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Abstract 

   Pioneering the works of Brookman (1975), Middelberg et al. (1992a, 1992b) and Kleinig and 

Middelberg (1996), on cell disruption of yeast through high pressure homogenizer (HPH), the 

underlying factors in improving energy yield from biomass source has to be considered. This has 

become a global issue for scientists, researchers and policy makers as the energy demand has grown 

over the years due to the growing population. As cleaner energy has become highly needed for save 

environment and protection of the climate hence shifting away from the utilization of fossil fuels will 

be of higher priority.  

   In this paper, these factors will be highlighted and discussed herein as well as other parameters that 

influence the energy production efficiency from the high-pressure homogenizer (HPH) through using 

yeast as a biomass source. The HPH for consideration in this study is the GYB40-10S; this has a 

pressure of up to 100 MPa with two stage homogenizing valves pressure. This is adjustable so as to 

produce superfine, homogenous, stable liquid-liquid or solid-liquid under multiple actions of 

cavitation effect and high speed impact. And also shear through the adjustable homogenizing 

pressure valve in the conditions of high pressure and thereby making the material compatible after 

homogenization.  
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1 Introduction 
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    Energy as the prime mover of economic growth, its search therefore as renewable energy sources 

in the 21st century has become the key challenge to stimulate a more sustainable energy development 

for the future [1]. It is one of the most important fundamental elements for human development and 

even survival [2]. Yeast as one of biomass substrates has increasingly played a dominant role in the 

production of energy. The continuous production and development of this biomass for energy have 

been improved on ever since but have also been hampered by the some factors during the production 

processes. This has made the full potential never to have been achieved till moment. Many studies 

undertaken from different countries have been recently considering expanding their biofuel 

production using indigenous resources in order to achieve lower greenhouse gas (GHG) emissions [3, 

4].Yeast as an energy producing substrate have been able to meet this target and in the recent 

advances [5] have been able to show that some microbial species such as; yeast, fungi and microalgae 

can be used as potential sources for biodiesel as they can biosynthesise and store large amounts of 

fatty acids in their biomass. Nigam and Singh [6] demonstrated that yeast’s ability to grow well on 

pretreated lignocellulosic biomass could efficiently enhance the lipid accumulation hence providing a 

promising option for the production of economically and environmentally sound microbial oil from 

agricultural residues. From previous research, [7] have reported that besides microalgae, many yeasts 

and fungi species are able to generate and accumulate lipids in their cells. In achieving this 

breakthrough of liberating the contents within the cell wall of yeast biomass; high-pressure 

homogenizer was applied in the cell wall disruption at high enough pressure and temperature over 

number of passes as repeated cycles. In yeast like in other biomasses; Tedesco et al. [8] in their 

studies analysed the different types of pretreatments performed on various substrates and then 

considered milling as the most used mechanical technique. This accordingly they discussed in their 

paper that cell walls and lignin component disruption treatments are needed to enhance the hydrolytic 

phase and the overall biodegradability of lignocellulosics during an anaerobic digestion process. 

Similarly, [9, 10] showed pretreatment as a requirement in the alteration of the biomass macroscopic 

and microscopic size and structure as well as its submicroscopic chemical composition and structure 

so as to have the hydrolysis of carbohydrate fraction to monomeric sugars to be more achieved 

rapidly and with greater yields.  

Renewable energy use of biomass source constitute the homogenization of yeast under high pressure 

homogenizer (HPH) and should not be undermined as an energy producing substrate, this in fact, is of 

great consideration in this study, due to the high content of protein retained within the product and 

therefore qualifies it as a major and suitable biomass for biogas production. Yeast single cell protein 

showed molasses which is derived from sugarcane processing as the major raw material for its 

production [11]. As a result of this; Reed and Nagodawithana [12] have explained that the yeast 

generated from the biorefinery  process has a protein content as high as 50% making it much superior 

to other co-products from 1G bioethanol production that have been conventionally employed in cattle 

feed. This in other words, was classed as an energy and protein substitute for grass and with a high 

protein content containing 31% carbohydrate and lipid as a biomass [12]. Cheirsilp et al. [13] pushed 

further the frontier of yeast importance by characteristically highlighting it to produce high amount of 

lipid contents similar to that of vegetable oil as well as having a high growth rate and thus can be 

cultured in a single medium with low cost substrate. Yeast suitability for biogas production has been 

stemmed from the fact that it has lower water and higher protein content. Hammerschmidt et al. [14] 

have explained that several types of waste biomass and fresh plants available for the production of 

energy and fuels as not suitable for common pyrolysis processes due to their high water content 

(>70%). For the process to be classical the biomass has to be dried; and this has been considered as 

energy and time consuming step [14]. Apart from the fact that yeast uses in human’s lives are 

numerous; such as in the industry for brewery, pharmaceutical, food and now, energy production. 

