϕ2, ϕ1, x20, x10], α]e−(ϕ1+ϕ2) + U [0, α](1− e−(ϕ1+ϕ2))

∗$Assumptions{tol = 10−16;ϕ11 = 0;ϕ22 = 0; x10 = 1; x20 = 1;α1 = 1;α2 = 1};
∗Φ1 = If [Sign[ϕ1/.Last[FindMaximum[V 1[ϕ1, ϕ22, x10, x20, α1], ϕ1]]] == −1, 0.,

ϕ1/.Last[FindMaximum[V 1[ϕ1, ϕ22, x10, x20, α1], ϕ1]]];

∗Φ2 = If [Sign[ϕ2/.Last[FindMaximum[V 2[ϕ11, ϕ2, x10, x20, α2], ϕ2]]] == −1, 0.,

ϕ2/.Last[FindMaximum[V 2[ϕ11, ϕ2, x10, x20, α2], ϕ2]]];

∗cnt = 1;

∗While[Abs[Φ1− ϕ11] + Abs[Φ2− ϕ22] > tol, cnt+ +;ϕ11 = Φ1;ϕ22 = Φ2;

Φ1 = If [Sign[ϕ1/.Last[FindMaximum[V 1[ϕ1, ϕ22, x10, x20, α1], ϕ1]]] == −1, 0.,

ϕ1/.Last[FindMaximum[V 1[ϕ1, ϕ22, x10, x20, α1], ϕ1]]];

Φ2 = If [Sign[ϕ2/.Last[FindMaximum[V 2[ϕ11, ϕ2, x10, x20, α2], ϕ2]]] == −1, 0.,

ϕ2/.Last[FindMaximum[V 2[ϕ11, ϕ2, x10, x20, α2], ϕ2]]];

∗Φ1

∗Φ2

∗cnt
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Examples

1. Suppose x1 = 1, x2 = 2, α1 = 1, and α2 = 2. Then if we start with ϕ1 = ϕ2 = 0:

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) = 0.155647

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) = 0

Again with ϕ1 = 0.155647 and ϕ2 = 0

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) = 0.155647

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) = 0

If we start with ϕ1 = ϕ2 = 1.

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) = 0.172975

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) = 0

and again:

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) = 0.155647

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) = 0

Here we can see that starting from different initial strategies, the equilibrium is the
same at the end. For this particular case we can see that the poorer trader and is less
risk averse wants to trade while the wealthy trader does not.

2. Suppose x1 = 1, x2 = 2, α1 = 2, and α2 = 1:

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) = 0

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) = 0

Now if the trader is poorer but more or equally risk averse does not want to invest
either.

3. Suppose x1 = 1, x2 = 1, α1 = 2, and α2 = 1:

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) = 0

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) = 0.0705485

If both have the same initial wealth, the one who is less risk averse wants to trade.
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4. Suppose x1 = 1, x2 = 1, α1 = 1, and α2 = 1:

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) = 0.0705485

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) = 0.0705485

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) = 0.0832432

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) = 0.0832432

and so on until

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) ≈ 0.0858535

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) ≈ 0.0858535

If they are equally wealthy and risk averse, they want to trade equally, i.e, their
behavior is equal.

5. Suppose x1 = 1, x2 = 2, α1 = 1, and α2 = 1:

ϕ̂1 = argmaxϕ1V1(ϕ1, ϕ2) = 0.155647

ϕ̂2 = argmaxϕ1V1(ϕ1, ϕ2) = 0.

They both are equally risk averse. The trader who wants to invest would be the
poorer.
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