Yeast as oleaginous microorganisms has an advantage over bacteria, molds and algae due to its 

unicellular nature as it is having a relatively high growth rate and accumulates lipid rapidly in discrete 



lipid bodies [15]. Saenge et al. [16] found and concluded that the produced lipid can be used as a 

feedstock for biodiesel production and when compared with other vegetable oils and animal fats Li 

and Wang [17] showed yeast lipid production having many advantages, such as; short life cycle, 

requiring little labour to grow, easy to scale up as well as relatively independent of special 

requirements for place, season and climate. 

In fact, biomass-based energy sources are potentially carbon dioxide neutral and recycle the same 

carbon atoms hence bioenergy is termed renewable energy made from plant-derived organic matter 

which are collectively recognized as biomass [18]. It is therefore important to recognize this fact that 

developing this biomass energy will largely be dependable on the development of the renewable 

energy industry as a whole, as it is driven by similar energy, environmental, political, social and 

technological considerations [19]. The aim of this study was to determine the underlying factors in 

improving energy yield through using yeast in high-pressure homogenizer and through the conducted 

study, some significance of these parameters are presented which determines the energy yield after 

homogenization. 

 

2 Background 
 

    The disruption of yeast through high pressure homogenizer (HPH) has all been previously dealt 

with by [20-23] using the different parameters in their analysis. [20] studied the antimicrobial effects 

and suggested it as dependent on the rate and magnitude of pressure drop. [24-26] proposed high 

pressure homogenizer as an effective alternative to the pasteurization of milk and whole liquid eggs. 

Donsi et al. [27] highlighted pressure and temperature as mainly influencing the effectiveness of 

homogenization for microbial inactivation among the process parameter and contrarily, considered 

temperature effects to be necessarily taken into account in HPH since upon homogenization, the rise 

in temperature is observed in the fluid downstream of the valve. Floury et al. [28] therefore attributes 

this to the viscous stress that have been caused by the high velocity of the fluid flow which is then 

impinging on the ceramic valve of the homogenizer, leading to the dissipation of a significant fraction 

of the mechanical energy as heat in the fluid. Considering pressure, temperature and number of passes 

(cycle) as the main parameters that affect fluid flow in HPH, Diels and Michiels [29] reiterated the 

level of microbial inactivation caused by the application of high-pressure homogenization increases 

with the pressure level which is similar with the high hydrostatic pressure (HHP) processes. Other 

underlying factors of considerable importance which have also been analyzed; authors have 

suggested a correlation between cell wall structure and high-pressure resistance between the 

microorganisms and HPH. This indicates that high-pressure homogenization kills vegetative bacteria 

mainly through mechanical destruction of the cell integrity, caused by the spatial pressure and 

velocity gradients, turbulence, impingement [30,31] and cavitation [32,33] 

Disruption of yeast or other microbial organisms is a key step towards the isolation and purification 

of many biotechnological products that are present in the interior of cells of the cell walls of micro-

organisms [34] and it was reported in the concept presented by Clarke et al. [35] as example of 

breaking the walls of yeast cells. These were found to be between 5-10 microns in sizes and not 

limited to just yeast but also applicable to other unicellular micro-organisms of different sizes. During 

homogenization, cell disruption is accounted for as a result of the non-specific tearing apart of the cell 

wall which is determined by the physical interaction with the valve slit of the homogenizer, in a 

balance between the destructive fluid-dynamic stresses and the cells’ physical strength [27]. This 

therefore results in the complete deformation of the cell wall and the protein contents are then 

liberated. 

 



And as energy demand has grown over the years due to the growing population, there are the needs 

for this energy production to be improved on, so as to further save the environment and protect the 

climate from effects of using fossil fuels and nuclear energy. This energy produced under this 

situation is the biogas (mix of CO2 and inflammable gas; CH4) produced by bacteria conversion of 

organic matter under anaerobic conditions [15]. And as the present energy system is totally 

considered as being based on fossil fuels, coal oil and natural gas utilization, it therefore makes up 

over 85% of the primary world energy production and this is possible through their relative easy 

accessibility which requires relatively little effort to extract, process, and be delivered to the users 

[16]. Shifting towards low-carbon world as analysed by [17] therefore requires comprehensive efforts 

being taken worldwide through mitigating measures within the industrialized countries since large 

majority of anthropogenic greenhouse gases (GHG) are emitted from their current energy use. This 

however as also shown that developing countries’ shares are on the rise and projected to continue in 

this rise in the nearest future due to developmental improvement. 

On the contrary, [18] explained it as being nonsensical to use the fresh water, fertilisers and arable 

land resources for the growth of fuel when considers the possibility of food shortages as the 

populations  expands especially when taken into accounts the conversion efficiency and lower energy 

content, and in complimenting the negative effects of food insufficiency for the growing population 

hence other organic wastes were sourced for to serve the same purpose for energy generation. 

Kulshreshtha et al. [19] have studied sustainable use of agricultural resources as a biobased economy 

and therefore considers it not new since agriculture has the potential of being central to this economy 

through the provision of source materials as commodity items such as liquid fuels and value added 

products (chemicals and materials). The use of agricultural resources for renewable and sustainable 

energy generation are not much of interest but [20] considers the land area required for cultivation of 

these products, should be a primary criteria for evaluating renewable fuels. In the literature many 

authors have highlighted the use of arable lands in the production of agricultural products for 

renewable and sustainable energy production. This in 2006 Kampman et al. [21] explained biofuel 

production uses about 13.8 Mha agricultural land mainly in the USA, EU, Brazil and China and it is 

expected that global biofuel and related land use will significantly increase to between 73 and 276 

Mha by 2020 depending on some factors such as; global demand of biofuel, feedstock mix, the share 

of second
 
generation biofuels that are produced from agricultural and wood residues and the 

agricultural yield of these crops up to the year 2020.  

This study considers the use of yeast as the biomass resource for the energy conversion process. 

Yeast use has become necessitated due to its easily availability. Like other microbes species such as 

microalgae and fungi, recent advances have shown that they can be used potentially in the production 

of biodiesel as they can biosynthesise and store large amounts of fatty acids in their biomass Xiong et 

al. [22]. Though in producing biodiesel from renewable energy source, the quality of oil used has a 

greater impact on the quality of produced biodiesel. Also in genetic engineering, key enzymes in 

specific fatty acid produce pathways within lipid biosynthesis and are considered as a promising 

target for the improvement of both quantity and quality of lipids [22, 23]. 

Yeast dominant role as a biomass substrate in renewable energy production cannot be over 

exaggerated. This [24] claimed that yeast’s ability to grow well on pretreated lignocellulosic biomass 

could efficiently enhance the lipid accumulation, and therefore provide a promising option for the 

production of economically and environmentally quality oil from agricultural residues. As factors to 

consider, biogas yield from yeast homogenization under HPH has been regarded highly favourable 

under high pressure and above room temperature. This is because thermochemical biomass 

conversion involves processes which require much more extreme temperatures and pressures than 

those found in biochemical conversion systems [24]. Though as ascertained, Farias et al. [25] pushed 

further that certain essential characteristics differentiate thermochemical process from biochemical 

process, this includes the flexibility in feedstock that can be accommodated with thermochemical 

processing and fuel diversity that result at the end. 

 

 

3  High-Pressure Homogenizer (HPH) 



 

   Cell rupture is required in the recovering of biological products that are located inside cells. This 

requires to be done either mechanically or non-mechanically [26]. There are other methods as well 

that are non-mechanical, which could either be the physical way or the enzymatic way. In general, 

mechanical methods are non-specific, but their efficiency is higher and application broader in 

comparison to any of the other methods [27].  This is highly dependent on the nature of the product of 

interest, the cell or tissue itself, like the extent of the cell’s fragility [28]. Cell disruption is considered 

as the isolation and preparation of intercellular products which is important for use in research and in 

the industries for manufacturing end products for consumers. In the industries, HPH application is 

linked to the production of stable emulsions, hence it is widely used in such areas [14, 27, 29-30] 

apart from it being able to emulsify and disrupt particles into disperse phase of suspension, it has also 

extensively proven to be suitable for the inactivation of the microbial flora occurring in fruit juices 

and milk-based beverages [31] especially contributing to the preservation of the freshness and texture 

attributes, coupled with antioxidant capacity and polyphenols, vitamins and flavonoids content of the 

product [32]. Viscosity is another parameter also considered as a yardstick for the effectiveness of 

microbial organisms and this is dependent on the associated viscous stress of the material as well as 

the shear stresses and the concentration of liquid. Temperature on its own can as well be attributed to 

the viscous stress caused by the high velocity of the fluid flow, which is then impinging on the 

ceramic valve of the homogenizer, leading to the dissipation of a significant fraction of the 

mechanical energy as heat in the fluid, this is due to the fact that as the temperature rises, it is 

observed in the fluid flow downstream of the valve [33]. Homogenizing yeast at such a high pressure 

enable the yeast to be fully homogenized wherein the cell walls will be totally broken to liberate the 

protein. Like in the dairy industry, wherein the sizes of milk globules are reduced, this enable it to 

have a better appearance and longer shelf life, hence [14] regarded HPH as a machine used for 

emulsions and suspensions to mix, disperse, and reduce the sizes of the droplets or particles of the 

disperse phase. Since the original function of the homogenizer was breaking up milk fat globules, 

there is sometimes a connection between the suggestion put forward for breaking up globules in milk, 

and the rupture of the walls of cells of yeast [14]. 

 

 
 

Fig 1. GYB40-10S 2-Stage Homogenizing Valves HPH 

 

 

4 Materials and Methods 

 

4.1 GYB40-10S 2-Stage Homogenizing Valves HPH 

 



   The machine is made of reciprocating plunger pump and homogenizing valve, with its 

homogenizing portion made up double stage homogenizing system which includes 1st stage 

homogenizing valve and 2nd stage homogenizing valve. The two stage homogenizing valve’s pressure 

are adjusted under the scope of nominal pressure  and at the same time can also be used separately 

due to the high-low of homogenizing pressure which  directly relate to the speed of materials through 

the homogenizing valve. The machine is of maximum 100 MPa with a flow rate of 40 L/h and 

material temperature up to 120 °C. 

The experiments were conducted using the conventional GYB40-10S 2-Stage Homogenizing Valves 

High Pressure Homogeniser (HPH) 

 

 

4.2 Baker’s yeast as a biomass substrate 

 

   The baker’s yeast block was obtained from Dublin Food Sales in the Glasnevin area of Dublin for 

High Pressure Homogenization experiment. This was refrigerated between 0 – 4 °C for freshness on 

the day it was originally collected to keep clean and fresh and to also enable it avoid contamination 

from other source. It was subsequently broken down into large beaker when ready to be used from the 

block form weighing 950g. 725ml of solution C was added and then ran under the stirrer until it was 

completely mixed. Using the following composition; the solutions A, B and C as below where 

prepared.  

 

 

4.3 Buffer solutions 

 

   Solution A (0.1M KH2PO4 + 0.15M NaCl), this is equivalent of 1litre 

13.6g of KH2PO4 weighed into beaker and dissolved using the deionised water, also; 8.8g of NaCl 

weighed into beaker and dissolved using the deionised water, both mixed together and filled to the 1 

litre mark. This was repeated thrice for 3 litres of solution to be obtained. 

 

Solution B (0.1M K2HPO4 + 0.15M NaCl),  

4.6g of K2HPO4 weighed into beaker and dissolved using the deionised water, also; 1.8g of NaCl 

weighed into beaker and dissolved using the deionised water, both mixed together and filled to the 

200 ml mark.  

 

Solution C obtained through gradually adding Solution B to Solution A until the pH scale of 5.3 was 

attained.725 ml of solution C added to the 950g broken yeast and mixed using the electric mixer.  

 

                
 

Fig 2a. Block of yeast                      Fig 2b. Homogenized yeast 

 

 

4.4   Centrifugation 

 



   The centrifuge closet (Fig 3a.) consists of superspeed refrigerated chamber that hold the GSA 

(Sorvall GSA Rotor). This is an aluminium superspeed angle rotor with specification as 28 °C tube 

angle, 13,000 rpm as maximum speed [34]. This is having a relative centrifugal force at maximum 

speed of 27,500 and a k factor at maximum speed as 2026. With the weight as 14.9kg and size 

diameter as 31cm, it is having a relatively weight of 580g maximum as the compartment mass 

weight. The Sorvall Superspeed Angle Rotors; GSA (fig 3b.) is designed for use in the Sorvall RC-2, 

RC2-B, RC-5 and RC-5B Superspeed Refrigerated Centrifuges [34]. The Sorvall Superspeed Angle 

Rotor accepts a variety of plastic, glass and stainless steel tubes and bottles. GSA have places for 6 

and for the purpose of this study, plastic tubes is used for easy removal after centrifugation to prevent 

mixing of the settled suspension. Before centrifugation, 100 ml of the homogenized sample was 

poured into a 1 litre graduated beaker. This was ensured that the 100 ml has the same composition as 

the rest of the homogenized sample (500 ml). This was diluted through adding 900 ml of the buffer 

(Solution C) at pH 5.3. This form a second diluted sample for protein concentration and as centrifuge 

is set to 13,000 rpm and timer for 60 minutes. The temperature is set between 5 and 7 °C. When the 

operation commence, the cooling is then adjusted gradually to between 5 and 7 °C, this is 

necessitated because it will not start at room temperature. 

After centrifugation, the settled suspension is separated by the liquid drained out and the solid residue 

in the centrifuge tube discarded. This remain consist of the unbroken yeast cells and cell debris. 

 

 

 

 

 

             
 

   

           Fig 3a. Centrifuge machine 

    

 

 

 

 

 



         

 

              Fig 3b. GSA Rotor               Fig 3c. Plastic Tube 

 

4.5   Protein curve preparation and spectrophotometer 

 

   The standard protein curve preparation is therefore needed as a determination of the protein 

concentration. One absolute way in determining the concentration of a protein of any given protein 

contained in a solution with an unknown concentration of protein is to compare the unknown solution 

with a set of protein solutions of known concentration. This works by having the curve calibrated and 

in the process enable to determine the exact protein concentration measure in a solution under 

investigation. Therefore the absorbance associated with a set of protein solutions of known 

concentrations is otherwise known as the protein standard curve. 

Before setting up the assay, the protein to be used as a standard is decided upon and the range which 

it is likely to be sensitive is determined. As sensitivity vary from one reagent batch to another, 

immunoglobulin G (IgG) is frequently used as a standard in Bradford assay the same way as bovine 

serum albumin (BSA) [35]. With the BSA solutions, 0.1M phosphate buffer, pH 7.0 of each protein 

to 0.5, 1, 2, 4 and 5 mg/ml were prepared to dilutions. Starting at 100mg/ml and prepared serial 

dilutions were made using Total Protein Reagent and with the UV procedure a Standard Curve for 

BSA was prepared omitting 0.25 mg/ml dilution. The absorbance of the resulting solution is 

measured using the spectrophotometer (Fig. 3d) and the measured absorbance of the protein versus 

the known concentration of BSA is plotted. The resulting graph will then be the protein standard 

curve for determining the unknown protein concentration.  

 

 

 
Fig 3d. Schematic view of Spectrophotometer S-3100 PDA (As modified from [36]) 

 

 

4.6   Experimental methodologies 

 



   The experiment conducted aims at investigating the parameters such as Pressure (P), Temperature 

(T) and Number of Cycle (N) on the homogenized yeast under High Pressure Homogenizer while at 

the same considering the other parameter effects on the treated yeast sample such as the pH, Viscosity 

and Protein Concentration. The HPH; GYB40-10S 2-Stage Homogenizing Valves (as in fig. 1) is a 

two stage homogenization process  The two stage homogenizing valve’s pressure are adjusted under 

the scope of nominal pressure  and at the same time can also be used separately due to the high-low 

of homogenizing pressure which  directly relate to the speed of materials through the homogenizing 

valve. The machine is of maximum 100 MPa with a flow rate of 40 l/h and material temperature up to 

120 °C. The functionalities of the valve head, valve seat and impact ring were taken into account 

during the homogenization as the hand wheel were being turned to compress the yeast through the 

outlet for yeast cell disruption. The operating guiding principle of pressure effect has previously been 

explained by [9]. This clarifies the mechanism of cell rupture in terms of the rapid release of pressure 

as cells pass through the high-pressure homogenizer. The collected homogenized yeast at the 

different pressures at (30, 60 and 90 MPa), against temperatures (15, 20 and 25 °C) and number of 

cycles recorded (1, 3 and 5) corresponding to the design matrix as shown below.  

The obtained treated yeast and solution is separated from the debris and further diluted with total 

protein reagent in the ratio of 500ml of the solution (Protein solution) to 2000ml of the reagent for 

each of the samples. 500ml of this solution is then drawn into each of the cuvettes and allowed to stay 

for half an hour before the protein value is read using the spectrophotometer. The spectrophotometer 

is standardized for use at 550 nanometer (nm) wavelengths and the protein concentration is recorded. 

As spectrophotometer is commonly used for the measurement of transmittance or reflectance of 

solutions, transparent or opaque solids, such as polished glass, or gases, hence the UV light 

transmitted through the solution is determined through recording the of the protein [37] 

 

4.7 Design of Experiments 

 

  This paper studies the different input parameters that are considered as underlying factors in 

improving energy yield from biomass source through yeast use on high-pressure homogenizer. For 

this purpose, a design of experiments was needed so as to successfully analyse the test parameters for 

this energy improvement. The Design of Experiment (DOE) V.8 was used in creating the 

experimental run order and statistical analysis as well as the provision of extensive graphs that 

showcase the relationship between the input parameters and the output responses [38]. This also 

shows adoption of the response surface methodology which follows the Box-Behnken Design (BBD) 

with variables as shown in Table 1. [39] 

 
 

4.8 Box-Behnken Design  

 

   Using the Response Surface Methodology (RSM), BBDs are response surface designs specially 

made to require coded values as -1, 0 and +1 with three levels. These are formed through combining 

two-level factorial designs with incomplete block designs. This procedure creates designs with 

desirable statistical properties but, most importantly, with only a fraction of the experiments required 

for a three-level factorial. Due to their levels being three, the quadratic model is therefore appropriate 

as blocking options are also offered for most of these designs [40]. This therefore in essence indicates 

that RSM is a set of mathematical and statistical techniques that are useful in the modelling, 

interpreting and predicting the response of interest to several input variables χ (level i to j). This is 

with aim of optimizing single or multiple response ‘y’ and this study, it is a single response (Protein 

Concentration; PC) measured in milligram/millilitre; (mg/ml) and the generated equation is shown in 

equation (1) above. The results of the experiment are as shown in shown in Table 2 according to the 

RSM design matrix, sorted by standard order. 



The 2nd order polynomial model as indicated by equation (1) through stepwise regression was fitted 

and then applied on the response (Protein Concentration) measured in mg/ml. This was also used in 

generating Analysis of Variance (ANOVA) in Table 3 and response plot 

 

 

5 Results and Discussion 

 

     Considering the data set provided for optimal results, which was needed to be tested in capturing 

the highest variability of response from minimum runs in terms of underlying factors being 

considered for energy improvement, the RSM provided 17 runs of experiment (Table 2). 

While (Table 1) shows the parameter variables and their ranges of values in the coded form with their 

design level; pressure (30 – 90) MPa, temperature (15 – 25) °C and number of cycles (1 – 5). 

 

Table 1: 

RSM Showing design level and coded values against process variables 

Variables -1 0 1 

Pressure 

(MPa) 

 

30 

 

60 

 

90 

Temperature 

(°C) 

 

15 

 

20 

 

25 

Number of 

Cycles 

 

1 

 

3 

 

5 

 

Design of experiment has been applied here using the Box Behnken Design (BBD). 3 factors; 

temperature, pressure and number of cycles and a response of protein concentration were analysed 

with 17 runs of experiments as detailed above, their assigned ranges have been used in obtaining the 

experimental results. 

 

 

Table 2:   

Design Matrix 

  Factor 

1 

Factor 

2 

Factor 

3 

 

Std 

 

Run 

A: 

Pressure 

B: 

No. of 

Cycles 

C: 

Temp 

  MPa No. °C 

1 13 30 1 20 

2 4 90 1 20 

3 6 30 5 20 

4 3 90 5 20 

5 7 30 3 15 

6 9 90 3 15 

7 17 30 3 25 

8 12 90 3 25 

9 10 60 1 15 

10 16 60 5 15 

11 2 60 1 25 

12 11 60 5 25 

13 15 60 3 20 

14 1 60 3 20 



15 14 60 3 20 

16 8 60 3 20 

17 5 60 3 20 

 

 

5.1 Developed mathematical model for yeast cell wall rupture 

   The fit summary output indicates that for the response, the linear model are statistically 

recommended for further analysis as they have the maximum predicted and adjusted R2 [41, 42]. The 

test of significance of the regression models, the test for significance on individual coefficients and 

the lack of fit test performed using the same statistical package for the response. Through selecting 

the step-wise regression method, the insignificant model terms can be automatically be eliminated. 

The resulting ANOVA table for the reduced linear model outline the analysis of variance for the 

response and illustrate the significant model terms. This also show the other adequacy measures R2, 

adjusted R2 and predicted R2 as 0.886, 0.869 and 0.849 respectively. The entire adequacy measures 

are close to 1, which are in reasonable agreement and therefore indicate adequate models as well as 

the adequate being equal 20.9 for the concentration of protein yield, makes it an adequate model too  

[41, 42]. The adequate precision compares the range of the predicted value at the design points to the 

average prediction error. In this case, the values of adequate precision ratios are dramatically greater 

than 4. An adequate precision ratio above 4 indicates that the model is adequate; an indication of 

good model discrimination [41]. Fig 4a and 4b is the replica plot of predicted against the actual 

response and the residual of the normal plot of protein concentration response. An adequate model 

means that the reduced model has successfully passed all the required statistical tests and can be used 

to predict the responses or to optimize the process and so on. The final mathematical model linked to 

the response with regards to the coded factors and actual factors as determined by the software are 

respectively equations (2) and (3) 

 

 

 

Table 3: ANOVA Table for Protein Concentration Reduced Linear Model 

 

  Sum of   Mean F p-value   

Source Squares df Square Value Prob > F   

Model 0.34425 2 0.172125 54.14811 < 0.0001 Significant 

  A-Pressure 0.32805 1 0.32805 103.1999 < 0.0001   

  B-No. of 

cycles 0.0162 1 0.0162 5.096292 0.0405   

Residual 0.044503 14 0.003179       

Lack of Fit 0.023483 10 0.002348 0.446869 0.8625 

not 

significant 

Pure Error 0.02102 4 0.005255       

Cor Total 0.388753 16         

 R2 = 0.886  Adj R2 = 0.869   

Pred R 2 = 0.849 Adeq- Precision = 20.9   

 

 

 

 

 

 



 Table 4: Design Matrix showing the input and output (Response) 

  Factor 1 Factor 2 Factor 3 Response 1 

Std Run A:Pressure B:No. of cycles C:Temperature Protein Conc. 

  MPa No. °C mg/ml 

1 13 30 1 20 0.95 

2 4 90 1 20 1.32 

3 6 30 5 20 0.99 

4 3 90 5 20 1.4 

5 7 30 3 15 0.975 

6 9 90 3 15 1.4 

7 17 30 3 25 0.885 

8 12 90 3 25 1.3 

9 10 60 1 15 1.11 

10 16 60 5 15 1.26 

11 2 60 1 25 1.125 

12 11 60 5 25 1.215 

13 15 60 3 20 1.145 

14 1 60 3 20 1.205 

15 14 60 3 20 1.01 

16 8 60 3 20 1.125 

17 5 60 3 20 1.085 

 

 

 

 
                 Fig 4a: plot of predicted against the actual response 
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                 Fig 4b: Normal plot of residual protein concentration response 

 

                                                                                  

Final Equation in Terms of Coded Factors: 
 

 Protein Conc.  = +1.15 +0.20* A +0.045* B                                                                      (2) 

 

Final Equation in Terms of Actual Factors: 
 

Protein Conc.  = +0.67456  +6.75000E-003Pressure +0.022500 * No. of cycles                            (3) 
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Fig 4c: Contours plot showing the effect of number of cycles and pressure on the yield of protein  

            concentration (this shows zone with highest software-estimated protein concentration) 

 

 
 

Fig 4d: Response surface plot of protein concentration yield (with actual factor temperature  

            considered at 20 degree) 
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Fig 4e: showing the 

three factors A, B and C representing (Pressure, Temperature and Number of    

           cycles) and their ranges in the cube 

 

5.2 The Effect of Factors on the Response 

The perturbation plot below shows how the protein concentration results as pressure having a 

significant effect in its production. Increase in the pressure results in high protein concentration yield; 

A while B; number of cycle shows no much rise in its effect to the yield of protein. Factor 

temperature is not having any effect on the yield at all and it is insignificant to the response variation 

and thus does not appear in such figure, while increasing A will in turn consistently improve the 

response. Factor B also affects the response following a linear behaviour.  

Finally, the perturbation acts in such a way that the effect of the number of cycle be kept higher and 

that of pressure also, so as to improve the yield of protein concentration. This is therefore proven that 

temperature showed no effect in the improvement of energy through yeast homogenization in the 

HPH 

 

 

 

 

 
          Fig 4f: Perturbation plot showing pressure increasing with the number of cycles as yeast is           

                      Homogenized 
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Contour graph is one of the plots that can be developed by design expert V8. This contour plot 

provides two-dimensional views where all points that have same response and are connected to 

produce contour line of constant response.  (Fig 4c) is a contour plot for the effect of pressure and 

number of cycle on the protein concentration. 

The effect of the two mentioned parameters on the response (protein concentration) can be presented 

in three dimensional in response surface plot as shown in (Fig. 4d). This plot provides clearer view of 

the surface. 

 

5.3 Pressure effect 

 

   Pressure has been the most considerable factor in the use of HPH for cell disruption of materials 

during homogenization. The pressure exerted on the hand wheel during this process tends to close the 

gap between the inlet and outlet valve through shortening of the passageway for the homogenized 

yeast. Through the study of the causes of breakage and disruption in homogenizer, [14] highlighted 

homogenizer function as pump causing the pressure to build up to an unusually high value before the 

gap region and the gap width of the pump adjusted during flow by the operator which allows the 

operating pressure to be changed. The fluid at this point has reached the maximum velocity and then 

leaves this gap through the outlet in the direction of the impact ring. For multiple passes or number of 

cycles, the fluid is then recirculated to a continuous process of cell rupturing depending on the 

number of cycle. In a similar development, homogenizing Escherichia coli (E.coli) in the HPH, [43] 

studied pressure and verified it playing a major role in obtaining high yield of nucleocapsid (NP) 

protein. This was proven that highest production was achieved when the HPH was operated at high 

pressure. 

In this study, pressure also played a dominant role in the homogenization of yeast and from the data 

above (Table 4), at pressure 90 MPa shown at runs 3, 4, 9 and 12, the protein yield were 1.4 mg/ml, 

1.32 mg/ml, 1.4 mg/ml and 1.3 mg/ml. These show highest yield of protein at the maximum pressure 

of 90 MPa while the lowest pressure at 30 MPa at runs 6, 7, 13 and 17 produced the least of protein 

yields of 0.99 mg/ml, 0.975 mg/ml, 0.95 mg/ml and 0.885 mg/ml respectively (Table 4). This has 

further being straightened through the studies made by [44] that mechanical disruption process 

involves the actions of externally applied stress or pressure on the cells, this therefore shows that 

when the external pressure exceeds the internal pressure within the cell, disruption would have taken 

place [45]. Also, shear stress an influence on pressure, create a phenomenon which will be dependent 

on the relative velocity between the solid and the surrounding liquid whether the liquid is accelerating 

or decelerating and as a result a tensile stress is developed in the cell wall, wherein the hemisphere is 

created in front [14].  

  

5.4 Temperature effect 

 

   Temperature as a factor showed no significance in this study. Though at slightly below room 

temperature of 15 °C, this yielded the maximum concentration of protein; 1.4 mg/ml on the highest 

applied pressure of 90 MPa, while at the highest of temperature of 25 °C of the yeast being 

homogenized, resulted in the least yield of protein concentration (0.885 mg/ml). This scenario shows 

that temperature had no effect on the yield of protein concentration as either high or low due to its 

inconsistency. Across the temperature range examined; 15 – 25 °C in which yeast has been treated in 

the high pressure homogenizer, it has critically been observed that protein concentration recorded has 



shown different values with no consistency. From the given data and previous studies, have not been 

proven as to what has resulted to this. This may be entirely different when temperatures outside this 

range are considered but there has been no theory to prove this. In its own effect, temperature has 

played no role in this study but has played a role in pressure treatment of yeast in the HPH [46], and 

from previous studies [47, 48], the combined effect of heat and pressure processes are mainly based 

on empirical data on inactivation of microbes. This on the contrary, showed that the combined 

pressure and elevated temperature does not affect one specific site but have a number of targets 

affected [46]. 

 

 

5.5 Number of cycle effect 

 

   As previously highlighted in (Fig 4f) of the perturbation plot showing pressure increasing with the 

number of cycles as yeast is homogenized. Both factors of pressure and number of cycles acted in the 

same way in this study with much appreciable effect resulting from the applied pressure on the 

homogenized yeast. As the number of cycle sets in, it weakens the cells at the end of every cycle after 

passing the liquid yeast through the HPH, this therefore enables the cell wall to be fully broken down. 

After the first 2 – 3 passes, the entire cell wall of yeast would have been completely broken down for 

the release of protein. Though, this is considered possible through the application of shear stress on 

the HPH hand wheel as an influence to the exerted pressure at a high level of say 90 MPa. 

Samarasinghe et al. [49] have studied that nozzle size did not affect the degree of cell rupture, which 

then implies that the impact of shear exerted upon the cell walls from the nozzle walls was 

insignificant. This invariably means that more resistance are imparted from smaller nozzle in a 

forward movement thereby rendering more shear onto the cell walls as when compared to larger 

nozzle. The size increment is considered better through preventing clogging during real-life situation 

but as considered in this study, 2-stage homogenizing valve, size of nozzle was not the case but 

number of cycle improved the homogenization process wherein increased cell walls are broken down 

particularly when particle size distribution are considered. 

 

 

6 Conclusion  

 

  The outcome of the experimental results shows a great potential of the novel biogas improvement 

through yeast use and cell wall breakage in HPH and as analysed using the design expert (DOE).  

  In fact, high pressure homogenization has proven to be an effective technique in the rupturing of 

yeast cell walls as when compared to other mechanical techniques for rupturing microbial products 

such as Micro fluidizer and Bead mill. An initial factorial design (design matrix) showed 17 runs of 

experiment for the 3 factors. 

The following points have therefore been achieved from analysis; 

 Conducted the homogenization process using the 2-Stage HPH GYB40-10S to obtain set results 

of the three factors (Temperature, Pressure and Number of cycles) and one response (Protein 

Concentration ) using the DOE in its analysis. 

 In the build-up of protein yields, temperature never showed any effect on the production as 

shown in the DOE data information within the temperature range (15 -25 °C) considered. 

 The diluted homogenized yeast has shown a significant results and this is assumed to also be 

possible with the undiluted yeast and whose results will be compared to that of the diluted yeast 

to determine how the protein yield has improved significantly. 

 Pressure rise during the experimental work indicate that the viscosity of yeast being distorted 

and as a result tends to increase the protein yield, it therefore enable the cell wall to be disrupted 

to liberate the protein.  



 Due to the roughness in the surface, at a certain velocity high enough, the streamline in the flow 

will no longer maintain the same shape and thereby deviates from the orderliness in the pattern 

of movement. 

 The most significant parameters in this study were the pressure differential across and the 

number of cycles through the homogenizer. Though the maximum pressure tends to produce the 

highest of protein concentration but within the data set, this combined with the number of cycle 

yielded optimum result. 
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